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1 INTRODUCTION AND AIMS 

 Colorectal Carcinoma (CRC) is one of the most common malignancies in Western 

countries, and several modifiable risk factors concerning lifestyle, nutrition and exercise 

are known. The estimated lifetime risk of CRC is 5-6% with almost 50% of CRC 

patients eventually dying of their disease. Despite advances in therapy, there has been 

only modest improvement in survival for patients with CRC. Hence, effective primary 

and secondary preventive approaches must be developed to reduce mortality (1). 

Because of the frequency of the disease and better survival of patients with early-state 

lesions, CRC is suitable for screening. Several studies have shown the benefits of CRC 

screening (2). Unfortunately the established screening tests such as endoscoping 

examinations show a weak patient acceptance and other tests such as Fecal Occult 

Blood Test lack specifity and tend to lead to false positive or negative results. Because 

of the low prevalence of CRC screening, which is only approximately 60%, too many 

adults were not screened (3). 

A new approach for the development of a tumormarker is the use of epigenetically 

altered DNA. In contrast to genetics, epigenetics is not explaining different phenotypes 

by a change in the DNA sequence, but by different other mechanism that can influence 

gene expression. One of these mechanism is the methylation of cytosine residues that 

precede guanines and which are called CpGs . The hypermethylation of CpG islands, 

which are CpG rich areas at the promoter region of a gene, leads to a suppressed 

transcription of the gene (4). The hypermethylation of different tumor suppressor genes 

has been found to be associated with CRC and other tumor entities. For example the 

genes P16 and RASSF1A show a high methylation rate and can therefore be used for the 

development of a tumormarker (5). 

Nutrition is one of the factors of the environment that possibly influences the 

methylation pattern of genes. The investigations are especially focused on folate, which 

acts as a donor and acceptor of methyl groups in DNA biosyntheses and provides 

methyl groups for the methylation of DNA (6).  

For the detection of the methylation status of a certain gene different methods are 

known. One is based on the combination of sodium bisulfite treatment and PCR. For the 
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detection of methylated DNA in serum a qualitative approach has been designed. Here 

the sodium bisulfite treatment is followed by a Realtime-PCR. There are also different 

methods of calculating the level of methylation in a given sample. Another bisulfite 

conversion independent approach for the quantitative detection of mehtylated DNA is a 

method based on methylation sensitive enzymes. In the present work we will have to 

investigate, which of the different methods are the most efficient. 

The overall aim of our work is to establish a non invasive blood test that uses 

epigenetically altered DNA as a biomarker for CRC. This testing method could be used 

not only for tumor prevention, but also to check for the efficiency of therapeutic 

interventions and for the follow-up. 

To achieve our goal we had to accomplish following steps: 

• Establish a suitable method to quantify DNA, which shows epigenetic changes. 

o Establishing of a positive and a negative control 

o Testing the linearity of our detection system for a wide dynamic range, 

the detection of a low amount of total DNA and the detection of 

methylated DNA diluted by a larger amount of unmethylated DNA 

o Establishing of a standard curve for quantification 

o Comparison of different calculation methods 

• Optimize the extraction of the limited amount of DNA from serum 

• Collect first clinical data 
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2 LITERATURE REVIEW 

2.1 Primary Prevention of Colorectal Cancer 

In Austria CRC is the second leading cause for death by malignant diseases in both 

sexes, only exceeded by breast cancer in women and lung cancer in men (7). The 

incidence of CRC varies up to 25-fold between countries. The highest rates are found in 

Westernized countries whereas the lowest rates are found in Africa and India. In 

addition it has been shown, that people who migrate from low- to high-risk areas of the 

world reach the incidence of cancer of a high-risk country even over one or two 

generations (8). These facts provided important evidence that lifestyle factors influence 

the development of this malignancy. Moreover, there is convincing evidence from 

epidemiological and experimental studies that dietary intake is an important etiological 

factor in colorectal neoplasia. Although the precise mechanisms have not been clarified, 

several lifestyle factors are likely to have a major impact on CRC development (9). 

Different studies pointed out that physical inactivity, excess body weight (to a lesser 

extent), and abdominal fatness are consistent risk factors. Overall the overconsumption 

of energy is likely to be the major contributor to high rates of CRC in Westernized 

countries (10).  

An analysis of different studies showed that also diabetes is associated with CRC. Thus, 

the association of abdominal obesity with colorectal cancer likely depends on 

hyperinsulinemia (11). Whereas many studies showed a relation between CRC and 

insulin, they found no evidence that a diet characterized by high glycemic index or 

glycemic load, or by a high intake of carbohydrate or sugars, increases the risk of CRC 

(12). 

The Nurses’ Health study provided evidence that red meat intake is related to risk of 

CRC. Willet et al found an association with beef, pork or lamb consumption. Other 

studies such as the Iowa Women’s Study show an almost significant trend with 

processed meat (13). These results were confirmed by another study among middle-

aged Americans, which suggests that dietary patterns characterized by a low frequency 

of meat consumption reduce the risk of CRC (14). 
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Consumption of tobacco products is another lifestyle factor that has been associated 

with small and large colorectal adenomas, which are generally accepted as being 

precursor lesions for CRC (15). Also substantial consumption of alcoholic drinks are 

found to be a cause for CRC (8). 

On the other hand there are some nutritional factors that show a protective effect on 

colorectal cancer, e.g. calcium, vitamin D and folic acid (9). 

A recent study showed that mice fed with a defined Westernized diet, which 

recapitulates intake levels of nutrients that are major dietary risk factors for human 

colon cancer, induced colonic tumors. But tumors were prevented by increasing the 

intake of calcium and vitamin D3 comparable to upper levels of human intake. No 

alteration of tumorigenesis was found by similar elevation of other micronutrients, 

which are also at a low level in the Westernized diet such as folate, choline, methionine, 

or fibers (16). 

Other studies about folate and its impact on CRC risk are inconclusive. Some reports 

show that groups of high intake of folate have a reduced risk of CRC compared with 

groups with low folate intake, whereas recent studies have not confirmed that inverse 

relationship. Hubner et al also assume that folic acid supplements must be taken for a 

prolonged period to impact on CRC risk. Such assertion is supported by findings from 

the Nurses’ Health Study, which showed no inverse associated between CRC risk and 

supplementation when taken for less than 5 years, a non-significant inverse association 

when taken for 5-10 years, but a substantial and significant 75% reduction when taken 

for 15 years and more (17). 

In addition, other dietary factors apart from folate and folic acid may also impact on 

folate metabolism, notably alcohol, choline, and methionine. Alcohol is a folate 

antagonist interfering with folate absorption and other aspects of folate metabolism, 

whereas choline and methionine are important sources of methyl groups. Studies that 

have analyzed combinations of these dietary components have generally found 

increased risk of CRC for ‘methyl-poor’ diets (diets high in alcohol and low in folate 

and methionine) compared with ‘methyl-rich’ diets (diets low in alcohol and high in 

folate and methionine) (18). The interactions of methyl groups supplied by nutrition 

with genetic systems are shown in chapter 2.5.  
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Whereas studies have provided inconsistent results about the protective effect of fibers, 

it could be shown that frequent consumption of fruits and vegetables decrease the risk 

of CRC (14). Ryan-Harshman et al have claimed that the intake of fibers is generally at 

such a low level that it is difficult to determine its influence on CRC. For example in 

one study with no association between dietary fiber intake and CRC the 10th percentile 

of dietary fiber intake was 5.4 g, and the 90th percentile was only 18.2 g (19). Another 

problem is that the definition of ‘fibers’ is not always clear. Observational studies may 

be unable to determine the relationships between fiber-rich foods and non-fiber dietary 

components, nutrients and micronutrients in fruits and vegetables. Fibers may also be a 

marker for unmeasured dietary substances that have anticarcinogenic effects. On the 

other hand a potential limitation of prospective randomized trials as often conducted is 

the length of the trials. It is not always clear how long an intervention needs to be 

present before an effect is evident (20). 

Taking all these different risk factors under consideration it has been demonstrated that 

diet may cause or prevent approximately 80% of CRC incidence (13). The World 

Cancer Research Fund and the American Institute for Cancer Research systematically 

reviewed and assessed the body of evidence on diet, physical activity and cancer and 

published recently their findings. The conclusion about CRC and its risk factors are 

shown in Figure 2.1. 
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Figure 2.1 Food, nutrition, physical activity, and cancers of the colon and the rectum. Summary of the 

conclusions of the “Expert Report, Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global 

Perspective” by the World Cancer Research Fund and the American Institute of Cancer Research (available 

at www.dietandcancerreport.org). 

 

2.2 Secondary Prevention of Colorectal Cancer 

In 2008 the American Cancer Society updated the guidelines for screening and 

surveillance for the early detection of CRC. Recommended CRC tests are grouped in 

two categories: 1) tests that primarily detect cancer, which include both fecal occult 

blood testing (FOBT) and immunochemical-based FOBT and testing stool for 

exfoliated DNA and 2) tests that can detect cancer and advanced lesions, which include 

endoscopic examination and radiologic examination (3). 

FOBTs are designed to detect the present of occult blood in stool. Blood in stool is an 

unspecific finding, but may originate from CRC. The proper use of stool testing requires 

annual testing that consists of collecting specimens from consecutive bowl movements. 

There are recommendations for a specific diet for three days previous to the testing: 
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Avoidance of exceed intake of vitamin C (either from supplements or from citrus fruits 

or juices), because it can result in false-negative results and avoidance of red meats, 

which is associated with false-positive results.  

The limitation of FOBT is that many of the individual tests have limited sensitivity 

under best circumstances, and this sensitivity may be further compromised by poor and 

incomplete specimen and inadequate or improper processing and interpretation.  

Endoscopic procedures allow the direct mucosal inspection of the entire colon 

(colonspectrometry) or the lower half of the colon lumen (sigmoidspectrometry). These 

methods require one or more days of bowl cleansing and usually one day dedicated to 

the examination. In addition a chaperon is needed for the transportation, because of 

sedation. There is also a risk of perforation, haemorrhage and subsequent hospitalization 

(2). 

It must be taken under consideration that the power of a screening test is not only 

dependent on its specifity and sensitivity, but also on the people’s willing to participate 

in a given screening program. This willingness is strongly influenced by whether the 

screening is easy to perform, safe and practicable in clinical routine. The American 

Society of Cancer reported that in 2006 only 56.3% of American women and men aged 

≥ 50 years participated in screening of CRC with endoscopic procedures and the 

prevalence of having done a FOBT was 16.4%. The incidence of adults aged ≥ 50 years 

having had recent screening with either FOBT or endoscopy was 60.4% (3). The reason 

for such a low number of participations may be uncomfortable and unpleasant 

preparation procedures for endoscopy, sometimes painful examination procedures, 

complications during endoscopy and low sensitivity or specificity of FOBT. 

Considering that the stage at diagnosis is one of the major determination of survival 

(21), it is crucial to find a non-invasive method to identify a marker for CRC that will 

achieve early diagnosis as well as predicting prognosis and response to treatment. To 

accomplish this goal, there are efforts to use epigenetic changes in the DNA of tumors 

as a tumormarker. 
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2.3 Epigenetics 

Whereas classical genetics explains different phenotypes by a change in the DNA 

sequence, epigenetics concentrates on the changes in gene functions that cannot be 

explained by change in the primary DNA sequence. The main mechanisms in 

epigenetics comprise regulations of cytosine methylation and histon acetylation (22). 

Cytosine methylation occurs by enzymatic transfer of a methyl group from the methyl 

donor S-adenosylmethionin to the carbon-5 position of cytosine (Figure 2.2). 

 

 

Figure 2.2 Methylation of cytosine residues. De novo methyltransferase (DNTM) catalyses the methylation at 

position 5 of cytosine, using S-adenosylmethionine (SAM) as methyl donor, which is released as S-

adenosylhomocysteine (SAH). 

 

DNA methylation has a critical role in the control of gene activity of the cells. It occurs 

in cytosines that precede guanines, which are called CpG sites. CpGs are 

underrepresented in the genome, because of CG suppression, but there are CpG-rich 

regions known as CpG islands which are located at the promoter regions of many genes 

(this is the case in about 60% of all human genes). Hypermethylation of these CpGs 

lead to inhibition of gene expression (4). For further details see Figure 2.3. 

