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ABSTRACT 

 

The proper functioning of the immune system is crucial for a human organism to 

defend against viral and bacterial infections. Consequently, it is extremely important 

to understand the complex interplay between molecules of the immune system. 

Upon infection, several human receptor types recognize conserved molecular 

patterns that are a feature of pathogens. A large number of proteins then participate 

in downstream signaling, resulting in expression of antimicrobial genes.  

TBK1 (TANK-binding kinase 1) and IKKi (IκB kinase-I) are two related 

serine/threonine kinases that play an important role in innate immunity signaling. 

Upon bacterial and viral infection, TBK1 and IKKi activate the transcription factors 

IRF3/7 and NF-κB. TBK1 and IKKi have been found to interact with three adaptors: 

TBKBP1, TBKBP2 (TBK binding proteins 1 and 2) and TANK (TRAF family member 

associated NF-κB activator) (Bouwmeester, Bauch et al. 2004). Yet, the mechanism 

of TBK1 and IKKi activation and, correspondingly, the role of these proteins are still 

not fully understood. 

The main focus of this study was to investigate the molecular architecture of this 

complex and to elucidate the role of the proteins concerning TBK1 activity. In order 

to achieve this we first performed a systematic TAP analysis of all the different 

components of the complex: the two kinases (TBK1 and IKKi) and the three adaptor 

proteins (TBKBP1, TBKBP2 and TANK). Even though we confirmed the interaction 

of the adaptor proteins to TBK1 and IKKi we didn’t find any of the binding proteins 

interacting with each other, suggesting that TBK1 and IKKi are most likely forming 

independent sub-complexes with each of the adaptors.  

In agreements with this hypothesis, immunoprecipitation experiments suggested that 

all three adaptor proteins bind to the same region of TBK1 (coiled coil 2). After 

analyzing the coiled coil 2 structure, we were able to identify single amino acids 

responsible for the interaction. Amino acids at the position M690 and E696 in TBK1 

were important for its binding to all the adaptor proteins because mutation of these 

residues abolished binding to all of the TBK1 adaptors. On the other hand, mutation 

of L693 selectively abrogated binding of TANK without affecting binding of TBKBP1 
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or TBKBP2, indicating that the adaptor proteins bind to the same region but make 

contacts with different amino acids.  

Additionally we found that upon overexpression conditions, TBK1 activity was 

independently of binding to the adaptor proteins. Altogether, these data suggest that 

each TBK1 adaptor forms a distinct sub-complex that is required for non-redundant 

functions of TBK1. 
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ZUSAMMENFASSUNG 

 

Bei einer viralen oder bakteriellen Infektion, ist ein gut funktionierendes 

Immunsystem überlebenswichtig für den menschlichen Organismus. Ein gutes 

Verständnis für das Zusammenspiel der Bestandteile des Immunsystems ist daher 

entscheidend. Verschiedene Rezeptoren des angeborenen Immunsystems erkennen 

bestimmte molekulare Muster an Krankheitserregern, woraufhin eine große Anzahl 

von Proteinen an der Signalübertragung beteiligt ist und eine vermehrte Aktivierung 

antimikrobieller Gene hervorruft.  

TBK1 (TANK-binding kinase 1) und IKKi (IκB kinase-I) sind zwei verwandte 

Serin/Threonin Kinasen und spielen eine wichtige Rolle bei der Signalübertragung im 

angeborenen Immunsystem. Nach bakterieller oder viraler Infektion aktivieren die 

beiden die Transkriptionsfaktoren IRF3/7 und NF-κB. Es wurde nachgewiesen, dass 

TBK1 und IKKi mit drei Bindungsproteinen, TBKBP1, TBKBP2 (TBK binding proteins 

1 and 2) und TANK (TRAF family member associated NF-κB activator) interagieren 

(Bouwmeester, Bauch et al. 2004). Der Mechanismus zur Aktivierung von TBK1 und 

IKKi, und die Rolle der Bindungsproteine in diesem Prozess sind jedoch noch nicht 

vollkommen geklärt.  

Das Hauptaugenmerk dieser Studie lag auf der Untersuchung der molekularen 

Architektur des Komplexes und der Bedeutung der Bindungsproteine bezüglich der 

Aktivität von TBK1 und IKKi. Um das zu untersuchen führten wir eine systematische 

TAP Analyse von den am Komplex beteiligten Komponenten, den beiden Kinasen 

TBK1 und IKKi und den Bindungsproteinen TBKBP1, TBKBP2 und TANK, durch 

.Obwohl wir die Interaktion zwischen den Bindungsproteinen und TBK1 und IKKi 

bestätigen konnten, haben wir festgestellt dass die Bindungsproteine selbst nicht 

aneinander binden. Dieses Ergebnis lässt vermuten dass TBK1 und IKKi  

wahrscheinlich unabhängige Komplexe mit den verschiedenen Bindungsproteinen 

formen.  

Die Verwendung von verschiedenen TBK1 Mutanten und 

Immunoprezipitationsexperimente haben gezeigt, dass alle drei Bindungsproteine an 

dieselbe Region in TBK1, die so genannte coled coil 2 Region, binden.  
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Nach Analyse dieser Region konnten wir 2 Aminosäuren (M690 und E696) finden, 

welche wichtig für die Bindung der drei Bindungsproteine and TBK1/IKKi sind, da 

Mutationen in diesen Aminosäuren die Bindung von TBK1 an die 3 Bindungsproteine 

verhindern. Zusätzlich haben wir eine Aminosäure (an Position L693) entdeckt, die 

speziell die Bindung von TANK an TBK1/IKKi verhindert, ohne die Bindung von 

TBKBP1 und TBKBP2 an TBK1 zu beeinträchtigen. Das bedeutet dass die drei 

Bindungsproteine in der gleichen Region von TBK1 binden, allerdings die Interaktion 

von einzelnen verschiedenen Aminosäuren abhängt. 

In unseren Überexpressionsexperimenten konnten wir außerdem sehen, dass die 

Aktivität von TBK1/IKKi nicht unbedingt mit der Bindung an die drei 

Bindungsproteine korreliert. Diese Daten sind ein Indikator dafür, dass die 

Bindungsproteine verschiedene Subkomplexe formen, welche sich in ihrer Funktion 

nicht ersetzen lassen. 
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1 Introduction 

Immunity is defined as a biological defense mechanism that protects an organism 

against diseases. The immune system is established by the coordinated response of 

immune cell types and molecules to invaders (Abbas and Lichtman 2007). In higher 

vertebrates the immune system is divided into two parts: the late adaptive and the 

early innate immune system (Pasare and Medzhitov 2004).  

1.1 The adaptive immune system 

The adaptive immune system is also called the specific immune system because it 

has the ability to distinguish between very closely related microbes and molecules in 

an accurate way. It is capable of reacting to a large number of substances and has 

the ability to remember. It can therefore react more intensely upon repeated 

infections (Abbas and Lichtman 2007). The most important cell types in the adaptive 

immune response are B-lymphocytes and T-lymphocytes, which produce somatically 

generated receptors on their surface (Medzhitov and Janeway 2000). 

There are two types of adaptive immune responses, humoral and cell-mediated 

immunity. The humoral immune response is conducted by B-lymphocytes which 

secrete antibodies into the blood and mucosa. The purpose of the humoral immune 

response is to defend against extracellular microbes and toxins. Cell-mediated 

immunity, on the other hand, fights against intracellular microbes with the help of T-

lymphocytes (Abbas and Lichtman 2007). 

An important feature of adaptive immunity is the clonal selection hypothesis, which 

purposes that antigen-specific lymphocytes develop receptors to antigens before 

exposure to specific antigens. This allows a large number of random lymphocyte 

clones to arise in the uninfected organism. Upon antigen detection clonal expansion 

results in an increase in the number of cells which express the receptor that 

recognizes the specific antigen originally detected (Abbas and Lichtman 2007). 

It is also crucial for the organism that the immune components do not recognize self-

antigens. This unresponsiveness to ‘self’ is called tolerance and is maintained by 
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several mechanisms. When tolerance fails it leads to disorders called autoimmune 

diseases (Abbas and Lichtman 2007). 

1.2 The innate immune system 

The innate immune system is defined as the initial response to microbes but it also 

stimulates the adaptive immune response. It consists of several barriers to prevent, 

control and defend against microbes. The physical and chemical barriers like 

epithelia and antimicrobial substances represent one of the first barriers of the innate 

immune system. If pathogens penetrate these initial barriers and invade an 

organism, phagocytic cells (e.g. macrophages and dendritic cells) and natural killer 

(NK) cells, the members of the complement system, cytokines and other blood 

proteins coordinate the innate immune response (Medzhitov and Janeway 2000). 

The evolutionarily conserved innate immune system is the first line of defense 

against the microbial or viral invasion. It recognizes a set of highly conserved 

structures, which are specific to microbes. These structures are recognized by germ 

line encoded pattern-recognition receptors (PRRs) (Pasare and Medzhitov 2004). 

The microbial structures, generally referred to as PAMPs (pathogen-associated 

molecular patterns), are specifically produced by pathogens and not by their hosts. 

They are crucial for either survival or pathogenicity of the microbes and are usually a 

characteristic feature of a whole group of microorganisms. For instance, 

lipopolysaccharides (LPS) are always present in the membrane of gram negative 

bacteria (Medzhitov and Janeway 2000). 

1.2.1 Signaling in innate immunity 

The PRRs used by the innate immune system are divided into several groups. Their 

main function is to immediately protect the host from pathogens by activating the 

complement pathway and phagocytosis (Pasare and Medzhitov 2004). PRRs are 

mainly on the plasma membrane of effector cells such as macrophages, dendritic 

cells and B-lymphocytes but they can also been found in the host cytoplasm. The 

ability of effector cells to perform their functions immediately after recognizing the 

pathogen makes the innate immune system crucial for host survival (Medzhitov and 

Janeway 2000). 
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Examples of PRRs include Toll-like receptors (TLRs), (RIG-I)-like receptors (RLRs), 

C-type lectins, scavenger receptors, N-formyl Met-Leu-Phe receptors and (NOD)-like 

receptors (NLRs) (Abbas and Lichtman 2007). The signaling mediated by different 

receptors also leads to cross-talk further downstream to maintain effective immune 

response (Lee and Kim 2007). 

1.2.1.1 NLR signaling 

Nucleotide-binding oligomerization domain (NOD)-like receptors are a large family of 

receptors located in the intracellular part of the cell. NLRs typically contain N-

terminal protein interactor domains, central nucleotide binding domains and C-

terminal LRRs. The N-terminal structures help to divide the NLRs into 5 subfamilies. 

NLR signaling either activates NF-κB and MAPK, or certain NLRs also play a role in 

the caspase-1 mediated activation of the inflammasome (Kawai and Akira 2009). 

1.2.1.2 RLR signaling 

The retinoic acid-inducible gene-I (RIG-I)-like receptors are part of the cytosolic 

detection system belonging to the innate immune system. They are part of the RNA 

helicase family and specifically recognize RNA species from invading viruses in the 

cytosol. There are 3 family members: RIG-I itself, MDA5 and LGP2. Signaling via 

RLR results in the induction of Type-I Interferon and several inflammatory cytokines 

via IRF, MAPK and NF-κB pathways (Kawai and Akira 2009) (Nakhaei, Genin et al. 

2009). 

1.2.1.3 TLR signaling 

The name Toll-like receptors originates from the protein Toll which is essential for 

the determination of the dorsoventral polarity during embryogenesis in Drosophila. It 

has been found that flies which have a mutation in the gene for toll are much more 

sensitive to fungal infections. These findings indicated that Toll is a receptor that 

detects fungal infections and leads to activation of the innate immune system 

(Lemaitre, Nicolas et al. 1996). Later a gene similar to Toll was detected in humans 

(which is now referred to as TLR4) and it was found that this gene can induce the 

expression of inflammatory cytokines (Kawai and Akira 2005). The mammalian 
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family of Toll-like receptors currently consists of 12 members (Kawai and Akira 

2009). The different receptors recognize different pathogen associated molecular 

patterns (PAMPs): TLR2 detects bacterial lipoproteins and lipoteichoic acid, TLR5 

detects  flagellin, whereas TLR3 recognizes dsRNA, TLR4 recognizes LPS and 

TLR9 recognizes unmethylated CpG of bacteria and viruses (Iwasaki and Medzhitov 

2004) (Aderem and Ulevitch 2000). 

