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1 Zusammenfassung 

1.1 Zielsetzung 

Ziel dieser vorliegenden Arbeit war die Produktion eines immunocontrazeptiven Impfstoffes 

auf Basis des Bacterial Ghost Systems, um die Opossum (Trichosurus vulpecula) 

Wildpopulation Neuseelands einzudämmen. Für die Herstellung eines 

fertilitätskontrollierenden Impfstoffes wurden zunächst vier unterschiedliche Ziel-Sequenzen 

ausgewählt: 

 ZP2C, Zona Pellucida Protein 2, C-terminale Sequenz  

 ZP2Copt, Zona Pellucida Protein, mit optimiertem Codon für E. coli Expression 

 Cp4, Coat Protein 4 des Conceptus 

 Vap1, Vesicle Associated Protein 1 der frühen Oogenese  

Die vier oben genannten immunologischen Sequenzen wurden in E. coli produziert, wobei 

die jeweilige Ziel-Sequenz in den periplasmatischen Raum transportiert wurde. Anschließend 

wurden die Bakterien durch E-gesteuerte Lyse in Bacterial Ghosts überführt. BG-Impfstoffe, 

stimulieren auf natürliche Weise das Immunsystem, ohne dass weitere Adjuvanten benötigt 

werden. Durch die Anwendung der sogenannten Impfstoffe in Opossums soll das 

Immunsystem der Tiere angeregt werden um eine humorale sowie zelluläre Immunantwort 

gegen die verwendeten Ziel-Proteine zu induzieren. 

1.2 Resultate 

Um die Fertilität von Opossums zu kontrollieren, wurden zunächst vier unterschiedliche 

immunologische Target-Sequenzen ausgewählt um eine Immunantwort in Opossums zu 

erzeugen. Dafür wurden die vier Sequenzen anschließend in den pBGKB Vektor kloniert und 

die daraus entstandenen vier Plasmide: pBGKBZP2C, pBGKBZP2Copt, pBGKBCp4, 

pBGKBVap1, beinhalten Opossum spezifische Sequenzen die für eine normale Entwicklung 

des Tieres verantwortlich sind. Protein Expression des pBGKB Vektors unterliegt dem pBAD 

Promoter und wird induziert durch die Zugabe von L-Arabinose. Die immunologischen Ziel-

Sequenzen werden als Fusionsproteine zusammen mit der gIII-Signalsequenz exprimiert, 

welche für den Transport der Proteine ins Periplasma maßgeblich sind, wo sie anschließend 

abgespalten wird. Dadurch befinden sich im periplasmatischen Raum ausschließlich die 

exprimierten Ziel-Proteine. Im ersten Klonierungsschritt wurden die immunologischen Ziel-
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Sequenzen in den pBGKB Vektor kloniert und Proteinexpression in E. coli getestet. 

Anschließend wurden die verschiedenen rekombinanten E. coli Stämme mit dem Lyse-

Plasmid pGLysivb co-transformiert. Mehrere Vorversuche mit unterschiedlichen Expressions- 

und Lysezeiten wurden durchgeführt, um jene Klone mit optimaler Proteinexpression und 

hoher Lyseeffizienz für die Fermentation im 30L Fermenter auszuwählen. Die Produktion von 

pBGKBZP2C und pBGKBZP2Copt Bacterial Ghosts im Fermenter wurde durchgeführt und 

die Konzentration der exprimierten Antigene wurde bestimmt. Anschließend wurden die 

getrockneten Bacterial Ghosts nach Neuseeland verschickt, um dort Fertilitätsstudien am 

Opossum durchzuführen. Aufgrund von fehlerhafter Sequenz in den Plasmiden pGEX2TCp4 

und pGEX2TVap1 konnte mit diesen nicht weiter gearbeitet werden. 
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2 Summary 

2.1 Objective 

The ambition of this work was the construction of a bacterial ghost system which presents 

proteins for brushtail possum (Trichosurus vulpecula) breeding. This immunological based 

fertility control involves the production of a bacterial ghost vaccine which induces possum‟s 

immune system and makes antibodies against its own reproductive system that will block 

reproduction. For this reason four different possum-immunocontraceptive targets were 

chosen: 

 ZP2C, zona pellucida protein 2, C-terminal sequence 

 ZP2Copt, zona pellucida protein 2, C-terminal sequence, with a codon optimized for 

expression in E. coli 

 Cp4, coat protein 4 of the possum‟s conceptus 

 Vap1, vesicle associated protein 1 of early oogenesis 

These four immunological gene sequences were cloned into the pBADGIII-derived vector 

pBGKB. In this work contraceptive antigens were produced in non-living bacterial ghosts that 

are able to express high levels of recombinant protein by the export of proteins into the 

periplasmic space. The transport of the proteins into the periplasmic space is due to E-

mediated lysis of the bacteria, resulting in the release of the cytoplasmic cell content and 

providing a sealed periplasmic space. Bacterial ghosts therefore function as a vaccine and 

are able to stimulate cellular and humoral immune responses due to recognition of the 

bacterial cell surface by antigen presenting cells. Additionally the possum 

immunocontraceptive antigens are released and are used to produce antibodies against the 

possum‟s reproductive system. 

2.2 Results 

Depending on the bacterial ghost system, an immunocontraceptive vaccine was produced to 

control possum‟s fertility. Therefore four diverse target molecule sequences (ZP2C, 

ZP2Copt, Cp4, and Vap1) were cloned into the pBGKB vector for protein expression. These 

four different immunogenic target sequences are all essential for normal possum 

development and act at different developmental stages. The pBGKB plasmid is a pBR322 

derived vector and protein expression is under the control of the pBAD promoter, induced 
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due to the addition of L-arabinose. Proteins are expressed as fusion proteins together with 

the gIII signal sequence which transports the protein into the periplasmic space and is 

cleaved off afterwards; therefore only the protein of interest results in the periplasmic space. 

The first cloning steps included the production of the vector plasmid pBGKB with one of the 

immunogenic target sequences, resulting in the production of four different plasmids. After 

protein expression was determined, the plasmids were co-transformed with the lysis plasmid 

pGLysivb which is responsible for E-mediated lysis and the formation of the transmembrane 

tunnel. Lysis studies as well as expression studies were performed and the best clones were 

taken for bacterial ghost production in the 30L fermenter. The obtained bacterial ghosts with 

the expressed immunogenic proteins were harvested and protein expression was determined 

using western blot technique. Furthermore the quantity of the expressed antigens in the 

bacterial ghost was measured and the lyophilized bacterial ghosts were shipped to New 

Zealand for further fertility studies in the brushtail possum (Trichosurus Vulpecula). Due to 

incorrect sequences of the plasmids pGEX2TCp4 and pGEX2TVap1 no further studies 

concerning Cp4 and Vap1 as immunological targets, could be made. 
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3 Introduction 

3.1 Brushtail possum (Trichosurus Vulpecula) fertility 

control 

The brushtail possum (Trichosurus Vulpecula) is not native to New Zealand; it was brought 

from Australia for starting a fur industry [1-2]. Since these animals have no natural enemies 

in New Zealand they became one of the most significant vertebrate pests [3-5]: they harm 

forests and trees and destroy bird‟s natural habitat, they are often carriers for bovine‟s 

tuberculosis which can spread to cattle and deer [8] and furthermore they are quite efficient 

reproducers [6]. In consideration of these facts it is important to control possum‟s fertility by 

achieving a cost-effective and long-term solution [7]. Target molecules acting during 

embryonic development of possums had to be found and were selected [4] because they 

are: 

 important for normal development 

 have possum-specific components 

 act at different stages of development  

These immunocontraceptive targets are used for vaccine production to maintain 

immunological based fertility control by inducing the possum‟s immune system and by 

making antibodies against its own reproductive system [9]. 

3.2 Immunocontraception  

Immunologically based fertility control, also known as immunocontraception, is an important 

method for the regulation of human and animal population numbers [10]. The process 

involves vaccination against sperm, eggs, or reproductive hormones to prevent either 

fertilization or production of gametes [11]. Immunocontraceptives for wild animals have a 

different objective than those for humans. For animals such a technique may provide a long-

term and cost-efficient solution to check population growth rather than to contracept 

particular individuals [9-11]. Furthermore immunocontraception turns out to be more 

“humane” than traditional wildlife population control methods like shooting, trapping or 

poisoning. Despite the necessity of finding the appropriate target, easy application plays a 

major role, outlining the usage of immunocontraception in baits for wildlife administration 

[12]. Bacterial Ghosts function as a promising delivery system as they are environmentally 
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safe and field deliverable. Research progress was achieved in the field of 

immunocontraceptive vaccine development, focusing in this work on the topic of brushtail 

possum immunocontraception, by using different target molecules in combination with the 

bacterial ghost system. 

3.3 Brushtail possum immunocontraceptive targets 

3.3.1 Zona pellucida proteins 

One of the most important immunocontraceptive targets is the zona pellucida protein ZP [13]. 

The zona pellucida consists of three glycosylated proteins ZP1, ZP2, ZP3 [13-19] and is the 

extracellular coat around all mammalian eggs. ZP proteins are strongly immunogenic and 

immunization with zona pellucida proteins inhibits fertilization whereas antibodies against 

zona pellucida are ovary-specific and prevent sperms from binding [15-16] and penetrating 

the ova or disrupt the development of follicles in the ovary or the embryo. 

Investigations of the ZP2 protein have identified two immunogenic peptide sequences that 

appear to be both: correlated with infertility and species specific. Therefore the ZP2 C-

terminal gene sequence (ZP2C) was used in this study [18]. 

Additionally the ZP2Copt which contains the brushtail possum zona pellucida 2 (ZP2) C-

terminal sequence gene with an optimized (opt.) codon for the protein expression in 

Escherichia coli was used as immunocontraceptive target. 

3.3.2 Coat proteins 

The coat proteins from the mucoid and shell coat of the possum‟s conceptus are secreted by 

the oviduct and uterus and had also turned out to be an immunogenic target molecule [20]. 

Experiments were done with the coat protein 4 (Cp4) which plays an important role in the late 

cleavage for normal blastocyte development and epithelial maintenance [21-22].  As the shell 

coat in particular is unique in all marsupials, it is a very suitable target for 

immunocontraception. 

3.3.3 Vesicle associated proteins 

The family of the vesicle associated proteins plays a major role in early development and is 

formed in the oocyte during oogenesis. The vesicles accumulate in the oocyte and become 

located at one pole of the oocyte after fertilization [22-23]. Sequence analysis showed that 
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especially the Vap1 protein has unique features in molecular constitution and is therefore 

used as a possum fertility control target protein in this study. 

3.4 Bacterial ghost system 

Bacterial ghosts are empty cell envelopes originating from Gram-negative bacteria based on 

the expression of the lysis gene E from the bacteriophage PhiX174 [24]. E-mediated lysis of 

the bacteria results in formation of an E-specific transmembrane tunnel structure through 

which the cytoplasmic content is expelled, resulting in empty bacterial cell envelopes [25-26]. 

Therefore bacterial ghosts have a natural outer surface which provides them with the original 

targeting functions of the bacteria they are derived from [27]. 

3.4.1 E-mediated lysis 

Bacterial lysis is maintained by the gene E which encodes for a highly hydrophobic, 91 amino 

acid protein [28-29]. Protein E expression can be induced by a chemical promoter system 

(e.g. araBAD or LacPO) or by a heat inducible promoter system (e.g. λpL/pR-cI857). As 

there is only a small amount of protein E needed to start lysis, the induction time is kept short 

and a strong repressor system is necessary to avoid premature lysis [30]. E-mediated lysis of 

the bacteria results in the formation of a transmembrane tunnel structure by the fusion 

between the inner and outer membrane. Through the E-mediated lysis tunnel, with its 

diameter between 40 to 200 nm, the cytoplasmic content is expelled, resulting in an empty 

bacterial cell envelope with a sealed periplasmic space, suitable to carry foreign proteins [30, 

33].  
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Gent
PRM Pmut

cI857 Eivb
repMob   

3.4.2  Lysis plasmid pGLysivb 

In this work the lysis plasmid pGLysivb was used for bacterial ghost production. The plasmid 

consists of the pBBR1 derived backbone plasmid and the lysis cassette, which carries the 

gene E [35]. The bacteriophage PhiX174 gene E is under the transcriptional control of the 

mutated heat-inducible λpL/pR-cI857 promoter – repressor system, allowing the expression 

of the protein E at temperatures above 37°C and represses gene E expression at 

temperatures below 37°C [35-37]. Additionally the pGLysivb lysis plasmid contains a 

gentamycin resistance cassette and a mutated mobilization gene sequence with mobilization 

activity. 

 

Fig. 3.2: pGLysivb plasmid. Mob: mobilization gene; Gent: gentamycin resistance cassette; cI857: thermo-
sensitive phage λ-repressor gene; Eivb: protein fused to in-vivo biotinylation sequence.  

Fig. 3.1: E-mediated lysis in E .coli. Cytoplasmatic content of the bacterium is expelled 
through E-mediated transmembrane tunnel structure.  [34] 
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3.4.3 Recombinant bacterial ghost vaccine 

As bacterial ghosts retain all morphological, structural and antigenic features of the cell wall 

they are proposed to be an innovative vaccine delivery system. Bacterial ghosts have been 

produced from a variety of bacteria always combining their natural intrinsic adjuvant 

properties with the versatile carrier functions for foreign antigens, immunomodulators or other 

substances [38, 39]. In recombinant ghosts, foreign proteins can be inserted into the inner 

membrane prior to E-mediated lysis, via specific N-, or C-, or N-and C-terminal anchor 

sequences. [40]. Proteins can be carried in the sealed periplasmic space of bacterial ghosts. 

Moreover S-layer proteins can be expressed in bacterial strains prior to E-mediated lysis, 

carrying inserts of foreign epitopes [41, 42]. The bacterial ghost outer membrane contains 

lipopolysaccharides (LPS), pili and proteins which are able to recognize receptors on target 

cells and are furthermore recognized by the innate immune system [42]. Therefore bacterial 

ghosts offer a broad spectrum for anchoring foreign antigens [32].  

It has been shown in former studies that bacterial ghosts are taken up by dendritic cells and 

macrophages. Experiments in THP-1 human macrophage cell lines confirmed a significant 

activation of IL-12, an interleukin which is of special importance in the activation of cellular 

TH1 immune responses. Moreover a rapid uptake of bacterial ghosts by macrophages could 

be confirmed, resulting in the suggestion that bacterial ghosts effectively stimulate 

monocystes and macrophages [42]. Despite the benefit of cellular and humoral immune 

response generation, the bacterial ghost system provides other relevant advantages such as 

 bacterial ghosts are non living and represent an alternative to heat or chemically 

inactivated bacteria [38] 

 bacterial ghosts are safe as they do not contain pathogenic host DNA  

 the production process does not denature bacterial ghost envelopes and is quick, 

easy and cheap [40] 

 recombinant proteins are inserted into a highly immune stimulatory environment [38] 

and there is no limitation in size of foreign antigens to be inserted 

 the carrier capacity of bacterial ghost‟s membranes, periplasma and internal lumen 

can fully be utilized 

 bacterial ghosts are stable for long periods of time and do not require the cold chain 

storage system [38] 

 application can be done by several mucosal routes such as oral, conjunctival, rectal 

or aerogenic. 
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3.5 pBADGIII derived vector plasmid system 

The pBADGIII vectors are pBR322-derived plasmids from Invitrogen which are available in 

three versions, for cloning into different reading frames. In this work the pBADGIIIB vector 

was used for further cloning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3: Plasmid pBADGIIIB. Invitrogen, [50] 
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Based on the mother plasmid pBADGIIIB (Invitrogen) the plasmid pBGKB was cloned by 

removing the ampicillin resistance cassette and replacing it with a kanamycin resistance 

cassette. Plasmid pBGKB provides all necessary features to express recombinant proteins: 

 gIII-signal sequence from the bacteriophage fd gene III protein for protein transport 

into the periplasmatic space 

 araBAD promoter for tightly regulated expression [43] 

 Translation initiation signals for optimized E. coli expression 

 C-terminal c-myc epiptope for detection and analysis with an Anti-myc antibody 

 C-terminal polyhistidine (6xHis) tag for purification  

 

3.5.1 pBAD promoter 

Protein expression in pBGKB is under the control of the araBAD promoter which is derived 

from the ara operon. The ara operon codes for three different enzymes that are required to 

catalyze the metabolism of arabinose [43-48]: 

 araA (arabinose isomerase) 

 araB (ribulokinase)  

 araD (Ribulose-5-phosphate epimerase)  

These three structural genes are arranged in an operon that is positively and negatively 

regulated by the product of the araC gene [43] which forms a complex with L-arabinose. In 

the absence of arabinose the araC dimer inhibits transcription of the three structural genes 

[45-47]; araC also prevents self expression and therefore is an autoregulator of its own 

expression. When arabinose is present, it binds to araC and allows transcription to begin. 