Several mechanisms have been proposed to explain the inactivation of gene expression 

by CpG island methylation. One is inhibition of direct interaction between methylated 

promoters and transcription factors. Another mechanism of silencing involves 
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methylated DNA binding proteins with transcriptional repression properties (e.g. 

MeCP2, MBD1) (23). 

Hypermethylation is a physiological process active in all healthy cells and is involved in 

genomic imprinting and X-chromosome inactivation. But many studies have shown that 

an aberrant methylation pattern is associated with different diseases, e.g. cancer.  

The low level of DNA methylation in tumors compared with the level of DNA 

methylation in normal-tissue counterparts was one of the first epigenetic alterations to 

be found in human cancers. The loss of methylation is mainly due to hypomethylation 

of repetitive DNA sequences and demethylation of coding regions and introns. On the 

other hand the hypermethylation of CpG islands in the promoter regions of tumor-

suppressor genes is a major event in the origin of many cancers (24). Thus, it can be 

said that tumor derived DNA is globally hypomethylated and focally hypermethylated 

(4). 

 

 

Figure 2.3 Consequence of CpG methylation. The upper panel shows a normal cell, where the CpG island 

remains unmethylated (pale pins). In absence of methylation of this CpG island, DNA in promoter region 

remains accessible to transcription factors, and the gene is expressed. In the lower panel a cancer cell shows a 

characteristic CpG island methylation, causing silencing of gene expression. 
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2.3.1 Methods of DNA methylation analysis  

There are different methods to investigate epigenetic alterations. Herman et al 

developed a method, called methylation-specific PCR (MSP), which can rapidly asses 

the methylation status of the CpG sites within a CpG island. The isolated DNA is 

modified by sodium bisulfite treatment, converting unmethylated (but not methylated) 

cytosines to uracil. Subsequently the processed DNA is amplified by PCR using specific 

primers either for the methylated or the unmethylated form of the gene of interest (25, 

26). For further details see chapter 3.6 and 3.7. 

This method was later improved into a quantitative approach using Real time-PCR (RT-

PCR). Here again sodium bisulfite conversion is needed, but then the PCR is performed 

using primers and fluorescence labeled probes. The increase of DNA can then be 

detected in real time and the treshhold cycle (Ct) is used for the quantification of input 

DNA, because it is related to the amount of input DNA. 

To be specific, a standard curve is needed for the quantification of DNA and different 

methods to obtain such standard curves are published. For example the DNA used could 

be derived from cell lines (such as HeLa and LoVo (27) or NCI-H522 (28)), 

lymphocytes (29, 30), leucocytes ((31, 32) or salmon sperm (33). The standard DNA is 

mostly artificially methylated (32), but can also be derived from a cell line, which 

shows methylation itself (28, 34). 

To assess the total amount of input DNA different methods are known. One determines 

the input DNA using a reference gene. Recently published studies used β-actin (ACTB) 

(29, 31, 32, 35), collagen, (COL2A1) (35) or MYOD1 (28, 30) as such a reference gene. 

To ensure that the reference gene is quantified independent from its methylation status, 

the primers used must not harbour any CpGs (34). 

Another approach is to calculate the total amount of input DNA by summing the 

amount of methylated DNA and the amount of unmethylated DNA of a certain gene. 

Two primersets and two different independent standard curves are needed (one 

containing fully methylated DNA, one unmethylated DNA) (27, 32). 
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The two different approaches lead to different methods of calculating the level of 

methylation in a sample, which are shown in detail in chapter 3.9. Fackler et al found no 

differences in the accuracy of the two methods at all (36). 

An alternative technique has been described to rapidly profile the DNA methylation 

status without the use of sodium bisulfite. Here several methylation-sensitive restriction 

enzymes are used and again RT-PCR is performed (37-40). Further details are given in 

chapter 3.10. Oaks et al could show that this assay is a rapid and accurate way of 

determining levels of DNA methylation (41). 

2.3.2 Quantitative detection of methylated DNA in serum 

The new quantitative approach has been used to assess the methylation status not only 

in solid tumors, but also in body fluids such as serum or plasma. 

It is known that the median DNA concentration in the serum of tumor patients is higher 

than in normal subjects. However, an increased nucleic acid level is not specific for a 

defined disease (26). Thus, the measurement of total DNA is not a suitable approach 

and a new method should be based on the detection of DNA that is released from the 

tumor. The different methylation patterns of DNA are used to distinguish between 

tumor-specific DNA and DNA from healthy cells. Based on this theory many studies 

have been done to investigate the potential of the detection of methylated DNA in 

serum/plasma and its value as a tumormarker. 

Wallner et al found that the methylation of certain genes detected in serum was 

associated with tumor size, stage and extend of metastatic. They also found that the 

detection of methylation of specific genes in serum of patients with CRC is associated 

with higher mortality. Thus, they draw the conclusion that the determination of DNA 

methylation in serum has potential to become an independent pretherapeutic predictor 

of outcome (42). 

Other studies have shown that there are differences in methylation of DNA according to 

different subgroups of CRC. For example the number of genes methylated was higher in 

proximal CRC or adenoma than in distal CRC (43). Others found that the serrated 

neoplasia pathway is associated with the methylation of different genes, one of them is 

P16 (44). 
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Lofton-Day et al have also been working on the identification of new high-performing 

markers using CRC-specific methylated DNA in plasma. They suggest that an 

practicable blood-based test for the early detection of CRC followed by colonoscopy for 

individuals with positive results has the potential to be an effective tool for reducing 

mortality from this disease (45). 

The quantitative approach of determining the hypermethylation even increases the 

possibilities of these methods, because also the ratio of methylated to unmethylated 

DNA can be evaluated. For example Nakayama et al found that the methylation score of 

P16 significantly increased with the tumor stage. In addition the P16 methylation score 

was significantly higher in patients with lymph node metastasis or tumor invasion to the 

veins and the group with a high P16 methylation score showed significantly worse 

survival rates than the group with a low P16 methylation score (46). 

2.4 Epigenetic and Colorectal Cancer 

For selected genes, epigenetic changes are tightly related to neoplastic transformation in 

CRCs. In the colon, aberrant DNA methylation arises very early, initially in normal 

appearing mucosa, and thus Kondo et al suggest that it may be part of age-related field 

defect observed in sporadic CRCs. They also define a certain CpG Island Methylator 

Phenotype (CIMP), because they observed that one group of CRCs showed rare 

methylation and another group showed methylation of several genes simultaneously 

(23). On the other hand the concept that patients with CIMP-positive tumors have a 

poorer prognosis has not been accepted by all researchers. There has been much debate 

whether the CIMP tumors represent a biologically distinct group of CRC or are an 

artificially selected group of tumors arising from a continuum of tumors with different 

degrees of methylation (4). Recent studies provided evidences for the CIMP theory. 

Nosho et al found that CIMP was significantly associated with female sex, older age, 

proximal location, poor differentiation, mucin, signet ring cells and inversely with stage 

I (47). The main unsolved issue with CIMP is which panel is the best for CIMP 

determination, or whether one panel will suffice. Samowitz et al misses a gold standard 

for CIMP which will make it easier to determine the correct CIMP status (48). 
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There is not only the influence of promoter hypermethylation itself, but there are also 

further genetic changes that are associated with it. There are studies that identified a 

number of relationships between CIMP and various other genetic changes, including 

microsatellite instability, mutant Ki-ras, wild-type p53, and the BARF V600E mutation 

(48). 

One example is microsatellite instability, which is a status of defect mismatch repair 

systems often caused by hypermethylation of MLH1 promoter. The consequences are a 

reduced repair of replication errors which are due to slippage of short nucleotide repeats 

during DNA replication and subsequently different mutations occur (49). 

2.5 Epigenetic, Diet and Lifestyle 

Diet is a major aspect of the environment that may influences DNA methylation, and 

studies on the role of specific foods, diet derived compounds and different types of 

dietary patterns on cellular mechanism and epigenetics in CRC are increasing. Of 

special interest are nutrients, which are needed for the nucleic acid synthesis and for the 

enzymes regulating their syntheses, e.g. essential amino acids, zinc, folate, and vitamins 

B6 and B12. Folate is the most studied nutrient in this area and many studies suggest 

that the effect of folate deficiency and supplementation on DNA are gene-specific (8). 

Cellular folate acts as a donor and acceptor for methyl groups in biosynthesis of 

nucleotide precursors used for DNA synthesis and provision of methyl groups for 

methylation of DNA, RNA and proteins. A derivative of folate (5-10 methylene THF) 

plays a role in the methylation of deosyuridine monophosphate (dUMP) to 

desoxythimidine monophosphate (dTMP), which is the sole de novo source of 

thymindine and the rate limiting step in DNA synthesis in mammalian cells. 

Another effect is that, when dUMP accumulates because of a low level of folate, uracil 

misincorporations into DNA in place of thymine is induced. DNA repair enzymes act to 

remove misincorparated uracil from the DNA strand, causing temporary breakage in the 

DNA molecule that is sealed by DNA ligase. If folate is continually limited, uracil 

misincorporation and repair may occur repeatedly causing frequent breakage of the 

DNA molecule, chromosomal damage and malignant transformation (6). 
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It could be shown that long-term dietary deficiency of folate in humans result in global 

hypomethylation (which leads to chromosomal instability and increased mutational 

events, as mentioned before) in lymphocytes, which is reversible on repletion of folate 

status (17). 

The mechanism leading to hypomethylation of DNA is contributed through 

methionine/homocysteine. To be specific, 5-methyltetrahydrofolate (5-methyl THF), the 

major circulating form of folate, acts as a cofactor in the conversion of homocysteine to 

methionine. Methionine is subsequently metabolised to S-adenosylmethionine, the 

principal methyl donor in the majority of biochemical reactions, including cytosine 

methylation in DNA. 

A deficiency in vitamin B12 would be expected to induce DNA instability in the same 

way as folate deficiency. It is also required for the methylation of homocysteine to 

methionine. Although the geno-protective effect of vitamin B12 has been reported to act 

independently of folate, there is little evidence of a relationship between B12 and cancer 

(6).  

Details for the folate metabolism and the flow of methyl groups towards either DNA 

synthesis or DNA methylation are shown in Figure 2.4. 
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Figure 2.4 Schematic representation of folate metabolism illustrating how folate (and vitamin B12) are 

strategic cofactors in DNA methylation and DNA synthesis. TS, thymidylate synthase; THF, tetrahydrofolate; 

DHF, dihydrofolate; MTHFR, 5-10-methylenetetrahydrofolate reductase; MS, methionine synthase; SAM, S-

adenosylmethionine; SAH, S-adenosylhomocysteine; FAD, flavin adenine dinucleotide; dUMP, desoxyuridine 

monophosphate; dTMP, deoxythymidine monophosphate 

 

There are also studies that show a decrease of the expression of certain genes in mice, 

when they are fed a defined Westernized Diet and in contrary a decrease of gene 

expression when calcium or vitamin D3 were supplemented (16). 

There is also a relationship between hypermethylation and cigarette smoking. Smoking 

has been associated with CpG methylation in lung cancer. Also in CRC a significant 

dose response relationship between the number of cigarettes smoked and the 

hypermethylation of promoters of certain genes could be shown (49). 

2.6 The role of RASSF1A/P16 hypermethylation in cancer 

2.6.1 RASSF1A 

Ras-associated domain family 1, isoform A gene (RASSF1A) falls into the category of 

genes frequently inactivated by methylation rather than mutational effects. 

The RASSF1 gene locus spans about 11.151 bp of the human genome (located at locus 

3p21.3) and is comprised of eight exons. Differential promoter usage and alternative 
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splicing generates seven transcripts (RASSF1A-G), the major ones are RASSF1A, 

RASSF1C and RASSF1F. Two CpG islands are associated with the promoter region of 

RASSF1, which are separated by approximately 3.5 kbp. The smaller of the two spans 

the promoter region of RASSF1A (50, 51). For details see Figure 2.5. 

The loss of expression in tumors is due to selective CpG methylation of this promoter 

regions, whereas the bigger promoter region, which is RASSF1C specific, remains often 

unmethylated (52). 

 

Figure 2.5 Genomic arrangement of RASSF1A at 3p21.3. The two major promoters of RASSF1 (arrows) are 

located in two separated CpG islands (open squares). The three major isoforms (RASSF1A, RASSF1C, 

RASSFFC), which are made by alternative promoter usage and alternative slicing of the exons (black boxes) 

are shown.  

