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ABSTRACT 

The double-stranded RNA binding domain (dsRBD) is a common motif found 

in proteins involved in RNA processing, localisation or interference. RNA recognition 

by these proteins depends on the secondary structure and not on the sequence. 

Adenosine deaminases that act on RNA (ADARs) are dsRBD-containing 

proteins which modify target adenosines into inosines in double-stranded RNA 

substrates, frequently in vicinity of 5´ splice sites, having a profound impact on the 

subsequent RNA processing events, including RNA splicing and stability. Accurate 

splicing of messenger RNAs coding for the subunit B of the glutamate receptor, for 

example, relies upon ADAR-mediated RNA editing at several positions, including the 

R/G site located in exon 13, just two nucleotides upstream of the exon-intron border. 

The exact macromolecular interaction affected by deamination at this site, however, 

has not been identified. We postulated that inosine in this critical position influences 

U1 snRNA base-pairing to this imperfect 5´ splice site. This hypothesis was tested by 

employing compensatory U1 snRNA mutants. Furthermore, the sequence 

surrounding the edited R/G site strongly resembles a splicing silencer consensus 

bound by splicing repressor proteins, like hnRNP A1 or hnRNP H. Therefore, the 

interaction between R/G site and these proteins was also investigated. 

MicroRNA precursors represent another prominent class of ADAR substrates 

whose processing is substantially altered upon RNA editing, as they become 

sensitive to cleavage by Tudor-SN, a cytoplasmic ribonuclease. Since ADAR1 is a 

dsRNA-binding shuttling protein that interacts with Exportin5, a main export receptor 

for miRNA precursors, a co-immunoprecipitation method was exerted to detect the 

interaction of ADAR1 and edited miRNA precursors in both nucleus and cytoplasm. 

In eukaryotic genomes, short interspersed elements (SINEs) are transposable 

regions mobilised through an RNA intermediate that interacts with dsRBD-containing 

proteins crucial for transcription and translation control. In this part of the study, it is 

being shown that plant SB1 SINE RNA interacts strongly with imperfect dsRNA-

binding protein HYL1, a key factor in the microRNA and trans-acting small interfering 

RNA (tasiRNA) production in plants, but not with perfect dsRNA-specific protein 

DRB4 in vitro. The binding site maps to stem-loop structure highly reminiscent of 

miRNA precursors, suggesting how SINE RNAs could regulate different RNAi 

pathways. 
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ZUSAMMENFASSUNG 

Doppelstrang RNA-bindende Domänen (dsRBDs) sind häufige Motive in 

Proteinen die in RNA Prozessierung, Lokalisierung oder RNA Interferenz involviert 

sind. Für RNA Bindung spielt dabei die Sekundärstruktur der RNA und nicht ihre 

Sequenz die entscheidende Rolle. 

„Adenosine deaminases that act on RNA” (ADARs) sind dsRBD-beinhaltende 

Proteine, deren Aufgabe die Deaminierung von Adenosin zu Inosin in spezifischen 

doppelsträngigen RNA Substraten ist. Die modifizierten Basen befinden sich häufig 

nahe an 5´ Spleißstellen und  haben infolgedessen einen breiten Einfluß auf RNA 

Spleißen und Stabilität. Korrektes Spleißen der mRNA der Untereinheit B des 

Glutamatrezeptors benötigt zum Beispiel RNA Editierung durch ADAR an mehreren 

Stellen, unter anderem auch an der R/G Position in Exon 13, die nur 2 Nukleotide 

von der 5´ Spleißstelle liegt. Der genaue Mechanismus, wie Deaminierung an der 

R/G Position Spleißen beeinflußt, ist jedoch unklar. Wir vermuteten, dass Inosine an 

dieser kritischen Position die Interaktion der 5´ Spleißstelle mit U1 snRNA ändert. 

Diese Hypothese wurde experimentell durch eine kompensierende U1 snRNA 

Mutante getestet. Weiters weist die Umgebung der R/G Stelle Ähnlichkeiten mit 

spleißhemmenden Sequenzen auf, an denen reprimierende Proteine wie hnRNP A1 

und hnRNP H binden. Deswegen wurde auch die Interaktion dieser Faktoren mit der 

R/G Stelle untersucht. 

Die Vorläufer der microRNAs („microRNA precursors“) stellen eine weitere 

bedeutende Klasse von ADAR Substraten dar. Die Prozessierung dieser Vorläufer ist 

ebenfalls stark durch RNA Editierung geändert. Sie werden, zum Beispiel, 

suszeptibel für den Abbau durch die cytoplasmatische Ribonuklease Tudor-SN. Da 

ADAR1 ein dsRNA-bindendes Protein ist, das zwischen Nukleus und Cytoplasma 

wandert und mit Exportin5, dem Hauptexportrezeptor der microRNA Vorläufer 

interagiert, wurden co-immunpräzipitierende Methoden angewandt, um die 

Interaktion von ADAR1 und editierten microRNA Vorläufer sowohl im Nukleus als 

auch im Cytoplasma zu untersuchen. 

In eukaryotischen Genomen findet man „Short Interspersed Elements“ (SINEs) 

als transposable Elemente, die durch ein RNA Intermediat mobilisiert werden. Dieses 

RNA Intermediat interagiert mit dsRBD-beinhaltenden Proteinen, die wichtig für 

Transkription und Translation sind. Diesbezüglich wurde gezeigt, dass pflanzliches 
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SB1 SINE RNA mit dem an partielle doppelsträngige RNA bindenden Protein HYL1, 

jedoch nicht mit DRB4, das für die perfekt doppelsträngige RNA Struktur spezifisch 

ist, in vitro interagiert. HYL1 ist ein wichtiger Faktor der microRNA und tasiRNA 

Produktion in Pflanzen. Die Bindestelle für HYL1 an SINE RNA befindet sich an einer 

„stem-loop“ Struktur, die stark an microRNA Vorläufer erinnert. Dies lässt Schlüsse 

zu, wie SINE RNAs RNAi Wege bestimmen könnten. 
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Part I: ADAR-mediated RNA editing 

1.1 Eukaryotic RNA processing 

Contrary to mRNAs in prokaryotes, whose 5’ ends are already being decoded 

by the ribosomes while their 3’ ends are still being transcribed, the majority of 

eukaryotic RNAs need to undergo extensive modification before they are released 

from the nucleus to the cytoplasm as mature transcripts. 

The eukaryotic pre-mRNA molecule is subjected to three main modifications 

which include 5' capping, 3' polyadenylation, and RNA splicing. 

5´ capping of the pre-mRNA involves the addition of 7-methylguanosine (m7G) 

to the 5' end. First, the terminal 5' phosphate is removed leaving the diphosphate 5' 

end which, in turn, attacks the α phosphorus atom of a GTP molecule in order to add 

the guanosine. The guanine ring gets methylated at the N-7 position to form a cap 

structure. Further methylations may occur at the 2' OH ribose groups of the 

downstream nucleotides, giving rise to more complex cap structures. The cap 

protects the 5' end of the primary RNA transcript from cleavage by 5´ exonucleases. 

The pre-mRNA processing at the 3' end involves cleavage of its 3' end and 

subsequent addition of approximately 200 adenosines to form a poly-A tail. Cleavage 

(5'-CA-3') and polyadenylation (5'- AAUAAA-3') signal sequences direct  the cleavage 

and adenylation reactions. Poly(A) polymerase then adds about 200 adenosine units 

to the new 3' end of the RNA molecule using ATP as a precursor. As the poly(A) tail 

is synthesised, it binds multiple copies of poly(A) binding protein, which protects the 

3' end from ribonuclease digestion. 

RNA splicing as the most remarkable of these alterations can be found in 

almost every eukaryotic pre-mRNA, which contains coding (exons) and non-coding 

(introns) regions. Although every intron is flanked by short sequences showing the 

splicing machinery where to excise the non-coding region, not every splice site is 

efficiently used.  Consequently, mRNAs transcribed from the same gene may vary in 

length and number of their fused exons. Thus, alternative splicing can provide the 

cell with a huge set of different proteins derived from a single gene. In fact, this 

mechanism is presumably one of the most important reasons why there are so many 

different proteins in contrast to the comparably low number of genes, especially in 

mammals. 



Introduction 

3 

 

1.2 RNA modification 

Chemical and structural diversity and extent of RNA posttranscriptional 

modification is extraordinary, with over 100 different nucleosides for which chemical 

structures have been assigned presently known in all types of RNA. The largest 

number with the greatest structural diversity are found in tRNA, followed by rRNA, 

mRNA and other RNA species (snRNA). Most modification sites and their positions 

are conserved, but the differences across distant phylogenetic domains are still 

reported. 

The mechanism of pre-rRNA modification raises special interest because it is 

guided by the partially complementary small nucleolar RNAs (snoRNAs). The primary 

rRNA transcript in eukaryotes is 7.5 kb RNA that gets specifically methylated at over 

100 sites in higher vertebrates: 80 % of these modifications are 2´-O-ribose 

methylations, while the rest occurs on either adenine or guanine nitrogenous bases. 

Additionally, up to 100 uridines in human pre-rRNA get converted into 

pseudouridines (Ψ). Both of these processes are directed by snoRNAs. These 100-

200 nucleotides long RNA species contain segments of 10-20 nt precisely 

complementary to conserved regions in rRNA. In the case of rRNA methylation, the 

so-called box C/D snoRNAs act to guide a methylation reaction, mediated by a 

nucleolar protein complex, including fibrillarin as the most prominent member. 

Similarly, the box H/ACA snoRNAs are guiding the pseudouridinylation of numerous 

uridines in eukaryotic rRNAs (Decatur and Fournier, 2003). 

Transfer RNAs contain large proportion, up to 25 %, of the modified 

nucleotides. Nearly 80 different types of modifications or hypermodifications at more 

than 60 different positions in tRNAs have been identified. Hypermodified nucleotides, 

such as i6A (N6-isopentenyladenosine), are usually found adjacent to the 3´ 

nucleotide of the anticodon, when this one is A or U. It is widely accepted that the low 

polarity of such hypermodified bases strengthens the otherwise relatively weak base-

pairing associations of the anticodon´s 3´ base with the codon. Furthermore, some of 

the tRNA modifications form important recognition elements for aminoacyl-tRNA 

synthetases, enzymes responsible for attaching the correct amino acid to a tRNA. 

Even the secondary structure elements in tRNA, like D loop and TΨC loop, are 

named after modified nucleotides dihydrouridine (D) and pseudouridine (Ψ), 

respectively (Bjork et al., 1987). 
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1.3 RNA editing 

RNA editing as a term is used to describe all the molecular processes which 

lead to the change in the information content of an RNA molecule on a single 

nucleotide level with respect to the information encoded in DNA. The process itself 

occurs either by enzymatic modification of nitrogenous bases of nucleotides or by the 

insertion or deletion of short nucleotide stretches. This type of minor 

posttranscriptional RNA modification has been observed in tRNA, rRNA, and mRNA 

molecules of eukaryotes, but not prokaryotes. 

1.3.1 Insertion and deletion RNA editing 

The first reported case of RNA editing was observed in the mitochondria of the 

parasitic kinetoplastid protozoan Trypanosoma brucei (Benne et al., 1986). The 

mechanism proceeds through binding of 50-70 nt trans-acting guide RNAs (gRNAs) 

to the newly transcribed mRNA. This class of small RNAs provides sequence-specific 

information where editing must occur because of the complementarity of its 5´ anchor 

sequence to its cognate mRNA just upstream of the first editing site. On the other 

hand, the central portion of trans-acting gRNA is complementary to the mature edited 

mRNA sequence. These insertions or deletions of the non-genomically encoded 

uridines in the coding regions of the protozoan mitochondrial mRNAs create 

methionine translation initiation codons, correct frameshift mutations or even give rise 

to new open reading frames (Alfonzo et al., 1997; Feagin et al., 1988; Maslov and 

Simpson, 1992). Remarkably, this mechanism has been found to be absolutely 

essential for producing functional proteins. Since this first discovery, many mRNA 

precursors of several kinetoplast protozoa have been found to be edited by insertion 

or, rarely, deletion of uridine residues (Estevez and Simpson, 1999; Gott and 

Emeson, 2000). 
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1.3.2 Ribonucleotide deamination 

As previously described, RNA editing includes both the insertion/deletion of 

nucleotides and the deamination of their nitrogenous bases. The latter type, although 

more recently discovered, is the more widespread type of RNA editing and includes 

the well-characterized conversion of cytidine (C) to uridine (U) and adenosine (A) to 

inosine (I) by hydrolytic deamination of C4 in pyrimidine and C6 in purine rings, 

respectively, as depicted in Figure 1.2.  

 

 

 

Figure 1.2: Cytidine and adenosine deamination 

The reaction mechanism of cytidine and adenosine conversion includes a nucleophilic attack 

of an activated water molecule at the C4 or C6 of the respective rings in an intermediate 

step. Subsequently, an ammonia molecule is released, resulting in a stable uridine or 

inosine, respectively (Gerber and Keller, 2001). 
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1.3.2.1 Cytidine to uridine (C-to-U) RNA editing 

Cytidine deamination in mRNA encoding the mammalian intestinal 

apolipoprotein B (ApoB) was the first observed RNA editing event of the deamination 

type in vertebrates (Chen et al., 1987; Powell et al., 1987). APOBEC1, the enzyme 

responsible for this site-specific alteration belongs to the APOBEC protein family and 

represents the catalytic subunit of the macromolecular complex known as editosome. 

APOBEC1, however, is not capable of carrying out the deamination reaction 

without additional factors. In vitro, a protein complex formed between APOBEC1 and 

an auxiliary protein factor, APOBEC1 complementation factor (ACF), was shown to 

be necessary and sufficient for the ApoB mRNA editing (Mehta et al., 2000). 

ApoB as a component of plasma lipoprotein particles is essential for the 

transport of cholesterol and triglycerides in the plasma. The protein exists in two 

versions in different tissues, each one involved in its distinct lipoprotein metabolism 

pathway (Chan, 1992). In the liver, the pre-mRNA encodes for the full-length protein, 

ApoB-100, which is part of the VLDL complex (Very low density lipoprotein) required 

for the transport of endogenously synthesized cholesterol and triglycerides in the 

blood stream. During lipid turnover, VLDL particles indirectly give rise to LDL particles 

(low density lipoprotein) whose increased plasma level is coupled with higher risk for 

developing atherosclerotic conditions (Herz and Willnow, 1995).  

In small intestine, on the other hand, a shorter version of ApoB, ApoB-48, is 

produced from the same gene locus but with the C-terminal truncation. This protein 

version contributes to synthesis and secretion of chylomicrons, large lipoprotein 

complexes of the intestines. These huge particles cannot be converted into LDL 

particles and, therefore, represent lower risk factor for acquiring cardiovascular 

diseases. ApoB-48 version of the protein arises due to specific deamination of a 

cytidine residue at the position 6666. This change gives rise to the premature stop 

codon (UAA) instead of glutamine codon (CAA) and, thus, results in the synthesis of 

a shorter protein (Chen et al., 1987; Powell et al., 1987).  

The APOBEC family members are also capable of deaminating cytidines in  

single-stranded DNA, this function being of high importance in the regulation 

mechanisms of the vertebrate immune system. Firstly, introduction of C-to-U 

hypermutations in the negative strand of the human immunodeficiency virus (HIV) 

DNA is mediated by the two APOBEC family members: APOBEC3F and APOBEC3G 
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(Harris and Liddament, 2004). Lentiviruses, however, have evolved the Vif gene in 

order to counteract this effect: Vif protein interacts with APOBEC3G and triggers the 

ubiquitination and degradation of APOBEC3G via the proteasomal pathway 

(Donahue et al., 2008; Sheehy et al., 2002). 

Additionally, activation-induced (cytidine) deaminase (AID) is a 24 kDa 

enzyme that also removes the amino group from cytidines in DNA. This enzyme 

exhibits in vitro activity on single-stranded DNA and has been shown to require active 

transcription in order to exert its deaminating activity (Bransteitter et al., 2003). AID is 

currently thought to be the main regulator of secondary antibody diversification. It is 

involved in the initiation of three separate immunoglobulin (Ig) diversification 

processes: somatic hypermutation (SHM), class switch recombination (CSR) and 

gene conversion (GC). During somatic hypermutation, base substitution mutations 

are introduced into the segments coding for the antigen binding region of vertebrate 

immunoglobulin genes. Furthermore, the constant regions of the immunoglobulin 

genes can also be replaced in a process known as class switch recombination.  AID 

is indispensable for both of these processes, but the exact mechanism still remains 

to be elucidated (Harris and Liddament, 2004).  

1.3.2.2 Adenosine to inosine (A-to-I) RNA editing 

 Similar to cytidine deamination, adenosines can be converted into inosines 

(Figure 1.2). In higher organisms, this is the most prevalent type of RNA editing since 

inosines are found in many RNAs, for example in human central nervous system. 

The enzymes responsible for this posttranscriptional modification belong to the family 

of adenosine deaminases. Their substrates are mostly double-stranded RNAs with 

loops and bulges and the mechanism of conversion consists of flipping the target 

adenosine out of the duplex and subjecting it to hydrolytic deamination. The resulting 

inosine does not posses adenosine´s base-pairing ability for uridine in the opposing 

strand, which can lead to destabilisation of the double-stranded structure. 

Thus far, editing events have been found in both coding and non-coding 

regions of protein-coding genes, in viral transcripts, in tRNAs, as well as in miRNAs 

(Athanasiadis et al., 2004; Cattaneo et al., 1988; Levanon et al., 2004; Li et al., 2009; 

Luciano et al., 2004; Morse et al., 2002; Polson et al., 1996). 

 Inosines are often encountered in the first anticodon position (wobble position 

34) in a number of tRNAs in higher eukaryotes and yeast, but also in tRNAArg2 of 
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prokaryotes and chloroplast. This is why it is believed that inosines play an essential 

role in protein synthesis. Their presence at this critical position gives a certain 

amount of flexibility to the otherwise rigid process of codon triplet recognition, 

allowing the formation of alternative base pairs with U, C or A in the third codon 

position (Sprinzl et al., 1998). In addition, N1-methylinosine (m1I37) is found at position 

37 of tRNAAla (A37), adjacent to the anticodon. In this case, adenosine deamination 

occurs first, followed by the methylation of the inosine (Grosjean et al., 1996). 

 The search for the enzyme responsible for this tRNA modification in yeast lead 

to the discovery of an open reading frame highly homologous to the already 

discovered adenosine deaminases in the 3´ region of their translated sequence. 

Indeed, the enzyme termed Tad1p (tRNA specific adenosine deaminase) or 

scADAT1 (Saccharomyces cerevisiae adenosine deaminase that acts on tRNA), was 

demonstrated to specifically target A37 of tRNAAla (Gerber et al., 1998) and was 

subsequently cloned from human (Maas et al., 1999), mouse (Maas et al., 2000) and 

from Drosophila melanogaster (Keegan et al., 2000). Some time after, two additional 

deaminases capable of triggering the conversion of A34 into an inosine have been 

described in yeast: Tad2p/scADAT2 and Tad3p/scADAT3. The two enzymes form a 

catalytically active heterodimer. Contrary to ADAT1, ADAT2 and ADAT3 yeast knock 

out strains are lethal, emphasising the importance of this editing mechanism. In 

contrast to other adenosine deaminases, ADATs do not contain an RNA binding 

motif, indicating that the deaminase domain directly recognises its substrate (Gerber 

and Keller, 1999; Gerber and Keller, 2001; Keegan et al., 2001). 