The TLRs can be divided in two groups based on their localization in the cell. TLR1, 

2, 4, 5, 6 and 11 are only expressed on the cell surface and therefore detect 

membrane components of their respective pathogens such as lipids, proteins and 

lipoproteins. In contrast TLR3, 7, 8 and 9 are located in the endosome, lysosome or 

the endoplasmatic reticulum and recognize microbial nucleic acid (Kawai and Akira 

2009). In human and Drosophila there are two characteristic Toll-like receptor 

domains: the leucine-rich repeats (LRR domain) and the Toll/interleukin-1 receptor 

domain (TIR domain). The TIR domain is present in all receptors and is responsible 

for downstream signaling. The adaptor molecules MyD88, TIRAP, TRIF and TRAM 

bind specifically to the TIR domain and recruit a downstream signaling cascade 

(Kawai and Akira 2005) (Fitzgerald, Rowe et al. 2003).  

1.2.1.4 Activation of the NF-κB Pathway 

The transcription factor NF-κB is crucial for the regulation of the development and 

maintenance of the immune system. It consists of homo- and heterodimers of five 

members of the Rel family which are NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB 

and c-Rel (Pomerantz and Baltimore 2002).  

The TLRs and IL-1R (Interleukin-1 receptor) mediate the activation of NF-κB through 

the canonical IKKs (IKKα, IKKβ and IKKγ/NEMO). During this activation process the 

IKKs phosphorylate the NF-κB inhibitor IκB which leads to its degradation. NF-κB is 

then free and translocates into the nucleus to regulate the expression of certain 

target genes (Kawai and Akira 2005). This is the so-called canonical pathway of NF-

κB activation. 
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In addition to the canonical activation of NF-κB, a non-canonical NF-κB  pathway 

exists that is regulated by two kinases related to the IKKs, called TBK1 (TANK-

binding kinase 1) and IKK-i (inhibitor of kappa B kinase epsilon or IKK-ε) which are 

also involved in the activation of NF-κB (Kawai and Akira 2005).  

1.2.1.5 Activation of the IRF3/IRF7 Pathway 

Another pathway, strongly regulated by the two kinases TBK1 and IKKi is the IRF3/7 

pathway. Under non-stimulated conditions the transcription factor IFN regulatory 

factor (IRF)-3 is present in the cytoplasm. Upon stimulation IRF3 is phosphorylated 

at certain serine residues, homodimerizes and interacts with the co-activators CREB-

binding protein (CBP) and p300 to enter the nucleus (Fitzgerald, McWhirter et al. 

2003). Once in the nucleus, it activates promoters containing IRF3-binding sites and 

induces the expression of IFN-β and other target genes. It has been shown that 

TBK1/IKKi phosphorylate the serine sites on IRF3 responsible for activation (Kawai 

and Akira 2005). TBK1 or IKKi single knockout mice show moderate phenotypes 

regarding IRF3 activation: IKKi deficiency has no impairment on IRF3 activation and 

TBK1 deficient mice have only partial effects. However, mice deficient in both 

kinases show an almost complete abolishment of IRF3 activation. TBK1 and IKKi are 

therefore partly redundant for the activation of IRF3 (Ryzhakov and Randow 2007) 

(Yamamoto, Sato et al. 2003). 

1.2.1.6 Crosstalk between NF-κB and IRF pathway 

Crosstalk is a common feature in signal transduction and this is illustrated by the 

activation pathways of NF-κB and IRF (Figure 1). For instance the physical 

interaction between TANK (TRAF family member-associated NF-κB activator) and 

NEMO (inhibitor of kappa B kinase gamma) might be the basis for the formation of a 

p65-IRF3 complex which is required for the expression of several genes upon LPS 

stimulation. Another example is the A20 protein, which inhibits both the NF-κB and 

IRF pathway by polyubiquitination of the receptor interacting protein (RIP1) upon 

TNF-α stimulation. It directly prevents the IRF3 dimerization via binding to TBK1 and 

IKKi upon stimulation with dsRNA. Conversely, TRAF3 either negatively regulates 
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the alternative NF-κB pathway, or positively regulates TLR- and RIG-I-mediated 

IRF3 activation (Chau, Gioia et al. 2008). 

 

 

Figure 1: Crosstalk between the NF-κB and the IRF3 pathway (Chau, Gioia et al. 2008) 

 

1.3 TBK1/IKKi 

The non-canonical IκB kinase homologues TBK1 (TANK-binding kinase) also known 

as NAK (NF-κB activating kinase) or T2K (TNF-receptor associated factor 2 

(TRAF2)-interacting kinase),   and IKKi (IκB kinase-I also known as IKK-ε) are 

serine/threonine protein kinases. They are non-canonical members of the IKK family 

that have been shown to mediate innate immunity signaling during the process of 

NF-κB, IRF3 ad IRF7 activation (Chau, Gioia et al. 2008) (Guo and Cheng 2007).  
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1.3.1 Structure and function of TBK1 and IKKi 

TBK1 was identified as a TANK-interacting protein using a two-hybrid screen. There 

is 94% analogy between murine and human TBK1. TBK1 is a protein composed of 

729 amino acids which are divided into an N-terminal kinase domain, a ubiquitin-like 

domain (ULD) and two C-terminal coiled coil regions. (coiled coil 1: residues 603-

650, coiled coil 2: residues 679-712). TBK1 has a 27% homology with IKKα and 45% 

homology with IKKβ within the residues 9-353 of TBK1. Immunoprecipitation 

experiments, however, showed that there was no binding of TBK to either IKKα, 

IKKβ or NIK (Pomerantz and Baltimore 1999).  

IKKi was found in experiments that attempted to isolate genes that respond to 

immunological stimuli. IKKi is expressed mainly in immune cells in response to LPS 

or other inflammatory cytokines. The protein encodes 717 amino acids and consists 

of an N-terminal serine/threonine kinase domain, a ubiquitin-like domain (ULD) and a 

C-terminus leucine zipper and potential helix-loop-helix domain. Due to the shared 

30% homology with IKKα and IKKβ after amino acid alignments it was called IKK-ε 

(or IKKi). The NF-κB stimulatory properties of IKKi were taken into consideration 

after it was shown that IKKi could phosphorylate IκB-α at Ser32 and Ser36 

(Shimada, Kawai et al. 1999). 

The two serine/threonine kinases TBK1 and IKKi share 64% sequence similarities 

and although they mediate the same signaling pathways there are several 

differences in downstream signaling (Ikeda, Hecker et al. 2007). For instance, during 

poly(I:C) stimulation in TBK1-deficient fibroblasts there is a decrease in IRF3 

activation, whereas IRF3 activation occurs normally in IKKi-deficient fibroblasts 

(Hemmi, Takeuchi et al. 2004). It is also proposed that TBK1 and IKKi differ in DNA-

virus mediated IFN response but operate redundantly in RNA-virus mediated IFN 

response (Miyahira, Shahangian et al. 2009). 

Nevertheless, both kinases contain an ubiquitin-like domain (ULD). In mouse TBK1 

the domain starts at amino acid 305 and is 79 aa long. The ULD in mouse IKKi 

shares 65% similarity with the TBK1 ULD. It has been shown that the ULD is 

required for kinase activation and IRF3 phosphorylation, because the binding of 

TBK1 on the IRF association domain (IAD) of IRF3 depends on the ULD domain. It 
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has also been found that deletion of the ULD in TBK1 and IKKi inhibits the 

phosphorylation on Ser172, which is a crucial phosphorylation site for kinase activity. 

These findings led to a model in which TBK1-ULD is transiently bound to IRF3-IAD 

but upon IRF3 phosphorylation it is freed, dimerizes and translocates to the nucleus 

(Ikeda, Hecker et al. 2007).  

Besides the function in innate immunity signaling there have been several studies 

that propose a role for TBK1/IKKi in cell proliferation and tumor progression 

(Clement, Meloche et al. 2008). These findings further suggest that TBK1/IKKi must 

be tightly regulated. 

Interestingly an alternative splicing form of TBK1, termed TBK1s has recently been 

found. TBK1s lacks exon 3-6 which leads to an in frame deletion of the kinase 

domain. TBK1 displays an inhibitory effect on virus-induced IFN-β induction (Deng, 

Shi et al. 2008).  

1.3.2 The role of TBK1/IKKi in innate immunity signaling  

Mice deficient in TBK1 die from liver apoptosis in utero in the same way as do mice 

deficient for p65, IKKβ or NEMO. It was therefore believed that, like the canonical 

IKKs, TBK1 is a NF-κB activating kinase (Bonnard, Mirtsos et al. 2000). During the 

characterization of TBK1-deficient cells, it was later found that TBK1 shows a 

significant role in type-I Interferon gene induction through the phosphorylation of 

IRF3 and IRF7 (Chau, Gioia et al. 2008).  

Focusing on the cell-surface receptor TLR2, TLR3 and TLR4, there are 2 signaling 

pathways known (Figure 2). In the first MyD88 gets recruited and activates NF-κB 

via the canonical IKKs (IKKα, IKKβ and IKKγ/NEMO). In the second pathway TRIF 

gets recruited and either activates NF-κB as well via the canonical IKKs, or activates 

IRF3 with the help of TBK1/IKKi.  

Some of the TLRs, like TLR3, which are located on the intracellular compartments 

and sensor foreign nucleic acids activate inflammatory cytokine production via the 

NF-κB pathway, but also trigger the TBK1/IKKi mediated activation of Type-I IFN 

(Kawai and Akira 2009). 
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Figure 2: TLR2-, TLR3-, TLR4- mediated signaling (Kawai and Akira 2007) 

 

Also, the intracellular RIG-I dependent receptor promotes TBK1/IKKi induced 

activation of IRF3 and IRF7. MAVS and further downstream TRAF3 mediate the 

binding of the receptor to TBK1/IKKi and downstream signaling might be 

accompanied by some of the scaffold proteins (Chau, Gioia et al. 2008) (Figure 3). 

Additionally dsDNA is known to activate inflammatory cytokine and Type-I IFN 

production through the activation of IKKs and TBK1/IKKi (Kawai and Akira 2009). 

Therefore it is believed that in addition to TLR9, which is activated by 

hypomethylated DNA, another cytosolic DNA receptor is able to recognize DNA. 

Recently one candidate has been found which is called ZBP1 or DAI (DNA-

dependent activator of IFN-regulatory factors). This protein successfully enhances 

DNA-mediated IFN induction in mouse fibroblasts. Via binding to double-stranded 

DNA it allows association with IRF3 and TBK1 (Takaoka, Wang et al. 2007) (Figure 

3). The mechanism by which this occurs is not yet fully understood, although two 

kinases RIP1 and RIP3 have been identified which are crucial for DAI-induced NF-

κB signaling (Rebsamen, Heinz et al. 2009).  
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Figure 3: Antiviral signaling pathways mediated by IKK-related kinases (Kawai and Akira 2007) 

 

Additionally it has been shown recently that another protein, called STING 

(stimulator of interferon genes), is required for the non-CpG intracellular DNA 

mediated induction of IFN. STING knockout mice were also shown to be sensitive to 

lethal infections after exposure to herpes simplex virus 1 (HSV-1).   Interestingly 

STING also relocalized with TBK1 from the endoplasmic reticulum to perinuclear 

vesicles (Ishikawa, Ma et al. 2009). 

Taken together TBK1 and IKKi are crucial for the activation of NF-κB and IRF3/7 

pathways, as described above but in all the cases need the support of certain 

adaptor proteins for proper signaling.  

1.3.3 TBK1/IKKi interaction partners 

TBKBP1 (also referred to as SINTBAD), TBKBP2 (also referred to as NAP1, NAK-

associated protein1 or Azi 2) and TANK (also referred to as I-TRAF) are three 

described interaction partners, which may support the activation of inflammatory 

cytokines of Type-I interferon (Bouwmeester, Bauch et al. 2004). Recent findings 
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indicate that the distinct interactors might act in a pathway specific manner. TBKBP2 

is required for the TLR-mediated IRF3 activation, whereas TANK has a specific role 

in IRF3 activation via the LPS-induced TLR4 but not via the ds-RNA-mediated TLR3 

(Gatot, Gioia et al. 2007). Interestingly TANK, TBKBP1 and TBKBP2 signaling 

pathways do not only mediate TLR-induced signaling but also RIG-I dependent 

signaling to trigger TBK1 and IKKi activation. 