Expression levels can be repressed by introducing glucose to the growth medium. Glucose 

acts by lowering the cAMP levels which in turn decreases the binding of CAP following by 

transcriptional decrease. 

For optimized protein expression the L-arabinose concentration can be varied and for 

expression of toxic or essential genes tight regulation of pBAD via araC is quite useful [46]. 
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The production of an immunocontraceptive vaccine to inhibit reproduction of brushtail 

possum based on the Bacterial Ghost system involved the design of an appropriate vector 

plasmid and the choice of possum immunological-target sequences. The working steps for 

construction of the vector plasmid pBGKB as well as the production of immunological based 

fertility control proteins are described in the following chapter.  
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4 Results 

The four different immunological target sequences ZP2C, ZP2Copt, Cp4 and Vap1 were 

cloned into the multiple cloning site of pBKGB providing all of the necessary features for 

protein expression in the periplasmatic space: 

 gIII-signal sequence from the bacteriophage fd gene III protein for protein transport 

into the periplasmatic space 

 araBAD promoter for tightly regulated expression 

 Translation initiation signals for optimized E. coli expression 

 C-terminal c-myc epiptope for detection and analysis with an Anti-myc antibody 

 C-terminal polyhistidine (6xHis) tag for purification  

4.1 pBGKB cloning strategy 

The ampicillin resistance cassettes from plasmids pBADGIIIA, B, C were removed by 

restriction digest with the restriction enzyme BspHI (New England Biolabs) and replaced by 

the kanamycin resistance cassette from plasmid pBHR1. 

Cloning procedure for the pBGKB plasmid is shown in figure 4.1. The BspHI enzyme cuts 

before and after the ampicillin resistance cassette (Fig.4.1) and results in two fragments of 

3139bp and 1008bp (ampicillin resistance cassette). The 3139bp fragment was ligated with 

the PCR amplified kanamycin resistance cassette from the plasmid pBHR1 (Fig.4.1). By 

PCR NocI restriction sites were introduced which are compatible with the BspHI restriction 

sites of the vector fragment. 
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Fig. 4.1: Cloning strategy for pBGKB. Restriction digest of pBADGIIIB with BspHI results in loss of ampicillin 
resistance. Amplification of the kanamycin resistance cassette via PCR introduces NcoI restriction sites. Ligation 
of the kanamycin cassette with the pBADGIIIB fragment results in the production of the plasmid pBGKB. 

 

Control digests of pBADGIIIB plasmid (Invitrogen) were performed with different restriction 

enzymes (fast digest enzymes from Fermentas) to proof its correctness (Fig. 4.2). By ligation 

of BspHI and NcoI overhangs both restriction recognition sites were lost. 

  

GIII-MCS-myc-His Amp araC 

BspHI BspHI 

pBAD pBR322 ori 

pBADGIIIB 

4047 bp 

MOB Kan Cm pBHR1 

5300 bp 

rep 
PCR:869bp 

  NcoI   NcoI 

GIII-MCS-myc-His Kan araC 

pBR322 ori 

pBGKB 

4042 bp 
pBAD 
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Fig. 4.2: pBADGIIIB restriction digest. Lane 1, 2: NheI 4147bp correct, lane 3: EcoRI 4147bp correct; lane 4: 
XbaI 4147bp correct, lane 5: HindIII 4147bp correct, lane 6: AvaI 1230/2917bp correct. Marker: 1kb DNA ladder 
(Fermentas). 

Plasmid pBADGIIIB was furthermore digested with the BspHI restriction enzyme (New 

England Biolabs) according to the manufacturer‟s instructions. The bigger fragment (3139bp) 

was purified using the Promega Purification Kit as can be seen in figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3: pBADGIIIB purified. Purified vector fragment without ampicillin resistance cassette. Lane 1-3 purified 
pBADGIIIB fragment: 3139 bp correct. Marker: 1kb DNA ladder (Fermentas). 
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The kanamycin cassette was amplified from pBHR1 plasmid using PCR with primers 

containing NcoI restriction sites: 

 

 

PCR was carried out according to standard protocol using: 

 Pfu-Polymerase (Fermentas) 

 10x pfu-buffer (+MgCl2)  

 dNTPs Mix (2mM) 

 annealing temperature calculated according to primers melting temperature: 50°C 

 elongation time: 2h 40min, 72°C 

 

After PCR the fragment (869bp) was eluted from a 2% agarose gel and purified with the 

Promega Purification Kit as described in materials and methods.  

The purified kanamycin fragment was checked on a 2% agarose gel (Fig.4.4).   

 

 

 

 

 

 

 

 

 

Fig. 4.4: Kanamycin PCR product. The gel shows the purified kanamycin fragment (869bp) after amplification 
from plasmid pBHR1. Lane 1: kanamycin fragment 869bp correct. Marker: 50bp ladder (Fermentas).  

Ligation of the purified kanamycin fragment with the vector fragment (Fig. 4.3.) was done 

over night at 16°C using the T4 DNA ligase as described in materials and methods. After 

transformation and picking of clones, the plasmids were checked for correctness with 

different enzymes to identify a correct pBGKB clone (Fig. 4.5.) 

  

KanFWD(NcoI)  5‟ tta cca tgg tgt tac att gca caa gat aa 3‟ 

KanREV(NcoI)  5‟ att cca tgg tta gaa aaa ctc atc gag cat 3‟ 

 



27 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5: pBGKB restriction digest. Plasmid check using different restriction enzymes. Lane 1: XhoI 
2658/1384bp; lane 2: HindIII 3213/829bp; lane 3: HindIII & XbaI 2658/829/520/35bp. Marker: 1k DNA ladder 
(Fermentas). 

Due to the band patterns obtained from the restriction digests (Fig. 4.5) the correctness of 

the pBGKB clone could be proofed. 

 

 

 

 

 

 

 

 

 

 

 



28 

  



29 

4.2 Construction of possum protein expressing plasmids 

4.2.1 Cloning pBGKBZP2C  

The pBGKBZP2C plasmid contains the brushtail possum zona pellucida 2 (ZP2) C-terminal 

sequence which was cloned into the pBGKB vector according to the cloning strategy shown 

in figure 4.6. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 4.6: pBGKBZP2C cloning strategy. Double digest with the restriction enzymes BglII and PvuII in the 
multiple cloning site of pBGKB, as well as double digest with BamHI and PvuII in pmalZP2C to obtain the ZP2C 
gene sequence were performed. The final ligation of ZP2C sequence and vector fragment of pBGKB results in the 
new pBGKBZP2C plasmid (5132bp), with ZP2C in frame with the leader peptide (gIII) which directs the 
recombinant protein into the periplasmatic space. Myc detection is possible in this plasmid 

To obtain the ZP2C sequence the plasmid pMalZP2C [49] was double digested with the 

enzymes BamHI and PvuII (Fermentas) resulting in three fragments, where the 1099bp 

fragment contains the ZP2C gene sequence. Plasmid pBGKB was opened in the multiple 

cloning site with the enzymes BglII and PvuII. Both, vector fragment (Fig. 4.8) as well as the 

ZP2C fragment (Fig. 4.7) were extracted from the agarose gel and purified using 

GeneXpress purification kit as described in materials and methods. 

 

GIII-MCS-myc-His Kan araC 

pBAD pBR322 ori 

pBGKB 

4042 bp 

BglII   PvuII 

lacIq MalE ZP2C Amp 

M13 ori     pmB1 ori 

BamHI                  PvuII 

pMalZP2C 

7699 bp 

GIIII   ZP2C Myc-His Kan araC 

pBR322 ori pBAD 

pBGKBZP2C 

5132 bp 
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Fig. 4.7: ZP2C fragment purified. The agarose gel picture shows the purified ZP2C fragment (1099bp) which 
was obtained from pmalZP2C using BamHI and PvuII restriction enzymes. Marker: 1kb DNA ladder (Fermentas) 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 4.8: pBGKB digest. The pBGKB plasmid was double digested using BglII and PvuII restriction enzymes. 
Lane 1: purified pBGKB fragment 4035bp, correct. Marker: 1kb DNA ladder (Fermentas) 

Due to the problem of previously occurred double-ligation of the pBGKB fragment 

dephosphorylation of the plasmid was performed under following conditions: 

 BAP Buffer 10x (Fermentas) 

 BAP Dephosphorylase (Fermentas) 

 60°C, 60min 
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Additionally purification of the dephosphorylated pBGKB fragment was done using 

GeneXpress purification kit and ligation was performed at 16°C over night using T4 DNA 

ligase (New England Biolabs). After transformation into MOPS-competent E. coli NM522 

cells, clones were picked and the correctness was checked using different restriction 

enzymes (Fig. 4.9). By ligation of BglII and BamHI overhangs both restriction recognition 

sites were lost. 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 4.9: pBGKBZP2C restriction digests using different restriction enzymes. Lane 1 and lane 3: DraI 
2723/2409bp and lane 2: EcoRI 4052/667/300/113b). DraI as well as EcoRI cut in the ZP2C insert of the 
pBGKBZP2C plasmid. Marker: 1kb DNA ladder (Fermentas) 

 

Due to the band patterns obtained from the restriction digests (Fig. 4.9) the correctness of 

the pBGKBZP2C clone could be proofed. 
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4.2.2 Cloning pBGKBZP2Copt 

The pBGKBZP2Copt plasmid contains the brushtail possum zona pellucida 2 (ZP2) C-

terminal sequence with a codon optimization (opt.) for the protein expression in Escherichia 

Coli. The ZP2Copt gene sequence was cloned into the pBGKB vector according to the 

cloning strategy shown in figure 4.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10: pBGKBZP2Copt cloning strategy. Restriction digests of the vector plasmid with BglII and XbaI in the 
multiple cloning site. PCR amplification of the ZP2Copt gene sequence from pmalZP2Copt. Ligation of the 
ZP2Copt fragment into the multiple cloning site of the pBGKB vector results in the formation of pBKBZP2Copt 
(4994bp) plasmid with ZP2Copt under the direction of the gIII-signal sequence for transport into the periplasmatic 
space. 
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pBAD pBR322 ori 
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    7717 bp 
PCR:983bp 

BglII                       XbaI 
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The ZP2Copt gene sequence was amplified form plasmid pMalZP2Copt [49] using PCR with 

appropriate primers introducing BglII and XbaI sites: 

 

 

 

The PCR was carried out according to standard protocol, using: 

 High-fidelity-Polymerase (Fermentas) 

 10x high-fidelity-buffer (+MgCl2)  

 dNTPs Mix (2mM) 

 annealing temperature calculated according to primers melting temperature: 50°C 

 elongation time: 2h 40min, 72°C 

 

PCR of pMalZP2Copt resulted in a 983bp fragment which was additionally digested with the 

restriction enzymes BglII and XbaI (Fig. 4.11). Afterwards the fragment was eluted from a 2% 

agarose gel and purified using GE-healthcare purification Kit (GE Healthcare). The purified 

fragment was checked on a 2% agarose gel as shown in figure 4.12. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.11: ZP2Copt restriction digest. Lane 1: Cp4 fragment after PCR and restriction digest with BglII and XbaI 
(953bp), lane 2: ZP2C fragment after PCR and restriction digest with KpnI and XbaI (1001bp), lane 3: ZP2Copt 
fragment after PCR and restriction digest with BglII and XbaI (983bp). Marker: 50bp DNA ladder (Fermentas) 

  

FWD [BglII] 5´pBGKBZP2Copt: ACA AGATCT AAT GGC AGC CGT CTGC 3´ 

REV [XbaI] 5´pBGKBZP2Copt: TAA TCTAGA CTG CTA CCC GGG CAG 3´ 
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Fig. 4.12: ZP2Copt fragment purified. The agarose gel picture shows the purified ZP2Copt fragment (983bp) 
which was obtained after PCR and digest with BglII and XbaI. Marker: 50bp DNA ladder (Fermentas)  

The vector pBGKB was double digested with BglII and XbaI restriction enzymes which cut in 

the multiple cloning site; resulting in a 4005bp fragment which was purified using Zymo 

Clean and Concentrator Kit as described in materials and methods (Fig. 4.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13: pBGKB digest. The pBGKB plasmid was double digested with BglII and XbaI, resulting in a fragment 
of 4005bp. The agarose gel picture shows the purified pBGKB fragment (4005bp). Marker: 1kb DNA ladder 
(Fermentas). 
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Ligation was done over night at 16°C using T4 DNA ligase (New England Biolabs). After 

transformation into MOPS-competent E. coli NM522 cells clones were picked and digested 

with different enzymes to identify a correct pBGKBZP2Copt plasmid (Fig. 4.14). 

 

 

 

 

 

 

  

Fig. 4.14: pBGKBZP2Copt restriction digests. pBGKBZP2Copt plasmid check using different restriction 
enzymes. Lane 1: EcoRI 4999bp correct; lane 2: DraI 2723/1505/766bp correct, lane 3: XbaI not correct in case 
clone 6 instead of clone 3 was used, lane 4: no DNA was loaded. Marker: 1kb DNA ladder (Fermentas) 

Due to the band patterns obtained from the restriction digests (Fig. 4.14) the correctness of 

the pBGKBZP2Copt clone could be proofed. 
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4.2.3 Cloning pBGKBCp4 

The pBGKBCp4 plasmid contains the brushtail possum coat protein 4 (Cp4) of the 

conceptus. The Cp4 gene sequence is cloned into the pBGKB vector according to the 

cloning strategy shown in figure 4.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.15: pBGKBCp4 cloning strategy. The pBGKB vector plasmid was double digested with the restriction 
enzymes BglII and XbaI which cut in the multiple cloning site. The Cp4 gene sequence was amplified using PCR 
with primers incorporated restriction sites BglII and XbaI for ligation of the fragment into the vector plasmid 
resulting in the pBGKBCp4 plasmid with a length of 4637bp. 

 

 

 

 

 

GIII-MCS-myc-His Kan araC 

pBR322 ori pBAD 

pBGKB 

4042 bp 

 BglII   XbaI 
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The Cp4 gene sequence was amplified via PCR from the plasmid pGEX2TCp4 [51] involving 

specific primers introducing restriction sites for BglII and XbaI: 

 

 

PCR was carried out according to standard protocol using: 

 High-fidelity-Polymerase (Fermentas) 

 10x high-fidelity-buffer (+MgCl2)  

 dNTPs Mix (2mM) 

 annealing temperature calculated according to primers melting temperature: 50°C 

 elongation time: 2h 40min, 72°C 

 

PCR of pGEX2TCp4 resulted in a 953bp fragment which was additionally digested with the 

restriction enzymes BglII and XbaI (Fig. 4.16). Afterwards the fragment was eluted from a 2% 

agarose gel and purified using GE-healthcare purification Kit (GE Healthcare). The purified 

fragment was checked on a 2% agarose gel as shown in figure 4.17. 

 

 

 

 

 

 

 

Fig. 4.16: Cp4 fragment restriction digest. Lane 1: Cp4 fragment after PCR and restriction digest with BglII and 
XbaI (953bp), lane 2: ZP2C fragment after PCR and restriction digest with KpnI and XbaI (1001bp), lane 3: 
ZP2Copt fragment after PCR and restriction digest with BglII and XbaI (983bp). Marker: 50bp DNA ladder 
(Fermentas). 

  

FWD [BglII]: 5´ pBGKBcp4: ACA AGATCT GAA TTC GAT AGG TAT GCT 3´ 

REV [XbaI] : 5´pBGKBcp4: TAA TCTAGA TTC TGA ATA CTT TTA TTC TGC 3´ 
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Fig. 4.17: Cp4 fragment purified. The agarose gel picture shows the purified Cp4 fragment (953bp) which was 
obtained after PCR and restriction digest with BglII and XbaI. Marker: 50bp DNA ladder (Fermentas) 

 

The vector pBGKB was double digested with BglII and XbaI restriction enzymes which cut in 

the multiple cloning sites. Restriction digest was carried out according to the manufacturer‟s 

instructions using Fermentas Fast Digest enzymes, resulting in a 4005bp fragment which 

was purified using the GeneXpress purification kit (Fig. 4.18) as described in materials and 

methods. 

