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Introduction 

1. Introduction 

1.1. HD 8801 
 
HD 8801 is a main sequence star that lies in the overlapping region of the γ Doradus 
and δ Scuti instability strips (see Figure 1). Figure 2 shows an H-R diagram taken from 
Henry & Fekel (2005) with the position of HD 8801 among other γ Doradus stars. 
Figure 3 shows the power spectra for HD 8801 taken from the same publication. 
 

 
 

Figure 1: H-R diagram with the positions of different pulsating stars. The red dot marks 
the region, where HD 8801 is located, Breger & Montgomery (2000). 
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“Location of 54 confirmed γ Doradus stars in the H-R diagram, including the 11 stars 
discussed in the paper by Henry & Fekel (2005). Solid lines indicate the observed 
average locations of normal main-sequence (V), subgiant (IV), and giant (III) stars in 
the diagram. Both components of two of the double-lined spectroscopic binaries are 
plotted for a total of 56 individual stars. Stars with well-determined locations in the 
diagram are plotted with filled symbols, while those with somewhat greater uncertainty 
(most of the double-lined binary components) are plotted with open symbols. One star, 
HD 209295, is plotted with a cross, since its γ Doradus pulsation is likely tidally excited. 
HD 8801, the only star known to pulsate intrinsically at both γ Doradus and δ Scuti 
frequencies, is plotted as a circled point. The dotted lines indicate the boundaries of the 
δ Scuti instability strip, converted from those of Breger (2000). The dashed lines show 
the observed domain of the γ Doradus pulsators, adopted from Fekel et al. (2003). The 
triple-dot-dashed lines show the outer edges of the theoretical boundaries of the γ 
Doradus instability strip, converted from those of Warner et al. (2003).” (Henry and 
Fekel, 2003) 
 

 
 

Figure 2: H-R diagram with the position of HD 8801 among other γ Doradus stars, 
Henry & Fekel (2003). 
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Figure 3: Power spectra of six nights of HD 8801 ∆b photometry. Frequencies are marked 

and fixed for the analyses in the subsequent panels (values given in corner). The first 
two frequencies are in the range of γ Doradus pulsations, the last four frequencies are 

typical of δ Scuti stars, Henry & Fekel (2005). 
 

Ra 01h 27m 26.6729s Astron. Astrophys., 323, L49-L52 (1997) 
Dec +41° 06' 04.168" Astron. Astrophys., 323, L49-L52 (1997) 

Paralax 17.91 mas Astron. Astrophys., 323, L49-L52 (1997) 
V 6.46 mag Astron. J., 83, 606-614 (1978) 

B-V 0.27 mag Astron. J., 83, 606-614 (1978) 
U-B 0.03 mag Astron. J., 83, 606-614 (1978) 

Hbeta 2.748 Astron. Astrophys., Suppl. Ser., 129, 431-433 (1998) 
b-y 0.187 Astron. Astrophys., Suppl. Ser., 129, 431-433 (1998) 
m1 0.196 Astron. Astrophys., Suppl. Ser., 129, 431-433 (1998) 
c1 0.684 Astron. Astrophys., Suppl. Ser., 129, 431-433 (1998) 

vsini (78 km/s) Astron. Astrophys., 393, 897-911 (2002) 
  (68 km/s) Astrophys. J., Suppl. Ser., 99, 135-172 (1995) 
  55 km/s Astron. J., 129, 2026-2033 (2005) 

Spectral type Am A7-F0 Astron. Astrophys., Suppl. Ser., 21, 25-32 (1975) 
  A7m Publ. Astron. Soc. Pac., 80, 746-749 (1968) 
  A7m Astron. J., 74, 375-406 (1969) 

 
Table 1: Information extracted from SIMBAD database. 
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Table 2 and Table 3 show the results for different calibrations using the data from 
 above and the software TempLogG (see chapter 2.1.1 for a description). Table 1

 

Calibration Mv [mag] Teff [K] logg [cm/s²] 
log(NFe/NH)HD8801 
- log(NFe/NH)sun 

Moon (1985) 2.73 7254 4.13 0.149 
Napiwotzki (1993) 2.73 6899 3.90 0.149 

Balona (1994) 2.73 7373 4.09 0.149 
Ribas (1997) 2.73 7269 4.16 0.149 

Castelli (1997) 2.73 6698 3.46 0.149 
 
Table 2: Atmospheric parameters derived from Strömgren photometry based on different 

calibrations. 
 

Teff [K] logg [cm/s²] Radius [Rsun] Sp. type

7087 4.21 1.497 F1 
 

Table 3: Results derived from Johnson photometry, Gray (1992). 
 
In this analysis, the calibration by Moon (1985) was used to calculate the starting 
values, as its values lie in between the others. 

1.2. Gamma Doradus stars 

1.2.1. Background 
 
Beginning in the late 70s, main-sequence stars with periods longer than those of  
δ Scuti stars were observed. Abt et al. (1983) observed the F2 IV star HD 164615, 
today identified as a γ Doradus star, which showed varying light variations by 0.05 mag 
in a period of 0.815 days. They explained their observations with a spotted star model 
as any other explanations were ruled out at that time. 
In 1990, Krisciunas and Guinan photometrically analysed 9 Aurigae (F0 V). A DFT 
analysis of the light curves showed frequencies of 34.3, 35.8 and 36.5 days for U-, B- 
and V-data which are too long for δ Scuti stars. Further observations were proposed to 
check the existence of short-term δ Scuti variations. Three years later, due to additional 
data, Krisciunas was able to rule out such short-term light variations and for the first 
time grouped stars with similar observational findings: HD 96008, γ Doradus and  
HD 164615. He called them “variables without a cause” and suggested nonradial 
gravity-modes as an explanation. As these stars are on the transition between stars 
with strongly radiative envelopes and stars with convective envelopes, and models for 
theses stars didn’t exist at that time, he stated that “it should not be surprising that 
there are discoveries to be made”. 
 
In 1999, Kaye, Handler, Krisciunas together with Poretti and Zerbi (Kaye et al. 1999) 
defined a new class of pulsating stars with the prototype γ Doradus. 
 
- Spectral type A7 – F5, luminosity class IV, IV-V or V 
- Periodicity between 0.4 and 3 days (Figure 4 shows an example) 
- Peak-to-peak amplitudes ≤ 0.1 mag in Johnson V 

- Star must not vary exclusively by other mechanisms 
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Additionally, multiple periods, amplitude modulation, spectroscopic variations such as 
low-amplitude radial velocity variations and photospheric line profile variations are 
common among these stars (see ). Figure 5
 

 
Figure 4: Power spectrum of the γ Doradus star HD 108100, Breger et al. (1996). 
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Figure 5: Line profile variations in the γ Dor. star HD 2740, Poretti & Mategazza (1998). 

1.2.2. Theory 
 
The variations of these stars are consistent with a model of high-order(n), low-
degree(l), nonradial, gravity-mode oscillations. As a driving mechanism for this group of 
stars, Guzik, Kaye et al. (2000) presented calculations based on the modulation of the 
radiative flux by convection. The pulsation driving occurs at the base of an envelope 
convection zone. During a pulsation cycle, the luminosity is blocked at the convection 
zone base and therefore drives the pulsation. This mechanism was first introduced by 
Pesnell (1987) as “convective blocking” and further developed by Li (1992). It is 
independent of the κ-γ mechanism, which is responsible for the pulsation in δ Scuti 
stars. The convective blocking mechanism was first suggested to explain pulsations in 
white dwarfs but was not viable due to the fact that the convective timescale in these 
objects is much shorter than the pulsation period. Therefore the frozen-in convection 
approximation is not valid. For γ Doradus stars the local convective timescale at the 
convection zone base can be comparable to or longer than the pulsation period. In 
such a case, the convection is unable to adapt completely to the changing physical 
conditions during a pulsation cycle and the frozen-in approximation becomes 
reasonable. The blue edge of the γ Doradus instability strip can be described by the 
fact that the convection zone becomes shallower with increasing temperature and 
therefore can adapt to carry the pulsationally modulated flux at its base. The red edge 
is explained by the increasing depth of the convection zone with decreasing 
temperature. In these deeper envelope regions, the radiative fluctuations are smaller 
and hence can be overwhelmed by damping. 
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1.3. Delta Scuti stars 

1.3.1. Background 
 
The radial velocity of δ Scuti, the prototype for the whole group, was first announced to 
be variable in 1899 by W.H. Wright from observations made with the 3-prism 
spectrograph at the Lick observatory. In 1935, E. Fath and A. Colacevich revisited the 
study of δ Scuti and Colacevich claimed that it couldn’t be a spectroscopic binary due 
to its combination of radial velocity amplitude and period (Fath 1935). Two years later, 
Fath detected multiple periods. By 1956, four δ Scuti stars were known (Eggen 1956). 
With the emergence of the first computers in the 60s, theoretical modelling of pulsating 
variables commenced. Up to date, several hundreds of stars belonging to this type of 
pulsators are known and the number is increasing rapidly with the photometric 
monitoring projects currently under progress. 
One of the leading science groups in the study of this type of pulsating stars is the 
TOPS (Theory and Observation of Pulsating Stars) group around M. Breger at the 
University of Vienna who also founded the Delta Scuti network (DSN), which is a 
collaboration of astronomers from all around the globe who observe and study short 
period variable stars. News are frequently communicated in CoAst (Communications in 
Asteroseismology) and workshops (see http://www.univie.ac.at/tops/ for further 
information). 

1.3.2. Theory 
 
δ Scuti stars are located at the interception of the Cepheid instability strip with the main 
sequence and are of spectral type A – F (see Figure 6). Their pulsational periods lie 
between 0.5 and 6 hours and correspond to low order p- and g-modes (see Figure 7). 
Responsible for the driving of these pulsations is the κ-γ mechanism in the He II partial 
ionization zone. 
 

The blue edge of the δ Scuti instability strip has been determined by many authors for 
radial and for non-radial modes (e.g. Pamyatnykh 2000). The red edge is more difficult 
as it requires a non-adiabatic treatment of the interaction between convection and 
pulsation (Baker & Kippenhahn 1965). One approach is the time-dependent convection 
treatment which was also successfully used to determine the theoretical γ Doradus 
instability strip (Dupret et al. 2004). 
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Figure 6: δ Scuti stars in the HRD, Breger & Stockenhuber (1983). 

 
Figure 7: Typical δ Scuti lightcurve, Breger & Montgomery (2000). 

1.4. Am stars 

1.4.1. Background 
 
Titus & Morgan (1940) first recognized the metallic line A stars (Am stars) as a distinct 
class of peculiar stars. Wolff (1983) gives a detailed overview about the status of the 
research on A stars. 
Am stars are A stars that show stronger heavy-element lines than normal A stars. 
Typically, Ca II and Sc II lines are too weak and correspond to early type A stars 
whereas the heavy-element lines correspond to late A or even early F type stars.  
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Due to the enhanced metal lines, the B-V index of Am stars is usually redder than their 
temperature derived from hydrogen lines would suggest. This is because the effect of 
the enhanced absorption is stronger in the blue than in the red part of the spectrum 
(Lane & Lester 1984). This is also the case for HD 8801 where the spectroscopically 
determined temperature is about 300 K higher than the photometrically determined. 
 
According to Greenstein (1949), elements with ionization potentials close to hydrogen 
(e.g. C and O) can be underabundant. Böhm-Vitense (1976) noted that elements with 
ionization energies comparable to those of helium (C, Sc, Zr and Ca) can have lower 
abundances than most of the heavy elements. This is also the case for HD 8801. 

1.4.2. Theory 
 
Several processes have been suggested to explain the abnormal abundances in Am 
stars in the past. A detailed discussion can be found in Böhm-Vitense (2006). 
 

1. Nuclear reactions can be ruled out because Am stars do not have a core 
temperature high enough to produce elements heavier than He. Additionally, 
the abundance patterns of Am stars do not agree with the expectations for 
nuclear reactions. A and Am stars do not show emission lines, so that nuclear 
reactions in hot coronae are also excluded. 

2. Mass accretion from supernova explosions is improbable because of the short 
lifetime of A stars and the high number of Am stars among them. In addition, 
the heavy element abundances do not reflect the pattern in supernovae ejecta. 

3. Diffusion processes due to gravitational settling and radiative levitation would 
cause Ca II and Mg II resonance lines to behave similar (Watson 1970) but they 
do not as shown by Böhm-Vitense (1980). 

4. Non-LTE effects were studied by Conti (1970) and were found to be 
unimportant. 

5. Abt (1961, 1965) showed that nearly all Am stars are binaries and rotate more 
slowly than normal A stars due to the rotational braking effect caused by the 
companion. The slower rotation should cause differences in the convection 
zones which can in turn cause different line strengths for the heavy elements. 
New studies have shown, that neither A nor Am stars have convection zones 
strong enough to show such effects. 

 
The Am star phenomenon stops, as convection starts to become efficient in the stellar 
atmosphere. This happens at an effective temperature of approximately 7500 K when 
mixing extends down to the bottom of the convection zone. HD 8801 has a temperature 
of 7560 K and shows both, strong Am star characteristics and γ Doradus pulsations 
which are directly connected to convection. 
 
There is still discussion about the mechanism responsible for the Am phenomenon. 
One up-to-date explanation is the accretion of material from surrounding interstellar 
gas and interstellar grains. This process is similar to the mechanism which explains the 
λ Bootis phenomenon with the exception that a weak stellar magnetic field in the Am 
stars is responsible for a depletion of hydrogen in the accreted material (Havnes & 
Conti 1971). The element pattern of the accreted material is then modulated by so 
called “charge-exchange reactions” which explain the normal or even 
underabundances of some elements (this is shown in chapter 0 and 6). This theory is 
also supported by the rather high rotational velocity of the λ Bootis stars which were not 
braked by the interaction of a magnetic field with the ISM (Böhm-Vitense 2006). 
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2. The Analysis 
 
The whole process can be seen as a sequence of analysis steps in which the 
knowledge increases from step to step and the result from one step is used as an input 
for the next analysis step. This scheme is shown in Figure 8. 
 

 
Figure 8: The workflow in abundance analysis. 

 

2.1. Tools 

2.1.1. TempLogG 
 
The TempLogG software is a black box for the calculation of the fundamental 
parameters using well known calibrations. The basic code was written in 1995 by N.Y. 
Rogers following the masters theses of E.M. Fresno (1994), extended in 2002 by Ch. 
Stütz and J. Nendwich and further developed by A. Kaiser to TempLogG TNG Version 
1.4 (Kaiser 2006) which was used in this analysis. 
For a detailed description see http://www.univie.ac.at/asap/templogg/Manual.php. 

2.1.2. ATC 
 
The ATC (atmospheric tools compilation) are several model and synthesis codes 
(LLmodels, Synth3, Synth_mag,…) combined under a user interface. The interface 
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additionally contains several editors for files typically used when calculating models or 
syntheses with these codes, as well as a line-core-fitting (linfit) routine for abundance 
analysis. 

