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Abstract

The evolution and structure of pulsating stars is an interesting and fundamental field in
astronomy. In order to get information on these properties it is crucial to study the inner
part of a star, which is achievable by asteroseismology. Photometric data and theoretical
model fitting to these data provide information on the change in brightness of a variable
star and the opportunity to retrieve stellar parameters and describe physical processes by
determining the frequencies. Frequency, amplitude and phase describe the sound waves,
which can be used to gain information on the stellar interior. Observational data have
to be corrected for several instrumental and atmospheric effects, and various sources of
noise have to be taken into account to achieve a sufficient accuracy.

This thesis concentrates on the observational point of view. Instrumentation, data re-
duction and frequency analysis are explained, and common reduction algorithms are dis-
cussed. The major part of this work deals with the determination of the best extinction co-
efficients, in order to have the best correction for atmospheric extinction, which is caused
by effects of absorption and scattering in the atmosphere. Four different methods to deter-
mine this coefficient are described and were tested using photometric data of the δ Scuti
star EE Cam obtained during four (2006-2009) observing campaigns on one of the Vienna
Twin Automatic Photoelectric Telescopes (APT), located in Arizona. Additionally, a fre-
quency analysis of the data obtained in the first three observing campaigns was performed
and the results are presented here.

An introduction to pulsating stars is provided in Chapter 1. Here, different types of pul-
sating variables, pulsation mechanisms and the inner structure are discussed. Chapter 2
deals with the instruments and filter systems used to obtain photometric data. The prob-
lem of instrumental noise is discussed and possible solutions are presented. As the APT
was used to observe EE Cam, its properties are described in detail. A detailed description
of the standard reduction steps is given in Chapter 3. The determination of frequencies,
amplitudes and phases by using the Discrete Fourier Transform is finally discussed in
Chapter 4. Two different software packages for frequency analysis are introduced. Infor-
mation on the observations and the applied techniques is provided in Chapter 5, followed
by a presentation and discussion of the results.



Chapter 1

Introduction

This chapter is a short introduction to the theory of pulsating stars, including pulsation
mechanisms and modes. The classical instability strip and its members, with emphasis on
δ Scuti stars, are presented.

1.1 Why do some stars change their brightness?
If the brightness of a star changes periodically, semi-periodically or even irregularly it is
referred to as a variable star. There are several physical effects that can describe these
variations. Variable stars can be assigned to different classes and sub-classes, depending
on the physical effect causing the pulsation. Two different types of variables are known:
Intrinsic variables. The light variation is caused by physical changes in the inner part
of the star. This type of variable stars can be divided into pulsating as well as eruptive
variables.
Extrinsic variables. The variation in brightness is caused by either rotation or an eclipse
of one star by another. They are divided into rotating stars and eclipsing binaries. Also
exoplanetary transits may be responsible for extrinsic variations of stars.

This work concentrates on pulsating variables in the classical instability strip, where the
pulsations can be radial (spherical symmetry is maintained) or nonradial (deviations from
spherical symmetry). These stars expand and contract periodically causing the change in
brightness. For many pulsating variables, the driving mechanism is the κ-mechanism. For
solar-like oscillators the driving mechanism is convection. A third driving mechanism is
the ε-mechanism.

1.1.1 Pulsation mechanisms
1.1.1.1 κ-mechanism

The κ-mechanism describes the pulsations in stars like δ Scuti or δ Cephei stars. The
driving of this mechanism is the opacity

κ =
1
T
=

I0

I
, (1.1)
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where T is the transmittance, I0 the incident radiation and I the transmitted one. Thus,
the opacity is a measure of the portion of radiation that cannot pass an atmospheric layer:
the higher the opacity, the lower the fraction of transmitted radiation. The physical reason
for this quantity is that radiation is scattered when penetrating the stellar material. The
degree of opacity depends on pressure, temperature, and the chemical composition.

Pulsation will only occur if the opacity increases with temperature. Normally, an
increase in temperature goes along with a decrease in opacity, because then the interaction
of radiation and free electrons is less effective. This is valid for a constant number of free
electrons. In the outer layers of a star single ionized and double or completely ionized
atoms (e.g. He, H) are present. If the temperature increases (e.g. during compression),
there will be more ionization and, consequently, the number of double ionized atoms is
larger. Thus, more free electrons are available. Now more scattering will take place as
there are more free electrons in the stellar material. An increase of the number of free
electrons, therefore, goes along with a higher opacity. This blocks the radiation in the
ionization layers. As a consequence, the radiaton pressure increases. These retained
pressure forces the star to expand. Due to expansion, the gas will cool down, less free
electrons will be available and the opacity decreases, i.e., radiation can pass the stellar
material more easily. The retained pressure can now escape and the radiation pressure
decreases, which forces the star to contract.

1.1.1.2 Stochastic driving

This mechanism acts in the Sun, in solar-like stars as well as in red giants. If convection
is effective enough, the convective layers will begin to oscillate. This type of pulsation
is stable: the oscillation is damped in the atmosphere and can only survive thanks to
stochastic re-excitation by convection.

1.1.1.3 ε-mechanism

The pulsation is caused by changes in the energy generation rate ε in the core of the
star. The effect of this mechanism is very small and pulsation can therefore not be solely
caused by the ε-mechanism.

1.2 Modes of pulsation
Kurtz (2006) wrote a detailed overview on stellar pulsation. Most of the information given
in this section is adopted from his article.

The combination of frequency, amplitude and phase describes the sound waves. These
frequencies are used to gain information on the stellar interior. The speed of sound, vs,
depends on the gas pressure, P, and the density, ρ, in a layer of the stellar atmosphere
according to

vs =

√
ΓP
ρ
, (1.2)
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where Γ denotes the adiabatic exponent. For an ideal gas, pressure, density and tempera-
ture T are linked via

P =
ρkT
µ
, (1.3)

µ denoting the molecular weight.
Substituting Eq. 1.3 for P in Eq. 1.2 yields

vs =

√
ΓkT
µ
. (1.4)

Changes in pressure invoke changes in temperature and density.
The sound speed is higher if the temperature is higher, because molecules are moving
faster at higher temperatures.

The aim of asteroseismology is to measure the sound speed throughout a star in order
to be able to understand the structure of the star. The interior speed of sound provides
information on pressure, density, temperature, chemical composition and rotation. Thus,
measuring the oscillation of a star permits to look inside the star.

1.2.1 Quantum numbers
The three-dimensionality of a star permits the oscillation modes to have nodes in three or-
thogonal directions (concentric radial shells, lines of latitude, lines of longitude). Conse-
quently, there are three quantum numbers to describe these pulsation modes (see Fig. 1.1):

1. n is the number of radial nodes and is called the overtone of the mode if m = 0
(sometimes also referred to as k),

2. l is the spherical degree of the mode and defines the number of node lines on the
stellar surface, l ≥ 0,

3. m is the azimuthal order of the mode.

The number of surface nodes that are lines of longitude is

l − | m | (1.5)

The values of m range from −l to +l, i.e., there are 2l + 1 m-modes for each degree
l. Modes with m > 0 are travelling against the direction of rotation (retrograde), while
modes with m < 0 are traveling into the direction of rotation (prograde). Modes with
m = 0 are axisymmetric modes. A spherically symmetric star has the same frequencies
for all m = 2l + 1. This is the so-called degeneration in 2l + 1 folds.

1.2.2 Displacement
In theory, stellar pulsation is described by dividing the stellar atmosphere into (ideally
infinitesimal) volume elements and examining the motion of each volume element. The
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Figure 1.1: Pulsation of a star with l = 3. While the yellow areas are moving outwards,
the blue areas are moving inwards. The arrows refer to the movement of the node lines
(Zima 1999).

displacement is a vector that describes the position of a volume element with respect to a
former position of this volume element. Consequently, displacment denotes the length of
this vector connecting the starting point and the endpoint. Nodes and antinodes describe
the vibrational pattern of a wave, where nodes denote the points of minimum and antin-
odes denote the points of maximum displacement. Imagine the case of a tube or pipe with
one open end and one closed end. The closed end forms a node in the displacement of the
air and the opened end forms a displacement antinode (see Fig. 1.2).

1.2.3 Radial modes
The star oscillates around its equilibrium. While maintaining the spherical shape the
stellar radius changes. Radial modes are the simplest modes, where the degree l of a
radial mode is 0. For the fundamental radial mode, the number of radial nodes n is 0, too,
where the core of the star is a node and the surface is a displacement antinode. Pulsations
in only the fundamental radial modes are visible in RR Lyrae and Cepheid variables.

The first overtone radial mode has n = 1. So the node is an inert shell. Only the layers
below and above this shell are moving in antiphase.

There are variable stars that oscillate simultaneously in both, fundamental and first
overtone radial modes, e.g. the δ Scuti variables. In most of these stars the ratio of the
first overtone and the fundamental is 0.77 (e.g. Kurtz 2006).
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Figure 1.2: Figure showing the first three modes of an organ pipe. On the left hand side
one can see the fundamental mode which has no node and no antinode. The graph in the
middle shows the first overtone which has one node and one antinode. On the right hand
side the second overtone with two nodes and two antinodes is shown. The open end in
each graph is a displacement antinode and the closed end is a displacement node (Kurtz
2006).

1.2.4 Nonradial modes
Nonradial pulsation causes deviations from spherical symmetry. The axisymmetric dipole
mode (l = 1, m = 0) is the simplest nonradial mode. In this case the equator is a node
(see Fig. 1.3). While the upper hemisphere contracts, the lower hemisphere expands. One
hemisphere heats up while the other cools down, and vice versa. Nonradial modes always
have n ≥ 1 if l = 1.

Figure 1.3: Simplest of nonradial modes (l=1, m=0) with an inclination angle of 45◦

towards the line of sight. The areas moving outwards are indicated by continous lines
while the areas moving inwards are indicated by dashed lines. The plus signs mark the
equator. Figure courtesy of J. Christensen-Dalsgaard.

1.2.5 p-modes and g-modes
Acoustic waves are pressure modes (p-modes), since pressure is the primary restoring
force. For gravity modes (g-modes), buoyancy acts as the restoring force. These modes
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provide the possibility to see below the surface of a star and to sound its interiors.
Modes are trapped between the surface and an inner turning point. For low l values

the turning point is close to the core of the star, whereas for higher l values it is closer to
the surface of the star (see Fig. 1.4). As the sound wave propagates into the star, the lower
part of this sound wave has a higher velocity. When travelling into the region with higher
sound speed, the wave is refracted. Therefore, higher l modes have more reflection points
but do not expand as deeply towards the center of the star as lower l modes.

While p-modes are more sensitive to conditions in the outer layers of the star, g-modes
are more sensitive to the conditions near the core.

For higher n the frequencies of p-modes will increase, while the frequencies of g-
modes will decrease. The frequencies of p-modes are in general higher than those of
g-modes.

Figure 1.4: p-modes propagating into the star until they reach the inner turning point
(dotted circles). The turning point is closer to the center of the star at small l values
and closer to the surface at large l values (l= 0 (yellow), 2 (blue), 20 (red), 25 (green),
75 (black)). Due to the decreasing density towards the surface, the waves are reflected.
Figure courtesy of J. Christensen-Dalsgaard.
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1.2.6 Mode identification
Mode identification is the determination of the quantum numbers l, m and n which de-
scribe the pulsation. Only mode identification can provide the astrophysical information
astronomers are interested in. Spectroscopic data as well as multicolor photometry pro-
vide the possibility to determine the modes of pulsation. Phase shifts and amplitude ratios
of photometric data in different filters provide the possibility to determine the degree l of
the mode (Balona & Evers 1999). With spectroscopic data (e.g. Aerts 1996) l and m can
be determined by investigating line profile variations (for high l values) or radial velocities
(for low l values).

1.3 The classical instability strip
Pulsating stars are located in the classical instability strip on the right-hand side of the
HR-diagram (see Fig. 1.5). The driving mechanism of these stars is the κ-mechanism. A
short description of the different types of stars situated on the classical instability strip,
with emphasis on δ Scuti pulsators, is provided subsequently.

1.3.1 Cepheids
Cepheids are so-called standard candles, as it is possible to determine their distances
via the Period-Luminostiy relation. They have periods ranging from 1 to 50 days and
amplitudes between 0.1 and 2 mag. Spectral types are in the region of F5 – K5. Their
masses typically range from 5 − 15MSun.

1.3.2 W Vir stars
Periods and spectral types are comparable with the classical Cepheid stars. They are
Population II stars. The amplitude variation lies between 1 − 2 mag. Masses range from
0.4 to 0.6 MSun.

1.3.3 RR Lyrae
RR Lyrae stars are Population II stars having periods of near 0.5 days and amplitudes of
about 1 mag. Spectral types are A and early F stars. Typical masses are between 0.5 and
0.6 MSun. They are referred to as classical radial pulsators.

1.3.4 roAp stars
The rapidly oscillating Ap stars are A stars with a strong magnetic field and a peculiar
chemical composition. These stars are multiperiodic, with periods between 4 and 15
minutes. The amplitudes are lower than 10 mmag in B. Masses range from 1.5 to 3 MSun.
roAp stars pulsate in low degree, non-radial p-modes.
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Figure 1.5: Theoretical HR diagram showing classes of pulsating stars. Figure courtesy
of J. Christensen-Dalsgaard.

1.3.5 γDor stars
They have periods of 0.5 − 3 days. The observed amplitudes are below 0.1 mag and
spectral types are late A or F stars. They pulsate in high-order, low-degree, nonradial
g-modes.

1.3.6 δ Scuti stars
Smith (1955) suggested that a large fraction of RR Lyrae stars (periods shorter than 0.2 d)
could have been misclassified. They seemed to differ in their Period-Luminosity-Relation
and their higher metallicity. Thereupon Smith (1955) introduced the term “Dwarf Cepheids”
to emphasize the low luminosity of these stars in comparison to the high amplitude
RR Lyrae stars. For the first time, Eggen (1956) called stars with low amplitudes and short
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periods after their prototype δ Scuti. Bessel (1969) suggested to call stars with amplitudes
ranging from 0.3 to 0.8 mag AI Velorum stars, because ”Dwarf Cepheids” might be con-
fusing, since Cepheids are exclusively Population I stars. Breger (1979) proposed to term
all these variables δ Scuti stars. In his opinion the division between Dwarf Cepheids and
AI Velorum Stars was not clear enough so that it would be better to have one term instead
of many confusing ones. Nowadays all of these stars are referred to as δ Scuti type stars.
δ Scuti stars are variables with spectral types A and F and luminosity classes ranging

from III to V. Periods are between 0.02 and 0.25 days.
They are located in the classical instability strip, being main sequence (MS, see Fig. 1.5),

slightly post-main sequence and even pre-main sequence stars (Marconi et al. 2002).
The instability is caused by the κmechanism acting in the HeII ionization zone. δ Scuti

stars have masses between 1.5 and 2.5 MSun (e.g. Lenz et al. 2008).
Delta Scuti stars pulsate with a large number of simultaneously excited modes. With

ground-based telescopes and satellites these modes can be studied and detected, even
though the photometric amplitudes of the dominant signal are sometimes only in the mil-
limag range. Asteroseismologists aim to provide better models. Therefore, many as-
tronomers concentrate on the same star to obtain a large amount of data and to derive a
model which explains the pulsation of similar stars consistently.

1.3.6.1 Period-Luminosity-Color Relation

If the measured periods of a star are linked to its luminosity, a Period-Luminosity-Color
Relation (PLCR) can be defined. The PLCR for δ Scuti variables was determined by
Breger (1979) to be

Mv = −3.052 log P + 8.456(b − y)0 − 3.121(±0.m31), (1.6)

where P refers to an average period for a multiperiodic star. Breger & Bregman (1975)
confirmed that stars with different temperatures oscillate in different overtones, because
the average pulsation constant Q decreases with increasing temperature, where Q is de-
fined as

Q = P
√
ρStar

ρSun
, (1.7)

with ρStar and ρSun being the mean density of the star and the Sun, respectively. Q will
be constant for a specific mode in all δ Scuti stars, but will change for different modes.
These stars are known to pulsate in different modes, i.e. for each star exists more than just
one Q value. The determination of these Q values is important for the comparison of the
observed frequencies with theoretical models.