 

 

  

 

 

 

 

 

 

 

 

Fig. 4.18: pBGKB digests. The agarose gel picture shows the pBGKB fragment (4005bp) which was digested 
with restriction enzymes BglII and XbaI. Marker: 1kb DNA ladder (Fermentas).  

Ligation was done over night at 16°C using T4 DNA ligase (New England Biolabs). After 

transformation into MOPS-competent E. coli NM522 cells, clones were picked and digested 

with different enzymes to identify the correct pBGKBCp4 plasmid (Fig. 4.19). 
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Fig. 4.19: pBGKBCp4 restriction digests. pBGKBCp4 plasmid check using different restriction enzymes which 
cut in the Cp4 insert of the pBGKBCp4 plasmid. Lane 1: PstI 4937bp correct, lane 2: DraI 2723/2214bp correct, 
lane 3: XhoI 2658/2279bp correct. Marker: 1kb DNA ladder (Fermentas). 

 

Due to the band patterns obtained from the restriction digests (Fig. 4.19) the correctness of 

the pBGKBCp4 clone could be proofed. 
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4.2.4 Cloning pBGKBVap1 

The pBGKBVap1 plasmid contains the vesicle-associated protein 1(Vap1) gene sequence of 

brushtail possums. The Vap1 sequence was cloned according to the cloning strategy shown 

in figure 4.20. The first cloning strategy involved the amplification of the Vap1 sequence from 

plasmid pGEX2TVap1 [52] via PCR with appropriate primers introducing BglII and XbaI sites.  

 

 

 

All PCR attempts resulted in incorrect bands (Fig. 4.20, 4.21) not showing the expected 

551bp band of the amplified Vap1 sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An alternative cloning strategy of pBGKBVap1 (Fig. 4.22) involves the restriction digest of 

pBGKB with BglII cutting in the multiple cloning sites, resulting in linearization of the plasmid. 

 

 

Fig. 4.20: Vap1 amplicifation via PCR. 
Agarose gel picture shows Vap1 fragment in 
lane 1 and 2 using Dream-taq polymerase, 
52°C annealing temperature. 

Fig. 4.21: Vap1 amplification via PCR. Agarose 
gel picture shows Vap1 fragment in lane 1 and 2 at 
56°C annealing temperature and in lane 3 and 4 at 
58°C annealing temperature, using Dream-Taq 
polymerase 

FWD [BglII]: 5´ pBGKBVap1 : ACA AGATCT TCCACAGAGCAAGTTCGA 3„ 

REV [XbaI] : 5´ pBGKBVap1 : TAA TCTAGA TTTTTCCTCCTCCTGCCA 3´ 
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Fig. 4.22: pBGKBVap1 cloning strategy. Linearization of the vector plasmid pBGKB with BglII and restriction 
digest of pGEX2TVap1 with BamHI to obtain the Vap1 sequence gene. Ligation of the Vap1 fragment into the 
linearized vector results in the pBGKBVap1 plasmid (4599bp) where Vap1 is expressed as fusion protein together 
with the gIII-signal sequence but without the expression of the myc- and his-epitope. 

 

The linearized vector plasmid was eluted from a 1% agarose gel and purified using the Zymo 

Clean- and Concentrator Kit. The linearized plasmid was checked on a 1% agarose gel (Fig. 

23). 
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Fig. 4.23: pBGKB digest. The pBGKB plasmid was digested with BglII resulting in linearization of the plasmid 
(4042bp). Lane 1 and 2 purified vector fragment (4042bp).Marker: 1kb DNA ladder (Fermentas). 

Due to the restriction digest problem which occurred in case of cloning pBGKBVap1, the 

plasmid pGEX2TVap1 was digested with BamHI (Fig. 4.24) to be sure whether Vap1 has the 

correct length in the pGEX2TVap1 plasmid. 

 

 

 

 

 

 

 

Fig. 4.24: pGEX2TVap1 restriction digests. The mother plasmid pGEX2TVap1 restriction digest with BamHI 
resulting in 4948/551bp, where the 551bp fragment represents the Vap1 fragment. 

 

Plasmid pGEX2TVap1 was digested with BamHI which cuts twice resulting in a 551bp 

fragment carrying Vap1. The Vap1 fragment was eluted from a 1% agarose gel and purified 

using the Zymo Clean and Concentrator Kit (Fig. 4.25). 
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Fig. 4.25: Purified Vap1 fragment. The agarose gel picture shows the purified Vap1 fragment (551bp) which 
was obtained from pGEX2TVap1 using BamHI. Marker: 1kb DNA ladder (Fermentas) 

Ligation of the Vap1 fragment into the linearized pBGKB vector was done over night at 16°C 

according to the manufacturer‟s instructions. After transformation into MOPS-competent E. 

coli NM522 cells, clones were picked and restriction digest (Fig. 26, 27) was done to identify 

pBGKBVap1 plasmid. 

 

 

 

 

  

 

 

 

 

 

 

Fig. 4.26: pBGKBVap1 restriction digests. The plasmid was digested with PstI, an enzyme which cuts in the 
Vap1 insert region, resulting in 4429/170bp fragments when Vap1 is inserted correctly into the vector plasmid. If 
Vap1 inserted the other way around restriction digest with PstI would result in bands of 4149/450bp. Lane 1 and 
4: restriction digests with PstI not correct, second band at around 350bp. Lane 2 and 5: restriction digest with PstI 
not correct, second band at around 250bp. Marker: 50bp DNA ladder (Fermentas). 
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Fig. 4.27: pBGKBVap1 restriction digests. The plasmid was digested with BspHI, an enzyme which cuts in the 
Vap1 insert. Lane 1 and 2: restriction digests with BspHI: 2830/1769bp correct. 

Due to the band patterns obtained from the restriction digests (Fig. 4.27) the correctness of 

the pBGKBVap1 clone could be proofed. 
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4.3 Protein expression study 

As protein expression of the obtained plasmids is under the control of the pBAD promoter, 

AraC functions as an activator and maintains protein expression when media containing high 

levels of arabinose is added. In order to check protein expression of the cloned plasmids an 

expression study was performed. Expression of the recombinant proteins was conducted 

according to materials and methods. 

4.3.1 Protein expression study pBGKBZP2C 

The expression study was performed in E. coli NM522 and expression was induced with L-

arabinose at a final concentration of 0,2% after the OD600 has reached 0,5. Protein 

expression went on for 120 minutes. The optical density OD (Fig. 4.28) as well as the colony 

forming units (cfu) were measured, additionally protein samples were taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.28: pBGKBZP2C expression curve. ZP2C protein expression induced with 0,2% L-arabinose. The 
expression curve shows the OD values as well as the cfu values of pBGKBZP2C clone 1-3 and the positive 
control pBADGIIIcalmodulin and the negative control pBGKB. Protein expression did not impair with the growth of 
the pBGKBZP2C plasmids. 

The samples taken from the protein expression experiment were analyzed by western 

blotting (see materials and methods). The ZP2C protein was detected using the anti-myc-

+0,2% L-arabinose 
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HRP antibody (Fig. 4.29-4.30) showing band patterns at around 37,04 kDa which appear to 

be quite light on this picture, whereas on the original western blot picture the bands are more 

intense.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.29: ZP2C western blot analysis. ZP2C protein detection with anti-myc-HRP antibody. Clone 1-3: 10 
minutes after L-arabinose induction and 40 minutes after L-arabinose induction bands are visible at 37,04 kDa. 4: 
negative control pBGKB, 5: positive control pBADGIIIcalmodulin, which shows a strong signal at about 25 kDa. 

 

 

 

 

 

 

 

 

 

Fig. 4.30: ZP2C western blot analysis. ZP2C protein detection with anti-myc-HRP antibody. Clone1-3 are 
shown, 120 minutes after L-arabinose induction, bands are visible at around 37,04 kDa. 4: negative control 
pBGKB, 5: positive control pBADGIIIcalmodulin, which shows a strong signal at around 25 kDa. 
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Additionally protein detection was performed with a ZP2C specific serum B11 [49] as 

described in materials and methods resulting in a strong protein signal (Fig. 4.31, 4.32) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.31: ZP2C western blot analysis. ZP2C protein detection using the specific ZP2C serum B11. Clone 1-3 
10 minutes and 40 minutes after L-arabinose induction, bands are visible at around 37,04 kDa. 4: negative control 
pBGKB, 5: positive control pBADGIIICalmodulin, additionally a strong signal is visible at around 25 kDa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.32: ZP2C western blot analysis. ZP2C protein detection using the specific ZP2C serum B11. Clone 1-3 at 
120 minutes after L-arabinose induction bands are visible at around 37,04 kDa. 4: negative control pBGKB, 5: 
positive control pBADGIIICalmodulin, additionally a strong signal is visible at around 25 kDa. 
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Due to the results of the western blot analysis the protein expression of the pBGKBZP2C 

clone was proofed to be correct (Fig. 4.32). 
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4.3.2 Protein expression study pBGKBZP2Copt 

Expression study of ZP2Copt protein was performed in E. coli NM522, induced with L-

arabinose at a final concentration of 0,2% after the OD600 has reached 0,5. Protein 

expression went on for 120 minutes and protein samples were taken for protein detection. 

OD600 values as well as cfu were measured (Fig. 4.33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.33: pBGKBZP2Copt expression curve. ZP2Copt protein expression induced with 0,2% L-arabinose. The 
expression curve shows the OD values as well as the cfu values of pBGKBZP2Copt clone1-3 and the positive 
control pBADGIIIcalmodulin and the negative control pBGKB. Protein expression did not impair with the growth of 
the pBGKBZP2Copt plasmids. 

The samples taken from the protein expression experiment were analyzed by western 

blotting. The ZP2Copt protein was detected using the possum specific B11 serum. Protein 

bands at around 39,7 kDa were detected (Fig. 4.34, 4.35). 

 

 

 

 

+0,2% L-arabinose 
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Fig. 4.34: pBGKBZP2Copt Western blot. .ZP2Copt protein detection using specific B11 serum. Clone 1-3: 20 
minutes after L-arabinose induction and 0 minutes after L-arabinose induction, bands are visible at 39,7 kDa. 
pBGKB (-) as negative control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.35: pBGKBZP2Copt Western blot. ZP2Copt protein detection with using specific B11 serum. Clone 1-3: 
120 minutes after L-arabinose induction and 60 minutes after L-arabinose induction, bands are visible at 39,7 
kDa. pBGKB (-) as negative control. 
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Furthermore the ZP2Copt protein expression was detected using anti-myc-HRP antibody 

(Fig. 4.36, 4.37). 

 

 

 

 

 

 

 

 

 

Fig. 4.36: pBGKBZP2Copt Western Blot. ZP2Copt protein detection using anti-myc-HRP. Clone 6 on lanes 1, 3 
and 5 at time points 0, 10 and 20 minutes after L-arabinose induction, bands are invisible at around 39,7 kDa. 
pBGKB as negative control on lanes 2,4 and 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.37: pBGKBZP2Copt Western Blot. ZP2Copt protein detection using anti-myc-HRP. Clone 6 on lanes 1, 3 
and 5 at time points 40, 60 and 120 minutes after L-arabinose induction, bands are invisible at around 39,7 kDa. 
pBGKB as negative control on lanes 2,4 and 6. 
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The western blot analysis proofed the protein expression of the pBGKBZP2Copt clone. 
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4.3.3 Protein expression study pBGKBCp4 

 

The Cp4 expression study was performed in E. coli NM522. At an OD600 0,5 L-arabinose at a 

final concentration of 0,2% was added to start protein expression. Protein expression went 

on for 120 minutes and additionally the OD600 values as well as the cfu were measured (Fig. 

4.38). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.38: pBGKBCp4 expression curve. The OD600 values as well as the cfu values of the pBGKBCp4 clones 
1, 2, 3 and the negative control pBGKB can be seen on this curve. L-arabinose at a final concentration of 0,2 % 
was added to induce protein expression which went on for 120 minutes.  

The Cp4 expression first was analyzed using the anti-myc-HRP antibody but no protein band 

of the correct size (39,8 kDa) could be detected. Therefore Cp4 was additionally analyzed 

using the specific serum Cp4 ♀TV24 (Fig. 4.39). 

  

+0,2% L-arabinose 
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Fig. 4.39: pBGKBCp4 Western blot. The westernblot shows the clones 1, 2 and 3, 10 and 20 minutes after L-
arabinose induction. As a positive control the pGEX2TCp4 protein with an expected size around 33 kDa was 
expressed with IPTG (0,2mM) for 60 minutes. Visible protein expression can be seen at around 25 kDa, although 
the Cp4 protein has a weight of 39,8 kDa. 

The western blot analysis proofed the protein expression of the pBGKBCp4 clone, resulting 

in proteins at around 25kDa, whereas the Cp4 protein has a weight of 39,8kDa. 
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4.3.4 Protein expression study pBGKBVap1 

The Vap1 protein expression of the plasmid pBGKBVap1 was performed in E. coli NM522. At 

an OD600 0,5 L-arabinose at a final concentration of 0,2% was added to start protein 

expression. Protein expression went on for 120 minutes and additionally the OD600 values as 

well as the cfu were measured.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.40: pBGKBVap1 expression curve. The curve shows the OD600 values as well as the cfu values of the 
pBGKBVap1 clones 1, 2, 3 and the negative control pBGKB. Protein expression was induced with L-arabinose at 
a final concentration of 0,2%.  

Western blot analysis of Vap1 expression was performed using the specific Vap1 serum 

Vap1 ♀TV17 as the protein expression of Vap1 stops before the myc-epitope (Fig. 4.41) 

  

+0,2% L-arabinose 
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Fig. 4.41: pBGKBVap1 western blot. The picture shows the positive control pGEX2TVap1 IPTG (0,2mM) 
induced for 60 minutes and the pBGKBVap1 clones 1, 2, 3 40 minutes and 60 minutes after L-arabinose 
induction. The Vap1 protein should have a molecular weight of 20,3 kDa, but in this picture there are no clear 
protein bands visible. 

The western blot analysis of the pBGKBVap1 clone did not show any significant bands; just 

background can be seen on this picture. 
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4.4 Transformation of expression vectors with pGLysivb 

The lysis plasmid pGLysivb contains the phage lysis gene E which is under the control of the 

heat inducible λpRmut promoter, as well as a gentamycin resistance cassette and the cI857 

repressor. The gene E expression is under the control of the λpL/pR-cI857 promoter 

repressor system. 

 

 

 

 

Fig. 4.42: pGLysivb plasmid. Mob: mobilization gene; Gent: gentamycin resistance cassette; cI857: thermo-
sensitive phage λ-repressor gene; Eivb: in-vivo biotinylation sequence 

Lysis and expression studies of the pGLysivb co-transformed clones were performed to 

check for lysis and protein expression. 

The expression and lysis studies were done in nose flasks with 20ml autoclaved LBv media. 

The bacteria were grown at 36°C until OD600 0,2 when L-arabinose at a final concentration of 

0,2% was added to induce protein expression. Lysis was induced at 42°C when OD600 

reached 0,5 and lysis was observed for 120 minutes. 
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4.4.1 Expression- and lysis study of E. coli NM522 (pBGKBZP2C) 

(pGLysivb)  

 

The co-transformation of the pBGKZP2C expression plasmid with the pGLysivb lysis plasmid 

was performed in Mops-competent E. coli NM522 as described in materials and methods. 

Samples for cfu determination were taken as well as for western blot analysis. OD600 and cfu 

curves of three different clones as well as the negative control pBGKB are shown in figure 

4.43. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.43: Expression and lysis curve pBGKBZP2C/pGLysivb. Four different pBGKBZP2C/pGLysivb clones 
were checked for growth and lysis behavior in combination with recombinant protein expression of periplasmic 
ZP2C. 