Knockdown of either TBKBP1, TBKBP2 or TANK inhibited IRF reporter construct 

activation upon Sendai virus infection. This was also observed by knocking down 

MAVS but not by knocking down TRIF. Therefore an activation mechanism of IRF3 

via TBK1 after Sendai virus infection seems to be mediated via MAVS instead of 

TRIF. On the other hand TBK1, TRIF and also MAVS are required for IRF activation 

upon poly(I:C) stimulation. Here the knock-down of TBKBP1, TBKBP2 or TANK also 

reduce the IRF reporter activity. Concerning the NF-κB pathway neither TBK1, 

MAVS, TRIF nor TBKBP1, TBKBP2 or TANK knock-down impaired the signaling 

upon TNF-α, peptidoglycan or PMA stimulation (Chau, Gioia et al. 2008) (Kawagoe, 

Takeuchi et al. 2009). 

In additional to the signaling properties of these proteins it is also believed that the 

adaptors are involved in post-translational modifications. For instance TANK gets 

phosphorylated in macrophages by TBK1 and IKKi upon LPS stimulation and is 

independent of their kinase activity. The kinases are also responsible for Lys63-

linked polyubiquitination of TANK, independently of phosphorylation (Gatot, Gioia et 

al. 2007). This process is related to the polyubiquitination of the IKK adaptor protein 

NEMO (Tang, Wang et al. 2003).  

In contrast to the adaptor protein of the canonical IKKs NEMO, very little is known 

about the adaptors of TBK1/IKKi. Nevertheless it has been shown that TANK, 

TBKBP1, and TBKBP2 share a so-called TBK1/IKKi binding domain (TBD) with 

which, as the name implies, they bind to these kinases. Structurally the three binding 

proteins share distinct regions of homology, like the coiled coil regions, the TBD and 

zinc finger structures, in a pair wise fashion as described below (Ryzhakov and 

Randow 2007).  
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1.4 TANK 

TANK  was discovered to be a TRAF-interacting protein which helps to induce NF-

κB reporter gene expression with TRAF2 (Cheng and Baltimore 1996). It was later 

found to bind to the canonical IKK subunit IKKγ/NEMO, but its role remained unclear 

due to the fact that TANK knock-down cells didn’t show any effect on TNF-α or LPS-

induced IKK activation (Chariot, Leonardi et al. 2002) (Chau, Gioia et al. 2008). 

TANK has both stimulatory and inhibitory effects on activation of the transcription 

factor NF-κB. With the use of the N-terminal domain (residue 1-168) and a central 

region (residue 169-190) which is required for TRAF2 interaction, TANK acts as a 

stimulatory protein on NF-κB activation in the presence of low amounts of TRAF2. 

However, the C-terminal domain of TANK (residue 190-413) appeared to have an 

inhibitory effect on the N-terminal domain in trans during co-expression of high 

amounts of TRAF2, leading to inhibition of NF-κB activation (Cheng and Baltimore 

1996).  

TANK is probably required for the upstream action on TBK1/IKKi, leading to an IKK 

independent activation of NF-κB. This theory is supported by fact that TANK 

constitutively binds TBK1 and IKKi (Bouwmeester, Bauch et al. 2004) (Pomerantz 

and Baltimore 1999) (Nomura, Kawai et al. 2000). Apparently TBK1, TRAF2 and 

TANK form a ternary complex that leads to the NIK-IKK cascade but this signaling 

pathway is not required for the NF-κB activation via TNF-α, IL-1 or CD40. Therefore 

TANK is believed to have two functions in NF-κB activation, one inhibitory function in 

a TBK1-independent pathway and a contrary stimulatory function which depends on 

TBK1 (Pomerantz and Baltimore 1999). 

Additionally TANK might play a role in RIG-I dependent signaling pathway against 

viral infection, due to the fact that TANK knockdown MEFs show much higher viral 

titer and inhibit the production of IFN. The interaction of TANK with the adaptor 

protein MAVS upon Sendai virus infection supports this suggestion (Kawagoe, 

Takeuchi et al. 2009) (Guo and Cheng 2007).  
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To compare the structures of the 3 binding proteins the domain composition of each 

of the three adaptors was published (Figure 4). In the case of TANK, a N-terminal 

CC domain is followed by the so-called TBK1/IKKi binding domain (TBD).  In the 

case of TANK the TBD is also required for TRAF2 binding. The C-terminal part, 

which is known to have an inhibitory effect on NF-κB activation includes one zinc 

finger domain on the very C-terminus (Ryzhakov and Randow 2007).  

1.5 TBKBP1 

TBKBP1 is required for IRF3 activation upon Sendai virus infection just like TANK 

and TBKBP2. TBKBP1 was shown to specifically interact with TBK1/IKKi but not with 

the canonical IKKs (Ryzhakov and Randow 2007). 

Similarly to TANK it is composed of 3 coiled coil regions in the N-terminus and the 

TBK1/IKKi binding domain. The C-terminal part of TBKBP1 contains a proline-rich 

region and two C2H2 type zinc finger domains similar to that found in TANK (Figure 

4). It was also found that TBKBP1 preferably forms homo-oligomers and to a lesser 

extent heterocomplexes with TBKBP2. No interaction was identified with TANK 

(Ryzhakov and Randow 2007).  

1.6 TBKBP2 

Originally TBKBP2 was discovered to be an activator of IKK-related kinases. It was 

also believed that TBKBP2 protects cells from apoptosis, induced via TNF-α. 

According to this, TBK1 and IKKi recruit the subunit TBKBP2 and activate NF-κB 

upon virus stimulation. TBKBP2 was shown to bind to RIG-I and MDA5 on a different 

site than it binds to TBK1. Additionally TBKBP2 was found to co-precipitate with 

TRIF and MAVS insinuating a role of TBKBP2 in TLR3 and RIG-I/MDA5 dependent 

activation of IRF3 and in RIG-I/MDA5 dependent activation of NF-κB upon viral 

infection (Sasai, Shingai et al. 2006).  
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TBKBP2 shares structural similarities with TBKBP1 on their first 80 amino acids in 

the N-terminal coiled coil regions, whereas the coiled coil region 2 is more similar to 

the single coiled coil in TANK. Similar to the two other adaptor proteins of TBK1/IKKi, 

TBKBP2 also contains the TBD (Ryzhakov and Randow 2007) .  

 

 

 

 

Figure 4: Domain composition of TBKBP1, TBKBP2 and TANK modified from (Ryzhakov and 

Randow 2007)  

 

 TBKBP1 

TBKBP2 

TANK 
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1.7 Aim of the study 

TBK1 and IKKi are important kinases in innate immunity signaling and have been 

found to occur in a complex with the adaptor proteins TBKBP1, TBKBP2 and TANK. 

The aim of this thesis is to investigate the architecture of this core complex and to 

define the relationship between the assembly of the complex and the activity of 

TBK1. 

The approach we used in this study was tandem affinity purification (TAP) followed 

by mass-spectrometry analysis in order to further define the structure and binding 

properties of TBK1 with the adaptors. The creation of several TBK1 mutants for use 

in co-immunoprecipitation experiments helped to determine the exact binding region 

to TBKBP1, TBKBP2 and TANK. In addition, autophosphorylation studies, reporter 

gene assays and kinase assays were performed to investigate the impact of binding 

between TBK1 and the adaptors, on TBK1 activity. Finally we performed 

immunoflourescence staining in order to investigate the subcellular localization of 

TBK1 and its binding proteins.  

This study therefore helps to understand the molecular architecture of the TBK1 

complex, the assembly of which is needed for TBK1 to perform downstream 

signaling.  
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2 Materials and Methods 

2.1 Cell culture and transfection 

HEK293 

HEK (Human embryonic kidney) 293 cells were used for reporter gene assay and 

kinase assay. The cells were cultured in DMEM media (PAA) containing 10% FCS 

(Gibco) and 1% Penicillin/Streptomycin (PAA) at 37°C with 5% CO2. To detach the 

cells from the surface of the plate 0.05% Trypsin-EDTA (PAA) was used. 

HEK293T 

HEK293T (where T stands for large T-antigen of SV40 (simian virus 40)) cells were 

used for co-immunoprecipitation and Western Blots (P-TBK1, TBK1, myc, V5) 

because of their high transfection efficiency. The cells were cultured in DMEM media 

(PAA) containing 10% FCS (Gibco) and 1% Penicillin/Streptomycin (PAA) at 37°C 

with 5% CO2. To detach the cells from the surface of the plate 0.05% Trypsin-EDTA 

(PAA) was used. 

HeLa 

HeLa cells were used for Immunofluorescence experiments. The cells were cultured 

in DMEM media (PAA) containing 10% FCS (Gibco) and 1% Penicillin/Streptomycin 

(PAA) at 37°C with 5% CO2. To detach the cells from the surface of the plate 0.05% 

Trypsin-EDTA (PAA) was used. 

RAW264.7 Macrophages 

RAW264.7 cells were taken to perform tandem affinity purification. The cells were 

cultured in DMEM media (PAA) containing 10% FCS (Gibco) and 1% 

Penicillin/Streptomycin (PAA) at 37°C with 5% CO2. To detach the cells from the 

surface of the plate RAW dissociation buffer was used.  
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Freezing cells 

To freeze the cells usually one 10 cm dish was used as one aliquot. The cells were 

detached from the surface and centrifuged at 300 x g at RT for 5 min. Then the pellet 

was resuspended in DMEM (PAA) containing 20%FCS (Gibco) and 20%DMSO 

(Merck). The cells were immediately put on ice then transferred into a cryo-box at -

80°C. On the next day the cells were transferred to the liquid nitrogen tank.  

Thawing cells 

For thawing a new aliquot of cells, one tube was taken out of the liquid nitrogen tank 

and quickly thawn in a water bath at 37°C. Then the cells were immediately 

transferred into 10 ml of culture medium and centrifuged at 300 x g at RT for 5 min. 

The cells were resuspended and seeded on a 10 cm dish. 

Transient Transfection 

For a transient transfection the cells were seeded 1 day before transfecting (table 1). 

Lipid based transfection was performed using Polyfect (QIAGEN) Therefore the DNA 

was diluted into serum-free DMEM (PAA) and then Polyfect was added. After 

incubation of 5-10 min at RT the appropriate amount of FCS containing culture 

media was added. Finally the mixture was put drop-wise onto the cells. Then the 

cells were incubated at 37°C for 24h to 48h.  

 

Plate format Cells per 
well 

DMEM  
(w/o 
FCS) 

DNA Polyfect DMEM  
(with FCS) 

24 well plate 1-1.5 x 105 15 µl 0.3 – 1 µg 5 µl 85 µl 

10 cm plate 6 x 106 300 µl 6 +6 µg 

(double-

transfection) 

or 10 µg 

60 µl 700µl 

Table 1: Transient transfection schedule 
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Cell Lysis 

All the steps were performed at 4°C. To lyse the cells the media was sucked off and 

the cells were washed with ice-cold 1xPBS (PAA). Then the appropriate amount of 

ice cold lysis buffer (table 2) was added to the cells. For Immunoprecipitation the 

cells were lysed in Frackelton buffer whereas for reporter gene assays the cells were 

lysed in IP-Buffer. Using a cell scraper (10 cm dish) or gently pipetting up and down 

(24-well plate) the cells were detached from the surface and collected in a 1.5 ml 

Eppendorf tube. Then the lysates were centrifuged at 14000 x g at 4°C for 15 min, 

the supernatant was collected and protein concentration was measured using 

Bradford reagent (BioRad). 

