
 
 
 

 
 

 
 
 

 
 

 

DISSERTATION 
 
 
 
 

Titel der Dissertation 
 
 
 

Allergenic and physico-chemical properties of parvalbumins 

 

 
 
 
 
 

angestrebter akademischer Grad 
 

Doktorin der Naturwissenschaften (Dr. rer. nat.) 
 
 
 
 
 
 
 
Verfasserin / Verfasser: Mag. Ulrike Griesmeier 

Matrikel-Nummer: 9800360 

Dissertationsgebiet (lt. Stu-
dienblatt): 

Genetik - Mikrobiologie 

Betreuerin / Betreuer: ao. Univ.-Prof. Dr. Heimo Breiteneder 

 
 
 
 
Wien, 30. März 2009  

 

 
 
 



Danksagung 
 
 
Der experimentelle Teil dieser Arbeit wurde in der Abteilung von ao. Univ. Prof. Dr. 

Heimo Breiteneder am Institut für Pathohphysiologie der Medizinischen Universität 

Wien durchgeführt. 

 

Besonders ao. Univ.-Prof. Dr. Heimo Breiteneder und Univ.-Doz. Dr. Karin Hoffmann-

Sommergruber danke ich für die Ermöglichung meiner Arbeit an diesem Institut und für 

die wissenschaftliche Betreuung dieser Arbeit. 

 

Ich danke auch  Dr. Wolf-Meinhard Becker und Prof. Dr. Lars K. Poulsen für die 

Begutachtung meiner Dissertation. 

 

Ein besonderer Dank gilt Dr. Merima Bublin für die hervorragende Betreuung im 

Labor. Sie hat mir durch ihre vielen kreativen Ideen, Hilfsbereitschaft und ihrer steten 

Gesprächsbereitschaft durch meine Dissertationszeit geholfen. Herzlichen Dank! 

 

Ich danke meinen Kolleginnen und Kollegen im „Lab 16“ für das hervorragende 

Arbeitsklima und für die Zusammenarbeit im Labor. Speziell möchte ich hier Dr. 

Christian danken, der mir sehr oft mit Rat und Tat zur Seite gestanden ist. 

 

Dr. Sonia Vázquez-Cortés danke ich für die erfolgreiche und freundschaftliche 

Zusammenarbeit in Österreich und auch in Spanien. Mein Dank geht dabei auch an Dr. 

Montserrat Fernandez-Rivas. 

 

Danke auch für die sehr liebe Zusammenarbeit und Unterstützung von Dr. Yan Ma. 

 

Meinen Eltern und meiner Schwester möchte ich für das in mich gesetzte Vertrauen 

bedanken. 

 

Vor allem danke ich meinem Freund Werner, der mich während meines ganzen 

Studiums anspornte und stets die richtigen Worte zur Aufmunterung fand. 

 

  



Table of contents 
 

Chapter I 

General introduction 

1. Allergy…………………………………………………………………………... 3 

2. Food allergy……………………………………………………………………... 5 

2.1. Symptoms of food allergy……………………………………………………. 5 

2.2. Prevalence of food allergy…………………………………………………… 7 

2.3. Diagnosis of food allergy…………………………………………………….. 7 

2.4. Prevention and treatment of food allergy…………………………………….. 8 

2.5. Cross-reactivity………………………………………………………...…….. 9 

3. Fish allergy……………………………………………………………..……….10 

4. Food allergens…………………………………………………………………..12 

4.1. Ligand-binding animal food allergens…………………………………….....14 

4.2. Allergens of the EF-hand superfamily……………………………………… 15 

5. Parvalbumins……………………………………………………………………17 

6. Aims…………………………………………………………………………….21 

References……………………………………………………………………………22 

 

Chapter II 

Comparison of natural and recombinant forms of the major fish allergen parvalbumin 

from cod and carp …...……………………………………………………………….33 

 

Chapter III 

Expression levels of parvalbumins determine allergenicity of fish species …………47 

 

Chapter IV 

Physicochemical properties and thermal stability of Lep w 1, the major allergen of 

whiff…………………………………………………………….……...………….....75 

 

Chapter V 

Final Discussion………..………………………………………………….……….107 

References ………………………………………..………………………………..114 

 



Summary ……………………………………..……………………………………....121 

Zusammenfassung …………………………………………….……………………..123 

Curriculum vitae ……………………………………………………….…………….125 

Publication list ………………………………………………………….…………....127 

 

 

 

 



 

Chapter I 
 

 

 

General Introduction 

 

1



 

2



 

General introduction 
 

1. Allergy 
 
Allergy was defined as „an altered capacity of the body to react to a foreign substance“ 

by Clemens Von Pirquet in 1906 [1]. Today the definition is more restricted to immune-

mediated reactions and is defined as “a disease following a response by the immune 

system to an otherwise innocuous antigen” [2]. 