Another, more complex subfamily of adenosine deaminases, adenosine 

deaminases that act on RNA (ADARs), is thought to have evolved from the ADAT 

subfamily through the acquisition of double-stranded RNA-binding domains 

(dsRBDs) and slight alterations of the primary structure in the catalytic (deaminase) 

domain. Various aspects of ADAR function and activity are dealt with in this work and 

will be thoroughly explained in the following sections. 

  



Introduction 

9 

 

1.4 ADARs (adenosine deaminases that act on RNA) 

1.4.1 First reports on ADARs 

Changes in the structure of double-stranded RNAs formed between 

endogenous mRNAs and complementary antisense RNAs injected into Xenopus 

laevis oocytes were simultaneously observed by two research groups in 1987. The 

RNAs in question were also exhibiting altered mobility shifts on native RNA gels and 

an increased sensitivity to single-stranded RNA-specific RNAses (Bass and 

Weintraub, 1987; Rebagliati and Melton, 1987). The observed unwinding activity 

present in oocytes precluded the silencing of target mRNAs. Later on, it was reported 

that the failure to rehybridise is caused by the irreversible conversion of many 

adenosines into inosines. As a result, A-U base pairs are converted into I-U 

mismatches, leading to the destabilisation and the “unwinding” behaviour of the RNA 

duplex (Bass and Weintraub, 1988; Polson et al., 1991; Wagner et al., 1989). 

The enzyme responsible for this covalent modification was first identified in 

frogs (Hough and Bass, 1994) and shortly after in mammals (Kim et al., 1994a; 

O'Connell and Keller, 1994). 

Since the same RNA modifying activity was identified in two different 

laboratories, two names for the same enzyme, dsRAD (dsRNA adenosine 

deaminase) and DRADA (dsRNA adenosine deaminase), were published. Shortly 

after, a second enzyme with similar capacity to covalently modify adenosines to 

inosines in the dsRNA was identified, namely RED 1 (dsRNA specific editase 1) 

(Melcher et al., 1996). In order to avoid the confusion in the nomenclature system for 

the newly discovered enzyme family, a conclusion was reached to use ADAR1 and 

ADAR2 as the standardised  names for the proteins formerly known as 

dsRAD/DRADA and RED1, respectively (Bass, 1997).   

 Since then, ADARs have been found in animals only, but in organisms as 

evolutionarily divergent as Caenorhabditis elegans and Homo sapiens and have 

been shown to be essential for their development. 
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1.4.2 Members of the ADAR family 

As previously mentioned, ADARs are proteins specific for the animal kingdom, 

with one family member encoded in Drosophila melanogaster genome, two in 

Caenorhabditis elegans and three members found in mammals (Figure 1.3). 

 

Figure 1.3: ADAR family of enzymes 

Three human ADAR family members (ADAR1–3), D. melanogaster (Dm) ADAR and two C. 

elegans (Ce) proteins, ADAR-1 and ADAR-2, share common functional domains like dsRBDs 

and C-terminal deaminase domain (Nishikura, 2006). 

A single ADAR gene of the fruitfly is strongly expressed in the central nervous 

system of embryos and  the brains of adult insects (Ma et al., 2001; Palladino et al., 

2000b). The protein, termed dADAR, consists of two dsRBDs and C-terminal catalytic 

deaminase domain. It forms dimers on its substrates and the dimerisation occurs 

through contacts between N-terminus and the first dsRBD (Gallo et al., 2003). Almost 

all of its targets localise to the nervous system and comprise voltage- and ligand-

gated ion channels, as well as the members of the synaptic release complex 

(Hoopengardner et al., 2003). Another curious feature of this enzyme is the negative 

auto-regulation mechanism it employs: its own mRNA serves it as a substrate, where 
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a specific site in the deaminase domain is edited, leading to the synthesis of the 

protein isoform with the reduced deamination activity (Keegan et al., 2005; Palladino 

et al., 2000a). 

In C. elegans, two ADAR proteins are found. Adr1 has two dsRBDs and a 

functional catalytic domain, while Adr2 has a single dsRBD, with inactive deaminase 

domain due to absence of the conserved glutamate (Glu) residue required for its 

enzymatic activity (Hough et al., 1999; Tonkin et al., 2002). Similar to D. 

melanogaster, identified substrates are important for the functionality of the nervous 

system (Morse et al., 2002). 

In mammals, there are three proteins that belong to the ADAR family: ADAR1, 

ADAR2 and ADAR3. 

Two isoforms of ADAR1 are found in humans, because the ADAR1 gene locus 

has two distinct promoter sequences, a constitutive and an interferon-inducible one, 

which leads to the synthesis of two proteins differing in their N-termini. The shorter 

form, giving rise to a 110 kDa protein and transcribed from the constitutive promoter, 

is termed ADAR1-c. This isoform is lacking the translation product of the exon 1, 

because methionine at position 296 is used as a start codon (George and Samuel, 

1999; Patterson and Samuel, 1995). In contrast, the longer interferon-inducible 

variant, named ADAR1-i, starts at methionine 1 and predominantly localises to the 

cytoplasm where the 150 kDa protein is implicated in viral RNA editing (Wong et al., 

2003). Additionally, novel alternatively spliced versions of ADAR1 have been 

detected (Liu et al., 1997), indicating the importance of ADAR1 regulation on the 

transcriptional level, as well. ADAR1-i, but not ADAR1-c, has the N-terminal Z-DNA 

binding domain composed of the Zα and Zβ moieties. This domain is thought to play 

a role in guiding ADAR1-i to the active transcription sites where, due to unwinding, 

the DNA adopts a Z-like helical conformation (Herbert and Rich, 2001). The central 

part of the proteins comprises three dsRBDs, while the catalytic deaminase domain 

can be found at the C-terminus. 

ADAR2, on the other hand, is a much shorter protein of  80 kDa, but it exhibits 

high level of structural similarity to ADAR1. This comes as no surprise knowing that 

the protein has 31% sequence identity to ADAR1 with the deaminase domain being 

the most conserved one (Melcher et al., 1996). Importantly, ADAR2 contains two 

instead of three dsRBDs and has no Z-DNA binding domains (ZBDs). While ADAR1 

is expressed ubiquitously, explaining the observation that inosines can be found in 
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most tissues, ADAR2 is predominantly expressed in the brain, which correlates with 

the highest abundance of inosines in the brain (Paul and Bass, 1998). 

The most recently discovered member of the human ADAR family, 81 kDa 

ADAR3 shows an exclusive brain expression pattern, particularly in the amygdala 

and the thalamus (Mittaz et al., 1997). Its sequence is 50 % identical to ADAR2, with 

two dsRBDs and a conserved deaminase domain. Interestingly, an additional N-

terminal arginine-lysine-rich sequence (R-domain) of ADAR3 has been identified as a 

single-stranded RNA binding domain (Chen et al., 2000). However, the enzyme is 

believed to lack any catalytic activity, firstly because no substrate of ADAR3 has 

been identified so far and, secondly, because it is unable to edit any of the known 

ADAR1 or ADAR2 substrates. Even though it is not capable of performing the 

catalysis, ADAR3 could bind potential substrates of ADAR1 and ADAR2 and, thus, 

might serve as a negative regulator of the two enzymatically active deaminases 

(Chen et al., 2000). 

Additional ADAR-like gene in vertebrates, TENR, is expressed in the male 

germline and has only one dsRBD (Hough and Bass, 1997). TENR is missing a key 

glutamate residue in the active site of the deaminase domain and also lacks zinc-

chelating residues. The protein itself, however, has not yet been characterized 

(Keegan et al., 2004). 

1.4.3 Domain architecture of ADARs 

 All proteins belonging to either ADAR or ADAT family contain a conserved 

catalytic deaminase domain in their C-terminus, but show great variation in their 

central and aminoterminal regions. 

The deaminase domain bears high homology to the catalytic centres of DNA 

methyltransferases and cytidine deaminases that act on RNA (CDARs) (Hough and 

Bass, 1997; Kim et al., 1994b). It is composed of characteristic sequence motifs 

required for the catalysis of hydrolytic deamination. One of them includes highly 

conserved glutamate residue and is believed to mediate the proton transfer during 

catalysis. Additionally, conserved histidine and cysteine residues are indispensable 

for the complexation of a zinc ion, thereby constructing the active site of the enzyme. 

Similar to most metalloenzymes, a water molecule is activated by the zinc ion, 

enabling its oxygen atom to nucleophilically attack C6 atom of the adenosine´s purine 
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ring (Lai et al., 1995). The affected adenosine is flipped out of the RNA helix due to 

spatial reasons during the editing reaction (Stephens et al., 2000). Interestingly, the 

dsRBDs of ADARs might facilitate this conformational change through enhancement  

of the RNA duplex flexibility (Yi-Brunozzi et al., 2001). 

In addition to the deaminase domain, only the interferon-inducible isoform of 

ADAR1 (ADAR1-i) harbours two Z-DNA binding domains (Z and Z) in its N-

terminus. Structural analyses have shown that each domain builds up a helix-loop-

helix structure similar to the one found in DNA-binding proteins, and can bind left-

handed, supercoiled DNA Z-helix in vitro (Herbert et al., 1997; Schade et al., 1999; 

Schwartz et al., 1999). Although this type of DNA double helix has not been identified 

in vivo yet, it is speculated that the progressing RNA polymerases might leave such 

an unusual structure behind while performing transcription, which led to the 

proposition that the ZBDs direct ADAR1-i to the transcriptionally active sites (Herbert 

et al., 1997). For Xenopus laevis ADAR1, in contrast, it has been demonstrated that 

the ZBDs are dispensable for chromosomal localization (Eckmann and Jantsch, 

1999). Furthermore, there are hypotheses suggesting the importance of ZBDs for 

viral dsRNA binding in the cytoplasm, required for hyperediting in the antiviral 

response (Brown et al., 2000; Herbert et al., 1997). 

While ADAR1 contains three double-stranded RNA-binding domains (dsRBDs) 

in its central region, only two dsRBDs can be found in ADAR 2 and ADAR 3. They 

are involved in the substrate recognition and binding, but also serve as modulators of 

the intracellular trafficking of ADAR1 (Fritz et al., 2009; Strehblow et al., 2002). 

1.4.4 Substrate recognition by ADARs and the mechanism of 

adenosine deamination 

Although certain sequence contexts serve as preferred sites for ADAR binding 

and editing, substrate specificity of ADARs is mainly a matter of RNA structure, and 

not its sequence. Currently, it is poorly understood how the enzyme discriminates 

between adenosines that have to be converted into inosines and those that are not 

altered. Albeit, a longer double-stranded RNA helix interrupted by mismatches, 

bulges and loops represents an ideal ADAR-binding platform (Bass, 2002). However, 

there is evidence that the substrate recognition and catalysis by ADARs could involve 

the base that opposes the edited adenosine. In this case, adenosines in A:C 
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mismatches were edited at much higher rate by both ADAR1 and ADAR2 when 

compared to A:A or A:G mismatches, or even A:U base pairs at the same location 

within dsRNA (Wong et al., 2001). Also, the reports on 5´ nearest neighbour 

preference have been published (Dawson et al., 2004; Riedmann et al., 2008). 

The exchange of the deaminase domains between ADAR1 and ADAR2 

resulted in the substrate specificity typical for the enzyme whose deaminase domain 

was part of the protein chimaera (Wong et al., 2001). However, studies on chimaeric 

proteins containing two dsRBDs of the RNA-dependent protein kinase (PKR) 

combined with the ADAR1 deaminase domain revealed the importance of ADAR 

dsRBDs in the substrate recognition, as well (Liu et al., 2000). 

To give further insight into how the substrate specificity is achieved, an NMR 

chemical shift perturbation study was performed using the two dsRBDs of rat ADAR2 

and the GluR-B R/G site stem-loop as a substrate. The protein and the RNA surfaces 

involved in the complex formation were identified, with dsRBD1 found to recognize 

the conserved terminal pentaloop and dsRBD2 found to interact with two bulged 

nucleotides adjacent to the R/G editing site. It is, therefore, evident that different 

dsRBDs from the same protein can act cooperatively in order to achieve a productive 

recognition of the cognate substrate (Stefl et al., 2006). 

In order to clarify the exact reaction mechanism by which the adenosine 

deamination proceeds, crystal structure of the human ADAR2 catalytic domain was 

solved. The active site is defined by a zinc ion that coordinates a water molecule 

responsible for the ammonia displacement during the deamination reaction, with the 

coordination of the zinc ion appearing essentially identical to the geometry seen at 

the catalytic centers of cytidine deaminase and TadA, a member of the ADAT2 

family. The site of nucleophilic attack during the ADAR reaction (C6 of adenine) is 

buried in the major groove of the dsRNA. Due to its inaccessibility, ADARs are 

thought to employ a base-flipping mechanism to bend the target adenosine out of the 

dsRNA A-helix. Consistently, the catalytic zinc centre is located in a deep pocket 

surrounded by the positively charged residues, making it an ideal binding surface for 

the negatively charged dsRNA. Additionally, catalytic activity of ADAR2 depends on 

the incorporation of inositol hexakisphosphate (IP6) within the protein core. This 

polyphosphate is considered crucial for the protein-folding stabilization, but it could 

also be involved in the modulation of ADAR2 enzymatic activity (Macbeth et al., 

2005). 
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1.4.5 ADAR substrates 

ADARs in higher vertebrates have thus far been found to target three main 

types of substrates. Firstly, in mammals, as well as in flies and worms, ADAR-

mediated RNA editing regulates important functional properties of neurotransmitter 

receptors in the central nervous system (Maas et al., 2006). Furthermore, another 

important role for ADARs in mammals is thought to be editing and hyperediting of 

viral dsRNA as a defense mechanism against infections. Finally, in recent years the 

effects of adenosine deamination in the non-coding substrates, most notably the 

microRNA precursors, emerged as a significant regulatory mechanism in RNA 

interference (Ohman, 2007). 

1.4.5.1 ADAR editing in the central nervous system 

The most prominent and best described targets of ADARs in the central 

nervous system are the pre-mRNAs encoding subunits of the glutamate receptor, the 

serotonin 2C receptor in mammals or the potassium channel in squids (Burns et al., 

1997; Lehmann and Bass, 2000; Melcher et al., 1996; Patton et al., 1997). 

L-glutamate is the major excitatory neurotransmitter in the vertebrate central 

nervous system. There it serves the glutamate-gated ion channels in mediating rapid 

excitatory transmission and synaptic plasticity (Greger and Esteban, 2007). 

Structurally, glutamate-gated ion channels represent heterotetrameric cation 

channels which can be divided into three main subtypes: AMPA (α-amino-3-hydroxy-

5-methyl-4-isoxasolepropionic acid) receptors, NMDA (N-methyl-D-aspartate) 

receptors and kainate receptors, all concentrated at postsynaptic sites. Being largely 

Ca2+-impermeable and displaying extraordinarily fast kinetics, AMPA receptors are 

responsible for the primary depolarization in glutamate-mediated neurotransmission. 

Their functional properties mostly depend on the subunit composition and the 

modifications introduced through RNA splicing and RNA editing. They assemble from 

four subunits, termed GluR1-GluR4 or, alternatively, GluR-A – GluR-D. ADAR-

mediated editing occurs at multiple sites in the GluR-B subunit pre-mRNA (Seeburg 

et al., 1998). 

The editing site in exon 11 of the GluR-B pre-mRNA has been shown to be 

essential. Here, RNA editing leads to conversion of a glutamine (Q) codon (CAG) into 

an arginine (R) codon (CGG) with 99.9 % efficiency. The converted residue is found 
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in the second transmembrane domain, known to take part in the receptor´s central 

channel formation. The amino acid composition of the entire pore region is, of 

course, crucial for the ion transport efficiency, with the assembly of Q/R site-edited 

subunits into the receptor significantly lowering the channel´s Ca2+ permeability 

(Sommer et al., 1991). This arginine residue has also been shown to decrease the 

rate of the receptor assembly and its transport to the synaptic membranes in cultured 

hippocampal neurons (Greger et al., 2003; Greger et al., 2002). In this case, the 

editing is performed by ADAR2 and the binding platform for the enzyme is formed 

between the exon 11 and the editing complementary sequence (ECS) located in the 

downstream intron (Higuchi et al., 1993; Melcher et al., 1996). 

The second recoding editing site in GluR-B pre-mRNA is the R/G site, with 

adenosine deamination occurring  at up to 80 % efficiency in three out of four AMPA 

receptor subunits (GluR-B, -C and –D). It is located in exon 13, at position -2 with 

respect to the 5´ splice site of intron 13. In this case, an arginine (R) codon (AGA) is 

turned into a glycine (G) codon (GGA). This site exhibits varying editing levels during 

development and its physiological role is to increase recovery rates from 

desensitization (Lomeli et al., 1994). 

Editing at both Q/R and R/G site is having a crucial influence on splicing of 

GluR-B pre-mRNA. Reduced editing levels at Q/R site cause aberrant retention of 

the downstream intron 11 (Higuchi et al., 2000; Schoft et al., 2007). On the other 

hand, R/G site is situated only one nucleotide upstream of the intron 13 5´ splice site. 

Editing at this position leads to a retardation in the removal of the adjacent intron, 

thereby stimulating the correct alternative splicing decisions in the downstream 

regions of the transcript (Schoft et al., 2007). 

Serotonin (5-hydroxytryptamine) is a neurotransmitter important for neuronal 

functions such as sleep regulation, appetite or pain. The molecule interacts with a 

large family of receptors and triggers signaling that is crucial for proper 

neurotransmission. Indeed, binding of serotonin to its transmembrane receptor is 

involved in several physiological and behavioral processes such as production of 

cerebrospinal fluid and regulation of feeding behavior (Maas and Rich, 2000). The 

human 5-hydroxytryptamine receptor of subtype 2C (5-HT2CR) is ubiquitously 

distributed throughout the central nervous system and is believed to regulate mood, 

appetite and sexual behavior (Molineaux et al., 1989). Functionally, it belongs to the 

class of G-protein-coupled receptors which are linked to the activation of 
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phospholipase C, an enzyme that triggers synthesis of secondary messengers 

(Hoyer et al., 1994). 

Editing in this primary transcript takes place at five different positions in exon 

5, namely editing sites A,B,C,D and E.  All modified adenosines are situated within 

the pre-mRNA segment encoding the second intracellular loop of 5-HT2CR, a 

receptor domain important for G-protein coupling (Niswender et al., 1998). While 

editing at sites A and B is accomplished by ADAR1, sites C,D and E are deaminated 

by ADAR2 (Wang et al., 2000). 

Interestingly, in rat at least seven and in humans twelve different isoforms of 

the 2C subtype of serotonin receptor (5-HT2CR) have been found resulting from 

alternative editing at five different sites by ADARs. The receptor isoform whose pre-

mRNA is edited at all five sites carries amino acid substitutions at positions 156, 158 

and 160, where the genomic DNA-encoded isoleucine, asparagine and isoleucine 

(I,N and I) are converted into valine, glycine and valine (V,G and V), respectively. 

Strikingly, the resulting amino acid substitutions result in decreased G-protein 

coupling and less efficient triggering of the phospholipase C signaling cascade. The 

ligand affinity is also affected, with the unedited version exhibiting the highest  and 

the fully edited version the lowest affinity for the neurotransmitter, while partially 

edited isoforms show intermediate affinity (Burns et al., 1997; Flomen et al., 2004; 

Niswender et al., 1998). Mutant mice with the knocked-in pre-edited (VGV) receptor 

version were showing elevated energy expenditure and loss of fat mass due to 

constitutive activation of the sympathetic nervous system (Kawahara et al., 2008).  