2.1.3. The Vienna Atomic Line (VALD) database 
 
One of the most important prerequisites for stellar analysis is the exact knowledge of 
atomic parameters for as many spectral lines as possible. For this analysis, the Vienna 
Atomic Line Database was used. It currently contains information of several million 
transitions compiled from dozens of individual catalogs (Heiter et al. 2008). 
Additionally, several tools to extract spectral lines are provided (Preselect, Select). 

2.1.4. LLmodels 
 
The stellar models used in this analysis were mainly calculated with the code LLmodels 
(Shulyak et al. 2004) in ODF (opacity distribution function)-mode which means, that for 
the opacity calculations, the Kurucz ODF-tables were used. This increased the 
calculation speed by a factor of 100 compared to the line-by-line (LL) approach (Stütz 
2005). For the determination of the final abundances, an LL-model was calculated in 
order to include the influence of the non solar abundance pattern on the stellar 
atmosphere. The abundance differences due to the changes in the atmospheric 
structure are shown in Figure 73. 
The local full spectrum turbulence convection model of Canuto & Mazzitelli (1991) was 
used in the code and throughout this analysis. 

2.1.5. Synth3 
 
Synth3 is a fast synthesis code based on the code SYNTH written by N. Piskunov and 
was used in this analysis. It calculates spectra based on a stellar model as produced 
by the LL-model code for static, plane parallel atmospheres in LTE (Nesvacil, Stütz, 
Weiss 2003). The user interface ATC written by Ch. Stütz uses this code to find the 
best fitting abundance for a spectral line or feature. This increased the speed 
dramatically compared to a purely manual approach. 

2.1.6. Synth_mag 
 
Synth_mag is a synthesis code, written by O. Kochukov to synthesize spectra for a 
stellar atmosphere including a magnetic field. The field is configured by three magnetic 
field strengths (radial, meridional and tangential field component). The Zeeman pattern 
is preprocessed on the basis of the VALD line selection and used in the calculation. 
The output is a spectrum for each stokes parameter. 

2.1.7. Rotate_OLEG 
 
This spectrum viewer software developed by O. Kochukov allows to view the observed 
and synthesized spectra together. The synthesis can be shifted in wavelength and be 
folded with a rotational broadening function until the optimal value is found using a 
χ²-fitting algorithm. This software was used to obtain the radial velocity and the 
projected rotational velocity. 

11 



The Analysis 

2.2. Synthetic solar spectrum 
 
In order to check the quality and completeness of the spectral line database, the 
capabilities of the used atmospheric model calculation and synthesis codes, a 
comparison between a synthetic and observed solar spectrum is helpful and 
instructive. 
Using values from literature (Stix 2004) for the atmospheric parameters of the sun (see 

), calculating an ODF-model with the atmospheric model calculation code 
LLmodels and using the synthesis code Synth3 (see chapter 2.1.4 and 2.1.5 for a 
description of the tools), creates the synthetic solar spectrum. 

Table 4

 
Teff 5778 K 

logg 4.44 cm/s²
vmic 1 km/s 
vsini 2 km/s 

 
Table 4: Atmospheric parameters for the sun. 

 
For comparison, a solar spectrum taken with the FEROS spectrograph mounted at the 
ESO 1.52m telescope at La Silla, Chile during an observation run in 2004 is used. The 
spectrograph has a resolution of 48000 which is sufficient for abundance analyses. The 
plots in Figure 9 and Figure 10 show two results. 
Whereas the synthesis can fit the observation quite well in the spectral range shown in 
Figure 9, the comparability for the part shown in Figure 10 is rather disappointing. 
Nearly none of the observed spectral lines can be synthesized well. Some features 
(4518 - 4519 Å) are completely different; some line strengths are totally off 
(Co I at 4517.090 Å). There are several reasons for these discrepancies: 
 

 Missing, wrong or sometimes even guessed atomic parameters. 
 The temperature of only 5780 K is at the lower limit of the atmospheric model 

calculation code LLmodels. 
 The simplified convection treatment used in LLmodels and the synthesis code 

Synth3 (see chapter 0 for a description of the tools). 
 Opacities were taken from precalculated ODF-tables only. 
 Model simplifications (plane parallel geometry, no magnetic fields etc.). 
 

Doing abundance analysis, one has to keep in mind these difficulties and limitations 
and should not be too concerned, if some features of the stellar spectrum cannot be 
synthesized. Additionally, this comparison shows the need of carefully selecting lines 
used for an analysis. Taking “all” lines regardless of their quality, would increase the 
scatter in the abundance determination to such an extent, that the sometimes very 
weak dependencies used to determine the atmospheric parameters, would become 
invisible. Which lines to use is unfortunately more or less based on experience. 
Comparing a synthetic solar with an observed solar spectrum and then selecting well 
fitted lines can only be a solution for stars, comparable to the sun as the quality of the 
fit is a function of the atmospheric parameters. 
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Figure 9: Comparison between synthetic (red) and observed (blue) solar spectrum. 

 

 
Figure 10: Comparison between synthetic (red) and observed (blue) solar spectrum. 
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In order to check whether or not such a line selection based on well fitted solar lines is 
suitable for the case of HD 8801, the following experiment was made. 
 

1. Fitting the iron abundance of the sun using the same line selection as for  
HD 8801 (a line sample consisting of 112 mostly unblended Fe I/II lines). 

2. Among them, selecting the lines with the lowest RMS error (< 1) and smallest 
deviation (< 0.1 dex) from the known solar abundance (-4.59 dex). 

3. Using only these “best” lines for the calculation of HD 8801’s iron abundance. 
 
The result is shown in Figure 11. The black squares mark the individual iron 
abundances for the 17 best fitted lines in the solar spectrum. The red circles show the 
iron abundances of HD 8801 for the same 17 lines. As the outlier at -4.1 dex 
demonstrates, one can not be sure that a line, fitted well in the solar spectrum can also 
be fitted well in the spectrum of HD 8801 although only unblended lines were selected. 
Additionally, the number of useable lines is decreased by a large amount (only 17 out 
of 112 lines were used) which makes it impossible to apply this selection method to 
elements with a priori few measurable lines. 
Due to the high rotational velocity of HD 8801, the amount of useable lines is already 
very limited and such a solar based line selection was not applied for this analysis. 

 
Figure 11: Individual line abundances using same line sample for the sun and HD 8801. 
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2.3. Data reduction 

2.3.1. General description of the obtained spectra 
 
The spectrum of HD 8801 was taken by G. Handler at the 2.7m telescope at the 
McDonald observatory on 10th July 2004. He used the cross-dispersed Echelle 
spectrometer at the Coudé focus (f/32.5) with a resolution of 60 000. Two spectra were 
obtained, each with an integration time of 600 seconds. 
Each of the two data files containing the observations consists of 62 Echelle orders 
covering the wavelength range from 3630 Å to 10275 Å. The orders close to the red 
and blue limits could not be used, as the continuum normalization failed due to a very 
low S/N ratio and the large amount of overlapping spectral lines that made it impossible 
to find adequate continuum points. A range from 4143 Å to 9193 Å was left. A large 
handicap of this spectrograph is the fact, that gaps of several Ångströms between the 
individual Echelle orders are present. This reduces the useable spectral area and 
causes enormous troubles during the continuum normalization. 

2.3.2. Continuum normalization 
 
The subtraction of the dark frames, the flatfielding, the order extraction and the 
wavelength calibration were done by G. Handler, using standard IRAF routines. 
 
For a spectral analysis, one is not interested in absolute fluxes but in fluxes relative to 
the continuum. The necessary semi-automatic reduction steps are described in the 
following section. 
 
First, the two spectra were added with the task scombine, in order to increase the 
signal to noise level. 
In the second step, an envelope was fitted to the observed spectrum. This envelope 
consists of a convolution of the dispersion function of the spectrograph, the response 
function of the detector and the continuum flux of the star itself. The dispersion and 
response function of the instrument could be measured, but the continuum flux of the 
star is unknown at the beginning of an analysis. So the result of this convolution has to 
be determined by fitting an envelope to the observation. Dividing the spectrum by the 
envelope fit results in normalized fluxes which are necessary for the further analysis. 
In order to do this envelope fitting, the task splot with its inbuilt fitting routines was used 
with the parameters shown in Table 5 which were determined empirically in the middle 
of the observed spectrum (Echelle order 27) where the S/N ratio was best (see Figure 
12). 
A very difficult task is to fit orders contaminated with hydrogen lines (see Figure 13). 
These orders cannot be normalized in the typical way, as the spectrum never reaches 
the continuum. The normalization procedure for these orders is described in 2.3.3.  
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Figure 12: Observed spectrum with envelope fit for Echelle order 27. 

 
Function Legendre 

Order 6 
Low_reject 1 
High_reject 4 

Niterate 6 
Grow 1 

 
Table 5: Fitting parameters for IRAF task splot. 

 

 
Figure 13: Echelle order 38 showing the Hβ line. 
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Especially in the blue part of the spectrum, the results produced by the semi-automatic 
reduction are unsatisfying. Due to the high line density, the spectral lines overlap and 
blend each other so that there are no parts, where only continuum radiation is visible. 
Additionally, the high rotational velocity causes the spectral lines to be very broad. This 
enhances the overlapping effect. Therefore, the upper points of the unnormalized 
spectrum, usually regarded to as continuum points, do no longer represent the 
continuum. 
This is shown in Figure 14, where a synthetic spectrum is compared to the 
corresponding normalized observation. The upper points, which were identified as 
continuum points and were therefore set to 1 by the semi-automatic reduction, should 
in truth lie about 7% below the continuum. 

 
Figure 14: Comparison between normalized observation and synthetic spectrum. 

 
In order to correct the semi-automatically normalized observation, a procedure was 
developed and tested on an artificial observation. 
A simulated spectrum was created by multiplying a synthetic spectrum for one Echelle 
order with an artificial response function (order 53 from 4000 to 4045 Å as seen in 

, black line). This spectrum was used as an input for the IRAF routines 
described above and the resulting continuum fit is shown in  as the blue line. 
Figure 15

Figure 15
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Figure 15: Artificial observation with continuum fit. 

 
The spectrum was then divided by this continuum to get a normalized artificial 
observation. A comparison of the result with the real observation is shown in . 
It shows that it is possible to reproduce the wrongly normalized observation well. 

Figure 16

 

 
Figure 16: Comparison of normalized artificial spectrum and observed spectrum. 

 
In a next step, the “wrong” continuum points were identified in the artificial observation. 
All data points between 0.99 and 1.01 of relative intensity were regarded as wrong 
continuum points and are marked in Figure 17. 
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Figure 17: Identification of wrong continuum points. 

 
In a further step, the intensities at the wavelengths of the wrong continuum points were 
compared to the corresponding intensities in the synthesis. Subtracting these 
intensities from each other and applying a polynomial fit results in . Figure 18
 

 
Figure 18: Flux differences and applied fit. 

 
Finally, these differences were subtracted from unity to give the so called “continuum 
correction function” which was then multiplied with the artificial observation. This results 
in the normalized artificial observation as shown in  together with the input 
synthesis and demonstrates the success of this method. Only small differences can be 
seen throughout the spectrum. Figure 20 shows the result after application to the 
original observation. 

Figure 19
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This procedure was then applied to all Echelle orders. The degree of the polynomial fit 
to the differences was applied individually but never exceeded three. In most cases, a 
linear fit was sufficient in order to avoid removing spectral features. 

 
Figure 19: Result of the correction procedure applied to the artificial observation 

compared to the input synthesis. 

 
Figure 20: Result of the correction procedure applied to the original observation 

compared to the synthesis. 
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2.3.3. Correction of hydrogen line orders 
 
Hα and Hβ are the most interesting lines in the observed spectral region, because they 
show a strong dependency on the effective temperature of the star. The following 
procedure was applied to both of them but is explained in detail for Hβ only. 
 

1. The continua for the neighbouring orders were plotted and bad fitted orders 
were rejected. In the case of Hβ, which lies in Echelle order 38, the orders 33 – 
36, 41 and 42 were used. All others (order 37 and 39) were affected by the 
hydrogen line or showed instrumental artefacts (order 40). 

 
2. 20 interpolation points were calculated for order 38 using B-splines. This is 

shown in Figure 21. 
 

 
Figure 21: Echelle orders around Hβ including interpolation for order 38. 

 
3. The interpolated data points were then fitted by an 8th order polynomial. This fit 

was used as continuum for Echelle order 38. Figure 22 shows the constructed 
continuum together with the observation. 
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Figure 22: Constructed continuum and observation. 

 
4. The observation was divided by the constructed continuum. 

 
5. During the correction procedure described at the end of chapter 2.3.2, the semi-

automatically normalized spectra were multiplied by a continuum correction 
function. The average values of these correction functions were now taken to 
correct the hydrogen order as the functions themselves could not be 
reproduced. These average continuum correction factors for the orders next to 
Hβ are shown in Figure 23. A linear fit was applied to calculate the factor for 
Echelle order 38. 

 
Figure 23: Continuum correction factors for Echelle orders next to Hβ line. The star 

marks the value for Echelle order 38 (0.97975). 
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Figure 24: Observation before and after application of continuum correction factor. 

 
For Hα, four neighbouring Echelle orders on each side of the hydrogen line could be 
used to reconstruct the continuum. The contamination with metallic lines is less than for 
Hβ and the continuum correction factors were close to 1. Therefore the result is 
qualitatively better. 
The successful correction allowed to use the hydrogen lines as a temperature indicator. 

2.3.4. S/N determination 
 
The signal to noise ratio is usually calculated as 1 divided by the standard deviation in 
the normalized flux at parts, where the spectrum shows no spectral lines and therefore 
reaches the continuum. Due to the high rotational velocity of HD 8801, there are only 
few parts in the red, where this could be done. As an Echelle spectrograph was used to 
acquire the spectrum, each spectral order shows a low S/N ratio at its limits and a high 
S/N ratio at its center. Due to order overlapping, the signal to noise ratio changes 
rapidly and more or less randomly throughout the observed spectral region. So, a 
single value cannot be given.  

2.4. Radial and projected rotational velocities 

2.4.1. Radial velocity 
 
Although the radial velocity is not a crucial parameter in the abundance determination 
process, it is necessary to shift the spectrum from space- to laboratory wavelengths. 
This simplifies the identification of the individual spectral lines and allows the usage of 
automated fitting routines. 
Several different methods can be applied. The simplest one is to compare the known 
laboratory wavelength of a spectral line with its observed wavelength. This can be done 
easily for slow rotating and therefore narrow lined stars. In the case of HD 8801 the 
rotational velocity is about 55 km/s, so that only few unblended and well defined 
symmetrical lines are present for which a central wavelength can be measured. In such 
cases, the cross correlation method can be useful and provides more accurate results. 

23 



The Analysis 

Cross correlation method 
 
This method allows to measure the similarity of two curves. The mathematical definition 
of the correlation coefficient, which is a measure of the similarity, is given by 
 

 
    

   

      

     



 

n

wl=1

n n2 2

wl=1 wl=1

O wl - O S wl - d - S
R d =

O wl - O S wl - d - S

 

Formula 1: Cross correlation coefficient. 
  