 

Many studies could show that RASSF1A is a tumor suppressor gene and that it is 

epigenetically inactivated in a wide spectrum of tumors. The first time it was found to 

be silenced was in lung tumor cell lines, but also in at least 37 tumor types a high 

frequency of methylation is reported (50). 

Frequent inactivation of RASSF1A in human cancers suggests that it must have a pivotal 

role in tumor prevention. This notion is supported by the phenotype of tumor cell lines 

with consecutive overexpression of RASSF1A. The observation indicate that RASSF1A 

expressing cells are less viable, growth suppressed, less invasive, and have reduced 

anchorage/substrate independence. In addition it was shown that RASSF1A-knocked 

out-mice are prone to develop cancer in an advanced age. Hypermethylation of 
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RASSF1A promoter correlated in certain tumor types with poor prognosis for the 

patients and an advanced tumor stage. It was also implicated in metastatic process. In 

small bowl carcinoids RASSF1A promoter methylation were more frequently found in 

metastatic than in primary tumors (50, 53). 

RASSF1A polypeptides have a central role in regulating mammalian cell growth. 

Members of the RASSF family interact with active GTP-bound Ras by the Ras-

association (RA) domain. The resulting protein complex mediates the pro-apoptotic 

effects of K-RasG12V (54). 

In addition RASSF1A was reported to induce apoptosis via interaction with different 

other cell proteins and is linked to apoptosis through signalling pathways. But Richter et 

al have raised the concern that the data linking RASSF1A to cell death pathways were 

obtained under conditions where RASSF1A was overexpressed, and this may not reflect 

a situation that is biologically relevant (53).  

Another important role of RASSF polypeptides is the interaction with the microtubule 

network. The microtubule network functions as a cell scaffold spanning cytoplasm and 

consisting of rigid but adjustable tubulin polymers. The network determines cell shape, 

takes part in cell motility, provides “tracks” for transport process, functions as a scaffold 

for protein-protein interaction and compartmentalizes the cell. Furthermore it is 

indispensable for the correct chromatin separation during mitosis. It was demonstrated 

that RASSF1A polypeptides co-localize with microtubule network during mitosis and 

thereby stabilizes microtubules and regulates the mitotic progression. Thus, the growth 

inhibitory function of RASSF1A could be at least partly depending on its modified 

interaction with the microtubule network (53). 

The frequencies of RASSF1A promoter hypermethylation in CRC patients detected in 

different studies are shown in Table 2-1. 
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Table 2-1 RASSF1A promoter hypermethylation in CRC patients  

Positive in tumor Positive in 

serum/plasma 

Detection method Reference/remark 

20% (n=202)  MSP (5) 

45% (n=29)  MSP (55) 

20% (n=222)  MSP (56) 

16% (n=149)  MSP (43) CpG methylation 

plays a more important 

role in proximal than in 

distal CRC development 

81% (n=48)  MSP (57) RASSF1A 

methylation was also 

detected in 49 % (n=39) 

normal colonic mucosal 

tissue 

30% (n=40)  MSP (44) 

31% (n=59)  MSP (58) 

 24% (n=17) MSP (59) 

 29% (n=45) MSP (60) RASSF1A promoter 

hypermethylation in 

CRC patients were 

significantly higher than 

those in benign 

colorectal disease 

patients (6.7%) and 

healthy donors (0%) 

 0% (n=16) MSP (61) 

 

  



LITERATURE REVIEW 

 

- 19 - 

2.6.2 P16 

P16
INK4a

 (referred to as P16) is part of the INK4a/ARF locus and is one of the genes 

most frequency lost in human cancer. 

The INK4a/ARF locus spreads over 35 kbp of the genome and is located on 

chromosome 9p21. P16 and ARF have different first exons which are spliced to a 

common second and third exon. Although the exons 2 and 3 are shared by P16 and 

ARF, the proteins are encoded in alternative reading frames. As a consequence P16 and 

ARF are no isoforms and do not share any amino acid homology (62). Details are 

shown in Figure 2.6 Genomic arrangement of P16 at 9p21. 

 

 

Figure 2.6 Genomic arrangement of P16 at 9p21. P16 and p14 have each their unique first exon than then 

splices to a common second and third exon, but in alternate reading frames.  

 

Studies on P16 and ARF knockout mice have revealed that they are more prone to 

spontaneous cancer than wild-type littermates, whereby single knockouts appear 

significantly less tumor prone than double knockouts (62). In addition also analyses of 

human tumors provide evidences that P16 is an important tumor suppressor gene. 

Inactivation of P16 by promoter methylation (or point mutation or deletion) is seen in 

approximately a third of human cancers, making its loss one of the most frequent 
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lesions of human malignancy (63), including melanoma, pancreatic adenocarcinoma, 

glioblastoma, certain leukaemia, non-small lung cancer, and bladder carcinoma (62). 

One important function of P16 is growth arrest which protects the cell from 

hyperproliferative signals (64). The influence of P16 on proliferation is mediated by the 

regulation of RB, which is part of a potent anti-proliferative pathway. The expression of 

P16 or other INK4 members produces decreased cdk4/6 kinase activity and Rb 

hypophosphorylation which in turn leads to E2F repression and growth arrest (63). 

The frequencies of P16 promoter hypermethylation in CRC patients detected in 

different studies are shown in Table 2-2. 

 

Table 2-2 P16 promoter hypermethylation in CRC patients 

Positive in tumor Positive in 

serum/plasma 

Detection method Reference/remark 

33% (n=202)  MSP (5) P16 statistically 

altered in metastatic 

tumors 

23% (n=40)  MSP (44) 

13% (n=149)  MSP (43) 

53% (n=58) 36% (n=58) MSP (65) 

47% (n=94) 14% (n=94) MSP (66) 

 71% (n=17) MSP (59) 

 0% (n=16) MSP (61) 

 40% (n=50) qMSP (67) P16 methylation 

was significantly 

associated with tumor 

stage and lymphatic 

invasion 
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3 MATERIAL AND METHODS 

3.1 Sample collection 

Patients’ blood samples were collected in Vacuette Serum Gel Tubes (Greiner Bio-One) 

and centrifugated at 1800 x g for 10 minutes at room temperature. Aliquots of 1ml were 

stored at -80°C. 

3.2 Cell culture 

To obtain DNA as standards for our experiments we cultivated two cell lines, Hep3B 

and HCC1.2. Hep3B is a human cell line, derived from a hepatocellular carcinoma and 

obtained from the American Type Culture Collection (ATCC). HCC1.2 has been 

established from a human hepatocellular carcinoma (68). Both cell lines were kept in 

RPMI –1640 Medium supplemented with 10% fetal calf serum (FCS) which is a rich 

source of nutrients. The cells were incubated in a 95% humid atmosphere with 5% CO2 

at 37°C. In intervals of approximately 7 days they were passaged by trypsinization. To 

be specific, the medium was discarded and the cells were detached from the plate by 

incubation for 5-10 minutes with 3 ml trypsin. The cell-trypsin mix was diluted with 7 

ml medium (supplemented with FCS) and centrifuged for 10 minutes at 1540 rpm. The 

supernatant was discarded and the pellet resuspended in 10 ml medium (+FCS). The 

cells were split at different ratios (Hep3B 1:20; HCC1.2 1:10). 

3.2.1 Determination of Cell number 

Cells were counted in a counting chamber (Bürker Türk). The cover slip was placed on 

the chamber and a drop of cell suspension was transferred into the chamber which is 

divided into four quadrants. The number of cells was determined in two quadrants. The 

results obtained were used for the following calculation: number of cells in 1 quadrant x 

10 000 = number of cells/ml cell suspension.  

3.3  Extraction systems of DNA 

Serum contains a limited amount of tumor DNA. To gain a sufficient amount of DNA 

for further analysis, it is crucial to apply efficient methods of DNA extraction. First, we 
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compared different kits, that are commercially available, i.e., QIAamp DNA Blood Mini 

Kit (Qiagen), Charge Switch gDNA 1 ml Serum Kit (Invitrogen), Methylamp Coupled 

DNA Isolation & Modification Kit (Epigentekt), and the High Pure Viral Nucleic Acid 

Kit (Roche Applied Science). In addition, we tested a kit that is designed for the use 

with an instrument for automated purification of DNA, i.e., Maxwell 16 DNA 

Purification Kit (Promega). 

3.3.1 Approach 1: ChargeSwitch® gDNA 1 ml Serum Kit 

The ChargeSwitch
®

 gDNA 1 ml Serum Kit uses a magnetic bead-based, which 

principles are outlined in Figure 3.1. 

 

 

Figure 3.1 Magnetic Beads Technology. The surface of magnetic beads is charged depending on the pH of the 

surrounding. In low pH the beads bind the negatively charged nucleic acid backbone. To elute the DNA, the 

charge on the surface of the beads is neutralized by raising the pH to 8.5. 

 

Lyses step: 1 ml of serum sample was placed in a microcentrifuge tube. 700 µl of lyses 

buffer and 30 µl of protease K were added and mixed by pipetting up and down 5 times. 

The mixture was incubated at room temperature for 20 minutes.  

Binding to the beads: 250 µl of purification buffer and 30 µl of magnetic beads were 

added to the digested sample and mixed by pipetting up and down 5 times. To allow the 

DNA to bind to the magnetic beads the mixture was incubated 2 minutes at room 

temperature. Then the tube was placed in the MagnaRack
®

 for 3 minutes. Without 

removing the tube from the MagnaRack
®

 the supernatant was carefully removed 

without disturbing the pellet (for details see Figure 3.2). 
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Figure 3.2 Principle of separation by magnetic bead technology. The MagnaRack® (Invitrogen) contains 6 

neodinium magnets adjacent to the tube wall. The magnetic beads are attracted by the magnets and form a 

pellet on the tube wall. Thereafter the supernatant can be removed. 

 

Washing steps: The tube was removed from the MagnaRack
®

 and 1 ml Wash Buffer 

was added. For resuspension the magnetic beads were pipetted up and down 5 times. 

The tube was placed in the MagnaRack
®

 again for 2 minutes and the supernatant was 

removed and discarded. The washing step was repeated once. 

Elution step: 40 µl of elution buffer were added to the tube and pipetted up and down 10 

times to resuspend the magnetic beads. After incubating for 2 minutes at room 

temperature the tube was placed in the MagnaRack
®

 for 1 minute. The supernatant 

containing the DNA was removed and stored at -20°C. 

3.3.2 Approach 2: QIAamp® DNA Blood Mini Kit 

The QIAamp
®

 DNA Blood Mini Kit uses spin columns to extract DNA from different 

body fluids. The manufacturers’ protocol is designed for 200 µl and was modified to 

clean up 1 ml of serum in order to gain a sufficient amount of tumor DNA. The 

procedure consisted of the following steps (all centrifugation steps were carried out at 

room temperature): 

Lyses step: 100 µl of Qiagen protease, 1000 µl of serum sample and 1000 µl of buffer 

“AL” were transferred to a 15 ml tube. The mixture was vortexed briefly and incubated 
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at 56°C for 10 minutes. Then 1000 µl of ethanol (96-100% v/v) were added and the tube 

was vortexed again.  

Loading step: 500 µl of this mixture were applied to a QIAamp Mini spin column. The 

spin column was centrifuged at 6000 x g for 1 minute and the filtrate was discarded. 

These steps were repeated until all of the mixture was applied to the column.  

Washing step: 500 µl of buffer “AW1” were added and the column was centrifuged at 

6000 x g for 1 minute. The collection tube containing the filtrate was discarded and the 

spin column was placed into a new collection tube. In a second wash step, 500 µl of 

buffer “AW2” were added and the column was centrifuged at 20 000 x g for 3 minutes. 

Then the spin column was placed in a clean collection tube and centrifuged at 20 000 x 

g for another minute. This step reduces the probability of carry-over of buffer “AW2”. 

Finally, the spin column was placed in a 1.5 ml microcentrifuge tube and the collection 

tube was discarded.  

Elution step: 20 µl of buffer “AL” were added and the spin column was incubated at 

45°C. After 15 minutes the spin column was centrifuged at 6000 x g for 1 minute and 

another 20 µl buffer “AL” were applied to the center of the spin column. A final 

centrifugation step at 6000 x g for 1 minute was carried out. The extracted DNA was 

stored at -20°C.  