 

Plate format Amount of 
buffer 

24 well  100 µl 

10 cm plate 750 µl 
Table 2: Amount of lyses buffer 

 

Used Reagents 

• RAW-dissociation buffer: 135mM KCl, 15mM sodium citrate 

• Frackelton buffer: 10mM Tris/HCl pH7.4, 50mM NaCl, 30mM Na-

pyrophosphate, 1% Triton X-100  before use 1mM PMSF, 1mM DTT, 

100µM Na3VO4 and 100µM NaF was added 

• IP Buffer: 50mM Tris/HCl pH 7.5, 150mM NaCl, 1% NP-40, 5mM EDTA, 5mM 

EGTA,  before use 1mM PMSF, 1mM DTT, 100µM Na3VO4 and 100µM NaF 

was added 

2.2 Cloning strategy 

For the different mutations of TBK1 the primers taken are listed below (table 3). For 

the adaptors TBKBP1, TBKBP2 and TANK, the mouse sequence (PubMed) was 

taken and cloned into gateway compatible vectors. 
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Primer name Primer sequence 
TBK1 M690A fw GATGACTCTTGGTGCGAAGAAGTTAAAGG 

TBK1 M690A rv CCTTTAACTTCTTCGCACCAAGAGTCATC 

TBK L693A fw GGTATGAAGAAGGCAAAGGAGGAGATGG 

TBK L693A rv CCATCTCCTCCTTTGCCTTCTTCATACC 

TBK1 K696E fw GAAGTTAAAGGAGAAGATGGAAGGCGTGGTTAAG 

TBK1 K696E rv CTTAACCACGCCTTCCATCTtCTCCTTTAACTTC 

TBK1 N707A fw GGAGCTGGCCGAGGCCAATCATATTTTAG 

TBK1 N707A rv CTAAAATATGATTGGCCTCGGCCAGCTCC 

TBK1 Δ CC1 fw GATAAGTCGGAAGAGCTGCCTCAGAAAATGC 

TBK1 Δ CC1 rv GCATTTTCTGAGGCAGCTCTTCCGACTTATC 

TBK1 ΔCC2 fw CGAGTTACAAGAAACTTGACCTCAGAAAATGCTCG 

TBK1 ΔCC2 rv CGAGCATTTTCTGAGGTCAAGTTTCTTGTAACTCG 

TBK1 Δ ULD fw CTTTGCAGAGACCAGTCGGGAACAACTCAATAC 

TBK1 Δ ULD rv GTATTGAGTTGTTCCCGACTGGTCTCTGCAAAG 

TBK1 Δ C-terminus fw CCTATCTTTGTCACGTGACGGGAACAACTCAATACC 

TBK1 Δ C-terminus rv GGTATTGAGTTGTTCCCGTCACGTGACAAAGATAGG 
Table 3: List of primers used in this study 

 

2.2.1 PCR 

To amplify the constructs and to clone them into appropriate vectors, PCR was used 

(table 4).  

Template 1 µl 

10 µM Primer mix 2 µl 

10 x Advantage Buffer 5 µl 

TAQ advantage Polymerase 1 µl 

dNTPs 2 µl 

ddH2O 39 µl 

total 50µl 
Table 4: PCR composition 
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The amplification process was performed as following: 

Primery Denaturation 98°C 2 min 

Denaturation   98°C 30 sec 

Annealing   55°C 1 min   25x 

Elongation   68°C 1min/kb 

Final Elongation  68°C 10 min 

The PCR was then loaded on a 1% Agarose (InvitroGen) gel and the bands at the 

right size were cut out and purified using a QIAquick gel extraction kit (QIAGEN). 

2.2.2 Mutagenesis PCR 

To insert point mutations or deletions, Mutagenesis PCR was performed. Therefore 

the following reagents were mixed (table 5). 

 

Template 1 µl 

10 µM Primer mix 2.4 µl 

10 x Buffer 5 µl 

Pfu Polymerase 1 µl 

dNTPs 1 µl 

ddH2O 39.6 µl 

total 50µl 
Table 5: Mutagenesis PCR composition 

 

The amplification process was performed as following: 

Primary Denaturation 95°C 30 sec 

Denaturation   95°C 30 sec  20x pointmutation 

Annealing   55°C 1 min   18x deletion 

Elongation   68°C 5min    
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After PCR reaction the unmethylated plasmid was digested with Dpn1 to obtain only 

the mutated version of the plasmid. Therefore 1 µl DpnI (New England BioLabs) was 

mixed to each PCR tube and incubated for 1h at 37°C. Afterwards 2-3 µl of the mix 

were used for Transfection. 

2.2.3 Gateway cloning 

For easier cloning procedure gateway cloning was used. Therefore gateway 

compatible primers were prepared in order to clone the construct into the pDonor 

vector. 

 

 

 

 

 

 

 

 

BP reaction 

A BP reaction was performed in order to clone the obtained PCR fragment into the 

pDONR vector (Figure 5). The reaction was performed at RT for 1h (table 6) and 

stopped by adding 1 µl of proteinase K.  

Template (PCR fragment)  3 µl 

pDONR 1 µl 

BP clonase 2 µl 

ddH20 4 µl 

total 10 µl 
Table 6: Composition of the BP reaction 

C- terminal fusions 

Sense attB1 primer:5‘ - Gggg aca agt ttg tac aaa aaa gca ggc tag act gcc atg (NNN)5-10 –3‘ 
 

Antisense attB1 primer: 5‘ – gggg ac cac ttt gta caa gaa agc tgg gtt NOSTOP (NNN)10-15 –3‘ 
 

N-terminal fusions 

Sense attB1 primer: 5‘ - Gggg aca agt ttg tac aaa aaa gca ggc tcc (NNN)5-10 –3‘ 
 

Antisense attB1 primer: 5‘ – gggg ac cac ttt gta caa gaa agc tgg gt STOP (NNN)5-10 –3‘ 
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Figure 5: Vector map of pDONR201 

 

LR reaction 

The plasmid preparation obtained from the BP reaction was further used to clone the 

gene of interest into a compatible gateway destination vector containing the 

preferred tag (table 7).  

backbone tag resistance 

pCS2-Nterm-6myc  6myc Amp 

pTRACER-Cterm-V5 V5 Amp 

pSG-Nterm-4HA 4HA Amp 
Table 7: List of destination vectors 
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The LR reaction was carried out for 1 h at 37°C 1h (table 8) and stopped by adding 1 

µl proteinase K.  

Destination vector 1 µl 

Entry Clone 3 µl 

LR clonase 2 µl 

ddH20 4 µl 

total 10 µl 
Table 8: Composition of the LR reaction 

 

Transformation DH5α 

2µl of the BP or LR reaction were transformed into subcloning Efficiency DH5α 

bacteria (InvitroGen). After incubation on ice for 30 min the bacteria were heat-

shocked at 42°C for 30 seconds. After incubation at 4°C for 2 min 750 µl of SOC 

media was added and the bacteria were shaken on 37°C for 1 hour. Then the cells 

were plated on an agar plate containing the appropriate antibiotic for selection. 

BsrG1 digestion 

To confirm the correct cloning during the BP or LR reaction a BsRG1 digestion was 

performed for 1h at 37°C (table 9).  

Plasmid to test 8 µl 

Buffer (New England Biolabs) 1 µl 

BsRG1 (New England Biolabs) 1 µl 

total 10 µl 
Table 9: BsrGI digestion  

 

To analyze the digestion, the mix was loaded on a 1% agarose gel (InvitroGen). The 

right clones were further analyzed by sequencing. 
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Miniprep 

3 clones were picked and inoculated in 3 ml media containing the respective 

selection antibiotics. They were grown o/n shaking at 37°C. On the next day the 

plasmid was isolated using a QIAprep spin miniprep kit (QIAGEN).  

Maxiprep 

After analyzing the sequence by microsynth the remaining Miniprep-culture was 

used to inoculate 250ml LB media with the correct antibiotic for selection. After 

growing the culture o/n at 37°C maxiprep was performed using a HiSpeed Plasmid 

Maxi Kit (QIAGEN).  

 

2.3 Tandem Affinity Purification 

For TBK1, IKKi and each of the adaptor proteins two TAP-pulldowns were 

performed. Stable RAW264.7 macrophage cell lines expressing the respective bait 

protein with the GS-TAP tag (existing in the lab, Figure 6) were taken.  

 

 

Figure 6: Composition of the GS TAP tag (Burckstummer, Bennett et al. 2006) 

 

The cells were collected, lysed in lysis buffer and incubated on ice for 20-30 minutes. 

Then the cell suspension was centrifuged 15 min at 15000 x g. The supernatant was 

taken and again centrifuged with an Ultracentrifuge for 1h at 100000 x g. 90µl 

sample was collected for Western Blot analysis. In the meantime the rabbit IgG 

Agarose (Sigma) was washed 2-3x (1000rpm) with lysis buffer. Then 200µl of beads 

were added to the lysates and incubated at 4°C shaking for 2h. The beads were than 

collected by centrifugation at 600rpm, 1 min, 4°C whereas an aliquot of the 
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supernatant was kept, transferred into a small column (0.8 ml MoBiColM1002) and 

washed with 10ml lysis buffer. Then the sample was washed with 5ml TEV cleavage 

buffer (0.2% detergent, no protease inhibitors!) and afterwards 360µl TEV cleavage 

buffer with 40µl TEV protease was added. The mixture was incubated for 1h at 16°C 

shaking at 800rpm.  

In the meantime the Streptavidin beads were washed 3x with TEV cleavage buffer 

(0.2% detergent). After incubation the TEV eluate was dropped out by gravity flow 

into an Eppendorf tube whereas another 400 µl TEV cleavage buffer (0.2% 

detergent) was added and the column was emptied by applying pressure (syringe). 

An aliquot of this eluate was saved and the rest was mixed with the Streptavidin 

beads and incubated for 1h at 4°C rotating. Then the suspension was centrifuged 

and the beads were transferred to a new column where the beads were washed with 

10ml TEV cleavage buffer (0.2% detergent). After preparation of a saturated biotin 

solution a spatula tip was added in 5ml biotin buffer. Then the Streptavidin beads 

were incubated with 400µl saturated biotin solution for 5 min at 16°C. After 

incubation the eluate was dropped out by gravity flow into an Eppendorf tube 

whereas afterwards another 400 µl saturated biotin solution was added and 

incubated for another 5 min. Then the column was emptied by applying pressure 

(syringe). Then the remaining beads are boiled in 50µl SDS sample buffer and 

lyophilized over night. On the next day the dried biotin eluate were dissolved in 50µl 

SDS sample buffer.  

Used Reagents 

• Lysis Buffer: 50mM Tris/HCl, pH 7.5, 5% glycerol, 0.2% NP-40, 1.5mM MgCl2, 

100mM NaCl  add freshly: 1mM Na3VO4, protease inhibitors, and 25mM 

NaF 

• TEV cleavage buffer: 10mM Tris/HCl, pH 7.5, 100mM NaCl, 0.5mM EDTA 

• 4x sample buffer: 200mM Tris/HCl pH6.8, 40%glycerol, 8% SDS, 0.004% 

bromphenolblue, before use 10% β-mercaptoethanol is added 
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2.4 Mass spectrometry  

After purification the TAP eluates were given to the mass-spectrometry department 

at CeMM (Head: Dr. Keiryn Bennett) where mass-spectrometry analysis was carried 

out.  

2.4.1 One-dimensional SDS-Page and silver staining 

First the eluted samples were separated by 1 Dimensional SDS-Page on a bis-Tris 

gel (NuPAGE, Invitrogen, CA). Further the gel was silver stained and separate lanes 

were cut out and residual SDS was removed.  

2.4.2 In situ tryptic digestion 

Proteins were reduced with dithiothreitol, alkylated via incubation with iodoacetamide 

and digested with modified porcine trypsin (Promega Corp., Madison WI). The 

mixture of peptides was then extracted from the gel slices and desalted. Then the 

volume of the sample was reduced to 2 µl in a vacuum centrifuge and reconstituted 

to 10µl with 5% formic acid prior to LCMS analysis.  

2.4.3 Liquid Chromatography and Mass Spectrometry 

Mass spectrometry analysis was conducted on a hybrid LTQ-Orbitrap mass 

spectrometer (ThermoFisher Scientific, Massachusetts, USA) using the Xcalibur 

version 2.0.6. It was coupled to an Agilent 1200 HPLC nanoflow system by a 

nanoelectrospray ion source using liquid junction (Proxeon, Odense, DK). The 

solvents of the LCMS were used in two phases. The phase A contains 0.4% acetic 

acid, 0.005% HFBA in water and the phase B contains 0.4% acetic acid and 0.005% 

HFBA in 90% acetonitril. A thermostatted micro-autosampler was used to load 

automatically 8µl of the tryptic peptide mixture onto a trapping pre-column (Zorbax 

300SB-C18 5µm, 5x0.3 mm, Agilent) with a binary pump at a flow rate of 40µl/min. 

For loading and for washing the pre-column 100% Phase A was used. The peptides 

were then eluted by back flushing onto a 16 cm fused silica analytical column (inner 

diameter of 50µm) packed with C18 reversed phase material (ReproSil-Pur 120 C18-

AQ, 3µm, Dr.Maisch GmbH). With a gradient (from 3-13% B within 4 min, 13-35% B 

within 35 min, 35-50% B within 11 min and 50-100& B within 6 min and hold at a 
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constant flow rate of 100nL/min for 15 min) the peptides were eluted. Certain 

background ions were used as lock masses for internal calibration.  