Recently, a third notable target of ADAR editing in the central nervous system 

was reported in mouse, namely the gamma-aminobutyric acid (GABA) type A 

(GABAA) receptor subunit α3 (Gabra-3) pre-mRNA. This receptor is the member of 

the Cys-loop ligand-gated ion channel superfamily and conducts chloride (Cl-) ions 

upon GABA-mediated activation. The modified adenosine is found in exon 9 within a 

short stem-loop structure, opposing the cytidine residue, and leads to I/M (isoleucine 

to methionine) amino acid substitution in the transmembrane (TM) domain 3 in the 

subunit α3 of the five-subunit GABAA receptor. Both ADAR1 and ADAR2 can mediate 

this developmentally regulated adenosine deamination: 50 % of transcripts are edited 

in newborn mice at day 2, while those in adult mouse brain are edited to almost 100 

% (Ohlson et al., 2007). 
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1.4.5.2 Editing of viral dsRNA 

The full-length isoform of ADAR1, ADAR1-i, is transcribed from a promoter 

region containing an interferon-stimulated response element (ISRE) (George and 

Samuel, 1999). Like most genes whose activation is triggered through interferon 

signaling, it has been implicated in the cellular antiviral defense mechanism. 

Interferon synthesis is induced by dsRNA, a byproduct of the replication cycles of 

many RNA viruses and serves as the first line in combating viral infections in 

mammals (Sen, 2001). 

The alterations in cDNA sequences consistent with the ADAR enzymatic 

activity have been reported for many viruses. The editing of viral RNAs occurs 

promiscuously in almost every case examined, with up to 50 % of all adenosines 

modified. 

Such hypermutation is seen in viral RNA isolates of host cells invaded by 

parainfluenza virus, respiratory syncytial virus and vesicular stomatitis virus (Bass, 

2002). Pre-mRNA encoding the matrix protein of the measles virus, crucial in viral 

budding, is also found nonselectively deaminated at adenosine residues. This 

prevents the progression of the lytic cycle and forces the virus to remain in the 

persistent infection state (Sheppard et al., 1985). All of the above mentioned 

pathogens belong to the group of paramyxoviruses whose non-segmented RNA 

genome requires an RNA-dependent RNA polymerase for the transcription into an 

mRNA. Another similarity among them is the exclusively cytoplasmic replication 

cycle, leading the scientists to believe that there is a cytoplasmic endonuclease 

targeting only hyperedited dsRNAs. Indeed, such an enzyme, Tudor staphylococcal 

nuclease (Tudor-SN), has been discovered and the experiments have revealed its 

specificity for the highly edited dsRNAs comprising alternating I-U and U-I weak 

basepairing partners, leaving the moderately deaminated dsRNAs intact (Scadden, 

2005; Scadden and Smith, 2001b). 

A limited number of viruses, however, have already evolved different 

mechanisms to take advantage of the ADAR-mediated RNA editing. During the late 

stage infection with the polyoma virus, for example, newly synthesized transcripts 

form double-stranded regions with the complementary early mRNAs, leading to the 

hyperediting of the latter. While the hyperedited early transcripts become export-

incompetent, the late ones reach the cytoplasm and give rise to proteins fundamental 
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for the transition from early to late stage infection (Bass, 2002). In the nucleus, such 

hypermutated RNAs, like the polyoma virus early transcripts, are anchored to the 

nuclear matrix by the inosine-rich RNA-binding protein p54nrb, which forms a complex 

with the splicing factor PSF and the inner nucler matrix protein matrin 3, thereby 

preventing the nuclear exit of the promiscuously edited messages and, subsequently, 

their translation to the non-functional proteins (Zhang and Carmichael, 2001). 

There are also selective editing events described for viral RNAs, like in 

hepatitis delta virus (HDV), a subviral human pathogen that requires hepatitis B virus 

(HBV) for packaging. Its genome encodes a single open reading frame, giving rise to 

hepatitis delta antigen (HDAg). Due to ADAR-mediated RNA editing, this protein 

occurs in two forms. The shorter form is expressed constitutively, while the 

adenosine deamination within the amber (UAG) stop codon gives rise to tryptophane 

(UGG) codon in so-called amber/W site, resulting in the extension of the open 

reading frame by additional 19 amino acids (Polson et al., 1996). The shorter protein 

(HDAg-S) plays a role in the viral genome replication, while the longer isoform 

(HDAg-L) leads to the replication inhibition and promotes the assembly of new viral 

particles (Ryu et al., 1992). 

Recently, ADAR1 was shown to stimulate human immunodeficiency virus type 

1 (HIV-1) replication by using both editing-dependent and editing-independent 

mechanisms. Over-expression of ADAR1 in HIV-1 producer cells increases viral 

protein accumulation  in an editing-independent manner. Additionally, ADAR1 also 

associates with HIV-1 RNAs and edits adenosines in the 5' untranslated region (UTR) 

and the Rev and Tat coding sequences. It is believed that, just like polyoma virus and 

HDV, HIV-1 has adapted in a way to make use of specific RNA editing activity of the 

host cell (Doria et al., 2009). 

1.4.5.3 Non-coding ADAR substrates 

Recent developments in the field of RNA editing indicate that mRNA recoding 

at specific sites is not the principal function of RNA editing. Extensive bioinformatics 

screening for novel ADAR substrates revealed a completely new set of putative 

ADAR targets in Alu elements and among microRNA precursors (Athanasiadis et al., 

2004; Blow et al., 2006; Levanon et al., 2004; Li et al., 2009). 

Alu elements are found at approximately 1.4 million copies in the human 

genome and comprise just over 10 % of the entire genome content. These 300 bp 
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retrotransposon sequences contain inverted repeats that can fold into double-

stranded RNAs upon transcription, making them an ideal ADAR target (Athanasiadis 

et al., 2004; Levanon et al., 2004; Morse et al., 2002). When a closer look was taken 

on the nature of the newly emerged ADAR substrates, it was determined that 90 % of 

them resides in one of the members of Alu family. These editing events can cause 

creation or elimination of splicing signatures and affect the alternative splicing of Alu-

derived exons (Athanasiadis et al., 2004; Lev-Maor et al., 2007; Levanon et al., 

2004), but can also serve as a global regulatory mechanism in controlling RNA 

stability, splicing or translation (Nishikura, 2004). 

Another new class of non-coding RNAs crucial in the regulation of gene 

expression was shown to be targeted by adenosine deamination, namely the 

microRNA precursors. In the first report on the topic it has been demonstrated that 

the precursor of microRNA-22 (miRNA-22) forms an 85 nucleotide stem-loop that can 

be bound and edited at up to six sites by ADAR1 and ADAR2 in mammals (Luciano 

et al., 2004). At the time, it was poorly understood what the purpose of miRNA editing 

was, but over the years it became clear that such posttranscriptional modification has 

a profound influence on fate of both microRNAs and their targets. Second reported 

editing target among microRNA precursors was miR-142 that was exhibiting loss of 

function after RNA editing, because the cropping of inosine-containing primary 

transcripts into pre-miRNA-142 by the Drosha-DGCR8 complex was inhibited. 

Moreover, highly edited primary miR-142 transcripts, unlike unedited ones, were 

cleaved in vitro by Tudor-SN, a cytoplasmic endonuclease, specific for dsRNAs with 

high inosine content and a component of the RISC complex (Yang et al., 2006). 

Furthermore, in the study on miR-151 editing, it was reported that the inosine content 

was increasingly higher in pre-miRNA-151 and mature miRNA-151 in several mouse 

tissues (Kawahara et al., 2007a). Here, Dicer-TRBP processing of pre-miR-151 is 

affected when structure-destabilising inosines are present. Finally, miRNA editing 

can lead to the redirection of mature miRNA to a different mRNA target, like in the 

case of mature miR-376 where the editing site is found within the seed region crucial 

for initial interaction steps with the complementary sequence in cognate mRNA 

(Kawahara et al., 2007b). 

As soon as the first reports on miRNA precursor editing were published, the 

prospect of ADARs accompanying miRNA precursors through nuclear pores out to 

the cytoplasm began to emerge, mainly because it was not clarified how the edited 
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primary miRNA transcripts, thought to be export-incompetent, reach the cytoplasm 

for degradation. ADAR1p150, for example,  is an interferon-inducible shuttling protein 

known for its role in antiviral response through cytoplasmic RNA editing of various 

pathogens. This full-length isoform of ADAR1, however, is expressed at steady-state 

levels even in cells and tissues that have never been infected (Patterson and 

Samuel, 1995). Therefore, it is plausible that this fraction of ADAR1p150 could 

accompany editing targets among miRNA precursors to the cytoplasm. Furthermore, 

being a dsRBD protein, ADAR1p150 could exploit miRNA precursor as an RNA 

bridge in the formation of export-competent ternary complex with Exportin-5. 

Exportin-5 is the karyopherin identified as an export receptor for pre-miRNAs, as well 

as for other small structured RNAs like viral minihelix RNAs or tRNAs (Calado et al., 

2002; Gwizdek et al., 2003; Lund et al., 2004; Yi et al., 2003). This importin-β family 

member has first been identified as a nuclear export factor for ILF3, dsRBD-

containing protein (Brownawell and Macara, 2002). Later on, it was shown to mediate 

RNA-dependent export of a number of dsRBD proteins, like JAZ, Staufen-2 or eEF1A 

(Calado et al., 2002; Chen et al., 2004; Macchi et al., 2004). Remarkably, dsRBDs of 

cargo proteins are in most cases indispensable for the interaction with Exportin-5. In 

addition, this interaction is thought to be mediated, or at least strengthened, through 

an RNA bridge (Gwizdek et al., 2004). 

Exportin-5 was also shown to interact with dsRBDs of ADAR1 and interfere 

with its nuclear import via Transportin-1, implying its role in ADAR1 

nucleocytoplasmic distribution (Fritz et al., 2009; Poulsen et al., 2001; Strehblow et 

al., 2002). Together with the role of Exportin-5 in pre-miRNA nuclear export and 

ADAR1-mediated editing of miRNA precursors, this prompted us to address the 

question of ADAR1 association with miRNA precursors in both nucleus and 

cytoplasm and, possibly, their nuclear co-export in the second part of this thesis. 
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1.4.6 Biological importance of ADARs 

ADARs have been identified in all metazoan species, including C. elegans, D.  

melanogaster, X. laevis and humans (Bass, 1997). The biological relevance of the 

enzymes was investigated by generating knock-out animals in several species. 

Although the invertebrate species remain viable upon ADAR deletion, they exhibit 

severe phenotypes. ADAR elimination in mammals, on the other hand, results in 

lethality, proving the adenosine deamination to be essential for normal mammalian 

development. Altogether, it can be concluded that during the course of evolution the 

role of ADAR-mediated RNA editing became increasingly important, providing  higher 

vertebrates with yet another sophisticated mode of posttranscriptional gene 

regulation. 

Despite their viability, both adr-1 and adr-2 knock-outs in C. elegans have 

difficulties detecting and tracking chemoattractants, a phenotype described as 

aberrant chemotaxis (Tonkin et al., 2002). Strikingly, this phenotype could be partially 

rescued when animals deficient in one of the adr genes were crossed with the strains 

mutated in one of the genes responsible for the effective RNAi response. These 

findings, together with reports on low Dicer cleavage efficiency of hyperedited 

dsRNAs in vitro, have provoked a setting of a theory according to which RNA editing 

and RNAi act as two antagonistic processes (Scadden and Smith, 2001a; Tonkin and 

Bass, 2003). 

A-to-I RNA editing has also been reported for several D. melanogaster ion 

channel gene transcripts. The deletion mutants of the responsible enzyme, dADAR, 

that lack deamination activity in extracts lack all known site-specific RNA editing (25 

sites in three ion channel transcripts). Although D. melanogaster larvae homozygous 

for the deletion in their adar locus have no phenotypical changes, adults lacking 

dADAR show no morphological abnormalities, but exhibit extreme behavioural 

deficits including temperature-sensitive paralysis, locomotor uncoordination and 

tremors and, finally, changes in grooming and mating behaviour. Neurodegeneration, 

affecting particularly the retina and causing ubiquitous brain lesions, accompanies 

the increase in phenotypic severity. This study provided clear evidence that pre-

mRNA editing in D. melanogaster alters the nervous system targets to affect adult 

nervous system function, integrity, and behaviour (Palladino et al., 2000b). 
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In contrast to severe but viable phenotypes of invertebrate ADAR knock-outs, 

such deletions in mammals have been shown to be lethal. In the case of ADAR1 

locus deletion, heterozigosity lead to birth of apparently completely healthy mice. 

Homozygous deletants, on the other hand, die between days 11.5 and 12.5. Death 

occurs because of the halted developmental processes, distorted fetal liver structure 

and widespread programmed cell death in tissues including heart and vertebra. The 

apoptotic events, however, are most severely expressed in both hepatocyte and 

haematopoietic cell lineages of the fetal liver (Hartner et al., 2004; Wang et al., 

2004a; Wang et al., 2000). 

Recently, experiments with the inducible gene disruption in mice have shown 

that ADAR1 is not only essential for the maintenance of both fetal liver and adult 

bone marrow haematopoietic stem cells, but it can also act as a crucial suppressor of 

interferon signaling and, thus, protect cells from the deleterious consequences of the 

activation of interferon-stimulated pathways. The latter role of ADAR1 is attributed to 

the editing of as yet unidentified transcripts involved in the interferon-induced cellular 

response (Hartner et al., 2009). 

Point mutations in locus coding for ADAR1 are associated with 

dyschromatosis symmetrica hereditaria (DSH), a disease that leads to altered 

pigmentation pattern of the skin on hands and feet. Patients display only a mild 

heterozygous dominant phenotype, with their mental and physical condition 

seemingly unaffected by the mutation (Miyamura et al., 2003). 

Similar to ADAR1 mutants, mice heterozygous for the ADAR2 

deletion/disruption are viable and appear normal. Their homozygous mutant 

counterparts, however, die not long after birth, between postnatal days 0 and 20, 

exhibiting severe neurological symptoms, among them frequent epileptic seizures. 

This phenotype is a consequence of underediting at exclusively ADAR2-targeted Q/R 

site of the GluR-B pre-mRNA, giving rise to incorrectly spliced mRNA and, 

subsequently, receptors with increased Ca2+ permeability in hippocampal neurons, 

leading to hippocampal neurodegeneration. Interestingly, the viability and completely 

normal phenotype are reverted once both alleles for this underedited transcript get 

substituted with the genomically pre-edited ones, i.e. where target adenosine is 

mutated to guanosine. This observation defines the glutamate receptor subunit B 

pre-mRNA as the most important, if not the only essential, ADAR2 target in vivo 

(Higuchi et al., 2000). 
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ADAR2 dysfunction in humans has been implicated in couple of serious 

conditions, most of them unsurprisingly accompanied by neurological and psychiatric 

symptoms, considering that ADAR2 expression is highest in the brain where most of 

its substrates reside. Amyotropic lateral sclerosis (ALS), for example, is an illness 

characterized by the degeneration of motor neurons, leading to the muscular atrophy 

and respiratory failure. Impaired ADAR2 activity has been implicated in ALS because 

the editing at Q/R site of GluR-B pre-mRNA is incomplete in 56 % of ALS patients 

and the corresponding symptoms can be attributed to glutamate excitotoxicity and 

the excessive Ca2+ influx (Kawahara et al., 2004; Kwak and Kawahara, 2005). 

5-HT2C receptor pre-mRNA, on the other hand, is edited at five positions and, 

considering the role that serotonin plays in the central nervous system, it is believed 

that reduced or disrupted ADAR activity could play a role in psychiatric disorders like 

depression or schizophrenia. In comparison with healthy individuals, the 5-HT2C 

receptor pre-mRNA editing pattern is significantly changed in suicide victims with 

documented chronic major depression. These patients had overedited E and C sites 

and underedited D site when compared to samples of individuals without similar 

condition. Since all of the affected sites are ADAR2 targets, altered function of this 

protein seems to be a likely cause of the symptoms. Moreover, studies on mice have 

shown that the treatment with the antidepressant fluoxetine leads to exactly reverse 

changes in editing frequency at E, C and D sites when compared to the suicide 

victims, implying one of the possible mechanisms of action for this type of medication 

(Gurevich et al., 2002). 
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1.5 RNA splicing 

One of the main features of the protein-coding primary transcripts in higher 

eukaryotes is the existence of multiple non-coding intervening sequences known as 

introns. These long stretches of nucleotides interrupt the expressed sequences, 

named exons, and need to be precisely removed in order to obtain fully mature, 

export- and translation-competent message in a process called RNA splicing. All of 

the reactions leading to intron removal and exon fusion take place in a spliceosome, 

a macromolecular assembly characterized by a highly dynamic network of RNA-

protein and RNA-RNA interactions. The essential components of the spliceosome 

include five small RNAs – U1, U2, U4, U5 and U6 small nuclear RNAs (snRNAs), all 

of them in RNA-protein complexes known as snRNPs, small nuclear 

ribonucleoprotein particle. In addition, there are a plethora of extraspliceosomal 

protein factors required to make the correct splicing decisions (Guthrie and 

Patterson, 1988; Maniatis and Reed, 1987). 

1.5.1 Sequence requirements in RNA splicing 

The exact sites where the enzymatic reactions in RNA splicing take place are 

defined by the primarily intronic consensus sequences, close to both 5´ and 3´ splice 

sites. The 5´ end of the intron, the 5´ splice site, is relatively short and contains highly 

conserved dinucleotide GU at positions 1 and 2 of the intron. In contrast, 3´ splice 

sites are defined by three separate sequence elements – the branchpoint site, the 

polypyrimidine tract and the 3´ splice site consensus itself. Together, they make up a 

loosely defined 3´ splice site region extending up to 100 nucleotides upstream of the 

actual excision site: the branchpoint adenosine is found surrounded by the short 

consensus sequence, followed by the polypyrimidine tract and, finally, ending in the 

3´ terminal dinucleotide AG of the intron (Padgett et al., 1986). 

1.5.2 Chemistry of RNA splicing 

All introns within nuclear mRNA precursors are thought to be removed by the 

same two-step mechanism consisting of two consecutive transesterification reactions 

(Figure 1.4). The first step involves a direct nucleophilic attack of the 2´-OH of the 

branchpoint site adenosine on the phosphate at the 5´ splice site, which results in the 
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displacement of the 3´ oxygen of the 5´ exon and the formation of the 2´-5´ 

phosphodiester bond between the branchpoint and the 5´-terminal nucleotide of the 

intron. Therefore, two products of the first transesterification are a detached 5´ exon 

and an intron-3´exon fragment in a lariat configuration. In the second step, the same 

3´-OH of the 5´ exon that had been the leaving group in the first reaction reverts its 

role and now behaves as a nucleophilic group at the 3´ splice site to similarly 

displace the 3´ end of the intron with the 5´ end of the 3´ exon. This results in the 

ligation of 5´ exon with the 3´ exon via new phosphodiester bond and leaves the 

released intron still in the lariat structure (Padgett et al., 1986; Sharp, 1987). 

  

Figure 1.4: Two-step mechanism of RNA splicing 

Splicing of pre-mRNA takes places via two transesterification reactions. In the first step, the 

2'-hydroxyl group of the branchpoint site adenosine attacks the phosphate at the GU of the 

5'-splice site. This leads to cleavage of the 5' exon from the intron and the formation of a 

lariat intermediate. In the following step, a second transesterification reaction, which involves 

the phosphate at the 3' end of the intron and the 3'-hydroxyl group of the detached exon, 

ligates the two exons. This reaction releases the intron, still in the form of a lariat. (Pagani 

and Baralle, 2004). 
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1.5.3 Spliceosome assembly 

Before two crucial enzymatic reactions of RNA splicing can take place, target 

pre-mRNA needs to be forced into the splicing-competent configuration, the 

spliceosome. Immediately after transcription, nascent pre-mRNAs are bound by a 

multitude of heterogenous nuclear ribonucleoprotein particles (hnRNPs) (Pinol-Roma 

and Dreyfuss, 1992). However, the earliest event that specifically targets pre-mRNAs 

to the splicing pathway is the assembly of the early or commitment spliceosomal 

complex (E complex), where all consensus sequence elements need to be 

recognized (Figure 1.5). This is achieved through four distinct macromolecular 

interactions. At the 5´ end of the intron, U1 snRNP stably associates with the 5´ 

splice site by means of the base-pairing interaction between U1 snRNA and the 

consensus sequence at the 5´ exon/intron border (Rosbash and Seraphin, 1991). 