3.3.3 Approach 3: High Pure Viral Nucleic Acid Kit 

The High Pure Viral Nucleic Acid Kit is specially designed to clean up small amounts 

of DNA in serum. The nucleic acids bind selectively to a glass fiber fleece in a special 

centrifuge tube in the presence of a chaotropic salt (guanidine HCl). The nucleic acids 

remain bound while a series of wash steps remove contaminating components. Finally, 

low salt elution removes the nucleic acid from the glass fiber fleece. 

The manufacturers’ protocol was modified to clean up not 200 µl but up to 1 ml of 

serum. In a first step we prepared a working solution by dissolving the carrier RNA in 

0.5 ml elution buffer and adding 50 µl of this solution to 2.5 ml binding buffer.  

Lyses step: 1 ml of this working solution and 250 µl of protease K were added to 1 ml 

of the serum sample. After incubating for 10 minutes at 72°C 500 µl of isopropanol 

were added.  
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Loading step: An aliquot of 600 µl was added to a spin column and centrifuged at 8000 

x g for 1 minute. The flow-through was discarded and the spin column was placed back 

in the collection tube. This was repeated until all of the mixture was applied to the 

column. The filter tube was removed from the collection tube and placed in a new one. 

500 µl of inhibitor removal buffer were added and the column was centrifuged at 8000 x 

g for 1 minute. The flow-through was discarded and the column was placed in a new 

collection tube.  

Wash step: 450 µl of wash buffer were added to the upper reservoir of the column and 

centrifuged at 8000 x g for 1 minute. The column was placed in a new collection tube. 

This wash step was repeated once. Then the column was centrifuged at 20 000 x g for 

10 seconds to remove any residual wash buffer. The collection tube and the flow-

through were discarded and the column was placed in a clean 1.5 ml microcentrifuge 

tube.  

Elution step: 40 µl elution buffer were added. The column was incubated at 45°C for 15 

minutes before centrifugation at 8000 x g for 1 minute. The DNA was stored at -20°C. 

3.3.4 Approach 4: Maxwell® 16 DNA Purification Kit 

The Maxwell
®

 16 DNA Purification Kit is used in combination with the Maxwell
®

 16 

System (Promega), which enables automated purification of genomic DNA. It is a 

magnetic particle-handling system that efficiently processes liquid samples (for details 

see Figure 3.3) 
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Figure 3.3 Maxwell® 16 DNA Purification Cartridge. This figure shows the content of the cartridge for the 

Maxwell® Blood Purification Kit. The Maxwell® system transports the magnetic particles through purification 

reagents in the prefilled cartridges, and mixes the samples during processing. The purified DNA can be used 

directly in downstream applications. 

 

To perform the DNA extraction, at first a cartridge was placed in the Maxwell
®

 16 

platform. 400µl of serum sample was added to the first well and a plunger was put in 

the last well. An elution tube was put in the rack and 40 µl of elution buffer were added. 

The platform was placed in the Maxwell
®

 16 instrument and a run was started. When 

the run was completed, the elution tube was removed and the cartridge was discarded. 

The DNA was stored at -20°C. 

3.3.5 Approach 5: Methylamp™ Coupled DNA Isolation and 

Modification Kit 

The Methylamp™ Coupled DNA Isolation and Modification Kit contains all reagents 

required for DNA isolation and bisulfite conversion. 

Lyses step: 500 µl of solution “MR3” and 20 µl of a mixture of buffer “MR1” and 

“MR2” (1 ml of “MR1” was added to one vial of “MR1”) were added to 500 µl of the 

serum sample. The solution was mixed and incubated at 65 °C for 10 minutes. 2 µl of 

buffer “MR4” were added to the mixture.  
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Loading step: 500 µl of the solution were transferred to the spin column. The column 

was centrifuged at 12 000 rpm for 30 seconds. After discarding the flow-through the 

remaining volume of the solution was added to the column. Again the column was 

centrifuged at 12 000 rpm for 30 seconds and the filtrate was discarded.  

Washing steps: Thereafter 300 µl of ethanol (70% v/v) was added to the column and 

centrifuged at 12 000 rpm for 20 seconds. The flow-through was discarded and the 

column was replaced to the collection tube. The wash step was repeated with ethanol 

(90% v/v). The centrifugation was extended to 40 seconds. 

Elution of the isolated DNA: For the elution of the DNA the column was put in a new 

1.5 ml microcentrifuge tube and 24 µl of RNA-free water were added. The column was 

centrifuged at 12 000 rpm for 20 sec. 1 µl of solution “MR5” was added to the eluted 

DNA. The solution was mixed and incubated at 37°C for 10 minutes.  

DNA Modification: Modification solution was prepared by adding 1.1 ml of solution 

“MR7” to one vial of “MR6”. The solution was vortexed until it was clear. Another 35 

µl of “MR5” were added to the solution. 125 µl of the MR5/MR6/MR7-solution were 

added to the sample, which was then incubated at 65°C for 90 minutes. 

Purification of the modified DNA: 300 µl of solution “MR8” were added to the sample. 

After mixing, the solution was transferred to a new spin column and was centrifuged at 

12 000 rpm for 15 seconds. The flow-through was discarded and the column was placed 

back to the collection tube. 200 µl of MR9 solution were added to the column, and 

centrifuged at 12 000 rpm for 15 seconds. 10 µl of MR5 were added to 1.1 ml of 90% 

ethanol and 50 µl of this mixture were applied to the column. After incubating for 8 

minutes at room temperature the column was centrifuged at 12 000 rpm for 15 seconds. 

To perform the final wash steps 200 µl Ethanol (90% v/v) was added to the column and 

centrifuged at 12 000 rpm for 15 seconds. This step was repeated once and the 

centrifugation was performed for 35 seconds this time.  

Elution of the modified DNA: The column was placed in a 1.5 ml microcentrifugation 

tube. 25 µl MR10 were added and incubated for 5 minutes at room temperature. Finally, 

the column was centrifuged at 12 000 rpm for 30 seconds. The modified DNA was 

stored at -20°C. 
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3.4 Photometric Quantification of DNA 

For the quantification of DNA we used two systems: Eppendorf Biophotometer and 

NanoDrop ND-1000. 

3.4.1 Eppendorf Biophotometer 

The Eppendorf Biophotometer measures the absorption of the DNA at 270 nm. 2 µl of 

the sample were diluted with 200 µl of TE-buffer and transferred to a cuvette. After 

inserting the dilution factor the sample is measured and the concentration of the DNA is 

calculated automatically according to this factor. 

3.4.2 NanoDrop ND-1000 

The NanoDrop ND-1000 (Thermo Fisher Scientific) is a full-spectrum (220-750nm) 

photometer that requires not more than 1 µl of a sample. It utilizes a technology that 

employs a surface tension alone to hold the sample in place. This eliminates the need 

for cuvettes. In addition, the NanoDrop ND-1000 has the capability to measure low 

amounts of samples without diluting it. 

1 µl sample was pipetted onto the end of a fiber cable. A second fiber cable was then 

brought into contact with the liquid sample causing the liquid to bridge the gap between 

the fiber optic ends. After the measurement the sample is removed and discarded. 

3.5 Methylation of genomic DNA 

To obtain completely methylated DNA as a positive control and for standard curves, we 

used SssI Methyltransferase (NewEngland BioLabs). The enzyme artificial methylates 

all cytosine residues recognising the sequence 5’...CG...3’.  

 

Table 3-1 SssI Methyltransferase assay 

Nuclease Free Water 220 µl 

10x NEBuffer 2 50 µl 

SAM 32 MM 10 µl 
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DNA (500µg/ml) 200 µl 

SssI methylase (20U/µl) 20 µl 

Final volume 500 µl 

All reagents were mixed and incubated for 2 hours at 37°C. 

3.6 Sodium bisulfite conversion 

Standard molecular biology techniques to analyze individual gene loci, such as PCR, 

erase DNA methylation information. The solution to this problem is to modify the DNA 

in a methylation dependent way before amplification. This can be achieved by treating 

the genomic DNA with sodium bisulfite, which converts cytosine to uracil. Is the 

cytosine methylated the reaction is performed much slower and, as a result, the 

methylated cytosine remains unaffected. Therefore, bisulfite treatment gives rise to 

different DNA sequences for methylated and unmethylated DNA. 

In subsequent PCR amplification, the uracil residues are replaced by thymine, and the 

methylcytosine residues are replaced by cytosine. 

 

 

Figure 3.4 Bisulfite Conversion. During Bisulfite conversion the cytosine residues were altered to uracil, while 

methylated cytosine remain unchanged. 
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3.6.1 Protocol 

The sodium bisulfite reaction was performed using the Epitect Bisulfite Kit (Qiagen). 

We used the protocol optimized for low concentrations of DNA, which enables use of 

larger input volumes. In a first step Bisulfite Mix aliquots were dissolved by adding 800 

µl RNase-free water. The aliquots were vortexed until the Bisulfite Mix is completely 

dissolved, which can take up to 5 minutes. If necessary, the solution was heated to 

60°C. The bisulfite reactions were prepared in 200 µl PCR tubes according to Table 3-2. 

 

Table 3-2 Bisulfite Reaction Components 

Extracted DNA  40 µl 

Bisulfite Mix 85 µl 

DNA Protect Buffer 15 µl 

Final volume 140 µl 

 

The PCR tubes were closed and the bisulfite reaction was mixed thoroughly. The 

bisulfite DNA conversion was performed using a thermal cycler programmed according 

Table 3-3. 

 

Table 3-3 Thermal Cycler conditions for bisulfite conversion 

Step Time Temperature 

Denaturation 5 min 99°C 

Incubation 25 min 60°C 

Denaturation 5 min 99°C 

Incubation 85 min 60°C 
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Denaturation 5 min 99°C 

Incubation 175 min 60°C 

Hold Indefinite 20°C 

 

Once the bisulfite conversion was completed, the PCR tubes containing the bisulfite 

reaction were centrifuged briefly. Then the complete mixture was transferred to a clean 

1.5 ml microcentrifuge tube. 560 µl of freshly prepared Buffer BL containing 10 µl/ ml 

carrier RNA were added. The solution was mixed and centrifuged briefly. The whole 

solution was transferred to a EpiTect spin column and centrifuged at 20 000 x g for 1 

min. The flow-through was discarded and the spin column was placed back in the 

collection tube.  

Washing step: To wash the column 500 µl Buffer BW was added and the column was 

centrifuged at 20 000 x g for 1 minute. The filtrate was discarded and the spin column 

was placed back in the collection tube.  

Desulfonation step: Then 500 µl of Buffer BD were added to the column, and after 

incubating for 15 minutes at room temperature the column was centrifugated at 20 000 

x g for 1 minute. The flow through was discarded and the column was placed back in 

the collection tube.  

Washing step: 500 µl Buffer BW were added to the column and centrifugated at 20 000 

x g to wash away chemicals that would inhibit sequencing procedures. The filtrate was 

discarded and the column was placed back in the collection tube. The wash step was 

repeated once. Then the spin column was placed in a new collection tube and was 

centrifuged at 20 000 x g for 5 minutes to remove any residual liquid.  

Elution step: To elute the DNA the spin column was placed in a clean 1.5 ml 

microcentrifuge tube and 20 µl Buffer EB were added to the center of the membrane. 

After incubating at 45°C for 15 minutes the column was centrifuged at 15 000 x g for 1 

minute. Another 20 µl Buffer EB were added to the column an it was centrifuged again 

at 15 000 x g for 1 minute. The purified DNA was stored at -20°C.  
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3.7 Polymerase Chain Reaction 

The MSP is a qualitative approach to determine the methylation status of CpG sites. The 

basis is the differences between methylated and unmethylated alleles arisen from 

sodium bisulfite treatment. 

Two sets of PCR primers are needed: One of them is specific for bisulfite converted, 

methylated DNA (methylated cytosines are not altered), the other one is specific for 

bisulfite converted, unmethylated DNA (all cytosines are converted to uracil). The 

differences of the sequences of the former methylated or unmethalyted DNA after 

bisulfite conversion are shown in Figure 3.4. The primers for a methylationspecific PCR 

should contain at least two CpG sites and are located in the CpG islands of the promoter 

region of the gene (69). 

The primerset specific for the methylated form of RASSF1A are termed as RASSF1AM, 

the one that detects the unmethylated form is called RASSF1AU. Respectively the 

primer sets for the gene P16 are called P16M and P16U. The primerset for the gene 

ACTB is independent of the methylation status, because there are no CpG islands 

covered. 

For the restriction enzyme assay no bisulfite conversion is needed and thus the primers 

are design for the original, not altered sequence of the RASSF1A gene. 