The ZP2C protein expression was detected using the specific B11 serum from possum in 

combination with anti-possum IgG as second antibody and anti-IgG HRP as third antibody 

(Fig. 4.44 and 4.45) 
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Fig. 4.44: Western blot pBGKBZP2C/pGLysivb. Time points A=0min, B=15min, C=45min, E= 60min and 
G=120min after L-arabinose induction. Clone 1 at time points A, B, C, E and G, visible protein detection starting 
with time point B, as well as clone 2 at time points A and B with a slight protein detection at time point B are 
shown. As a negative control (A4) pBGKBpGLysivb 30 minutes after L-arabinose induction was used. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.45: Western blot pBGKBZP2C/pGLysivb. Time points A=0min, B=15min, C=45min, E= 60min and 
G=120min after L-arabinose induction. Clone 2 at time points C, E, G and clone 3 at time points A, B, C, E, G are 
shown. Visible protein detection starts with time point B. 

 

Clone 1 of the plasmid pBGKBZP2C/pGLysivb showed correct ZP2C protein expression and 

was further used for working stock production and fermentation. 
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4.4.2 Expression- and lysis study of E. coli NM522 (pBGKBZP2Copt) 

(pGLysivb) 

 

The pBGKZP2Copt expression plasmid was co-transformed with the pGLysivb lysis plasmid 

into Mops-competent E. coli NM522 strain, as described in materials and methods (Fig. 

4.46). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.46: Expression and lysis curve pBGKBZP2Copt/pGLysivb. Three different pBGKZP2Copt/pGLysivb 
clones were checked for growth and lysis behavior in combination with recombinant protein expression of 
periplasmic ZP2Copt. 

Western blot analysis was done to check the expression of the protein ZP2Copt. The anti-

myc-HRP antibody was used for ZP2Copt protein detection (Fig. 4.47 and 4.48). 
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Fig. 4.47: pBGKBZP2Copt/pGLysivb western blot. Time points: B=20min, C=40min and G=120min after L-
arabinose induction. The picture shows clone1 and clone2 at time points B, C and G, with visible protein detection 
of clone1 starting at time point B and increasing until time point G; no protein could be detected in clone 2. As a 
negative control (K) pBGKBpGLysivb 30 minutes after L-arabinose induction was used. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.48: pBGKBZP2Copt/pGLysivb western blot. Time points: B=20min, C=40min and G=120min after L-
arabinose induction. The picture shows clone3 at time points B, C and G, with visible protein detection starting at 

time point B and increasing until time point G. As a negative control (K) pBGKBpGLysivb 30 minutes after 
L-arabinose induction was used. 

 

Clone 2 of the plasmid pBGKBZP2Copt/pGLysivb showed correct ZP2Copt protein 

expression and was further used for working stock production and fermentation. 
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4.4.3 Expression- and lysis study of E. coli NM522 (pBGKBCp4) 

(pGLysivb) 

 

The pBGKBCp4 expression plasmid was co-transformed with the pGLysivb lysis plasmid into 

Mops-competent E. coli NM522 strain as described in materials and methods (Fig. 4.49) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.49: pBGKBCp4/pGLysivb expression and lysis curve. Four different pBGKBCp4/pGLysivb clones were 
checked for growth and lysis behavior in combination with recombinant protein expression of periplasmic 
ZP2Copt. 

Western blot analysis of the taken samples was performed to check for protein expression of 

the Cp4 protein using the anti-myc-HRP antibody as well as the Cp4 specific serum Cp4 

female TV24 in combination with Rabbit anti-possum as secondary antibody and anti-Rabbit 

HRP as third antibody for protein detection (Fig. 4.50, 4.51 and 4.52). 
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Fig. 4.50: pBGKBCp4/pGLysivb Western blot. Detection of Cp4 protein with anti-myc-HRP antibody. The 
picture shows the control plasmid (K) pBGKB/pGLysivb 30 minutes after L-arabinose induction and three different 
pBGKBCp4/pGLysivb clones at time points: D: 20min, F: 60min after L-arabinose induction. No protein could be 
detected. 

As there was no protein expression detected using anti-myc-HRP antibody the western blot 

analysis was repeated using the possum Cp4 female TV24 specific serum for development. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.51: pBGKBCp4/pGLysivb Western blot. Detection of Cp4 protein with possum Cp4 female TV24 specific 
serum. The picture shows the protein expression of the clone: C1, C2 and C3 directly at L-arabinose induction, 
time point A and 20 minutes after L-arabinose induction, time point B. Protein bands with a weight of around 
25kDa were detected. The expected size of the expressed protein from plasmid gIII-Cp4-myc-polyH protein has a 
molecular weight of 39,8 kDa. As a negative control (K) pBGKB/pGLysivb 30 minutes after L-arabinose induction 
was used. 
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Fig. 4.52: pBGKBCp4/pGLysivb Western blot. Detection of Cp4 with possum Cp4 female TV24 specific serum. 
The picture shows the protein expression of the clones 1, 2 and 3, 40 (C) and 60 (D) minutes after L-arabinose 
induction. Protein bands with a weight of around 25kDa were detected. The expected size of the expressed 
protein from plasmid gIII-Cp4-myc-polyH protein has a molecular weight of 39,8 kDa. As a negative control (K) 
pBGKB/pGLysivb 30 minutes after L-arabinose induction was used. 

As the Cp4 protein expression showed bands only at around 25 kDa and not the correct size 

of 39,8 kDa, pBGKBCp4 was not further used for fermentation. 
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4.5 Fermentation 

Fermentation was carried out as described in materials and methods with the strain E. coli 

NM522 including the expression plasmid pBGKBZP2C and the lysis plasmid pGLysivb and 

with E. coli NM522, containing the expression plasmid pBGKBZP2Copt and the lysis plasmid 

pGLysivb. The process of fermentation was performed in a 30L fermenter (20L working 

volume) with the appropriate antibiotics kanamycin (for the expression plasmid) and 

gentamycin (for the lysis plasmid). 

4.5.1 Fermentation of E. coli NM522 (pBGKBZP2C) (pGLysivb) 

E. coli NM522 (pBGKBZP2C) (pGLysivb) clone 1, tested in chapter 4.4.1 was used for 

fermentation in 22L volume. Bacterial growth went on until the OD600 reached a value of 0,8 

when L-arabinose was added up to a final concentration of 0,2% to induce protein 

expression (Fig. 4.53). The addition of L-arabinose did not impair growth and after 110 

minutes of bacterial growth the temperature was shifted up to 42°C to induce lysis (Fig. 4.53) 

which went on for another 90 minutes causing a drop in cfu from 109 to 105 (per ml). The 

surviving bacteria were finally killed by the addition of β-propiolactone (0,075% end-

concentration) for another 60 minutes (Fig. 4.53). 

During fermentation process samples were taken for OD measurement and cfu 

determination as well as samples for protein analysis and microscopy. OD and cfu curves 

can be seen in figure 4.53. Microscopic observations showed intact bacterial cell shape in 

living cells and ghosts. 
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Fig. 4.53: Fermentation curve of NM522 (pBGKBZP2C) (pGLysivb). The figure shows the OD curve as well as 
the cfu curve of the fermentation. L-arabinose was added up to an end-concentration of 0,2% when OD has 
reached 0,8 and lysis was induced 110 minutes after bacterial growth. As the arrows in the figure show the cfu 
drop down from 10

9
 to 10

5
 (per ml) resulting in a lysis efficiency of 99,97% 

 

The lysis efficiency of the fermentation was calculated to be 99,97% according to the cfu 

values. 

All important fermentation parameters such as flow, stirrer, pH, temperature and oxygen are 

documented during the process by the IRIS software. A diagram showing all the documented 

parameters can be seen in figure 4.54. 
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Fig. 4.54: The IRIS diagram. This diagram shows pH-value regulated to a constant pH of 7,2 green colour curve, 
oxygen concentration regulated to keep the oxygen above 5% blue colour curve, airflow-rate yellow colour curve, 
stirring per minute brown colour curve and temperature regulated manually red colour curve. 

 

Further data concerning the fermentation process can be found in the following data sheet 

(Fig. 4.55). 
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Pre-culture 

Volume: 4*500 ml Additives: Gentamycin, Kanamycin 

Medium type: LBv Other: - 

Date: 2008/10/21 Clone: 1 (2008/09/18 by SSC) 

Starting time: 09:45 Strain: Escherichia coli NM522 

End time: 14:05 Plasmids: pGLysivb, pBGKBZP2C 

ON culture OD: 2.207 / 0.639 Recombinant Protein Expression: ZP2C-myc-polyH 

Inoc. Volume: 1.40 l Expression Induction: 0.2% L-arabinose 

Medium: LBv Expression Induction Time point: C 

Antibiotics: Gentamycin, Kanamycin Lysis Induction: 42°C 

Temperature: 35°C Lysis Induction Time point: E 

Total Volume: ~ 22 L Killing: 2 * 0.0375% b-PL (H/I) 

Acid: F.A.: 38.6 ml Volume harvested: ~ 20 l 

Base: A.W.: 116.8 ml Harvested by: separator 

Antifoam A: 17.0 ml  OD separator flow: 0.035 / 0.194 / 0.105 / 0.101 

E-Blot: OK (by SSC) Yield: 7128mg 

R-Blot: OK (by SSC) Particles / mg: 1,65 x 109 

RT: - Sterility: OK (by AFA) 

Microscopy: okay Efficiency: 99.97 %  

Fig. 4.55: Fermentation data sheet. NM522 (pBGKBZP2C) (pGLysivb) fermentation 

 

After harvesting of the cells by separation the bacterial ghosts were washed (starting with a 

volume of 20L down to 1L) with autoclaved, sterile water and aliquoted into flasks for 

lyophilization. The total yield of the fermentation was 7128 mg with calculated 1,65x109 
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particles per mg (Fig. 4.55). The sterility of the lyophilisate was checked by sterility testing 

with 3 x 10mg. No survivors were detected in the preparation by this test (Fig. 4.55).  

Western blot analysis of the ZP2C antigen expression using the possum specific B11 serum 

for protein detection resulted in clear bands at the weight of the ZP2C protein of 37,04 kDa 

after induction with L-arabinose at time point C. This did not decrease after lysis induction 

assuming the periplasmatic transport of the ZP2C protein (Fig. 4.56). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.56: NM522 pBGKBZP2C/pGLysivb fermentation western blot. Fermentation samples shown: overnight 
culture sample (ON), B: 30 min of bacterial growth, C: time of L-arabinose induction, D: 30 min after L-arabinose 
induction, E: time of temperature shift up to 42°C, F: 30 min after lysis induction, G: 60 min after lysis induction, H: 
90 min after lysis induction. The molecular weight ZP2C is 37,04 kDa. 

 

Western blot analysis of the ZP2C antigen expression using anti-myc-HRP antibody showed 

comparable results (Fig. 4.57). 
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Fig. 4.57: NM522 pBGKBZP2C/pGLysivb fermentation western blot. The picture shows fermentation samples 
of different time points. H: 90 min after lysis induction, G: 60 min after lysis induction, F: 30 min after lysis 
induction, E: time point of temperature shift up to 42°C, D: 30 min after L-arabinose induction, B: 30 min after 
bacterial growth and ON: overnight culture. The molecular weight ZP2C is 37,04 kDa. 

Furthermore the expression of the ZP2C protein was quantified using western blot analysis. 

The Positope (Invitrogen) [5µg/µl] was used as standard with a 1:2 dilution series. The 

amounts loaded per lane were the following: 

 500ng  standard 1 

 250ng  standard 2 

 125ng  standard 3 

 62,5ng standard 4 

 31,25ng standard 5 

 

The lyophilized ZP2C bacterial ghosts were diluted in loading buffer as described in materials 

and methods and the following amounts were loaded per lane: 

 U1 = 4µg 

 U2 = 10µg 

 U3 = 20µg 

 U4 = 40µg 

 

The membrane was developed using anti-myc-HRP antibody (Fig. 4.58) 
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Fig. 4.58: Quantification western blot analysis of lyophilized ZP2C ghosts. Positope functions as standard 
with a known concentration. Different amounts of ZP2C ghosts were loaded as samples for quantification. 

 

With the use of the QuantityOne Software in the ChemiDocXRS program quantification of the 

unknown ZP2C antigen was performed. The results of the quantification are shown on the 

following quantification curve (Fig. 4.59). 

Positope: 53 kDa 

ZP2C: 37,04 kDa 
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Fig. 4.59: Quantification curve ZP2C ghost. The linear Positope standard curve is shown in black; the colorful 
dots mark the different ZP2C concentrations. 

Due to the standard curve the concentration of the ZP2C antigen had been calculated as the 

following: 

U1:   4µg BG: 42 ng/20µl = 10.39ng ZP2C / µg BG 

U2: 10µg BG: 192 ng/20µl = 19.23ng ZP2C / µg BG 

U3: 20µg BG: 310 ng/20µl = 15.52ng ZP2C / µg BG 

U3: 40µg BG: 524 ng/20µl = 13.11ng ZP2C / µg BG 

 

An average of 14,6 ng ZP2C/µg bacterial ghost was determined. The ghost preparation was 

sent for animal trials to New Zealand to the Landscare Research Group. 
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4.5.2 Fermentation of E. coli NM522 (pBGKBZP2Copt) (pGLysivb) 

NM522 (pBGKBZP2Copt) (pGLysivb) clone 2 tested in chapter 4.4.2 was used for 

fermentation in 22L volume. Bacterial growth went on until the OD600 reached a value of 0,8 

when L-arabinose was added up to a final concentration of 0,2% to induce protein 

expression (Fig.4.60). The addition of L-arabinose did not impair growth and after 120 

minutes of bacterial growth at 36°C the temperature was shifted up to 42°C to induce lysis 

(Fig.4.60), which went on for another 60 minutes causing a drop in cfu from 108 to 105 (per 

ml). The surviving bacteria were finally killed by β-propiolactone (0,075% end-concentration) 

for another 60 minutes (Fig. 4.60).  

During fermentation process samples were taken for OD measurement and cfu 

determination as well as samples for protein analysis and microscopy. OD and cfu curves 

can be seen in figure 4.60. Microscopic observations showed intact bacterial cell shape in 

living cells and ghosts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.60: Fermentation curve of NM522 (pBGKBZP2Copt) (pGLysivb) clone2. OD values as well as cfu 
values are shown. L-arabinose was added up to an end-concentration of 0,2% after 60 minutes of bacterial 
growth, when the OD600 was at 0,8 to induce protein expression. After 120 minutes of bacterial growth 
temperature was shifted up to 42°C to induce lysis (see arrows). Due to bacterial lysis the cfu dropped from 10

8
 

up to 10
5 

(per ml) resulting in a lysis efficiency of 99,97%. 
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The lysis efficiency of the fermentation was calculated 99,97%. 

All important fermentation parameters such as flow, stirrer, pH, temperature and oxygen are 

documented during the process by the IRIS software. A diagram showing all the documented 

parameters can be seen in figure 4.61. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.61: IRIS diagram. This diagram shows pH-value regulated to a constant pH of 7,2 green colour curve, 
oxygen concentration regulated to keep the oxygen above 5% blue colour curve, airflow-rate yellow colour curve, 
stirring per minute brown colour curve and temperature regulated manually red colour curve. 

 

Further fermentation data are documented in the fermentation sheet (Fig. 4.62). 
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Pre-culture 

Volume: 4*500 ml Additives: Gentamycin, Kanamycin 

Medium type: LBv Other: - 

Date: 2008/11/05 Clone: 2 (2008/09/27 by SSC) 

Starting time: 08:45 Strain: Escherichia coli NM522 

End time: 13:45 Plasmids: pGLysivb, pBGKBZP2Copt 

ON culture OD: 1.807 / 0.320 Recombinant Protein Expression: ZP2Copt-myc-polyH 

Inoc. Volume: 1.80 l Expression Induction: 0.2% arabinose 

Medium: LBv Expression Induction Time point: C 

Antibiotics: Gentamycin, Kanamycin Lysis Induction: 42°C 

Temperature: 35°C Lysis Induction Time point: E 

Total Volume: ~ 22 L Killing: 2 * 0.0375% b-PL (I/J) 

Acid: F.A.: 43.2 ml Volume harvested: ~ 20 l 

Base: A.W.: 129.7 ml Harvested by: separator  

Antifoam A: 123.4 ml (?) OD separator flow: 0.016 / 0.055 / 0.060 / 0.042 

E-Blot: - Yield: 6847mg 

R-Blot: OK (by SSC) Particles / mg: 1,85x109 

RT: - Sterility: OK (by AFA) 

Microscopy: okay, elongation Efficiency: 99.97 % 

Fig. 4.62: Fermentation data sheet. NM522 (pBKGBZP2Copt) (pGLysivb) fermentation. 