1.3.6.2 Subgroups of δ Scuti stars

δ Scuti can be divided into three subgroups:
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1. Low-amplitude δ Scuti stars (LADS)
2. High-amplitude δ Scuti stars (HADS)
3. SX Phe variables

Low-amplitude δ Scuti stars. The low-amplitude δ Scuti stars represent the most
common subgroup of δ Scuti stars showing predominantly nonradial p-mode pulsations
and mixed modes (Breger 2000b). Low-amplitude δ Scuti stars are Population I members.
As the name already suggests, they have low amplitudes (< 0.05 mag, e.g. Christiansen
et al. 2007) and high rotational velocities (mean v sin i near 100 kms−1, Solano & Fernley
1997).

High-amplitude δ Scuti stars. This subgroup contains Population I members with
V peak-to-peak amplitudes higher than 0.3 mag. They have very low projected rotational
velocities (≤ 30 kms−1, e.g. Breger 2007), but have period distributions, period-gravity
relations and period ratios similar to δ Scuti stars with low amplitudes (Rodriguez 1994).
They typically have periods ranging from 0.5 to 6 hours. Rodriguez (1994) stated that
they pulsate only in the radial fundamental pressure mode and/or first overtone.

SX Phe variables. SX Phe stars are Population II and old disk population stars. They
have typical periods of 0.03–0.08 d. These stars are metal poor while large-amplitude
δ Scuti stars with similar light variations are metal rich (Kim et al. 2002).

1.3.6.3 Well-studied δ Scuti stars

44 Tau. Several campaigns of the Delta Scuti Network1 focused on this star. The
rotational velocity of v sin i = 2 ± 1 kms−1 (Zima et al. 2007) is stunningly low. Antoci
et al. (2007) illustrated that this adverts to a pole-on view and/or intrinsic slow rotation.
The second explanation was confirmed by Zima et al. (2007).

Antoci et al. (2007) detected 29 frequencies, of which 13 were independent. Breger &
Lenz (2008) confirmed these frequencies and detected another 20 frequencies, 2 among
them independent. The presence of both radial and nonradial oscillations was confirmed
by Lenz et al. (2008).

Zima et al. (2007) derived an effective temperature of 7000 ± 200 K and log g =
3.6 ± 0.1. In this case a Teff vs. log g diagram does not provide unambiguous information
on the evolutionary state (MS vs. post-MS; Lenz et al. 2008). Thus main sequence as
well as post-main sequence models have to be taken into account.

FG Vir. This star was a main target of the Delta Scuti Network. Breger et al. (2005)
found 79 frequencies, 67 independent. Mantegazza et al. (1994) determined an effective
temperature of 7500 ± 150 K and log g = 3.95 ± 0.15. FG Vir is in the second half of its
main sequence evolution. The rotational velocity is v sin i = 21.3±1.0 kms−1 (Mittermayer
& Weiss 2003).

4 CVn. The Delta Scuti Network (Breger 2000a) found 34 frequencies, 22 indepen-
dent. 4 CVn shows amplitude variability on long time scales. Breger (2000a) argues that
this may be the case in all nonradially pulsating δ Scuti stars and that this variability can
only be identified if data sets covering decades were available. 4 CVn is one of the few

1Multisite campaign for short period variable stars



1.3 The classical instability strip 15

nonradial pulsating stars for which such extensive observation campaigns were carried
out.

EE Cam. EE Cam is a little-studied δ Scuti star having amplitudes between those of
HADS and LADS, i. e. ≈ 80 mmag peak-to-peak (Breger et al. 2007).

Nordström et al. (2004) determined V = 7.753 mag, an effective temperature of 6530
K and a metallicity [Fe/H] relative to the sun of 0.06. They also determined a mean radial
velocity of 14.9 kms−1. Breger et al. (2007) found a v sin i of 40±3 kms−1. Since EE Cam
is a star in the intermediate region of δ Scuti stars, it is a suitable object to study the
astrophysical background.



Chapter 2

Photometer

2.1 Single-channel photometer
Information in this section was taken from Sterken & Manfroid (1992). There are several
detectors that can be used to study radiation emitted by a star. While the input is the light
of an astronomical object, the output is produced by the detector, which transforms the
radiation into another kind of energy (depending on the detector). One such detector is
the photometer, which counts the number of free electrons induced by incoming photons.
This kind of detector belongs to the group of photo-emissive detectors, which collect
the light on a photocathode. There are single-channel photometers with one aperture to
observe only one star at the same time, and multi-channel photometers which permit si-
multaneous observations of different targets through multiple apertures. Here, mainly the
properties of single-channel photometers are described, because only this type of pho-
tometer is of importance for the present work. For details concerning the properties of
multi-channel-photometers, see Sterken & Manfroid (1992).

2.1.1 Layout
A typical single-channel photometer consists of two main parts: the photometer itself and
the photomultiplier.

2.1.1.1 Arrangement of the photometer

Before the light can pass to the detector, it has to be collected and processed by a photome-
ter. Fig. 2.1 illustrates the layout of a photometer. The incoming light falls on a movable
mirror and is transported to the guider ocular, which is needed to identify the object of
interest. When moving the mirror, the incoming light can pass on to the diaphragm wheel.
The diaphragm is used to confine the incoming light, so that only the light from the object
of interest is monitored (e.g. not light of nearby stars). A single-channel photometer uses
one diaphragm at a time, where the diameter typically lies in the range of 10-60 arcsec.
For brighter stars a diameter of 30-40 arcsec can be used (Handler, private communica-
tion). After passing the diaphragm wheel, the light falls on another movable mirror and
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is transported to the centering ocular, which is needed to center the object of interest. By
moving the mirror the light can be passed onto the filter wheel. The filter wheel normally
consists of several filters (see 2.1.5), where the observer has to decide which filter to use
for the measurements. After passing the filter wheel, the light is imaged onto the photo-
cathode by the Fabry lens. The Fabry lens as well as the photomultiplier tube are located
in a coldbox that keeps the temperature of the lens and the detector low and constant. The
coldbox is used to reduce the thermal noise level.

Figure 2.1: Schematic illustration of a single-channel photometer.

2.1.1.2 Arrangement of the Photomultiplier tube

The photomultiplier tube utilizes the photoelectric effect, e.g., a photon hits an atom or
molecule and an electron is emitted. The photomultiplier tube allows secondary emission,
e.g., some materials emit more than just one electron when they are hit by an electron.
Especially in astronomy, secondary emission is important for photometric measurements,
because the incoming radiation can be quite low. Fig. 2.2 illustrates the principle of a
photomultiplier tube. When the light enters the photomultiplier tube, it strikes the pho-
tocathode which emits photoelectrons. These photoelectrons hit the first dynode, and
secondary emission occurs. This happens for all dynodes, and more and more electrons
are emitted. When these electrons hit the anode, a current is produced. This current is
then transmitted to the voltmeter and is directly proportional to the incoming radiation
intensity.
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Figure 2.2: Schematic illustration of a photomultiplier tube.

2.1.2 Properties
Each detector has typical area sensitive to radiation. The sensitive area of a photomulti-
plier consists of one pixel, whereas a charge-coupled device (CCD) typically consists of
several million pixels. The quantum efficiency of a detector is determined by

QE =
Pcount

Pideal
. (2.1)

Where Pcount is the number of photons counted and Pideal is the number of photons
that would have been counted if an ideal detector would have been used. The quantum
efficiency of every detector differs with wavelength (see Fig. 2.3). Information on this
dependency is essential to estimate the spectral range of the detector (the range where the
detector can be used).

2.1.3 Advantages and disadvantages
Some advantages of the photomultiplier are

• the fast response time,

• the ability to measure very low radiation intensities thanks to the secondary emis-
sion. The detection limit is usually one photon.
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Figure 2.3: Illustration of the quantum efficiency of several detectors. Figure adapted
from Kristian & Blouke (1982).

Some disadvantages are

• the narrow spectral range reaching from the near-UV (≈ 300 nm) to the near-IR
(≈ 800 nm). This depends strongly on the type of tube.

• the susceptibility to drift. Drift means that the sensitivity1 of the detector changes
with time.

• The quantum efficiency is much lower than for a CCD.

2.1.4 The noise problem
Each physical measurement is associated with uncertainties. Even if an ideal detector was
used, these uncertainties would not vanish. Hence it is impossible to detect all the signal
coming from the light source.

2.1.4.1 Signal noise

Signal noise is caused by the quantum nature of light, background sources and effects that
influence the signal, before it is measured.

1ratio between the current measured by the anode and the radiation measured by the cathode
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Quantum nature of light. The time interval between the emission of two consecutive
photons is not constant. This is called photon noise. An exact prediction of how many
photons will hit the detector in a time interval cannot be made. Even with a light source
that illuminates two identical detectors, they will not measure the same number of incom-

ing photons. A light source emits a mean photon number n =
N
t

per unit time (usually 1
second). The probability that n photons are detected in a time interval t is described by a
Poisson distribution

P(n, t) =
(Nt)ne−Nt

n!
. (2.2)

The variance σ2 is equal to the number of detected photons N in the time interval t.
The photon noise can be therefore determined by

σ =
√

Nt. (2.3)

Scintillation. The atmosphere of the Earth is not homogeneous and scatters stellar
light. The brightness of the star varies due to these turbulences in the atmosphere. Planets
are not effected by scintillation, because they are not point-shaped and so the light rays
are no longer parallel. Scintillation is increasing with larger zenith distances. The effect
of scintillation can be minimized with larger telescopes and locations for observations.

Seeing. In the lowest layers of the atmosphere, the effect of seeing is larger than in
outer layers, because refraction depends on the density of the air. The effect is largest in
the tropopause, where the turbulence is highest.

Sky background. The sky background is typically 20.5 mag/arcsec2 in the optical
wavelength range. However, this value is increased by the Moon. In this case, fainter
stars are no longer visible.

2.1.4.2 Internal noise

Internal noise is caused by the detector. This noise can be induced by
Dark current. The noise added by the detector is called dark current (or dark noise).

In photomultipliers the dark noise is produced by thermionic emission, i.e. by electrons
that are emitted due to heat. These electrons cannot be distinguished from those emit-
ted by the photoelectric effect. By cooling the photomultiplier, the dark current can be
limited. The temperature has to be kept constant, because changes in temperature may
cause variations in the spectral response of the photocathode. This noise is independent
of the brightness of the light source and can be measured directly, if the detector is not
illuminated. The mean dark current is subtracted from each measured intensity. The mea-
surement of the individual dark current of every tube that is used is required, because even
if the arrangement is the same, the dark current differs.

Thermal background. In the Infrared wavelength range the thermal background
has to be taken into account, which may be neglected in the Optical. It is the thermal
radiation emitted by the detector itself and the equipment located near the detector. One
can minimize this noise by cooling the elements of the detector with liquid N2 or He.
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2.1.4.3 External noise

External noise is caused by erroneous detections, such as
Cosmic background radiation. Especially with CCDs cosmic background radiation

has to be taken into account. This noise is produced by cosmic rays entering the detector.

2.1.4.4 Reduction noise

Reduction noise is caused by the reduction process, e.g. the digitalization.

2.1.4.5 Signal-to-noise ratio

Each observer and method is trying to reduce the source of disturbance or to correct for
this disturbance by applying a reduction. It is possible to determine the ratio between the
observed value and the true value (signal-to-noise-ratio, S/N).

Determination of S/N. As it is required to take separate measurements for the target
and the sky background, one can determine the error for both. The error in the background
count rate is given by

σ(B) =
(

B
tB

)0.5

, (2.4)

where B is the count rate of the sky background and tB is the integration time. The
error in the target count rate can be determined by

σ(S + B) =
(
S + B
tS+B

)0.5

, (2.5)

where S + B is the count rate of the star and tS+B is the integration time for the star. It
is referred to as S +B, because every observation of the star includes the sky background.
As the measuring error of S is needed rather than of S + B, the background has to be
subtracted. This allows the determination of the error for the target count rate without
background

σ(S ) =
(

S
tS+B
+

B
tS+B
+

B
tB

)0.5

. (2.6)

The signal-to-noise ratio is calculated by

S
N
=

S
σ(S )

. (2.7)

2.1.5 Filters
Filters are a very important part of the observing process as they can be adapted to specific
requirements.
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2.1.5.1 Photometric filter systems

A photometric filter system is used to obtain information on the spectral energy distri-
bution of a star. This information is derived when making measurements with different
filters covering the optical wavelength range. When using a filter system it is important
to choose the appropriate bandwidth. Some standard photometric systems are described
below.

Johnson-Morgan UBVRI system. Johnson & Morgan (1951) defined this system
to provide the possibility to compare the results with the spectral classification scheme.
Originally, they used three broad-band filters, where the U filter is located in the UV
wavelength range, the B filter in the blue wavelength range and the V filter in the visual
wavelength range. Johnson & Morgan (1951) decided to use three filters to get two color-
indices (B − V correlating with the effective temperature, U − B gives the hydrogen line
strength). Two other filters were added in 1965 (Johnson 1965; see Fig. 2.4 and Tab. 2.1),
where the R filter covers the red wavelength range and the I filter covers the IR wavelength
range.

Table 2.1: Effective wavelengths λeff and bandwidths 4λ of the Johnson UBVRI system.
The table was adopted from Sterken & Manfroid (1992).

Filter λeff [nm] 4λ [nm]
U 365 70
B 440 100
V 550 90
R 720 220
I 900 240

There are some disadvantages.

• A part of the spectral response of the U filter lies above the Balmer jump, i.e.
measures the area where the energy distribution of a star changes significantly.

• The U filter has a certain transparency range that allows light at longer wavelengths
(700 nm) to pass the filter. This red leak causes problems for cool stars. One so-
lution is to additionally use a copper sulfate, which prevents red light from passing
the filter.

• The spectral response of the V filter prevents blue light from passing. But light in
the red wavelength range will pass the filter. To prevent this a blue tube2 can be
used. If a red tube is preferred, one can use special filters to avoid this problem.

Strømgren uvbyβ system. This filter system belongs to the group of intermediate-
band-systems. The goal of such systems is to measure well-defined spectral signatures of
stars. It is possible to derive the surface gravity g, the effective temperature Teff and, for A

2The cutoff of the detector is at 700 nm
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Figure 2.4: Spectral response of the Johnson UBVRI system. Figure adopted from John-
son (1965).

and F stars, the metallicity. The Strömgren filter system consists of four filters, where the
u filter is sensitive to the UV wavelength range, the v filter to the violet wavelength range,
the b filter to the blue wavelength range and the y filter in the yellow wavelength range
(see Fig. 2.5). The filters v and b replace the Johnson B filter, and the y filter corresponds
to the Johnson V filter. This system allows to use two Hβ filters, where one is a wide
(bandwidth) and the other one is a narrow (bandwidth) filter.

To indices can be derived

m1 = (v − b) − (b − y) (2.8)

and

c1 = (u − v) − (v − b). (2.9)

The index m1 refers to the strength of the metal lines in A and F stars, c1 represents
the extent of the Balmer jump.

To apply this system, the stars have to be divided into three groups (Napiwotzki et al.
1992), depending on their Teff:

• In cool stars (Teff ≤ 8500) the temperature can be defined by β, and the surface
gravity corresponds to c1.
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• In intermediate stars (8500 ≤ Teff ≤ 11000), one has to define two additional pa-
rameters, because it is not possible to decide which index determines gravity and
Teff .

• In hot stars (Teff ≥ 11000) β is a gravity parameter and c1 a temperature indicator.

Table 2.2: Effective wavelengths λeff and bandwidths 4λ of the Strömgren uvby system.
Table adopted from Sterken & Manfroid (1992).

Filter λeff [nm] 4λ [nm]
u 350 34
v 410 20
b 470 16
y 550 24

Hβw 486 15
Hβn 485 3

Cousins UBVRCIC system. The Johnson system is defined for the use with a PMT.
The U, B and V filter characteristics are the same as those of the original UBV-system.
Filter characteristics for the RC and IC filter are listed in Table 2.3, and Fig. 2.6 shows the
transmission curves of these filters.