Here, O(wl) is the observation, S(wl) the synthesis. The averages are denoted with 
horizontal lines. d is the wavelength shift according to the radial velocity for which the 
correlation coefficient should be calculated. Values between data points can be 
interpolated. Doing this for different radial velocities results in a curve like Figure 26. If 
both series (observation = synthesis) are the same, R would reach 1 and the profile 
would be a perfect Gaussian bell function (this is called auto correlation). If a second 
spectrum is hidden in the observation, which is the case if the observed star is a binary 
or even a multiple system, the cross correlation profile would deviate from a bell 
function and, depending on the difference in the radial velocities of the components, 
show two or more peaks. This is shown in Figure 25 for the star HD 10167. 

 
Figure 25: Cross correlation profile for the binary HD 10167. 

 
In order to use this technique, synthetic spectra with an initial guess for the rotational 
velocity and atmospheric parameters have to be calculated. 
Photometrically derived parameters can diverge from spectroscopically determined by 
a significant amount. Nevertheless, they are sufficient for a starting point for spectral 
analysis. The starting values for HD 8801 are given in . Table 6
The microturbulence was set to 2 km/s as this is a typical value for stars at this position 
of the H-R diagram. 
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Teff 7254 K 
logg 4.13 cm/s² 
vmic 2 km/s 
Z 0.2 

 
Table 6: Starting values for the first stellar model of HD 8801. 

 
In a next step, an ODF-model was calculated similar to the solar spectrum described in 
chapter 0. Then, a small part with good continuum normalization and high S/N ratio in 
the center of the spectrum at 5500 Å was synthesized and plotted together with the 
observation. The spectrum viewer software rotate_oleg allows to fold the synthesis with 
a rotational broadening profile. A value of 55 km/s gives the best fit and is therefore the 
initial guess for the rotational velocity. 
Now, the whole observed spectral range was synthesized using the initial parameters. 
For HD 8801, 25 spectral segments were usable where the S/N and the quality of the 
continuum normalization were sufficient. In order to determine the bandwidth of the 
radial velocity values, an initial cross correlation was calculated for the segment 5046 – 
5199 Å. The result is shown in Figure 26. The radial velocity of the star is the centre of 
the fitted Gaussian (here -22.3 km/s). 
 

 
Figure 26: Initial cross correlation profile with fitted Gaussian bell function. 

 
The adjusted R² (adjusted coefficient of determination) value for the Gaussian fit is 
0.99966 which indicates, that the observation consists of only one spectrum. 
 
The cross correlations for all segments were calculated around this initial radial velocity 
from -32.3 to -12.3 km/s with a step-width of 0.1 km/s. A Gaussian bell function was 
fitted to the centers. The results are shown in column vrad in . Table 7
The mathematical errors for the center of the fits (the resulting radial velocity) are at 
maximum 0.01 km/s and can therefore be neglected. 
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Spectral segment    
from [Å] to [Å] vrad [km/s] Rmax #lines(Tab. 9) 

4000 4047 -22.04 0.80 1 
4050 4093 -19.57 0.78 1 
4148 4196 -24.99 0.76 2 
4197 4246 -24.16 0.84 1 
4250 4310 -21.74 0.84 1 
4367 4405 -23.49 0.86 1 
4423 4464 -23.45 0.87 1 
4466 4522 -24.53 0.92 4 
4524 4581 -22.40 0.82 4 
4594 4694 -26.78 0.77 1 
4930 5043 -21.12 0.92 1 
5046 5199 -22.41 0.94 3 
5212 5281 -24.24 0.96 2 
5290 5358 -23.34 0.92 3 
5375 5435 -21.91 0.96 3 
5460 5544 -21.66 0.75 2 
5547 5597 -22.18 0.78 2 
5638 5703 -24.65 0.55 0 
5733 5821 -22.82 0.26 0 
6034 6126 -25.12 0.36 2 
6142 6234 -22.36 0.46 1 
6373 6453 -21.83 0.50 2 
6637 6713 -24.00 0.19 0 
6744 6846 -21.32 0.13 0 
7477 7590 -23.81 0.28 1 
8391 8517 -26.39 0.61 0 

 
Table 7: Individual radial velocities for different spectral segments. 

The columns Rmax and #lines(Tab. 9) show different weights. 
 
The scatter of the individual values is due to different error sources: 
 

 The rotational velocity is rather high and therefore the width of the cross 
correlation profile as well. A slight deviation in the symmetry of the profile 
causes a shift in the center of the fitted Gaussian. The typical width of a 
medium-strength spectral line of HD 8801 is 2 Å. The error of about 1.6 km/s 
corresponds to a velocity shift of 0.027 Å at 5000 Å which is 1/75th of a typical 
line width. 

 

 The resolving power of the spectrograph is around 60 000 at its maximum. This 
corresponds to an instrument profile with a width of 5 km/s (R = δλ/λ = δv/c => 
δv ≈ 5 km/s). The error is therefore lower than the resolution limit of the 
spectrograph. 

 
 

 Spectral regions that cannot be fitted well (see the maximum correlation 
coefficient in Figure 27 and column Rmax in Table 7) usually show a larger 
deviation from the average value than regions with a good agreement between 
observation and synthesis. 

26 



The Analysis 

 If the quality of the wavelength calibration shows errors due to optical 
distortions of the spectrograph, these errors directly influence the radial velocity 
determination. 

 
At this point, it is advisable to use weighted averages. Two different weightings were 
applied. 
 

 The maximum correlation coefficient (column Rmax in , see also 
) can directly be used for weighting as it is a value for the quality of the fit 

between the observation and the synthesis. 

Table 7

Table 7

Figure 
27

 
 The number of high quality, unblended lines found in a spectral segment as 

listed in  (column #lines(Tab.9) in ) is a measure for the scientific 
usability and can therefore be used as weight. 

Table 9

 
Table 8 shows the resulting weighted averages including weighted errors. 
 

Weight <vrad> [km/s] σvrad, weighted [km/s] 

no weight -23.2 1.7 
Rmax -23.1 1.7 

#lines(Tab. 9) -23.1 1.5 
 

Table 8: Average radial velocities and errors. 
 
Rmax - and #lines(Tab.9) - weightings both result in the same value for the radial velocity 
of -23.1 km/s with an average error of 1.6 km/s. The whole spectrum was finally 
corrected for this velocity shift. The result is a spectrum with a wavelength in the rest 
frame of the star. 
 
In order to get an astronomically relevant value, the velocity has to be referred to a 
reference point. Either the local standard of rest (LSR), or the sun. The IRAF Task 
rvcorrect calculates this correction based on the date, time and location of the 
observation. The values are 1.4 km/s related to the sun and 3.3 km/s relative to the 
LSR. Wilson (1953) gives a value of 1.3 km/s for HD 8801 relative to the sun. 
 
By-products of the cross correlation technique are the individual maximum values of 
the cross correlation coefficient R, which are a measure of the similarity between the 
observation and the synthesis for the different spectral segments (column Rmax in 

). This is shown in . 
Table 

7 Figure 27
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Figure 27: Maximum cross correlation coefficients for different spectral segments. 

 
The rapid decrease from 5600 Å redwards is due to the increase in telluric lines which 
were not modelled. The decrease to lower wavelengths is due to the increasing 
number of spectral lines and hence the stronger influence of the wrong abundances. 
Such a diagram can assist in the process of line selection.  

Line fitting method 
 
Throughout the whole spectrum with several thousands of contributing spectral lines, 
only 40 lines are clean enough to measure their centre with sufficient accuracy. This 
line selection was done manually by comparing the observation with the synthetic 
spectra calculated before. The software rotate_OLEG was used to semi-automatically 
find the optimal value for the radial velocity. The already synthesized spectra from the 
cross correlation method described above, were iteratively shifted and χ² was 
minimized within a manually selected interval around a spectral line. 
Doing this for all 40 lines results in a radial velocity of -22.7 ± 1.7 km/s (see Table 9). 
This result agrees well within the errors with the result of the cross correlation of 
23.1 km/s (see ). Figure 28
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Element Wavelength [Å] 
vrad  

[km/s] 
Quality 

vsini 
 [km/s] 

Fe I 4005.242 -25.6 continuum bad   
Fe I 4063.594 -24.2 continuum bad   
Ti II 4163.644 -22.9 continuum bad   
Fe I 4191.431 -25.0 continuum bad   
Fe I 4222.213 -20.2 OK 50.4 
Fe I 4271.154 and 4271.761 -22.0 OK 48.1 

Fe I, Ti II 4367.578 and 4367.652 -21.3 abundance off   
Fe I 4427.298 and 4427.310 -21.7 OK 57.7 
Ti II 4501.27 -23.9 abundance off   
Fe II 4508.288 -23.7 OK 50.8 
Fe II 4515.339 -21.0 OK 49.9 
Fe II 4520.224 -24.9 OK 49.7 

Fe II, Ti II 4549.474 and 4549.622 -21.5 OK 55.5 
Cr II 4558.65 -19.9 OK 49.3 
Ti II 4563.757 -21.4 OK 54.7 
Ti II 4571.971 -18.6 OK 48.2 
Fe I 4602.941 -24.0 continuum bad   
Fe I 4957.299 and 4957.597 -22.9 OK 54.3 
Fe I 5090.774 -21.8 OK 54.8 
Fe I 5162.273 -21.4 OK 51.4 
Fe I 5191.455 and 4192.344 -21.0 continuum bad   

Ti II, Fe I 5226.538 and 5226.862 -24.1 abundance off   
Fe I, Ca I, Fe I 5269.537, 5270.270 and 5270.356 -25.2 abundance off   

Fe I 5302.302 -24.9 OK 54.4 
Fe II 5316.615 and 5316.784 -23.1 OK 52.4 
Fe I 5353.374 -22.5 OK 53.3 
Fe I 5383.369 -19.7 OK 52.6 
Fe I 5400.502 -23.3 OK 54.4 
Fe I 5429.697 -21.6 OK 56.1 
Fe I 5497.516 -24.9 OK 53.4 
Fe II 5534.847 -21.0 OK 49.8 
Fe I 5569.618 -22.6 OK 52.5 
Fe I 5572.842 -24.7 OK 52.3 
Fe I 6065.482 -23.2 OK 54.4 
Ca I 6102.723 -25.2 OK 57.7 
Fe I 6191.558 -22.8 OK 53.0 
Fe I 6393.601 -21.9 OK 56.5 
Fe I 6411.649 -22.3 OK 54.1 
Ca I 6439.075 -22.4 OK 55.6 
Fe I 7495.066 -24.0 OK 56.0 

 
Table 9: Results for vrad and vsini using the software rotate_OLEG. Multiple wavelengths 

indicate blended lines. In this case, the whole spectral feature was fitted. 
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Figure 28: Radial velocities for individual lines derived by line fitting using rotate_OLEG. 
The thick red line marks the average, the thin dark red lines mark the 1σ error. The green 

line is the cross correlation result. 

2.5. Projected rotational velocity 
 
Rotate_OLEG also provides a fitting algorithm for the projected rotational velocity. 
Therefore a synthetic spectrum with no rotational broadening is required. This 
spectrum is then folded with a rotation profile until χ² is minimized. 30 out of the 40 
lines used in the chapter above were suitable for this analysis (see column Quality in 

). If the continuum fit was too bad or the abundance for the specific line was 
obviously wrong, the line was skipped. This resulted in a projected rotational velocity of 
53.1 ± 2.7 km/s which was used in this analysis. 

Table 9

 
Another method to determine vsini is again using the cross correlation technique. This 
is done by calculating synthetic spectra with different rotational broadening and cross 
correlate them with the observation. The maxima of the cross correlation profiles are 
plotted against the according rotational velocity. Fitting an appropriate function and 
finding its maximum gives the best fitting rotational velocity. This can be done either for 
the whole spectrum at once or for spectral segments individually.  
For HD 8801 this was done at the end of the analysis, based on the final atmospheric 
parameters and abundances for the spectral segment with the highest cross correlation 
coefficient (5375 – 5435 Å with Rmax = 0.962). The result is shown in . Figure 29
The velocity of 57 km/s lies slightly above the upper limit of the result obtained with the 
line fitting method. The maximum cross correlation value is 0.97636. A change of 1 % 
in this value, results in a velocity change of 6.6 km/s. The maximum is therefore not 
well defined and a slight error in the cross correlations due to a bad fit can cause a 
large error in the rotational velocity determination. 
So this method should only be used for slower rotating stars, where the cross 
correlation profiles are narrower and the maxima are better defined. 
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Figure 29: Determination of the projected rotational velocity using the maximum cross 

correlation coefficients for syntheses with different vsini. The maximum is marked by the 
vertical line. 

3. The iterative approach 

3.1. Principles 
 
As an abundance analysis is a multidimensional optimization problem, two approaches 
are possible. 
 

 Calculating points in the multidimensional parameter space and finding the 
optimal solution among them. 

 Performing an iteration scheme within the parameter space and close in on the 
optimal solution step by step. 

 
The parameter space is spanned by four coordinates. 
 

 The effective temperature 
 The gravity 
 The microturbulence 
 The element abundances 

 
The element abundances itself span a multidimensional space of as many dimensions 
as elements. That makes it nearly impossible to calculate a parameter grid in advance. 
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The only feasible solution is an iteration scheme. Such a scheme is shown in Figure 30 
and described below. 
 
First column: 
The determination of the fundamental parameters is followed by an abundance 
determination. The results are then again used as an input for the next parameter 
determination and so on. This is done until convergence or in other words, until no 
significant change between two iteration steps is found. Parameters derived from 
photometry mark the starting point. 
 
Second column: 
Each abundance determination step is a sequence of individual element abundance 
determinations. Each result is used as an input for the next element in the sequence. In 
principle, this process also has to be continued until convergence, but as the 
abundance determination process itself is repeated and due to the huge amount of 
calculation time the achievement of convergence would consume, this can and has to 
be skipped. 
 
Third column: 
The fundamental parameter determination itself follows an iteration scheme in which 
the result of one step, e.g. the determined gravity, is the basis for the determination of 
the next parameter, e.g. the effective temperature. This is continued until convergence. 
 
Fourth column: 
Each parameter itself can be based on multiple elements so that a reliable average can 
be used for the next step. This depends on the number of useable lines. In the 
beginning, only iron was used in this analysis. Other elements entered the process in 
the refining step. 
 

 
Figure 30: The iterative approach as used in this analysis 
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Strömgren photometry usually provides parameters with sufficient accuracy in order to 
start the process. Due to the fact, that the effective temperature determination from 
photometry is based on the flux distribution, the value can be quite different from the 
spectroscopically determined one, especially for Am stars as mentioned in the 
introduction. Therefore additionally, the hydrogen lines can be used as spectroscopic 
temperature indicators. 
 
Figure 31 shows the observed hydrogen line together with three synthetic spectra for 
different effective temperatures (ODF-models with logg = 4.13 cm/s², vmic = 2 km/s, 
Z = 0.2). This indicates that the assumed temperature of 7250 K derived from 
photometry is probably too high by 200 K. 