 
Allergic or hypersensitivity reactions were classified into four types by Coombs and 

Gell in 1963 [2, 3]: 

 
Type I or immediate hypersensitivity is caused by IgE antibodies and a sub-

population of immune cells, the mast cells and basophils. During the sensitization 

phase, the atopic immune system encounters an allergen for the first time. This 

results in a Th-2 directed IgE synthesis of B-cells. This IgE then binds to the Fcε 

receptors present on the surface of mast cells and basophils. When a second exposure 

to the same allergen occurs, the allergen binds to at least two molecules of IgE thus 

cross-linking the antibodies and Fcε receptors. After cross-linking a degranulation of 

mast cells and basophils occurs during which histamine and other inflammatory 

mediators are released. Some examples of symptoms are anaphylaxis, atopic asthma, 

atopic eczema, oral allergy syndrome (OAS), pruritis or urticaria. An example for an 

inhalative allergen is Bet v 1, the major birch pollen allergen, the first recombinant 

pollen allergen [4], and the food allergen Gad m 1, the major allergen from cod [5]. 

 
In a Type II hypersensitivity reaction, IgG or IgM antibodies are directed against 

antigens on an individual’s own or on foreign cells, such as those acquired through a 

blood transfusion. These antibodies can cause tissue injuries mediated by the 
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cytotoxic action of T killer cells or by lysis mediated by the complement system. 

Examples are autoimmune haemolytic anemia, Goodpasture’s syndrome or penicillin 

allergy [2]. 

 
In the Type III reaction immune complexes of circulating antigens and IgM or IgG 

antibodies are formed in the tissue that cannot be cleared by macrophages. A 

complement or a cell mediated local reaction can provoke tissue injuries and 

inflammation. Type III hypersensitivity reactions include serum sickness and the 

Arthus reaction [2]. 

 
Type IV or cell-mediated reactions are those in which T cells are sensitized to an 

antigen and release lymphokines following secondary contact with the antigen. 

Cytokines induce an inflammatory response, and they also activate and attract 

macrophages, which release inflammatory mediators. Examples are contact 

dermatitis, the tuberculin reaction and granulomatous hypersensitivity [2]. 

 
Atopy has a substantial genetic contribution, which lead to a higher susceptibility to 

allergic disease [2]. It is defined as “a personal and/or familial tendency, usually in 

childhood or adolescence, to become sensitized and produce IgE antibodies in response 

to ordinary exposures to allergens, usually proteins.” As a consequence, these persons 

can develop typical symptoms of asthma, rhinoconjunctivitis, or eczema” [6]. 

 
Genetic predisposition but also environmental factors (changes in exposure to infectious 

diseases in early childhood, environmental pollution, allergen levels, and dietary 

changes) are responsible for an increasing prevalence of allergy [2]. 
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2. Food allergy 
 
Only few foods are responsible for the majority of allergic reactions: milk, egg, peanuts, 

tree nuts, fish, wheat, soy and shellfish [7, 8]. Food allergy can resolve or persist. 

Usually allergies that are outgrown include milk, egg, soy and wheat. In contrast, 

peanut, tree nuts, fish and shellfish allergy are not restricted to childhood and mainly 

persist. Yet, in some cases the development of tolerance was reported [9]. 

Although“Food is essential for life, a major source of pleasure, and often intrinsic to 

our cultural identity” [10], some people react to it with an adverse immune response 

[11]. Over 2000 years ago Hippocrates, and in the first and second centuries other 

Greek scholars already reported adverse reactions to food. Food adverse reactions are 

defined as “any abnormal response upon ingestion of food” [10]. 