After harvesting of the cells by separation the bacterial ghosts were washed (starting with a 

volume of 20L down to 1L) with autoclaved, sterile water and aliquoted into flasks for 

lyophilization. The total yield of the fermentation was 6847 mg with calculated 1,85x109 

particles per mg (Fig. 4.62). The sterility of the lyophilisate was checked by sterility testing 

with 3 x 10mg. No survivors were detected in the preparation by this test (Fig. 4.62).  
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Western blot analysis of the ZP2Copt antigen expression using the possum specific B11 

serum for protein detection resulted in clear bands at the weight of the ZP2Copt protein of 

39,07 kDa after induction with L-arabinose at time point C. This did not decrease after lysis 

induction assuming the periplasmatic transport of the ZP2Copt protein (Fig. 4.63). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.63: NM522 (pBGKBZP2Copt) (pGLysivb) western blot. Development with B11 serum to detect protein 
expression of ZP2Copt. Loaded time points: ON: overnight, A: start of bacterial growth, C: time point of L-
arabinose induction, D: 30 min after L-arabinose induction, E: time point of lysis induction, F: 30 min after lysis 
induction, G: 60 min after lysis induction, H: 90 min after L-arabinose induction. Expression of the ZP2Copt 
protein can be seen at time points C, E, F, G, H with a molecular weight of 39,07 kDa. 

Additionally western blot analysis was performed using the anti-myc-HRP antibody for the 

detection of the antigen. 
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Fig. 4.64: NM522 (pBGKBZP2Copt) (pGLysivb) clone2 western blot. Development with anti-myc-HRP 
antibody. Loaded time points: ON: overnight, A: start of bacterial growth, C: time point of L-arabinose induction, D: 
30 min after L-arabinose induction, E: time point of lysis induction, F: 30 min after lysis induction, G: 60 min after 
lysis induction, H: 90 min after L-arabinose induction. Visible expression of ZP2Copt protein at time points: D, E, 
F, G, H with a molecular weight of 39,07 kDa. 

Furthermore the expression of ZP2Copt protein was quantified using western blot analysis 

and the Positope (Invitrogen) [5µg/µl] was used as standard with a 1:2 dilution series. The 

amounts loaded per lane were the following: 

 500ng  standard 1 

 375ng  standard 2 

 300ng  standard 3 

 250ng  standard 4 

 

The lyophilized ZP2C bacterial ghosts were diluted in loading buffer as described in materials 

and methods and the following amounts were loaded per lane: 

 U1 = 0,4µg 

 U2 = 0,8µg 

 U3 = 1,2µg 

 U4 = 1,6µg 

 U5 = 2,0µg 

 

The membrane was developed using anti-myc-HRP antibody (Fig. 4.65) 
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Fig. 4.65: Quantification of pBGKBZP2Copt/pGLysivb clone2. Positope functions as standard with a known 
concentration. Different amounts of ZP2Copt ghosts were loaded as samples for quantification. 

With the use of the QuantityOne Software in the ChemiDocXRS program quantification of the 

unknown ZP2Copt antigen was performed. The results of the quantification are shown on the 

following quantification curve (Fig. 4.66) 

Positope: 53 kDa 

ZP2Copt: 39,07 kDa 
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Fig. 4.66: ZP2Copt ghosts quantification curve. The linear Positope standard curve is shown in black; the 
colorful dots mark the different ZP2Copt concentrations. 

Due to the standard curve the concentration of the ZP2Copt antigen had been calculated as 

the following: 

U1:   0,4µg BG:  297,35 ng/20µl = 743,37 ng ZP2C / µg BG 

U2:   0,8µg BG:  346,39 ng/20µl = 432,98 ng ZP2C / µg BG 

U3:   1,2µg BG:  389,68 ng/20µl = 324,73 ng ZP2C / µg BG 

U4:   1,6µg BG:  518,39 ng/20µl = 323,99 ng ZP2C / µg BG 

U5:   2,0µg BG:  380,45 ng/20µl = 190ng ZP2C / µg BG 

 

An average of 403 ng ZP2Copt / µg bacterial ghost was determined. The ghost preparation 

was sent for animal trials to New Zealand to the Landscare Research Group. 
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4.6 Trouble shooting pBGKBCp4 

Due to the fact that protein expression of the pBGKBCp4 plasmid always resulted in products 

around 25 kDa, instead of 37,7 kDa there was no fermentation made with the pBGKBCp4 

clone. Furthermore the pBGKBCp4 clones were digested again using different restriction 

enzymes to be sure to have the Cp4 sequence cloned into the pBGKB vector. Additionally to 

this restriction digest another western blot analysis was done to verify the protein expression 

of Cp4 protein. 

4.6.1 Restriction digest and western blot analysis of pBGKBCp4 

The restriction analysis of pBGKBCp4 was performed with different enzymes, where some 

enzymes cut in cloned Cp4 insert sequence (Fig. 4.67) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.67. pBGKBCp4 restriction digest. 
1: BamHI 4937bp correct 5: PstI     4937bp (insert cut) correct 
2: BglII 4937bp correct 6: SacI     4937bp (insert cut) correct 
3: DraI 2212/2723bp correct 7: XbaI     4937bp correct 
4: EcoRI 4937bp (insert cut)  correct 8: XhoI     2279/2658bp correct 
Marker: 1kb DNA ladder (Fermentas). 

 

All tested restriction digests showed correct band patterns, even the enzymes which cut in 

the Cp4 insert gave correct bands. 



82 

Additionally the NM522 (pBGKBCp4) expression study was repeated and fresh protein 

samples were collected to perform western blot analysis to check for correct protein 

expression of Cp4 at around 37,7 kDa (Fig. 4.68, 4.69). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.68: Cp4 western blot analysis. Detection with possum specific Cp4 female TV24 serum. Clone 4, 5, 6 can 
be seen at 0 min: time point of L-arabinose induction and at 20 min: 20 minutes after L-arabinose induction, 
showing protein bands at around 25 kDa, instead of 37,7 kDa. As a negative control (K) pBGKB, 30 minutes after 
L-arabinose induction was used. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.69: Cp4 western blot analysis. Detection with possum specific Cp4 female TV24 serum. Clone 4, 5, 6 can 
be seen at 40 min: 40 minutes after L-arabinose induction and at 60 min: 60 minutes after L-arabinose induction, 
showing protein bands at around 25 kDa, instead of 37,7 kDa. As a negative control (K) pBGKB, 30 minutes after 
L-arabinose induction was used. 
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Although the restriction digests showed expected results, the protein expression of Cp4 

could not clearly be shown. Bands at a lower weight could only be detected via specific 

possum serum, but detection with anti-myc-HRP showed no results.  

This might be due to the fact that there is no correct expression of Cp4 from start to end, and 

therefore expression is stopped within the insert, just before the myc-epitope.  

To detect possible mutations in the Cp4 sequence which might have led to the stop of the 

protein expression, sequencing of the Cp4 insert was done. 

4.6.2 Sequencing of Cp4 

For sequencing of Cp4, the pBGKBCp4 plasmid was transformed into E. coli C2988J and a 

midiprep was made as described in materials and methods; 200µl of the midiprep (elution 1) 

were sent for sequencing to Microsynth, CH. 

Following primers were designed to start sequencing 100bp before the Cp4 sequence and to 

end sequencing 100bp behind the Cp4 sequence:  

 

 

The sequencing results were blasted: confirmed sequence against theoretical sequence, 

using the EBLOSUM62 blast matrix: 

 

 

 

 

 

      

 
 

 

 

 

 

 

 

 

 

 

 

  

Aligned Sequences 2 

EMBOSS_001 1 

EMBOSS_001 2 

Gap penalty 10.0 

Extend penalty 0.5 

Length 983 

Identiy 963/983 (98.0%) 

Similarity 963/983 (98.0%) 

Gaps 3/983 (0.3%) 

Score 5836.0 

FWD: 5‟ TTT GGG CTA ACA GGA GGA ATT 3‟ 

REV: 5‟ ATC TGT ATC AGG CTG AAA ATC 3‟ 
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EMBOSS_001         1 CTGTTCGCGATTCCGCTGGTGGTGCCGTTCTATAGCCATAGCACCATGGC      

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001         1 CTGTTCGCGATTCCGCTGGTGGTGCCGTTCTATAGCCATAGCACCATGGC      
 

EMBOSS_001        51 TAGCTCGAGATCTGAATTCGATAGGTATGCTGTTGATCCGACGGACGATC     

                     ||||||||||||||||||||||||||||||||||||||||.||||||||| 

EMBOSS_001        51 TAGCTCGAGATCTGAATTCGATAGGTATGCTGTTGATCCGGCGGACGATC     
 

EMBOSS_001       101 CCAGCAGATACATCTCCCCTTCTGAGCTTGGGGACCTCTACAAGAGCTTC     

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       101 CCAGCAGATACATCTCCCCTTCTGAGCTTGGGGACCTCTACAAGAGCTTC     
 

EMBOSS_001       151 GTCAAGGACTATCCCGTGGTGTCTATTGGAGATCCCTTTGGCCAGGATGA     

                     ||||||||||||||||||||||||||||.|||||||||||.||||||||| 

EMBOSS_001       151 GTCAAGGACTATCCCGTGGTGTCTATTGAAGATCCCTTTGACCAGGATGA     
 

EMBOSS_001       201 TTGGGGAGCTTGGAAGGATTTCACTGCTACTGCAGGCATCCAGGTGGTAG     

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       201 TTGGGGAGCTTGGAAGGATTTCACTGCTACTGCAGGCATCCAGGTGGTAG     
 

EMBOSS_001       251 GGGATGATCTCACAGTGACCAATCCCAAGCGCATTGAAAAGGCTGTGAAC     

                     ||||||||||||||||||||||||||.||||||||||||||||||||||| 

EMBOSS_001       251 GGGATGATCTCACAGTGACCAATCCCGAGCGCATTGAAAAGGCTGTGAAC     
 

EMBOSS_001       301 GAGAAAGCCTGCAACTGCCTCCTCCTCAAAGTGAACCAGATTGGCTCCGT     

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       301 GAGAAAGCCTGCAACTGCCTCCTCCTCAAAGTGAACCAGATTGGCTCCGT     
 

EMBOSS_001       351 GACTGAATCTCTCCAGGCGTGCAAGCTGGCCCAGTCCAATGGATGGGGAG     

                     ||||||||||||||||||||||||||||||||||||||||||.||||||| 

EMBOSS_001       351 GACTGAATCTCTCCAGGCGTGCAAGCTGGCCCAGTCCAATGGCTGGGGAG     
 

EMBOSS_001       401 TGATGGTTTCTCATCGTTCTGGGGAGACTGAAGATACCTTTATTGCAGAC     

                     |||||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       401 TGATGGTTTCTCATCGTTCTGGGGAGACTGAAGATACCTTTATTGCAGAC     
 

EMBOSS_001       451 CTGGTGGTGGGCCTCTGCACTGGGCAGATCAAGACCGGTGCCCCCTTCCG     

                     ||||||||||||||||||||||||||||||||||||||||||||||.||| 

EMBOSS_001       451 CTGGTGGTGGGCCTCTGCACTGGGCAGATCAAGACCGGTGCCCCCTGCCG     
 

EMBOSS_001       501 ATCTGAGCGTCTGGCACAAGTATATCACAGCTTCTCAGAATTGAGCAAGA     

                     ||||||||||||||| ||||||||.| ||||||||||||||||||.|||| 

EMBOSS_001       501 ATCTGAGCGTCTGGC-CAAGTATAAC-CAGCTTCTCAGAATTGAGGAAGA     
 

EMBOSS_001       551 GATGGGCAGCAAGGTTAAATTTGCTGGAAGGAACTTCAGAAACCCTCAGG     

                     |.|||||||||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       549 GCTGGGCAGCAAGGTTAAATTTGCTGGAAGGAACTTCAGAAACCCTCAGG     
 

EMBOSS_001       601 CCAAGTAAGCTCTGTGAGCAGGAGGCCTATGAGCTCGCAGGTGCCAGTCA     

                     |||||||||||||||||.|||||||||||||||||||||||||||||||| 

EMBOSS_001       599 CCAAGTAAGCTCTGTGACCAGGAGGCCTATGAGCTCGCAGGTGCCAGTCA     
 

EMBOSS_001       651 CCTCTGTAGAAGTCTGCTCCTGCCCTACGAGTGGGCAGCACCAAGTACTA     

                     |||||||||||||||||||||||||||.|||||||||||||||||||||| 

EMBOSS_001       649 CCTCTGTAGAAGTCTGCTCCTGCCCTAAGAGTGGGCAGCACCAAGTACTA     
 

confirmed 

sequence  

theoretical 

sequence 
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EMBOSS_001       701 GACCAGTTTTGTTTTGGGCGCAGGGGCCTCCGCTGCTCAACTTCCCTCTC     

                     |||||||||||||||||||||||||||||||||||||||.|||||||||| 

EMBOSS_001       699 GACCAGTTTTGTTTTGGGCGCAGGGGCCTCCGCTGCTCAGCTTCCCTCTC   
   

EMBOSS_001       751 CCTTCCACCTTTCTGTTATGTTCTCACTGCTTCGTTAGAACTGTCTTACA     

                     ||||||||||||||||.||||||||||||||||||||||.|||||||||| 

EMBOSS_001       749 CCTTCCACCTTTCTGTGATGTTCTCACTGCTTCGTTAGAGCTGTCTTACA     
 

EMBOSS_001       801 CCAGAGAAGACCTGATGTTTGGTTCTCTGTCGGAAAACCCTTATCATCTT     

                     |||||||.|||||||||||||||||||||||||||||||||||||||||| 

EMBOSS_001       799 CCAGAGATGACCTGATGTTTGGTTCTCTGTCGGAAAACCCTTATCATCTT     
 

EMBOSS_001       851 GTGACTGGGATAGAATCACTTGGTCTCACCCCCAACCCTGGTGTTTATGT     

                     |||||||||||||||||||||||||||||||||||||||||||||.|||| 

EMBOSS_001       849 GTGACTGGGATAGAATCACTTGGTCTCACCCCCAACCCTGGTGTTGATGT     
 

EMBOSS_001       901 GTGGGAGCCCTGTCCTTGTTATGCAGTCCCGATGAGCCCACAGGCCAGCT     

                     || ||||||||||||||||.|||||||||||||||||||||||||||||| 

EMBOSS_001       899 GT-GGAGCCCTGTCCTTGTGATGCAGTCCCGATGAGCCCACAGGCCAGCT     
 

EMBOSS_001       951 CCTTAGTGGCTTCTATGTGCAGAATAAAAGTAT    983 

                     ||||||||||||||||||||||||||||||||| 

EMBOSS_001       948 CCTTAGTGGCTTCTATGTGCAGAATAAAAGTAT    980 

 

 

Obtained results from the blast program of the theoretical and the confirmed sequence were 

displayed using the Map Draw of DNAstar program for a more detailed information. In the 

following data sheet, the yellow letters mark the differences in the nucleotide sequence as 

well as in the amino acids. 
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The theoretical sequence would give the following amino acid sequence:  

L F A I P L V V P F Y S H S T Met A S S R S E F D R Y A V D P T D D P S R Y I S P S E L 

G D L Y K S F V K D Y P V V S I G D P F G Q D D W G A W K D F T A T A G I Q V V G D D 

L T V T N P K R I E K A V N E K A C N C L L L K V N Q I G S V T E S L Q A C K L A Q S N 

G W G V Met V S H R S G E T E D T F I A D L V V G L C T G Q I K T G A P F R S E R L A 

Q V Y H S F S E L S K R W A A R L N L L E G T S E T L R P S K L C E Q E A Y E L A G A 

S H L C R S L L L P Y E W A A P S T R P V L F W A Q G P P L L N F P L P S T F L L C S H 

C F V R T V L H Q R R P D V W F S V G K P L S S C D W D R I T W S H P Q P W C L C V 

G A L S L L C S P D E P T G Q L L S G F Y V Q N K S 

In contrast the confirmed sequence gives the amino acid sequence shown below: 

L F A I P L V V P F Y S H S T Met A S S R S E F D R Y A V D P A D D P S R Y I S P S E L 

G D L Y K S F V K D Y P V V S I E D P F D Q D D W G A W K D F T A T A G I Q V V G D D 

L T V T N P E R I E K A V N E K A C N C L L L K V N Q I G S V T E S L Q A C K L A Q S N 

G W G V Met V S H R S G E T E D T F I A D L V V G L C T G Q I K T G A P C R S E R L A 

K Y N Q L L R I E E E L G S K V K F A G R N F R N P Q A K Stop A L Stop P G G L Stop A 

R R C Q S P L Stop K S A P A L R V G S T K Y Stop T S F V L G A G A S A A Q L P S P F 

H L S V Met F S L L R Stop S C L T P E Met T Stop C L V L C R K T L I I L Stop L G Stop N 

H L V S P P T L V L Met C G A L S L Stop C S P D E P T G Q L L S G F Y V Q N K S 

 

According to the mutations in the confirmed Cp4 sequence, the expression product of the 

confirmed sequence results in the following amino acid sequence: 

MKKLLFAIPLVVPFYSHSTMASSRSEFDRYAVDPADDPSRYISPSELGDLYKSFVKDYPVVSI

EDPFDQDDWGAWKDFTATAGIQVVGDDLTVTNPERIEKAVNEKACNCLLLKVNQIGSVTES

LQACKLAQSNGWGVMVSHRSGETEDTFIADLVVGLCTGQIKTGAPCRSERLAKYNQLLRIE

EELGSKVKFAGRNFRNPQAK. 