 
Figure 31: Observation and syntheses around Hβ for different effective temperatures 

(6850 K, 7050 K and 7250 K). 
 
This is surprising, as for Am stars the photometrical temperature is typically lower than 
the spectroscopically derived. 
Hα gives the same result as Hβ with high accuracy (Figure 32). 
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Figure 32: Observation and syntheses around Hα for different effective temperatures 

(6850 K, 7050 K and 7250 K). 
 
In order to confirm this result, the polarimetric observations, taken at the OHP 
observatory to scan for the existence of a magnetic field were used, as they also cover 
the Hα line (Figure 33). The spectrum was reduced automatically so that a mistake in 
the continuum normalization process applied to the McDonald observations as 
described above can be ruled out to be the reason for the low temperature derived 
from the hydrogen lines. 

 
Figure 33: OHP Observation and syntheses around Hα for different effective 

temperatures (6850 K, 7050 K and 7250 K). 
 
The OHP observations suggest a temperature between 6850 and 7050 K which 
confirms the results obtained from the McDonald observations. 
Nevertheless, the photometrically derived value of 7250 K was kept as a starting point. 
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3.2. The fundamental parameter iteration scheme 
 
During the determination process it is unavoidable to check and refine the atmospheric 
parameters of the star. As mentioned above, photometrically determined atmospheric 
parameters can differ from spectroscopically determined. This is not surprising, as 
Strömgren photometry only uses 4 measured values whereas spectroscopy usually 
uses several thousand. 
 
The whole problem of selecting the “correct” atmospheric parameters for a star 
consists mainly of finding three linked values: the effective temperature (Teff), the 
gravity (logg) and the microturbulence (vmic). Turning one wheel, turns the others as 
well. Nonetheless, each parameter has its specific behaviour. 
The basis of the determination method is the curve of growth (COG) method which was 
used in early years to determine these parameters. Nowadays it is possible to use a 
statistical approach based on the COG. The measurement of several spectral lines and 
the analysis of different dependencies give hints to the correct solution. There are 
some assumptions made in order to be able to disentangle the parameters. One is, that 
all lines are formed at one depth in the stellar atmosphere. No stratification is present 
and the line formation layer is infinite thin. This restricts the method to hotter stars. 
Another one is LTE (local thermal equilibrium). The used dependencies are described 
in the following sections and a detailed discussion can be found in Gray (1992). 
 
Due to the fact, that microturbulence shows the most significant behaviour and is 
therefore the “easiest” parameter to determine, it is a good starting point for the 
iterative process. Models with different microturbulence velocities are calculated and 
the optimal solution is derived. Temperature, gravity and metallicity are taken from 
photometry. 
In the next step, the optimal gravity is determined based on the new microturbulence, 
as this is, after microturbulence, the least difficult parameter.  
At last, the effective temperature is identified. This is usually the most difficult 
parameter and in many cases, the photometrical value or the temperature derived from 
hydrogen line fitting has to be kept. 
Now, there are two different ways to continue: either the process is continued with 
another microturbulence determination or a gravity determination. In this analysis, the 
second sequence was used (second scheme, see below). Each step is described in 
detail in the chapters 3.2.4  through 3.2.11 below. 
This is done until convergence which means, that no significant changes occur 
between two iteration steps. Significant means “within the typical errors”. In case of a 
completely wrong initial guess, the process could lead to a “wrong” solution. It is 
possible, that many different points of convergence exist in the parameter space. One 
possibility to distinguish between wrong and right is the abundance scatter within the 
used line sample. Such a case is shown in the last iteration step for the effective 
temperature below. Usually this doesn’t happen in the case of existing Strömgren 
photometry and a non-peculiar star as the initial parameters are typically accurate 
enough and lie close to the final solution. 
 

 vmic – logg – Teff – vmic – logg – Teff – vmic – logg … 
 vmic – logg – Teff – logg – vmic – logg – Teff – logg …  (used in this analysis) 
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3.2.1. Element selection 
 
Usually, iron is used to determine the fundamental parameters but in case of a normal 
(solar type), slow rotating star, chromium, titanium, nickel or manganese can be used 
additionally. Each element will give its own value for microturbulence, gravity and 
effective temperature. This allows to estimate errors in the determination of the 
parameter. 
In case of a more peculiar object, the element with the best known atomic parameters 
and most observable, unblended lines has to be used and this typically is iron. 
In this analysis, both methods were used. For the initial determination, only iron lines 
were used. For the refining process, chromium, titanium and nickel were added. 
This is reasonable, as in the beginning, the blending effect in fast rotating stars links up 
all abundances. It is unproblematic in stars with a solar scaled abundance pattern, but 
can lead to nondistinctive results in peculiar objects. 

3.2.2. Line selection 
 
In order to get information about any stellar parameters it is necessary to measure or fit 
quantities of individual spectral lines with known atomic parameters. As HD 8801 
shows an enormous amount of such lines and rotates rapidly, most of the spectral lines 
overlap. This prevents one from measuring equivalent widths for a sufficient number of 
lines. Only 25 completely unblended lines (see Table 9) were found throughout the 
whole observed wavelength range. This is not sufficient for a competent knowledge of 
the stellar parameters. 
In such cases it is possible to fit the observed spectrum with a synthetic one. This is 
done by modifying the element abundance of the stellar model and synthesis until the 
synthetic spectral line fits the observed one. Doing this for as many lines as possible 
allows one to find the appropriate atmospheric parameters for a star. 
Prior to the fitting procedure it is unavoidable to carefully select the lines (or spectral 
features) that should be fitted. They should not be blended too much by lines with 
unknown abundances, the continuum should be normalized well, no atmospheric lines 
should be present, the S/N ratio should be high enough etc.. 90 Fe I and 22 Fe II lines 
matched these requirements in the range from 4000 – 7500 Å. In order to have a 
homogeneous and sufficiently large sample, iron lines were used to determine the 
fundamental parameters at the beginning. All other elements show less usable lines. 

3.2.3. The line fitting process 
 
C. Stütz developed a software package called ATC which implements a line fitting 
procedure. This fitting procedure was used to automatically fit the selected spectral 
lines as an individual manual fitting of all lines would take several days for one 
synthesis. The algorithm first selects all contributing spectral lines from the VALD 
database based on the stellar model around the line under consideration within a 
specified wavelength interval. In the next step, the RMS error is calculated and the 
element abundance is optimized until the abundance change between two iterations is 
below 0.1 dex. This is done for all lines individually. 
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Selecting the fitting width 
 
The width of the interval around a spectral line used to calculate the RMS error is in 
two points crucial for the result. 
First, the selection of lines contributing to the spectrum at the position of the spectral 
line under investigation has to be as complete as possible. Due to the fact that 
HD 8801 shows a rather fast rotation, the interval has to be larger than in slower 
rotating stars. 
Second, the fitting width should not be too large to avoid fitting neighbouring lines of 
the same element which are possibly not useable due to wrong atomic parameters, 
bad continuum normalization etc.. 
Therefore, the average abundance and abundance errors for the iron line sample used 
in this analysis were investigated for different fitting intervals between 0.25 and 4.5 Å. 
The result is shown in Figure 34. As can be seen, using a fitting width of 2 Å is 
sufficient for this star. Using a larger interval only increases computation time. 

 
Figure 34: Average iron abundance for different fitting widths. 
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3.2.4. Step 1 - First microturbulence determination 
 
Microturbulence is still one of the less understood parameters in the process of spectral 
analysis. It is still more or less a so called “fudge parameter” which is probably linked to 
turbulence in the stellar atmosphere. Microturbulence simply adds an additional 
isotropic velocity term in the calculation of the radiation transfer. 
The observational evidence for the existence of a microturbulence velocity is the fact, 
that without microturbulence it is impossible to fit strong and weak lines of the same 
element with a single abundance. Using this fact allows the determination of the value. 
Strong lines, that mean lines with a large absorption and therefore a large equivalent 
width, would give a different abundance than weak lines with a small equivalent width. 
In the case of HD 8801, equivalent widths cannot be measured but the fact, that the 
central line depth is proportional to the equivalent width can be used. 
Calculating element abundances for all 112 Fe I and Fe II lines and plotting these 
abundances versus their individual central line depth, result in diagrams like  
and . It can be clearly seen, that the slope of the linear fit changes 
significantly with microturbulence. 

Figure 35
Figure 36

 

 
Figure 35: Individual iron line abundances for a model with vmic = 2 km/s. 
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Figure 36: Individual iron line abundances for a model with vmic = 4 km/s. 

 
Calculating slopes of linear fits as shown in Figure 35 and Figure 36 for different 
microturbulence velocities, results in Figure 37. Teff, logg and Z were taken from 
photometry.  
 

 
Figure 37: Slopes of linear fits vs. microturbulence velocity for 112 Fe I/II lines. 

 
A 4th order polynomial fit was applied. The zero of this fit gives the optimal 
microturbulence of 2.29 km/s. 
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Another indicator is the abundance scatter as it also increases as a trend becomes 
visible. Plotting these errors against microturbulence, results in Figure 38. 
 

 
Figure 38: Abundance scatter vs. microturbulence velocity for 112 Fe I/II lines. 

 
The minimum of the polynomial fit suggests a microturbulence of 2.32 km/s. 
 
Both methods result in nearly the same value. So the new microturbulence used for the 
next iteration step was set to 2.31 km/s. A new stellar model with this value was then 
calculated. 

3.2.5. Step 2 - First gravity determination 
 
Gravity influences the pressure in the stellar atmosphere and this furthermore has 
influence on the ionization equilibrium through the Saha equation via the electron 
pressure. In case of the correct value for the surface gravity, it should be possible to 
model all lines of a specific element independent of their ionization stage with one 
abundance value. If the average abundance for one ionization stage differs from the 
value for lines of the same element but from another ionization stage, then the surface 
gravity cannot be correct. 
The model, calculated with the new value for microturbulence was used as a starting 
point.  shows the slopes for Fe I and Fe II lines separately. The average 
abundance determined from neutral iron lines does not match the abundance 
determined from single ionized lines. The difference amounts to 0.21 dex. This 
indicates a wrong gravity assumption. 

Figure 39
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Figure 39: Individual line abundances of Fe I and Fe II lines vs. central line depth. The 

slopes of the linear fits are close to zero which indicates a correct microturbulence but 
the average abundances do not match. 

 
Calculating average abundances for neutral and single ionized iron for stellar models 
with different gravities allowed to find the correct solution. The results are shown in 

 and . Figure 40 Figure 41
 

 
Figure 40: Average abundances for Fe I and Fe II separately for models with different 

gravities. 
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Figure 41: Abundance differences for models with different gravities. 

Figure 41
 

Finding zero of the linear fit in  results in a gravity of 3.34 cm/s² which was 
used for the next calculation step. 

3.2.6. Step 3 - First effective temperature determination 
 
Lines with different excitation potential should give the same abundance in case of a 
correct effective temperature. This fact is used to determine the correct temperature. 

 shows a plot of the individual line abundances versus their excitation 
potentials for the initial temperature of 7250 K with the new microturbulence and 
gravity. A trend can be seen which indicates, that the assumed effective temperature is 
not correct. Models with different temperature were calculated and the slopes of the 
linear fits in the abundance-versus-excitation potential plots determined. The result is 
shown in Figure 43. 

Figure 42

 
The determination of the effective temperature is usually difficult and sometimes 
spectroscopy cannot give better results than photometry. This is on one hand due to 
the definition of this parameter and on the other hand, its strong dependency on the 
quality of the excitation potential determination. A star simply doesn’t have “a” 
temperature and the line forming region is not infinitely thin. Therefore lines originate 
from layers with different temperatures. This generates a natural variance. On the other 
hand, the values for the excitation potentials of the spectral lines are sometimes not 
correct and add an additional error in the temperature. Nonetheless, it can be seen 
from the diagrams below that the effective temperature of 7250 K is too low. 7600 K fit 
the observations better. This is a typical outcome of an analysis of an Am star. Due to 
the stronger metallic lines, the absorption is different than assumed in the photometric 
calibrations. 
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Figure 42: Individual line abundances for Fe I/II lines vs. excitation potential. 

 

 
Figure 43: Slope of linear fits to Fe I/II vs. excitation potentials. 

 
Two zeros can be found from Figure 43 (near 7600 K and around 7850 K). In order to 
identify the correct temperature, a look at the slope errors (see ) can be 
helpful. The error is smallest between 7250 and 7600 K so that the solution with a 
temperature of 7850 K is unlikely. Therefore the solution with the lower temperature 
was regarded as the correct one and was used in the next steps.  shows a 
plot where line abundances for chromium are plotted against their excitation potentials. 
Due to the fact, that there are no lines with an excitation potential between 1 and 3 eV, 
a reliable fit cannot be applied to chromium. The same applies to the other elements so 
that only iron could be used to determine the effective temperature reliably. 

Figure 44

Figure 45
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Figure 44: Slope errors versus effective temperature. 

 

 
Figure 45:  Individual line abundances of Cr I/II lines vs. excitation potential. 

 
As mentioned above, this method not always leads to a solution and Figure 42 already 
shows one of the problems. The scatter is rather large and the errors for the calculated 
slopes are large as well (see ). Figure 44
In such cases, the temperature could also be checked by fitting hydrogen profiles. 
Unfortunately this is not possible in the case of HD 8801 as the hydrogen lines show an 
unusual behaviour for which the reason is unknown. 
Other elements than iron could be used as well but in faster rotating stars, the blending 
typically generates errors too large to be accepted in this initial phase and many 
elements do not have enough measurable lines with different excitation potentials. 
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3.2.7. Step 4 - Refining the gravity 
 
A look at the average Fe I and II abundances showed that a correction of the gravity 
was necessary. Calculating average abundances for models with different gravities 
resulted in . Figure 46

 
Figure 46: Abundance differences for models with different gravities. 

 
The zero of the linear fit results in a refined gravity of 3.66 cm/s². 

3.2.8. Step 5 - Refining the microturbulence 
 
The changed gravity now again produced a trend in the plot abundances-versus-
central line depths (see ) and therefore needed further adjustment. Figure 47

 
Figure 47: Individual line abundances of Fe I/II lines vs. central line depth. 
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Figure 48 shows the slopes for models with different microturbulence velocities. Due to 
the smaller stepwidth in vmic, a linear fit was sufficient. 

 
Figure 48: Slopes of linear fits vs. microturbulence velocity for 112 Fe I/II lines. 

 
Finding the zero of the linear fit leads to a new microturbulence of 2.59 km/s. 

3.2.9. Step 6 - Refining the gravity 
 
Again, gravity needed to be adjusted slightly and the result is shown in Figure 49. 
The new value was 3.74 cm/s². 

 
Figure 49: Abundance differences for models with different gravities. 
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3.2.10. Step 7 - Refining the effective temperature 
 
A last adjustment to the effective temperature was made and resulted in a final value of 
7540 K (see Figure 50). 

 
Figure 50: Slope of linear fits vs. effective temperature. 

 

3.2.11. Step 8 - Refining the gravity 
 
With the final temperature, a last check of the gravity was made (see ). Figure 51

 
Figure 51: Abundance differences for models with different gravities. 