Table 2.3: Effective wavelengths λeff and bandwidths 4λ of the Cousins RC IC system
(Lamla 1982).

Filter λeff [nm] 4λ [nm]
RC 640 150
IC 790 150
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Figure 2.5: Spectral response of the Strömgren uvbyβ system. Figure adapted from
Crawford & Barnes (1970).

2.1.5.2 Characteristics

The most important characteristics of filters are

• the central wavelength,

• the maximum transmission, indicating the ratio between transmitted flux and the
incident flux on the filter surface,

• Full Width at Half Maximum (FWHM), indicating the spectral distance between
the points with a transmission of 50% of the maximum,

• the optical thickness, where the same thickness for every filter in a filter set has to
be used, otherwise the focus position will change,

• form and size,

• the temperature range, because filter characteristics are temperature dependent.
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Figure 2.6: Spectral response of the Cousins RC IC system. Figure adopted from Bessell
(1990).

2.1.5.3 Subgroups

Sterken & Manfroid (1992) introduce three subgroups of filters, depending on the width
of the wavelength range that is covered by the filter

• broad-band filters have a bandwidth ranging from 30 to 120 nm. An example for
those filters is the UBV filter system.

• intermediate-band filters have a bandwidth ranging from 9 to 30 nm. An example
is the Strömgren uvby filter system.

• narrow-band filters have a bandwidth smaller than 9 nm. An example is the Hα
filter. Hα filters are useful for the detection of planetery nebulae or HII regions,
because these objects have a lot of hydrogen emission.

Additionally, astronomers often use circular variable filters or neutral density filters.
Circular variable filters are interference filters with variable regional thickness. This al-
lows a linear variation of the central wavelength. Neutral density filters are used if the
object is too bright. If the telescope is too large for the object, over-exposure may even
damage the detector. So it is necessary to use a neutral density filter to diminish the signal
without distorting the spectral response.
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2.1.5.4 Glass filters, gelatine filters and interference filters

In order to be able to observe in the ultraviolet wavelength range, filters are made of a
transmissive glass. Glass and gelatine filters absorb the light inside the material. Interfer-
ence filters cause transmission by interference. As gelatine filters have a lot of disadvan-
tages, they are not frequently used in photometers.

Glass filters. They absorb or scatter the light. This process is wavelength-dependent.
Additional energy can pass the filter at longer wavelengths. This is called red leak and
is a problem when using the U filter of the Johnson filter system. For further details
and solutions see 2.1.5.1. The characteristics of glass filters are temperature-dependent.
Therefore, they have to be kept at constant temperatures.

Interference filters. They are combinations of Fabry-Perot interferometers. This
interferometer consists of two semi-reflective surfaces. Only light at a certain wavelength
can pass these surfaces. The remaining light is reflected. By tilting the filter, the light-
transmissive range of the filter will change. As tilting avoids unwanted reflections, the
tilting angle has to be considered when buying the filter. Changes in temperature can cause
changes in the wavelength, too. However, these changes are smaller than the changes
produced with glass filters. The characteristics depend on the thickness of the filter, the
number of filters and the combinations used. Advantages of interference filters are the
well-defined wavelength ranges, the fact that almost all wavelength ranges are possible
and the high transmission of the filter. Disadvantages of interference filters are the high
costs, the sensitivity to humidity and the dependence on the angle of incidence.

2.2 Wolfgang-Amadeus: the Vienna Twin Automatic Pho-
toelectric Telescopes

Information in this section was taken from Strassmeier et al. (1997). The Vienna Twin
Automatic Photoelectric Telescopes (APTs, see Fig. 2.7) were designed in 1992 by L. J.
Boyd at Fairborn Observatory. In 1996 two robotic telescopes were handed over to the
University of Vienna and were first located at Smithsonian Fred L. Whipple Observatory
on Mount Hopkins. Half a year later they were moved to Fairborn Observatory at Wash-
ington Camp. This observatory is located in the Sonoran desert near Tucson, Arizona.
Here it began to fully operate in autumn 1996.

2.2.1 Observational restrictions
Fairborn Observatory is located at a longitude of -110 41’ 41”, a latitude of +31 23’ 12”
and an altitude of 2700 m. Therefore, the observations are limited to a declination ranging
from −35◦ to +75◦ and to airmasses below 2 in the northern hemisphere.

Furthermore, the 0.75m telescopes can only observe stars brighter than 13m in John-
son.
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Figure 2.7: The Vienna APT. Front: Wolfgang. Back: Amadeus

2.2.2 Automatic telescopes
The two telescopes as well as the whole observatory are automatic. This means that
sensors monitor the weather conditions and the roof is operated by a computer. When
the weather conditions are poor, the computer will not open the roof. There is another
computer responsible for the telescope control. It runs the photometer and is responsible
for the data input and output. The data output contains the Julian Date without heliocentric
correction and the number of photoelectrons in each integration.

2.2.3 Equipment
Wolfgang and Amadeus are twin telescopes and therefore have almost the same equip-
ment. The optical system consists of a 0.75 m Cassegrain primary mirror with a focal
ratio of f /8 and a 0.2 m secondary mirror. The high slewing speed of about 10 degrees
per second permits to switch between target and comparison star within 1 second. Each
telescope has a CCD finder camera.

2.2.3.1 Photometer

The only difference between Wolfgang and Amadeus is that they have two different
single-channel photoelectric photometers, where the filter combinations are optimized
for use in the blue wavelength region for the Wolfgang photometer and for use in the red
wavelength region for the Amadeus photometer.

2.2.3.2 Filters

The filter systems used are adapted to the spectral response of the photomultipliers. Both
photometers provide four intermediate-band filters (uvby). Additionally, Amadeus has
five broadband filters (UVBRI), two Hα filters (wide and narrow) and one Hβ (wide)
filter, Wolfgang has only got 3 broad band filters (UVB) and a Hβ filter (wide and narrow).
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There are also neutral density filters in different magnitude ranges (1.25 mag, 2.5 mag,
3.75 mag, 5.0 mag) available, which reduce the incoming light. They have to be used
when observing bright stars. For the APT neutral density filters have to be used when
observing stars brighter than 6.0 mag in V .

2.2.3.3 How to acquire data with the APT

The Institute of Astronomy at the University of Vienna is responsible for the data files.
This means, that astronomers send the data files, containing the informations necessary
to start the observation, via internet to the APT. The data files produced from the APT,
containing the data acquired during the observation, will be retrieved via internet. As
the computer handles both input as well as output files, no staff is needed to operate the
telescope.

The output files typically contain the ID number of the star, the Julian Date (note:
without heliocentric correction), the integration time, the count rates and a lot of technical
information that is not subject of the present discussion.

2.3 The standard three-star technique
For further information, the reader is referred to Breger (1993). A detailed description
of the application of this technique is provided in Chapter 3. Many variable stars, such
as δ Scuti variables, have variations in the millimag range. The three-star technique is
a suitable method to study these variations. It can be applied to all variable stars with
periods longer than 30 minutes. This limit is given by the fact that in one observing
cycle the target, two comparison stars and the sky background are observed alternately
in two different filters. Therefore, some time (approximately 10 minutes in the case of
EE Cam and its comparison stars) passes until the target is observed again. To get all the
information on the variability of the star, the period should not be shorter than half an
hour.

2.3.1 Observation
One of the three stars observed is the variable star and the other two are the comparison
stars. The variable star V, the first comparison star C1 and the second comparison star
C2 should be observed with the same instrument. The integration times depend on the
instrument used (e.g. size of the mirror) and on the star-to-background brightness ratio.
The best signal-to-noise ratio can be achieved with a timing ratio of

ratio =
tS+B

tB
=

√
S + B

B
, (2.10)

where S + B gives the count rate of the star (where the background B is included), tS+B

gives the integration time of the star, B denotes the count rate of the background and tB is
the integration time of the background. Thus, the fainter the background in comparison
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to the star, the longer the star itself can be observed. If the target star as well as the
comparison stars have equal brightnesses, the three stars should be observed equally often
to obtain a sufficient accuracy. This timing ratio is only applied to faint stars and can
therefore be neglected for EE Cam and its comparison stars.

At the APT, each observing run consists of a number of cycles. In each observing
cycle every star is observed in a given order (e.g. first you observe C1, then C2, then V,
see table 2.4). Depending on the phase of the moon, the background is observed at the
beginning, the middle or the end of an observing cycle. One has to keep in mind that the
uncertainties of the measurements are getting smaller with larger integration times.

Table 2.4: Example for how a cycle could look like.

cycle 1
observed object JD counts integration time [s]

C1 4480.6224 76056 10
4480.6231 76448 10
4480.6280 76596 10

C2 4480.6235 97972 10
4480.6241 97392 10

V 4480.6245 160700 10
4480.6251 161260 10
4480.6259 159568 10
4480.6265 160224 10

sky background 4480.622780 1880 10
4480.6238 1800 10
4480.6248 1796 10

2.3.2 Selection of the comparison stars
The variable star and both comparison stars should have comparable brightnesses and
spectral types. The position in the sky plays an important role, too. The selection of
stars close to each other improves the temporal resolution of the measurements and the
accuracy of the extinction correction.

2.3.3 Advantages of this technique
The standard three-star technique has three major advantages.

• It allows to identify the variability (or non-variability) of the comparison stars.

• The use of two comparison stars is safer, because if one comparison star is variable
there is still the other one available for successful data reduction. Additionally, the
differential light curves (see Chapter 3) are likely to reveal the variable comparison
star.
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• The incorporation of a variable comparison star: Even if one of the comparison
stars is variable, the difference (C1 – C2) can still be used to find out which data
points are less reliable. These points might then also be less reliable in (V – C1)
and (V – C2).



Chapter 3

Data Reduction and Analysis

There will always be systematic errors in observational data which have to be corrected.
This section gives an overview of the errors that can occur and the reduction steps that
can be applied.

3.1 Julian Day Number and Julian Date
In 1582 Joseph Justus Scaliger proposed that the zero point of the Julian Day Number
should be 1 January 4713 B.C. at 12:00 UT. So the Julian Day Number is the time in days
elapsed since then (e. g. 1 January 2000 12:00 UT corresponds to JD 2451545.0).

Scaliger (McCarthy 1998) argued that a year can be distinguished by

• the position (S ) within a 28-year solar cycle,

• the position (G) within the 19-year cycle of Golden Numbers (Numbers assigned to
every year so that one can calculate the position of the year in the Metonic cycle),

• the position (I) within the 15-year cycle of Roman taxes.

As there are no common factors for these three numbers a given combination of these
numbers will be repeated only after 28 · 19 · 15 = 7980 years. So Scaliger defined these
number as a Julian period. The year 1 B.C. has the numbers S = 9 , G = 1 , I = 3. So
he calculated that the combination S = 1, G = 1 and I = 1 occurred in the year 4713 B.C..

The Julian Date gives the Julian Day Number as an integer and the hours, minutes
and seconds passed as a floating point number (e. g. 1 January 2000 16:30 corresponds
to JD 2451545.1875 in Greenwich). Especially in astronomy it is helpful to use this date,
because there are no time shifts due to the summer time or the leap day.

3.1.1 Calculation
Gregorian Calendar to Julian Day Number
Montenbruck (2001) presents the following algorithm to calculate the JDN: if the month
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M ≤ 2, it is necessary to take Y = Y − 1 and M = M + 12, where Y denotes the year and
M denotes the month. Otherwise Y and M are left unmodified. The Julian Day Number
can be determined by

JD = INT (365.25 ∗ (Y + 4716)) + INT (30.6001 ∗ (M + 1)) + D + B − 1524.5. (3.1)

Where A and B are given by

A = INT
( Y
100

)
, (3.2)

B = 2 − A + INT
(A

4

)
. (3.3)

Note that INT is the largest Integer ≤ x (e.g. INT (3.2) = 3, INT (3.9) = 3).

Julian Date
The floating point number, where the time of day is considered, can be calculated by

JD f loat =

(
H +

M
60
+

S
3600

)

24
. (3.4)

Where H denotes the hour (note: the counting starts at 12:00, e. g. 16:00: H = 4, 10:00:
H = 22, 12:00: H = 0), M denotes the minutes and S denotes the seconds. The Julian
Date JD is calculated by

JD = JD f loat + JDN. (3.5)

3.2 True declination and right ascension
The declination δ is the angular distance (in degrees) of the star from the celestial equator.
Positive values are assigned to the northern, negative values to the southern hemisphere.
The right ascension α is the angular distance (in hours, minutes and seconds) of the star
from the vernal equinox Υ along the equator.

The true values of these coordinates define the position of the star precisely. The
lunisolar precession causes a change in the declination and right ascension of a star. Cata-
logues give the coordinates αeq and δeq of stars for a given equinox eq and a specific Julian
Day Number JDN (the standard equinox is eq = 2000, JDN = 2451545.0). Accordingly,
these values have to be transformed to obtain the true values that correspond to the Julian
Date JD of a measurement.

3.2.1 Calculation
According to Meeus (1998) the true values can be calculated by

α = αeq +
m + n tan δeq sinαeq

3600
JD − JDN

365.25
, (3.6)
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δ = δeq +
n cosαeq

3600
JD − JDN

365.25
, (3.7)

where
m = 46.085′′, (3.8)

n = 20.0431′′. (3.9)

Values for m and n are valid until the year 2100, when they have to be recalculated.
These equations do not give a high accuracy, but can be applied if the epochs used are
not far away from each other. Especially if the star is near the celestial poles it is not
recommended to use this algorithm.

3.3 Dark current correction
Dark current is produced by the detector due to thermionic emission. More information
is provided in 2.1.4.2.

3.4 Dead time correction
After receiving a signal, the system of the photomultiplier (PMT, see 2.1) will be blocked
for a certain time (dead time). Within this time all additional signal will be ignored. If the
count rate (intensity) is high enough (≥ 100000 counts), a dead time correction has to be
applied.

For corrections < 2 % the dead time correction is calculated by

Icorr =
Icount

1 − Icountτ
. (3.10)

For corrections ≥ 2 % the dead time correction is calculated by

Icorr =
Icount

1 − Icountτe−Icountτ
. (3.11)

Where Icount denotes the measured countrate, Icorr the true count rate and τ the dead time
in nanoseconds.

3.5 Background correction
Before subtracting the intensity of the sky background, a mean value for any star is deter-
mined. During one observing cycle, several measurements in different filters of the target,
the comparison stars and the sky background are performed. These measurements have
to be combined to one datapoint for each star in each filter.

The measured sky intensities must have the same JD as the star. It is required to ap-
ply an interpolation where the JD of the sky is converted into the JD of the star. Then the
sky intensity is subtracted from the star’s intensity. This correction has to be applied to
all observed stars.
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3.6 From counts per second to magnitude
The intensities I of the stars are given in counts per second. To convert these into magni-
tudes m, one can use the following equation:

m = −2.5 log I + C. (3.12)

3.7 Atmospheric extinction
The atmospheric extinction describes the effects of absorption and scatter in the atmo-
sphere. Due to the different sizes r (0.1nm to 100 µm) of the aerosols in the atmosphere1

light coming from a star is scattered in different ways. The larger the scattering body, the
larger the wavelength dependence of the scatter:

• If r � λ, the wavelength dependence will be I ∼ λ−4. This is called Rayleigh
scatter and is responsible for the blue color of the sky.

• If r ∼ λ, the scatter will be called Mie scatter, and the wavelength dependence is
I ∼ λ−1.

• If r � λ, the scatter will be wavelength independent.

Absorption is caused by different types of molecule and atom transitions depending on
the wavelength range. Molecular electronic transitions (e.g. CO, H2O, CH4) are domi-
nant absorbers, because they are absorbing in a wide wavelength range and cover a large
fraction of the molecules in the atmosphere. In the Infrared, water is the main absorber
and is responsible for the variable transmission of the atmosphere. Most telescopes are
located on mountains, because the absorption in many wavelength ranges, particularly in
the Infrared, is decreasing with increasing altitude.

A transformation of the ground-based measurements into values that would be ob-
tained outside the atmosphere provides a successful method to correct for these atmo-
spheric effects.