 

Table 3-4 PCR reaction mix 

Template 2 µl 

Nuclease Free water 13,1 µl 

DNTP 3,2 µl 

PCR Buffer 2,5 µl 

Primer Mix (containing reverse and forward primer, 10 pM) 1 µl 

Taq Polymerase 0,2 µl 

Final volume 22 µl 

The PCR was performed on the GeneAmp PCR System 9700 (Applied Biosystem). 
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PCR conditions were set at 94°C for 12 minutes, followed by 40 cycles of 94°C for 30 

seconds, 64°C for 50 seconds and 72°C for 30 seconds. 

PCR products were separated on a 3% agarose gel at 170V applying a 1x TAE-solution 

as running buffer. Bands were stained with GelRed and visualized with UV-light. 

3.8 Realtime quantitative PCR 

3.8.1 The principle 

Realtime quantitative PCR is based on the principles of polymerase chain reaction. Its 

key feature is that the amplified DNA becomes immediately detectable and thus can be 

quantified in real time. We used two different systems of DNA detection: TaqMan and 

SYBR Green. 

TaqMan reaction requires a hybridization probe with two different fluorescent dyes. 

One dye is a reporter dye (FAM), the other is a quenching dye (TAMRA). When the 

probe is intact, fluorescent energy transfer occurs and the reporter dye fluorescent 

emission is absorbed by the quenching dye (TAMRA). During the extension phase of 

the PCR cycle, the fluorescent hybridization probe is cleaved by the 5’-3’ nucleolytic 

activity of the DNA polymerase. On cleavage of the probe, the reporter dye emission is 

no longer transferred efficiently to the quenching dye, resulting in an increase of the 

reporter dye fluorescent emission spectra (70). 
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Figure 3.5 RT-PCR detection with TaqMan probe.

and the labled TaqMan probe bind to the DNA

TaqMan probe is cleaved by the exonuclease activity of the polymerase. Because of the release of the reporter 

dye, fluorescence can now be detected. 

 

For the second method of detection S

increased upon binding to double-stranded DNA. During the extension ph

more SYBR Green will bind to the PCR product, resulting in an increased fluorescence. 

Consequently, during each subsequent PCR cycle more fluorescence

detected (71). 
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PCR detection with TaqMan probe. During the annealing phase of the PCR cycle the primer 

bind to the DNA. When the polymerase elongate the new DNA strand, the 

TaqMan probe is cleaved by the exonuclease activity of the polymerase. Because of the release of the reporter 

SYBR Green is used. Its fluorescence is enormously 

stranded DNA. During the extension phase, more and 

will bind to the PCR product, resulting in an increased fluorescence. 

y, during each subsequent PCR cycle more fluorescence signal will be 

cycle the primer 

polymerase elongate the new DNA strand, the 

TaqMan probe is cleaved by the exonuclease activity of the polymerase. Because of the release of the reporter 

fluorescence is enormously 

ase, more and 

will bind to the PCR product, resulting in an increased fluorescence. 

signal will be 



Figure 3.6 RT-PCR detection with SYBR Green.

double-stranded DNA. Thus, the fluorescence signal is proportional to the amount of DNA.

 

For both systems the software of the realtime PCR instrument plots the intensity of 

fluorescent against the time represented by the cycle number. During the early cycle

the PCR the fluorescent remains at baseline.

been cleaved by the Taq 

bound to the DNA, the intensity 
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amplification plot is examined 
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is detected in the PCR process, and the lower the C
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standard curve was generated. 
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PCR detection with SYBR Green. SYBR Green fluorescence is increased

the fluorescence signal is proportional to the amount of DNA.

For both systems the software of the realtime PCR instrument plots the intensity of 

fluorescent against the time represented by the cycle number. During the early cycle

the PCR the fluorescent remains at baseline. When sufficient hybridization

 polymerase nuclease activity or enough SYBR Green has been 

bound to the DNA, the intensity fluorescent emission increases. After a certain num

amplifications reach a plateau phase of fluorescen

examined in the log phase of product accumulation

threshold is assigned. The cycle at which the sample reaches this 

s called Cycle Treshold (Ct). The observed Ct-value is related to the initial 

The higher the initial amount of DNA, the sooner accumulated product 

is detected in the PCR process, and the lower the Ct-value. Thus, an increase

of 3.33 represents a tenfold decrease of input DNA. To quantify a 

was generated.  
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Figure 3.7 RT-PCR Amplification Plot. At early cy

amplification reaches the exponential phase and finally the fluorescence remains at a platea

quantification the Ct-value is determined by an arbitrary defined threshold.

 

3.8.2 Absolute Quantification

To quantify the DNA on an absolute base

chapter 4.1.3). The correlation coeffic

the slope near -3.33. 

3.8.3 Protocol 

For the TaqMan assay 20 µl mastermix 

bisulfite converted DNA were added.
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At early cycles the observed fluorescence remains at baseline,

amplification reaches the exponential phase and finally the fluorescence remains at a plateau. For the 

value is determined by an arbitrary defined threshold. 

Absolute Quantification 

ify the DNA on an absolute base we had to generate a standard curve (details in 

coefficient of the standard curve should be over 0.99 and 

astermix were prepared according to Table 3-5 and 

lfite converted DNA were added. 

the observed fluorescence remains at baseline, then 

u. For the 

(details in 

ver 0.99 and 

and 4 µl 
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Table 3-5 TaqMan assay Mastermix  

  Final concentration 

RASSF1A/ACTB 

Final concentration 

P16 

TaqMan Master Mix 12.5 µl   

Primer forward 2.5 µl 600 nM 300 nM 

Primer reverse 2.5 µl 600 nM 300 nM 

Probe 2.5 µl 200 nM 25 nM 

Final volume 20 µl   

 

The RT-PCR was performed in an ABI7000 Cycler (Applied Biosystems). The PCR 

conditions were set as 95°C for 15 minutes, followed by 50 cycles of 95°C for 15 

seconds and 60°C for 1 minute. Each plate contained a positive and a negative control. 

For the SYBR-Green assay 20 µl mastermix were prepared by mixing 12.5 µl SYBRE 

Green mastermix and 7.5 µl primermix, containing primer forward and primer reverse. 

4 µl restriction endonuclease treated DNA were added. The final concentration of the 

primer was 100 nM. 

PCR conditions were set at 95°C for 15 minutes, followed by 45 cycles of 94°C for 30 

seconds, 60°C for 30 seconds and 72°C for 45 seconds. Each plate contained a positive 

and a negative control. 

3.9 PMR and %methylation procedure 

Two principle approaches for calculating the level of DNA methylation have been 

published. One of these is based on the calculation of the Percentage of Methylated 

Reference (PMR). Thereby two sets of primers and probes, designed specifically for 

bisulfite converted DNA, are used: one set for the methylated form of the gene of 

interest and one set for the reference gene. The primer set for the reference gene 

contains no CpG islands and therefor the amplification is not affected by the 

methylation status of the DNA. The amount of the reference gene was used to normalize 
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for the input DNA. In addition to the sample DNA a SssI treated and hence fully 

methylated DNA is analysed. Finally the PMR is calculated by comparison of both 

results. (28, 29, 35, 72-74) 

Another approach is to use a primer set for the methylated form and the unmethylated 

form of a gene. The percentage of methylation (%methylation) is calculated by dividing 

the amount of methylated DNA by the sum of methylated and the unmethylated DNA, 

which represents the input DNA (27, 36, 75). 

Details of the principle of both approaches are shown in Figure 3.8. 
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Figure 3.8 Calculation of PMR and %methylation (A) For the calculation of the PMR one primer set for the 

methylated form and one for a reference gen is used. The result for the sample is compared with the result of a 

fully methylated reference DNA. (B) To calculate the %methylation one primerset for the methylated form of 

a gene and a primerset for the unmethylated form of a gene is used. The sum of the amount of methylated and 

unmethylated DNA is used to determine the input DNA. 
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3.10 Restriction endonuclease assay 

A sodium bisulfite conversion independent method to detect methylated DNA is the 

restriction endonuclease assay. We used a previously described method (38, 40, 41).  

To perform the assay the extracted DNA was routinely split into three aliquots. One 

aliquot was digested with HpaII, the second with MspI and the third one was left 

undigested and served to quantify the total amount of DNA extracted from the samples. 

HpaII cuts the sequence CCGG only in its unmethylated form and no PCR product is to 

be expeted, if there is no methylated DNA in the sample. But if there is any methylated 

DNA, this assay serves to quantify the amount of this DNA.  

In contrast, the restriction endonuclease MspI cuts the unmethylated and the methylated 

form of CCGG and, thus, no PCR product should be detected at all. If there are RT-PCR 

curves observed although, they are considered as non-specifically amplified DNA. 

The methylation index was calculated as: (amount of HpaII digested DNA / amount of 

input DNA) – (amount of MspI digested  DNA / amount of input DNA) multiplied by 

100 [i.e. (methylated DNA – non-specifically amplified DNA) x 100] (37) 

The quantification of the DNA was performed using RT-PCR (for details see chapter 

3.8). The principle of this assay and the calculation of the methylation index are also 

shown in Figure 3.9. 
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Figure 3.9 Restriction endonuclease assay. Extracted DNA is digested with two endonuclease enzymes: HpaII 

and MspI. HpaII cuts only the unmethylated CCGG residue, while MspI cuts CCGG independent if it is 

methylated or not. To assess the amount of total DNA input one determination is done without adding a 

restriction endonuclease.  

 

3.10.1 Protocol 

For the endonuclease assay the extracted DNA was split and the reaction mix was made 

according to Table 3-6. For the determination of input DNA the amount of restriction 

endonuclease was replaced by water. 
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Table 3-6 Restriction endonuclease assay 

 HpaII-assay MspI-assay input 

Nuclease Free Water 8 µl 8 µl 14 µl 

10 x RE Buffer 2 µl 2 µl 2 µl 

Extracted DNA 4 µl 4 µl 4 µl 

HpaII (10U/µl) 6 µl - - 

MspI (10U/µl) - 6 µl - 

Final Volume 20 µl 20 µl 20 µl 

Incubated at 37°C for 5 hours 

To ensure complete digestion the reaction was repeated by adding another aliquot of the 

following reagent.  

Nuclease Free Water 6 µl 6 µl 9 µl 

10 x RE Buffer 1 µl 1 µl 1 µl 

HpaII (10U/µl) 3 µl - - 

MspI (10U/µl) - 3 µl - 

Final Volume 30 µl 30 µl 30 µl 

 Incubated at 37°C over night 
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3.11 Materials 

3.11.1 Reagents 

Table 3-7 General Reagents 

Reagent Catalog number Company 

Ethanol 1.00983.1000 Merck 

Isopropanol 1. 09634. 1011 Merck 

Aqua bidestillata 15.533 Mayrhofer Pharmazeutika 

 

Table 3-8 Cellculture 

Reagent Catalog number Company 

RPMI 1640 145238 Gibco 

FCS 179822 Gibco 

Trypsin EDTA 197812 Gibco 

 

Table 3-9 Nucleic acid isolation and bisulfite conversion 

Reagent Catalog number Company 

QIAamp DNA Mini Kit 51104 Qiagen 

ChargeSwitch gDNA 1 ml Serum 

Kit 

CS11040 Invitrogen 

Methylamp Coupled DNA 

Isolation &Modification Kit 

P-1002 Epigentek Group 

High Pure Viral Nucleic Acid 11858874001 Roche Applied Sience 

Maxwell 16 DNA Purification Kit AS1010 Promega 
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EpiTect Bisulfite Kit 59104 Qiagen 

Table 3-10 DNA Methylation with SssI Methylase 

Reagent Catalog number Company 

SssI Methylase M0226 Biolabs 

10xNEB Buffer B7002 S Biolabs 

SAM B9003 Biolabs 

 

Table 3-11 Reagents for PCR and gelelectrophoresis 

Reagent Catalog number Company 

dNTP set 100 mM solution 39025 Bioline 

PCR Buffer 203205 Qiagen 

HOT START Taq Polymerase 203205 Qiagen 

Agarose V-3125 Promega 

Gelred 10 000x 41003 Biotium 

50 x TAE-Buffer 1610743 Bio-rad 

100 bp Dna ladder 15628-019 Invitrogen 

Bromphenolblue B-5525 Sigma Aldrich 

 