Data analysis was carried out in a data-dependent acquisition mode by the use of a 

top 10 collision-induced dissociation (CID) method and a dynamic exclusion for 

selected ions of 60 sec. The maximal accumulation time of ions on the LTQ Orbitrap 

was 150ms on the MSn in the LTQ and 1000ms in the C-trap. To prevent an 

overfilling of the ion traps an automatic gain control was used. In both LTQ and 

Orbitrap injection waveforms were activated. In the Orbitrap intact peptides were 

detected at a resolution of 60000.  

2.4.4 Data analysis 

The obtained data were processed by the use of Bioworks V3.3.1 SP1 

(ThermoFisher, Manchaster, UK). The data files were therefore merged with an 

internally-developed program and searched against the murine IPI database version 

v3.41 with the search engine MASCOT. Perl script, which performs an initial search 

with a relatively broad mass tolerance on both precursor and fragment ions (+/-10 

ppm and +/-0.6 Da) was used for submission to MASCOT. After this, peptides with a 

high confidence are used to recalibrate all precursor and fragment ion masses 

before a second search with narrower mass tolerances (+/-4 ppm and +/- 0.3 Da). 

One missed tryptic cleavage site was allowed. Carbamidomethyl cystein was set as 

fixed and oxidized methionine was set as variable modification. At least two unique 

peptides with a MASCOT peptide ion score greater than one, or equal to, were 

required for unambiguous protein identification.  

2.5 Co-Immunoprecipitation 

For co-immunoprecipitation 6x106 HEK293T cells were seeded into 10 cm dishes. 

After 24h 6µg of each construct was transiently transfected according to the protocol. 

After 24h of incubation the cells were lysed with Frackelton Buffer and then protein 

concentration was calculated using Bradford reagent. 

For the IP 2.5 mg of protein were diluted with Frackelton Buffer to a final volume of 

300µl. The appropriate beads (myc, V5, or HA tagged) were used in a 1:1 
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suspension. Before use the beads were washed at least 3 times with Frackelton 

buffer. Therefore the beads were centrifuged at 150 x g for 1 minute. Then the 

supernatant was discarded and one volume of Frackelton Buffer was added. Finally 

50µl of beads were added to the samples which were than incubated for 1-2 h 

rotating on a wheel at 4°C. After the incubation time the beads were washed 4 times 

the same way as described above with Frackelton buffer. When the last supernatant 

was discarded 60 µl of 4 x sample buffer was added and the beads were boiled for 5 

min at 95°C. After one more centrifugation step the supernatant was taken and used 

for Western Blot analysis.  

 

Used Reagents 

• Frackelton Buffer: 10mM Tris/HCl pH7.4, 50mM NaCl, 30mM Na-

pyrophosphate, 1% Triton X-100  before use 1mM PMSF, 1mM DTT, 

100µM Na3VO4 and 100µM NaF was added 

• 4x sample buffer: 200mM Tris/HCl pH6.8, 40%glycerol, 8% SDS, 0.004% 

bromphenolblue, before use 10% β-mercaptoethanol is added 

 

2.6 Western Blot 

The mini protean 3 system (BioRad) was used to prepare polyacrylamide gels for 

electrophoresis. In general 9 % gels were prepared according to the following table 

whereas one minigel was prepared the following (table 10). 

Separation gel 9 % gel 

30% Acrylamide/Bis (Bio-Rad) 1.5 ml 

Running gel Buffer 1.25 ml 

10% APS 50 µl 

TEMED (Merck) 5 µl 

water 2.25 ml 
Table 10: Separation gel 
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The separation gel was poured quickly into the system and filled up to a height of 7 

cm. It was the covered with 700µl of Isopropanol and polymerized for approximately 

15 min. Then the Isopropanol was discarded and the stacking gel was prepared as 

following (table 11).  

Stacking gel 

30% Acrylamide/Bis (Bio-Rad) 0.334ml 

Stacking gel Buffer 0.5ml 

10% APS 20µl 

TEMED (Merck) 3µl 

water 1.166ml 
Table 11: Stacking gel 

 

It was filled until the edge of the glass plate and a 15-well comb was immediately 

inserted into the gel. After approximately 10 min the stacking gel was polymerized, 

the comb was removed and the gel slots were rinsed with water.  

The gel was put into a running chamber and filled up with 1 x SDS running buffer. 5µl 

of pre-stained protein ladder (Fermentas) was used as a marker. In general 100µg of 

protein diluted into 4 x sample buffer were loaded in one gel slot. The 

electrophoresis was than performed at 120 V until the bromphenolblue reached the 

bottom of the gel.  

For immunoblot the sandwich was prepared as following: 3 Whatman papers were 

soaked in 1 x Western Blot buffer and put in the transfer chamber. The membrane 

(Whatman) was also soaked in Buffer and put onto the papers (for a PVDF 

membrane, the membrane has to be pre-incubated in methanol according to the 

instructions). Then another soaked staple of 3 Whatman papers was put on top of 

the staple. Using a 10 ml pipette the air bubbles were removed from the sandwich. 

To transfer the proteins on the membrane the sandwich was orientated in that 

direction that the gel was at the cathode and the membrane at the anode and the 

blot was performed for 1h with 1 mA/cm2. 

After blotting the membrane was blocked in 5 % milk (BioRad) in PBS-Tween (PAA-

Sigma) for 30 min. The primary antibody was diluted in 5 % milk PBS-Tween and 
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incubated either at RT for 1 h or at 4°C o/n. After 3 times washing for 5 min with 

PBS-Tween the secondary antibody (diluted in 5% milk in PBS-Tween) was 

incubated on the membrane at RT for 1 h. (When phosphorylated proteins were 

supposed to be detected TBS-Tween was always used instead of PBS-Tween). After 

another 3 washing steps the membrane was either analyzed using an Odyssey Li-

Cor machine (for fluorescence labeled antibodies) or developed with HRP-

peroxidase.  

Used Reagents 

• Gel buffer (4x): 1.5M Tris-HCl pH 8.8 (Sigma), 10% SDS (Serva) in deionized     

water 

• Stacking gel buffer (4 x): 0.5M Tris-HCl pH 6.8 (Sigma), 10% SDS (Serva) in 

deionized water 

• APS: 10% Ammonium persulfate (Merck) in deionized water 

• Sample buffer (4x): 0.2M Tris-HCl pH 6.8, 40% glycerol (Serva), 8% SDS 

(Serva), bromphenolblue (Sigma) in deionized water 

• SDS running buffer (5x): 250mM Tris (Sigma), 1.9M Glycin (Serva), 35mM 

SDS (Serva) in deionized water 

• Western Blot Buffer (1x):1xPBS-Tween: 500ml 10xPBS(PAA) diluted in4.5l 

deionized water, add 5 ml Tween 20 (Sigma) 

• 10xTBS: 100mM Tris/HCl pH7.4 1.5 M NaCl 

The following antibodies were used in this study (table 12).  

Antibodies Dilution 

TBK1 rb 1:1000 in 5% milk in PBS-T 

P-TBK1 rb 1:1000 in 5% milk in TBS-T 

V5 mo (InvivoGen) 1:5000 in 5% milk in PBS-T 

HA-11 mo 1:3000 in 5% milk in PBS-T 

2nd Anti-rb-HRP 1:5000 in 5% milk in PBS-T 

2nd Goat anti mouse 700 (InvitroGen) 1:7000 in 5% milk in PBS-T 

2nd  anti rabbit 800 (InvitroGen) 1:7000 in 5% milk in PBS-T 

2nd rb Myc-800 (Rockland)  1:7000 in 5% milk in PBS-T 
Table 12: Used antibodies and respective dilution  
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2.7 Immunofluorescence 

For Immunofluorescence experiments HeLa cells were seeded in cover slips with a 

density of 1x104. On the following day the cells were transfected with 150ng of the 

respective construct per well. After 3h the media was changed and the cells were 

incubated at 37°C for another 24h. On the third day the cells were fixed after 

washing them one time with 1x PBS (PAA). The fixation procedure requires 4% 

formaldehyde in PTEMF solution and was out on the cells for 10 min. After washing 

the cells again 3 times they were blocked in a 3% BSA (Sigma) PBS solution 

(blocking solution) for 30 min. Then the first antibody was incubated for one hour and 

after again 3 washing steps also the secondary antibody was incubated for 1h in the 

dark (table 13). The cells were again washed 2 times with PBS-T and then stained 

with DAPI (1:100) for 10 minutes. After another 3 washing steps the chambers were 

sealed with MOWIOL, dried over night and kept in the dark. 

Antibodies Dilution 

Anti-Myc (9E10), mo monoclonal (BD) 1:1000 in blocking solution 

Anti V5 mo monoclonal(InvivoGen) 1:200 in blocking solution 

2nd Anti mouse Alexa Fluor 594 

(Invitrogen) 

1:3000 in blocking solution 

Table 13: used antibodies and respective dilution 

 

• PTEMF-buffer: 0.2% Triton X-100 (Sigma), 20mM pipes-buffer pH 6.8 

(Sigma), 1mM MgCl2 (Merck), 10mM EGTA (Fulka), 4% Formaldehyde 

(Merck) 

2.8 Reporter gene assay 

HEK293 cells were seeded in 24-well plates and on the next day transfected with 

0.4µg of plasmid, 48ng renilla reporter and either 72ng of IFN-β luciferase reporter or 

NF-κB luciferase reporter. After 24h incubation the cells were lysed in 100µl of IP- 

buffer and 20µl of each sample was used for reporter gene assay. Luminescence of 

each sample was measured in biological duplicates. Western Blot was performed to 

measure the expression levels of the respective transfected plasmids. 
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2.9 Kinase assay 

HEH293T cells were seeded in 10 cm dishes and transfected the following day with 

8µg of the respective plasmids. After 24h of incubation the cells were lysed in 700µl 

of Frackelton buffer. Then the tagged beads were washed 3 times with Frackelton 

buffer and 2mg of the lysate was incubated with 40µl of the beads for 1-2h rotating at 

4°C. Afterwards the beads were washed 3 times with Frackelton buffer and 1 time 

with kinase buffer. Finally the beads were resuspended in 350µl of kinase buffer. 

60µl of this suspension was added to 500µl Eppendorf tubes (1 tube per reaction) 

whereas duplicates were measured for each construct. The beads were then 

resuspended in 10µl of Kinase buffer and 10µl of hot-mix (hot-laboratory) was added 

table 14).  

Hot master mix ATP 

Cold ATP (2mM) 0.5µl 

[γ32P] ATP 0.5µl 

IRF3 peptide (50µM) 0.4µl 

Mg kinase buffer 8.6µl 

total 10µl 
Table 14: Composition of Hot-ATP master mix 

 

The reaction was further incubated for 30 min at 30°C and stopped by adding 12.5µl 

7.5M guanidinium chloride. Then the mixture was spotted on a SAM2 Biotin Captire 

Membaren (Promega) and washed as following. 

30 sec with 2M NaCl 

3 x 2 min with 2M NaCl 

4 x 2 min with 2M NaCl + 1% H3PO4 

2 x 30 sec with H2O 

15 sec with Ethanol 

Kinase activity was then measured on a Scintillation counter. 

• Kinase buffer: 40mM Tris/HCl pH 7.5, 10mM MgCl2, 1mM DTT 
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3 Results 

TANK, TBKBP1 and TBKBP2 are believed to be cofactors for TBK1/IKKi in 

signaling cascades that activate upon viral infection (Ryzhakov and Randow 

2007) (Sasai, Shingai et al. 2006) (Guo and Cheng 2007).  

The first evidence for this was provided in 2004 when the entire human TNF-α 

pathway was mapped in one go and TBK1/IKKi was found to be in a complex with 

TBKBP1, TBKBP2 and TANK (Bouwmeester, Bauch et al. 2004).  

In order to follow up these findings and specify the architecture of the core 

complex, we performed TAP pulldowns and co-immunoprecipitations. Further, the 

activity of TBK1 in relation to the core complex was examined by the use of 

autophosphorylation studies, kinase assays and reporter gene assays.  