The European Academy of Allergy and Clinical Immunology suggests a classification 

of adverse reactions to food [12, 13]: Food can cause dose-dependent toxic reactions in 

everyone (eg. histamine in scombroid fish poisoning), but for non-toxic reactions the 

individual susceptibility is responsible [10]. Non-toxic reactions are divided into non-

immune mediated and immune-mediated (food hypersensitivity [14]). Non-immune 

mediated adverse reactions may result from enzyme deficiencies (eg. lactose 

intolerance) [9]. Immune-mediated reactions can be classified into non-IgE mediated 

and IgE mediated (type I) and are defined as food allergy. 

2.1. Symptoms of food allergy 
One of the most common symptoms are cutaneous reactions, like acute urticaria with or 

without angioedema, often seen in combination with manifestations of other target 

organs by ingestion of meat, vegetables and fruits [13, 14]. Food-induced contact 

dermatitis often occurs among persons who handle raw fish, shellfish, meats and eggs 

[14]. Further, a direct correlation between the severity of atopic dermatitis and food 
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allergy was reported. Around one third of infants with atopic dermatitis was found to be 

allergic to food [13, 15]. 

 
Oral allergy syndrome (OAS) is a type of contact urticaria and the most frequent 

allergic reaction in adults. Within 5 to 15 minutes after food ingestion the lips, tongue, 

palate, ears and throat start to itch and also mild-angio-oedema at the same site are 

observed. Beside spontaneous resolution within minutes in most cases, gastrointestinal 

symptoms such as vomiting, abdominal pain and diarrhoea, and very rarely urticaria and 

anaphylaxis may occur. OAS is predominantly observed in patients suffering from 

pollinosis with an associated allergy to homologous, cross-reactive allergens of 

vegetable foods [13]. “The restriction of symptoms to the oral cavity seems to be related 

to the ability of the allergens involved (eg. Bet v 1 homologues, profilins) to the 

digestion process” [16]. 

 
Anaphylaxis occurs when a massive release of mast cell mediators affects multiple 

organ systems [16]. This systemic reaction can be elicited by the ingestion of foods like 

cow’s milk, hen’s egg, peanut, fish, and crustaceans [14]. The patients may develop 

acute nausea, colicky abdominal pain and vomiting within minutes of food ingestion 

[13]. 

 
Allergic eosinophilic oesophagitis or gastroenteritis are IgE-mediated and/or non IgE-

mediated gastrointestinal reactions characterized by infiltration of the oesophagus, 

stomach or intestinal walls with eosinophils. Symptoms are nausea, dysphagia, 

vomiting, abdominal pain and diarrhoea mostly by ingestion of milk, egg, wheat, rye 

and beef [10, 13, 16]. 

 
Food allergens can induce respiratory reactions, like allergic rhinoconjunctivitis or 

acute bronchospasm in association with other food allergy symptoms. Also a worsening 
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of asthma in sensitized individuals may occur after ingestion of food allergens or 

inhalation of vapours or steam from cooking food, like fish [14]. 

2.2. Prevalence of food allergy 
In the United States approximately 4% of the adult population suffer from food allergy. 

More than 2% were estimated to be allergic to seafood in a prevalence study by random 

telephone survey [17]. In France, Kanny et al. [18] found a prevalence of food allergy 

of approximately 3.24%, and Osterballe et al. [19] published a prevalence of IgE-

mediated food hypersensitivity for adults (median age 33.7 years) of 10.8% in 

Denmark. In a German survey the same age-group (20-39 years) had the highest 

frequency of 4.3% of IgE-mediated reactions to foods [20]. In all three European studies 

the most common elicitors of food allergy were pollen-related fruits and vegetables, 

whereupon the primary sensitisation came from pollen [12]. In contrast, in Spain 4-5 % 

of the general population are mostly allergic to animal allergens. Milk, egg or fish are 

mainly the inducers of food allergy in children [21]. 

Nevertheless, these prevalence data should be treated with care. In a meta-analysis a 

marked heterogeneity in the prevalence of food allergy was observed depending on 

study design or differences between populations. The prevalence is often overestimated 

in studies with self-reported symptoms in comparison to reports using objective 

diagnostic tools like the double-blind, placebo-controlled food challenge (DBPCFC) 

[22]. 