3.7.1 Airmass
Light coming from a star has to pass the atmosphere before it reaches the telescope’s
surface. The airmass is a measure of the length of the light path through the atmosphere.
Therefore, the airmass depends on the zenith distance of the target. For a star at the zenith,
the value of the airmass is X = 1. On Earth values X < 1 cannot be reached. At larger
zenith distances, the airmass increases because the light has to pass a larger fraction of air.

The airmass is calculated by

X = sec z − 0.0018167(sec z − 1) − 0.002875(sec z − 1)2 − 0.0008083(sec z − 1)3, (3.13)
1e. g. molecules, atoms, dust, water
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sec z =
1

sinΦ sin δ + cosΦ cos δ cos h
, (3.14)

with z denoting the zenith distance, Φ the geographic latitude, δ the declination, h = Θ−α
the hour angle, Θ the sidereal time (see 3.7.2) and α the right ascension.
Note that the conversion of all values into consistent units is essential.

3.7.2 Sidereal time calculation
As a first step, one has to calculate the time period T elapsed since 1 January 2000 using

T =
JD − 2451545.0

36525
. (3.15)

By means of this equation, the mean sidereal time (in degrees) in Greenwich can be
directly calculated according to

Θmean = 280.46061837 + 360.98564736629(JD − 2451545.0) + x

with

x = 0.000387933T 2 − T 3

38710000
, (3.16)

where 280.46061837 is the local sidereal time in Greenwich on 1 January 2000.
The sidereal time in degrees can be calculated by

Θ = Θmean ± λ. (3.17)

The longitude λ is added if the location is east of Greenwich and is subtracted if the
location is to the west of Greenwich.
Then the sidereal time in hours is given by

Θsid =
Θ

15
. (3.18)

3.7.3 Extinction coefficient and intersection point
The extinction coefficient k is the quantity of light lost per unit airmass. It is determined
from a Bouguer diagram (Fig. 3.1), in which magnitudes are plotted versus airmass. The
data points should show a linear correlation. The slope of the linear regression is the ex-
tinction coefficient k. The linear correlation may be contaminated by variable extinction,
instrumental changes or clouds. The point where the linear fit meets the y-axis at X = 0
is called the intersection point (see Fig. 3.1). This is the brightness of the star outside the
atmosphere.

One can correct all light curves of a star for extinction by

mcorr = m − kX. (3.19)
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Figure 3.1: Bouguer diagram showing measurements of EE Cam over one night. This
diagram allows the determination of the extinction coefficient k through linear regression.

3.8 V – C1, V – C2, C1 – C2
By means of the magnitudes corrected in the previous steps it is now possible to check
the comparison stars for variability. The light curve of the comparison stars should be
constant, but instrumental drifts occuring during one night can sligthly change the light
curve. Whether one or both of the comparison stars are variable or if both are constant
can be found out by forming the differential light curves

• V – C1,

• V – C2,

• C1 – C2,

Where V is the magnitude of the target, C1 the magnitude of the first comparison star
and C2 the magnitude of the second comparison star. Differential light curves are used
rather than V, C1 and C2 itself, because instrumental errors, such as instrumental drifts,
can be avoided. The instrumental errors would be present in all light curves and a subtrac-
tion involves a minimization of these effects. Additionally, by checking the differential
light curve C1 – C2, data points with a low precision in V – C1 and V – C2 can be identi-
fied and removed.
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The three-star technique relies on the minimization of most sources of error and avoids
the drift problem experienced with multichannel instruments.
Before calculating these differences, it is required to interpolate to the same JD. In V – C1
and V – C2 it is common to interpolate to the time of the V measurement (see Fig. 3.2).
In C1 – C2 it is common to interpolate the fainter target to the time of measurement of the
brighter one.

Figure 3.2: Interpolation to the same JD. The magnitudes of the comparison stars C1, C2
are interpolated to those of the variable star V. Solid circles mark the observed points.
Open circles mark the interpolated C1 and C2 magnitudes.

3.9 Heliocentric correction
As the Earth is orbiting around the Sun, there is a time effect in the light coming from a
star during a year: the Earth can be a few light minutes more distant from or closer to the
star. This time shift has to be corrected. In the corresponding recalculation of the JD, the
assumption that the star is observed from the center of the Sun is made. If the direction to
the star is perpendicular to the ecliptic plane, the difference between JD and HJD will be
zero. The size of the semimajor axis of the Earth is 8.3 light minutes. Consequently, the
maximum value is HJD − JD = +8.3 minutes and is achieved if the star is in opposition
to the Sun. In this case the light from the star will reach the Earth before it reaches the
Sun. The minimum value of HJD − JD = −8.3 minutes is achieved if the Sun is located
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between star and Earth. These maximum and minimum values will be achieved, if the
star is on the ecliptic plane.

3.9.1 Calculation
According to Budding (1993), the heliocentric correction can be determined employing
the rotation-matrix method. It is necessary to determine the x coordinate of the Sun (center
of motion) when the x axis is pointing to the object. A geometrical explanation is given in
Fig. 3.3. In the initial coordinate system, the x axis points to the Sun. The transformation
(so that the x axis points towards the object) is applied by performing

x′ = Ry(−δ)Rz(α)Rx(−ε)Rz(−θ)x, (3.20)

where α, δ denote the true coordinates of the variable star, ε describes the obliquity of
the ecliptic and θ is the ecliptical longitude of the Sun.

Figure 3.3: Heliocentric correction. Figure adopted from Budding (1993).

Ry, Rz and Rx denote the rotation matrices. They are defined as

Rx(ϕ) =



1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 , (3.21)

Ry(ϕ) =


cosϕ 0 − sinϕ

0 1 0
sinϕ 0 cosϕ

 , (3.22)

Rz(ϕ) =


cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 . (3.23)



3.9 Heliocentric correction 40

The coordinates of the Sun in the initial system are described by r = (R, 0, 0), R
denoting the radius vector Sun-Earth. By expanding the equation for x′ the following
equations are obtained

r′ =


R cos δ(cosα cos θ + cos ε sin θ sinα) + R sin δ sin ε sin θ

R sinα cos θ − R cosα cos ε sin θ
R sin δ(cosα cos θ + cos ε sin θ sinα) − R cos δ sin ε sin θ

 . (3.24)

As only the x coordinate is needed, one can calculate the heliocentric correction by

x′ = −τ(R cos δ(cosα cos θ + cos ε sin θ sinα) + R sin δ sin ε sin θ), (3.25)

where τ = 0.0057755 d is the time the light needs to travel from the Earth to the Sun.

Finally, the HJD is calculated by

HJD = JD − x′. (3.26)



Chapter 4

Frequency Analysis

The Fourier Transform is a common tool to interpret periodicities in a function of time as
a superposition of sinusoids. Since astronomy deals with discrete data sets (time series)
rather than continuous functions of time, the appropriate technique to examine periodic
variations is the Discrete Fourier Transform. This chapter contains an introduction to the
DFT, and two programs for time series analysis are presented and discussed. Most of the
content was taken from Reegen (2000), Lenz (2005) and Deeming (1975).

4.1 Discrete Fourier Transform (DFT)
In general, the linear correlation between a time series

xk = x(tk) (4.1)

and a fit function
fk = f (tk) = sin(ωtk + φ) with k = 1, ...,K, (4.2)

is described by the covariance

cov(xk, fk) =
1
K

K∑

k=1

xk fk =
1
K

K∑

k=1

xk sin(ωtk + φ). (4.3)

In this context, xk is assumed to be averaged to zero, and the fact that the mean value of
the sinusoid may deviate from zero in special cases is neglected, since this approach is
intended as a motivation.

If the covariance is 0, then there is no linear relationship, but there may be a non-linear
one. A positive covariance means that higher (lower) values of xk tend to pair with higher
(lower) values of fk, respectively. A negative covariance means that higer (lower) values
of xk tend to pair with lower (higher) values of fk.

Eq. 4.3 contains two free parameters. As this may correspond to a high computational
effort in practical applications, fk = sin(ωtk + φ) is replaced by fk = eiωtk . The covariance
now writes as

cov(xk, fk) =
1
K

K∑

k=1

xkeiωtk =
1
K

K∑

k=1

xk(cosωtk + i sinωtk). (4.4)
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This is a two-dimensional representation with coordinates a(ω) :=
1
K

∑
xk cosωtk, b(ω) :=

1
K

∑
xk sinωtk, where the amplitude spectrum is defined as the length of the Fourier vec-

tor, and the phase is the angle between this vector and the axis a(ω) (see Fig. 4.1). The
amplitude spectrum is denoted A(ω) and defined by

A2(ω) =
1

K2




K∑

k=1

xk cosωtk


2

+


K∑

k=1

xk sinωtk


2 , (4.5)

with ω ∈ [−∞,∞]. As the amplitude is an even function, because xk is real ∀k, and

A(ω) := A(ω) + A(−ω) = 2A(ω), (4.6)

it is sufficient to consider non-negative frequencies through

A2(ω) =
4

K2




K∑

k=1

xk cosωtk


2

+


K∑

k=1

xk sinωtk


2 . (4.7)

As the amplitude spectrum follows the concept of the covariance, peaks indicate frequen-

Figure 4.1: Two-dimensional representation of the Fourier vector, the phase and the
amplitude.

cies where the sinusoid is in good agreement with the data. The peaks in the amplitude
spectrum contain the information an astronomer is interested in, namely the frequencies,
amplitudes and phases. These parameters are important to get information on the energy
transport, the element abundances and the mass and temperature distributions. Even the
radius, mass, effective temperature, and the age of the star can be derived.
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4.2 The Nyquist criterion
Writing Eq. 4.7 in terms of a double sum, yields

A2(ω) =
4

K2

K∑

k=1

K∑

l=1

xk xl(cosωtk cosωtl + sinωtk sinωtl), (4.8)

which reduces to

A2(ω) =
4

K2

K∑

k=1

K∑

l=1

xk xl cosω(tk − tl). (4.9)

Each pair of measurements contributes a periodic term in ω to the sum, the period of

which is
2π
|tl − tk |

. For an equdistantly sampled time series, tk := kδt, where δt is the

sampling rate, this yields

A2(ω) =
4

K2

K∑

k=1

K∑

l=1

xk xl cosωδt(k − l). (4.10)

Replacing ω by ω +
2π
δt

, yields

cos
(
ω +

2π
δt

)
δt(k − l) = cos(ωδt(k − l) + 2π(k − l)) = cosωδt(k − l). (4.11)

Now all contributions to the sum have an unique period

∆ω =
2π
δt
, (4.12)

i.e., the amplitude spectrum recurs every
2π
δt

in ω or every
1
δt

in frequency.

Lets now use
2π
δt
− ω instead of ω. Then the backmost part of Eq. 4.10 is

cos
(
2π
δt
− ω

)
δt(k − l) = cos(ωδt(k − l) − 2π(k − l)) = cosωδt(k − l). (4.13)

Again, the same result is achieved and a symmetry with respect to

1
2

2π
δt
=
π

δt
. (4.14)

is obtained. This corresponds to
1

2δt
in frequency and is called the Nyquist criterion.

Therefore, if the signal is measured with a unique sampling rate δt, the amplitude spec-

trum is unique only for frequencies f ∈
[
0,

1
2δt

]
. Outside this interval, the amplitude

spectrum is an exact repetition of this range and called alias.
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4.2.1 Example
Assuming a signal of 18 Hz and a sampling rate of 0.1 s for an unlimited time series, the
Nyquist frequency will be 5 Hz. So, a peak at 2 Hz would be present. Due to the axes

of symmetry at
1

2δt
= 5Hz and its multiples, there will be additional peaks at 8, 12, 18,

22, etc. Hz (see Fig. 4.2). As the period is
1
δt
= 10Hz the amplitude spectrum will recur

every 10 Hz. So, a suitable sampling rate is required, i.e. the sampling should be dense
enough. This density depends on the frequency interval that is investigated.

Figure 4.2: Amplitude spectrum of a signal with 18 Hz and a sampling rate of 0.1 s for an
unlimited time series. The Nyquist frequency is at 5 Hz, and the spectrum repeats every
10 Hz. Solid lines mark the frequency peaks. Dashed lines mark the axes of symmetry.

4.3 Spectral window

Given a continuous function of time x(t) on the interval t ∈
[
−∆t

2
,
∆t
2

]
, the corresponding

series expansion is

x(t) =
∞∑

n=0

cneiωnt. (4.15)

If ωn =
2πn
∆t

, Eq. 4.15 transforms into

x(t) =
∞∑

n=0

cn exp
(
2iπn

t
∆t

)
. (4.16)
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Postulating

cm =
1
∆t

∆t/2∫

−∆t/2

dtx(t) exp
(
−2πim

t
∆t

)
. (4.17)

Employing Eq. 4.16, yields

cm =
1
∆t

∞∑

n=0

cn

∆t/2∫

−∆t/2

dt exp
(
2iπ(n − m)

t
∆t

)
. (4.18)

Now, two cases are possible: (i) n , m; (ii) n = m.

(i) n , m. Integration of Eq. 4.18 yields

cm =
1
∆t

∞∑

n=0

cn
∆t

2πi(n − m)
exp

(
2πi(n − m)

t
∆t

) ∆t/2∣∣∣∣∣∣
−∆t/2

=

cm =
1
∆t

∞∑

n=0

cn
∆t

2πi(n − m)

[
eπi(n−m) − e−πi(n−m)

]

cm =
1
∆t

∞∑

n=0

cn
∆t

2πi(n − m)
[2i sinπ(n − m)] = 0. (4.19)

(ii) n = m. Integration of Eq. 4.18 results in cm = 1. The general annotation incorporates
the Kronecker symbol δmn and writes as

cm =

∞∑

n=0

δnmcn. (4.20)

This leads to four important conclusions:
1. The Fourier coefficients cn are orthogonal.

2. The frequency resolution is δω =
2π
∆t

in ω and δ f =
1
∆t

in frequency. This is also
referred to as the Rayleigh criterion.
3. There is a symmetry: if the time domain is bounded, then the frequency domain is
discrete, and vice versa.
4. Consequently, if the time domain is discrete and bounded, then the frequency domain
is discrete and bounded, too.
If the time series x(t) represents a product x(t) = y(t)z(t), where

y(t) =
∞∑

n=0

aneiωnt, ωn =
2πn
∆t

(4.21)



4.3 Spectral window 46

and

z(t) =
∞∑

m=0

bmeiωmt, ωm =
2πm
∆t
, (4.22)

then x(t) is given by

x(t) =
∞∑

m=0

∞∑

n=0

anbm exp
(
2πi(m + n)

t
∆t

)
. (4.23)

Now a new index k := m + n is defined. Eq. 4.23 then re-writes as

x(t) =
∞∑

k=0

k∑

n=0

anbk−n exp
(
2πik

t
∆t

)
=

∞∑

k=0

ck exp
(
2πik

t
∆t

)
. (4.24)

with

ck =

k∑

n=0

anbk−n. (4.25)

This is defined as the convolution theorem. In terms of Fourier transforms represented by
the tilde “˜”, it writes as

( f̃ g)(ω) =

∞∫

−∞

dω′ f̃ (ω′)g̃(ω − ω′), (4.26)

i.e. the Fourier transform of the convolution of two functions is equal to the product of
the Fourier transforms. Let us consider z(t) a rectangular function

z(t) =


1 ∀t ∈ [t1, t2]
0 else.

(4.27)

The Fourier transform of the rectangular function is the sinc function sinc(ω). Therefore,
the Fourier spectrum of a continous function of time on a finite time interval is a convo-
lution of the Fourier spectrum of the corresponding function on an infinite interval with
the Fourier spectrum of the rectangular function, where the Fourier spectrum of the rect-
angular function is called the spectral window. So, even for a continuous function on a
bounded interval a spectral window exists, and also for discrete time series.