The expression of the Cp4 sequence stops at the first frameshift stop and yields in a protein 

with a molecular weight of 22,7 kDa and an isoeletric point of 5.2.  

Due to these results, it cannot be said whether the original plasmid pGEX2TCp4 already had 

these mutations inside. To answer this question sequencing of the Cp4 part of the 

pGEX2TCp4 would be necessary. 
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4.7 Trouble shooting pBGKBVap1 

Restriction digests as well as western blot analysis never gave correct results. After several 

different cloning strategies for cloning the Vap1 gene sequence into the pBGKB vector 

plasmid, the last option was to sequence the Vap1 sequence to be sure whether the 

sequence is correct or not. 

4.7.1 Sequencing of Vap1 

For sequencing of Vap1, the pBGKBVap1 plasmid was transformed into E. coli C2988J and 

a midiprep was made as described in materials and methods; 200µl of the midiprep (elution 

1) were sent for sequencing to Microsynth, CH. 

Following primers were designed to start sequencing 100bp before the Vap1 sequence and 

to end sequencing 100bp behind the Vap1 sequence:  

 

 

 

The sequencing results were blasted: confirmed sequence against theoretical sequence, 

using the EBLOSUM62 blast matrix: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aligned Sequences 2 

EMBOSS_001 1 

EMBOSS_001 2 

Gap penalty 10.0 

Extend penalty 0.5 

Length 735 

Identiy 324/735 (44.1%) 

Similarity 324/735 (44.1%) 

Gaps 232/735 (31.6%) 

Score 1375.5 

FWD: 5‟ TTT GGG CTA ACA GGA GGA ATT 3‟ 

REV: 5‟ ATC TGT ATC AGG CTG AAA ATC 3‟ 
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EMBOSS_001         1 TC-CACAGAG-CAAGTTCGACGAGTACGTACGGTGATCACCGAGAACGAG      

                     || |||||.| |.|.|.|  ||||  ||.|..|..|...|.|.||||||  

EMBOSS_001         1 TCTCACAGTGACCAATCC--CGAG--CGCATTGAAAAGGCTGTGAACGA-      
 

EMBOSS_001        49 GAGGGCGTGCAACAAGCGCTCAACTTCG------------------CCAT      

                     ||..||.|||||| .|| |||..|.||.                  ||.| 

EMBOSS_001        46 GAAAGCCTGCAAC-TGC-CTCCTCCTCAAAGTGAACCAGATTGGCTCCGT      
 

EMBOSS_001        81 CAAAGAATTTAACCGGGCCAGCAA-C--GACAAGTAC---GGCAGCCGAG     

                     .|..||||.|..||.|||..|||| |  |.|.|||.|   |||.|..||| 

EMBOSS_001        94 GACTGAATCTCTCCAGGCGTGCAAGCTGGCCCAGTCCAATGGCTGGGGAG     
 

EMBOSS_001       125 TGT-------TCAGGGTGCT-GCGAGTCAGGA-----------AGCAG--     

                     ||.       |||..||.|| |.|||.|.|.|           .||||   

EMBOSS_001       144 TGATGGTTTCTCATCGTTCTGGGGAGACTGAAGATACCTTTATTGCAGAC     
 

EMBOSS_001       154 CTTGTGGCTGG---------TGTGAAATACTATATTGATG----CTGAGG     

                     ||.||||..||         ||.|.|...|.|.|..|.||    |||..| 

EMBOSS_001       194 CTGGTGGTGGGCCTCTGCACTGGGCAGATCAAGACCGGTGCCCCCTGCCG     
 

EMBOSS_001       191 TT-----CGTCGAACCACGTGCACCAAG----TC-----TGTGGCTGACC     

                     .|     ||||...|||.||..|.|.||    ||     ||.||..||.| 

EMBOSS_001       244 ATCTGAGCGTCTGGCCAAGTATAACCAGCTTCTCAGAATTGAGGAAGAGC     
 

EMBOSS_001       227 T----TGCAAG--------------------CTGC-----CCCTAT---C     

                     |    .|||||                    ||.|     ||||..   | 

EMBOSS_001       294 TGGGCAGCAAGGTTAAATTTGCTGGAAGGAACTTCAGAAACCCTCAGGCC     
 

EMBOSS_001       245 ATGAGGAC-------CCAG-----CTCTGAAAAAGCA----CTCCGTCTG     

                     |.|....|       ||||     ||.|||....|||    | |.|||.. 

EMBOSS_001       344 AAGTAAGCTCTGTGACCAGGAGGCCTATGAGCTCGCAGGTGC-CAGTCAC     
 

EMBOSS_001       279 CGTATTTGAGGTGTACACTATTCCTTGGT-TGGGCAAAACCACCCTCTTG     

                     |....|.||.||.|.|.|....|||..|. ||||||..||||....||   

EMBOSS_001       393 CTCTGTAGAAGTCTGCTCCTGCCCTAAGAGTGGGCAGCACCAAGTACT--     
 

EMBOSS_001       328 AAGAACGAATGCAAAGATGCCG-AGGCGCCTCC-TTGCACA-----CATC     

                      |||.|...|........|.|| |||.|||||| .|||.||     |.|| 

EMBOSS_001       441 -AGACCAGTTTTGTTTTGGGCGCAGGGGCCTCCGCTGCTCAGCTTCCCTC     
 

EMBOSS_001       371 TGCGACCAGCCTTAGCTGCAGCTGTTCTCTCCTTTTTGAAAAAAGAGCAA     

                     |.|...|..||||. ||| .|.|||||||.|...||.|   ..|||||.. 

EMBOSS_001       490 TCCCTTCCACCTTT-CTG-TGATGTTCTCACTGCTTCG---TTAGAGCTG     
 

EMBOSS_001       421 TATTACAAC--------CC----ATTTGATTCATTATTGCTTAAC---TG     

                     |.|||||.|        ||    .||||.|||..|.|.|...|||   |. 

EMBOSS_001       535 TCTTACACCAGAGATGACCTGATGTTTGGTTCTCTGTCGGAAAACCCTTA     
 

EMBOSS_001       456 TAAGTTAGTG-CTGTG---------------------------CAAGGTA     

                     |.|..|.||| |||.|                           |..|||. 

EMBOSS_001       585 TCATCTTGTGACTGGGATAGAATCACTTGGTCTCACCCCCAACCCTGGTG     
 

EMBOSS_001       478 ATGA----TGGAATC---TCCT--------------------CCCTCAG-     

                     .|||    ||||..|   ||||                    |||.|||  

EMBOSS_001       635 TTGATGTGTGGAGCCCTGTCCTTGTGATGCAGTCCCGATGAGCCCACAGG     
 

EMBOSS_001       500 -------C----TGGC----AGGAGGAGGAAATAA    519 

                            |    ||||    |.|.|.||.|.|.|| 

EMBOSS_001       685 CCAGCTCCTTAGTGGCTTCTATGTGCAGAATAAAA    719 

theoretical

sequence  

confirmed 

sequence 
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As the blast results show, the theoretical sequence differes strongly from the confirmed 

sequence.  

Amino acids from theoretical sequence gIII-Vap1: 

Met K K L L F A I P L V V P F Y S H S T Met A S S R S S T E Q V R R V R T V I T E N E E 

G V Q Q A L N F A I K E F N R A S N D K Y G S R V F R V L R V R K Q L V A G V K Y Y I D 

A E V R R T T C T K S V A D L A S C P Y H E D P A L K K H S V C V F E V Y T I P W L G K 

T T L L K N E C K D A E A P P C T H L R P A L A A A V L S F L K K E Q Y Y N P F D S L L 

L N C K L V L C K V Met Met E S P P S A G R R R K Stop 

It is very unlikely that the high degree of mutation is due to PCR mismatches and it therefore 

can be supposed that the confirmed sequence is already present in the original plasmid 

pGEX2TVap1. Proof of this would be possible by sequencing of the Vap1 sequence of 

pGEX2TVap1. 

In summary the goal of this study was to produce an immunocontraceptive vaccine for 

opossums depending on the bacterial ghost system. Four different possum -

immunocontraceptive target sequences were used: ZP2C, ZP2Copt, Cp4 and Vap1. 

Because of erroneous sequences of Vap1 and Cp4 only the sequences ZP2C and ZP2Copt 

could be cloned into the BG-system and were further used for protein production in the 

fermenter.  

Plasmids Production Results  

pBGBKZP2C fermentation 14,6 ng ZP2C / µg BG 

pBGKBZP2Copt fermentation 403 ng ZP2Copt / µg BG 

pBGKBCp4 sequencing EBLOSUM62 blast identity: 98,0% 

pBGKBVap1 sequencing EBLOSUM62 blast identity: 44,1% 
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5 Discussion 

The purpose of this work was to create a bacterial ghost delivery system containing a 

recombinant antigen to induce immune response against target contraceptive antigens in 

brushtail possums. Former studies showed that immunization of female possums against 

recombinant zona pellucida protein-2 (ZP2) reduced embryo production by 72-75% [1] and 

delivery of ZP2C antigen in a bacterial ghost vaccine had already been proofed to impair the 

fertilization process in immunized animals [16]. In the present study plasmids were 

constructed which carry target molecule sequences acting during embryonic possum 

development. Four different immunocontraceptive target gene sequences ZP2C, ZP2Copt, 

Cp4 and Vap1 were cloned into the pBGKB vector and bacterial ghosts were produced. 

5.1 Vector plasmid 

Work was started with the composition of the appropriate vector plasmid. Outgoing from 

three different plasmids pBADGIIIA, B, C the vector was cloned. In this case the ampicillin 

resistance cassette was replaced by kanamycin in order to avoid the application in wildlife or 

human. The pBGKB plasmid was chosen to be used as vector for further cloning.  

5.2 Construction of possum protein expressing plasmids 

The immunocontraceptive target sequences ZP2C, ZP2Copt, Cp4 and Vap1 were cloned 

into the pBGKB vector using two different cloning strategies: amplification of the desired 

sequence via PCR or restriction digest to cut the target gene sequence out. The obtained 

gene sequences were cloned into the multiple cloning site of the pBADGIII derived pBGKB 

vector and therefore provide all of the necessary reagents to express recombinant protein.  

 

 

 

Fig. 5.1: Vector plasmid pBGKB. pBAD promoter, gIII-signal sequence, MCS – multiple cloning site, myc- and 
his-epitope, kan – kanamycin resistance cassette, pBR322 – origin of replication 

The desired gene sequences were expressed as fusion proteins together with the gIII signal 

sequence. This sequence is derived from the bacteriophage fd gene III protein which 

GIII-MCS-myc-His  Kan araC 

pBR322 ori pBAD 
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encodes for pIII peptide and is important for the transport of the protein into the periplasmatic 

space where it is additionally cleaved off. 

5.3 Expression study 

Western blot analysis of the ZP2C and ZP2Copt plasmids showed diverse signals, differing 

between the usage of the low signal anti-myc-HRP antibody and the usage of the possum 

specific B11 serum which showed quite strong signals. L-arabinose protein expression of 

ZP2C and ZP2Copt never impaired the growth of the E. coli NM522 bacterial strain. 

Western blot analysis of Cp4 plasmid only illustrated signals when developed with the 

possum specific Cp4 serum; anti-myc-HRP never showed any bands. Serum development 

resulted in a Cp4-expression at around 25 kDa, although the Cp4-protein should be at 37,7 

kDa.  

Due to these results the pBGKBCp4 clones were checked to proof their correctness using 

restriction digest; but although restriction digest approved the correctness of the clones, the 

protein expression could not clearly be shown. 

This might be due to the fact that there is no correct expression of Cp4 from start to end, and 

maybe expression was stopped within the insert, just before the myc-epitope. 

For pBGKBVap1 protein expression no significant bands could be detected; therefore the 

plasmid was checked for correctness using restriction digest which showed quite different 

results. Restriction digest of pBGKBVap1 clones with the enzyme PstI should result in bands 

of 4429/170bp if the Vap1 gene sequence was cloned into the vector plasmid in the correct 

way. Cutting the wrong inserted Vap1 plasmid restriction digest with PstI would show bands 

of 4199/400bp. In this case restriction digest of pBGKBVap1 with PstI resulted in bands at 

around 250bp/350bp and was therefore neither correct nor incorrect inserted Vap1 gene 

sequences.  

In addition to these results the pBGKBVap1 clones were digested with BspHI, an enzyme 

which also cut in the Vap1 inserted gene sequence and gave information about the correct 

insertion of the sequence into the vector plasmid. Restriction digest with BspHI resulted in 

bands of 2830/1769bp and showed correct results. 
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However, western blot analysis never showed any bands and protein expression was only 

detectable using the possum specific Vap1 serum, because the Vap1 fusion protein 

expression stopped before the myc-epitope. 

5.4 Expression and lysis study 

The pBGKBZP2C as well as the pBGKBZP2Copt plasmids were co-transformed with the 

plasmid pGLyisvb. This lysis plasmid has a gentamycin resistance cassette and lysis is 

regulated by the thermosensitive pL/pR-cI857 system. 

 

  

 

Fig. 5.2: Lysis plasmid pGLysivb. Mob- mobilization sequence, Gent- gentamycin resistance cassette, cI875- 
repressor, Eivb- C-terminal fusion gene of protein E and in vivo biotinylation sequence. 

 

As the proteins are under the control of the pBAD promoter, expression is tightly regulated 

and induced by the addition of L-arabinose at a final concentration of 0,2%. The expression 

of the desired proteins did not impair the growth of E. coli NM522. Temperature shifting from 

35°C up to 42°C induced the expression of the protein E which resulted in the E-mediated 

transmembrane lysis tunnel structure. In this study the best clones of the plasmids were 

chosen to be used for fermentation. 

5.5 Fermentation 

Fermentation process was carried out in a 30L fermenter with the best clones of the plasmids 

pBGKBZP2C and pBGKBZP2Copt.  

Clone 1 of the plasmid pBGKBZP2C carrying the lysis plasmid pGLysivb was used for 

fermentation. After bacterial growth reached an OD600 of 0,8 L-arabinose at a final 

concentration of 0,2% was added to start protein expression. After 110 minutes of bacterial 

growth temperature was shifted from 35°C up to 42°C to induce lysis which went on for 

another 90 minutes. Finally the surviving cells were killed for 60 minutes, using β-

propiolactone.  

Mob Gent cI875 Eivb 
PRM  Pmut rep. 
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Lysis of pBGKBZP2C clone1 fermentation resulted in a cfu-drop from 109 to 105 (per ml), 

whereas lysis efficiency of the fermentation was 99,97%. 