 
The gravity converged to 3.67 cm/s². The very small abundance-versus-line depths 
slopes showed that no further adjustment of the microturbulence was necessary. 
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3.3. Element abundances 
 
Now, that the atmospheric parameters were initially fixed, it was possible to determine 
the abundances for all other elements. 
The initial part is the most crucial: the line selection. “How many lines should be 
used?”, “How strong should they be?”, etc. 
In the case of HD 8801, it is not useful to select lines with a central line depth of less 
than 0.01 as the errors in the continuum normalization exceed that value. Additionally, 
extremely weak lines will not be visible as the high vsini works as a strong smoothing 
filter. 

3.3.1. Line selection for abundance determination 
 
The line selection process was done in two steps. First, all existing transitions in the 
observed wavelength range were extracted from the VALD database using the 
extraction tool Preselect. Second, based on an initial stellar model, those lines were 
extracted, that absorb a certain amount of radiation from the continuum using the tool 
Select. Some elements have several thousand transitions in a given spectral range 
(e.g. Fe, see Figure 52 and Figure 53), others have none. The more the line absorbs, 
the better it can be fitted, as the S/N ratio becomes less important. The stronger a line, 
the better the atomic parameters are usually known. This leads to the conclusion for 
the abundance determination (not for the determination of the fundamental parameters! 
For microturbulence, weak lines are necessary!), that using strong lines should give 
better results. 
A limit to the number of lines is more or less a technical one: the computation time. 
Fitting 5 lines manually takes as long as fitting 100 lines automatically. In the case of 
HD 8801, a semi-automatic routine was used and the calculation time for 100 lines is 
about 20 minutes at a 4 processor computer. 
In order to limit the number of spectral lines, only lines that have a central line depth 
larger than a specified fraction of the continuum can be selected. A limit of 0.2 means, 
that the center of the line has to be at a normalized flux of 0.8 or below (1 marks the 
continuum level). Weaker lines are ignored. 
For iron, setting this limit to 0.1 would result in the selection of about 2000 lines as can 
be read from Figure 53. As iron was used to find the fundamental parameters and the 
lines have already been selected carefully by hand, no further selection was made. For 
barium, even a limit of 0.01 only returned 4 lines that could be used, but due to the 
overabundance of this element, these lines could be fitted well. The column central line 
depth limit in Table 10 shows the individual limits and the effect of this limit on the 
number of the selected lines for all analysed elements. 
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Figure 52: Number of iron lines with a central line depth within a given interval. 

 
Figure 53: Number of iron lines with a central line depth above a certain limit. 

 
Finally, the following procedure was applied to all elements in order to use only “good” 
lines: 
 

1. All lines with a central line depth above a certain limit between 4000 and 7500 Å 
were selected. For elements that showed more lines, 0.1 was used as the limit. 
For elements with fewer lines, 0.025 or even 0.01 was used and the wavelength 
range was extended to the whole observation. These are subjective values and 
were derived by trial-and-error. If too few lines were selected, the continuum 
limit was lowered and the wavelength range extended. 

 

2. Lines where no spectrum was observed (due to gaps between the Echelle 
orders) were rejected. 
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3. The semi-automatic procedure linfit from the ATC package was used to fit these 
lines. 

 
4. Lines with an RMS error of > 1 were rejected. This removed the worst fitted 

lines.  shows the effects of this limit on the line selection of 
neodymium. 

Figure 54

 
5. Lines around hydrogen lines were rejected. 

 
6. The standard deviation of the remaining sample was calculated and all lines 

with abundances more the 3σ deviation were rejected (see also Figure 54). 
 

7. A histogram with appropriate bin width was created. The bin width was more or 
less subjective and depended on the number of useable lines (typically 0.1 to 
0.4 dex per bin). This allowed to check the shape of the distribution and the 
applied χ²-minimization algorithm in the fitting process resulted in a more 
reliable center finding in cases with non-Gaussian distributions. 

  
8. A Gaussian bell function was fitted to the histogram. The center and width are 

the average abundance and its error. Figure 56 and Figure 57 exemplarily show 
the histogram and fitted Gaussian bell function for Fe I. 

 
For elements with only few lines, a manual check was done. The final fit was compared 
to the observation and in case of a “bad” fit, the line was rejected.  shows the 
effect of this manual check for neodymium. 

Figure 55

Figure 55

Figure 55

 
 demonstrates another effect: Increasing the number of lines also increases 

the scatter in abundance. The error estimation in abundance analysis is always a tricky 
task. The errors in the atomic parameters are typically unknown. Therefore, using a 
normal error propagation approach is impossible and the only scientific way to get an 
idea of the size of the error bars is to use the scatter of the individual line abundances 
as indicators. Here  comes into play: the less restrictive the line selection, the 
larger the scatter. Using only a few “good” lines typically results in smaller error bars. 
But the definition of “good” mainly depends on the experience of the scientist. If a 
specific spectral line can be fitted well in stars with different atmospheric configurations, 
the atomic parameters and opacity calculations obviously reproduce the observations 
well. One big problem is the absence of a central database for this knowledge and the 
information can only be acquired through personal communication. 
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Figure 54: Individual line abundances vs. RMS error for Nd II and III lines. The red line 

marks the RMS < 1 limit. 
 

 
Figure 55: Nd II/III lines before and after manual line selection. 
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Figure 56: Histogram for Fe I and II lines. 

 

 
Figure 57: Gaussian fit to the histogram from Figure 56. 
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3.3.2. Results 
 
Table 10 shows the sequence, the central line depth limit used for the line selection 
and the number of finally useable lines. 
The sequence is based on the number of useable lines and the opacity contribution. 
Elements that show many good lines will be fitted with a higher accuracy, elements 
with a higher abundance are more important for the structure of the stellar model. A 
combination of the criteria results in the table shown below. 
After the abundance of iron was determined, chromium was analysed based on the 
new iron abundance. With the new abundances for iron and chromium, the titanium 
abundance was determined and so on. Each abundance determination in the list is 
based on the abundance determinations above it. The central line depth limit was 
changed from 0.1 to 0.01 until enough good lines could be fitted. For some elements as 
Co, Zr, Nd and Gd, a decreased limit resulted in a much larger sample of useable lines. 
This is mainly caused by the overabundance of these elements. The line selection and 
the contribution limit are initially based on solar abundance. Using weaker lines 
typically doesn’t improve the situation but in the case of overabundance, lines that were 
assumed to have a small central line depth in a solar type star become more 
prominent. One should therefore lower the contribution limit until a reliable decision on 
the element abundance can be made. 
  

Element
Central line 
depth limit 

#lines Element
Central line 
depth limit

#lines 

Fe  112 Zn 0.05 2 

Cr 0.1 94 Sr 0.05 2 

Ti 0.1 113 Sr 0.01 3 

Ca 0.1 48 Zr 0.05 13 

Ni 0.1 76 Zr 0.025 27 

Mg 0.1 15 Nd 0.05 11 

Mn 0.1 33 Nd 0.025 69 

Si 0.1 21 Eu 0.05 1 

Na 0.05 5 Eu 0.025 1 

Sc 0.05 18 Gd 0.05 1 

V 0.05 17 Gd 0.025 42 

O 0.05 10 Dy 0.05 0 

C 0.05 47 Dy 0.025 4 

N 0.01 0 Ga 0.05 0 

Ba 0.01 4 Ga 0.025 1 

La 0.01 17 Ho 0.05 0 

Y 0.05 11 Ho 0.025 1 

Ce 0.05 21 Pr 0.05 0 

S 0.05 12 Pr 0.025 1 

Al 0.01 3 Sm 0.05 2 

Co 0.05 2 Sm 0.025 5 

Co 0.025 84 Th 0.05 0 

Cu 0.05 2 Th 0.025 0 
 

Table 10: Analysis sequence (top left to bottom right), central line depth limit and number 
of useable lines. 
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Element 
log(N/Ntot) 

neutral 
Error 

(st.dev.)
#lines

log(N/Ntot) 
single ionized

Error 
(st.dev.) 

#lines 

C -3.79 0.39 47    
O -3.72 0.13 10    
Na -5.56 0.07 5    
Mg -4.52 0.16 9 -4.68 0.23 6 
Al -5.46 0.19 3    
Si -4.64 0.31 18 -4.98 0.32 3 
S -4.84 0.12 12    
Ni -5.54 0.37 74 -5.45 0.45 2 
Sc    -9.16 0.13 18 
Ti -7.06 0.15 35 -7.27 0.29 78 
V -8.04 0.35 3 -7.97 0.62 14 
Cr -6.01 0.40 46 -5.93 0.37 48 
Mn -6.73 0.48 31 -6.59 0.48 2 
Fe -4.38 0.15 90 -4.38 0.12 22 
Co -6.17 0.52 75 -6.30 0.51 9 
Ca -5.74 0.21 36 -6.20 0.42 12 
Cu -7.59 0.22 2    
Zn -7.26 0.17 2    
Ga    -8.96  1 
Sr -8.02 0.62 2 -8.71  1 
Y    -9.50 0.30 11 
Zr    -9.15 0.54 27 
Ba    -8.54 0.31 4 
La    -9.97 0.30 17 
Ce    -9.87 0.39 21 
Pr    -9.75  1 

Nd(II/III) -9.82 0.56 66 -10.12 0.49 3 
Sm    -10.46 0.40 5 
Eu    -11.50  1 
Gd    -9.38 0.28 42 
Dy    -10.45 0.63 4 
Ho    -11.53  1 

 
Table 11: Abundances, internal sample errors (standard deviation) and number of used 

lines for different ionization stages. 

Table 11

 
Table 11 above shows the results for the individual ionization stages (for Nd, the given 
values are for single and double ionized ions). Table 12 below shows the average 
abundances for the two ionization stages together with the solar abundances taken 
from Asplund, Grevesse, Sauval (2005) and Holweger (2001). 
 
Figure 58 is a plot of the data from  and shows the abundances derived for 
individual elements and different ionization stages with respect to the sun (Diff. = 0 in 
Table 12). 
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Element 
Sun 

log(N/Ntot) 
HD 8801 

log(N/Ntot) 
Error 

(st.dev.)
Diff. 

C -3.65 -3.79 0.39 -0.14 
O -3.38 -3.72 0.13 -0.34 
Na -5.87 -5.56 0.07 0.31 
Mg -4.51 -4.58 0.20 -0.07 
Al -5.67 -5.46 0.19 0.21 
Si -4.53 -4.71 0.43 -0.18 
S -4.90 -4.84 0.12 0.06 
Ni -5.81 -5.54 0.37 0.27 
Sc -8.99 -9.16 0.13 -0.17 
Ti -7.14 -7.23 0.29 -0.09 
V -8.04 -7.98 0.57 0.06 
Cr -6.40 -5.97 0.39 0.43 
Mn -6.65 -6.72 0.48 -0.07 
Fe -4.59 -4.38 0.15 0.21 
Co -7.12 -6.15 0.55 0.97 
Ca -5.73 -5.74 0.32 -0.01 
Cu -7.83 -7.59 0.22 0.25 
Zn -7.44 -7.26 0.17 0.18 
Ga -9.16 -8.96  0.20 
Sr -9.12 -8.25 0.59 0.87 
Y -9.83 -9.50 0.30 0.33 
Zr -9.45 -9.15 0.54 0.30 
Ba -9.87 -8.54 0.31 1.33 
La -10.91 -9.97 0.30 0.94 
Ce -10.46 -9.87 0.39 0.59 
Pr -11.33 -9.75  1.58 
Nd -10.59 -9.84 0.58 0.75 
Sm -11.03 -10.46 0.40 0.57 
Eu -11.52 -11.50  0.02 
Gd -10.92 -9.38 0.28 1.54 
Dy -10.90 -10.45 0.63 0.45 
Ho -11.53 -11.53  0.00 

 
Table 12: Solar abundances compared to HD 8801. 
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Figure 58: Abundances relative to the sun for different ionization stages after first 

iteration. 

3.4. Refining the parameters 
 
In case of a slow rotating star with mostly unblended lines and an abundance pattern 
similar to the sun, the abundance analysis would now be finished. In the case of  
HD 8801 at least a second iteration had to follow. This is because all lines are more or 
less blended by other lines and a change in the abundance of one element influences 
the abundance determination of the others. In the beginning, the abundances of all 
elements were assumed to be solar. If there is more pre-knowledge about the 
abundances of a star, the initial abundances could be adjusted in the beginning but for 
HD 8801, this was not the case. 
The first element for which an abundance was calculated was iron. This abundance 
determination was based on a solar abundance pattern for all other elements. 
Therefore, the absorption contribution of blending lines originating from other elements 
like chromium, titanium, nickel etc. were under- or overestimated (in the case of this 
star, mostly underestimated). 
The atmospheric parameters are not influenced strongly by the changed abundance 
pattern because the analysed trends are independent from the absolute abundances. 
Nevertheless, a fine tuning of the atmospheric parameters is advisable before starting 
the second abundance determination because only after the process has converged, 
the correct abundances can be determined. Some lines which were selected in the 
beginning are possibly no longer useable, whereas some other could become useful. In 
this case, 99 iron lines out of the initially 112 remained. This is mainly because of the 
increased abundances for all other elements and their resultant absorption domination 
over the weaker iron lines. 
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3.4.1. Refining the microturbulence 
 
In the refining process it was possible to use other elements than iron as well, as the 
absorption contributions of blending lines were now estimated accurately enough. 
Chromium, titanium and nickel now showed enough lines of good quality. 
ODF-models were calculated for different microturbulences and the same methods 
were applied as in chapter 0. 
The errors given in the summary tables are only standard deviations based on the line 
sample and do not include the slope errors nor any error propagation. This is discussed 
later in chapter 4. 

Iron 
 
Table 13 and Figure 59 show the results for iron without Fe I at 4181.754 Å. 
 

vmic [km/s] Slope Slope error

1.60 -0.85 0.27 
1.80 -0.68 0.25 
2.00 -0.47 0.24 
2.20 -0.25 0.23 
2.40 0.02 0.23 
2.59 0.17 0.22 
2.80 0.50 0.22 
3.00 0.73 0.23 

 
Table 13: Slopes and errors without Fe I at 4181.754 Å. 

 
Figure 59: Plot of data from Table 13. 

 
The zero of the applied fit leads to a microturbulence of 2.41 km/s. 
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Instead of using slopes of abundance-versus-central line depth fits, the abundance 
error (standard deviation) for the different microturbulence velocity models can be 
used. This is shown in Figure 60. The minimum of a polynomial fit through the data 
resulted in a value of 2.58 km/s which confirmed the value of 2.41 km/s within the 
estimated errors (see error bars in Figure 59). 

 
Figure 60: Abundance errors of the 99 iron line sample versus microturbulence. 

 
Sometimes, not all lines in a sample can be used to determine all atmospheric 
parameters. For some lines, the dependency of blending lines on a parameter can 
have a large influence on the result. This was the case for a single iron line at  
4181.754 Å. The abundance for this line jumped from -4.77 dex for vmic = 2.0 km/s to  
-4.08 dex for vmic = 2.25 km/s and influenced the slope of the linear fit significantly (see 

). This emphasizes the need to carefully select the lines used to determine 
the atmospheric parameters and to have an eye on the results during the iteration 
process. 