Fig. 4.3 shows the spectral windows of an equidistant time series (upper graph) and the
APT photometry of EE Cam (2006-2009) (i.e. non-equidistant sampling, lower graph).
Both have the same Nyquist frequency fν (red dashed-dotted line). One can see that
the spectrum is mirrored at this frequency. As explained before, the spectrum is unique
between 0 and fν. Fig. 4.4 and Fig. 4.5 zoom the range around f = 0 and around
f = 1. The non-equidistant time series (lower graphs) clearly shows annual as well as
daily aliases. The equidistant time series (upper graphs) consists of equidistant peaks,
where each Fourier coefficient is a root because of the orthogonality (Eq. 4.20).
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Figure 4.3: Spectral windows of an equidistant (upper) time series and the non-
equidistant (lower) time series of EE Cam. Both have the Nyquist frequency fν = 75.5 c/d
marked by the dash-dotted line. Amplitude axes have different scalings for better visibil-
ity.

4.4 Summary
Table 4.1 contains the main differences between the Fourier transform, the Fourier analy-
sis and the DFT.

Table 4.1: Summary.

f f̃
Fourier transform continuous & unbounded continuous & unbounded
Fourier analysis continuous & bounded discrete & unbounded (Fourier series)

DFT discrete (continuous &) bounded
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Figure 4.4: Spectral windows of an equidistant (upper graph) and non equidistant (lower
graph) time series focusing on frequencies around 0 c/d. Annual aliasing is present in the
non-equidistant data set. Amplitude axes have different scalings for better visibility.
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Figure 4.5: Same as Fig. 4.4 but focusing on frequencies around 1 c/d. Daily aliasing (1
cycle per siderial day, lower figure) is present in the non-equidistant data set. Amplitude
axes have different scalings for better visibility.
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4.5 Frequency-finding programs
There are many programs and algorithms that can be used to find the significant fre-
quencies, amplitudes and phases of a data series. Here, two programs and methods are
presented. I chose these two programs, because they will be used for the determination of
the best extinction correction method (see Chapter 5).

4.5.1 Period04
Period04 is a program for the analysis of astronomical time series (Lenz & Breger 2005).
It can also be applied to data sets containing gaps.

4.5.1.1 The modules and its methods

The program has an user interface and consists of three modules:

• Time string module

• Fourier module

• Fit module

4.5.1.2 Properties of the Time string module

In this module the time string data obtained during observations can be imported. Ad-
ditionally, one can split the data into subgroups, combine time strings or add other data.
The time string plot and the appropriate Fourier-Fit can be inspected.

4.5.1.3 Properties of the Fourier module

In this module a Fourier calculation is performed in order to obtain frequencies fitting
the data. This program uses a DFT algorithm. Lenz & Breger (2005) argue that FFTs
(Fast Fourier Transform) are not suitable for astronomical time string data, because of the
unequal spacing of these data.

Every step carried out can be checked or exported with the Log tab.

4.5.1.4 Properties of the Fit module

This module computes least-squares fits using the obtained frequencies. The fitting for-
mula is

A0 + ΣAi sin(2π(ωit + Φi)). (4.28)

It is also possible to calculate amplitude/phase variations, to include periodic time
shifts and to calculate the signal-to-noise-ratio of the frequencies or the noise spectrum.
The calculated noise can be higher than the uncertainty ot the measurements because of
aliasing effects and intrinsic signal below the noise level. In addition, frequencies can be
imported and the obtained frequencies exported. The goodness-of-fit can be checked by
calculating the uncertainties with a Monte Carlo simulation.
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4.5.1.5 How does it work?

For a given data set Period04 first computes an amplitude spectrum and determines the
maximum amplitude. Then one has to decide whether this frequency is significant or not.
This can be done by computing the signal-to-noise ratio, S/N, the residuals and/or the
spectral window (check for aliasing). If this frequency is regarded as significant by the
user then the sine function is prewhitened from the data set. The residuals are then used
for the next iteration, i.e. everything starts from the beginning. This will be done as long
as the amplitude S/N is ≥ 4.0, because that is, according to Breger et al. (1993), the limit
for the significance of an independent frequency. So the program, or the user who decides
whether it is wise to continue or not, stops if the significance of the maximum amplitude
is below this limit. This method provides the detected frequencies, amplitudes and phases
that can be used to identify pulsation modes.

4.5.2 SigSpec
SigSpec (Reegen 2000, 2007) is a program that focuses on the determintation of the sig-
nificance of a peak in the Discrete Fourier Transform. Unlike Period04 it has no user
interface. The data are read in and the results are written out by the program automati-
cally.

4.5.2.1 The method

By means of an analytical solution for the probability density function of white noise in
Fourier space it calculates how likely it is that a given peak amplitude is caused by noise.
This probability distribution is important, because any misinterpretation of a peak ampli-
tude will lead to inaccuracies in the subsequent analysis. The probability distribution can
be described by a Probability Density Function. The integral over this Probability Density
Function gives the False-Alarm Probability ΦFA, describing how likely it is that a peak
is an artifact. The False-Alarm Probability gets lower for higher peak amplitudes in the
spectrum, so it is less likely that a high peak is an artifact.

Reegen (2007) defines a new term called spectral significance which depends on fre-
quency, phase and amplitude in the Discrete Fourier Transform. It is the logarithm of the
inverse False-Alarm-Probability (Scargle 1982)

sig(A) = − log[ΦFA(A)]. (4.29)

The spectral significance is the number of cases in one out of which the peak is an artifact,
on a logarithmic scale. The spectral significance is the formally exact representation of
what is estimated by the S/N. If the maximum amplitude of the spectrum is above a given
limit it can be considered significant. The S/N limit of ≥ 4.0 (Breger et al. 1993) used in
Period04 corresponds to a spectral significance of 5.46. This means that the amplitude is
reliable if the probability is larger than this value. As SigSpec is a black box, the author
recommends to check the results for reliability. A peak that is regarded as significant
can still be an instrumental or atmospheric artifact instead of a description of a physical
process.
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4.5.2.2 How does it work?

This information was taken from Reegen (2000). As Period04, SigSpec performs many
iterations. It first calculates the significance spectrum based on which it determines the
peak with the maximum significance. For the corresponding frequency it calculates a
least-squares fit of the amplitude and phase. Then the sinusoidal component with the
maximum significance is prewhitened. After this, a next iteration is started. SigSpec
allows the user to choose between different outputs (after each step of prewithening): (i)
a Fourier spectrum as well as a significance spectrum (plot of spectral significance vs.
frequency); (ii) a time series that corresponds to the residuals; (iii) a file containing the
results (the identified signal components). If the significance of the maximum peak is
below a defined limit, the program exits the loop.



Chapter 5

Results

5.1 Observational details

5.1.1 Instrument
EE Cam was observed by the Vienna Automatic Photoelectric Telescope (APT, Strass-
meier et al. 1997), located in Arizona. Wolfgang, one of the two telescopes, contains a
photometer optimized for the use in the blue wavelength region and is therefore suitable
for the observations of EE Cam in the Strömgren v and y filters.

5.1.2 Observing periods
EE Cam was observed in 2006, 2007, 2008 and 2009 in four observing periods. Table
5.1 gives the beginning, end, duration and the number of data points of each observing
period. Additionally, a list of the comparison stars that were used in the distinct observing
periods is provided. In the fourth observing period C2 was exchanged after a few nights
because of suspected variability. Therefore, this observing period is referred to as OP4
(old C2) and OP4′ (new C2). A detailed list containing the HJD and the observation time
in each night is provided in Table 5.3 and 5.4.

5.1.3 Details on EE Cam and the comparison stars
As the three-star technique was used (see 2.3), two comparison stars were observed.
In OP4′ the second comparison star was replaced because of suspected variablity. All
necessary information on EE Cam (HD 37857) and the comparison stars HD 35606 and
HD 32745 (HD 37420 for OP4′) is provided in Table 5.2. Right ascensions and declina-
tions are given for the equinox 2000 and taken from the Hipparcos Catalogue (Perryman
et al. 1997). The brightness and effective temperature of EE Cam are given by Nordström
et al. (2004). The v sin i was determined by Breger et al. (2007) and the spectral type by
Olsen (1980).
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Table 5.1: Beginning, end, duration, number of data points as well as the observed com-
parison stars of the individual observing periods.

OP1 OP2 OP3 OP4 OP4′

HJD start (245 0000+) 3791 3997 4370 4728 4767
HJD end (245 0000+) 3810 4189 4566 4760 4888

number of nights 9 80 47 21 45
total time (hours) 16.2 291.1 148.1 53.3 178.4

number of data points
raw v 104 1858 886 331 1057
raw y 104 1858 890 335 1064

reduced v and y 104 1822 850 314 1027
HD 35606 C1 C1 C1 C1 C1
HD 32745 C2 C2 C2 C2 –
HD 37420 – – – – C2

Table 5.2: Information on EE Cam, HD 35606, HD 32745 and HD 37420.

Parameter EE Cam HD 35606 HD 32745 HD 37420
(V) (C1) (C2) (C2)

RA [h m s] 05 45 54.99 05 30 35.52 05 09 45.95 05 42 38.66
DEC [◦ ’ ”] +63 17 46.56 +63 57 17.87 +63 50 00.08 +61 36 10.93

Spectral type F3 F8 G0 F5
V [mag] 7.753 8.15 8.21 7.78
Teff [K] 6530 – – –

v sin i [kms−1] 40 ± 3 – – –

5.1.4 Light curves
Fig. A.1 (see Appenix) visualizes the differential light curve V – C1 obtained in v and y in
all four observing periods. When referring to four observing periods OP4 and OP4′ are
regarded as one (the fourth) observing period.
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Table 5.3: Dates and durations of the observations obtained during the first (OP1) and
second (OP2) observing period between spring 2007 and spring 2008.

HJD length HJD length HJD length HJD length
245 0000+ [h] 245 0000+ [h] 245 0000+ [h] 245 0000+ [h]

OP1 OP2
3791.6 3.30 3997.9 3.13 4077.7 2.33 4158.6 3.23
3796.7 0.80 4000.9 2.07 4079.7 1.94 4160.6 3.03
3797.6 1.18 4003.9 3.61 4080.7 2.28 4161.6 2.07
3798.6 1.82 4005.9 3.76 4081.7 7.59 4169.6 1.60
3799.6 2.78 4010.8 3.76 4084.9 0.48 4170.6 2.23
3803.6 1.50 4023.9 3.17 4090.6 6.77 4171.6 2.23
3808.6 1.60 4024.8 5.19 4093.6 5.04 4172.6 2.07
3810.6 1.82 4025.8 5.20 4094.6 6.85 4173.6 2.08

4028.8 5.51 4095.6 3.13 4174.6 1.91
4029.8 5.51 4100.6 6.88 4175.6 1.91
4030.8 5.52 4101.6 5.04 4178.6 1.28
4031.8 5.66 4102.6 6.81 4185.6 0.80
4035.8 5.84 4103.6 6.81 4187.6 0.80
4038.9 3.98 4104.6 6.96 4189.6 0.64
4048.7 2.33 4105.6 6.86
4049.7 2.33 4108.6 6.95
4050.7 2.33 4116.6 6.48
4054.7 2.33 4117.6 6.47
4055.7 2.17 4124.6 5.74
4056.7 2.33 4127.6 5.57
4057.7 2.33 4128.6 5.39
4058.7 2.33 4134.6 4.94
4059.7 2.17 4135.6 3.79
4060.7 2.17 4136.6 4.83
4061.7 2.33 4140.6 4.55
4062.7 2.33 4143.7 2.23
4064.7 2.33 4146.6 2.82
4067.7 2.17 4147.7 1.43
4069.7 2.33 4152.6 3.67
4070.7 2.17 4153.6 2.23
4071.7 2.33 4154.6 3.51
4072.7 2.23 4156.6 3.35
4074.7 2.33 4157.6 3.27
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Table 5.4: Dates and durations of the observations obtained during the third (OP3) and
fourth (OP4 & OP4′) observing period between autumn 2007 and spring 2009.

HJD length HJD length HJD length HJD length
245 0000+ [h] 245 0000+ [h] 245 0000+ [h] 245 0000+ [h]

OP3 OP4
4370.9 2.66 4516.6 4.56 4728.9 1.44 4785.8 4.47
4397.8 5.77 4523.6 4.05 4729.9 1.59 4786.8 4.47
4402 0.32 4524.6 3.94 4730.9 1.60 4787.8 5.09
4404 0.48 4530.6 2.15 4731.9 1.60 4788.8 3.71
4406 0.64 4533.6 2.81 4734.9 1.85 4789.8 4.41
4413 1.11 4536.7 1.43 4736.9 2.07 4790.8 5.10
4414 1.12 4544.6 2.04 4737.9 2.06 4800.8 5.12
4416 1.28 4550.6 1.6 4738.9 2.20 4801.8 4.63
4419 1.6 4551.6 1.59 4740.9 2.29 4810.7 5.21
4423 1.91 4553.6 1.27 4743.9 1.76 4821.7 4.55
4426 1.76 4555.6 1.12 4745.9 2.63 4822.7 4.46

4427.9 2.08 4564.6 0.64 4746.9 2.68 4830.7 4.36
4437.9 1.9 4565.6 0.48 4747.9 2.78 4831.7 0.48
4438.9 1.91 4566.6 0.48 4752.9 3.32 4832.7 3.65
4439.9 1.92 4753.9 3.29 4833.7 5.08
4459.7 6.06 4754.9 3.33 4838.7 3.32
4460.7 5.73 4755.9 3.50 4839.7 4.45
4461.7 5.7 4756.9 2.56 4840.6 4.10
4462.7 5.41 4757.9 3.66 4841.6 0.48
4465.7 6.1 4758.9 3.55 4842.6 0.48
4466.7 4.58 4760.9 3.59 4844.6 5.13
4476.6 6.11 4767.8 4.36 4846.6 5.12
4482.6 2.55 4768.8 4.03 4856.6 5.08
4483.6 5.84 4769.9 4.29 4860.6 4.91
4484.6 4.3 4770.8 4.15 4861.6 0.48
4485.6 5.64 4771.8 4.77 4862.6 0.64
4486.6 5.1 4772.8 1.75 4863.6 4.80
4502.6 4.12 4773.8 4.76 4864.6 3.67
4503.6 5.47 4774.8 3.60 4865.6 4.95
4504.6 5.38 4775.8 3.72 4873.6 4.24
4505.6 5.3 4776.8 5.11 4875.6 4.16
4508.6 5.08 4777.8 5.14 4881.6 3.55
4509.6 5.03 4778.8 5.10 4888.6 3.27
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5.2 Data reduction
The APT data output can be retrieved via internet. It contains the ID number of the
observed stars, the Julian Date without heliocentric correction, the integration time and
the measured photon counts. Peter Reegen, who is responsible for the administration
and operation of the APT, performed a standard reduction of the EE Cam photometry
according to the procedure outlined in Chapter 3. Additionally, he provided Julian Date
and instrumental magnitudes1, based on which it was my task to examine and compare
alternative extinction correction methods, as described below.

5.2.1 Heliocentric Julian Date correction
The rotation of the Earth around the Sun causes a time shift in the observed data, because
the distance between the Earth and the star varies. The Heliocentric Julian Date is the
recalculation of the Julian Date, corrected for these variations. My Fortran program is
based on the Java code ‘Heliocentric Julian Date Converter’ by Dan Bruton2 and relies on
the description provided in 3.9.1.

5.2.2 Extinction correction
Computing a linear regression in a Bouguer Diagram (magnitude vs. airmass), one can
determine the slope and the intersection point. The slope is the extinction coefficient used
to apply the extinction correction, where the intersection point denotes the brightness
of the star outside the atmosphere. There are various methods that can be used. As
my thesis mainly concentrates on the determination of the extinction coefficient, more
detailed information on this topic is provided in 5.3.

5.2.3 Interpolation
The telescope is not able to observe more than one star at the same time. Therefore, the
stars are observed at slightly different times. To avoid errors caused by this difference, an
interpolation has to be applied, where the HJD of the comparison star is interpolated to the
HJD of the object of interest. This means that the time and magnitude of the comparison
stars C1 and C2 are interpolated to those of EE Cam. For the three-star-technique the
differential light curve C1–C2 is required, too. Therefore, it is required to interpolate one
to the other. Concerning the comparison stars it is common to interpolate the fainter one
to the brighter one, i.e., here C2 is interpolated to the time of C1. The Fortran program
calculates the interpolation by a distance-weighted average (Reegen et al. 2006)

mag1(t) =
∑ mag(ti)

[t − ti]2 , (5.1)

1Photon counts, corrected for dark current and deadtime, after sky subtraction and conversion into mag-
nitudes.