Table 3-12 Reagents for Restriction endonuclease assay 

Reagent Catalog number Company 

HpaII ER0512 Fermentas 

MspI ER0541 Fermentas 

1xBuffer Tango BY5 Fermentas 
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 Table 3-13 Reagents for RT-PCR 

Reagent Catalog number Company 

SYBR Green PCR Master Mix 40309155 Applied Biosystems, USA 

TaqMan Universal PCR Master 

Mix, No AmpErase UNG 

4324018 Applied Biosystems, USA 

 

3.11.2 Used oligonucleotids 

Table 3-14 Oligonucleotides used for PCR 

Primer name Sequence 

RASSF1AM forward 5’-GGGTTTTGCGAGAGCGCG-3’ 

RASSF1AM reverse 5’-GCTAACAAACGCGAAGGC-3’ 

RASSF1AU forward 5’-GGTTTTGTGAGAGTGTGTTTAG-3’ 

RASSF1AU reverse 5’-CACTAACAAACACAAACCAAAC-3’ 

P16M forward 5’-TTATTAGAGGGTGGGGCGGATCGC-3’ 

P16M reverse 5’-GACCCCGAACCGCGACCGTAA-3’ 

P16U forward 5’-TTATTAGAGGGTGGGGTGGATTGT-3’ 

P16U reverse 5’-CAACCCCAAACCACAACCATAA-3’ 

 

Table 3-15 Oligonucleotides used for the TaqMan RT-PCR assay 

Primer name Sequence 

RASSF1AM forward 5’-GCGTTGAAGTCGGGGTTC-3’ 

RASSF1AM reverse 5’-CCCGTACTTCGCTAACTTTAAACG-3’ 

RASSF1AM probe 5’-ACAAACGCGAACCGAACGAAACCA-3’ 

RASSF1AU forward 5’-GGTGTTGAAGTTGGGGTTTG-3’ 

RASSF1AU reverse 5’-CCCATACTTCACTAACTTTAAAC-3’ 

RASSF1AU probe 5’-CTAACAAACACAAACCAAACAAAACCA-3’ 
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P16M forward 5’-TTATTAGAGGGTGGGGCGGATCGC-3’ 

P16M reverse 5’-GACCCCGAACCGCGACCGTAA-3’ 

P16M probe 5’-AGTAGTATGGAGTCGGCGGCGGG-3’ 

P16U forward 5’-TTATTAGAGGGTGGGGTGGATTGT-3’ 

P16U reverse 5’-CAACCCCAAACCACAACCATAA-3’ 

P16U probe 5’-CTACTCCCCACCACCCACTACCT-3’ 

ACTB forward 5’-TGGTGATGGAGGAGGTTTAGTAAGT-3 

ACTB reverse 5’-AACCAATAAAACCTACTCCTCCCTTAA-3’ 

ACTB probe 5’-ACCACCACCCAACACACAATAACAAACACA-3’ 

 

Table 3-16 Oligonucleotides used for the SYBR Green RT-PCR assay 

Primer name Sequence 

RASSF1A forward 5’-CCTTCCTTCCCTCCTTCGT-3’ 

RASSF1A reverse 5’-ACCTCAAGATCACGGTCCAG-3’ 
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4 RESULTS 

4.1 Quantification of DNA 

4.1.1 Establishment of positive and negative control 

To analyze the methylation status of the cell lines Hep3B and HCC1.2, qualitative MSP 

was performed. Positive control for the RASSF1AU and P16 primer was lymphozyte 

DNA from a healthy donor, which is unmethylated. As a negative control artificially 

methylated DNA was used. For the RASSF1AM and the P16M primer the artificially 

methylated DNA was used as a positive control and lymphocyte DNA as negative 

control. 

The gelelectrophoresis picture (Figure 4.1) shows that RASSF1A is methylated in 

HCC1.2, but not in Hep3B cells. For P16 the same result was observed, HCC1.2 shows 

methylation in this gene locus, whereas Hep3B is unmethylated. So we could use the 

DNA extracted from HCC1.2 as a standard for methylated DNA and HCC1.2 derived as 

unmethylated DNA standard.  

 

Figure 4.1 MSP analyses of the cell lines Hep3B and HCC1.2. DNA was extracted and sodium bisulfite 

converted. Then MSP was performed according to the protocol described in methods. As a positive control (+): 

lymphozyte DNA (RASSF1AU, P16U) and artificially methylated DNA (RASSF1AM, P16M) and for the 

negative control (-): artificially methylated DNA (RASSF1AU, P16U) and lymphocyte DNA (RASSF1AM, 

P16M) was used.  
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4.1.2 Determination of range and linearity

To establish an assay to detect methylated DNA in 

if our RT-PCR protocol is suitable to analyze a limited amount of DNA

aim, we firstly determined the minimum amount of DNA 

PCR signal. We found that we could detect DNA, when we added 

of DNA to the reaction mix (Figure 

shows a linearity between the amount of

shown in Figure 4.2, there is indeed linearity in a range of 5 logs. Thus,

create a standard curve to quantify DNA 

generation of the standard curve in chapter 

 

Figure 4.2 Dynamic range of the RT-PCR of the genes 

Hep3B DNA was SssI treated, bisulfite modified and serial

input DNA (250000 pg, 25000 pg, 2500 pg, 250 pg and 25 pg)

data derive from one preparation, the RT-PCR was done in duplicate and the data represent the means +/

 

In serum of cancer patients most of the DNA fragments detectable

cells and are thus unmethylated. They dilute the small amounts of methylated DNA 

released from tumor cells. Therefore
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Determination of range and linearity 

methylated DNA in human serum, we had to investigate 

suitable to analyze a limited amount of DNA. To achieve this 

ed the minimum amount of DNA that shows a positive RT

we could detect DNA, when we added a minimum of 25 pg 

Figure 4.2). In addition, we evaluated, if our RT

amount of input DNA and RT-PCR signal obtained

, there is indeed linearity in a range of 5 logs. Thus, it is possible to 

antify DNA within this range (further details about the 

curve in chapter 4.1.3). 
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the presence of large amount of unmethylated DNA. Thus, we simulated this situation. 

We prepared different mixtures of 1 ng of methylated DNA/µl with 0 ng/µl, 1 ng/µl, 9 

ng/µl, or 99 ng/µl of unmethylated DNA. So the percentage of methylated DNA was 

100%, 50%, 10% or 1% of total DNA. Figure 4.3 shows that the Ct-values obtained 

were more or less identical over the concentration range, indicating that the 

unmethylated DNA does not interfere with the quantification of methylated DNA. 

 

 

Figure 4.3 RT-PCR of methylated DNA (1 ng/µl) diluted with different amounts of unmethylated DNA, 

yielding a relative concentration of 100%, 50%, 10% and 1% methylated DNA. The total amount of 

methylated and unmethylated DNA in the reaction mixture was 1 ng/µl, 2 ng/µl, 10 ng/µl and 100 ng/µl. The 

data derive from one preparation, the RT-PCR was done in duplicate and the data represent the means +/-SD. 

 

4.1.3 Establishment of a standard curve 

The extracted DNA from serum was quantified using RT-PCR. To accomplish this, we 

used a standard curve to extrapolate the DNA concentration and then used two different 

methods of calculation of the methylation level, PMR and %methylation (see chapter 

3.9). 

To generate a standard curve, DNA from Hep3B cells was extracted, SssI treated and 

then bisulfite modified. The extracted and modified DNA was quantified using 

NanoDrop ND-1000. Five 10-fold dilution steps (1:1, 1:10, 1:100, 1:1000 and 1:10000) 
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were made. These serial dilutions were included in each assay and served to calculate 

the DNA concentration in samples (see Figure 4.4).   

 

Figure 4.4 Creation of a standard curve using TaqMan probes for the methylated form of the genes P16 

(upper panel) and RASSF1A (lower panel). Dilutions of sodium bisulfite converted fully methylated DNA (1:1, 

1:10, 1:100, 1:1000, 1:10000) were analyzed in duplex. (A) shows the RT-PCR curves obtained. For the 

generation of the standard curves (B) the observed Ct-values were plotted against the logarithm of the input 

DNA. The data derive from one preparation, the RT-PCR was done in duplicate and the data represent the 

means +/-SD. 
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In parallel we created an alternative internal DNA standard to be applied for the 

restriction endonuclease procedure (details see chapter 4.3). For this purpose, DNA was 

extracted from Hep3B cells, but was not SssI treated or bisulfite converted, because no 

such alteration is needed for this assay. 

 

 

Figure 4.5 Creation of a standard curve using the SYBRE-Green assay for the gene RASSF1A. Dilutions of 

DNA (1:1, 1:10, 1:100 and 1:1000) were analyzed in duplex. (A) shows the RT-PCR curves measured. For the 

generation of the standard curve (B) the observed Ct-values were plotted against the logarithm of the input 

DNA. The data derive from one preparation, the RT-PCR was done in duplicate and the data represent the 

means +/-SD. 
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The PMR of each sample was calculated using the following formula: 

((GENE:ACTB)sample/ (GENE:ACTB)fully methylated reference DNA) x 100 

The %methylation of the same samples was also calculated using the following 

formula: 

 GENE M/ (GENE M + GENE U) x 100 

The principles of the two formulas are shown in Figure 3.8 

Figure 4.6 compares the expected results (99%, 50%, 10% and 1%) with the results 

obtained by the two mathematical procedures. When applying the PMR approach the 

calculated percentages of DNA were mostly only 50% of the actual value. When using 

the %methylation procedure, the discrepancies were much less pronounced.  

These results indicate that the calculation of the %methylation method yields more 

reliable data. 

 

 

Figure 4.6 Comparison of PMR and %methylation procedures. The red lines indicate the expected results, i.e., 

99%, 50%, 10%, or 1% of methylated DNA in 12 ng of total DNA. Preparations were analyzed in duplicates. 

The calculated results represent the mean +/SD of two independent preparations analyses. 
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4.2 Optimization of extraction systems of DNA in serum 

Different methods for extraction of DNA from serum are known. Because of the limited 

amount of DNA in serum the application of the optimal extraction procedure appeared 

critical for the success of the present work. We therefore decided to compare different 

methods of isolation of DNA from serum.  

For this purpose we used serum drawn from a healthy person and added a defined 

number of HCC1.2 cells. Then we applied the different extraction kits, which are 

commercially available (see chapter 3.3) and quantified the extracted DNA.  

We found that the Approach 1 (Charge Switch gDNA 1 ml Serum Kit from Invitrogen) 

showed by far the best results. It enabled to extract in mean 12.21 ng of RASSF1AM-

DNA or 12.04 ng of ACTB-DNA per ml serum supplemented with 1000 cells and 3.19 

ng of RASSF1AM-DNA or 5.41 ng of ACTB-DNA per ml serum admixed with 100 

cells.
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Figure 4.7 Comparison of the DNA yield after DNA isolation from serum supplemented with 100 and 1000 

HCC1.2 cells/ml using five different commercially available kits. With each kit isolation of 1 ml serum was 

performed twice. The extracted DNA was quantified with RT-PCR in duplex. The mean values +/- SD are 

shown. 

 

In addition we evaluated if approach 1 shows linearity between the amount of input 

DNA and the output of the assay. Therefore, we mixed serum drawn from a healthy 

person with a defined number of HCC1.2 cells, i.e., 5000 cells/ml, 1000 cells/ml, 500 

cells/ml and 100 cells/ml. Then the extracted DNA was quantified using RT-PCR and 

the primerset for P16M. The logarithm of amount of input cells was plotted on the x-



axis and the observed RT

the RT-PCR signal is linear to the i

extracted quantitatively. 

 

Figure 4.8 Linearity of amount of
were added to 1 ml serum of a healthy donor. 

was performed in duplex using the primer set for 

 

4.3 Restriction Enzyme assay

To assess, if the restriction endonuclease 

dependent methods, we firstly tested the linearity of this method. We used DNA 

extracted from HCC1.2 cells, in whi

as we could show before (details in chapter 

PCR signal, which we could detect as a matter of fact. We prepared a 1:5 dilution of the 

DNA and performed the restriction enzyme assay as described previously (for details 

see chapter 3.10).  

The observed Ct-values were plotted against the logarithm of the amount of input 

DNA and the regression line is shown in 

dilutions showed a positive RT
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and the observed RT-PCR signal was plotted on the y-axis. Figure 

linear to the input of cells. This indicates that the D

 

 

amount of cells in serum and the RT-PCR signal. 100, 500, 1000, or 
serum of a healthy donor. DNA was extracted, sodium bisulfite converted and RT

using the primer set for P16M. The mean values +/-SD are shown.