Figure 61

 
Figure 61: Slope jump due to a single Fe I line at 4181.754 Å. 
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Chromium 
 
The line selection was repeated with the new abundances from chapter 0 and now 
resulted in 130 lines. The results for the different microturbulences are shown in 

 and  below. 
Table 

14 Figure 62
 

vmic [km/s] Slope Slope error log(NCr/Ntot)ave
Abundance 

error (st.dev.) 
2.00 -3.49 0.64 -6.09 0.44 
3.00 -0.98 0.83 -6.30 0.52 
4.00 0.88 0.74 -6.34 0.47 

 
Table 14: Slopes, errors and abundances for chromium for different microturbulences. 

 

 
Figure 62: Plot of data from Table 14. 

Figure 62
 
The zero for the linear fit in  is at a microturbulence of 3.55 km/s. 
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Titanium 
 
78 lines were found to be useable and remained after removing all lines with an 
RMS error > 1 and 3σ outliers. Results are shown in Table 15 and . Figure 63
 

vmic [km/s] Slope Slope error log(NTi/Ntot)ave
Abundance 

error (st.dev.) 
2.00 -3.49 0.64 -6.09 0.44 
3.00 -0.98 0.83 -6.30 0.52 
4.00 0.88 0.74 -6.34 0.47 

 
Table 15: Slopes, errors and abundances for titanium for different microturbulences. 

 

 
Figure 63: Plot of data from Table 15. 

 
The optimal microturbulence for titanium would be 3.09 km/s. 
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Nickel 
 
Using 117 Nickel lines resulted in  and . Table 16 Figure 64
 

vmic [km/s] Slope Slope error log(NNi/Ntot)ave
Abundance 

error (st.dev.) 
2.00 -2.90 0.74 -5.44 0.40 
3.00 -0.33 0.75 -5.59 0.39 
4.00 2.04 0.73 -5.64 0.39 

 
Table 16: Slopes, errors and abundances for nickel for different microturbulences. 

 
Figure 64: Plot of data from Table 16. 

 
Nickel requires a microturbulence of 3.16 km/s. 

Summary 
 
Cr, Ti and Ni indicated a larger value for the microturbulence than iron (see ). 
The average is taken as the final value. 

Table 17

 

Element vmic [km/s] #lines 

Fe 2.41 99 

Cr 3.55 130 

Ti 3.09 78 

Ni 3.16 117 

Average 3.05  
St.dev 0.48  

 
Table 17: Final determination for the microturbulence velocity based on four elements. 
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As this value was about 0.5 km/s higher than the initial one, the abundances for iron 
would change and consequently the solar scale which was used in the ODF-models. In 
order to account for that change, the abundance for iron was determined by fitting a 
polynomial through the abundance averages for the different microturbulences (

). This is shown in Figure 65. 
Table 

18
 

vmic [km/s] log(NFe/Ntot)ave

1.60 -4.22 

1.80 -4.27 
2.00 -4.32 
2.20 -4.37 

2.40 -4.41 
2.59 -4.45 
2.80 -4.49 

3.00 -4.52 
 

Table 18: Average iron abundances for models with different microturbulences. 

 
Figure 65: Iron abundances for different microturbulences. Extrapolation of the 

polynomial fit to 3.05 km/s resulted in an iron abundance of -4.53 dex. 
 
The iron abundance of -4.53 dex gives a solar scaled value of +0.06. This was used for 
the next iteration step. 
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3.4.2. Refining the gravity 
 
Here, only iron and chromium could be used as nickel showed only two lines of Ni II 
and titanium gave a significantly higher value for the gravity which wasn’t suitable for 
the other elements. The reason for this is unclear. 

Iron 
 
Table 19 and Figure 66 show the results for iron. 
 

logg [cm/s²] log(NFeI/Ntot)ave
Error 

(st.dev.)
log(NFeII/Ntot)ave

Error 
(st.dev.) 

Abundance 
difference 

3.47 -4.47 0.15 -4.63 0.15 0.16 
3.67 -4.48 0.15 -4.58 0.15 0.10 
3.87 -4.48 0.15 -4.53 0.15 0.04 
4.07 -4.49 0.15 -4.48 0.16 -0.01 

 
Table 19: Abundance differences for models with different gravities for iron. 

 
Figure 66: Plot of data from Table 19. 

 
The zero of the linear fit lies at 4.03 cm/s². 
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Chromium 
 
Table 20 and Figure 67 contain the results for chromium. 
 

logg [cm/s²] log(NCrI/Ntot)ave
Error 

(st.dev.)
log(NCrII/Ntot)ave

Error 
(st.dev.)

Abundance 
difference 

3.47 -6.11 0.41 -6.20 0.38 0.09 
3.67 -6.08 0.38 -6.15 0.38 0.06 
3.87 -6.05 0.37 -6.09 0.39 0.04 
4.07 -6.03 0.38 -6.03 0.38 0.00 

 
Table 20: Abundance differences for models with different gravities for chromium. 

 

 
Figure 67: Plot of data from Table 20. 

 
The zero of the linear fit lies at 4.14 cm/s². 
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Titanium 
 
The results for titanium are shown in  and Figure 68. Table 21
 

logg [cm/s²] log(NTiI/Ntot)ave 
Error 

(st.dev.)
log(NTiII/Ntot)ave

Error 
(st.dev.)

Abundance 
difference 

3.47 -7.14 0.29 -7.51 0.38 0.37 
3.67 -7.11 0.28 -7.42 0.35 0.32 
3.87 -7.09 0.28 -7.35 0.32 0.26 
4.07 -7.07 0.28 -7.27 0.30 0.20 

 
Table 21: Abundance differences for models with different gravities for titanium. 

 

 
Figure 68: Plot of data from Table 21. 

 
The zero is found to be at 4.82 cm/s² as can be seen from Figure 68. Titanium doesn’t 
behave like iron or chromium and was omitted in the determination process although 
19 Ti I and 65 Ti II lines were used. The reason for this discrepancy is unknown. 
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Summary 
 
Table 22 collects the results for iron and chromium. The standard deviation cannot be 
taken as a real error. This will be discussed in chapter 4. 
 

Element logg [cm/s²] #lines

Fe 4.03 99 

Cr 4.14 130 

Average 4.08  

St.dev 0.08  
 

Table 22: Final determination for the gravity based on two elements. 
 
The new iron abundance of -4.48 dex which was determined similar to the iron 
abundance as described in the summary of chapter 0, gives a value for Z of +0.11. 

3.4.3. Refining the effective temperature 

Iron 
 
The results for iron are shown in Table 23 and Figure 69 below. 
 

Teff [K] Slope 
Slope 
error 

log(NFe/Ntot)ave
Abundance 

error (st.dev.) 
7340 0.01 0.02 -4.62 0.17 
7540 0.00 0.01 -4.49 0.15 
7740 -0.01 0.01 -4.36 0.13 

 
Table 23: Slopes, errors and abundances for iron for different effective temperatures. 

 
Figure 69: Plot of data from Table 23. 

Figure 69
 
The zero of the polynomial fit in  results in a temperature for iron of 7478 K. 
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Chromium 
 
Table 24 and Figure 70 hold the results for chromium. 
 

Teff [K] Slope 
Slope 
error 

log(NCr/Ntot)ave
Abundance 

error (st.dev.) 
7340 0.13 0.03 -6.40 0.52 
7540 0.09 0.02 -6.03 0.35 
7740 0.07 0.03 -5.80 0.37 

 
Table 24: Slopes, errors and abundances for chromium for different effective 

temperatures. 

 
Figure 70: Plot of data from Table 24. 

 
Chromium shows a significant higher optimum temperature (8180 K) than iron, titanium 
or nickel and was therefore omitted. The reason for this is again unknown. 
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Titanium 
 
Table 25 and Figure 71 show the results for titanium. 
 

Teff [K] Slope 
Slope 
error 

log(NTi/Ntot)ave
Abundance 

error (st.dev.) 
7340 0.02 0.07 -7.56 0.40 
7540 0.01 0.05 -7.25 0.31 
7740 -0.03 0.05 -6.99 0.29 

 
Table 25: Slopes, errors and abundances for titanium for different effective temperatures. 
 

 
Figure 71: Plot of data from Table 25. 

 
The zero for the polynomial fit results in a temperature for titanium of 7585 K. 
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Nickel 
 
The values for nickel are shown in  and . Table 26 Figure 72
 

Teff [K] Slope 
Slope 
error 

log(NNi/Ntot)ave
Abundance 

error (st.dev.) 
7340 0.15 0.07 -5.85 0.55 
7540 0.03 0.04 -5.53 0.36 
7740 -0.02 0.04 -5.23 0.29 

 
Table 26: Slopes, errors and abundances for nickel for different effective temperatures. 

 

 
Figure 72: Plot of data from Table 26. 

 
Nickel needs 7616 K to remove the trend from the excitation potential-versus- 
abundance relation. 

Summary 
 

Element Teff [K] #lines 

Fe 7478 99 

Ti 7585 73 

Ni 7616 111 

Average 7560  

St.dev 72  
 
Table 27: Final determination of the temperature based on three elements. The last digit 

in the temperature values are purely mathematical and should not be taken serious. 
 
The final temperature was determined to 7560 K (see Table 27) which was only slightly 
higher than the initial value. This indicated that the system converged. 
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Here, the number of lines was not used to calculate a weighted average, as the 
number of lines is not a good measure for the quality of the determination. Having 
many bad lines doesn’t result in a reliable average value. 
In order to check the convergence, the slopes of abundance-versus-central line depth, 
abundance-versus-excitation potential and the abundance differences between the 
ionization stages I and II were calculated for iron, chromium, titanium and nickel. 
The results indicated that a final solution was found as all slopes and the abundance 
differences were close to 0. Therefore, the iteration was stopped at this point. 

3.5. Final abundances 
 
With the preliminary abundances and the new atmospheric parameters, an LL stellar 
model was calculated as this calculation type takes the individual abundances and 
therefore opacities into account. With this model the abundances and different slopes 
used in the determination processes for the atmospheric parameters for iron, 
chromium, titanium and nickel were calculated once more. The differences were small 
compared to the errors and no further adjustment was necessary. 
Using this final model, the abundances for all other elements were determined again. 
As the distributions for the individual line abundances were now closer to a Gaussian 
distribution, the standard deviation and arithmetic means were used to calculate the 
abundances and internal errors. 
Figure 73 shows the abundance differences for titanium, chromium, iron and nickel 
based on the final ODF-model and the final LL-model. The LL-model gives slightly 
lower abundances than the ODF-model. 

 
Figure 73: Abundances based on the final ODF-model with Z = +0.12 and the LL-model 

based on the abundances from the first determination. 
 
The same element sequence and line selection was used as for the initial analysis. The 
RMS error for each line was checked and the line was removed if the value exceeds 1. 
Lines that show an abundance, 3σ away from the sample average were rejected too. 
This leaded to a smaller sample, but with better defined lines. Lines that can be fitted 
with different stellar models (the initial models and the models after the first abundance 
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determination) are of higher quality as lines that are unstable to changes in the stellar 
parameters. 
The fact that the abundances were now better defined, allowed to search for lines 
originating from elements with low abundance and/or a sparsely populated line pattern. 
The following tables (Table 28 and Table 29) show the final results of this abundance 
analysis including errors, Figure 74 and  are graphical representations. Figure 75
 

Element 
Sun 

log(N/Ntot) 
HD 8801 

log(N/Ntot) 
Error 

(st.dev.)
Diff. 

C -3.65 -3.75 0.31 -0.10 
N -4.26 -4.58 0.29 -0.32 
O -3.38 -3.71 0.27 -0.33 
Na -5.87 -5.84 0.36 0.03 
Mg -4.51 -4.66 0.18 -0.15 
Al -5.67 -5.51 0.19 0.16 
Si -4.53 -4.79 0.34 -0.26 
S -4.90 -4.78 0.14 0.12 
Cl -6.54 -6.54  0.00 
K -6.96 -6.43  0.53 

Ca -5.73 -5.89 0.20 -0.16 
Sc -8.99 -9.13 0.27 -0.14 

Ti ODF -7.14 -7.21 0.29 -0.07 
Ti LL -7.14 -7.29 0.32 -0.15 

V -8.04 -7.95 0.35 0.09 
Cr ODF -6.40 -6.04 0.33 0.36 
Cr LL -6.40 -6.14 0.33 0.26 
Mn -6.65 -6.90 0.40 -0.25 

Fe ODF -4.59 -4.47 0.14 0.12 
Fe LL -4.59 -4.52 0.15 0.07 

Co -7.12 -6.06 0.42 1.06 
Ni ODF -5.81 -5.46 0.29 0.35 
Ni LL -5.81 -5.51 0.31 0.30 
Cu -7.83 -7.70 0.20 0.13 
Zn -7.44 -7.31 0.08 0.13 
Sr -9.12 -8.30 0.52 0.82 
Y -9.83 -9.35 0.30 0.48 
Zr -9.45 -8.95 0.25 0.50 
Ba -9.87 -8.63 0.30 1.24 
La -10.91 -9.83 0.18 1.08 
Ce -10.46 -9.73 0.19 0.73 
Pr -11.33 -9.70 0.21 1.63 
Nd -10.59 -9.65 0.44 0.94 
Sm -11.03 -10.15 0.17 0.88 
Eu -11.52 -11.30  0.22 
Gd -10.92 -9.22 0.40 1.70 
Dy -10.90 -9.91 0.54 0.99 
Ho -11.53 -11.66 0.12 -0.13 

 
Table 28: Average abundances with errors, solar abundances taken from Asplund et al. 

and Holweger and abundance differences. 
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72 

 

Element 
log(N/Ntot) 

neutral 
Error 

(st.dev.)
#lines

log(N/Ntot) 
single ionized 

Error 
(st.dev.) 