Further downstream, the branchpoint consensus is bound by the splicing factor 1 

(SF1), whereas the polypyrimidine tract and the 3´ splice site interact with the 65 kDa 

and 35 kDa subunits of the heterodimeric U2 snRNA auxiliary factor (U2AF), 

respectively (Berglund et al., 1997; Wu et al., 1999; Zamore et al., 1992). 

Subsequent to the formation of a commitment complex, U2 snRNP joins the 

growing macromolecular assembly by base-pairing of its U2 snRNA with the 

branchpoint consensus sequence, marking the formation of the A complex (Parker et 

al., 1987). Once the U4/U5/U6 tri-snRNP enters the spliceosome, the B complex is 

established (Konarska and Sharp, 1987). Upon profound rearrangements, including 

the displacement of the U1 snRNP from the 5´ splice site by the U6 snRNP and the 

loss of both U1 and U4 snRNPs from the spliceosome, a mature spliceosomal 

complex is assembled, namely the C complex (Figure 1.5), which catalyzes both 

reactions required for effective RNA splicing (Bessonov et al., 2008; Makarov et al., 

2002). 

Once the second step of the splicing is terminated, another macromolecular 

assembly, the exon-exon junction complex (EJC) accumulates 20-24 nucleotides 

upstream of exon borders in mature mRNA. The complex provides a binding platform 

for factors involved in mRNA export and nonsense-mediated mRNA decay, thereby 

providing an RNA quality control mechanism to determines whether the RNA species 

is translation-competent or it should be targeted for degradation (Le Hir et al., 2001). 
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Figure 1.5: Distinct steps of the spliceosome assembly 

Complex rearrangements in the structure of the spliceosome take place throughout the 

process of RNA splicing. E or the commitment complex consists of the U1 snRNP, SF1 and 

heterodimeric U2AF bound to the intronic consensus sites. Once the U2 snRNP joins, the A 

complex is formed. Transient B complex is defined through the association of the U4/U5/U6 

tri-snRNP with the A complex. The C or the catalytic complex is established after the 

rearrangements occur in the B complex. 
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1.5.4 Regulation of RNA splicing 

The mechanism of RNA splicing, during which the synthesis of both 

constitutively and alternatively spliced mRNAs occurs, is regulated by a system of 

trans-acting factors that bind to cis-acting sites on the pre-mRNA itself. Such trans-

acting factors include proteins known as splicing activators that promote the usage of 

a particular splice site, and splicing repressors that reduce the usage of a particular 

site. The 5′ splice site, the 3′ splice site and the branch point sequence as three core 

splicing signals are present in every intron and are also necessary for the splicing 

reaction, but the exact definition of the exon-intron boundary requires interplay of the 

cis-acting sequences in pre-mRNAs, known as splicing enhancers and splicing 

silencers that can map to both exonic and intronic regions (Matlin et al., 2005; Smith 

and Valcarcel, 2000). 

The protein regulators of the RNA splicing can be roughly divided into two 

groups. First group consists of SR proteins which mostly promote exon inclusion 

when bound to the cis-acting sequences, while the second group comprises hnRNP 

family of proteins whose interaction with the cis-acting signals often results in exon 

skipping (David and Manley, 2008). 

SR proteins preferentially interact with both exonic and intronic splicing 

enhancers (ESEs and ISEs), thereby assisting in the constitutive removal of the 

adjacent introns. They all have a modular organization and contain at least one N-

terminal RNA-binding domain that interacts with the pre-mRNA and a C-terminal RS 

domain that functions as a protein interaction domain (Graveley, 2000). 

Exonic and intronic splicing silencers (ESSs and ISSs), on the other hand, are 

in most cases bound by one of the members of hnRNP family of splicing factors. This 

interaction leads to the inhibition of the adjacent splice sites and, consequently, to 

intron retention (Wang et al., 2004b). The splicing repression at several alternative 

splice sites occurs through the negative regulation mediated by hnRNP A1 which 

exhibits strong affinity for the sequences UAGGGA/U and GGCAGGGUGG (Burd and 

Dreyfuss, 1994; Del Gatto-Konczak et al., 1999; Fairbrother and Chasin, 2000). 

Some hnRNPs, like hnRNP H, play roles as both splicing repressors and activators, 

determined by the cis-acting element they bind to (Caputi and Zahler, 2001). 

Furthermore, the crucial role of hnRNP H in the regulation of alternative splicing of 

the rat β-tropomyosin gene transcript has been reported (Chen et al., 1999). 
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In Figure 1.6, the summary of major alternative splicing pathways is depicted 

(panel A), also indicating the principal interactions that occur between cis-acting 

elements and trans-acting factors (panel B). 

 

 

 

Figure 1.6: Alternative splicing of pre-mRNAs 

A: Major alternative splicing pathways. The combination of two or more pathways give rise to 

more complex alternative splicing network. 

B: Regulation of splicing. Exons, introns and splice sites are represented as open boxes, 

jagged lines and brackets, respectively. The 5´ and 3´ splice site consensus sequences are 

shown in pictogram with the branchpoint site adenosine indicated. Two alternative splicing 

pathways (dashed lines) are indicated with the central exon either included or excluded. 

Regulatory cis-elements (ESE, ESS, ISS, and ISE) are spread all along the pre-mRNA and 

bound by trans-acting splicing factors (SR proteins and hnRNPs) (Wang and Burge, 2008). 
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1.5.5 Connection between RNA editing and splicing 

In most cases of ADAR-mediated RNA editing in protein-coding targets, 

efficient modification of the exonic editing sites relies upon the formation of the 

suitable double-stranded structure by means of base-pairing with the editing 

complementary sequence located in the downstream intron (Higuchi et al., 1993). 

Here, editing needs to occur co-transcriptionally, before the intron is removed 

through RNA splicing, suggesting that editing and splicing need to be coordinated 

(Keegan et al., 2001). 

There are many reports where RNA editing was shown to be important in 

making the correct downstream splicing desicions. In D. melanogaster, for example, 

if editing occurs upstream of alternative splice site, a strong correlation between 

editing efficiency and splice site selection is observed. In contrast, when editing 

occurs downstream of alternative splicing, no correlation is seen (Agrawal and 

Stormo, 2005). 

Auto-editing of ADAR2 pre-mRNA is another phenomenon where the 

importance of intimate interplay of editing and splicing is strongly emphasised. In 

rats, sequence analysis of ADAR2 genomic DNA revealed the presence of 

adenosine-adenosine (AA) and adenosine-guanosine (AG) dinucleotides at the 

proximal and distal alternative 3' splice sites of intron 4, respectively. The proximal 3' 

splice site recruitment depends upon the ability of ADAR2 to edit its own pre-mRNA, 

converting the intronic AA to an adenosine-inosine (AI) dinucleotide which then 

mimics the highly conserved AG dinucleotide usually found at 3' ends of introns. 

Introduction and use of this alternative splice site leads to premature translation 

termination and the synthesis of non-functional enzyme (Rueter et al., 1999). 

Furthermore, RNA editing of an intronic adenosine is crucial for the correct 

splicing of the pre-mRNA of the serotonin receptor 2C subunit because it results in 

the structure destabilisation around the adjacent 5´ splice site, facilitating the access 

of the spliceosomal components (Flomen et al., 2004). Previously, alternative splice 

variants of this transcript caused by underediting were found enriched in malignant 

gliomas, most probably because of the synthesis of the truncated non-functional 

version of the receptor subunit (Maas et al., 2001). 

In GluR-B pre-mRNA, RNA editing is crucial for the correct processing, most 

importantly the removal of introns 11 and 13, with the latter being coupled to proper 
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downstream alternative splicing decisions (Schoft et al., 2007). At the Q/R site in 

exon 11, ADAR2-mediated editing is coupled to the editing of the intronic editing 

hotspots in intron 11, at positions +60 and +262/263/264, respectively. This 

deamination event is indispensable for the proper removal of intron 11, because 

ADAR2 knock-out mice show an accumulation of intron 11-containing RNAs in the 

nucleus, although every other intron is regularly eliminated (Higuchi et al., 2000).  

Splicing of intron 13 in this transcript is decreased when the neighbouring R/G 

site, located at position -2 with respect to the 5´ splice site, is edited (Bratt and 

Ohman, 2003). This effect has been shown to depend solely on the presence of 

inosine at this position, but not on the steric hindrance for the spliceosome assembly 

that ADAR binding might cause (Kallman et al., 2003). Editing at the R/G site is also 

important for the correct alternative splicing of the mutually exclusive downstream 

exons 14 and 15. Erroneously spliced products where either both alternatively 

spliced exons are included in or completely omitted from the mature mRNAs have 

exhibited reduced editing extent at the R/G site, indicating the importance of this 

editing event for the downstream processing. It is believed that RNA editing at the 

R/G site only transiently slows down the activation of the adjacent 5´ splice site in 

order to recruit the branchpoint site either in intron 13 or in intron 14, leading to 

inclusion of either exon 14 or exon 15 in the mature transcript, respectively (Schoft et 

al., 2007). 

The proximity of the R/G site inosine to the actual 5´ splice site of intron 13 

could cause destabilisation in the base-pairing with U1 snRNA and lead to decreased 

splicing because the wild type adenosine at this position resembles 5´ splice site 

consensus sequence more closely than inosine introduced upon RNA editing (Mount, 

1982). Additionally, an 8 nucleotide stretch surrounding this inosine exhibits high 

sequence homology to a previously defined splice silencer consensus element 

(sequence surrounding the R/G site: UAIGgugg, with the intronic sequence in lower 

case, versus splice silencer consensus: CAGGGUGG) bound by hnRNP A1 or 

hnRNP H (Fairbrother and Chasin, 2000; Grabowski, 2004). 

In this thesis, an effort was made to elucidate which of these two scenarios, if 

not both, contribute to the decelerated kinetics in the removal of intron 13 of GluR-B 

pre-mRNA upon RNA editing of the adjacent R/G site. 

  



Introduction 

33 

 

Part II: SINE RNAs in RNA interference 

1.6 SINE RNA interaction with dsRBPs in plants 

In the final part of this thesis, the binding affinity of plant SINE-derived RNA 

intermediates for different double-stranded RNA-binding proteins (dsRBPs) was 

examined more closely in order to establish the role of these widely distributed RNA 

retroelements in the regulation of RNA interference. 

1.6.1 SINE RNAs 

Short interspersed elements (SINEs) are found in genomic sequences of most 

eukaryotic species. These 80 to 500 basepairs long repetitive regions are 

evolutionarily related to and descend mostly from tRNAs or, in some cases, from 7SL 

RNA or 5S RNA. The copy number of SINE elements in eukaryotic genomes ranges 

from several hundred to several thousand, with the exception of mammals where it 

can rise up to more than one million copies, as is the case with the human Alu family 

(Sun et al., 2007). Being non-autonomous RNA polymerase III transcripts, their 

propagation in the genome, mediated through reverse transcription and the 

subsequent integration, relies upon their interaction with the enzymatic machinery 

assembled from the translation products of another widespread group of eukaryotic 

transposable elements, namely the long interspersed elements (LINEs) (Arnaud et 

al., 2001; Dewannieux et al., 2003; Ohshima and Okada, 2005). 

Several studies have shed light on the role of SINE RNAs in the regulation of 

gene expression. In mammals, the active transcription of the members of the SINE 

B2 family is stimulated upon heat shock and results in the repression of general RNA 

polymerase II-mediated transcription (Allen et al., 2004; Espinoza et al., 2004). 

Increased transcription of other SINEs, like Alu RNAs, has also been reported upon 

stress activation. Here, Alu RNAs can indirectly repress translation by controlling the 

activity of the Protein Kinase R (PKR), a double-stranded RNA-binding protein known 

for its role in translational repression after stress induction (Schmid, 1998). Alu RNAs, 

however, can modulate the translational repression by a PKR-independent 

mechanism, as well (Hasler and Strub, 2006; Rubin et al., 2002). Furthermore, SINE-

related BC transcripts in mammalian neurons guide the RNA-binding protein FMRP 
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to a specific subset of neuronal mRNAs, thereby regulating their translation (Zalfa et 

al., 2003). Altogether, SINE RNA mechanism of the gene expression control is highly 

reminiscent of those employed by other PolIII-dependent riboregulators. 

The role of SINEs in plants, on the other hand, has remained somewhat 

obscure. In Arabidopsis thaliana, there are six different families of SINEs, located 

mostly in euchromatic regions and closely associated with genes (Lenoir et al., 

2001). Introduction of the transgenic SINE founder locus (SB1) into the genome of A. 

thaliana under the control of its natural promoter lead to a synthesis of the 

cytoplasmic polyA-tailed SINE transcripts, with a small fraction of transcripts lacking 

the polyA-tail (Pelissier et al., 2004). The constitutive production of SINE RNAs in 

these transgenic lines, however, lead to a phenotype exhibiting severe 

developmental defects, strikingly similar to the phenotype of the plants mutated in the 

miRNA or trans-acting small interfering (tasi) RNA pathways (Pouch-Pelissier et al., 

2008). Moreover, this particular SINE RNA (SB1) belongs to the family of tRNA-

derived SINEs. Unlike 7SL-derived SINE RNAs, tRNA-derived ones do not conserve 

the ancestral RNA folding pattern, but adopt a double-stranded structure consisting 

of three stem-loops with numerous mismatches and bulges (Sun et al., 2007). This 

configuration would make them ideal binding partners of dsRBPs, many of which are 

involved in RNAi-related pathways. 

1.6.2 Plant dsRBPs involved in RNA interference 

Most of the 17 dsRBPs encoded in the genome of A. thaliana are crucial 

factors in one of the RNAi-related pathways. This family comprises four Dicer-like 

proteins (DCL1 to DCL4), five double-stranded RNA-binding proteins (HYL1/DRB1 

and DRB2 to DRB5) and the HUA Enhancer1 (HEN1) protein (Hiraguri et al., 2005). 

Such wide spectrum of dsRBD-containing RNAi-related factors in plants is attributed 

to the specific roles that need to be performed in various RNAi pathways in plants, 

including miRNA, tasiRNA, viral siRNA, or heterochromatinising siRNA production 

(Curtin et al., 2008). 

HYL1/DRB1 (Hyponastic Leaves 1) is a dsRBD-containing protein in plants 

shown to be essential for miRNA production, but not for posttranscriptional gene 

silencing (PTGS) (Vazquez et al., 2004). It is a nuclear protein regulating plant 

response to many hormones and it is also controlling leaf morphology by cell division, 
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elongation and polarity (Lu and Fedoroff, 2000). Although HYL1 bears strong 

homology to C. elegans RDE-4 and to D. melanogaster R2D2, they are not 

functionally similar (Vazquez et al., 2004). As previously mentioned, HYL1 interacts 

with DCL1 in plants in order to produce mature miRNAs, but plays no role in tasiRNA 

synthesis. This indicates that it preferentially binds dsRNAs containing mismatches 

and loops, but not perfect double-stranded structures. 

DRB4, on the other hand, acts with DCL4 to produce mature tasiRNAs and 

has no role in miRNA biogenesis. During tasiRNA biogenesis, RNAs transcribed from 

non–protein-coding TAS genes are cleaved by a miRNA–programmed RNA-induced 

silencing complex. In contrast to classical miRNA targets, RNA-dependent RNA 

polymerase 6 (RDR6) converts one of the TAS RNA cleavage products into double-

stranded RNA, which is subsequently processed by DCL4/DRB4 complex to 

generate a 21-nucleotide tasiRNA population (Nakazawa et al., 2007; Vaucheret, 

2005). This suggests that the substrate specificity of DRB4 differs to a great extent 

from the one of HYL1/DRB1. 
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2 SPECIFIC AIMS 
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This thesis consists of three separate topics, each one dealing with different 

aspects of the function of double-stranded RNA-binding proteins,  their association 

with the respective interaction partners among RNAs and the biological 

consequences of this macromolecular interplay. 

1. Investigating the influence of ADAR-mediated RNA editing near the 5´ 

splice site on the spliceosome assembly 

The R/G site of the GluR-B pre-mRNA found just one nucleotide upstream of 

intron 13 5´ splice site is a known ADAR target. Upon RNA editing, the splicing 

efficiency of the neighbouring intron is decreased. R/G site editing destroys the 5´ 

splice site consensus that base-pairs with U1 snRNA by introducing inosine at the 

position of adenosine. Furthermore, it creates a sequence similar to splice silencers 

bound by hnRNP A1 or hnRNP H. Here, we investigated the role of U1 snRNA in the 

reduced splicing of GluR-B intron 13 after R/G site editing, as well as the association 

of known splicing repressors with this pre-mRNA. 

2. Detecting ADAR1 interaction with microRNA precursors in nucleus and 

cytoplasm 

Both ADAR1 and microRNA precursors are export-competent molecules that 

interact with Exportin5. Since both nuclear primary microRNAs and cytoplasmic pre-

microRNAs were reported as editing targets, we were interested to see if ADAR1, 

being a shuttling protein, accompanies its microRNA substrates on their Exportin5-

mediated nuclear export pathway. 

3. Determining SINE RNA binding partners among RNAi-related dsRBPs 

Transgenic plants overexpressing SINE RNAs, abundant highly structured 

retroelements consisting of three stem-loops with mismatches and bulges, have 

phenotypes similar to RNAi mutants. It is, therefore, plausible that these RNAs, being 

structurally similar to microRNA intermediates, serve as regulators of RNAi pathways 

in plants. We investigated in vitro interactions of SINE RNAs with different subtypes 

of dsRBPs involved in one of the RNAi processes to see if the protein affinity for this 

group of imperfect dsRNAs would match their in vivo preferences. 
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3 MATERIALS AND METHODS 
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3.1 In vivo splicing assay 

The system to analyse splicing efficiencies of reporter constructs bearing R/G 

site in different editing states was used to test the U1 snRNA base-pairing interaction 

with R/G site upon RNA editing by means of co-transfecting the vectors carrying 

mutant U1 snRNA genes. 

3.1.1 R/G site reporter constructs 

Wild type, pre-edited and uneditable R/G site reporter constructs were cloned 

previously by Vera Schoft in our lab and are described in detail (Schoft et al., 2007), 

as well as in the Results section of this thesis. 

Additionally, the RT-PCR experiment, where the decreased splicing efficiency 

of the pre-edited R/G site construct when compared to the wild type R/G site 

constructs was verified, has been performed on total RNA isolated from transfected 

culture cells. For the first strand cDNA synthesis, oligodeoxyribonucleotide MJ1000a 

was used (5´ CCTCTACAAATGTGGTATGGCTG 3´). For the amplification, primers 

MJ1136 (5´ GGTGGAGTTCAAGTCCATCTACATGG 3´; 5´ primer that hybridises to 

the RFP coding sequence) and MJ1020 (5´ TCGACCAGGATGGGCACCAC 3´; 3´ 

primer that hybridises to the GFP coding sequence). The corresponding experimental 

procedures are thoroughly explained below. 