3.1 Pulldown of TBK1/IKKi and the adaptor proteins TBKBP1, 
TBKBP2 and TANK 

Stable cell lines that efficiently express the GS-TAP-tagged version of the 

respective proteins were generated according to the protocol of Buerckstuemmer 

et al 2006. The lysates of these cells were used for tandem affinity purification 

(TAP), which is a two-step affinity purification that allows the isolation of protein 

complexes close to physiological conditions. The purified eluates were then sent 

for mass-spectrometry analysis (Burckstummer, Bennett et al. 2006).  

3.1.1 Tandem Affinity Purification 

The binding of the adaptors to TBK1 has reproducibly been shown by using the 

method of Tandem affinity purification (TAP). In TAP, TBK1 is used as a bait to 

‘fish out’ the co-operating factors TBKBP1, TBKBP2 and TANK (further referred to 

as TBK1 adaptor proteins). 

In order to study the exact structure of the core complex we first performed 

reverse TAP pulldowns of the binding proteins side by side to TBK1 and IKKi 

pulldowns. We wanted to find out whether the adaptors TBKBP1, TBKBP2 and 

TANK do not only bind to TBK1 and IKKi but also to one another in order to form 
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the proposed stable complex. As a negative control we used an unrelated protein, 

which we purified in parallel and was also expressed in RAW264.7 macrophages. 

To see whether the baits are expressed in the lysates, one can use any rabbit-

derived antibody for western blotting (here: anti-TBK1) as the protein G moiety of 

the tag binds to virtually all antibodies. Binding of TBK1 was monitored in the final 

eluates (also referred to as ‘boiled beads’) using anti-TBK1 as well.  

 

Figure 7: The final TAP eluated samples and the corresponding cell lysates 
were used for Western Blot analysis with anti-TBK1 antibody. All of the bait 
proteins can be seen expressed in the lysates at the right size. In the final 
eluates the binding of TANK, TBKBP1 and TBKBP2 but not the control to 
TBK1 is visible. 

 

The anti-TBK1 antibody could detect the expression of all the bait proteins in the 

lysates. By performing a TBK1 Western Blot of the eluates, which were further 

analyzed by mass spectrometry, we could confirm the specific binding of TBK1 to 

TBKBP1, TBKBP2 and TANK but not to the control. As previously reported we 

also found endogenous TBK1 bound to the tagged TBK1, which suggests that 

TBK1 may form homooligomers.  
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3.1.2 Silver stained gels of TAP eluates 

The final eluates were separated on an SDS-PAGE and bound proteins were 

visualized by silver staining. Next, each lane was sliced into 20 slices, digested 

with trypsin and submitted to mass-spectrometric analysis.  

 

Figure 8: The final TAP eluates of the different bait proteins (in duplicates) were separated 
on an SDS-PAGE and visualized by silver staining. 

 

3.1.3 Mass-spectrometry and Bioinformatical analysis 

We use mass-spectrometry peptide counts as a read out for protein abundance. 

The peptide counts for a given protein, equates to the number of unique tryptic 

peptides that were identified by mass-spectrometry analysis. It partially correlates 

with the amount of protein that was present in the final eluate and hence with the 

strength of the interaction.  

Bioinformatic analysis of the pulldown results is required in order to eliminate non-

specific proteins and to get a reliable result with as little false positives as 

possible. Two major criteria must be considered in the data analysis. The first is 

the use of an appropriate negative control. Only proteins which are enriched in the 



Results 

-45- 

specific pulldowns and not in the negative control pulldown are considered to be 

real interactors. Proteins found in both pulldowns are considered as background. 

The second criterion concerns the abundance of proteins identified in any 

pulldown performed at CeMM mass-spectrometry facility. Software designed at 

CeMM (ProtFollow) can be used to compare the appearance of a specific protein 

in different mass spectrometry data.  

The resulting data for the interaction properties of the TBK1 core complex are 

depicted in a table which displays peptide counts (Figure 9).  

 

Figure 9: Matrix of the peptide counts of the TBK1/IKKi and adaptor pulldowns. The blue 
labeled caskets indicate the abundance of the bait protein whereas the white labeled 
caskets show the amount of peptides detected. 

 

The table describes the specific peptide counts for each pulldown in duplicates. 

The amount of bait protein is depicted in blue. High amounts of detected bait 

protein reflect the quality of the respective pulldown. TBK1 has high peptide 

counts for all the three adaptor proteins, whereas in comparison IKKi shows low 
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peptide counts. For instance, TBKBP1 was found as an interactor of IKKi in only 

one pulldown.  

The reverse pulldowns of the adaptor proteins TBKBP1, TBKBP2 and TANK, 

showed high peptide counts of the respective kinases TBK1 and IKKi, confirming 

the previously described interactions. Surprisingly TBKBP1, TBKBP2 and TANK 

did not show any binding to one another. These data suggest that the adaptor 

proteins do not form a single core complex but instead participate in distinct sub-

complexes. In line with this argument, there is very little overlap between the 

proteins found in each adaptor protein pulldown (data not shown). 

Our TAP pulldowns supported the previous findings that TANK binds to NEMO, 

Traf1 and Traf2 (data not shown) (Cheng and Baltimore 1996; Kaye, Devergne et 

al. 1996; Rothe, Xiong et al. 1996; Chariot, Leonardi et al. 2002). This confirms 

the reliability of the TAP-MS method employed at CeMM and indicates any newly 

identified proteins are likely to be true interactors. 

We also found several new proteins involved in innate immunity signaling 

interacting with either one of the adaptors, but these findings have not been 

followed up in this study. 

3.2 Interaction of TBK1 or TBK1 mutants with the adaptors 

After the pulldown results showed that none of the adaptors interact with 

themselves we focused our interest on the interaction between TBK1/IKKi and 

TBKBP1, TBKBP2 and TANK.  

To specify the binding properties we performed immunoprecipitation studies with 

several TBK1 mutants.  

3.2.1 Confirmation of the interaction via Co-Immunoprecipitation 

The results obtained by TAP pulldowns were first verified with co-

immunoprecipitation (co-IP). HEK293T cells were co-transfected with Myc-tagged 

TBK1 and HA-tagged adaptors or kinases. The cell lysates were used for 

immunoprecipitation with anti-Myc-agarose.  
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Figure 10: HEK293T cells were cotransfected with Myc-tagged 
TBK1 or IKKi and HA-tagged adaptor proteins or kinases. The 
cell lysates were co-immunoprecipitated with anti-Myc-agarose. 
On the Western Blot it can be seen that TANK, TBKBP1 and 
TBKBP2 but not the control bind to TBK1 and IKKi by using an 
anti-HA antibody. 

 

As expected from the TAP results, both TBK1 and IKKi interact with all the three 

adaptor proteins. TBKBP2 is expressed at lower levels than the other adaptors 

and therefore, the interaction can only be weakly seen. Interestingly TBK1 

oligomerizes with TBK1 and to a lesser extent with IKKi whereas IKKi doesn’t 

show any sign of oligomerization although TBK1 and IKKi are almost equally 

expressed. 
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3.2.2  Creation of TBK1 deletion mutants 

It was found that 43 residues in the C-terminus of TBK1 are sufficient for binding 

to TANK (Pomerantz and Baltimore 1999). Until now it was not known at which 

sites TBKBP1 and TBKBP2 interact with TBK1 and IKKi.  

TBK1 is classified into several functional domains: the kinase domain, the 

ubiquitin-like domain (Ikeda, Hecker et al. 2007), and two coiled coil regions. In 

order to investigate the interaction between TBK1/IKKi and the adaptor proteins 

TBKBP1, TBKBP2 and TANK we used a systematical approach where we deleted 

those domains separately. This resulted in 5 different mutants and the wild type 

control (Figure 11). 

 

 

Figure 11: Map of the created deletion mutants of TBK1 

 

3.2.3 Binding of TBK1 deletion mutants to the adaptors 

With these deletion mutants we performed co-immunoprecipitation in order to 

define the region of TBK1 that is needed to bind each of the adaptor proteins. 

HEK293T cells were co-transfected with Myc-tagged TBK1wt or Myc-tagged 

TBK1 deletion mutants, and with either V5-tagged TBKBP1, TBKBP2 or TANK. 

Immunoprecipitations were performed in both directions, using either the Myc or 

the V5 tag. The respective Western Blots of the lysates and eluates are shown 

below. 
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Figure 12: HEK293T cells were co-transfected with Myc-tagged TBK1wt or 
TBK1 deletion mutants and V5-tagged adaptors. After co-
immunoprecipitation with the use of anti-Myc-agarose and anti-V5-agarose, 
the anti-Myc Western Blot of the V5-IP and vice versa show the binding 
results. When coiled coil 2 or the whole C-terminus is deleted the binding to 
the three adaptors is abolished, whereas when deleting coiled coil 1 or ULD 
the adaptors can still bind.  

 

The anti-Myc and anti-V5 Western Blot of the lysates show that TBK1 and the 

different TBK1 mutants as well as the adaptors are all expressed. The result of 

the co-IP shows that the adaptor proteins TBKBP1, TBKBP2 and TANK are all 

able to bind to the deletion mutants missing coiled coil region 1 or the ubiquitin-

like domain as stably as the TBK1wt.  

In contrast, upon deletion of the coiled coil region 2 or the whole C-terminus, the 

binding to each one of the three adaptor proteins was completely abolished. This 
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suggests that the binding of the adaptors TBKBP1, TBKBP2 and TANK occurs in 

the coiled coil 2 region (amino acid 679-712) of TBK1. 

3.2.4 Creation of TBK1 point mutants  

To further detail the binding properties and to exclude an artifact of the TBK1 

mutant missing the coiled coil 2 region we created several point mutants in this 

region. Therefore it was necessary to understand the structure and behavior of 

coiled coil motifs.  

The first to discover the structural existence of a coiled coil was Crick in 1953. In 

general coiled coil is a very common structural motif which usually contains 2-5 α-

helices wrapped around each other. In contrary to regular α-helices, which contain 

3.6 residues per complete turn, the most common left –handed coiled-coil 

structure lowers this value to 3.5 (Mason and Arndt 2004). The helices consist of 

2-200 heptad repeats (a-b-c-d-e-f-g). According to the PV (‘Peptide Velcro’) 

hypothesis each position is associated with special properties of the very amino 

acid located there. Therefore position a and d must be hydrophobic and non-polar 

residues (e.g. leucine, valine or isoleucine), which appear at the interface of two 

helices. But then position e and g are normally exposed to the solvent and 

therefore polar and charged to form interhelical electrostatic interactions (e.g. 

glutamate or lysine) (Mason and Arndt 2004).  

The coiled coil architecture is crucial for the function in oligomerization and 

molecular recognition of proteins (Burkhard, Stetefeld et al. 2001). 

 

 

Figure 13: Interaction pattern of a parallel dimeric coiled coil with the specific residues in 
two different views (Mason and Arndt 2004) 
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Due to the fact that TBK1 and IKKi act in a similar way we identified the 

evolutionary conserved regions within their respective coiled coil 2 domains 

(conserved residues are indicated in red).  

 

 

 

 

According to the properties of coiled coils we predicted the structure of the coiled 

coil in the TBK1CC2 region and the amino acids crucial for coiled coil formation.  

 

 

Based on the conserved residues between TBK1 and IKKi and the amino acids 

crucial for coiled coil formation we selected several residues to mutate. We took 4 

amino acids (M690, L693, E696 and N707) out of those candidates and mutated 

them either neutrally to alanine or to the opposite charge (M690A, L693A, E696K, 

N707A). Those mutants were then used for interaction and activity analysis. 

LVEMTLGMKKLKEEMEGVVKELAENNHILER 

CC2 domain of TBK1 and IKKi 

TBK1:SNTLVEMTLGMKKLKEEMEGVVKELAENNHILERFGS 

   IKKi:SPTRKDLLLHMQELCEGMKLLASDLLDNNRIIERLNR 
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Figure 14: Coiled coil wheel structure of TBK1CC2 indicating the position of 
the mutated amino acids 

 

3.2.5 Binding of TBK1CC2 point mutants to the adaptors 

After successful creation of the TBK1CC2 point mutants, co-IP studies were 

performed to identify the specific binding properties between the adaptors and 

TBK1. Co-IPs were performed in HEK293T cells after co-transfection of Myc-

tagged TBK1CC2 point mutants and V5-tagged adaptor proteins.  
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Figure 15: HEK293T cells were co-transfected with Myc-tagged TBK1wt or TBK1mutants 
and the V5-tagged adaptors. After co-IP the anti-Myc Western Blot of the V5-IP and vice 
versa show the binding results. The mutants M690A and E696K abolish the binding to 
the three adaptors, whereas the mutant L693A specifically abolishes TANK binding. 