#lines 

C -3.75 0.31 42    
N -4.58 0.29 4    
O -3.71 0.27 10    
Na -5.84 0.36 5    
Mg -4.64 0.16 9 -4.70 0.22 6 
Al -5.51 0.19 3    
Si -4.78 0.35 18 -4.87 0.29 3 
S -4.78 0.14 10    
Cl -6.54  1    
K -6.43  1    

Ca -5.90 0.17 35 -5.86 0.31 9 
Sc    -9.13 0.27 17 

Ti ODF -7.10 0.33 18 -7.25 0.27 57 
Ti LL -7.19 0.35 18 -7.32 0.30 57 

V -8.13 0.28 5 -7.86 0.36 10 
Cr ODF -6.04 0.34 76 -6.04 0.33 46 
Cr LL -6.16 0.33 76 -6.10 0.32 46 
Mn -6.95 0.37 28 -6.28 0.08 2 

Fe ODF -4.47 0.14 79 -4.47 0.15 20 
Fe LL -4.53 0.15 79 -4.49 0.14 20 

Co -6.05 0.43 69 -6.11 0.35 10 
Ni ODF -5.46 0.29 110    
Ni LL -5.51 0.31 110    
Cu -7.70 0.20 2    
Zn -7.31 0.08 2    
Sr -8.12 0.56 4 -8.65 0.16 2 
Y    -9.35 0.30 10 
Zr    -8.95 0.25 14 
Ba    -8.63 0.30 4 
La    -9.83 0.18 9 
Ce    -9.73 0.19 16 
Pr    -9.70 0.21 13 

Nd (II/III) -9.63 0.44 31 -9.95 0.15 2 
Sm    -10.15 0.17 5 
Eu    -11.30  1 
Gd    -9.22 0.40 37 
Dy    -9.91 0.54 9 

Ho (II/III) -11.63 0.14 2 -11.73  1 
 

Table 29: Average abundances for different ionization stages with errors including the 
number of analysed lines. For Nd and Ho the ionization stages are II and III. 
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Figure 74: Average abundances. The grey bars are color coded histograms of the line-by-

line abundances. The scale is from black (many lines) to light grey (few lines). The red 
dots with error bars mark the average values. 

 
Figure 75: Abundances for individual ionization stages. 
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3.5.1. Individual elements 

C, Sc, Ti, Zr and Ca 
 
Due to the ionization energies of these elements comparable to the ionization energies 
of either H I, He I or He II, these elements usually show lower abundances than the 
typical overabundances of the other elements in Am stars.  shows the 
ionization energies for H I, He I and II together with the comparable energies for some 
other elements. 

Table 30

O, Cl, S, Eu and eventually Ho also show ionization energies close to H and He and 
should therefore behave similarly. Table 31 shows the abundances derived for  
HD 8801 for the mentioned elements. Whether the low abundance of Ho can be 
explained by this effect is doubtful because of the larger energy difference. 
 

Ion 
Ion. energy 

[eV] 
Ion 

Ion. energy 
[eV] 

Ion 
Ion. energy 

[eV] 

H I 13.598 He I 24.587 He II 54.418 
Sc II 12.8 C II 24.383 Ca III 50.913 
Ti II 13.576 Sc III 24.757   
Ca II 11.872 (Zr III) 22.99   

      
O I 13.618 S II 23.338 O III 54.936 
Cl I 12.968 Cl II 23.814   

(Ho II) 11.8 Eu III 24.92   
  (Ho III) 22.8   

 
Table 30: Ionization energies for H I, He I and II and comparable energies for different 

elements. 
 

Element 
log(N/Ntot)HD8801 
– log(N/Ntot)sun 

C -0.10 
Sc -0.14 
Ti -0.15 
Zr 0.5 
Ca -0.16 
O -0.33 
Cl 0 
S 0.12 
Eu 0.22 

(Ho) -0.13 
 

Table 31: Abundances of elements from Table 30. 
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N 
 
4 nitrogen lines were found in the infrared part of the spectrum (see Table 32 below) 
and result in an abundance of -4.58 ± 0.3 dex which is 0.32 dex below the solar value. 
The S/N in that region is rather low so that the internal error should be taken as a lower 
limit. 
 

Wavelength [Å] log(NN/Ntot) 

8629.235 -4.81 
8686.149 -4.84 
8703.247 -4.29 
8718.8354 -4.36 

 
Table 32: Nitrogen lines. 

K 
 
For potassium, only one but unblended line at 7698.9740 Å could be used. 
The best fit with log(NK/Ntot) = -6.43 dex is shown together with two other syntheses in 

 below. A conservative error limit would be 0.3 dex. The sharp lines left to the 
potassium line are telluric lines. 
Figure 76

 
Figure 76: Synthetic spectra compared to the observation for K I line at 7698.9740 Å. 
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Cl 
 
One chloride line was observable at 8912.9230 Å which was unfortunately strongly 
blended by a Ca II line at 8912.0680 Å. A comparison between the observation and 
different syntheses is shown in Figure 77. In this case, only an upper limit of 
log(NCl/Ntot) = -5.37 dex for the abundance of chloride can be given. The best fit with 
log(NCl/Ntot) = -5.87 dex is only marginally different than the fit with 
log(NCl/Ntot) = -6.37 dex. Even completely removing chloride from the calculations 
would provide a feasible solution, so that no lower limit can be given. The abundance 
for chloride was therefore assumed to be solar. 

 
Figure 77: Synthetic spectra compared to the observation for Cl I line at 8912.9230 Å. 

Eu 
 
For europium, one line at 4435.578 Å was found. This line is strongly blended by 
several elements (see ). Here, only an estimation and an upper limit can be 
given. The best fit gives log(NEu/Ntot) = -11.30 dex, log(NEu/Ntot) = -10.80 dex is possible 
and log(NEu/Ntot) = -10.30 dex is improbable. 

Figure 78

Nevertheless, europium shows a lower abundance than other rare earth elements 
which could be due to the vicinity of the ionization energies of Eu III and He I (see 

 above). Table 30
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Figure 78: Synthetic spectra compared to the observation for Eu II line at 4435.578 Å. 

Comparison between observation and synthesis 
 
Figure 79 and Figure 80 show comparisons between the observation, an initial 
synthesis based on the atmospheric parameters derived from photometry and solar 
abundances and the synthesis based on the final atmospheric parameters and 
abundances. The agreement between the final synthesis and the observation is well 
throughout the whole spectrum. 

 
Figure 79: Comparison between observation (blue), initial synthesis based on 

photometry (orange) and synthesis based on the final atmospheric parameters and 
abundances (red). 
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Figure 80: Same as  but for a different wavelength region. Figure 79

4. Discussion of errors 

4.1. Continuum errors 
 
The continuum normalization is the main error source in abundance analysis. This is 
demonstrated by the following experiment. 
The total observation was shifted by 1% in the positive and negative direction in 
relative intensity. The iron line abundances based on the 99 iron line sample were 
calculated for the shifted observation and compared to the unshifted results. This 
allowed to estimate the individual errors for each line due to a wrong normalization. 

 shows the iron lines including these errors. Averages are marked by the 
colored horizontal lines. 
Figure 81
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Figure 81: Iron line abundances with individual errors due to a wrong continuum 

normalization. 
 
Some lines show an extraordinary large error which is caused by the inability of the 
algorithm to fit the specific line when a shift in the continuum is applied. The typical 
error is 0.17 dex with a minimum at 0.05 dex and a maximum at 1.36 dex. 
This is larger than the total error within the line sample itself (0.15 dex). As the real 
continuum error varies throughout the observation in both directions (positive and 
negative), no change in the average abundance is expected but a large increase in the 
scatter. Line blending together with rotational broadening can produce such a 
systematic shift as shown in chapter 2.3.2. A careful correction of this effect is 
necessary for faster rotating stars especially in the blue part of the spectrum where the 
continuum is not reached to avoid a shift in abundance. 
This shows that it is unavoidable to take great care in the normalization process before 
starting the analysis process. 
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4.2. Influence of the S/N ratio 
 
In order to get information about the influence of the signal-to-noise ratio on the 
abundance determination, a synthetic spectrum based on the final atmospheric 
parameters and abundances was calculated for the wavelength-range 4000 – 4100 Å. 
This region was chosen, as the line blending is strongest at the blue limit of the 
observations and the influence of the S/N ratio on the line fitting algorithm should be 
maximal. A normal distributed noise was then added to the synthetic spectrum to 
simulate a noisy observation. This was done for different values of the S/N ratio. These 
artificial observations were then used as observations. Iron lines with a central line 
depth larger than 0.3 (without rotational broadening) were selected and afterwards 
automatically fitted. The results are shown in Table 33 and Figure 82. 
 

S/N ratio log(NFe/Ntot) Error (st.dev.)

10 -4.526 0.189 
25 -4.520 0.087 
50 -4.520 0.035 

100 -4.518 0.010 
200 -4.519 0.007 
300 -4.519 0.004 
∞ -4.520 0.000 

 
Table 33: Abundance determinations for artificial spectra with different S/N ratios. 

 

 
Figure 82: Plot of data from Table 33. 

 
The average S/N ratio of the observations for HD 8801 can be estimated to be above 
150 for the region 4000 – 7500 Å which corresponds to an error in abundance for the 
stronger lines of below 0.01 dex. For the weaker lines, this error will increase. Lines 
with a central depth of only 0.1 show errors of 0.05 dex at maximum for a S/N ratio of 
100. 
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4.3. Influence of the radial velocity accuracy 
 
In order to analyse the influence of the error made in the radial velocity determination 
on the abundance determination, the observation was shifted by ± 2 km/s to the red 
and blue respectively around the correct value of -23.1 km/s. The abundances of the 
99 iron line sample were fitted with the linfit routine and are shown together with their 
errors in Table 34 below. There is no change in the abundance within the errors, so 
that the uncertainty of 1.6 km/s in the radial velocity determination does not influence 
the results significantly. 
 

vrad [km/s] log(NFe/Ntot) Error (st.dev.) 

-21.1 -4.53 0.15 
-23.1 -4.52 0.15 
-25.1 -4.52 0.15 

 
Table 34: Automatically derived average iron abundances for different values of radial 

velocity corrections. 

4.4. Influence of the projected rotational velocity accuracy 
 
The uncertainty in the determination of the projected rotational velocity can cause an 
error in the abundance determination as the line fitting algorithm tries to compensate 
the difference in the line depth by a change in abundance. If vsini is assumed smaller 
than the correct value, the synthesis for a specific spectral line shows a larger central 
line depth for a given abundance than for the correct (higher) vsini value. Therefore, 
the abundance would be assumed lower in order to fit the line. The opposite effect 
occurs for an overestimation of the projected rotational velocity. 
In order to get an estimate of the influence of this effect on the abundance 
determination, the average iron abundances based on the 99 line sample were 
calculated for two models with ± 5 km/s vsini around the finally determined value of 
53.1 km/s. The result is shown in Figure 83. The abundance error due to the 
uncertainty of the projected rotational velocity is 0.04 dex for iron and can be assumed 
the same for all elements. 

81 



Discussion of errors 

 
Figure 83: Iron abundances for models with different vsini. The blue dots mark the error 

of ± 2.7 km/s, corresponding to an abundance error of 0.04 dex. 

4.5. Errors of the fundamental parameters 
 
Due to the many unknown errors in the process of the determination and due to the 
huge amount of interactions between the parameters, a classical mathematically 
oriented error analysis is not feasible. Covariances would have to be analysed and the 
whole Gaussian error calculus would become extremely difficult. This effort is 
practically useless because of the incomplete knowledge of the errors. 
But it is possible to make some educated guesses on the size of the error bars. This is 
described in the chapters below. 
 
Due to the fact, that all atmospheric parameters are based on a more or less large 
sample of spectral lines, a standard deviation can be calculated for the determined 

abundances. This error can be included as instrumental weights i 2
i

1
w =

σ
 in the 

calculation of the linear fits that were used to determine the three parameters 
microturbulence, gravity and effective temperature. These fits were calculated by 

minimizing  
n

22
i i2

i=1

1
χ = y - y

σ
. 

When the equation of the applied fit is y = kx + d, then the error of the slope is given by 

ε
k

xx

s
ε =

s
with 

n
2

xx i
i=1

s = x - x  and


n
2

i i
2 i=1
ε

(y - y )
s =

n- 2
.  

In a next step, functions were fitted through the upper and lower error limits of each 
data point and their zeros were calculated. Dividing the span of these zeros along the 
x-axis by two, gave a reasonable error estimation for the determined parameter. The 
detailed process is described in the chapters below. 
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4.5.1. Microturbulence 

Iron 
 
The errors of the zeros can be estimated, using a simple geometric approach as shown 
in Figure 84 below. 

 
Figure 84: Slopes of linear fits through iron abundance vs. central line depth for models 

with different microturbulence. The error is marked by the green horizontal bar. 
 
The microturbulence based on iron lines is 2.4 ± 0.2 km/s. 

Chromium 

 
Figure 85: Slopes of linear fits through chromium abundance vs. central line depth for 
models with different microturbulence. The horizontal bar marks the estimated error. 

 
The microturbulence derived from chromium is 3.6 ± 0.4 km/s (see Figure 85). 
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Titanium 

 
Figure 86: Slopes of linear fits through titanium abundance vs. central line depth for 
models with different microturbulence. The horizontal bar marks the estimated error. 

Figure 
86

 
For titanium a microturbulence velocity of 3.1 ± 0.4 km/s can be calculated (see 

). 

Nickel 

 
Figure 87: Slopes of linear fits through nickel abundance vs. central line depth for 

models with different microturbulence. The horizontal bar marks the estimated error. 

Figure 87
 

The microturbulence for nickel is 3.2 ± 0.3 km/s (see ). 
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Summary 
 
Collecting all results leads to the following Table 35. 
 

Element vmic [km/s] Error vmic #lines 

Fe 2.4 0.2 99 
Cr 3.6 0.4 130 
Ti 3.1 0.4 78 
Ni 3.2 0.3 117 

Average 3.1   
Error 0.5   

 
Table 35: Final results including error estimates for microturbulence. 

 
The error of the combined sample was calculated by using the following formula. 
 

           
 

k k
22

i i i i
i=1 i=1

1
s = n -1 σ + n x - x

N-1
 

Formula 2: Combined error based on multiple samples with individual errors. 
 
Here, N is the total number of lines used, ni the number of lines for the element i. k is 
the number of used elements, σi the errors estimated in the chapter above, xi the 
average microturbulence for an element and x  the overall average for all elements. 

4.5.2. Gravity 
 
In the case of gravity, the standard deviations derived from lines from neutral and 
single ionized stages were used. Because the differences Ion I – Ion II are used, the 

combined error has to be calculated by 2 2
Ion-I Ion-IIε = σ re Ion-Iσ  is the standard 

deviation of the neutral and Ion-IIσ  the standard deviation of the single ionized line 

sample. 

+σ , whe
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Iron 

 
Figure 88: Abundance differences between neutral and single ionized iron. The green 

horizontal bar marks the estimated error. 

Figure 88

 
The gravity, determined from Fe I and Fe II lines is found to be 4.0 ± 0.8 cm/s² (see 

). 

Chromium 
 
For chromium, the error bars for the abundance differences between the two ionization 
stages are extremely large (0.54 dex, see ) compared to the differences 
(max. 0.1 dex) so that using the lower error limits results in an unphysical solution of 

Figure 89

-1.4 cm/s². The upper limit gives 7.1 cm/s² which is also an unphysical solution for this 
type of stars. Although the error estimation identifies this measurement as completely 
inconclusive, the result of 4.1 cm/s² was used in this analysis. 

 
Figure 89: Abundance differences between neutral and single ionized chromium. 
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Discussion of errors 

Titanium 
 
Titanium gives a value of 4.8 cm/s² and was therefore omitted in the final calculation. 
Nevertheless, the error would be 1.4 cm/s² when calculated the same way as for iron 
and chromium. This mathematically “allows” the other two values to be still correct. 