Clone 2 of the plasmid pBGKBZP2Copt carrying the lysis plasmid pGLysvib was used for 

fermentation. After bacterial growth reached an OD600 of 0,8 L-arabinose at a final 

concentration of 0,2% was added to start protein expression. After 120 minutes of bacterial 

growth temperature was shifted from 35°C up to 42°C to induce lysis, which went on for 

another 60 minutes. Finally the surviving cells were killed for 60 minutes, using of β-

propiolactone.  

Lysis of pBGKBZP2Copt clone 2 fermentation resulted in a cfu-drop from 109 to 105 (per ml), 

whereas lysis efficiency of the fermentation was 99,97%. 

5.6 Quantification 

After harvesting of the bacterial ghosts containing ZP2C and ZP2Copt antigen, quantification 

of antigen protein within the bacterial ghosts was performed. 

pBGKBZP2C as well as pBGKBZP2Copt bacterial ghosts were quantified using the Positope 

from Invitrogen [5µg/µl] as a standard.   

In case that the pBGKBZP2Copt plasmid contains the brushtail possum zona pellucida 2 

(ZP2) C-terminal sequence gene with a codon optimized (opt.) for the protein expression in 

Escherichia coli, a higher protein expression was expected. Due to the quantification results 

of pBGKBZP2C and pBGKBZP2Copt bacterial ghosts, a significant difference in the amount 

of protein expression could be obtained.  

The ZP2C antigen expression in the pBGKBZP2C bacterial ghost resulted in an average of 

14,6 ng ZP2C/µg bacterial ghost. 

In contrast the ZP2Copt antigen expression in the pBGKBZP2Copt bacterial ghost showed a 

much higher amount of expressed protein, resulting in an average of 403 ng ZP2Copt/ µg 

bacterial ghost. 
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5.7 Trouble shooting Cp4 

As the protein expression of the pBGKBCp4 plasmid always showed bands at around 25 

kDa when developed with the possum specific Cp4 serum and never showed any bands 

when developed with the anti-myc-HRP antibody, the Cp4 gene sequence was send for 

sequencing.  

Sequencing results were quite disappointing, illustrating next to several point mutations also 

frame shifts which led to the formation of stop-codons, with the first stop in the middle of the 

Cp4 sequence. The Cp4 gene sequence part until the first frameshift stop had a molecular 

weight of 22,7 kDa, which had already been proofed in different western blot analysis 

developed with the specific possum serum against Cp4.  

As a future step the Cp4 gene region should be obtained by sequencing, to avoid and 

exclude further mutations and to be sure to work with the correct, un-mutated Cp4 gene 

sequence. 

5.8 Trouble shooting Vap1 

Also pBGKBVap1 plasmid which never showed any bands at western blot analysis was send 

to be sequenced and gave an even more devastating result; where blast research of the 

confirmed and theoretical sequence showed an similarity of 44,1%. Too many mutations in 

the confirmed Vap1 gene sequence suggested that the plasmid pGEX2TVap1 from which 

the Vap1 gene sequence was taken from must had already been mutated.  

As a future step the Vap1 gene sequence has to be cloned again and correctness of the 

obtained Vap1 element should be checked by sequencing. 

For future projects it has to be found out whether possum responses to target proteins like 

pBGKBZP2C, pBGKBZP2Copt and furthermore their effects on fertility in vivo in the possum 

will have to be examined as well. Overall, concerning immunologically based fertility control 

in possums to be effective in long term, multiple fertility – inhibiting antigens or usage of 

different antigens are important, thereby maximizing the effectiveness of 

immunocontraception for possum biocontrol. 
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6 Materials and methods 

6.1 Bacterial strains, media, cultivation  

6.1.1 Bacterial Strain 

 Escherichia coli K12 NM522 sup E thi-1Δ(Lac-proAB)Δ(mcrB-hsdSM) 5(rK-mK-) 

(F‟proABlacIqZΔM15) (Source: Stratagene, Heidelberg, Germany) 

 Escherichia coli K12 C2988J (NEB 5-alpha competent E .coli)  fhuA2 Δ(argF-

lacZ)U169 phoA glnV44 Φ80Δ (lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 

(Source: New England Biolabs, Germany) 

6.1.2 Cultivation medium for Escherichia coli 

Cultivation is carried out in LB-Medium which consists of 10g Peptone, 5g Yeast extract and 

5g NaCl, adjusted to a pH of 7,4. 

6.1.3 Cultivation of Escherichia coli 

E. coli are stored as glycerin stocks at -80°C in 25% glycerol.  

For growth E. coli are incubated in 5ml LBv (eprouvettes). Depending on the carried 

plasmids the respective antibiotic and/or other supplements are added as well. Growth is 

performed at 36°C in a rotating incubator (Heraeus BK5060E). 

6.1.4 Antibiotics 

Name Stock Final conc. µl/5ml 

ampicillin 50mg/ml 100µg/ml 10 

kanamycin 25mg/ml 50µg/ml 10 

gentamycin 10mg/ml 20µg/ml 10 
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6.2 Plasmids 

6.2.1 Backbone plasmids 

Name Length Resistance Origin Reference Features 

pBADGIIIA 4145 bp Amp pBR322 Invitrogen GIII-myc 

pBADGIIIB 4147 bp Amp pBR322 Invitrogen GIII-myc 

pBADGIIIC 4149 bp Amp pBR322 Invitrogen GIII-myc 

             

pBGKA 4040 bp Kan pBR322 this work GIII-myc 

pBGKB 4042 bp Kan pBR322 this work GIII-myc 

pBGKC 4044 bp Kan pBR322 this work GIII-myc 

 

6.2.2 Lysis plasmid 

Name Length Resistance Origin Reference Features 

pGLysivb 6201 bp Gent Rep [53] Eivb 

 

6.2.3 Expression plasmids 

Name Length Resistance Origin Reference Features 

pBGKBZP2C 5132 bp Kan pBR322 this work GIII-ZP2C-myc 

pBGKBZP2Copt 4994 bp Kan pBR322 this work GIII-ZP2Copt-myc 

pBGKBCp4 4937 bp Kan pBR322 this work GIII-Cp4-myc 

pBGKBVap1 4599 bp Kan pBR322 this work GIII-Vap1-myc 

 

Name Length Resistance Origin Reference Features 

pMalZP2C 7699 bp Amp pMB M13 [49] MBP-ZP2C 

pMalZP2Copt 7717 bp Amp pMB M13 [49] MBP-ZP2Copt 

 

Name Length Resistance Origin Reference Features 

pGEX2TCp4 5907 bp Amp pMB1 landcare research GST-Cp4 

pGEX2TVap1 5505 bp Amp pMB1 landcare research  GST-Vap1 
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6.3 Buffer and Solutions 

50% Glycerol: 

 25ml 100% glycerol 

 25ml ddH2O 

 Mix and autoclave 

0,85% Saline Medium: 

 8,5g NaCl 

 1l ddH2O 

 Filled into eprouvettes 9 ml and 9,9 ml using a dispenser and autoclave 

Mops I stock solution: 

 10,47g MOPS (100mM) 

 0,74g CaCl2 x 2H2O (10mM) 

 0,6g RbCl2 (10mM) 

 Dissolve in 400ml ddH2O, pH adjusted to 7,0 with KOH , sterilized by autoclaving 

Mops II stock solution: 

 10,47g MOPS (100mM) 

 5,15g CaCl2 x 2H2O (10mM) 

 0,6g RbCl2 (10mM) 

 Dissolve in 400ml ddH2O, pH adjusted to 7,0 with KOH , sterilized by autoclaving 

10x PBS: 

 137mM NaCl 

 2.7mM KCl 

 10 mM Na2HPO4 

 2 mM KH2PO4 

 800mL dH2O 

 pH 7.4 with HCl 

 fill up to 1L with dH2O 
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1%, 2% Agarose: 

 3g (or 6g) Agarose 

 300ml 1x TAE Buffer 

Gelred: 

GelRedTM Nucleic Acid Gel Stain 1000x in water (Biotium order No. 41003)  

 15µl GelRed stain 

 5ml 1M NaCl 

 45ml water 

1xNuPage® Sample Buffer: 

 6,5ml PBS 

 2,5ml NuPage® LDS Sample Buffer (4x) 

 1ml NuPage® Reducing Agent (10x) 

1xNuPage® MES Running Buffer: 

 50ml NuPage® MES Buffer (20x) 

 950ml deionized water 

1x Transfer Buffer: 

 50ml NuPage® Transfer Buffer (20x) 

 100ml Methon 

 850ml deionized water 

1x Blocking Solution: 

 3ml Roth Roti-Block (10x) 

 27ml deionized water 

1x TBS: 

 100ml TBS (10x, ROTH) 

 900ml deionized water 
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1xTBST: 

 100ml TBST (10x, ROTH) 

 900ml deionized water 

PonceauS 

 0,2g PonceauS 

 3,0g trichloric acetic acid  

 100ml ddH2O 

Luminol Reagent: 

 1,5ml ECL-Reagent A (Santa Cruz Biotechnology) 

 1,5ml ECL-Reagent B (Santa Cruz Biotechnology) 

 

6.4 Chemicals 

Chemicals, solutions, buffer and media are purchased from Roth (ROTH Carl, Germany) 

6.5 Enzymes 

All enzymes are purchased from Fermentas Life Science and New England Biolabs; ligation, 

restriction digests as well as double restriction digests and dephosphorylation were 

performed according to the manufacturer‟s instructions. 
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6.6 Microbiological techniques 

6.6.1 Preparation of CaCl2/RbCl2 competent cells 

30ml of autoclaved LB-medium are inoculated with 1ml of a fresh overnight E. coli culture 

and are grown in a 36°C water bath under continuous shaking until an OD600 of 0,5 is 

reached. The culture is then centrifuged for 10 minutes at 4°C and 4000rpm; the supernatant 

is decanted and the resulting pellet is resuspended in 6ml cooled MOPS I solution and is 

kept on ice for further 10 minutes. The solution is centrifuged for 10 minutes at 4°C and 

4000rpm and the supernatant is decanted; pellet gets resuspended in 6ml cooled MOPS II 

solution and is kept on ice for further 30 minutes. Centrifugation step is performed for 10 

minutes at 4°C and 4000 rpm and the pellet is resuspended in 480µl MOPS II and 180µl 50% 

glycerol. Additionally the solution is kept on ice for 10 minutes before it‟s aliquoted into 100µl 

portions and stored at -80°C. 

6.6.2 Transformation of CaCl2/RbCl2 competent cells 

CaCl2/RbCl2 competent cells (100µl aliquot) are thawed on ice and 2µl of DNA miniprep 

(Peqlab Miniprep Kit I or Kit II) or 10µl of ligation product are added to competent cells and 

kept on ice for 30 minutes. Heat shock is performed for 2 minutes depending on the DNA 

plasmid at 42°C or lysis plasmids at 36°C. After 5 minutes on ice, 700µl of autoclaved LB-

medium is added and cells are regenerated for 1 hour at 36°C on the shaker. Finally 100µl 

and the remaining rest are stroke on agar plates with the corresponding antibiotics and 

incubated over night at 36°C. 

6.6.3 Preparation of plasmid DNA (miniprep) 

For plasmid DNA preparation in small volume the PeqLab Kit I (Erlangen, Germany) (over 

night culture 1-5ml) and Kit II (over night culture 3-15ml) are used according to the 

manufacturer‟s instructions. Plasmid DNA is further used for digestion or ligation or is stored 

at -20°C. 

6.6.4 Preparation of plasmid DNA (midiprep) 

For plasmid DNA preparation in medium volume (100ml) the Promega Midiprep Kit 

(Mannheim, Germany) is used according to the manufacturer‟s instructions. Plasmid DNA is 

further used for digestion or ligation or is stored at -20°C. 

 



107 

6.7 Enzymatic reactions 

6.7.1 DNA restriction digest 

All restriction digests are performed with Fermentas (St. Leon-Rot, Germany) Restriction 

enzymes under the manufacturer‟s instructions: 

6.7.2 DNA ligation 

All DNA ligations are performed with the T4 DNA ligase from New England Biolabs (Frankfurt 

am Main, Germany): 

 3µl DNA vector 

 5µl DNA insert 

 1µl T4 DNA Ligase Buffer (10x) 

 1µl T4 DNA Ligase 

 10µl Ligation Mix is incubated at 16°C over night 

6.7.3 Isolation and purification of DNA fragments 

Isolation and purification steps were performed with the GeneXpress Clean and Concentrator 

Kit (GmbH, Germany), GE-Healthcare Purification Kit (Vienna, Austria), and Zymo Gel DNA 

Recovery Kit (California, USA). The isolated and purification was done according to the 

manufacturer‟s instructions. The DNA fragment is further used for cloning steps or is stored 

at -20°C. 

6.8 Amplification of DNA fragments using PCR 

All PCR reactions are performed with the iCycler Thermal Cycler features from Bio-Rad 

according to the manufacturer‟s instructions using different PCR enzymes from Fermentas 

(St. Leon-Rot, Germany):   

 2x PCR Master Mix (Fermentas) 

 Pfu DNA Polymerase (Fermentas) 

 Dream Taq DNA Polymerase (Fermentas) 

 High Fidelity DNA Polymerase (Fermentas) 
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6.8.1 Test-PCR small scale 

PCR materials are thawed on ice; all further steps are carried out on ice under the lamina 

flow: 

100µl master mix: 

 50µl 2x PCR Master Mix (Fermentas) 

 1µl Primer 1 (Fwd) 50pmol/µl 

 1µl Primer 2 (Rev) 50pmol/µl 

 40µl dH2O 

The master mix is divided into three labeled PCR eppis (each 23µl): 

 Eppi 1: 23µl master mix + 2µl unknown DNA (sample) 

 Eppi 2: 23µl master mix + 1µl unknown DNA + 1µl dH2O (positive control) 

 Eppi 3: 23µl master mix + 2µl dH2O (negative control) 

 

The PCR program includes following steps: 

 Step1: Denaturation: 1 cycle 

 95°C 3min 

 

 Step2: Denaturation, Annealing, Elongation: 25-30cycles 

o Step2a: 95°C 30sec 

o Step2b: 48°C-60°C 30sec (dependent on Primer Tm) 

o Step2c: 72°C 1min/1000bp product 

 

 Step3: Final Elongation: 1cycle 

 72°C 10min 
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6.8.2 PCR large scale 

PCR materials are thawed on ice; all further steps are carried out on ice under the lamina 

flow: 

300µl master mix: 

 30µl dNTPs Mix (2mM) 

 30µl 10x Buffer + MgSO4 

 3µl Primer 1 (Fwd) 50pmol/µl 

 3µl Primer 2 (Rev) 50pmol/µl 

 3µl Polymerase (Pfu; High Fidelity; Dream-Taq) 

 207µl dH2O 

For control: the master mix is divided into three labeled PCR eppis (each 23µl): 

 Eppi 1: 23µl master mix + 2µl unknown DNA (sample) 

 Eppi 2: 23µl master mix + 1µl unknown DNA + 1µl dH2O (positive control) 

 Eppi 3: 23µl master mix + 2µl dH2O (negative control) 

For production: the master mix is divided into four labeled PCR eppis (each 46µl): 

 Eppi 4-7: 46µl master mix + 4µl unknown DNA (sample) 

The PCR program includes following steps: 

 Step1: Denaturation: 1 cycle 

 95°C 3min 

 

 Step2: Denaturation, Annealing, Elongation: 25-30cycles 

o Step2a: 95°C 30sec 

o Step2b: 48°C-60°C 30sec (dependent on Primer Tm) 

o Step2c: 72°C 1min/1000bp product 

 

 Step3: Final Elongation: 1cycle 

 72°C 10min 
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6.9 Primers used for PCR 

6.9.1 Cloning pBGKA, B, C  

Vector pBHR1 as PCR template 

PCR fragment: 896bp 

Fwd Primer: [KanFWD(NcoI)] 

5‟ pBGKA, B, C: TTA CCATGG TGT TAC ATT GCA CAA GAT AA 3‟ 

Tm= 59°C 

Rev Primer: [KanREV(NcoI)] 

5‟ pBGKBA, B, C: ATT CCATGG TTA GAA AAA CTC ATC GAG CAT 3‟ 

Tm=62°C 

 

6.9.2 Cloning pBGKBZP2C  

Vector pMalZP2C as PCR template  

PCR fragment: 1001 nt 

Fwd Primer: [KpnI] 

5´pBGKBZP2C: ACA GGTACC AAT GGC TCA AGA CTA CAT 3´ 

Tm=50°C 

Rev. Primer: [XbaI] 

5´pBGKBZP2C: TAA TCTAGA TTA GAT GAC CCA GGA CAA 3´ 

Tm=52°C 
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6.9.3 Cloning pBGKBZP2Copt  

Vector pMalZP2Copt as PCR template 

PCR Fragment: 983 nt 

Fwd Primer: [BglII] 

5´pBGKBZP2Copt: ACA AGATCT AAT GGC AGC CGT CTG C 3´ 

Tm=52°C 

Rev. Primer: [XbaI] 

5´pBGKBZP2Copt: TAA TCTAGA CTG CTA CCC GGG CAG 3´ 

Tm=56°C 

 

6.9.4 Cloning pBGKBCp4  

Vector pGEX2Tcp4 as PCR template  

PCR fragment: 953nt 

Fwd Primer: [BglII] 

5´pBGKBcp4: ACA AGATCT GAA TTC GAT AGG TAT GCT 3´ 

Tm=50°C 

Rev. Primer: [XbaI] 

5´pBGKBcp4: TAA TCTAGA TTC TGA ATA CTT TTA TTC TGC 3´ 

Tm=54°C 
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6.9.5 Cloning pBGKBVap1  

Vector pGEX2Tvap1 as PCR template  

PCR fragment: 551nt 

Fwd Primer: [BglII] 

5´pBGKBvap1: ACA AGATCT TCC ACA GAG CAA GTT CGA 3´ 

Tm=54°C 

Rev. Primer: [XbaI] 

5´pBGKBcp4: TAA TCTAGA TTT TTC CTC CTC CTG CCA 3´ 

Tm=54°C 

 

6.10 Analytical techniques 

6.10.1 Electrophoresis 

For separation of DNA fragments gel electrophoresis is performed; according to the DNA 

length 1% (length 10³-104bp) or 2% (102-103bp) agarose gels are used: 

3g (1% gel) or 6g (2% gel) of agarose are weighted in and dissolved in 300ml 1x 

TAE. The solution is boiled for several minutes in the microwave until the solution is 

clear. After cooling down the gel is poured into appropriate gel-tray and the 

polymerized gel is stored in 1x TAE solution for further use.  