3.1.2 U1 snRNA expression vectors 

Original vectors for U1 snRNA overexpression were kindly provided by Heiner 

Schaal from the Institute of Virology, University of Düsseldorf, Germany (Figure 3.1) 

and were described previously (Murphy et al., 1982). Both wild type and 

compensatory U1 snRNA mutations were introduced by using mutagenic primers for 

PCR on the template vector pUCB U1 5A (Figure 3.1 B) and inserting the resulting 

PCR products into the BglII and XhoI restriction sites of the vector pUCB del U1 

(Figure 3.1 A). 5´ mutagenic primers used for this PCR were MJ2392 (5´ 

CGAAGATCTCATACTTACCTGGCAGGGGAGATACC 3´; BglII restriction site is 

underlined; mutagenic nucleotide restoring the wild type sequence is highlighted in 

orange) and MJ2393 (5´ CGAAGATCTCATACTTACCCGGCAGGGGAGATACC 3´; 

BglII restriction site is underlined; mutagenic nucleotides restoring the wild type 
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sequence and introducing the compensatory mutation are highlighted in orange and 

red, respectively) for the wild type and compensatory U1 snRNA mutants, 

respectively. For both vectors, universal 3´ primer MJ2391 was used in mutagenic 

PCR reactions (5´ ATCCTCGAGCCTCCACTGTAGGATTAAC 3´; XhoI restriction site 

is underlined). The resulting PCR products were run on standard 1 % agarose gels, 

cut out and subjected to double restriction digestion using BglII and XhoI restriction 

endonucleases (Fermentas). The restricted fragments were ligated into the pre-

restricted pUCB del U1. The ligation products were transformed and propagated in 

Escherichia coli strain XL1-Blue. After the isolation and purification of plasmid DNA 

by the standard alkaline lysis method, the mutated clones were verified by 

sequencing. 

 

 

 

Figure 3.1: Plasmid maps of original U1 snRNA expression vectors 

Two depicted plasmids were used to clone wild type and compensatory U1 snRNA 

expression vectors. In the case of pUCB del U1 (panel A), the U1 snRNA coding sequence 

together with the 3´ HSD4 sequence was deleted from the HSD4 U1 snRNA expression 

cassette and this vector was subsequently used to clone the mutagenic PCR products into its 

BglII/XhoI restriction sites. pUCB U1 5A, on the other hand, was employed as a PCR 

template to introduce wild type and compensatory mutations into the U1 snRNA coding 

sequence (panel B). 
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3.1.3 Primer extension assay 

The expression of mutant U1 snRNAs was experimentally validated through 

primer extension assay. This experimental procedure was applied on total RNAs 

isolated from HEK293 cells in culture transfected with either wild type or 

compensatory U1 snRNA expression vectors. 

In more detail, a synthetic oligodeoxyribonucleotide primer MJ2413 (5´ 

CATGGTATCTCCCCTG 3´) complementary to nucleotides 13-28 of U1 snRNA was 

used to test for the expression of mutant U1 snRNA. This 16-mer was 5´ end-[γ-32P]-

labelled with 10 μCi of Redivue [γ-32P] ATP (GE Healthcare) using T4 polynucleotide 

kinase (New England Biolabs), according to the manufacturer´s instructions. The 

mixtures of increasing amounts of total RNA and 20 fmol of 5´-radioactively labelled 

primer were washed, dried and resuspended in the hybridisation buffer (25 mM Tris 

pH 8.4, 30 mM KCl and 20 mM MgCl2). After brief denaturation (2` on 95ºC), 

hybridisation was performed for 30 minutes on 42ºC. Extension itself was done in the 

presence of 0.2 mM dideoxyATP (ddATP), using  avian myeloblastosis virus reverse 

transcriptase (AMV-RT) from Promega, following the company´s protocol. In the 

presence of ddATP, dCTP, dGTP and dTTP, AMV-RT is capable of adding only 3 

nucleotides if the template is wild type U1 snRNA, but adds 7 nucleotides to the 

compensatory U1 snRNA mutant template. After 40 minutes on 42ºC, the reactions 

were stopped by ethanol precipitation. The reaction products were analysed on 15 % 

8M urea-denaturing 19:1 polyacrylamide gels. After the run, the gels were fixed in a 

fixing solution (10% methanol, 10% acidic acid), dried for 3 hours and exposed to 

Kodak PhosphorImager screens. After varying exposure times, the signals were read 

out, analysed and quantified with the QuantityOne software (Biorad). 

3.1.4  Cell culture and transfection 

Human embryonic kidney cells (HEK293) used for co-transfection experiments 

were cultured at 37ºC in Dulbecco´s modified Eagle medium (DMEM) supplemented 

with 10 % FCS, 0.2 mM L-glutamine and antibiotics. They were incubated in a humid 

atmosphere with 5 % CO2. 

Cells were transiently transfected using the Nanofectin transfection reagent 

(PAA) according to the manufacturer´s instructions and FACS-analysed 24 hours 

after the final transfection round. 
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3.1.5 FACS analysis 

Free access to FACScalibur system (Becton & Dickinson) was kindly provided 

by Gabriele Stengl from the Biooptics Department on the Institute of Molecular 

Pathology, Vienna, Austria. The CellQuest 3.3 software was used to collect the flow 

cytometry data, which was then further analysed with the FlowJo 8.3.1 software. The 

subsequent statistical analyses were performed in Microsoft Office Excel 2007. 

3.2 Co-immunoprecipitation and related procedures 

The co-immunoprecipitation approach in this study was exerted to identify 

RNA-protein interactions between mRNAs derived from R/G site reporter constructs 

and various hnRNPs on one hand, and microRNA precursors and ADAR1 on the 

other hand. In the former case, HEK293 cell line was used for transfection and 

subsequent co-immunoprecipitation, while in the latter case the cell line of choice 

was HeLa. 

3.2.1 UV crosslinking 

In order to stabilise the interaction of mRNAs derived from R/G site reporter 

constructs with hnRNPs A1 and H, UV crosslinking was performed using UV 

Stratalinker 2400 (Stratagene) as previously described (Dreyfuss et al., 1984). 

3.2.2 Subcellular fractionation 

In the second part of this study, we wanted to determine whether different 

ADAR1 isoforms interact with microRNA precursors in both nucleus and the 

cytoplasm. This is why these two subcellular compartments had to be separated. 

Immediately after gentle harvesting and washing, HeLa cell pellet was resuspended 

in 5 volumes of precooled Earle´s balanced salt solution (0.15 M NaCl, 16 mM 

K2HPO4, 2.5 mM KH2PO4 at pH 7.4), washed, pelleted and again resuspended, this 

time in 10 volumes of hypotonic RSB solution (10 mM NaCl, 1.5 mM MgCl2 and 10 

mM Tris pH 7.4) and left on ice. Then,  the swollen cells were homogenised by 10-12 

tight-fitting pestle strokes in Dounce glass homogeniser. Once the homogenised cell 

suspension had a free nuclei:intact cell ratio of 9:1, it was centrifuged to get the 

cytoplasmic fraction in the supernatant and the nuclear fraction in the pellet. 
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3.2.3 Co-immunoprecipitation 

Whole cell, cytoplasmic or nuclear fractions were sonicated and precleared in 

NET-2 buffer (150 mM NaCl, 50 mM Tris pH 7.4 and 0.05 % NP-40) to obtain lysates 

for immunoprecipitations. The corresponding primary antibodies (mouse 10D1/α-

hnRNP A1 for hnRNP A1 at 1:200; rabbit α-hnRNP H from Abcam for hnRNP H at 

1:200; rabbit Sat309 for both ADAR1 isoforms at 1:50; rabbit Sat1146 for 

ADAR1p150 at 1:50) were coupled to Protein A Sepharose beads (Amersham 

Biosciences) by overnight incubation on 4ºC. Then, the precleared lysates were 

added to the coupled antibodies in overall volume of 500 μl and immunoprecipitation 

was allowed to take place for 1 h on 4ºC. After this, the supernatant was removed 

and the beads were washed 5 times with NET-2 buffer. Then, 1/10 of beads was 

immediately resuspended in equal volume of 2xSDS sample buffer, boiled for 2 

minutes and used for the protein detection via Western Blot, while the rest was 

subjected to the co-immunoprecipitated RNA isolation, followed by RT-PCR. 

3.2.4 SDS polyacrylamide gel electrophoresis 

Protein separation on the molecular weight basis is achieved in SDS 

polyacrylamide gels. Such typical gel consists of resolving part (? % 30:1 

acrylamide:bis-acrylamide, 375 mM Tris pH 8.8 and 0.1 % SDS) and a stacking part 

(used to concentrate negatively charged proteins to a thin boundary; 3.6 % 30:1 

acrylamide:bis-acrylamide, 110 mM Tris pH 6.8, 0.1 % SDS and 13 % glycerol). The 

proteins boiled in equal volume of 2xSDS sample buffer (220 mM Tris pH 6.8, 2 % 

SDS, 20 % glycerol, 0.03 % bromophenol-blue and 2 % β-mercaptoethanol) were 

loaded onto such gel. Electrophoresis was performed in 1xSDS running buffer (3 g/l 

Tris-HCl, 14.2 g/l glycine and 1 g/l SDS) at 20 mA constant electric current. 

3.2.5 Western Blotting 

The electrophoresed proteins were transferred from the gel to the 

nitrocellulose membrane by means of tank blotting. For this purpose, the equilibrated 

membrane was placed on a gel between Whatman papers and sponges. The 

resulting blotting sandwich was put in an icepack-containing  tank filled with Transfer 
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buffer (20 mM Tris-HCl and 150 mM glycine) and subjected to transfer for 1 hour at 

360 mA. 

To visualise protein marker, after blotting the membrane was incubated in 

Ponceau S solution for 10 minutes and washed with water until protein bands 

became visible. The membrane was then blocked in 5 % dry milk in 1xTBS-T  (Tris-

buffered saline with 0.05 % Tween-20) for 10´ at room temperature. After that, the 

primary antibody solutions in 5 % dry milk in 1xTBS-T (rabbit α-hnRNP H at 1:10000; 

rabbit α-CBP80 at 1:1000; mouse 10D1/α-hnRNP A1 at 1:1000; rat Sat12/α-ADAR1 

at 1:1000) were applied to the membrane and shaken for 1 hour. Later on, after 3 

washing steps of 5 minutes in 0.5 % dry milk in 1xTBS-T, the membrane was 

incubated in one of the secondary antibody solutions in 5 % dry milk in 1xTBS-T 

(goat alkaline phosphatase-conjugated α-rabbit antibody at 1:1000; goat alkaline 

phosphatase-conjugated α-mouse antibody at 1:1000; goat horseraddish peroxidase-

conjugated α-rat antibody at 1:20000). This was also followed by three washing 

steps, each 5 minutes long. 

Blotted proteins were then detected either by chemiluminescence or by 

NBT/BCIP chromogen precipitation. If the secondary antibody was coupled to 

horseraddish peroxidase, the chemiluminescence was induced and detected by 

using SuperSignal Solution (Pierce) according to the manufacturer´s instructions. On 

the other hand, the secondary antibodies coupled to alkaline phosphatase require a 

chromogenic substrate NBT/BCIP (nitro-blue tetrazolium/5-bromo-4-chloro-3-

indolylphosphate-p-toluidine), which in the presence of this enzyme forms a dark 

precipitate on the membrane. 

3.2.6 RNA isolation and RT-PCR 

RNA isolation was performed by either directling applying the RNA isolation 

reagent Trizol (Invitrogen) to cultured cells in dishes or applying it to cell lysates or 

Protein A Sepharose beads with co-immunoprecipitated RNAs, all using the 

conditions recommended by the manufacturer. 

Two consecutive DNaseI (Roche) digestion steps were necessary to get rid of 

any traces of residual DNA which might lead to false positive signals in PCR and 

were made according to the manufacturer´s protocol. 
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Purified RNAs were then reversely transcribed with RevertAid M-MuLV 

Reverse Transcriptase (Fermentas) following the company´s instructions, using 

either MJ1000a for R/G site construct mRNAs or random hexanucleotide mixture 

(Roche) for priming miRNAs and γ-tubulin B-subunit mRNA. 

1/10 of heat-inactivated RT reactions served as a template for PCR reaction. 

Respective plasmids (in the case of transfections) and cell lysates (in all cases) were 

employed as control templates. 

Following primer combinations were used in PCRs: 

MJ1136 (5´ GGTGGAGTTCAAGTCCATCTACATGG 3´) and MJ1020 (5´ 

TCGACCAGGATGGGCACCAC 3´) for all the amplifications of R/G site constructs-

derived cDNAs; 

MJ1515 (5´ GGCAGAGGGCAACAGTTCTTC 3´) and MJ1516 (5´ 

GGCTGAGCCGCAGTAGTTCTTC 3´) for the amplification of cDNA derived from the 

miR-22 precursor; 

MJ1800 (5´ TGTCAGACAGCCCATCGACTG 3´) and MJ1801 (5´ 

TGTCGGGTAGCTTATCAGACTG 3´) for the amplification of cDNA derived from the 

miR-21 precursor; 

MJ1025 (5´ GACAACACAGCCCTGAACCG 3´) and MJ1026 (5´ 

GACTGGTCTGTAGTGAGCGG 3´) for the amplification of cDNA derived from the γ-

tubulin B-subunit mRNA. 

The PCR products were then analysed on 1-2 % agarose gels in either 1xTAE 

or 1xTBE running buffers. 

3.3 Nuclease protection assay 

To map regions of SINE RNAs that interact with different dsRBD-containing 

proteins, RNase V1 protection assay was employed. 

First, RNA structures were predicted using RNA/DNA folding and hybridisation 

software Mfold, version 2.3 (Zuker, 2003). 

Then, RNA was in vitro transcribed and radioactively trace-labelled (for 

quantification purposes) from linearised T7 promoter-containing vector using 

recombinant T7 RNA polymerase and [α-32P] ATP (GE Healthcare). Transcripts were 

gel-purified and ethanol-precipitated. 
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2 pmol of RNA was then dephosphorylated using calf intestinal phosphatase 

(New England Biolabs) according to manufacturer's protocol. Dephosphorylated 

RNAs were 5′-end labelled with T4 polynucleotide kinase (New England Biolabs) and 

[γ-32P] ATP (GE Healthcare).  

Gel-purified 5′-labeled RNAs were subsequently used for nuclease protection 

assays (Hallegger et al., 2006). RNase V1 recognizes any 4-6-nt segment of 

polynucleotide backbone with an approximately helical conformation and cleaves 

leaving 5′-phosphate (Lowman and Draper, 1986). For the partial digest with RNase 

V1, 20 fmol (corresponding to 50,000 cpm) of RNA were centrifuged, washed, dried 

and resuspended in structure buffer (Ambion: 100 mM Tris at pH 7, 1 M KCl, 100 mM 

MgCl2). After annealing, 1 µL of tRNA (1 µg/µL, Ambion) was added, followed by the 

addition of increasing protein concentrations (50 nM, 150 nM and 500 nM). To 

ensure protein binding to RNA, samples were incubated for 15 min at room 

temperature. Then, 0.005 units of RNase V1 (Ambion) were added and the reactions 

were incubated for additional 10 min at room temperature. Reactions were stopped 

by ethanol/salt precipitation. Samples were loaded together with alkaline hydrolysis 

ladder and denaturing RNase A (Ambion) and RNase T1 (Boehringer Mannheim) 

digests of RNAs on thin denaturing RNA gels. 

After the run, the gels were dried for 3-4 hours and exposed to Kodak 

PhosphorImager screens. After varying exposure times, the signals were read out, 

analysed and quantified with the QuantityOne software (Biorad). 
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4 RESULTS 
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4.1 Molecular mechanism of altered pre-mRNA splicing 

upon RNA editing 

A to I RNA editing is a posttranscriptional modification that contributes 

significantly to transcriptome diversification. Occurrence of editing sites in exons of 

mRNAs, however, has the potential of enriching the proteome repertoire, as well. In 

fact, the most prominent coding targets of ADARs identified thus far are messages 

coding for various receptors in the mammalian central nervous system: subunits of 

glutamate receptor superfamily, serotonin 5-HT2C-receptor and potassium channel 

KCNA1. In all of them, amino acid substitutions due to editing have major impact on 

properties of given proteins. Recently, a bioinformatics screen was used to identify 

novel editing targets and the substrates were verified experimentally (filamin A, 

CYFIP2, BLCAP and IGFBP7 mRNAs) (Levanon et al., 2005). Additionally, a 

genome-wide identification by parallel DNA capturing and sequencing greatly 

expanded the number of verified targets (Li et al., 2009). Interestingly, in some 

targets the editing sites are found in close proximity to 5´ splice sites where exon-

intron base-pairing interactions are formed to provide a suitable binding platform for 

ADARs. Editing in these positions can have a profound effect on initial steps of the 

splicing machinery recruitment, e.g. U1 snRNA base-pairing to exon-intron junction. 

Previously, a cell-based assay to monitor splicing efficiency established in our 

lab was employed to show effects of editing of R/G and Q/R sites on splicing in GluR-

B mRNA. Results from this screen prompted us to apply this method to take a closer 

look on the efficiency of U1 snRNP recruitment to edited 5´ splice sites in mRNAs, 

emphasising the importance of altered U1 snRNA::mRNA interaction potential upon 

RNA editing.  

Furthermore, high resemblance of the edited exon-intron junction regions to 

splice silencer consensus sequence suggests that the changes in splicing efficiency 

could be attributed to binding of splicing repressors, like hnRNP A1 or hnRNP H 

proteins which show high affinity for G-rich sequences. 

In this study, both of these possibilities were addressed in detail in order to 

elucidate the exact step in the pre-mRNA processing pathway that gets affected by 

adenosine deamination, leading to alterations in the splicing of editing substrates 

and, thereby, enriching the proteome repertoire in cells and tissues where ADAR 

family of enzymes exhibits catalytic activity. 
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4.1.1 Testing the imperfect 5´splice site hypothesis 

4.1.1.1 In vivo splicing assay 

As seen in Figure 4.1, an in vivo splicing assay already established in our lab 

by Vera Schoft was implemented to investigate the influence of the R/G site editing 

on the U1 snRNA base-pairing affinity for the intron 13 5´ splice site and its 

subsequent removal. This system was originally developed to monitor the splicing 

efficiencies of GluR-B pre-mRNA reporter constructs in different editing states. 

Coding sequences for red (RFP) and green (GFP) fluorescent proteins introduced 

into a mammalian expression vector were separated by a flexible region of the E. coli 

lacZ gene and a multiple cloning site (MCS) to maintain the open reading frame 

(ORF). The MCS was then used to insert the genomic sequences containing the 

exons and intron with the editing site of interest. In all these constructs, RFP is 

expressed constitutively, while the expression of GFP as a downstream reporter 

relies on the elimination of the stop codon-containing intron, splicing of which is 

severely influenced by RNA editing. Another special feature of the aforementioned 

constructs was the nuclear localisation signal (NLS) to allow for an unequivocal 

quantification of fluorescence during microscopic and FACS analysis. 

For this method, R/G site constructs in three different “editing states” were 

used (Figure 4.1 B): the wild-type construct (WT), the construct with the R/G site 

adenosine mutated to guanosine to mimic inosine (Pre-edited) and, finally, the 

construct with mutated editing complementary sequence (ECS), preventing the 

formation of the double-stranded structure and consequently ADAR binding 

(Uneditable). It is important to have the “uneditable” construct as an internal control 

because of the background level editing of the “wild-type” construct in the biological 

system used for the experiment, i.e. HEK293 cells. 