 

The Western Blot results show that TBK1wt and TBK1 mutants as well as the 

adaptors are all well expressed. The co-immunoprecipitation result shows that two 

of the point mutants (M690A, E696K) specifically abolish the binding to TBKBP1, 

TBKBP2 and TANK. In addition to those two mutations a third mutation (L693A) 

inhibits the binding to TANK only. The point mutant N707A binds as strongly as 

TBK1wt to all the adaptors.  

In summary we created one TBK1CC2 point mutant (TBKL693A) that specifically 

abolishes the binding to TANK but still binds to TBKBP1 and TBKBP2. 

A model of the specific binding sites of the adaptors to TBK1/IKKi can be found 

below.  
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Figure 16: Binding model of TANK and TBK1 

TANK binds with its TBK1/IKKi binding domain (TBD) to the coiled coil 2 region of 

TBK1. For the interaction the 3 amino acids M690, L693 and E696 are crucial.  

 

 

Figure 17: Binding model of TBKBP1 and TBK1 

TBKBP1 also binds with its TBD to the coiled coil 2 region of TBK1 whereas for 

the interaction only 2 amino acids, M690 and E696 are necessary.  

 

 

Figure 18: Binding model of TBKBP2 and TBK1 

 

TBKBP2 binds with its TBD to the coiled coil 2 region of TBK1. Like in TBKBP1, 

the 2 amino acids M690 and E696 are crucial for the interaction.  

The TBK1 adaptors all bind to the coiled coil 2 domain in TBK1 but their binding 

mode is likely to differ significantly as certain amino acids can distinguish between 

TANK on one side and TBKBP1/TBKBP2 on the other side. 
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3.3 TBK1/IKKi Activity 

After identifying the sites in TBK1/IKKi that bind to the adaptors, we wanted to 

examine whether the deletion of certain domains also has an impact on TBK1 

activity. Another interesting question we wanted to address was whether the 

binding of the adaptors effects the activity of TBK1.  

Several methods can be used as read-outs to investigate TBK1/IKKi activity. One 

of the most prominent is autophosphorylation of TBK1 at serine 172, which is 

located in the activation loop of TBK1. We used a phospho-specific antibody that 

has been created in the lab before and is sensitive for recognizing only the active 

form of TBK1 (Soulat, Burckstummer et al. 2008). Another assay measures 

kinase activity by the use of radioactive labeled [γ32P] ATP. A third assay is more 

indirect and measures TBK1 activity using a reporter gene assays. Here the 

activation of either IFN-β or NF-κB reporter genes was used to investigate TBK1 

activity. 

3.3.1 TBK1 Phosphorylation at Ser172  

We first investigated the phosphorylation of TBK1 at Ser172 for all the deletion 

mutants and TBK1wt. HEK293T cells were transfected with the Myc-tagged 

TBK1wt or the different Myc-tagged TBK1 deletion mutants. The phosphorylation 

status was then examined by Western blotting using the phosphor-specific 

antibody  
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Figure 19: HEK293T cells were transfected with Myc-tagged 
TBK1wt or TBK1 mutants. Autophosphorylation at serine 172 
is shown by Western Blot analysis with the use of a phospho-
specific TBK1 antibody. The only mutant that shows activity 
is TBK1ΔCC2, all the other mutants are inactive. 

 

The anti-Myc Western Blot shows that TBK1wt and all the TBK1 deletion mutants 

are expressed. As already shown before, we confirmed with the phospho-specific 

anti-TBK1 antibody that if you delete the ULD, TBK1 is not phosphorylated. Also 

the kinase domain alone is not active and TBK1ΔCC1 and TBK1ΔC-terminus 

seem to be inactive but we don’t know if this is physiological. But, surprisingly, we 

see that deletion of the TBK1 coiled coil 2 region, which is the region crucial for 

binding the adaptor proteins, does not affect TBK1 activity at the level of 

autophosphorylation.  

TBK1 point mutants were also tested for Ser172 phosphorylation using the same 

method.  
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Figure 20: HEK293T cells were transfected with Myc-tagged 
TBK1wt or TBK1 point mutants. Western Blot analysis 
detects the autophosphorylation at serine 172 with the use of 
a phospho-specific TBK1 antibody. All of the TBK1CC2 point 
mutants show activity similar to TBK1wt and TBK1ΔCC2. 

 

The anti-Myc Western Blot shows that TBK1wt and all the point mutants are 

expressed. The result of phospho-specific anti-TBK1 Western Blot shows that all 

the TBK1CC2 point mutants (independent of adaptor binding) are active at the 

level of serine 172 phosphorylation.  

The findings of the activity of TBK1 deletion mutants and point mutants support 

each other and indicate that TBK1 activity upon overexpression of TBK1 is 

independent of its ability to bind to the TBK1 adaptors. Nevertheless, it does not 

rule out that the TBK1 adaptors contribute to the activation process of 

endogenous TBK1, which is elicited by upstream receptor ligation.  

3.3.2 Kinase assay 

Next, we performed a kinase assay in order to identify whether the findings we 

observed at the level of autophosphorylation hold true for IRF3 phosphorylation. 

Here we used radioactive labeled ATP as a source to examine the ability of 

TBK1wt and each TBK1 mutant to phosphorylate an IRF3 peptide. The respective 

Myc-tagged plasmids were transfected into HEK293 cells and the cells were lysed 
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after 24h. After using immunoprecipitation with anti-Myc-agarose, the final eluates 

were used in a kinase assay.  

 

Figure 21: HEK293 cells were transfected with Myc-tagged TBK1wt or TBK1 
mutants. After immunoprecipitation by the use of anti-Myc-agarose, Kinase assay 
was performed. An IRF3 peptide was used to detect phosphorylation, performed by 
any active TBK1 version. The kinase dead mutant TBK1K38M and the kinase 
domain only show impaired kinase activity. TBK1wt and the respective TBK1CC2 
mutants are all active. 

 

The kinase assay shows no kinase activity in the kinase dead TBKK38M mutant 

as expected and also no kinase activity in the kinase domain only. TBK1ΔCC2 

and the TBK1CC2 point mutants, no matter whether they bind the adaptors or not, 

show almost as much kinase activity as the TBK1wt. This supports the results of 

the autophosphorylation study.  

3.3.3 NF-κB reporter gene assay 

To further examine the activity of TBK1wt and the different TBK1 mutants, 

reporter gene assays were performed. HEK293 cells were transfected with 0.1, 

0.2 or 0.4 µg of TBK1wt or the respective TBK1 mutants and with the reporter 

constructs. After 24h of incubation the cells were lysed and the lysates were 

examined by a reporter gene assay. The NF-κB reporter assay covers the TBK1 

mediated NF-κB activation. 
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Figure 22: HEK293 cells were transfected with 0.1, 0.2 or 0.4 µg of TBK1wt or the respective TBK1 
mutants and with the reporter constructs. After 24h of incubation the cells were lysed and NF-κB 
reporter gene assay was performed. TBK1wt, TBK1ΔCC2, and TBK1 point mutants show reporter 
gene expression, whereas TBK1KD and TBK1K38M do not.  

 

Supportive to the kinase assay and the phosphorylation at Ser172 the NF-κB 

reporter gene assay shows no activity for the kinase domain only and the kinase 

dead mutant TBKK38M, whereas all the point mutants and TBK1ΔCC2 are active, 

with only minor differences. TBK1N707A shows higher NF-κB reporter gene 

activation but has also higher expression levels (Figure 23). 

The expression levels of the lysates were depicted in an anti-Myc blot. 

 

Figure 23: Expression levels of NF-κB and IFN-β reporter gene assay 
examined by an anti-Myc Western Blot 

 

All of the titrated TBK1 mutants are expressed with only minor differences within 

expression levels.  
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3.3.4 IFN-β reporter gene assay 

Additionally an IFN-β reporter gene assay was conducted which covers the IRF3 

and IRF7 activation via TBK1/IKKi. Again HEK293 cells were transfected with 0.1, 

0.2 or 0.4 µg of TBK1wt or the respective TBK1 mutant and with the reporter 

constructs. After 24h of incubation the cells were lysed and the lysates were taken 

for reporter gene assay. 

 

Figure 24: HEK293 cells were transfected with 0.1, 0.2 or 0.4 µg of TBK1wt or the respective TBK1 
mutants and with the reporter constructs. After 24h of incubation the cells were lysed and IFN-β 
reporter gene assay was performed. TBK1wt, TBK1ΔCC2, and TBK1 point mutants show reporter 
gene expression, whereas TBK1KD and TBK1K38M do not. 

 

In support of the NF-κB reporter gene assay, TBK1wt as well as TBK1ΔCC2 and 

all the point mutants induce IFN-β reporter gene expression. This confirms that 

binding of the adaptors is not correlated with IFN activity in over expression 

studies. The expression levels can be seen in Figure 23. 
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3.3.5 Impact of the adaptors on NF-κB and IFN-β reporter gene assay 

We next investigated the effect of the adaptor proteins on either TBK1wt, or non-

binding TBK1ΔCC2 in reporter gene assays. HEK293 cells were transfected with 

either 0.4µg of plasmid for the single transfections or 0.3µg of TBK1wt or 

TBK1ΔCC2 and 0.6µg of the respective adaptor for the double transfections. 

 

 

Figure 25: HEK293 cells were transfected with TBK1wt or the respective TBK1 mutants or co-
transfected with TBK1wt or TBK1ΔCC2 together with the adaptors and always with the reporter 
constructs. After 24h of incubation the cells were lysed and NF-κB reporter gene assay was 
performed. Co-transfection of TBK1wt or TBK1ΔCC2 with the adaptors but not with the control shows 
reduced reporter gene expression.  

 

As already shown in the previous experiment TBK1CC2 point mutants are as 

active as the TBK1wt when transfected alone. TBK1wt and TBK1ΔCC2 show 

almost the same reporter induction whereas when transfected together with the 

adaptors, in both cases less NF-κB reporter gene activity was detected. The co-

transfected negative control Ku70 doesn’t show any decrease at all. The minor 

differences in activity might result from differences in transfection efficiencies 

(Figure 27).  
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This shows that coexpression of the adaptor proteins has a negative impact on 

NF-κB activation as elicited by TBK1. Furthermore, surprisingly, this negative 

impact of the adaptors is still observed for the TBK1ΔCC2 mutant, suggesting that 

it is independent of the binding of the TBK1 adaptors to TBK1.  

The same experiment was then conducted for IFN-β induction. 

 

Figure 26: HEK293 cells were transfected with TBK1wt or the respective TBK1 mutants or co-
transfected with TBK1wt or TBK1ΔCC2 together with the adaptors and always with the reporter 
constructs. After 24h of incubation the cells were lysed and IFN-β reporter gene assay was 
performed. There is no change in reporter gene expression visible when co-transfecting TBK1wt or 
TBK1ΔCC2 with the adaptors. 

 

As shown before TBK1CC2 point mutants are as active as the TBK1wt, 

depending on their expression levels (Figure27) when transfected alone. 

Regarding the IFN-β reporter gene expression, co-transfection of the adaptor 

proteins with either TBK1wt or TBK1ΔCC2 does not make much of a difference. 

The minor differences in activity might result from differences in transfection 

efficiencies (Figure 27).  
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Figure 27: Expression levels of the samples used for NF-κB and IFN-β reporter 
gene assay detected by an anti-Myc Western Blot.  

 

TBK1ΔCC2 is expressed to a lesser extent than TBK1wt in the co-transfection 

experiment. Therefore, and independent of adaptor binding, all TBK1ΔCC2 

samples are less active on IFN-β and NF-κB reporter gene assay (Figure 26, 25). 

3.4 Localization of TBK1 and Binding proteins 

It looks like TBK1 adaptor binding is not directly associated with the activity of 

overexpressed TBK1. In order to investigate whether the adaptor proteins may 

play a role in the localization of TBK1 we looked at the subcellular localization of 

these proteins. We transfected HeLa cells on a cover slide with Myc-tagged TBK1 

(and respective mutants) or V5-tagged adaptor proteins. After fixing them on the 

slide and staining them with respective antibodies we took pictures at the 

fluorescent microscope.  