Restriction Enzyme assay 

To assess, if the restriction endonuclease assay is a suitable alternative to the bisulfite

dependent methods, we firstly tested the linearity of this method. We used DNA 

cells, in which the promoter region of RASSF1A

as we could show before (details in chapter 4.1.1). Thus, we expected a positive RT

PCR signal, which we could detect as a matter of fact. We prepared a 1:5 dilution of the 

d performed the restriction enzyme assay as described previously (for details 

values were plotted against the logarithm of the amount of input 

DNA and the regression line is shown in Figure 4.9. Only the first 5 steps of these 

dilutions showed a positive RT-PCR signal. When we used the same dilutions for 
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the qMSP as described before also the sixth step (0.512 ng of input DNA) 

showed a positive signal, indicating that the bisulfite dependent method is more 

sensitive. 

 

 

Figure 4.9 Linearity of amount of input DNA and observed Ct-value using the restriction enzyme assay. 1600, 

320, 64, 12.8, 2.56 ng total DNA extracted from HCC1.2 cells were added to a restriction endonuclease assay. 

The RT-PCR was done in duplicate and the observed CT-values are plotted against the logarithm of input 

DNA. 

 

4.4 Patients 

In a final step we used the system tested previous to investigate the methylation status in 

serum samples drawn from 9 CRC patients. We also used samples from 8 lung cancer 

patients (to be precisely small cell lung cancer (SCLC)), because in lung cancer tumors 

more than 70 % were tested positive for methylated RASSF1A in recent studies and in 

CRC patient samples we could only expect 20 to 40 % positive samples (50). 

The samples were cleaned up and then routinely split. Next the primers and probe for 

methylated RASSF1A, for methylated P16 and for the according unmethylated form of 
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the genes were used. In addition also the primers and probe for the reference gene ACTB 

were used. Thus, the %methylation and also the PMR value could be calculated. 

In Figure 4.10 the results of the methylation positive patients are shown. When a patient 

showed a positive signal a second blood sample was drawn to confirm the first result. 

There was no positive signal in the second sample of one patient. But the total amount 

of DNA was also extremely low, so it is possible that the amount of methylated DNA 

was too low to be detected. 

In patient 2 the amount of RASSF1AM-DNA was 1.41+/-2.09 ng/ml in the first blood 

sample and 4.06+/-2.09 ng/ml in the second sample. The amount of RASSF1AU-DNA 

was 52.04+/-17.52 and 5.62+/- 3.41. Thus, the calculated %methylation was 3% in the 

first sample and 42% in the second sample. In addition to this the PMR of the second 

sample was also calculated as 14%. The PMR of the first sample could not be assessed, 

because of the low amount of serum that was available. 

The amount of RASSF1AM-DNA in the sample of patient 5 was 5.73+/-1.38 ng/ml. The 

amount of RASSF1AU-DNA was 5.91+/-2.65 ng/ml in the first sample and 0.59+/-0.09 

ng/ml in the second sample. The calculated %methylation was 51% for the first sample 

and 0% for the second sample and the PMR was 45% and 0% 
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Figure 4.10 Amount of methylated and unmethylated DNA in methylation positive patients. Blood was drawn 

and analysed according to the protocol. The amount of methylated DNA is given in the lower part of the 

column, the amount of the unmethylated DNA is shown in the upper part of the column and the absolute 

height of the column gives the total amount of DNA. The data represent the mean +/- SD of two independent 

clean ups of DNA and RT-PCR analyses in duplex. 

 

In Table 4-1 the clinical data and the results of the qMSP of the patients included in the 

present work were given. 

 

Table 4-1 Clinical Data of patients 

Sample 

number 

Sex Age Carcinoma Metastasis Methylation 

RASSF1A 

Methylation 

P16 

1 f 58 SCLC - n n 

2 m 67 SCLC - pp n 

3 f 67 SCLC - n n 

4 m 50 SCLC - pn n 

5 f 65 SCLC - n n 
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6 m 58 SCLC - n n 

7 m 73 CRC liver, lung n n 

8 m 64 CRC liver, lung n n 

9 m 77 CRC liver n n 

10 f 59 CRC - n n 

11 f 66 CRC liver n n 

12 m 70 CRC liver n n 

13 m 62 CRC liver, lung n n 

14 m 64 CRC - n n 

15 m 54 SCLC - n n 

16 m 78 CRC liver n n 

17 m 49 SCLC - n n 

m (male), f (female), n (negative result), p (positive result) 
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Each sample has also been analysed with the primerset for ACTB and the results are 

shown in Figure 4.11. These results represent the total amount of DNA in the serum 

samples, because the amplification is independent from the methylation status of the 

gene. We also used it as a positive control to confirm, if DNA is correctly cleaned up 

and modified. Each sample showed a positive signal when analysed with primers for 

ACTB. The amount of DNA varies from 17.8 +/- 10 ng ACTB-DNA/ml serum to 0.18 

+/- 0.15 ng ACTB-DNA/ ml serum. 

 

 

Figure 4.11 Total amount of DNA in serum samples. The DNA of the serum of 13 patients was extracted and 

quantified using the primers and probe for the reference gene ACTB. The measured values and their means 

are given. 
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5 DISCUSSION 

CRCs are the third most common malignant tumors worldwide with an incidence of 

570,000 per year. Therefore it is important to find sensitive and reliable methods for the 

diagnosis and the clinical monitoring. So far, numerous genes have been identified 

which are frequently methylated in colorectal carcinomas. The aim of our project was to 

establish quantitative methods for the detection of the amount of methylation of the 

genes P16 and RASSF1A in serum, which is more easily available than tumor samples. 

In a first step we determined that DNA extracted from the cell line HCC1.2 shows 

methylation of RASSF1A and P16. On the other hand the DNA extracted from Hep3B 

showed the unmethylated form of RASSF1A and P16. Therefore, we could use the DNA 

extracted from the two cell lines as a standard DNA in further investigations. Similar 

results concerning the RASSF1A patterns of the cell lines used were recently published 

by Macheiner et al (76). 

In a next step we tested the sensivity and linearity of the RT-PCR approach. We found 

that we could detect as less as 25 pg of input DNA. Furthermore unmethylated DNA did 

not interfere with the detection of methylated DNA. It is shown in Figure 4.2 that there 

is also a sufficient linearity of input DNA and observed RT-PCR signal. These findings 

allowed us to create a standard curve, which could then be used to quantify DNA 

extracted from serum. 

Standard curves published by Heid et al (70) or Shivapurkar et al (30) showed similar 

dynamic ranges and sensitivities. Also the requirements demanded by Fackler et al that 

the correlation coefficient of a standard curve should be 0.99 or higher and that the 

slope should be approximately -3.33 (indicating the 2-fold increases in PCR product per 

cycle in the linear phase of the quantitative PCR reaction) were reached by our method. 

After we had confirmed that our standard curves are suitable for the quantification of 

methylated and unmehtylated DNA, we compared two different methods of calculating 

the level of methylated DNA in a certain sample. One is the PMR which compares the 

ratio of a gene of interest and a reference gene of the sample with the ratio of the gene 

of interest and a reference gene of a fully methylated reference. The other approach 

calculates the %methylation by dividing the amount of methylated DNA of a certain 
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gene by the sum of methylated and unmethylated DNA. The details of both formulas are 

given in chapter 3.9. 

Our results indicate that the calculation of the %methylation method yields more 

reliable data, whereas Fackler et al found no differences in the accurency of the two 

methods (36). 

The main variation of both approaches is the calculation of the total amount of input 

DNA. Using the PMR method the input DNA is determined by an independent 

reference gene. The %methylation uses two different primersets for the gene of interest 

(one for the unmethylated form and one for the methylated form) for calculating the 

input DNA. 

The advantage of the latter approach is that the amount of a certain gene is determined 

directly. A disadvantage is that only two extremes of the whole range of methylation 

patterns are covered with this assay. Therefore, Eads et al speak of a semi-quantitative 

approach (33). For example, if there are 6 CpGs covered by the primers and the probe, 

there are 2
6 

= 64 different theoretical permutations of methylation status. If the primers 

and probe recognize only the fully methylated or the fully unmethylated version of a 

sequence, then only two out of 64 possible combinations are being investigated. If the 

other 62 permutations are prevalent in the genomic DNA sample, then obviously the 

signal will be low. This large number of possible permutation outlined above is the 

reason, why Binh et al suggest that methylation-independent control reaction should be 

used rather than relying on an unmethylated version of the reaction (77). 

In our approach we used only mixtures of fully methyled and fully unmethylated DNA, 

which does not represent the circumstances in vivo. This may be the reason for the 

better outcome of the assay using methylated and unmethylated primers and probes 

under our experimental conditions. 

Furthermore an advantage of the PMR method it that the use of a reference gene is 

reducing the analyses steps if more than one gene is determined simultaneously. In this 

case the reference gene can be assessed once and then be compared to all different 

genes and not each unmethylated form according to the different genes has to be 

assessed. 
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The next crucial step in the present work was to optimize the extraction of DNA, 

because of the low amount of DNA present in the serum. The best result showed a 

commercially available kit (Charge Switch gDNA 1 ml Serum Kit) that is based on a 

magnetic bead clean-up system, whereas the kits using a column system did not show 

such a good extraction rate. These findings are similar to the one published by Stemmer 

et al. They found that the column based Qiagen DNA isolation kit (see chapter 3.3.2) 

only extracted 13 ng DNA/ ml plasma in mean. When using a magnetic beads based 

system they could extract 46 ng/ml plasma from the same samples (78). 

The Maxwell DNA-Cleanup, which is a magnetic beads based automated method, 

showed weaker results. On the other hand the advantage of such a method is the 

processing of more samples in a shorter time. It is also possible to clean up a higher 

amount of serum and to subsequently pool the DNA to obtain a higher yield of DNA. 

The automation of an assay is also an important milestone on the way to make an assay 

suitable for the routine analyses. 

Finally, we chose the Charge Switch gDNA 1 ml Serum Kit for the processing of serum 

samples of patients. This kit showed not only the best results, when assessing the 

amount of cleaned-up DNA, also the linearity of amount of input of cells and output of 

DNA was sufficient (see Figure 4.8). 

In a next step we also compared the bisulfite method with the the use of methylation 

restriction enzymes to assesses the methylation status of a sample. 

The bisulfite dependent methods are somewhat prone to false-positive results, because 

incompletely converted sequences in the bisulfite treatment can be amplificated by 

primers designed to detect methylated DNA. Kristensen et al suggest that bisulfite 

treatment remains the main source of variability in the analyses of DNA methylation. 

Recent results show that incomplete conversion may be in order of 2%, even when a 

commercial kit is used (79). 

In our experiments the bisulfite dependend methods showed a better applicability when 

samples contain low amounts of DNA, e.g. a dilution containing 128 pg DNA /µl 

showed a positive result, when using the bisulfite method, whereas no positive signal 

was obtained when the same dilution was processed using the methylation specific 

restriction enzymes. A possible reason for this weaker outcome is that no clean-up of 
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the digested DNA was performed. Thus, the RT-PCR could be inhibited by reagents 

present in the sample. A proper method of cleaning up the DNA may improve the result. 

As a final step, we also wanted to test our system with serum samples drawn from 

cancer patients. We determined the methylation status of 9 samples from CRC patients 

and 8 samples from patients suffering from SCLC. We investigated also lung cancer 

patients, because we expected a higher rate of positive results. Agathanggelou et al 

reviewed the percentage of tissue samples of different tumor entities showing RASSF1A 

methylation. He reported that about 70% of SCLC and 20 - 40% of CRC patients 

investigated were positive with respect to RASSF1A methylation (50). One study even 

showed 81% positive CRC patients, but normal colonic mucosal tissue was also 

methylated in 49% of cases studied. Thus, the latter result has to be evaluated critically. 

Data of the methylation status of P16 in CRC patients show ratios of 13 - 47% in tumor 

samples (for further details see Table 2-2). 

In serum samples we expected a lower number of patients with positive results than in 

tumor tissue samples, as there are reports that the percentage of methylated RASSF1A in 

serum of CRC patients ranges from 0 to 29% only (for further details see Table 2-1). 

The percentage of methylation of P16 has been reported to range from 0 to 40% (Table 

2-2). 