In this part of the study, the U1 snRNA base-pairing potential upon RNA 

editing was investigated by co-expressing U1 snRNA mutants with reporter 

constructs in human cells in culture (HEK293). 
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Figure 4.1: In vivo splicing assay 

A: mammalian expression vector with MCS between RFP- and GFP-coding sequences 

enables insertion of ADAR substrates and monitoring of splicing efficiencies in different RNA 

editing backgrounds by means of measuring ratios of green versus red fluorescence 

B: Schematic representation of different types of editing constructs used in the study: in pre-

edited constructs adenosine (A) was mutated to guanosine (G) to mimic inosine (I), a product 

of hydrolytic deamination upon RNA editing; uneditable constructs were made by mutating 

editing complementary site (ECS), thus preventing ADAR binding. 
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4.1.1.2 Reduction of splicing in pre-edited R/G site construct 

In contrast to the fully spliced wild type R/G site construct, there is still a 

substantial fraction of unspliced pre-edited pre-mRNA present in the transfected 

cells, as judged by the RT-PCR experiments (Figure 4.2). 

The aim of the overexpression of compensatory U1 snRNA mutant together 

with the pre-edited construct was to facilitate splicing for this splice-deficient 

substrate and restore the wild type splicing levels. 

 

Figure 4.2: Splicing in pre-edited R/G construct is decreased 

RT-PCR analysis reveals significant amounts of unspliced pre-edited message (“pre-edited 

+” lane) when compared to the wild-type mRNA (“wild type +” lane). Wild type plasmid was 

used as a positive control for unspliced messages (“P” lane). 

  



Results 

52 

 

4.1.1.3 Overexpression of U1 snRNA mutants 

The remarkable complementarity between the 5´ splice site consensus 

sequence and the sequence of U1 snRNA led to the proposal that the nucleotides 2-

10 at the 5´ end of U1 snRNA recognise the positions -3 to +6 in the mRNA 

precursors, with respect to the 5´ splice site. This was further corroborated by the 

variety of biochemical and evolutionary evidence, such as the accessibility of the 5´ 

end of U1 snRNA in the intact U1 snRNP, the abolishment of the in vitro splicing 

activity upon RNAse H treatment of U1 snRNP in the presence of the oligonucleotide 

complementary to the 5´ end of U1 snRNA, or the sequence conservation of the 5´ 

end of U1 snRNA in species as diverse as human, rat, mouse, chicken, frog, sea 

urchin or fruit fly (Zhuang and Weiner, 1986). Most importantly, the nucleotide 

changes in the 5´ splice sites of pre-mRNAs, reducing the match to the U1 snRNA 

consensus sequence, were usually found to weaken the splicing effectiveness. This 

scenario, of course, is the one easy to imagine taking place in the case of R/G site 

adenosine deamination at position -2 with respect to the 5´ splice site (Mount, 1982). 

Therefore, the mutant U1 snRNA construct was designed in this study to 

compensate for the splicing reduction in the editing substrates by means of the site-

directed mutagenesis at the nucleotide position base pairing with the R/G site of the 

GluR-B pre-mRNA (the original pUC-backbone U1 snRNA vectors were kind gift from 

Heiner Schaal, Institute of Virology, University of Düsseldorf, Germany and were 

previously described (Murphy et al., 1982). 

To verify expression of mutant U1 snRNA, primer extension assay on total 

RNAs isolated from transfected HEK293 cells was performed. In Figure 4.3 B, a 

cloverleaf U1 snRNA structure was used to depict 5´ end-labelled primer and its 

complementary sequence, as well as the uridines marking the reverse transcription 

stop when using dideoxyATP (ddATP) for wild type and compensatory U1 snRNA 

transcripts, respectively. Determined from band intensities in Figure 4.3 B, the 

expression levels of compensatory U1 snRNA mutant are boosted up to 15% of the 

expression levels of wild type U1 snRNA (Figure 4.3 C). 
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Figure 4.3: U1 snRNA overexpression 

Editing in GluR-B pre-mRNA affects the -2 position of the 5´splice site that base-pairs with 5´ 

end of the U1 snRNA. Therefore, compensatory point mutation was introduced into 

expression vector bearing U1 snRNA gene at a position base-pairing with inosine/guanosine 

in edited/pre-edited substrates in order to restore its base-pairing potential.  

A: Base-pairing interaction between U1 snRNA and 5´ splice site. The base pair affected by 

RNA editing is highlighted in red and orange in pre-mRNA and U1 snRNA, respectively. 

B: The cloverleaf secondary structure of U1 snRNA with marked complementary sequence 

for 5´ end-labelled primer (yellow) and ddATP-RT (dideoxyATP) reverse transcription stops 

for wild type (orange) and compensatory (red) U1 snRNAs. Increasing amounts of total RNA 

extracts from either wild-type or compensatory U1 snRNA HEK293 transfectants were added 

to the primer extension reactions. Samples were analysed on gel (upper right panel). 

C: U1 snRNA compensatory mutant expression was determined by quantification of band 

intensities from primer extension assay and it reaches up to 15% of endogenous wild type 

U1 snRNA expression  
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Since the number of transfected cells under our transfecting conditions ranges 

from 20-40% and the level of compensatory U1 snRNA mutant expression reaches 

15% of the wild type U1 snRNA levels (Figure 4.3 C), it can easily be estimated that 

the fraction of compensatory U1 snRNA mutant in cells that have actually been 

transfected could be as high as 50%. 

The confirmation of such a substantial level of mutant expression was 

indispensable to proceed with the experiments where mRNAs with editing site near 

the 5´ splice site and compensatory U1 snRNA mutants are brought together into the 

same biological system. This would enable them to interact intimately, because of 

their high level of complementarity, especially in comparison with the affinities they 

both exhibit for their respective “wild type” base-pairing interaction partners. 

4.1.1.4 Co-transfection experiments 

As already mentioned, the method of choice to investigate the base-pairing 

potential between 5´splice site of edited mRNAs and U1 snRNA was co-transfection. 

The cells were seeded out 12-24 hours at low density before the first round of 

transfection. When cells have reached 20-30% of confluency, they were first 

transfected with the increasing amounts of U1 snRNA-bearing constructs to allow for 

the assembly of U1 snRNPs containing mutant U1 snRNAs. 24 hours after this, the 

second round of transfection, the one with the R/G site reporter constructs carrying 

genes coding for RFP and GFP, was performed. On the following day, 24 hours after 

the second and final transfection round, the cells were harvested and processed for 

the FACS analysis. 

Cell line of choice for co-transfection was HEK293.  
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4.1.1.5 FACS analysis 

Offering the possibility of analysing large cell populations in relatively short 

amount of time, fluorescence-activated cell sorting (FACS) was employed to collect 

data for the statistically significant number of cells exhibiting red and green 

fluorescence. Intensities of red and green fluorescence of around 30 000 cells 

transfected first with U1 snRNA constructs and then with R/G site reporter constructs 

were analysed in this manner 24 hours after the second transfection round. 

in Figure 4.4, the representative 2D dot plots of different reporter constructs 

are depicted. The gate chosen for further analysis encompasses cells which exhibit 

medium red fluorescence (y-axis: FL2-H). The green fluorescence (x-axis: FL1-H) 

can only be detected after productive splicing occured and its threshold was set to 

the arbitrary value of 10 for this particular gate. Empty reporter vector (RNLG) was 

used as a control for constitutive red and green fluorescence (uppermost panel). The 

wild type R/G constructs (second panel from top) are showing high green 

fluorescence intensities for the chosen cell population. In the cells transfected with 

the pre-edited R/G constructs (second panel from bottom), due to impaired splicing, a 

decrease in green fluorescence is observed (a shift of the cell population to the left 

along the x-axis): in order to “rescue” splicing of this particular construct (restore the 

original green fluorescence intensities seen in the wild type construct), a 

compensatory U1 snRNA mutant was being co-transfected. Cells with the uneditable 

construct (lowest panel) evade RNA editing and, thus, show higher green 

fluorescence signals (a shift back to the right along the x-axis). 
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Figure 4.4: FACS analysis of R/G site constructs 

2D plots of red (FL2-H; y-axis) versus green fluorescence (FL1-H; x-axis) are depicted for 

representative HEK293 transfections of control RNLG vector (containing RFP-GFP fusion 

protein) and wild type, pre-edited and uneditable R/G site constructs, with or without wild 

type or compensatory U1 snRNA constructs. Gated events chosen for further statistical 

analysis are shown in purple, the number indicating the percentage of total events falling into 

this subset. 
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The statistical analysis of the gated events was performed by first calculating 

ratios of green versus red fluorescence intensities for each individual cell. Afterwards, 

the mean value for every sample, i.e. every construct combination could be obtained, 

together with the values for the standard deviation. The statistical significance of the 

observed differences was determined through application of paired Student´s T-test 

with two-tailed equal distribution. 

In Figure 4.5, the behaviour of each R/G site construct in combination with 

either wild type or compensatory U1 snRNA is presented as a bar diagram of mean 

ratios of green versus red fluorescence signals as the indicator of splicing efficiency, 

with standard deviation values depicted as error bars in the gated window. 

As seen in panel A of Figure 4.5, a slight increase in splicing can be observed 

for the wild type R/G site construct when the compensatory U1 snRNA construct is 

pre-transfected (lane 7), compared to the wild type U1 snRNA overexpression (lane 

4). This effect can be attributed to the residual ADAR activity in the HEK293 cell line. 

In the case of the pre-edited R/G site construct (Figure 4.5, panel B), 

overexpression of compensatory U1 snRNA mutant leads to a 10% increase in green 

fluorescence (lane 7), indicating that the partial restoration of the wild type splicing 

efficiency occurs once the modified -2 position of the 5´splice site is counteracted by 

the mutation of its U1 snRNA base-pairing partner. 

The slight increase (less than 3%) in the splicing efficiency of the wild type R/G 

site construct upon compensatory U1 snRNA overexpression, when compared to the 

wild type U1 snRNA overexpression, could be attributed either to the effect that the 

U1 snRNA vector has on the system or to the residual ADAR activity in HEK293 

cells. In the latter case, ADAR would convert some adenosines at the -2 position 

(with respect to the 5´ splice site) of this construct into inosines, resulting in the 

decrease of the splicing efficiency. Upon compensatory U1 snRNA overexpression, 

however, a slight increase in splicing would be observed because the inosine at -2 

position is able to base-pair with the compensatory cytidine in U1 snRNA, leading 

back to more productive splicing.  To distinguish between these two scenarios, the 

uneditable R/G site construct that can not be bound and modified by ADAR was used 

(Figure 4.5, panel C). As expected, this construct with high splicing efficiency shows 

a decrease in green fluorescence intensity in combination with the compensatory U1 

snRNA (lane 7), when compared to the wild type U1 snRNA co-expression (lane 4) 

because of its editing-resistant “wild type” 5´ splice site sequence. 
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Figure 4.5: Influence of U1 snRNA overexpression on splicing of R/G site 

constructs 

Wild type (panel A), pre-edited (panel B) and uneditable (panel C) R/G site constructs were 

cotransfected with either empty vector (lanes 1) or increasing amounts of wild type (lanes 2-

4) and compensatory U1 snRNA constructs (lanes 5-7). Mean values of green versus red 

fluorescence intensities for each sample were plotted as bar diagrams. RNLG vector was 

used as control (lanes RNLG). 
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In Figure 4.6, the data from the previous figure are summarised by including 

only the samples where the highest amounts of U1 snRNA constructs were 

cotransfected: this data set is showing the strongest effect of U1 snRNA 

overexpression, especially in restoring the wild type splicing “phenotype” for the pre-

edited R/G site construct when compensatory U1 snRNA is introduced into the 

system (Figure 4.6, lane 6). Furthermore, the observed splicing restoration for the 

aforementioned construct pair (around 10 %) is in line with the values expected for 

such transfection rates (approximately 15 %). In any case, only a moderate effect on 

splicing restoration could be seen in wild type R/G construct (Figure 4.6, lane 3), 

while in the case of uneditable R/G construct no significant change was observed 

(Figure 4.6, lane 9). 

. 

Figure 4.6: Summary of FACS data for the cotransfections of U1 snRNA and 

R/G site constructs 

Bar diagram shows mean values of green versus red fluorescence intensities for R/G site 

constructs cotransfected with the highest amounts (2 μg) of U1 snRNA constructs. Values for 

standard deviation are shown as error bars. 

The statistical significance of the observed differences in the analysed FACS 

data was determined by using paired Student´s T-test with two-tailed equal 

distribution. This statistical application detects the differences for the given 

parameters in two samples, expresses them as p-values and indicates if they are 
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high enough to consider the samples dissimilar. In Table 4.1, for each type of R/G 

site construct the p-values were calculated comparing the values of green versus red 

fluorescence ratios for every single event (cell) in the two samples being tested. 

As expected, the lowest p-values, i.e. the highest difference is derived for the 

set of pre-edited R/G site constructs, with compensatory U1 snRNA cotransfectant 

showing most notable discrepancy compared to both empty and wild type U1 snRNA 

ones. The differences are lowest for the set of wild type R/G site cotransfectants, 

showing that the U1 snRNA mutants influence the splicing of this pre-mRNA the 

least. 

These data go in line with the previous results and serve as an additional 

confirmation for the role of compensatory U1 snRNA mutant in reconstituting to some 

extent the splicing efficiency of the pre-edited R/G site construct. 

Table 4.1: Student´s T-test analysis of observed differences in FACS data 

Three main rows labelled on the left side (wild type, pre-edited and uneditable) indicate the 

transfected R/G site construct. The co-transfected U1 snRNA constructs (empty, wild type 

and compensatory) are indicated in the first row and in the last column of the table in order to 

enter p-values calculated by comparing differences between the cell populations carrying the 

same R/G site construct, but different U1 snRNA vectors. If the p-value obtained through 

student´s T-test is lower than 0.05, two samples or populations are considered dissimilar. 

R/G site empty wild type compensatory U1 snRNA 

 

 

wild type 

/ / / empty 

0.584 / / wild type 

0.394294 0.216722 / compensatory 

 

 

pre-edited 

/ / / empty 

0.50352 / / wild type 

0.009289 0.003184 / compensatory 

 

 

uneditable 

/ / / empty 

0.019601 / / wild type 

0.687504 0.021714 / compensatory 
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4.1.2 Interaction of R/G site pre-mRNAs with hnRNPs 

Alternative splicing occurs through the usage of different splicing signals, like 

alternative splice sites or exonic and intronic splicing enhancers and silencers, and 

contributes massively to the synthesis of various protein isoforms from a unique 

transcript. 

In the case of R/G site in GluR-B pre-mRNA, proper alternative splicing 

decisions are stimulated indirectly only upon RNA editing, which first leads to the 

splicing reduction and transient intron 13 retention, followed by correct processing of 

downstream introns. The resulting region (UUAIGgugg with intron sequence in lower 

case) exhibits strong sequence homology to an hnRNP A1-binding splice silencer 

consensus (GGCAGGGUGG). Moreover, the introduction of guanosine-mimicking 

inosine into this sequence raises the affinity of another splice silencing regulator, G-

rich binding hnRNP H, for this region. Thus, we decided to analyse the differences in 

association of wild type and pre-edited R/G site pre-mRNAs with candidate hnRNPs.  

 

Figure 4.7: Schematic drawing of RT-PCR for R/G site construct pre-mRNAs 

RT-PCR products with expected amplicon sizes are depicted for unspliced and spliced 

versions of R/G site construct messages in panels A and B, respectively. 

HEK293 cells were transfected with the reporter constructs and immediately 

before harvesting UV-crosslinking was performed to stabilise the interaction between 

mRNAs and hnRNPs (Dreyfuss et al., 1984). Cell lysates were then applied to 

Protein A Sepharose beads with covalently coupled anti-hnRNP A1 or anti-hnRNP H 
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antibodies for co-immunoprecipitation. The co-immunoprecipitated RNAs were further 

investigated by RT-PCR, using exonic primers that allow for unambiguous distinction 

between spliced and unspliced products (Figure 4.7). 

 

 

Figure 4.8: Co-immunoprecipitation of R/G site pre-mRNAs with hnRNP H 

A: Western Blot for hnRNP H IP detection: hnRNP H was successfully immunoprecipitated 

(upper panel, lane 3); CBP 80, a known interaction partner of hnRNP H, was used as a 

positive control for the IP efficiency (lower panel, lane 3); total cell lysate was used as a 

positive control for WB (lanes 1); uncoupled beads were used as negative control (lanes 2). 

B: RT-PCR of co-immunoprecipitated RNAs: the more efficiently spliced wild type construct 

is found more strongly associated with hnRNP H than the pre-edited construct (spliced 

variants; compare lanes 8 of upper and lower panels); as positive controls, plasmid DNA 

(lane 2, indicating the size of unspliced product) and total cell lysate RNA (lane 4, indicating 

the size of the fully-spliced product) were used as PCR templates (upper panel); “-“lanes 

represent PCR samples without RT enzyme in the reverse transcription reaction; n.b., all 

samples are placed exactly under their corresponding IP fractions from part A of this figure. 

To our surprise, the association of the wild type R/G site construct with hnRNP 

H was stronger than the one of the pre-edited construct (Figure 4.8). In both cases, 

only the correctly spliced product could be found associated with hnRNP H.  Then, 

we went on to see if any major difference could be observed in the association of 

these pre-mRNAs with hnRNP A1 (Figure 4.9).  
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Figure 4.9: Co-immunoprecipitation of R/G site pre-mRNAs with different 

hnRNPs 

A: Western Blot for hnRNP IP detection: two different hnRNPs (hnRNP H, upper panel; 

hnRNP A1, lower panel) were successfully immunoprecipitated (lanes 5 and 6, respectively); 

total cell lysate was used as a positive control for WB (lane 1); antibody purity and cross-

reactivity was tested for both anti-hnRNP H and hnRNP A1 in lanes 2 and 3, respectively; 

uncoupled beads were used as negative control (lane 4). 

B: RT-PCR of co-immunoprecipitated RNAs: the more efficiently spliced wild type construct 

is found associated with both hnRNP A1 (predominantly unspliced version; upper panel, lane 

12) and hnRNP H (spliced variants; upper panel, lane14); for the pre-edited construct, no 

such association could be observed (lanes 12 and 14, lower panel); as positive controls, 

plasmid DNA (lane 2, indicating the size of unspliced product) and total cell lysate RNA (lane 

4, indicating the size of the fully-spliced product) were used as PCR templates (upper panel); 

“-“lanes represent PCR samples without RT enzyme in the reverse transcription reaction; all 

samples are placed exactly under their corresponding IP fractions from part A of this figure. 
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Contrary to our original hypothesis, we could not detect any enrichment of pre-

edited messages in hnRNP A1- or hnRNP H-coimmunoprecipitated fractions, when 

compared to the wild type RNAs. In fact, no interaction whatsoever of the 

aforementioned hnRNPs with the pre-edited mRNAwas observed (Figure 4.9 B, 

lower panel, lanes 12 and 14). Interesting feature of the experiment was that the 

unspliced wild type mRNA was enriched in hnRNP A1 fraction (Figure 4.9 B, upper 

panel, lane 12), while the spliced version was found preferentially associated with 

hnRNP H (Figure 4.9 B, upper panel, lane 14).  
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4.2 ADAR1-mediated export of miRNA precursors 

The existence of both 110 kDa constitutively expressed (ADAR1-c or 

ADAR1p110) and the 150 kDa interferon-inducible shuttling isoform (ADAR1-i or 

ADAR1p150) of ADAR1, synthesised by translation initiation at alternative 

methionine codons, lead to a proposal that the role of the latter is in hyperediting of 

viral RNAs. However, upon the emergence of RNA interference and the 

establishment of its intimate connection with RNA editing, especially the RNA editing 

of the primary miRNA transcripts, the question of association of ADAR1-i and miRNA 

precursors during the export process was soon raised. Moreover, full length version 

of ADAR1 binds siRNAs with an exceptionally strong affinity (Yang et al., 2005). 