2http://www.physics.sfasu.edu/astro/javascript/hjd.html
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mag2(t) =
∑ 1

[t − ti]2 , (5.2)

mag(t) =
mag1(t)
mag2(t)

, (5.3)

where ti denotes the distinct times during one night of the star (STAR 2) that is interpolated
and t is one data point in time of one night of the star (STAR 1) that is interpolated to.
The final magnitude of STAR 2 is given by mag(t). This calculation is repeated for each
data point in time t in a given night of STAR 1. It has to be repeated for each single night.
The final outputs are two sets of measurements at equal times.

5.2.4 Differential light curves
Now, the differential light curves V – C1, V – C2 and C1 – C2 can be computed. This is
the concept of the three-star-technique. With differential light curves one can examine the
variability of the comparison stars. C1 – C2 should be a constant value if the comparison
stars are not variable. The examination of C1 – C2 using HD 35606 and HD 32745, re-
spectively revealed variability. Breger et al. (2007) found that C2 is a long-term variable.
A variable comparison star eliminates the final use of the three-star-technique and the data
reduction has to solely rely on C1. But nevertheless the differential light curve C1 – C2
can still be used to check the significance of individual data points.

5.2.5 Elimination of individual data points
First, one or two frequencies of the differential light curve C1 – C2 have to be calculated
using Period04 or SigSpec. Afterwards it is possible to plot the residuals of the least-
squares-fitting-method. Upper and lower values for the residuals can be defined. All
points beyond these boundaries are candidates for elimination. But, of course, it is still
necessary to have a look at the differential light curve V – C1 and to decide on rejection
for each single data point. This has to be done for each filter. It needs to be emphasized
that only extremely deviant points are eliminated and no statistical bias is introduced.

5.2.6 Frequency analysis
Once there is a set of differential light curves available, the next step is the determination
of frequencies, amplitudes and phases of the signal components intrinsic to the star. The
frequency analysis of the obtained EE Cam data was performed with Period04 (Lenz &
Breger 2005) as well as SigSpec (Reegen 2007). The results are presented and discussed
in 5.5. Note that the frequency analysis was only performed for the first three observing
periods and the best extinction correction.
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5.2.7 Restrictions
5.2.7.1 Variability of comparison stars

As already mentioned before, the three-star technique cannot be applied if one or both
comparison stars are variable. Therefore, a careful examination of the variability is cru-
cial. If one of the comparison stars is variable, the whole reduction process has to be
remade relying on the constant comparison star only.

5.2.7.2 Airmass

In order to obtain an accurate extinction coefficient for one night, the observations should
cover a sufficiently wide range of airmasses. Note that too high airmasses lower the
accuracy. In most cases a wide airmass interval can be realized by observing several
hours per night. But with the APT only airmasses below 2 (Strassmeier et al. 1997)
are available in the northern hemisphere. In the case of EE Cam, most of the nights
have airmass intervals ≤ 0.5. As this reduces the accuracy of the extinction coefficient
determination, a detailed inspection is crucial (see 5.3).

5.2.7.3 Time base

As the time base during one night is correlated with the accurancy of the extinction coef-
ficient determination, the observation should be as long as possible. But there are several
factors that can limit the time base, such as weather conditions, limited observing time on
the telescope, observability of the star, etc. To get a good accuracy, the observation length
should, in the present case, preferably be ≥ 4 hours per night. As one can see from Tables
5.3 and 5.4, only 38 % of the nights have observations for more than 4 hours. The fourth
observing period was the best with a time base ≥ 4 hours for 48% of the nights.

5.3 Determination of the appropriate extinction coeffi-
cient

Atmospheric extinction is the reduction of radiation intensity due to scattering and, to a
lower extent, absorption. The different sizes of the scattering bodies in the atmosphere
lead to a change in the wavelength dependence of the scattering. Due to this wavelength
dependence the v filter is much more sensitive to extinction than the y filter, because the
mean extinction is higher at 410 nm (central wavelength of v filter) than at 550 nm (central
wavelength of y filter).

As the atmosphere of the Earth is not constant during one night, the extinction varies.
Even in clear nights the peak-to-peak variation of the extinction caused mainly by scatter-
ing ranges from 0.2 to 0.3 mag per unit airmass (Rufener 1986). To correct these effects,
ground-based measurements have to be transformed to values that would have been ob-
tained outside the Earth’s atmosphere. This can be achieved by means of a Bouguer
diagram: plotting magnitudes Mobs versus airmass X, there should be a linear correlation
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between the data points of one night. A linear fit reveals the extinction coefficient k (slope)
and the stellar brightness outside the atmosphere M0 (intercept).

It is common to use one extinction coefficient per night. Sometimes, having few
data points, a short observation or a small airmass interval, it is common to use the mean
extinction coefficient of one night before and afterwards. The EE Cam data contain almost
solely nights with very narrow airmass intervals and time bases ≤ 4 h per night.

It is not possible to know a priori whether the extinction coefficients k are really vari-
able from night to night. The observed variations in k may be caused by instrumental
effects or may depend on the short time base. Therefore several methods (A - D), de-
scribed in the next subsections, were tested.

5.3.1 Individual extinction coefficients – Method A
The atmospheric extinction should constant during one observing night. Therefore, it
is reasonable to use one constant extinction coefficient individually determined for each
night (referred to as individual extinction coefficients). This is the common method for
the extinction correction.

The calculated individual extinction coefficients for the EE Cam observations are given
in Table A.1 (see Appendix).

5.3.2 Constant intersection points – Method B
Assuming a perfect set of data, the extinction coefficient should be vary from night to night
(because of different atmospheric conditions). However, the brightness of the star outside
the atmosphere, i.e. the intersection point of the Bouguer graph, should be constant. Since
no data set is perfect, the intersection points may change slightly from night to night. It
has to be examined whether this scatter stil permits an accurate extinction correction.

This method is applied according to the following steps.

• Step 1: The individual extinction coefficient can be determined by Mobs = kX +
M0, where Mobs denotes the observed magnitude, X the calculated airmass, k the
extinction coefficient and M0 the intersection point. The atmospheric extinction is
characterized by a pair of an extinction coefficient and an intersection point for each
night. The first step is to calculate the average of all intersection points of the first
comparison star C1 in both filters. If two constant comparison stars were available,
the same had to be done for C2.

• Step 2: The average intersection point is then subtracted from the observed magni-
tudes Mobs of C1 (and eventually C2). The result is denoted Mdiff .

• Step 3: The outputs are data sets of C1 and C2 containing the calculated airmass X
and Mdiff . From these the extinction coefficient knew can be derived by

knew =

∑
XMdiff∑

X2 . (5.4)
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Having two constant comparison stars, the extinction coefficient is derived by cal-
culating the mean value of kC1 and kC2. The obtained extinction coefficients are
listed in Table A.1 (see Appendix).

• Step 4: The extinction correction described in 3.7.3 can now be applied, where the
value knewX is subtracted from the observed magnitudes Mobs of EE Cam, C1 and
C2 in both filters.

5.3.3 Constant extinction coefficients – Method C
Since the observing length of the EE Cam data are rather short, it is not clear if indi-
vidual extinction coefficients are the best choice. Therefore, an analysis with constant
extinction coefficients was performed to check if these would yield better results. In one
observing period the extinction coefficient should not change significantly, if the atmo-
spheric conditions remain the same. One constant extinction coefficient was calculated
for each observing period and each filter. For the determination of this coefficient the
point weighted average of all extinction coefficients derived in 5.3.1, belonging to nights
with more than 9 data points, was calculated. The derived coefficients are listed in Table
A.1 (see Appendix).

5.3.4 Combination of constant and individual extinction coefficients
– Method D

Normally, individual extinction coefficients are used. It is possible that a constant coef-
ficient has to be used for a number of nights. This coefficient is usually the average of
the coefficients derived for one night before and afterwards. But also average coefficients
over the entire observing period can be used (see 5.3.3). Another possiblility is to use
extinction coefficients derived from other measurements. This is only possible if the mea-
surements were taken during the same night as well as with the same instrument. In the
case of EE Cam, some nights are shared with Gerald Handler, who observed other stars
on the APT and whose measurements cover a longer time base.

According to Fig. 5.1, coefficients belonging to nights shorter than 4 hours tend to
larger variations (0.342 ± 0.088) than coefficients belonging to longer nights (0.329 ±
0.049). Therefore, for nights ≤ 4 hours a constant extinction coefficient (derived in 5.3.3)
was used to correct the EE Cam data for extinction. If a coefficient obtained from mea-
surements of other stars in the same night was available and if the time base was ≥ 4
hours, this coefficient was used instead. A detailed list of the chosen coefficients is given
in Table A.1 (see Appendix).

5.3.5 Further topics
5.3.5.1 Dependence of the extinction coefficient on dust

As the APT is located in the Sonoran desert, the measurements are possibly contaminated
by dust effects. This dust descends in the atmosphere during the night and affects mainly
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Figure 5.1: Determined extinction coefficients for EE Cam in v plotted versus length of
the observations. The dots represent the individual coefficients obtained during all four
observing periods. The black dashed line marks the limit of 4 hours. The red and blue
boxes refer to the standard deviations of extinction coefficients for short and long nights,
respectively.

the first hours of observation. This results in different extinction coefficients depending on
the part of the night. To study the effects due to dust, observations covering several hours
per night, especially including the beginning of the night, are required. Unfortunately,
most of the EE Cam photometry was performed in the middle and towards the end of
the night. Thus, only a few nights were useful for this investigation. In these nights,
the extinction coefficients of ascending vs. descending stars do not show a significant
trend, which is considered evidence against dust contamination. Given the low number
of suitable nights, the responsibility of dust variations for the higher residuals (see Table
5.5) in the v filter cannot be confirmed.

5.3.5.2 Dependence of the extinction coefficient on seasons

The extinction coefficient may show seasonal changes due to weather conditions (e.g.
temperature, humidity). In Fig. 5.2 the EE Cam data show a slight correlation between
the seasons and the distribution of the extinction coefficients.
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Figure 5.2: Dependence of the extinction coefficient on seasons. The color-coding refers
to the derived extinction coefficients in v in spring, autumn and winter from 2006 to 2009.
The black line displays the linear dependence of the coefficient in the second observing
period.

5.4 Which extinction coefficient is correct?
The results from each method A – D obtained in 5.3 were used to check which extinction
coefficients give the best results. Two independent tests were performed with Period04
and SigSpec respectively.

5.4.1 First test: Residual light curves of EE Cam
For each method A – D a frequency analysis was performed with Period04 using the
data of OP1, OP2 and OP3 together. The resulting fit will be slightly different for these
methods. By examining the residuals ri with i = 1, ...,N between the measurements and
the fit it is possible to decide which method works best, i.e., the method with the lowest
average residuals rav defined as

rav =

√∑
r2

i

N
, (5.5)
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according to the error propagation law. The average value of the observed residuals in
both filters for all four methods is given in Table 5.5 and a list of all residuals in the y filter
is provided in Table A.2 (see Appendix). The average values are higher than predicted by
the photon statistics. Breger et al. (2007) state that this is due to unresolved frequencies.
The power spectrum of the residuals (see Fig. 5.6) clearly shows an excess between 3 and
15 c/d that is likely to be caused by such unresolved frequencies.

One can see from Table 5.5 that the lowest average residuals are obtained when using
Method D. To confirm this choice, another frequency analysis was carried out with the
data of the fourth observing period (see Table 5.5). The average residuals are almost the
same for all methods, Method D being slightly better. This confirms the results obtained
for the first three observing periods.

A detailed frequency analysis was performed for the method that revealed the best rms
residuals. Results are provided in 5.5.

Table 5.5: Average residuals determined for all four methods in both filters. The residuals
were determined by performing a frequency analysis of the data obtained in the first,
second and third observing period. A separate analysis was performed for the data of the
fourth observing period.

Filter Method A Method B Method C Method D
Average Residuals [mag] y 5.641 5.493 5.343 5.115

OP1, OP2, OP3 v 8.069 7.818 7.747 7.474
Average Residuals [mag] y 5.482 5.501 5.496 5.488

OP4 v 7.808 7.852 7.764 7.754

5.4.2 Second test: Cycle-per-day periodicities
The correct extinction correction for the constant comparison stars would produce a hor-
izontal line in the time domain. An erroneous extinction correction can lead to cycle-
per-day periodicities in the amplitude spectrum. Imagine a data set with an erroneous
extinction correction. The light curves of the comparison stars will look like a sinusoidal
bump in each night showing a peak at 1 c/d. Depending on the deviation of the used ex-
tinction coefficient from the ”real” one, the bump in the light curve may be sharp enough
to produce additional peaks at integer multiples of 1 c/d. Fig. 5.3 displays the data of
one night of C1 without extinction correction (red dots). The star was observed for 5.6
hours. A frequency analysis yields a frequency of 3 c/d (black line). Calculating the
significances of these cycle-per-day periodicities is a good test for the determination of
the best extinction coefficient, the method with the lowest significances. The advantage
of this method is that it works even in case of intrinsic variabilities if their frequencies
are not too close to the cycle-per-day multiples considered here. Even in such a case the
examination of these peaks provides reasonable information, if one relies on a reference
method and examines the deviations in the spectra from the reference spectrum.
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Figure 5.3: Observed data points (red dots) without extinction correction of C1 for one
night. A frequency analysis yielded a 3 c/d periodicity (black curve). The red dashed-
dotted lines mark the one day span.

Spectral significances of the 1 c/d aliases were calculated applying SigSpec to Meth-
ods A, B and C. The differential light curve V – C1 for each method was split into two
sets: one containing the nights with a time base shorter than 4 hours and the other one
containing the nights longer than 4 hours. Method D (individual as well as constant co-
efficients) was not used, because it corresponds to Method C (constant coefficients) in
short and Method A (variable) in long nights and would therefore give the same results.
The method with the lowest average significance can be considered as the best one. The
resulting significances of Method A were subtracted from the significances of the other
methods in order to provide a better comparison. Negative values denote a lower signifi-
cance than in Method A (namely Method A is worse) and positive values denote a higher
significance than in Method A (namely Method A is better). Fig. 5.4 shows the results
obtained using the data of OP1, OP2 and OP3. Fig. 5.5 visualizes the results of OP4.
Additionally, for the purpose of clarity, each graph contains a box showing the average
value of the data plotted in the graph. The lowest average value indicates the best method.

The upper graph in Fig. 5.4 clearly shows that for long nights it is better to use indi-
vidual extinction coefficients. The lower graph suggests to use constant extinction coef-
ficients for short nights. In both graphs of Fig. 5.5 the average significance is almost the
same for all methods. Period04 yielded exactly the same results. The circumstance that
in the fourth observing period all methods are equal can be explained by the comparison
stars: as in this observing period both comparison stars are constant and could be used to
reduce the data, an improved accuracy in the determination of the extinction coefficient
was achieved.
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Figure 5.4: Upper graph: Comparison of Methods A, B and C for OP1, OP2 and OP3
using significances determined with a frequency spacing of 1 c/d and for nights with
observations longer 4 hours. The significance of Method A was subtracted from the sig-
nificances of Methods B and C. The average value is given in the right corner of each
graph. The lower average value denotes the better method. Lower graph: same as upper
graph but for nights with observations shorter 4 hours.
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Figure 5.5: Upper graph: Comparison of Methods A, B and C for OP4 using significances
determined with a frequency spacing of 1 c/d and for nights with observations longer 4
hours. The significance of Method A was subtracted from the significances of Methods
B and C. The average value is given in the right corner of each graph. The lower average
value denotes the better method. Lower graph: same as upper graph but for nights with
observations shorter 4 hours.
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5.5 Discussion
The aim of this work was to find the best extinction correction for the photometry of
EE Cam by the Vienna APT. As can be seen in Tables 5.5 and Fig. 5.4, it is best to use both
constant and individual extinction coefficients (Method D). A detailed frequency analysis
was performed by combining the data obtained in the first, second and third observing
period. The frequency analysis of the fourth observing period as well as an astrophysical
interpretation of all observing periods are still outstanding, but are not subject of this
work. Further investigation on the seasonal dependence of the extinction coefficients
could be interesting. Instead of using a single, constant coefficient for a whole observing
period, it may be considered a linear function of Julian Day Number, according to the
linear regression in Fig. 5.2.