First we stained TBK1wt, TBK1ΔCC2, kinase dead TBKK38M and the different 

non-binding TBK1CC2 point mutants in order to see whether the binding to the 

adaptors or activity has any impact on TBK1 localization.  
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Figure 28: HeLa cells were transfected with Myc-tagged TBK1wt or TBK1 mutants. After fixing 
them, they were stained with an anti-Myc antibody and analyzed at the fluorescent microscope. 
TBK1wt, TBK1ΔCC2 and TBKK38M are all found to occur in the cytosol.  

 

TBK1 was evenly distributed throughout the whole cytosol. Similar results were 

obtained for TBK1ΔCC2 mutant, which is unable to bind any of the adaptors, and 

TBKK38M which is not active. 
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Figure 29: HeLa cells were transfected with Myc-tagged TBK1wt or TBK1 mutants. After fixing 
them, they were stained with an anti-Myc antibody and analyzed at the fluorescent microscope. 
TBK1CC2 point mutants are all found to occur in the cytosol.  

 

In summary, the immunoflourescence experiment shows that the different TBK1 

point mutants and the TBK1wt show no difference in localization within cells when 

they are expressed. Nevertheless the situation might be different in physiological 

conditions. 

Additionally we stained the adaptor proteins TBKBP1, TBKBP2 and TANK upon 

over expression. 
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Figure 30: HeLa cells were transfected with V5-tagged TBK1 adaptors. After fixing them, they 
were stained with an anti-V5 antibody and analyzed at the fluorescent microscope. TANK can be 
found in the cytosol, but TBKBP1 and TBKBP2 show interesting speckles around the cytosol.  

 

TANK, like TBK1 shows an even distribution around the cytoplasm. Interestingly 

TBKBP1 and TBKBP2 show a cytoplasmic staining but with many speckles in the 

cell very close to the nucleus. In comparison with MAVS, a mitochondrial protein, 

TBKBP1 and TBKBP2 look rather like they were located in smaller vesicles in the 

cell, like lysosomes or endosomes (data not shown). This suggests that the 

different adaptors might locate TBK1 to different compartments of the cell. 
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4 Discussion 

Even though TBK1 and IKKi have an important role in innate immunity signaling 

upon bacterial or viral infection, little is known about their exact mode of action. The 

aim of the study was to obtain a better understanding of the core complex and the 

details of how TBK1 and IKKi interact with the respective binding proteins TBKBP1, 

TBKBP2 and TANK.  

4.1 Tandem affinity purification 

To investigate the interaction pattern of TBK1 and IKKi with their binding proteins we 

used the method of TAP purification as it reveals complex composition under close-

to-physiological conditions. For this approach we used RAW 264.7 macrophages, 

which are competent for innate immunity signaling and therefore appropriate for our 

demands. Under non-stimulated conditions we used either the kinases TBK1 and 

IKKi or the adaptor proteins TBKBP1, TBKBP2 or TANK as bait protein to pull down 

specific binding proteins.  

We wanted to perform side-by-side TAP analysis of TBK1/IKKi and the adaptor 

proteins TBKBP1, TBKBP2 and TANK to get an idea of the molecular architecture of 

the complex. As expected, when we analyzed the pulldowns with TBK1 and IKKi as 

bait proteins, the adaptor proteins were present in high abundance in TBK1 

pulldowns, but fewer peptide counts appeared for IKKi. ProtFollow analysis showed 

that IKKi didn’t pull down TBKBP1 in the previous experiments at CeMM, and also in 

these pulldowns TBKBP1 was only found in one of the two IKKi pulldowns. This may 

indicate that either TBKBP1 binds to IKKi with lower affinity or that TBKBP1 was not 

detected because a more abundant protein was “covering” TBKBP1. 

The pulldown results of the adaptor proteins gave additional insight into the 

composition of the core complex. Against our expectations, the adaptor proteins did 

not show any binding to each other (Figure 9). Since we always found the three 

adaptor proteins in a quite high abundance with TBK1 in TBK1 pulldowns, we 

expected them to occur in a core complex. However our data seem to suggest that 

TBK1 is forming different sub-complexes with each of the binding proteins.  
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4.2 Interaction of TBK1 and the adaptor proteins 

The TAP results directed our attention towards the interaction mechanism between 

TBK1 and its adaptors. The only finding that has been shown so far in this field was 

that only the C-terminal part (last 43 amino acids) of TBK1 was necessary to bind 

TANK (Pomerantz and Baltimore 1999). For TBKBP1 and TBKBP2 nothing was 

reported so far. So which domains of TBK1 are required for binding to the different 

binding proteins? To answer this question we created several deletion mutants of 

TBK1 (Figure 11) and investigated the binding properties with the adaptors.  

Surprisingly TBKBP1, TBKBP2 and TANK all appeared to bind to the coiled coil 2 

domain in the C-terminal part of TBK1 (Figure 12). The ULD domain or the coiled coil 

1 domain of TBK1 can be deleted without affecting the binding of the TBK1 adaptors. 

To narrow down the exact region for TBK1 adaptor binding, we introduced several 

point mutants in the coiled coil 2 domain of TBK1. We again performed co-IPs and 

found 3 mutants which abolish the binding to the adaptors. One of the mutants also 

specifically binds TBKBP1 and TBKBP2 but not TANK (Figure 15). These mutants 

provide important insights by themselves. Although the TBK1 adaptors bind to 

similar regions in TBK1, their binding mode is likely to differ significantly as certain 

amino acids can distinguish between TANK on one side and TBKBP1/TBKBP2 on 

the other side. At the same time, these mutants represent valuable tools to study the 

function of the TBK1 adaptor proteins in cells, possibly by reintroducing the TBK1 

mutants into a TBK1-/- background. 

In general these findings support our TAP data, in that the formation of a core 

complex is unlikely since the adaptors don’t bind to each other but bind the same 

domain in TBK1. Therefore the question was raised whether they bind in a pathway 

specific manner. This would imply that TBK1 induced activation of NF-κB or IRF3/7 

is mediated by different stimuli, which in turn require different adaptors (Figure 31).  
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Figure 31: Schematic model of the stimulus dependent requirement of the 
different adaptors in IFN and NF-κB activation mediated via TBK1/IKKi 

 

The exact mechanism of how, upon which stimuli and with which interaction 

partner(s) TBK1/IKKi performs its action to induce which transcription factor is not 

yet fully understood. But the fact that the three adaptors show pair wise sequence 

homology concerning their domains and bind the same region of TBK1 suggests that 

there might be functional significance for that. They might act in a non-redundant 

way during TBK1 signaling upon different stimuli. It would be worth testing whether 

knock down of each one of the adaptors gives a different signaling pattern upon 

different stimulation.  
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4.3 TBK1 Activity 

There are several methods used as a read-out to measure the activity of TBK1. In 

this study we used autophosphorylation on serine 172, kinase assays, IFN-β and 

NF-κB reporter gene assays.  

It was initially believed that the binding of the adaptor proteins to TBK1 has an 

impact on its activity. However, when we created the deletion mutants of TBK1 and 

investigated their binding abilities to the adaptor proteins, and afterwards the activity 

of those mutants we found that binding and activity are not correlated in an 

overexpression setting (Figure 19). Also the respective non-binding TBK1CC2 point 

mutants don’t have a negative impact on TBK1 phosphorylation (Figure 20) or kinase 

activity (Figure 21). It additionally seems within IFN-β and NF-κB reporter gene 

assays, that the non-binding TBK1ΔCC2 and TBK1CC2 point mutants show the 

same activity as TBK1wt (Figure 22, Figure 24). Slight differences, however, occur 

due to different expression levels (Figure 23).  

The reason for this might be that upon overexpression experiments TBK1 is active 

by itself. Therefore the process of activation, within which the adaptors still might 

play an important role, cannot be monitored by these means. 

When we went one step further and co-transfected the adaptors with either TBK1wt 

or non-binding TBK1ΔCC2 to monitor again reporter gene activation, we expected 

that the effects of the adaptors are dependent on their binding to TBK1. Therefore 

less reporter gene activity was expected for the non-binding TBK1ΔCC2 mutant 

compared to the TBK1wt. Nevertheless we found that IFN-β induction is at about the 

same level whenever TBK1wt or TBK1ΔCC2 (non-binding mutant) is co-transfected 

with either the adaptors or the unrelated control protein (Figure 26). Minor changes 

only result from slightly different expression levels (Figure 27).  

Interestingly NF-κB induction is decreased whenever the adaptors are co-

transfected, no matter if with TBK1wt or the non-binding mutant TBK1ΔCC2. This is 

not the case for the unrelated control protein and therefore we suggest that the 

adaptors might have a negative function on the NF-κB pathway, independent of 

binding to TBK1 (Figure 25). Our results show that all 3 adaptors TBKBP1, TBKBP2 

and TANK reduce the activation of NF-κB reporter genes upon co-transfection with 
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TBK1, indicating that the TBK1 adaptors mediate different upstream signals towards 

TBK1.  

This result also enables the possibility of the adaptors acting as negative regulators 

on TBK1/IKKi activation. This idea is also supported by recent findings proposing 

that TANK is a negative regulator of TLR signaling (Kawagoe, Takeuchi et al. 2009).  

As explained we have not been able to monitor the process of TBK1 activation since 

over expressed TBK1 is active already. But taken together our findings and the data 

from the literature indicate that the adaptors have different functions in the pathways 

TBK1 is activating.  

Unfortunately there are no commercial antibodies available which detect 

endogenous TBKBP1, TBKBP2 and TANK. Although we made a great effort to purify 

the adaptors to generate antibodies it was not possible since the proteins are hardly 

soluble. This is why we had problems to conduct experiments on the endogenous 

levels of TBK1 and its adaptors.  

4.4 Localization 

In the beginning of this study we expected the adaptors of TBK1, TBKBP1, TBKBP2 

and TANK to be required for the activity of the kinase. But after creating the mutants, 

which were still active, even though the binding to TBK1 was abolished, the 

possibility that they have a different role in innate immunity signaling arose. The idea 

was that the adaptors could play a role in the localization of TBK1. Therefore we 

used HeLa cells to perform immunofluorescence staining of TBK1, the TBK1 

mutants and the 3 adaptor proteins.  

When we first investigated TBK1 it was evenly distributed across the cytoplasm of 

the cell but there was no difference visible between the wild type, the non-binding 

TBK1ΔCC2 or the inactive TBKK38M mutant (Figure 28). This was also confirmed 

by the staining of the non-binding TBK1 point mutants (Figure 29). Activity or binding 

to the adaptors seems not to be necessary for proper location of TBK1 upon 

overexpression. 
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We next stained the adaptors and they showed an interesting staining pattern. TANK 

was distributed across the cytoplasm comparable to TBK1, but TBKBP1 and 

TBKBP2 appeared in interesting speckles (Figure 30). TBKBP2 seemed to appear 

even in bigger speckles than TBKBP1. These different location patterns also highly 

support our hypothesis of the occurrence of distinct signaling pathways. For the 

future it would be interesting to investigate localization of the endogenous proteins 

as well as upon cell stimulation. 
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5 Conclusion 

This study provides evidence that the binding site of the adaptor proteins TANK 

TBKBP1 and TBKBP2 to TBK1 lies within the coiled coil 2 region. We also were able 

to map the binding site of the adaptors to TBK1 at the level of single amino acids. 

This enables us to distinguish precisely the binding site of TANK to TBK1 and the 

binding of TBKBP1 and TBKBP2 to TBK1, which differentiate by only a single amino 

acid. This is a crucial finding for identifying the role of the adaptor proteins, since the 

occurrence of one single core complex during TBK1 activation is almost excluded. 

We tend to believe that there are several non-redundant sub-complexes required for 

TBK1 activation. 

There are still many questions that arose from this study. Are the adaptors needed 

for TBK1 activation? Could there also be some negative regulation mechanism? 

What does the localization pattern of the adaptors, especially TBKBP1 and TBKBP2 

mean? Is there any stimulus dependent function for the different adaptor proteins 

and are the different sub-complexes needed for that? To answer these questions, 

antibodies that recognize the endogenous proteins are important. This tool will be 

needed for studying the endogenous activation process of TBK1 and the role of the 

adaptors. 

TBK1 and IKKi are important kinases involved in innate immunity signaling via 

different receptors. Understanding the activation mechanism is intrinsic to immunity 

research. This study unravaled the binding mechanism of TBK1 and its adaptors and 

is the initial step of a publication that may arise. 
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