The idea of ADAR1-i escorting miRNA precursors through the nuclear pores 

was further encouraged after the identification of Exportin5, a Crm-1 related 

karyopherin known to interact with dsRBD-containing proteins, as the main export 

receptor of miRNA precursors (Brownawell and Macara, 2002; Fritz et al., 2009; Lund 

et al., 2004). 

First two microRNAs reported as editing targets were miR-22  and miR-142. 

Editing of primary miR-22 transcripts occurs in many tissues at relatively low levels. 

This scarcity of detectable microRNA editing products, however, could also be 

attributed to their increased susceptibility to degradation (Luciano et al., 2004). 

Precursors of hematopoietic tissue-specific miR-142, on the other hand, lose their 

silencing potential upon RNA editing, judged by the decreased Drosha-DGCR8 

processivity on the inosine-containing primary miR-142 and by the upregulation of 

mature miR-142 levels in spleen and thymus of both ADAR1 and ADAR2 null mice. 

Additionally, highly edited primary miR-142 transcripts, in contrast to the unedited 

ones, were prone to in vitro cleavage by exclusively cytoplasmic ribonuclease, Tudor-

SN, specific for inosine-containing dsRNA and previously identified as a RISC 

component (Yang et al., 2006). The residual enigma, how the solely nuclear primary 

transcript reaches Tudor-SN in the cytoplasm, remained to be clarified. Another open 

question was whether RNA editing of miRNA precursors was restricted to primary 

transcripts only, or could pre-miRNAs also be directly affected by this 

posttranscriptional modification (O'Connell and Keegan, 2006). 

This is why I set out to unveil interaction between ADAR1 and established 

RNA editing targets among miRNA precursors in these two cellular compartments. 
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4.2.1 ADAR1p150 and miR-22 precursor interact in both nucleus 

and cytoplasm 

The obvious experimental approach to detect RNA-protein interactions, in this 

case the association of ADAR1 and miR-22 precursor, is co-immunoprecipitation. In 

our lab, various antibodies against ADAR1 were raised. For our IP experiments, 

antibodies labelled Sat 309 and Sat 1146 (both raised in rabbits) were coupled to 

Protein A Sepharose and applied on cell lysates in attempt to pull down ADAR1 

miRNA targets. While a peptide from the central region of the protein was used to 

raise Sat 309, enabling it to recognise both ADAR1p110 and ADAR1p150, N-terminal 

fusion protein containing the amino-terminus of the full-length ADAR1 served as an 

antigen in Sat 1146 production, thus allowing the detection of ADAR1p150 only. 

Nuclear and cytoplasmic fractions of confluent HeLa cells were prepared by 

homogenisation. Then, the fraction lysates were made and applied to PAS-coupled 

antibodies for immunoprecipitation. The precipitated proteins and RNAs were 

detected by Western Blot and RT-PCR, respectively.  

As seen in Figure 4.10 A, Sat 309 antibody is able to recognise and precipitate 

the corresponding versions of ADAR1. Judging by the RT-PCR experiments done on 

the immunoprecipitated material in Figure 4.10 B, either both or just one version of 

ADAR1 interact with miR-22 precursor, a previously identified editing target, in both 

cytoplasm and the nucleus. The control miRNA precursor, miR-21, on the other 

hand, could not be detected in the immunoprecipitated fractions by means of RT-

PCR, corroborating the assumption that the interaction of miRNA precursors with 

RNA editing enzyme does not occur randomly, but is limited to the actual editing 

targets among this class of small RNAs. To control for the separation of nuclei from 

the cytoplasm, RT-PCR of  fully processed (i.e. exclusively cytoplasmic) γ-tubulin B-

subunit transcript was employed (Figure 4.10 B, lower panel). 
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Figure 4.10: Co-immunoprecipitation of ADAR1p110 and miR-22 precursor 

A: Western Blot used for ADAR1  IP detection: nuclear predominance of short (p110) and 

cytoplasmic predominance of long (p150) ADAR1 can be clearly seen (see Cytoplasm and 

Nucleus Lysate lanes); total cell lysate was used as a control (Total); adequate 

immunoprecipitation conditions were met, as seen in Sat309 lanes; uncoupled beads were 

used as negative control (Mock); for Western Blot detection, Sat12 antibody which detects 

both ADAR1 versions was used. 

B: RT-PCR of co-immunoprecipitated RNAs: miR-22, but not miR-21 precursor can be co-

immunoprecipitated with ADAR1 from both cytoplasmic and nuclear lysate (“+” lanes Sat309 

for both cytoplasmic and nuclear fractions; “-“ lanes indicate negative controls for reverse 

transcription, samples where no enzyme was added to the RT reaction); γ-tubulin B-subunit 

mRNA RT-PCR served as a control of separation of nuclei from the cytoplasm (lower panel); 

* lanes correspond to the ones denoted in A 

Next, we wanted to see if both ADAR1 versions interact with miR-22 

precursors or if it is restricted to ADARp150. This is why we used ADAR1p150-

specific antibody Sat 1146 for the next round of co-immunoprecipitation experiments 

(Figure 4.11). 
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Figure 4.11: Co-immunoprecipitation of ADAR1p150 and miR-22 precursor 

A: Western Blot used for ADAR1  IP detection: total cell lysate was used as a control (Total); 

adequate immunoprecipitation conditions were met, as judged by Sat1146 lanes; uncoupled 

beads were used as a negative control (Mock); for Western Blot detection, Sat12 antibody 

which detects both ADAR1 versions was used. 

B: RT-PCR of co-immunoprecipitated RNAs: miR-22, but not miR-21 precursor can be co-

immunoprecipitated with ADAR1p150 from both cytoplasmic and nuclear lysate (“+” lanes 

Sat1146 for both cytoplasmic and nuclear fractions; “-“ lanes indicate negative controls for 

reverse transcription, samples where no enzyme was added to the RT reaction); γ-tubulin B-

subunit mRNA RT-PCR served as a control of separation of nuclei from the cytoplasm (lower 

panel); * lanes correspond to the ones denoted in A. 

Indeed, the RT-PCR signals obtained for the miR-22 precursor co-

immunoprecipitated with ADAR1p150 showed similar intensity to the ones derived 

from the material co-immunoprecipitated with both ADAR1 isoforms (Figure 4.11, 

panel B).  
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This is why we conclude that the fraction of co-IP-ed miR-22 precursor was 

comparable using either antibody (no enrichment when using Sat 309), indicating 

that the interaction is probably restricted to the full-length, shuttling ADAR1 isoform 

(ADAR1p150). 

The co-immunoprecipitation experiment clearly shows the specific association 

of ADAR1p150 with miR-22 precursor in both nucleus and the cytoplasm, supporting 

our original hypothesis according to which miRNA precursor editing targets serve as 

RNA bridges between dsRBD protein ADAR1p150 and Exportin5 during nuclear 

export. 

The next step to further corroborate this working model was to check for the 

differences in editing levels of different miR-22 precursors and mature form in lysates 

versus ADAR1p150 immunoprecipitates from nuclear and cytoplasmic fractions, 

expecting to find a gradual increase of inosine content towards the mature miRNA 

forms, in the cytoplasm. This approach, however, had to be abandoned because of 

the technical difficulties caused by contamination in RT-PCR. 

Similar experimental concept was planned for another pronounced editing 

target among miRNA precursors, namely miR-142, expressed mainly in 

hematopoietic tissues. Unfortunately, due to time restrictions this project was put on 

hold. 
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4.3 SINE RNA interacts with HYL1, key member of RNAi 

pathway in plants 

A collaboration with the lab of Jean-Marc Deragon at the University of 

Perpignan, France was initiated to investigate the role of tRNA-derived SINE RNAs in 

the RNAi pathway in plants.  

Transgenic A. thaliana lines overexpressing SB1 SINE RNA exhibit 

developmental defects similar to the ones seen in some RNAi mutants. In 

Arabidopsis, SB1 transcription is associated with delayed growth and flowering time, 

reduction of leaf and root size, etc. Several of these defects resemble those 

observed in hyl1 and drb4 mutants, which are impaired in the two dsRBPs required 

for miRNA and trans-acting small interfering RNA (tasiRNA) pathways, respectively, 

suggesting that SB1 could interact with RNA-binding proteins of the miRNA or 

tasiRNA pathways (Pouch-Pelissier et al., 2008).  

Moreover, SB1 RNA does not conserve the ancestral tRNA folding pattern, but 

instead adopts a structure consisting of three stem-loops with bulges and 

mismatches (Sun et al., 2007). This, in turn, raises the possibility of interaction with 

various dsRBPs (double-stranded RNA binding proteins) given that the recognition of 

dsRNA by dsRBPs generally does not involve sequence specificity and several 

structured RNAs forming stem-loops with bulges or mismatches were shown to bind 

efficiently to dsRBPs, many of which are involved directly in RNAi (Stefl et al., 2005). 

In Arabidopsis, these proteins include the four Dicer-like proteins (DCL1 to 4), the 

five dsRNA-binding proteins (HYL1 and DRB2 to 5) and the HUA Enhancer 1 (HEN1) 

protein (Hiraguri et al., 2005). 

Because the production of SINE RNA induces growth anomalies reminiscent 

of those in hyl1 and drb4 null mutants, we hypothesised that if SB1 RNA mimicked 

the structure of natural mi/tasiRNA substrates, it could interact with and titrate 

proteins involved in the biogenesis of these small RNAs So, in order to explain the 

observed similarity between SB1 expressing lines and RNAi mutants, the affinity of 

SB1 SINE RNA for HYL1 and DRB4 was tested. 
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4.3.1 SINE RNA interacts with a subset of double-stranded RNA 

binding proteins 

 HYL1 is part of the DCL1 complex and is involved in processing miRNA 

primary transcripts (pri-miRNAs) and short precursors (pre-miRNAs). In gel 

retardation experiments, SB1 SINE RNA, but not DNA or single-stranded RNA 

fragments of a similar size, associated with a recombinant GST-HYL1 fusion protein 

(Pouch-Pelissier et al., 2008). Although a perfect RNA duplex also could bind HYL1, 

this association was less efficient compared to SB1 RNA, suggesting that HYL1 

prefers dsRNA substrates containing bulges and/or distal loops. RNase V1 protection 

assay helped us define more precisely the SB1 RNA binding sites of HYL1 (Figure 

4.12): HYL1 binds mainly to the first and longest SB1 stem-loop, adopting a fold 

similar to pre-miRNAs. Indeed, the protected region includes an RNA duplex 

containing mismatches and extends into the single-stranded terminal loop region. A 

structurally similar, although weaker HYL1 binding site also is present on the second 

stem-loop of SB1 RNA. We also tested the capacity of DRB4, a dsRBP involved in 

the production of tasiRNAs (Mallory and Vaucheret, 2006) to bind SB1 RNA. In this 

case, the GST-DRB4 fusion protein did not bind significantly to SINE RNA in our in 

vitro assay, although it did efficiently bind to a perfect RNA duplex, which likely 

resembles the structure of tasiRNA templates. This result suggests that SINE RNAs 

interact with dsRBPs specifically adapted to bind imperfect double-stranded RNA 

rather than those that bind perfect RNA duplexes. 

Recently, dsRBDs from two Xenopus laevis proteins, xlADAR1 and xlRPBA, 

were shown to bind efficiently to short stem-loop RNA structures containing bulges 

and mismatches (Hallegger et al., 2006), consistent with the observation that ADARs 

can modify miRNA precursors in vivo (Kawahara et al., 2007a). Because of structure 

similarity, it is possible that many SINE RNAs interact with dsRBPs. We performed 

binding experiments with SB1 RNA and the second double-stranded RNA binding 

domain of xlADAR1 (called Dr2) and mapped the RNA binding sites (Figure 4.12). 

We observed that Dr2 bound SB1 RNA in the same region as HYL1, suggesting that 

SINE RNAs have the potential to interact with a subset of dsRBPs across eukaryotic 

species, including the ones involved in miRNA production. DRB4 had no impact on 

RNase V1 cleavage pattern, confirming its inability to bind SB1.  
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Figure 4.12 
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Figure 4.12: Protection from RNase V1 digestions of SB1 SINE RNA by two 

different dsRBPs 

Prior to RNase V1 digestion, in vitro transcript of SB1 was subjected to protection by 

increasing concentrations of expressed dsRBPs: Dr2 (the second dsRBD of Xenopus laevis 

ADAR1), HYL1, combination of Dr2 and HYL1, or DRB4. Regions protected by Dr2 and 

HYL1 are marked alongside short run gel (A), long run gel (B) and predicted folding pattern 

(C) by brown and green bars, respectively. Three independent experiments gave similar 

results as the one presented. Nucleotides marked with asterisks seem to adopt more 

prominent helical structure upon protein binding and, therefore, become more prone to 

RNase V1 cleavage. DRB4 is showing no effect on RNase V1 cleavage, confirming its low in 

vitro binding affinity to SB1 RNA. Dr2 and HYL1, in this case, bind to and protect similar 

regions of RNA. HYL1 is, however, showing stronger binding affinity than Dr2. (HL) 

represents a partially hydrolyzed RNA ladder. Denaturating RNase A and T1 digests give the 

position of pyrimidine and G residues respectively. The control lane shows untreated RNA 

samples and the (0) lane represent RNase V1 digestion without recombinant proteins added. 

A labeled 23-mer oligoribonucleotide was also loaded on the gel to help in band size 

determination. 
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4.3.2 HYL1 induces conformational changes upon binding to RNA 

The binding of HYL1 appears to increase the RNase V1 sensitivity of certain 

regions of the SB1 RNA (indicated by asterisks on Figure 4.12 A). The RNase V1 

activity is sensitive to RNA conformation and, although sensitivity does not always 

imply hydrogen bonding of the bases in a canonical double stranded helix, it does 

require a structured, helix-like conformation. As such, the increased RNase V1 

sensitivity following HYL1 binding suggests that HYL1 is able to force some single-

stranded RNA regions to adopt a more structured helix-like conformation, possibly by 

promoting non Watson-Crick base pairing. 

To test a chaperon-like activity for HYL1 and to explore its generality, we 

performed binding experiments using the SELEX clone 11Dr2(7), a short imperfect 

double-stranded RNA known to bind the Dr2 motif. Following RNase V1 digestion, 

we confirmed the binding of Dr2 to 11Dr2(7) (Figure 4.13). We observed that HYL1 is 

able to bind strongly to 11Dr2(7) and generate regions protected from RNase V1 

activity (represented by green lines on Figure 4.13 B) and regions with increased 

sensitivity to RNase V1 (represented by asterisks on Figure 4.13 A and B). Again 

DRB4 was unable to bind 11Dr2(7) and no synergetic effect was observed when 

HYL1 and Dr2 were used together. Similar results were observed when the SB2 

Arabidopsis SINE RNA was used as a substrate (see Figure 4.14). Our results 

suggest that, upon binding RNA, HYL1 has the general capacity to force single-

stranded regions to adopt a more organized, helix-like configuration. 
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Figure 4.13 
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Figure 4.13: Protection from RNase V1 digestion of SELEX clone 11Dr2(7) by 

different dsRBPs. 

Prior to RNase V1 digestion, in vitro transcript of SELEX clone 11Dr2(7) was subjected to 

protection by increasing concentrations of expressed dsRBPs: Dr2, HYL1, combination of 

Dr2 and HYL1, or DRB4. Regions protected by Dr2 and HYL1 are marked alongside short 

run gel (A), long run gel (B) and predicted folding pattern (C) by brown and green bars, 

respectively. Three independent experiments gave similar results as the one presented. 

Nucleotides marked with asterisks seem to adopt more prominent helical structure upon 

protein binding and, therefore, become more prone to RNase V1 cleavage. DRB4 is showing 

no effect on RNase V1 cleavage of given RNA, confirming its low binding affinity for 

imperfect RNA duplexes. (HL) represents a partially hydrolyzed RNA ladder. Denaturating 

RNase A and T1 digests give the position of pyrimidine and G residues respectively. The 

control lane shows untreated RNA samples and the (0) lane represent RNase V1 digestion 

without recombinant proteins added. A labeled 23-mer oligoribonucleotide was also loaded 

on the gel to help in band size determination. 
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Figure 4.14 
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Figure 4.14: Protection from RNase V1 digestion of SINE SB2 RNA by different 

dsRBPs 

Prior to RNase V1 digestion, in vitro transcript of SB2 was subjected to protection by 

increasing concentrations of following dsRBPs: Dr2, HYL1, combination of Dr2 and HYL1, or 

DRB4. Regions protected by HYL1 are marked alongside short run gel (A), long run gel (B) 

and predicted folding pattern (C) by green bars. Three independent experiments gave similar 

results as the one presented. Nucleotides marked with asterisks seem to adopt more 

prominent helical structure upon protein binding and, therefore, become more prone to 

RNase V1 cleavage. (HL) represents a partially hydrolyzed RNA ladder. Denaturating RNase 

A and T1 digests give the position of pyrimidine and G residues respectively. The control 

lane shows untreated RNA samples and the (0) lane represent RNase V1 digestion without 

recombinant proteins added. A labeled 23-mer oligoribonucleotide was also loaded on the 

gel to help in band size determination. The binding of HYL1 to SB2 is weaker compared to 

SB1 or 11Dr2(7). In this case, both Dr2 and DRB4 are showing no effect on RNase V1 

cleavage, suggesting their low in vitro binding affinity to SB2 RNA. 
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5 DISCUSSION 
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5.1 Compensatory U1 snRNA partially restores the splicing 

efficiency of pre-edited R/G site construct 

ADAR family of enzymes catalyses hydrolytic deamination of adenosines to 

inosines within double-stranded RNAs. In mRNAs, this reaction can take place in 

exons, introns or untranslated regions (UTRs), leading to codon exchange, splice site 

introduction or stop codon abolishment. 

A → I RNA editing in exons can result in codon exchange and subsequent 

amino acid substitution. Codon exchange as a direct consequence of RNA editing in 

mammals has first been reported for the AMPA receptor subunit GluR-B (Higuchi et 

al., 1993). Adenosine deamination occurs at multiple sites in this particular transcript: 

in exon 11 (Q/R site), in intron 11 (editing hotspots 1 and 2) and, ultimately,  in exon 

13,  just two nucleotides upstream of the intron 13 5´splice site (R/G site). Editing at 

the R/G site causes a reduction in intron 13 splicing efficiency (Schoft et al., 2007). It 

is postulated that this transient arrest is necessary to ensure that proper alternative 

splicing decisions for the downstream, mutually exclusive exons 14 and 15 are made: 

underediting at the R/G site, apparently, could lead to hasty activation of the branch 

point sites (BPSs) in introns 13, 14 and 15, resulting in either inclusion of both exon 

14 and 15, or in skipping them entirely. This, in turn, would have the emergence of 

premature stop codons  and synthesis of non-functional receptors as a consequence. 

A similar effect of underediting on alternative splicing was perceived for the 

mammalian serotonin 5-HT2C receptor (Maas et al., 2001) and for the number of 

edited mRNAs in Drosophila melanogaster (Agrawal and Stormo, 2005). On the 

other hand, there is evidence that RNA editing stimulates developmentally regulated 

alternative splicing events (Gallo et al., 2002). 