Summary 
 
Due to the unusable error estimation based on chromium, the only remaining error is 
based on iron with ± 0.8 cm/s². The standard deviation in the iron line sample is around 
0.15 dex which is a typical, and even very good value for an abundance analysis of a 
faster rotating star. Despite this small error, the gravity could not be determined well in 
terms of error analysis. 
Experience shows, that the typical error in the gravity determination based on 
ionization equilibration for iron lies around 0.2 cm/s². In this analysis, two elements 
were used which provide results, only 0.1 cm/s² apart. Additionally, both values 
(4.0 cm/s² for iron and 4.1 cm/s² for chromium) confirm the photometrically determined 
value of 4.1 cm/s². This supports the correctness of the finally applied value of 
4.1 cm/s² for HD 8801. 

4.5.3. Temperature 

Iron 
 
Figure 90 shows the same graph as  but with polynomial fits through the 
upper and lower errors. Finding the zeros of these fits, calculating the span and 
dividing it by two results in an error estimation for iron of ± 180 K. 

Figure 69

 
Figure 90: Slopes of average iron abundance vs. excitation potential for models with 
different effective temperatures including polynomial fits through errors. The green 

horizontal bar marks the error span. 
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Discussion of errors 

Titanium 
 
Titanium only allows to use the upper error limit and the error is estimated by the 
distance between the zeros of the polynomial fits through the averages and the upper 
error limit (see ). This gives a value of 230 K. Figure 91

 
Figure 91: Slopes of average titanium abundance vs. excitation potential for models with 

different effective temperatures including polynomial fit through upper error limit. The 
green bar marks the error. The lower limit could not be used. 

Nickel 
 
For Nickel, only the lower error limit could be used as the fit through the upper limit 
doesn’t reach zero (see ). Here the error can be estimated to 110 K. Figure 92

 
Figure 92: Slopes of average nickel abundance vs. excitation potential for models with 
different effective temperatures including polynomial fit through lower error limit. The 

green bar marks the error. The upper limit could not be used. 
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Discussion of errors 

Summary 
 
The collected results are shown in . The error is calculated according to 

. As the temperature of 8180 K based on chromium is too high (see chapter 
3.4.3), this element was omitted in the error analysis. 

Table 36
Formula 2

 
Element Teff [K] Error Teff #lines 

Fe 7480 180 99 

Ti 7590 230 73 

Ni 7620 110 111 

Average 7560   

Error 180   
 

Table 36: Final results including error estimates for the effective temperature. 

4.6. Error estimations for abundances 
 
As for the error estimations for the atmospheric parameters, an experimental approach 
was made in order to see the influence of microturbulence, gravity, effective 
temperature and solar scaled abundance on the derived abundances. 
For this purpose, the fundamental parameters were changed around the final solutions 
and the abundance for iron was calculated. 
 
Applying a linear fit to the plots abundance-versus-parameter and calculating the 
abundance that corresponds to the final parameter +/- the estimated parameter error 
gives an error estimation for the element abundances which has to be added to the 
values given in Table 28 and Table 29. The according plots are shown in Figure 93 to 

.  shows the results for all parameters. All errors have to be summed 
up and account for an additional error of 0.09 dex which can be applied to all elements. 
Figure 96 Table 37

 
Figure 93: Iron abundances for models with different effective temperatures. The blue 

dots mark the error limits of ± 180 K which corresponds to an abundance error of  
0.07 dex. 
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Discussion of errors 

 

 
Figure 94: Iron abundances for models with different gravity. The blue dots mark an 

assumed error of ± 0.2 cm/s² which corresponds to an abundance error of only  
0.005 dex. 

 

 
Figure 95: Iron abundances for models with different microturbulence. The blue dots 

mark the error limits of ± 0.5 km/s which corresponds to an abundance error of  
0.01 dex. 
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Discussion of errors 

 
Figure 96: Iron abundances for models with different solar scaled metallicity. The blue 

dots mark the error in iron abundance of ± 0.15 dex that was used to determine the solar 
scaled abundance. This error corresponds to an abundance error of 0.005 dex. 

 

Parameter Value Error Feerror [dex] 

Teff [K] 7560 180 0.07 

logg [cm/s²] 4.1 0.2 0.005 

vmic [km/s] 3.1 0.5 0.01 

Z 0.12 0.15 0.005 
  Sum 0.09 

 
Table 37: Influence of the individual parameter errors on the accuracy of the abundance 

determination. 

4.7. Check of the fundamental parameters 
 
For elements with a larger number of lines, slopes of abundance versus central line 
depth, abundance versus excitation potential and abundance differences between the 
ionization stages were calculated in order to check the quality of the microturbulence, 
effective temperature and gravity determination respectively. ,  and 

 show the corresponding plots. 
Figure 98

Figure 98
Figure 97

All plots confirm the correctness of the parameters as the slopes and abundance 
differences for all elements are close to zero within the errors. As can be seen from the 
plots below, it is not possible to provide a single value for the atmospheric parameters 
which are suitable for all elements. This is due to measuring errors and approximations 
used for the stellar models. Including non-LTE effects, stratification, depth dependent 
velocity fields, magnetic fields etc. would certainly improve the situation. Therefore, to 
be on the safe side, well tested models and procedures have been used in this analysis 
and the results can be used as a basis for further, more sophisticated analyses. It was 
the main intention of this work, to provide theoreticians a well-founded set of input 
parameters for further investigations. 
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Figure 97: Abundance vs. central line depth slopes for different elements. 

 
Figure 98: Abundance vs. excitation potential slopes for different elements. 
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Discussion of errors 

 
Figure 99: Abundance differences (neutral minus single ionized). 

4.7.1. Hydrogen lines 
 
As the spectrum around Hβ and Hα was normalized successfully, the hydrogen lines 
were also used to check the effective temperature. The initial ODF-models suggested a 
temperature around 7050 K. The new LL-model with the final abundances and 
parameters is unable to fit neither of them as shown in Figure 100 and  
below. 

Figure 101

 

 
Figure 100: Observation around Hβ compared to synthesis based on final LL-model. 
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Discussion of errors 

 

 
Figure 101: Observation around Hα compared to synthesis based on final LL-model. 

 
The observations taken at the OHP also confirm this discrepancy of 500 K which 
cannot be explained as yet. This is topic for further investigations. 
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Magnetic field 

5. Magnetic field 
 
There are different possibilities to check whether a magnetic field is present in the 
stellar atmosphere or not. As the expected field strength for Am stars lies around 1kG 
(Böhm-Vitense 2006) and due to the high rotational velocity of HD 8801, the detection 
of such a weak field is a very complicated task. Three methods were applied and are 
discussed in the following chapters. 

5.1. Line splitting 
 
The shape of spectral lines is usually influenced by the presence of a magnetic field 
through the Zeeman effect. This effect causes the energy level to split up and a single 
line in a non magnetic regime would now show up as two (or even more) overlapping 
lines. The separation between the individual components is proportional to the strength 
of the magnetic field in the case of a simple doublet. A detailed description and 
application can be found in Stütz, Ryabchikova, Weiss (2003). 
They used the splitting of a Fe II line at 6149.258 Å to determine the magnetic field 
strength of Ap stars. 
 
Using the spectral synthesis code synth_mag written by O. Kochukov which allows to 
implement a magnetic field, the area around the mentioned iron line was synthesized 
(see ). Figure 102

 
Figure 102: The blue line shows the observation, red the synthesis without magnetic field 
and orange with a radial magnetic field of 10 kG. The syntheses were calculated without 

rotational broadening in order to show the effect of the magnetic field. 
 
As can be seen in Figure 102, the rotational broadening of HD 8801 is too strong to 
see the line splitting. 
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Magnetic field 

A convolution with the broadening function for 53.1 km/s results in  below. 
The splitting is transformed to a modification of the whole spectral feature.  

Figure 103

 
Figure 103: Spectrum around Fe II at 6149.258 Å including syntheses with and without 

magnetic field. 
 

The result is inconclusive. The presence of a magnetic field allows to fit the red part of 
the spectral feature better. The blue part suggests no magnetic field. 

5.2. Abundance versus Landé factor dependency 
 
Another possibility to detect a magnetic field is to look for the existence of a trend in the 
diagram abundance versus Landé factor. If a magnetic field is present, lines with a 
large Landé factor should provide a higher abundance than those, with a small factor. 
Figure 104 shows a plot for iron. A linear fit was applied, upper and lower 95% 
confidence levels were calculated. This was checked for several elements and the 
results are shown in Table 38. 

 
Figure 104: Iron abundances versus Landé factor. 
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Magnetic field 

 

Element 
Slope 

abundance vs. 
Landé factor 

Slope 
error 

R² 

Fe -0.080 0.035 0.041 

Cr -0.034 0.046 -0.004 

Ti 0.196 0.121 0.022 

Ni -0.223 0.124 0.020 

Ca 0.191 0.086 0.084 
Co -0.074 0.138 -0.009 
Nd -0.089 0.161 -0.022 

Average -0.016  0.019 
 

Table 38: Slopes of abundances versus Landé factor, errors and adjusted coefficients of 
determination for different elements. 

 
The low value for R² and the small negative slope (a magnetic field should create a 
positive slope) indicate that there is no strong magnetic field present. 

5.3. Polarimetry 
 
In order to completely rule out a strong magnetic field, polarimetric observations were 
carried out by M. Gruberbauer at the OHP (observatoire de haute province). 
G.A. Wade thankfully reduced and analysed the spectra. He used LSD technique in 
order to increase the S/N ratio and used a line mask for an 8000 K star. The result is 
consistent with a null longitudinal magnetic field.  shows the LSD profiles for 
Stokes I and V. 

Figure 105

 
Figure 105: LSD profiles for stokes I and V. The profile for stokes V was multiplied by a 
factor of 25. No signal is visible and indicates the absence of a strong magnetic field. 
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Conclusion 

5.4. Summary 
 
There is no evidence for a strong magnetic field in HD 8801 although a weak toroidal or 
partly irregular field which doesn’t show up in circular polarization cannot be completely 
ruled out due to the high rotational velocity. 

6. Conclusion 
 
HD 8801 shows an abundance pattern, very similar to Am stars except the higher 
abundance of scandium. A comparison with other Am stars is shown in . 
The abundances for the 4 other stars were taken from Adelman et al. (1997, 1999) and 
Bolcal et al. (1992). 

Figure 106

 

 
Figure 106: Abundance pattern for different Am stars. The stars denote the abundances 

derived for HD 8801 in this analysis. 
 
In , the element abundances are plotted against their ionization energies for 
different ionization stages. Around the values of H I, He I and He II, no 
overabundances are visible, which supports the explanation for the Am star 
phenomenon given by Böhm-Vitense (2006). 

Figure 107
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Figure 107: Abundances vs. ionization potentials. The vertical lines mark the ionization 

energies for H and He. 
 
The discrepancy between the temperature determination from excitation potentials and 
hydrogen lines of about 500 K is puzzling and will be subject for further investigations. 
Using only chromium for the determination of the effective temperature based on the 
abundance-versus-excitation potential dependency, results in an effective temperature 
even higher ( 8200 K). When using titanium to determine the gravity acceleration, a 
value 0.8 dex higher than for iron and chromium is the result. 



These facts show, that the atmospheric structure and the physical processes within the 
stellar atmosphere, cannot be modelled correctly with our tools as yet. This is not 
surprising as HD 8801 shows three different peculiarities rolled into one of which the  
δ Scuti phenomenon is currently the only one, well understood. 
This makes HD 8801 a valuable object as it allows to study the influences of the 
mechanisms among each other. Theoretical models have to be able to explain the wide 
range of characteristics of this object. The results based on observational data 
provided in this analysis are the checkpoints for any theory of γ Doradus, δ Scuti and 
Am stars. 
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Zusammenfassung 

Zusammenfassung 

 
 

„Häufigkeitsanalyse des Gamma Doradus – Delta Scuti Hybriden 
HD 8801“ 

 
 
HD 8801 ist ein bemerkenswertes Untersuchungsobjekt, da es drei physikalisch 
unabhängige Phänomene in sich vereint. Sowohl der Pulsationsmechanismus der 
Gamma Doradus Sterne, als auch der Ursprung der Am-Sterne ist noch nicht 
vollständig verstanden. Die Tatsache, dass diese beiden Phänomene zusammen mit 
jenem der Delta Scuti Pulsationen, ein und demselben Objekt zugeschrieben werden 
können, stellt einen für Theoretiker glücklichen und zugleich seltenen Fall dar. Jede 
Theorie, sowohl für Gamma Doradus, Delta Scuti als auch Am-Sterne, muss die 
Koexistenz der zugrunde liegenden Prozesse erlauben. Den Schnittpunkt dieser drei 
Phänomene markiert HD 8801. 
Eine detaillierte Analyse dieses Sternes ist somit von großer Bedeutung, als die 
ermittelten physikalischen Größen sowohl als Eingangsparameter, als auch als 
Testparameter für sämtliche Theorien dienen können. 
 
Die vorliegende Häufigkeitsanalyse liefert eine Zusammenstellung der meisten, aus 
Sicht der Spektroskopie, bestimmbaren physikalischen Größen eines Sternes. 
Aus fotometrischen Beobachtungen abgeleitete, atmosphärische Parameter dienten 
als Startpunkt der Untersuchung. Sie wurden im Laufe der Analyse zusammen mit den 
Elementhäufigkeiten schrittweise bis zur Konvergenz optimiert. 
Die Analyse an sich wurde in Form eines iterativen Prozesses, basierend auf 
Vergleichen mit Modellrechnungen, durchgeführt bei dem von Schritt zu Schritt eine 
Annäherung an die das Objekt optimal beschreibenden Größen stattgefunden hat. 
Aufgrund der hohen Rotationsgeschwindigkeit von HD 8801 konnten keine 
Äquivalentbreitenmessungen einzelner Spektrallinien durchgeführt werden. Sämtliche 
Ergebnisse basieren auf Anpassungen synthetischer Linienprofile an beobachtete. 
Dies stellt aufgrund der zeitaufwendigen Linienprofilvergleiche eine große 
Herausforderung an den Durchführungsprozess, als auch an die Qualität der 
Datenreduktion dar. Die Analyse wurde unter Zuhilfenahme von semi-automatischen 
Routinen durchgeführt, deren Ergebnisse manuell analysiert und während des 
Iterationsprozesses überwacht wurden. Verschiedene Bestimmungsmethoden wurden 
angewandt und die Ergebnisse verglichen. Die Einflüsse der Fehler in der Bestimmung 
der einzelnen Parameter auf die Ergebnisse wurden untersucht. 
 
Die endgültigen Parameter bestätigen die Am-Stern Natur von HD 8801. Das 
Häufigkeitsprofil zeigt Überhäufigkeiten der seltenen Erden und schwache 
Unterhäufigkeiten bei, für Am Sterne typischen Elementen wie Sc, Ti und Ca. 
Bemerkenswert ist die deutliche Abweichung der Werte für die Effektivtemperatur des 
Sternes, abhängig von der Bestimmungsmethode. Dies ist in diesem Ausmaß ein noch 
unbekanntes Phänomen und bedarf weiterer Untersuchungen. 
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