A frequency analysis was performed with Period04 as well as SigSpec. Only frequen-
cies that are found by both computer programs were considered significant. Concerning
Period04, the data have been checked for daily and annual aliasing (i.e. 1 c/d as well as
0.0027 c/d). Table 5.6 contains the significant3 frequencies, their signal-to-noise ratio
obtained with Period04 and their significance obtained with SigSpec. The corresponding
power spectra obtained with Period04 are displayed in Fig. 5.6. The excess power, visible
as a bump in the 16-frequency solution, suggests that more frequencies are present, but
yet below the detection limit.

Table 5.6: Detected frequencies of EE Cam in the y filter. The signal-to-noise ratio was
calculated using ±2 c/d frequency ranges. The error of the y filter amplitude is ±0.0001.

ID Frequency [c/d] Detection S/N sig y filter Amplitude [mag] Notes
F1 4.934 126.8 407.73 0.0363
F2 5.214 68.2 367.44 0.0201
F3 8.333 20.1 101.86 0.0072
F4 9.839 15.4 104.78 0.0058
F5 4.938 14.9 71.50 0.0043
F6 8.456 13.3 71.33 0.0047
F7 4.765 10.2 46.15 0.0029
F8 7.905 9.5 49.56 0.0033
F9 9.867 7.9 52.97 0.0030 2F1

F10 10.147 7.7 53.93 0.0029 F1+F2
F11 8.266 7.2 36.18 0.0026
F12 9.476 7.0 45.04 0.0026
F13 7.666 6.4 32.86 0.0022
F14 8.512 5.8 29.37 0.0021
F15 6.204 5.7 28.42 0.0018
F16 10.318 4.0 24.32 0.0016

3Detection limit signal-to-noise ratio ≥ 4 (Breger et al. 1993). This corresponds to a power signal-to-
noise ratio of 12.6 (Horne & Baliunas 1986, Reegen 2007).
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Figure 5.6: Top panel: power spectrum of EE Cam. Mid panels: after subtracting the first
2, 4, 6, 9 and 12 frequencies, respectively. The spectral window (small panel in top panel)
clearly shows a 1 c/d aliasing pattern. Bottom panel: Residual spectrum after subtraction
of 16 frequencies.
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Appendix

A.1 Tables

A.1.1 Extinction coefficients

Table A.1: Determined extinction coefficients in mag per airmass in the v and y filter using different
methods (A: individual k, B: constant intersection points, C: constant k, D: constant and individual
k).

HJD Methods
(245 0000+) A B C D

kv ky kv ky kv ky kv ky

3791.7 0.167 0.372 0.054 0.254 0.146 0.337 0.146 0.337
3796.7 0.100 0.249 0.083 0.304 0.146 0.337 0.146 0.337
3797.6 0.131 0.268 0.037 0.234 0.146 0.337 0.146 0.337
3798.7 0.124 0.351 0.044 0.237 0.146 0.337 0.146 0.337
3799.7 0.151 0.325 0.051 0.252 0.146 0.337 0.146 0.337
3803.7 0.079 0.281 0.074 0.261 0.146 0.337 0.146 0.337
3805.6 0.514 0.808 0.085 0.289 0.146 0.337 0.146 0.337
3808.7 0.182 0.382 0.047 0.246 0.146 0.337 0.146 0.337
3810.6 0.184 0.327 0.065 0.268 0.146 0.337 0.146 0.337
3998.0 0.136 0.329 0.126 0.320 0.151 0.343 0.140 0.343
4001.0 0.234 0.477 0.128 0.314 0.151 0.343 0.151 0.343
4003.9 0.163 0.361 0.146 0.342 0.151 0.343 0.133 0.343
4005.9 0.178 0.380 0.140 0.337 0.151 0.343 0.151 0.343
4010.9 0.140 0.332 0.174 0.388 0.151 0.343 0.151 0.343
4024.0 0.187 0.462 0.173 0.361 0.151 0.343 0.151 0.343
4024.9 0.158 0.354 0.159 0.344 0.151 0.343 0.158 0.354
4025.9 0.136 0.324 0.157 0.343 0.151 0.343 0.136 0.324
4028.9 0.137 0.327 0.160 0.347 0.151 0.343 0.137 0.327
4029.9 0.130 0.317 0.161 0.350 0.151 0.343 0.130 0.317
4030.9 0.136 0.320 0.166 0.357 0.151 0.343 0.136 0.320
4031.9 0.127 0.320 0.162 0.353 0.151 0.343 0.127 0.320

Continued on next page
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Table A.1 – continued
HJD Methods

(245 0000+) A B C D
kv ky kv ky kv ky kv ky

4035.9 0.154 0.355 0.173 0.364 0.151 0.343 0.154 0.355
4039.0 0.191 0.424 0.175 0.362 0.151 0.343 0.151 0.343
4048.8 0.154 0.332 0.178 0.364 0.151 0.343 0.151 0.343
4049.8 0.176 0.382 0.179 0.368 0.151 0.343 0.151 0.343
4050.8 0.179 0.380 0.189 0.379 0.151 0.343 0.151 0.343
4054.8 0.134 0.317 0.176 0.361 0.151 0.343 0.151 0.343
4055.8 0.146 0.340 0.179 0.368 0.151 0.343 0.151 0.343
4056.8 0.117 0.291 0.175 0.359 0.151 0.343 0.151 0.343
4057.8 0.134 0.317 0.179 0.367 0.151 0.343 0.151 0.343
4058.8 0.150 0.348 0.182 0.370 0.151 0.343 0.151 0.343
4059.8 0.131 0.304 0.187 0.376 0.151 0.343 0.151 0.343
4060.8 0.149 0.347 0.198 0.393 0.151 0.343 0.151 0.343
4061.8 0.147 0.350 0.199 0.393 0.151 0.343 0.151 0.343
4062.8 0.152 0.343 0.195 0.387 0.151 0.343 0.151 0.343
4064.8 0.144 0.343 0.195 0.387 0.151 0.343 0.151 0.343
4067.7 0.083 0.280 0.204 0.386 0.151 0.343 0.151 0.343
4069.7 0.198 0.389 0.221 0.409 0.151 0.343 0.151 0.343
4070.7 0.133 0.324 0.203 0.390 0.151 0.343 0.151 0.343
4071.7 0.152 0.341 0.199 0.385 0.151 0.343 0.151 0.343
4072.7 0.124 0.320 0.204 0.391 0.151 0.343 0.151 0.343
4074.7 0.129 0.320 0.132 0.319 0.151 0.343 0.151 0.343
4077.7 0.200 0.399 0.145 0.336 0.151 0.343 0.151 0.343
4079.7 0.105 0.262 0.143 0.334 0.151 0.343 0.151 0.343
4080.7 0.148 0.352 0.149 0.335 0.151 0.343 0.151 0.343
4081.8 0.175 0.381 0.151 0.340 0.151 0.343 0.175 0.381
4084.9 0.045 0.343 0.161 0.369 0.151 0.343 0.151 0.343
4086.8 0.156 0.354 0.185 0.414 0.151 0.343 0.156 0.354
4090.8 0.147 0.350 0.159 0.349 0.151 0.343 0.147 0.350
4093.7 0.183 0.382 0.157 0.331 0.151 0.343 0.183 0.382
4094.8 0.147 0.343 0.146 0.332 0.151 0.343 0.147 0.343
4095.7 0.129 0.321 0.143 0.338 0.151 0.343 0.151 0.343
4100.8 0.185 0.403 0.152 0.333 0.151 0.343 0.185 0.403
4101.7 0.116 0.302 0.147 0.358 0.151 0.343 0.116 0.302
4102.7 0.137 0.353 0.171 0.360 0.151 0.343 0.137 0.353
4103.7 0.156 0.373 0.172 0.329 0.151 0.343 0.156 0.373
4104.7 0.132 0.320 0.147 0.327 0.151 0.343 0.132 0.320
4105.7 0.136 0.338 0.145 0.377 0.151 0.343 0.136 0.338
4108.7 0.230 0.432 0.193 0.349 0.151 0.343 0.230 0.432
4116.7 0.158 0.364 0.162 0.361 0.151 0.343 0.158 0.364
4117.7 0.150 0.353 0.172 0.354 0.151 0.343 0.150 0.353
4124.7 0.129 0.315 0.170 0.361 0.151 0.343 0.129 0.315
4127.7 0.146 0.333 0.173 0.353 0.151 0.343 0.146 0.333

Continued on next page
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Table A.1 – continued
HJD Methods

(245 0000+) A B C D
kv ky kv ky kv ky kv ky

4128.7 0.178 0.342 0.169 0.356 0.151 0.343 0.178 0.342
4134.7 0.156 0.327 0.173 0.346 0.151 0.343 0.156 0.327
4135.7 0.139 0.305 0.164 0.342 0.151 0.343 0.151 0.343
4136.7 0.132 0.308 0.157 0.362 0.151 0.343 0.132 0.308
4140.7 0.150 0.302 0.171 0.375 0.151 0.343 0.150 0.302
4143.7 0.121 0.299 0.183 0.349 0.151 0.343 0.151 0.343
4146.7 0.269 0.539 0.145 0.321 0.151 0.343 0.151 0.343
4147.7 0.092 0.235 0.129 0.315 0.151 0.343 0.151 0.343
4152.7 0.050 0.229 0.130 0.316 0.151 0.343 0.151 0.343
4153.6 0.025 0.100 0.126 0.306 0.151 0.343 0.151 0.343
4154.7 0.170 0.348 0.118 0.316 0.151 0.343 0.151 0.343
4156.7 0.179 0.348 0.128 0.309 0.151 0.343 0.151 0.343
4157.7 0.123 0.285 0.121 0.313 0.151 0.343 0.151 0.343
4158.7 0.116 0.291 0.125 0.317 0.151 0.343 0.151 0.343
4160.7 0.172 0.332 0.132 0.326 0.151 0.343 0.151 0.343
4161.7 0.314 0.456 0.139 0.351 0.151 0.343 0.151 0.343
4169.7 0.148 0.304 0.157 0.358 0.151 0.343 0.151 0.343
4170.7 0.126 0.333 0.162 0.346 0.151 0.343 0.151 0.343
4171.7 0.125 0.303 0.156 0.347 0.151 0.343 0.151 0.343
4172.6 0.190 0.390 0.153 0.341 0.151 0.343 0.151 0.343
4173.6 0.103 0.275 0.152 0.333 0.151 0.343 0.151 0.343
4174.6 0.142 0.297 0.144 0.336 0.151 0.343 0.151 0.343
4175.6 0.183 0.365 0.146 0.365 0.151 0.343 0.151 0.343
4185.6 0.161 0.326 0.206 0.422 0.151 0.343 0.151 0.343
4187.6 0.264 0.417 0.174 0.371 0.151 0.343 0.151 0.343
4189.6 0.111 0.319 0.194 0.381 0.151 0.343 0.151 0.343
4370.9 0.194 0.411 0.109 0.313 0.148 0.333 0.148 0.333
4397.9 0.127 0.322 0.103 0.298 0.148 0.333 0.127 0.322
4402.0 0.012 0.534 0.127 0.324 – 0.333 0.148 0.333
4404.0 0.027 0.246 0.127 0.324 0.148 0.333 0.143 0.334
4406.0 0.090 0.330 0.115 0.309 0.148 0.333 0.130 0.317
4413.0 0.061 0.235 0.143 0.352 0.148 0.333 0.148 0.333
4414.0 0.123 0.317 0.141 0.347 0.148 0.333 0.148 0.333
4416.0 0.160 0.383 0.128 0.323 0.148 0.333 0.136 0.319
4419.0 0.109 0.314 0.128 0.321 0.148 0.333 0.148 0.333
4423.0 0.138 0.350 0.137 0.332 0.148 0.333 0.132 0.315
4426.0 0.144 0.327 0.143 0.341 0.148 0.333 0.148 0.333
4428.0 0.077 0.241 0.147 0.341 0.148 0.333 0.175 0.370
4438.0 0.126 0.324 0.132 0.322 0.148 0.333 0.130 0.315
4439.0 0.138 0.309 0.128 0.319 0.148 0.333 0.121 0.307
4440.0 0.118 0.306 0.130 0.319 0.148 0.333 0.124 0.306
4459.8 0.152 0.318 0.157 0.341 0.148 0.333 0.152 0.318

Continued on next page
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Table A.1 – continued
HJD Methods

(245 0000+) A B C D
kv ky kv ky kv ky kv ky

4460.8 0.111 0.324 0.165 0.352 0.148 0.333 0.111 0.324
4461.8 0.210 0.386 0.178 0.365 0.148 0.333 0.210 0.386
4462.8 0.117 0.295 0.168 0.346 0.148 0.333 0.117 0.295
4465.8 0.138 0.323 0.164 0.348 0.148 0.333 0.138 0.323
4466.8 0.125 0.301 0.166 0.354 0.148 0.333 0.125 0.301
4476.8 0.136 0.323 0.162 0.346 0.148 0.333 0.136 0.323
4482.7 0.175 0.365 0.201 0.392 0.148 0.333 0.148 0.333
4483.8 0.117 0.290 0.200 0.391 0.148 0.333 0.117 0.290
4484.7 0.111 0.289 0.203 0.400 0.148 0.333 0.111 0.289
4485.7 0.126 0.303 0.106 0.293 0.148 0.333 0.126 0.303
4486.7 0.206 0.373 0.113 0.305 0.148 0.333 0.206 0.373
4502.7 0.187 0.340 0.109 0.296 0.148 0.333 0.187 0.340
4503.7 0.133 0.310 0.100 0.285 0.148 0.333 0.133 0.310
4504.7 0.132 0.307 0.097 0.281 0.148 0.333 0.132 0.307
4505.7 0.134 0.317 0.096 0.283 0.148 0.333 0.134 0.317
4508.7 0.231 0.435 0.111 0.296 0.148 0.333 0.231 0.435
4509.7 0.159 0.346 0.108 0.293 0.148 0.333 0.159 0.346
4516.7 0.164 0.358 0.109 0.298 0.148 0.333 0.164 0.358
4523.7 0.144 0.328 0.105 0.295 0.148 0.333 0.144 0.328
4524.7 0.134 0.325 0.107 0.297 0.148 0.333 0.148 0.333
4530.7 0.143 0.361 0.120 0.312 0.148 0.333 0.148 0.333
4533.7 0.214 0.389 0.132 0.322 0.148 0.333 0.148 0.333
4536.7 0.165 0.386 0.146 0.344 0.148 0.333 0.148 0.333
4544.7 0.136 0.339 0.142 0.336 0.148 0.333 0.148 0.333
4550.7 0.173 0.395 0.180 0.385 0.148 0.333 0.148 0.333
4551.7 0.150 0.353 0.165 0.365 0.148 0.333 0.148 0.333
4553.7 0.223 0.432 0.162 0.360 0.148 0.333 0.148 0.333
4555.7 0.170 0.384 0.161 0.356 0.148 0.333 0.148 0.333
4564.6 0.152 0.259 0.190 0.384 0.148 0.333 0.148 0.333
4565.6 0.248 0.417 0.220 0.419 0.148 0.333 – 0.333
4566.6 0.201 0.302 0.223 0.418 0.148 0.333 – 0.333
4728.9 0.236 0.494 0.123 0.325 0.140 0.328 0.140 0.328
4729.9 0.206 0.346 0.136 0.343 0.140 0.328 0.140 0.328
4730.9 0.142 0.344 0.125 0.329 0.140 0.328 0.140 0.328
4731.9 0.146 0.377 0.123 0.323 0.140 0.328 0.140 0.328
4734.9 0.123 0.312 0.147 0.358 0.140 0.328 0.140 0.328
4736.9 0.190 0.428 0.133 0.338 0.140 0.328 0.140 0.328
4737.9 0.142 0.337 0.156 0.372 0.140 0.328 0.140 0.328
4738.9 0.128 0.320 0.182 0.419 0.140 0.328 0.140 0.328
4740.9 0.252 0.507 0.226 0.485 0.140 0.328 0.140 0.328
4743.9 0.278 0.565 0.124 0.316 0.140 0.328 0.140 0.328
4745.9 0.189 0.388 0.127 0.314 0.140 0.328 0.140 0.328