The explicit step in the complex pre-mRNA splicing network that is affected by 

RNA editing, however,  was not yet determined. At the R/G site, deamination occurs 

at a conserved -2 position (with respect to the 5´splice site). This adenosine is 

involved in the base-pairing interaction with U1 snRNA in one of the very first steps of 

the spliceosome assembly, which lead us to speculate that mRNA:U1snRNA 

interaction gets profoundly destabilised once inosine comes into play. This is why the 

imperfect 5´splice site hypothesis was tested by employing compensatory U1 snRNA 

mutants to investigate the influence of inosine in this critical position on U1 snRNA 

base-pairing potential. 
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On the other hand, the sequence surrounding the edited R/G site bears strong 

resemblance to the hnRNP A1-binding or to the G-rich hnRNP H-binding splice 

silencer consensus sequences. It, therefore, seems also plausible that RNA editing 

creates a binding site for one of the hnRNPs which mediate splicing repression, 

explaining the observed effect on splicing. In this light, the question of association of 

these two hnRNPs with target mRNA in different editing states was addressed. 

5.1.1 U1 snRNA interaction with 5´ splice site is disrupted upon 

RNA editing at R/G site 

In this work, we focused on identifying the macromolecular interaction within 

the RNA splicing machinery that gets impaired once the co-transcriptional adenosine-

to-inosine RNA editing occurs in close proximity to 5´ splice site, resulting in reduced 

splicing efficiency, just as in the case of the R/G site editing in exon 13 of the GluR-B 

pre-mRNA. 

Using the in vivo splicing assay established in our lab, we are able to show 

that the introduction of the compensatory mutation into U1 snRNA in the nucleotide 

position forming a base-pair with the editied nucleotide in the pre-mRNA could 

increase the splicing competence of the affected RNA to some extent. The lack of the 

full restoration of the wild type splicing efficiency in this experimental system could be 

attributed to either lower transfection rates for the U1 snRNA-bearing constructs or 

the less favourable incorporation of the mutated U1 snRNA into U1 snRNP compared 

to the wild type small nuclear RNA, or both. It is also plausible that yet another, thus 

far unidentified, step in pre-mRNA maturation is affected by RNA editing of the 5´ 

splice site adjacent sequence. In any case, other experimental approaches that 

included overexpression of exogenous small nuclear RNAs like U1 or U2 snRNA also 

resulted in expression levels similar to the ones reached in our experiments (Pan and 

Prives, 1988; Zhuang and Weiner, 1986; Zhuang and Weiner, 1989).  

The role of the base-pairing interaction between the 5´ end of U1 snRNA and 

the 5´ splice site in pre-mRNA is indispensable for the 5´ splice site recognition by 

the splicing machinery (Zhuang and Weiner, 1986). However, before the recognition 

step may take place, a complex network of protein-protein and protein-RNA 

interactions has to be formed, most notably within the U1 snRNP and its interaction 

partners (Kohtz et al., 1994). U1 snRNA itself adopts extensive secondary structure 

consisting of four stem-loops and two relatively short single-stranded regions (Krol et 
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al., 1990). The first single-stranded stretch is found at the 5´ end and is responsible 

for the interaction with the 5´ splice site, while the other one represents the Sm-

binding site between stem-loops 3 and 4, around which seven Sm proteins assemble 

(Urlaub et al., 2001). Other protein components of U1 snRNP, namely U1-70K and 

U1-A use their RNA-binding domains to interact with stem-loops 1 and 2 of U1 

snRNA, respectively (Oubridge et al., 1994; Patton and Pederson, 1988). In contrast, 

U1-C protein is not able to bind free U1 snRNA, but is only capable of achieving this 

interaction once it establishes protein-protein contacts with U1-70K (Nelissen et al., 

1994). 

Recently, the crystal structure of human U1 snRNP was solved at 5.5 Å 

resolution (Pomeranz Krummel et al., 2009). The structure of U1 snRNP implies an 

involvement of U1-C in stabilising interaction between the 5´ end of U1 snRNA and 

the 5´ splice site in pre-mRNA, judged by the data showing that the loop region and 

helix A of the U1-C zinc finger domain bind to the RNA duplex mimicking the base-

paired U1 snRNA::5´ splice site dsRNA. Moreover, U1-C is crucial for the formation 

of the early spliceosomal complex, as the double mutant of U1-C fails to promote it 

(Heinrichs et al., 1990; Will et al., 1996). The binding occurs in the minor groove of 

RNA duplex where C8 and A7 nucleotides of U1 snRNA base-pair with conserved 

GU dinucleotide of the 5´ splice site, being highly likely that the adjacent base-pairs, 

among them the one formed by -2 nucleotide of the 5´ splice site (R/G site) and 

nucleotide 10 of U1 snRNA, also play a role in this protein-dsRNA association. The 

authors suggest that the conserved residues in the loop and helix A region of U1-C 

could serve to probe the hydrogen bonding of the base pairs in the minor groove of 

RNA duplex and, subsequently, allowing U1-C binding only to a correctly paired 5´ 

splice site and U1 snRNA would promote the following step in the splicing network. 

These propositions would also go along the same lines with the results we 

obtained in our studies and could explain the observations we came across. In our 

case, the inosine/guanosine instead of adenosine at the -2 position of the 5´ splice 

site would not be able to form a stable base pair with the U10 of U1 snRNA. In 

addition, U1-C would sense the unfavourable thermodynamic conditions, evading 

binding and failing to promote the formation of the complex required for the next step 

in RNA splicing. This would result in the decrease of the splicing efficiency, observed 

by us as reduction in green fluorescence intensities of our construct. On the other 

hand, introduction of the compensatory mutation in U1 snRNA (C10 instead of U10) 
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and the incorporation of the mutant into U1 snRNP would allow for the formation of 

stable base pair with the inosine/guanosine at the -2 position of the 5´ splice site. U1-

C could form a strong association with RNA duplex in this scenario, promoting further 

steps in the spliceosome assembly. This effect was displayed as the partial 

restoration of the original splicing efficiency in our experiments. 

5.1.2 Role for hnRNPs in regulation of splicing through RNA editing 

Alternative splicing of pre-mRNAs is a widespread phenomenon that 

contributes considerably to proteome variety in higher organisms. In mammals, for 

example, majority of genes undergo this process, often on a tissue-specific level, 

through alternative exclusion or inclusion of either introns (intron retention) or exons 

(exon skipping) during mRNA processing (Wang et al., 2006). 

On the molecular level, splicing enhancer signatures in mRNAs are generally 

bound by the serine/arginine (SR) rich proteins , which then promote the recognition 

of adjacent splice sites (Wang et al., 2004b). Splice silencer sequences, on the other 

hand, are most commonly recognised by one of the members of the hnRNP protein 

family, including hnRNP I/PTB (polypyrimidine tract-binding protein), hnRNP A1 or 

hnRNP H (Chen et al., 1999; Grabowski, 2004). Each of these protein factors has its 

own subset of the mRNA sequence motifs it associates with preferentially. 

In the case of R/G site in GluR-B pre-mRNA, proper alternative splicing 

decisions are stimulated indirectly only upon RNA editing, which first leads to the 

splicing reduction and transient intron 13 retention, followed by correct processing of 

downstream introns (Schoft et al., 2007). The resulting region (UUAIGgugg with 

intron sequence in lower case) exhibits strong sequence homology to an hnRNP A1-

binding splice silencer consensus (GGCAGGGUGG). Moreover, the introduction of 

guanosine-mimicking inosine into this sequence raises the affinity of another splice 

silencing regulator, G-rich binding hnRNP H, for this region. 

Here, we tried to screen for the differences in pre-edited pre-mRNA binding to 

two hnRNPs involved in splicing silencing, in comparison to wild type pre-mRNA. 

Although we expected to see stronger association of the pre-edited message with the 

previously identified splicing silencers hnRNP H and hnRNP A1, this particular mRNA 

seemed to associate altogether more weakly or transiently than its wild type 

counterpart in our co-IP experiments, precluding us from reaching any conclusions 

on the role of hnRNPs in splicing regulation upon RNA editing. 
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5.2 ADAR1p150 remains associated with edited miRNA 

precursor in the cytoplasm 

The biogenesis of microRNAs through processing activities in both nucleus 

and the cytoplasm requires a reliable nuclear export pathway where pre-miRNAs, 60-

70 nucleotide long stem-loop products of nuclear Drosha-DGCR8 activity on primary 

miRNA transcripts (Han et al., 2006; Lee et al., 2003), are delivered to the 

cytoplasmic Dicer-TRBP complex for the final processing step in which functional 

mature miRNAs are synthesised, 21-23 nucleotides long single-stranded RNAs 

capable of silencing their respective messenger RNA targets within the RISC 

complex. The karyopherin identified as an export receptor for pre-miRNAs was 

Exportin-5 (Lund et al., 2004). This export receptor was shown to mediate RNA-

dependent export of a number of dsRBD proteins. Remarkably, dsRBDs of cargo 

proteins are in most cases indispensable for the interaction with Exportin-5. In 

addition, this interaction is thought to be mediated, or at least strengthened, through 

an RNA bridge (Fritz et al., 2009). 

ADAR1 as dsRBP and microRNA precursors have both been shown to interact 

with Exportin5. Since both nuclear primary microRNAs and cytoplasmic pre-

microRNAs were reported as editing targets, we were interested to see if 

ADAR1p150, being a shuttling protein, escorts these substrates to the cytoplasm. 

At the time when this study was concieved, validated editing substrates among 

miRNA precursors were miR-22 and miR-142, both on the primary transcript level.  

Nuclear pri-miR-142, though, was shown  to be sensitive to cytoplasmic Tudor-SN 

cleavage, further corroborating our co-export hypothesis (Luciano et al., 2004; Yang 

et al., 2006). 

In this study we present evidence that ADAR1p150 and miRNA-22 precursor 

associate in the nucleus and continue to interact in the cytoplasm. It provides a 

strong indication that this is not merely a short-lived complex, but a dynamic  

macromolecular assembly  capable of trafficking through the nuclear pores. Also, the 

absence of miR-22 precursor enrichment in fractions immunoprecipitated with 

antibody recognising both full-length and, predominantly nuclear, short ADAR1 

isoform suggest that this miR-22 precursor interaction is restricted to ADAR1p150, 

rationalising its expression and/or shuttling behaviour in non-infected tissues and 

cells. 
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miR-142 as the other RNA editing substrate in the class of miRNA precursors 

was surprisingly reported as ADAR1p110 and ADAR2 target, but not as ADAR1p150 

target in vitro. In this case, adenosine deamination of nuclear pri-miR-142 at eleven 

sites leads to conversion of stable A=U Watson-Crick base-pairs into more flexible I-

U wobble structures, causing profound alterations in the structure and stability  of this 

dsRNA. This change results in complete blockage of the Drosha cleavage step and 

reduction in mature miR-142 levels. Out of eleven modified adenosines in this pri-

miRNA, the sites identified as the ones leading to inhibition of Drosha-DGCR8 

cleavage were positions +4 and +5 (with respect to the mature miR-142-5p 

sequence), located near the actual Drosha cleavage site.  Additionally, this 

modification provokes an increased sensitivity to Tudor-SN-mediated degradation 

(Yang et al., 2006). However, this ribonuclease specific for hyper-edited dsRNAs is 

confined to cytoplasm (Scadden, 2005), again raising the issue of how exactly the 

edited pri-miR-142 gets out of the nucleus, since RanGTP-Exportin5-dependent pre-

miRNA export mechanism applies only to properly processed molecules. On the 

other hand, the observation that even miRNA precursors longer than properly 

processed ones (85 nt long miR-22 in this case) can get exported from Xenopus 

laevis nuclei, possibly through  an Exportin-5-independent pathway, is compatible 

with the results we obtained for the miR-22 precursor (Lund et al., 2004). 

The next question we wanted to address in this study, but due to time 

restrictions failed to, was the level of miRNA editing throughout the entire miRNA 

biogenesis pathway, from the RNA Pol-II-mediated transcription in the nucleus to the 

mature miRNA delivery to the RISC complex in the cytoplasmic P-bodies. Since we 

found ADAR1p150 associated with miR-22 precursor also in the cytoplasm, it would 

be rational to expect the increased editing levels in this cellular compartment, when 

compared to the nucleus. The experimental approach for this type of analysis would 

include immunoprecipitation of ADAR1-associated miRNAs and RT-PCR of miRNAs 

in different maturation stages, followed by cloning and sequencing. A to I changes 

would then be detected as Gs in the examined sequence. Indeed, in one study  a 

rising inosine content in two intermediates of miRNA formation was reported for a 

novel miRNA editing target, miR-151, in several mouse tissues. Editing at Dicer 

cleavage site-adjacent positions -1 and, especially +3 (with respect to the mature 

miR-151-3p sequence) has proven to act repressive on the Dicer-TRBP processing 

of pre-miR-151, leading to detection of exclusively unedited mature miR-151 
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(Kawahara et al., 2007a). On the structural level, the plausible explanation for this 

inhibition would be the terminal loop extension as the consequence of the stem 

instability caused by the presence of wobble I-U basepairs, precluding the accurate 

stem length recognition by Dicer. While editing at +3 position in pri-miR-151 

fluctuated between 30-70%, all the detectable pre-miR-151 species (100%) had 

inosine at this site. In vitro experiments have also shown that pre-miR-151 alone gets 

highly edited by either ADAR1p150 or ADAR1p110, but not ADAR2, consistent with 

our detection of cytoplasmic ADAR1p150::pre-miR-22 association. This miRNA 

modification is thought to have a regulatory role in controlling the number of active 

mature miRNAs through the maturation repression, just like in the case of miR-142. 

The most dramatic effect of miRNA editing was the redirection of mature miR-

376 to a completely different set of mRNA targets. Here, one highly edited site is 

situated exactly in the middle of the seed region, responsible for the first steps in 

recognition and hybridisation of mature miRNAs to their mRNA targets within the 

RISC complex (Kawahara et al., 2007b). 

All these new developments are in line with our preliminary data and 

encourage further effort in elucidating fate of ADAR1-associated miRNA precursors 

from the nucleus out to the cytoplasm. Unfortunately, all further efforts to get clean 

RT-PCR reactions without any genomic DNA contamination for the cDNA sequencing 

failed for what we believe to be two reasons. Firstly, working with human genes or 

transcripts enormously increases the contamination risk in such sensitive applications 

like RT-PCR. Secondly, microRNAs are intronless transcripts, thereby precluding any 

possibility for distinction between the amplification products derived from cDNA and 

the genomic DNA ones. Currently, we are discussing alternative experimental 

approaches to circumvent the abovementioned technical difficulties.   
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5.3 SINE RNAs bind only a particular subset of dsRBPs 

Previously, it has been observed that the transgenic A. thaliana lines that 

overexpress exogenous SINE RNAs, abundant highly structured retroelements 

consisting of three stem-loops with mismatches and bulges, exhibit phenotypic 

aberrations similar to hyl1 and drb4 mutants, deficient in proteins essential for RNAi 

in plants (Pouch-Pelissier et al., 2008). Thus, it is easy to imagine that SINE RNAs, 

bearing high structural similarity to microRNA intermediates, serve as modulators of 

RNA interference mechanism in plants. This is why we investigated in vitro 

interactions of SINE RNAs with different RNAi-related dsRBPs . We have tested if the 

affinity of dsRBD-containing proteins for this group of imperfect dsRNAs was 

compatible with their in vivo preferences and obtained the results presented below. 

5.3.1 SINE RNA can bind HYL1 but not DRB4 

In our in vitro experiments, HYL1 binds efficiently different imperfect double-

stranded RNA molecules, including SB1  and SB2 SINE RNAs, while DRB4 only 

binds perfect RNA duplexes. These results are fully compatible with the known 

natural substrates of these two proteins. In vivo, HYL1 is known to interact with pri- 

and pre-miRNAs, which are organized as stem-loops containing mismatches and 

bulges. On the other hand, DRB4 binds perfect linear RNA duplexes formed by the 

action of RDR6 on a single stranded primary transcript (Hiraguri et al., 2005). The 

fact that HYL1 does not play a major role in double-stranded RNA-induced 

posttranscriptional gene silencing (PTGS) (Vazquez et al., 2004) further suggests 

that, in vivo, HYL1 preferentially interacts with imperfect double-stranded pri- and 

pre-miRNAs and not perfect double-stranded PTGS precursors. Based on our RNase 

V1 mapping results, the basis of this selectivity could be the capacity of HYL1 to 

interact with single-stranded RNA regions. Indeed, the binding specificity of other 

eukaryotic dsRBPs, such as ADARs and Staufen, was shown to depend on their 

ability to interact with single-stranded RNA loops (Ramos et al., 2000; Stefl et al., 

2005). It is, therefore, easily concievable that RNA binding specificities of HYL1 are 

much different from DRB4, determining their different set of interaction partners in 

vivo. 
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5.3.2 Chaperoning-like activity of HYL1 

We also observed that upon binding RNA HYL1 has the general capacity to 

force single-stranded regions to adopt a more organized, helix-like configuration. In 

vivo, HYL1 mainly is involved in promoting processing steps from pri-miRNA to pre-

miRNA in association with DCL1, another dsRBP (Song et al., 2007; Wu et al., 

2007). HYL1 also influences the cleavage positioning of DCL1 on the pre-miRNA to 

generate the mature miRNA (Kurihara et al., 2006). Consequently, in the hyl1-2 null 

mutant, pri-miRNAs accumulate and misplaced cleavages of pre-miRNAs were 

observed in some cases. However, HYL1 is not fully necessary for plant miRNA 

processing by DCL1 because the hyl1-2 mutant retains some ability to accumulate 

wild type miRNAs, although the accumulation level is reduced. Also, this reduction is 

variable depending on the different miRNAs (Han et al., 2004; Vazquez et al., 2004). 

HYL1 may therefore promote, to variable extents, the processing activity of DCL1. 

Based on our observations, one way HYL1 could do this is by inducing a 

conformational change in the RNA structure, forcing key single stranded regions to 

adopt organized, helix-like, configurations, including non Watson-Crick base pairing. 

This could in turn be important for promoting the cleavage activity of DCL1 on pri-

miRNAs or for helping to precisely define the cleavage site on pre-miRNAs to 

generate mature products. It remains to be determined whether the chaperoning-like 

activity of HYL1 is important for miRNA production. 

5.3.3 Possible evolutionary consequence of the SINE RNA/dsRBP 

interaction 

Related structural domains can be found  in many SINE RNAs from mammals, 

fishes and plants, suggesting common selective constraints imposed at the SINE 

RNA structural level (Sun et al., 2007). Using a double-stranded RNA binding domain 

from Xenopus laevis ADAR1, it is demonstrated in this work that the plant SB1 RNA 

is capable of binding strongly divergent dsRBPs. Therefore, it is plausible that the 

common trend of structural evolution observed for tRNA-related SINE RNAs could 

result in similar constraints imposed by a subset of dsRBPs across eukaryote domain 

of life. This rigid RNA-protein recognition mode would then enforce SINE RNAs to 

keep intact their capacity to interact with some dsRBPs. This would in turn forge the 

SINE RNA structure and impose, as observed, a common evolutionary history for 
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most eukaryote tRNA-related SINEs. The reason why SINE RNA/dsRBP interaction 

would be under positive selective pressure is unclear, but precise and punctual 

expression of SINEs during a key development step or in a stress situation, could 

induce genetic and/or epigenetic variations and increase diversity and/or adaptability. 

It is interesting to note that SINE-specific expression in their natural host is highly 

regulated at the transcriptional and post-transcriptional levels by complex genetic and 

epigenetic processes (Pelissier et al., 2004; Schmid, 1998). SINEs are non-

autonomous in their mobility and need the activation of an autonomous LINE partner 

to retrotranspose. Therefore, based on our results, we suggest that the main purpose 

of limiting SINE-specific transcription is not to prevent its mobility (the control of 

LINEs is sufficient to achieve this) but to preserve cell homeostasis by preventing 

SINE RNA to interact with a large subset of dsRBPs. 
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