For DNA separation 10µl DNA solution is mixed with 2µl of 6x loading dye (Fermentas) and 

is loaded on the agarose gel. For length control also 5µl of DNA marker (Fermentas, 1kb 

loading dye) are loaded. 

For gel run 160V for 30 minutes are used until the loading dye reaches the end of the gel. 

Gel staining is performed in 1x GelRed solution.  
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6.10.2 Western Blot Analysis 

For the separation of proteins the NuPAGE® Bis-Tris Electrophoresis System from Invitrogen 

is used according to the manufacturer‟s instructions. 

Protein dissolved in 1x NuPage® Sample Buffer and denaturated at 99°C for 10 minutes is 

centrifuged for three minutes, maximum speed. 15µl of your sample and 5µl of appropriate 

protein marker are loaded into sample wells and the run is performed at 180V for 60 minutes. 

6.10.2.1 Transfer 

A semi-dry blotting sandwich is prepared according to the manufacturer‟s instructions for 

usage in an xCell II Blot Module. The protein transfer to a nitrocellulose membrane and takes 

place at 60V for 30 minutes (one gel) or 60 minutes (two gels). 

6.10.2.2 Ponceau S staining 

After protein transfer the nitrocellulose membrane is stained with Ponceau S to identify the 

marker bands. Ponceau S is washed off with deionized water and membrane is blocked with 

1x Blocking Solution (1x Roti-Block™, Roth) over night at 4°C. 

6.10.2.3 Antibody Incubation & development 

After blocking the membrane is washed 3 x 5 minutes, 1 x 10 minutes with TBST and 

incubated with the appropriate first antibody for one hour. After antibody incubation the 

membrane is washed 3 x 5 minutes and 1 x 10 minutes with TBS or TBST. If necessary 

incubate the membrane in the same way with the second and third antibody for an hour. The 

last washing step is performed with TBS 3 x 5 min and 1 x 10 min. For development the 

membrane is incubated with 3ml ECL-chemiluminescent reagent from Santa Cruz 

Biotechnology the membrane according to manufacturer‟s instructions. Documentation of the 

membrane is done in the BioRad ChemiDoc machine using the Quantity One software. 

6.10.2.4 Preparation of Western blot samples 

 From bacterial culture: 

1ml of bacterial culture is taken at appropriate time points and centrifuged for 3 

minutes at 10.000rpm. Supernatant is removed and the pellet is stored at -20°C for 

further use. Pellets are resuspended according to the OD600 in NuPage Sample buffer 

following these calculations:  

Before lysis: OD600 value x 250 = volume of 1x NuPage Sample buffer.  
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After lysis: OD600 (highest value before lysis) x 250 = volume of 1x NuPage Sample 

buffer. 

The mixture is incubated for 10min at 99°C and additionally stored at -20°C or used 

for western blot analysis. 

 

 From lyophilized bacterial ghosts: 

10mg of lyophilized bacterial ghosts are resuspended in 1ml ddH2O. 200µl of 

resuspended ghosts are mixed with 200µl NuPage Sample Buffer and heated for 10 

minutes at 99°C. The sample is centrifuged and 100µl supernatant sample are taken 

diluted with 400µl NuPage Sample buffer (1:5 dilution). 2µl, 5µl, 10µl and 20µl of the 

1:5 diluted sample (filled up with NuPage Sample Buffer to a total volume of 20µl) are 

loaded for quantification. 

 For protein quantification: 

For protein quantification the Positope from Invitrogen is used. The Positope [5µg/µl] 

is already diluted in Sample Buffer and is heated for 5 minutes at 99°C.  40µl of 

Positope are diluted with 40µl of NuPage Sample Buffer (0,5µg/20µl). A serial dilution 

is made (1:2) by transferring 40µl of each standard in 40µl NuPage Sample Buffer. 

o Std.5: 0,5µg/20µl 500ng 

o Std.4: 0,25µg/20µl 250ng 

o Std.3: 0,125µg/20µl 125ng 

o Std.2: 0,0625µg/20µl 62,5ng 

o Std.1: 0,031,25µg/20µl 31,25ng 

 

20µl of each standard are loaded on the same gel with dilutions of the unknown 

sample. 
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6.11 List of used antibodies 

Direct detection 
antibodies  Species type Uses Dilution Recognizes Source 

Anti-myc-HRP 
mouse 

monoclonal IgG 
antibody 

WB 
1 to 5.000 

in TBS 

recombinant proteins 
containing the c-myc 

epitope 
Invitrogen 

Anti-His(C-term)-
HRP 

mouse 
monoclonal IgG 

antibody 
WB 

1 to 5.000 
in TBS 

polyhistidine amino 
acid sequence at the 

C-terminus of a protein 
Invitrogen 

 

Serum detection 
antibodies 

Species 
type 

Uses Dilution Recognizes Source 

B11 ZP2C Serum Possum WB 
1 to 1.000 in 

TBS 
recombinant ZP2C 

protein 
LCR 

Cp4 serum tv24 
female 

Possum WB 
1 to 500 in 
TBS, BSA, 

NaN3 

recombinant Cp4 
protein 

LCR 

Vap1 serum tv17 
female 

Possum WB 
1 to 500 in 
TBS, BSA, 

NaN3 

recombinant Vap1 
protein 

LCR 

 

Secondary 
antibodies  

Species 
type 

Uses Dilution Recognizes Source 

Rabbit-anti-
Possum HRP 

Rabbit WB 1 to 1.000 in TBS Possum IgG LCR 

Anti-rabbit HRP Goat WB 
1 to 20.000 in 

TBS 
Rabbit IgG LCR 
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6.12 Growth, expression and lysis of E. coli NM522 

6.12.1 Growth and lysis in small scale 

E. coli NM522 carrying a lysis plasmid is inoculated in 5ml LBv with the appropriate 

antibiotics and are grown over night at 36°C. 

Growth and lysis are performed in 100ml nose-flasks containing 25ml autoclaved LB-medium 

and a magnet stirrer. Appropriate antibiotics are adjusted to LBv-medium with antibiotics in 

nose-flasks and inoculation with overnight culture is done, to reach an OD600 of 0,1. The 

nose-flasks are stirred at 330rpm in a 36°C water bath and OD600 is measured until an OD600 

of 0,5 is reached. The OD is measured by the Spectronic 20 Milton Roy spectrophotometer.  

When OD600 has reached 0,5 the nose flasks are shifted to a water bath of 42°C and lysis is 

followed for 120 minutes. 

6.12.1.1 Microscopy 

Lysis of bacteria is checked additionally by microscopy: Lysed bacteria differ from normal 

bacteria by their weak contrast; they appear not as dark as intact bacteria. 

6.12.1.2 Cfu determination 

For exact data analysis of growth and lysis viable cell counts (cfu) are performed. Therefore 

samples from nose flasks are diluted in 0,85% saline (NaCl). For 1:100 dilutions 9,9ml saline 

eprouvettes are used 0,1ml bacterial sample. For 1:10 dilutions 9,0ml saline eprouvettes are 

used with 1ml bacterial sample. In a logarithmic manner 50µl and 100µl of the final dilution 

are plated on count agar plates using a spiral plater. After incubation at 36°C over night the 

colonies are counted in the Synbiosis ProtoCOL Colony Counter machine (3.15, Synoptics 

Ltd., Cambridge, UK) using the colony counter program. Finally the cfu values are illustrated 

as a logarithmic curve, together with the OD600 values in dependency of time. 

Following dilutions according to the OD600 of growing and lysing bacterial cultures are used 

as a reference: 
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Before lysis/growth After lysis induction 

OD600 (pure) Dilution OD600 (pure) Dilution 

0.05-0.5 104 1.5-1.0 105 

0.5-1.0 105 1.0-0.5 104 

 0.5-0.2 103 

1.0-2.0 106 0.2-0.01 102 

 

6.12.2 Growth and expression study in small scale 

E. coli NM522 containing an expression plasmid are inoculated in 5ml LBv-medium with 

appropriate antibiotics and are grown over night at 36°C. 

100ml nose flasks containing 25ml autoclaved LBv with appropriate antibiotics and a magnet 

stirrer are inoculated with the overnight culture to reach an OD600 of 0,1. The nose flasks are 

stirred at 330rpm in a 36°C water bath. Optical density is measured until an OD600 of 3-3,5 is 

reached. For protein expression L-arabinose is added to an end concentration of 0,2% (time 

point 0 of protein expression). Expression is performed for further 60 minutes at 36°C. 

Samples are taken every 30 minutes according to the following scheme:  

time [min] OD600 Cfu microscope western blot samples 

-30 0,25-0,3 X X X 

0 0,4-0,5 X   X 

10   X   X 

20   X   X 

40   X X X 

60   X   X 
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6.12.3 Expression and lysis study in small scale 

E. coli NM522 containing an expression plasmid as well as a lysis plasmid are inoculated in 

5ml LBv-medium with appropriate antibiotics and are grown over night at 36°C. 

100ml nose flasks containing 25ml autoclaved LBv with the appropriate antibiotics and a 

magnetic stirrer are inoculated with the overnight culture to reach an optical density of 0,25-

0,3. The nose flasks are stirred at 330rpm in a 36°C water bath. Optical density is measured 

until an OD600 of 0,25-0,3 is reached. Expression of the recombinant protein is achieved by 

adding L-arabinose to an end concentration of 0,2%. Expression is performed for 60 minutes 

at 36°C. Afterwards the temperature is shifted up to 42°C to induce lysis. Samples are taken 

according to the following scheme: 

time [min] sample OD600 cfu microscope 
western blot 

samples 

-60 A X X X X 

-30 B X X   X 

0 C X X X X 

20 D X X     

40 E X X     

60 F X X   X 

90 G X X X   

120 H X X   X 

 

6.12.4 Glycerine stocks of bacteria 

To each labeled glycerin tube 900µl of 50% glycerin and 900µl of bacterial culture are added; 

the storage glycerin stocks are all prepared in duplets, are mixed by shaking and stored at -

70°C.  

6.12.5 Consistency study 

For consistency study E. coli carrying the lysis plasmid is inoculated in 5ml LBv with the 

appropriate antibiotic and are grown over night at 36°C. In general nine different clones are 

tested and the study is performed with 3 clones at the same time. 100ml nose flasks 

containing 25ml autoclaved LBv with antibiotics and a magnet stirrer are inoculated with 

overnight culture to reach an optical density of 0,1. The nose flasks are incubated at 36°C in 

water baths under stirring at 330rpm.  
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After an OD600 of 0,5 is reached the nose flasks are shifted to a water bath with 42°C to 

induce lysis and samples are taken according to the following scheme: 

time [min] 
OD600 

(expected) 
OD600 cfu microscope 

-120   X     

-60   X     

-30 0,25-0,3 X X X 

0 0,4-0,5 X X   

10   X X   

20   X X   

40   X X   

60   X X X 

90   X X   

120   X X   

 

6.13 Fermentation 

The production of bacterial ghosts is performed in a 30L fermenter (TECHFORS S1820 

Infors AG, Switzerland). For fermentation a total volume of 22 liters LBv is used. 

6.13.1 Media preparation and previous settings 

For fermentation 22 liters of LBv are autoclaved (30min, 121°C) 18 hours before fermentation 

starts. Within this time the IRIS program observes temperature, pH, oxygen and flow in the 

fermenter. Furthermore sterility of the medium is checked by taking blank samples and 

plating them on plate count agar. 

6.13.2 Overnight culture 

Two glycerol working stocks stored at -80°C are thawed and 800µl are inoculated into 4 x 

500ml autoclaved LB each in 2L flasks. The 500ml flasks are incubated over night in a water 

bath at 34°C. 

6.13.3 Fermentation process 

The fermenter is inoculated with overnight culture to an OD600 of about 2. During 

fermentation parameters like temperature, oxygen flow, pH and stirring are observed by the 

IRIS program. 50ml samples are taken via the sterilized sample valve.  
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6.13.4 Killing 

After growth and lysis, none lysed bacteria are killed by using 0,075% β-propiolactone added 

as two equal doses of 0.0375% 30min apart. 

6.13.5 Harvesting 

Bacterial ghosts are harvested by separation (Westfalia Seperator, type CTC1-06-107). 

6.13.6 Washing and lyophilisation 

The collected bacterial ghosts are washed 3 times with 2400ml sterile ddH2O and centrifuged 

at 4°C (Hermle, ZK401) for 15 minutes at 8000 rpm. After the washing steps the bacterial 

ghosts are resuspended in 200ml sterile ddH2O separated into 11 lyophilisation bottles and 

kept at -20°C, bottles are transported to -80°C and lyophilisation is performed in a Lyolab B 

(LSL Secfroid) machine for three days. 

6.13.7 Calculation of lysis efficiency and particles per mg 

For lysis efficiency the highest and the lowest cfu value are compared, resulting in the 

following equation:  

  %100
][

][
1%

1

1





















mlcfu

mlcfu
Efficacy

highest

lowest

 

 

The particles per mg are calculated with the value of the highest CFU which is multiplied by 

the ml amount of the harvested bacterial ghost culture and divided by the lyophilized weight 

of the entire harvested material resulting in an equation as follows: 
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6.13.8 Sterility testing of the material 

10mg of lyophilisate are resuspended in 1,5ml LBv, 1ml resuspension are used for pour 

plating by adding 20ml hand warm LB agar to the sample in an empty agar plate. In addition 

100µl and 200µl are plated and all plates are incubated over night at 36°C. Additionally 100µl 

are inoculated in 5ml LBv and incubated over night at 36°C. On the next day 100µl and 200µl 

of this enrichment are plated and incubated over night at 36°C. 

6.14 Sequencing 

Sequence analysis was done at Microsynth (Balgach, Switzerland) using the A1 premium run 

service. Therefore a midiprep of the desired plasmid was performed and 200µl of the first 

midiprep elution was sent to be sequenced. A DNA concentration of minimum 100ng/µl was 

necessary. 

6.14.1 Blast results 

The obtained sequences from the A1 premium run service (confirmed sequence) were 

aligned and blasted against the theoretical sequence (expected by DNAStar program using 

Genbank information) using the EBLOSUM62 blast matrix. 
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