Continued on next page
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Table A.1 – continued
HJD Methods

(245 0000+) A B C D
kv ky kv ky kv ky kv ky

4746.9 0.175 0.341 0.129 0.319 0.140 0.328 0.140 0.328
4747.9 0.034 0.167 0.124 0.316 0.140 0.328 0.140 0.328
4752.9 0.108 0.324 0.141 0.335 0.140 0.328 0.140 0.328
4753.9 0.248 0.469 0.141 0.338 0.140 0.328 0.140 0.328
4754.9 0.195 0.414 0.132 0.327 0.140 0.328 0.140 0.328
4755.9 0.154 0.334 0.125 0.314 0.140 0.328 0.140 0.328
4756.9 0.133 0.394 0.125 0.317 0.140 0.328 0.140 0.328
4757.9 0.110 0.274 0.128 0.322 0.140 0.328 0.140 0.328
4758.9 0.177 0.371 0.132 0.325 0.140 0.328 0.140 0.328
4760.9 0.091 0.239 0.136 0.333 0.140 0.328 0.140 0.328
4767.8 0.081 0.244 0.163 0.363 0.140 0.328 0.081 0.244
4768.8 0.091 0.226 0.161 0.361 0.140 0.328 0.091 0.226
4769.9 0.257 0.496 0.193 0.408 0.140 0.328 0.257 0.496
4770.8 0.255 0.497 0.190 0.407 0.140 0.328 0.255 0.497
4771.8 0.131 0.343 0.166 0.370 0.140 0.328 0.131 0.343
4772.8 0.190 0.385 0.166 0.368 0.140 0.328 0.140 0.328
4773.8 0.186 0.363 0.142 0.332 0.140 0.328 0.186 0.363
4774.8 0.143 0.339 0.157 0.352 0.140 0.328 0.140 0.328
4775.8 0.199 0.403 0.149 0.336 0.140 0.328 0.140 0.328
4776.8 0.101 0.295 0.142 0.328 0.140 0.328 0.101 0.295
4777.8 0.132 0.311 0.135 0.320 0.140 0.328 0.132 0.311
4778.8 0.117 0.296 0.140 0.328 0.140 0.328 0.117 0.296
4785.8 0.132 0.280 0.155 0.348 0.140 0.328 0.132 0.280
4786.8 0.109 0.291 0.157 0.344 0.140 0.328 0.109 0.291
4787.8 0.127 0.320 0.167 0.358 0.140 0.328 0.127 0.320
4788.8 0.148 0.341 0.155 0.345 0.140 0.328 0.140 0.328
4789.8 0.149 0.351 0.169 0.362 0.140 0.328 0.149 0.351
4790.8 0.142 0.346 0.167 0.360 0.140 0.328 0.142 0.346
4800.8 0.139 0.321 0.110 0.289 0.140 0.328 0.139 0.321
4801.8 0.109 0.302 0.107 0.288 0.140 0.328 0.109 0.302
4810.7 0.098 0.249 0.129 0.306 0.140 0.328 0.098 0.249
4821.7 0.089 0.284 0.114 0.297 0.140 0.328 0.089 0.284
4822.7 0.123 0.297 0.113 0.295 0.140 0.328 0.123 0.297
4830.7 0.122 0.284 0.121 0.303 0.140 0.328 0.122 0.284
4831.7 0.139 0.330 0.121 0.305 0.140 0.328 0.140 0.328
4832.7 0.122 0.290 0.128 0.308 0.140 0.328 0.140 0.328
4833.7 0.114 0.303 0.129 0.311 0.140 0.328 0.114 0.303
4838.7 0.033 0.241 0.122 0.301 0.140 0.328 0.140 0.328
4839.7 0.133 0.287 0.117 0.297 0.140 0.328 0.133 0.287
4840.6 0.134 0.326 0.120 0.300 0.140 0.328 0.134 0.326
4841.6 0.057 0.224 0.135 0.319 0.140 0.328 0.140 0.328
4842.6 0.180 0.395 0.133 0.315 0.140 0.328 0.140 0.328
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Table A.1 – continued
HJD Methods

(245 0000+) A B C D
kv ky kv ky kv ky kv ky

4844.6 0.162 0.353 0.133 0.312 0.140 0.328 0.162 0.353
4846.6 0.136 0.332 0.134 0.316 0.140 0.328 0.136 0.332
4856.6 0.148 0.341 0.133 0.315 0.140 0.328 0.148 0.341
4860.6 0.148 0.330 0.144 0.329 0.140 0.328 0.148 0.330
4861.6 0.117 0.332 0.151 0.339 0.140 0.328 0.140 0.328
4862.6 0.160 0.323 0.161 0.353 0.140 0.328 0.140 0.328
4863.6 0.138 0.316 0.168 0.360 0.140 0.328 0.138 0.316
4864.6 0.046 0.223 0.154 0.340 0.140 0.328 0.140 0.328
4865.6 0.131 0.322 0.148 0.331 0.140 0.328 0.131 0.322
4873.6 0.143 0.325 0.138 0.316 0.140 0.328 0.143 0.325
4875.6 0.083 0.166 0.158 0.343 0.140 0.328 0.083 0.166
4881.6 0.135 0.334 0.179 0.370 0.140 0.328 0.140 0.328
4888.6 0.120 0.304 0.148 0.330 0.140 0.328 0.140 0.328

A.1.2 Observed residuals

Table A.2: Observed residuals in mag between measurements and multisine fit for the first, second
and third observing period in the y filter.

HJD Methods Notes
(245 000)+ A B C D

3792 5.970 5.711 5.885 5.848
3797 4.724 5.588 3.965 3.466
3798 4.511 5.617 4.312 4.220
3799 4.048 4.396 4.362 4.040
3800 4.913 4.294 5.312 5.119
3804 4.085 4.453 3.200 3.606
3806 6.993 4.099 3.727 3.580
3809 7.106 6.286 6.795 6.254
3811 6.867 8.839 7.932 7.003
3998 4.210 4.248 4.612 4.324
4001 5.305 3.856 4.444 4.279
4004 5.068 5.054 4.852 5.113
4006 4.925 5.196 5.121 5.026
4011 8.355 8.370 6.885 6.660
4024 5.948 6.077 5.731 6.266
4025 3.563 3.420 3.533 3.224
4026 5.275 5.136 5.181 5.348
4029 7.780 7.789 7.802 6.781
4030 4.570 4.487 4.458 4.126
4031 4.001 4.378 4.019 4.157
4032 7.846 7.592 7.659 7.808
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Table A.2 – continued
HJD Methods Notes

(245 000)+ A B C D
4036 5.563 5.344 5.541 5.473
4039 5.498 5.688 3.001 2.924
4049 4.192 4.250 3.200 3.043
4050 6.749 6.912 6.788 6.470
4051 8.382 8.102 7.923 6.744
4055 4.983 4.964 4.642 4.816
4056 5.097 5.067 5.126 5.266
4057 4.171 4.935 4.651 4.699
4058 4.497 4.253 3.934 4.253
4059 4.589 4.647 3.654 4.361
4060 3.852 4.816 4.212 4.174
4061 3.436 4.518 3.638 3.701
4062 6.606 5.798 6.754 6.520
4063 6.623 6.640 6.008 4.392
4065 4.844 4.230 4.618 4.790
4068 4.522 4.157 3.794 4.161
4070 8.512 9.313 7.597 7.741
4071 4.403 4.978 3.689 4.539
4072 5.491 5.340 5.524 3.912
4073 3.246 4.571 3.800 3.670
4075 3.695 3.794 3.516 3.349
4078 3.435 3.129 3.001 3.070
4080 6.039 5.553 5.501 5.399
4081 5.778 2.605 2.545 2.700
4082 5.046 5.047 5.012 5.112
4085 8.700 5.512 5.831 2.024
4087 6.886 6.777 6.885 6.691
4091 5.490 5.353 5.174 5.310
4094 5.008 4.961 5.371 5.019
4095 4.759 4.742 3.937 4.712
4096 4.926 4.979 5.102 4.845
4101 5.071 4.863 4.854 4.939
4102 5.348 5.485 5.808 5.438
4103 5.521 5.542 5.549 5.522
4104 4.697 4.792 4.033 4.683
4105 4.288 4.311 4.405 4.236
4106 4.971 5.011 5.099 5.115
4109 5.893 5.738 5.773 6.043
4117 5.515 5.540 5.529 5.313
4118 4.391 4.599 4.517 4.597
4125 5.961 6.054 6.250 6.057
4128 3.409 3.183 3.540 3.396
4129 6.226 6.277 6.574 6.267
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Table A.2 – continued
HJD Methods Notes

(245 000)+ A B C D
4135 4.607 4.161 4.453 3.917
4136 4.029 4.384 4.211 4.233
4137 5.205 5.444 5.566 4.390
4141 7.909 8.074 7.971 7.931
4144 3.989 3.777 3.863 3.758
4147 5.042 4.606 4.712 4.642
4148 6.975 6.141 5.945 5.898
4153 5.504 5.370 5.519 5.583
4154 4.512 3.244 3.020 3.704
4155 5.057 5.402 5.249 5.329
4157 4.646 4.831 4.741 4.801
4158 4.707 4.767 4.574 4.714
4159 6.258 6.237 6.322 6.219
4161 6.384 6.536 6.258 4.913
4162 7.883 4.124 3.606 4.270
4170 7.018 6.734 7.183 7.144
4171 5.661 6.401 6.432 6.052
4172 5.499 5.541 5.851 4.653
4173 3.894 3.932 3.885 3.751
4174 6.419 5.997 5.841 5.990
4175 4.710 4.872 5.106 4.869
4176 3.277 2.915 3.039 2.942
4179 9.082 3.291 2.585 3.145
4186 7.375 5.639 7.017 7.244
4188 5.125 3.825 3.687 3.721
4190 3.047 3.046 2.722 2.678
4371 3.401 3.932 2.930 3.645
4398 6.885 6.858 6.525 6.520
4402 3.200 5.004 – 5.263 bad C1–C2
4404 2.778 4.523 5.000 4.717
4406 4.270 5.173 5.652 5.595
4413 9.448 7.268 7.502 7.143
4414 2.887 3.463 3.365 3.490
4416 2.761 2.523 2.243 2.471
4419 – – – – measured during dawn
4423 3.597 3.572 3.465 3.616
4426 7.669 7.453 6.770 7.620
4428 9.519 8.208 8.076 7.422
4438 5.332 5.256 5.405 5.237
4439 3.727 3.508 4.062 3.740
4440 6.079 5.921 6.569 5.761
4460 5.117 5.216 5.068 5.139
4461 6.888 7.043 6.748 6.905
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Table A.2 – continued
HJD Methods Notes

(245 000)+ A B C D
4462 6.138 6.029 5.170 6.078
4463 6.046 6.797 5.148 5.554
4466 5.041 5.057 5.114 5.054
4467 4.821 5.302 5.060 4.556
4477 4.632 4.868 4.336 4.498
4483 5.435 5.197 5.642 5.115
4484 6.898 6.707 6.935 6.986
4485 7.217 7.885 7.197 6.839
4486 6.533 6.375 6.330 6.221
4487 6.784 6.727 6.574 6.505
4503 5.652 4.809 5.325 5.658
4504 5.092 5.214 5.062 5.026
4505 6.215 6.416 5.846 5.968
4506 5.331 5.224 4.735 4.636
4509 6.865 6.507 6.463 6.896
4510 5.179 5.046 4.824 5.426
4517 7.188 6.808 6.878 5.447
4524 4.891 4.142 5.243 5.047
4525 4.861 5.265 4.763 4.663
4531 2.947 3.344 2.925 3.094
4534 6.059 6.049 5.497 6.028
4537 6.185 5.990 6.291 6.220
4545 5.498 5.552 6.247 5.873
4551 4.166 4.046 3.838 4.064
4552 3.474 3.140 3.136 3.319
4554 3.590 3.229 3.231 3.301
4556 5.101 4.917 4.601 4.666
4565 4.426 4.916 4.342 4.287
4566 6.530 7.538 9.518 – bad C1–C2
4567 10.556 11.188 8.433 – bad C1–C2
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A.2 Figures

A.2.1 Light curves of EE Cam
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Figure A.1: EE Cam light curves (V–C1 in v and y) obtained with the APT. Continued on
next page.
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Figure A.1: Continued on next page.
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Figure A.1: EE Cam light curves (V–C1 in v and y) obtained with the APT.
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Abstract – German

Die Erforschung der Entwicklung und des Aufbaus von pulsierenden Sternen ist ein fun-
damentales Gebiet der Astronomie. Um Aussagen über diese Eigenschaften treffen zu
können ist es notwendig, das Innere der Sterne zu erforschen. Die Asteroseismologie bi-
etet diese Möglichkeit, indem photometrischen Daten gewonnen werden, welche die Hel-
ligkeitsvariationen eines pulsierenden Sterns liefern. Mit Hilfe einer Frequenzanalyse ist
es möglich, die Frequenzen, Amplituden und Phasen eines periodisch Veränderlichen zu
bestimmen. Diese liefern die notwendigen Informationen über die Schallwellen, welche
Auskunft über das Innere der Sterne geben. Anhand dieser Erkenntnisse können die
stellaren Parameter und physikalischen Prozesse im Stern beschrieben werden. Schon
vorhandene theoretische Modelle können nun auf den Stern angewandt werden, um diese
zu bestätigen oder zu falsifizieren. Um eine ausreichende Genauigkeit der photometrischen
Daten zu erreichen, muss man einige instrumentelle und atmosphärische Effekte und
Rauschquellen berücksichtigen und, wenn möglich, korrigieren.

Diese Diplomarbeit beschäftigt sich vorwiegend mit der beobachtenden Asteroseis-
mologie. Verschiedene Quellen von Rauschen als auch die einzelnen Schritte der Datenre-
duktion werden erläutert, und gebräuchliche Algorithmen sind angeführt. Ein großer
Teil dieser Arbeit beschäftigt sich mit der Bestimmung des bestmöglichen Extinktions-
koeffizienten. Dieser ist Vorraussetzung für eine zufriedenstellende Korrektur der atmo-
sphärischen Extinktion. Vier unterschiedliche Methoden zur Bestimmung dieses Koef-
fizienten werden auf photometrische Daten des δ Scuti Sterns EE Cam angewandt, welche
mit dem Vienna Twin Automatic Photoelectric Telescopes (APT) zwischen 2006 und
2009 in vier Beobachtungssaisonen gewonnen wurden. Zusätzlich wurde für die re-
duzierten Daten der ersten drei Saisonen eine Frequenzanalyse durchgeführt.

Eine Beschreibung von pulsierenden Sternen, ihres inneren Aufbaus und der An-
regungsmechanismen der Pulsation enthält Kapitel 1. Kapitel 2 liefert eine Beschrei-
bung der Instrumente und Filter, welche verwendet werden, um photometrische Daten zu
gewinnen. EE Cam wurde mit dem APT beobachtet, welches hier genauer beschrieben
wird. Das Problem instrumentellen Rauschens und etwaige Lösungsvorschläge werden
behandelt. Die einzelnen Schritte der Datenreduktion, welche auf alle photometrischen
Daten angewandt werden muss, werden in Kapitel 3 beschrieben. Eine kurze Einführung
in die Diskrete Fourier-Transformation und die Bestimmung der Frequenz, Phase und
Amplitude liefert Kapitel 4. Zwei Computerprogramme zur Durchführung der Frequenz-
analyse werden vorgestellt. Kapitel 5 enthält die Beobachtungsdetails, wie Sternparame-
ter, Länge der Datensätze, Lichtkurven von EE Cam, usw. Hier werden auch die Resultate
präsentiert und diskutiert.
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