Actually, we found methylated RASSF1A in 25% (n=8) of the serum samples drawn 

from SCLC patients and in 0% (n=9) of the samples derived from CRC patients. P16M 

was negative for all samples of both groups of cancer. 

This relatively low number of cases, could possibly be explained by a too low amount 

of DNA present in the serum. 

For CRC patients the reason may be the unique physiological circumstances. In contrast 

to tumors of other organ systems, CRCs drain predominately via the mesentric/portal 

veins to the liver. Taback et al compared the frequency of hypermethylation of certain 

tumor-suppressor genes (e.g. P16 and RASSF1A and three other genes) in serum 

collected from the mesenteric/portal system or the peripheral vein. They found that 

DNA methylation was more frequently detected in serum derived from the 

mesenteric/portal system. For RASSF1A the frequency was 6% in the mesenteric/portal 

system compared to 0% in the peripheral vein. In total 27% of the patients showed 
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methylation of any of the examined genes in the mesenteric/portal system compared to 

6% in peripheral vein. The authors of this study considered this as a reason for the lower 

frequency of tumor DNA in CRC patients’ serum/plasma compared with solid tumors 

of other organ systems (61).   

Recently we found no methylated DNA in serum samples of hepatocellulare carcinoma 

patient before start of treatment. However chemoembolisation, which causes necrosis of 

a relatively large amount of tissue, lead to a detectable amount of methylated DNA 

(data not shown). This is further evidence that there is not enough tumor DNA present 

in serum of patients prior to any cytotoxic treatment. 

We also used the primerset for ACBT to evaluate the level of total DNA in the serum 

samples, which ranged from 17.8 +/- 10 to 0.18 +/- 0.15 ng DNA/ ml serum. These 

values are somewhat below those published by others, e.g. 12 ng/ml in mean in serum 

samples of 16 CRC patients (80); 105-709 ng/ml in plasma samples of 48 CRC patients 

(81); 46 ng/ml in mean in plasma from lung or CRC patients (78). 

We conclude that we were faced with considerable difficulties to detect methylated 

DNA in serum of patients before treatment. This limitates the application of the assay 

established in the present work for screening purpose. However, the positive data of 

liver cancer patients after chemoembolisation are first evidence that our approach could 

reliably indicate response to therapy. This aspect should be investigated in further 

studies on a larger number of patients. 
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5.1 Conclusions 

• RT-PCR is a valuable tool to asses the methylation status of genes; it shows 

linearity over a wide range of input DNA and produces results with high 

accuracy. 

 

• The best method for cleaning up DNA from serum is based on the use of 

magnetic beads. 

 

• The calculation method %methylation yields more accurate results under the 

present experimental conditions. However, the calculation of the PMR is more 

reasonable for samples derived from patients and is more practicable, because of 

the reduced amount of work. 

 

• The application of methylation specific restriction enzymes did not show any 

enhance to the sensitivity of the assay. Maybe some further improvements of the 

protocol could lead to a better result. 

 

• The relatively low rate of positive results in the samples derived from CRC and 

SCLC patients could be explained by the low amount of tumor DNA present in 

serum. This points toward major limitation of the assay established in the 

present work. 
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6 ABSTRACT 

Colorectal carcinomas (CRCs) are the third most common malignant tumors worldwide 

with an incidence of 570,000 per year. Several risk factors concerning lifestyle, 

nutrition and exercise are known. Thus, effective primary and secondary prevention 

must be developed to reduce mortality. 

It is important to find sensitive and reliable methods for the diagnosis and the clinical 

monitoring of this disease. An approach for this purpose is the use of epigentically 

altered DNA as a marker for the CRC. So far, numerous genes have been identified 

which are frequently methylated in CRCs. Diet is a major aspect of the enviroment that 

may influences DNA methylation and studies on the role of dietary patterns in 

epigenetic alterations in CRC are increasing. 

The aim of our project was to establish methods to detect and quantify the methylated 

forms of the genes P16 and RASSF1A in serum, which is more easily accessible than 

tumor samples. 

First we had to investigate if the approach to quantitatively detect methylated RASSF1A 

and P16 is suitable to analyze DNA in serum. We were able to detect even a low 

amount of DNA (25 pg). Moreover, a linearity of input DNA and real-time-PCR signal 

was observed over a wide range of input DNA (5 logs). These findings enabled us to 

establish a standard curve to quantify the DNA in a given sample. 

For calculating the methylation level of a certain gene in serum we compared two 

published approaches. We could show that the method of calculating the %methylation 

obtained more accurate results under our experimental conditions. On the other hand the 

second approach of calculating the Percentage of Methylation (PMR) is more 

reasonable and is more practicable to perform, especially when a larger number of genes 

has to be investigated. 

Second we compared the efficiency of five different, commercially available DNA 

isolation kits. We found that the kit applying magnetic beads provided the best 

extraction rates. An automated version of a clean-up kit has also been tested, and even 

though the amount of extracted DNA was lower, this method could be very useful in 

establishing a routine test system. 
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We tested also another, sodium-bisulfite independent, restriction enzyme based method 

to quantitatively detect methylated DNA sequences in serum. We observed better results 

with the bisufite-dependent method. But maybe some further improvements of the 

protocol could lead to better results of the restriction enzyme assay. 

Using the most efficient protocol, we analyzed serum samples of small cell lung cancer 

(SCLC) and of CRC patients. We could detect methylation of RASSF1A in 2 of 8 (25%) 

lung cancer patients and in 0 of 9 (0%) of CRC patients. When using the primer and 

probes for P16 all samples of both cancer groups were negative. 

In conclusion, we were able to detect methylated DNA in serum of tumor patients, but 

only in a limited number of cases. As a possible reason for this poor outcome we 

suppose the low amount of DNA present in the samples. Because it is likely that the 

DNA concentration is higher in serum of patients, after a response to a therapy the 

method established in the present work could be of use for monitoring a clinical 

intervention. 
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7 ZUSAMMENFASSUNG 

Kolorektale Karzinome sind die dritt häufigsten bösartigen Tumore weltweit mit einer 

Inzidenz von 570.000 Erkrankungen pro Jahr. Verschiedene Risikofaktoren sind 

bekannt, die die Lebensweise, die Ernährung und die körperliche Bewegung betreffen. 

Daher müssen wirkungsvolle primäre und sekundäre Interventionen entwickelt werden 

um die Mortalität zu reduzieren. 

Es ist wichtig eine sensitive und verlässliche Methode für die Diagnose und die 

Verlaufskontrolle dieser Erkrankung zu finden. Ein Ansatz für diesen Zweck ist, 

epigenetisch veränderte DNA im Serum als Marker für das kolorektale Karzinom zu 

nützen. Es wurde schon eine Reihe von Genen identifiziert, die in kolorektalen 

Karzinomen methyliert sind. Die Ernährung ist ein wesentlicher Aspekt, der die DNA 

Methylierung beeinflussen könnte und die Zahl der Studien, die die Rolle des 

Ernährungsmusters in den epigenetischen Veränderungen in kolorektalen Karzinomen 

untersuchen, nimmt zu. 

Das Ziel unseres Projektes war es, eine Methode für die Detektion und Quantifizierung 

von methyliertem RASSF1A und P16 im Serum zu finden. Serum bietet den Vorteil, 

dass es leichter zugänglich ist als Tumorproben. 

In einem ersten Schritt untersuchten wir, ob der Ansatz zur quantitativen Detektion von 

methylierten RASSF1A und P16 geeignet ist DNA aus Serum zu analysieren. Wir 

konnten auch eine geringe Menge von DNA (25 pg) detektieren. Außerdem konnten wir 

zeigen, dass der Zusammenhang zwischen eingesetzter DNA-Menge und RT-PCR 

Signal über einen weiten Bereich linear ist (fünf 10er Potenzen). Diese Ergebnisse 

ermöglichten es uns eine Standardkurve zu etablieren um DNA Proben zu 

quantifizieren. 

Für die Berechnung des Methylierungslevels einer Probe verglichen wir zwei 

verschiedene publizierte Methoden. Bei den von uns gewählten Versuchsansatz zeigte 

sich, dass die Berechnung des %Methylierung Werts akkuratere Ergebnisse lieferte. 

Hingegen ist der theoretische Hintergund der zweiten Methode, des PMR, vernünftiger. 

Diese Methode ist weiters praktikabler, da sie vor allem bei einer größeren Anzahl von 

untersuchten Genen einen zeitlichen Vorteil bringt. 
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In einem weiteren Schritt untersuchten wir die Effizienz fünf verschiedener 

kommerziell erhältlicher Kits für die Aufreinigung von DNA. Wir konnten zeigen, dass 

der Kit, der auf einer Methode basiert, die magnetic beads nützt, die besten Ergebnisse 

erzielte. Eine automatisierter Aufreinigungskit lieferte eine geringere Menge an 

isoliertet DNA. Diese Methode könnte jedoch nützlich für die Etablierung eines 

routinemäßigen, klinischen Tests sein. 

Wir testeten auch einen Bisulfit-unabhängigen, auf Restriktionsenzymen basierende 

Methode für die quantitative Detektion von methylierten DNA Sequenzen im Serum. 

Wir beobachteten bessere Ergebnisse mit der Bisulfite-abhängigen Methode. Aber eine 

Verbesserung des Arbeitsprotokolls könnte zu besseren Ergebnissen des 

Restriktionsenzyms Ansatz führen. 

Anschließend benutzen wir das geeignetste Protokoll um Serumproben von Patienten 

mit kleinzelligen Lungenkarzinom und kolorektal Karzinom zu untersuchen. Wir 

konnten bei 2 von 8 (25%) Bronchialkarzinom Patienten und 0 von 9 (0%) kolorektal 

Karzinom Patienten methyliertes RASSF1A detektieren. Bei der Untersuchung auf P16 

waren alle Proben aus beiden Karzinom Gruppen negativ. 

Zusammenfassend kann man sagen, dass es uns gelungen ist eine Methode zu etablieren 

mit der wir methylierte Tumor DNA im Serum nachweisen können, aber nur bei einer 

relativ geringen Anzahl von Patienten. Der Grund für dieses niedrige Ergebnis könnte 

der geringe Gehalt von DNA im Serum sein. Da die Konzentration der Tumor DNA 

nach einer Therapie vermutlich ansteigt, könnte die in dieser Arbeit etablierte Methode 

von Nutzen für die Verlaufskontrolle von klinischen Interventionen sein. 
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ACTB β-Actin 

ACTB-DNA Amount of DNA detectet with the primerset for β-Actin 

ATCC American Type Culture Collection 

CIMP CpG Island Methylator Phenotype 

CpG 5’-CG-Dinucleotide 

CRC Colorectal Carcinoma 

Ct Cycle treshhold 

DHF Dihydrofolate 

DNA Desoxyribonucleinacid 

DNTM De novo methyltransferase 

DNTP Deoxyribonucleotide triphosphate 

dTMP deoxythymidine monophosphate 

dUMP desoxyuridine monophosphate 

FAD flavin adenine dinucleotide 

FAM Fluorescein 

FCS Fetal calf serum 

FOBT Fecal occult blood testing 

MBD1 Methyl-CpG-binding domain 

MeCP2 Methyl-CpG-binding protein 

MS Methionine synthase 

MSP Methylation-specific PCR 

MspI Methylation-spesific restriction enzyme 

MTHFR 5-10-methylenetetrahydrofolate reductase 

P16 P16
INK4a

 

P16M-DNA DNA quantified with primer for the unmethylated form of P16 

P16U-DNA DNA quantified with primer for the unmethylated form of P16 

PCR Polymerase Chain Reaction 

PMR Percentage of Methylated Reference 

qMSP Quantitative methylation-specific PCR 

RASSF1A RAS-association domain family 1, isoform A gene 

RASSF1AM Methylated form of RASSF1A 
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RASSF1AM-DNA DNA quantified with primer for the methylated form of 

RASSF1A 

RASSF1AU Unmethylated form of RASSF1A 

RASSF1U-DNA DNA quantified with primer for the unmethylated form of 

RASSF1A 

RT-PCR Realtime-Polymerase Chain Reaction 

SAH S-adenosylhomocysteine 

SAM S-adenosylmethionine 

SCLC Small cell lung cancer 

SssI CpG Methyltransferase 

TAE Buffer Tris-acetate EDTA Buffer 

TAMRA Tetramethyl-6-Carboxyrhodamine 

THF Tetrahydrofolate 

TS Thymidylate synthase 

%methylation Percentage of methylation 
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