2.3. Diagnosis of food allergy 
First, the patients’ history, compatible with IgE-mediated symptoms, should be 

established [9]. Subsequently, food-specific IgE can be measured by an inexpensive and 

simple skin-prick test (SPT) puncturing the skin with food extract or by puncturing the 

native food and thereafter the skin (prick-to-prick). Another similar but more expensive 

diagnostic method is the in vitro determination of specific IgE by the CAP-FEIA system 
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(Pharmacia Diagnostics, Uppsale, Sweden). With these methods a food allergy can be 

excluded, but not confirmed [9, 13]. The most reliable diagnostic tool is the double 

blind, placebo controlled food challenge (DBPCFC). With this “gold standard” of food 

allergy adverse reactions to food can be confirmed or ruled out [9]. In the case of 

negative results an open and supervised challenge must confirm the outcome [11]. 

Further, a promising approach is the component resolved diagnosis, one of the future 

trends of allergy diagnosis. Purified recombinant food allergens represent new tools for 

diagnostic applications in vivo and in vitro and are believed to be able to replace non-

standardized extracts [13]. 

2.4. Prevention and treatment of food allergy 
Few data are available on food allergy prevention in the early childhood. Hydrolyzed 

formulas of cow milk had a long-term preventive effect on allergic manifestations and 

atopic eczema in children with high risk for atopy until the age of six years [23]. Novel 

therapeutic concepts (e.g. oral or sublingual immunotherapy) for allergy treatment are 

being developed, but are not commercially available yet [24]. Currently, only a strict 

elimination diet is the treatment of choice [9]. New immunotherapeutic tools for food 

allergy are under development. Swoboda et al. [25] produced a genetically engineered 

carp parvalbumin with an impaired IgE binding activity for specific immunotherapy. 

Also novel therapies for life-threatening peanut allergy are under investigation using 

animal models [13]: The administration of a high dose of heat-killed Escherichia coli 

producing mutated Ara h1, 2, and 3 can downregulate the hypersensitivity reaction to 

peanut in mice by a shift from Th-2 responses to Th-1 responses[26]. Another example 

is a Chinese herbal medicine formula, which reduced Th-2 cytokines and enhanced the 

production of IFN-gamma in peanut allergic mice, and could block anaphylaxis [27]. To 

prevent side effects of peanut immunotherapy peanut allergic mice were treated with 
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soybean extract. Using homologue seed storage proteins from soybean to treat peanut 

allergy can skew toward a Th-1 response [28]. 

2.5. Cross-reactivity 
“Structural similarity among proteins from diverse sources is the molecular basis of 

allergic cross-reactivity” [29]. “Two (or more) allergens are cross-reactive, if IgE 

antibodies or a T cell receptor reacts with both” [30]. Cross-reactivity can be caused by 

allergens whose sequences are at least 50% to 70% identical [30, 31]. For example, IgE 

antibodies originally directed to pollen allergen can cross-react with homologous plant 

food proteins from a variety of sources (birch pollen-fruit syndrome) [32, 33]. One 

prominent cross-reactive animal food allergen is the major fish allergen, parvalbumin 

[34]. Cross-reactivity was observed among various fish species and also with edible 

frog species [34-36]. 
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3. Fish allergy 
 

Fish and their products are common in human nutrition, especially in coastal countries. 

However, their consumption may result in mild to severe allergic reactions including 

anaphylaxis. The first anaphylaxis to fish was reported by Phillip Sachs in the 

seventeenth century [10]. 

In Spain, where a cross-sectional study was carried out, fish allergy was diagnosed in 36 

of 4991 patients (0,72%) referred to for allergy evaluation [37]. Sensitization occurs in 

the early childhood (> 1 year) and allergy often persists. In children under two years of 

age fish is the third most frequent allergen source, as fat-poor white fish (like 

whiff/megrim) is often introduced into the diet at this time. Ingestion, contact, or 

inhaling cooking vapours elicit mainly IgE mediated reactions [38]. 

The major allergen of fish is parvalbumin beside minor allergens such as aldehyde 

phosphate dehydrogenase (APDH) [39] or collagen [40]. Parvalbumins are highly cross-

reactive allergens. Most patients are allergic to multiple fish species, but in some cases 

sensitization to only one fish was reported [41]. Due to the low parvalbumin level in 

dark muscles, fish species containing more dark muscles (tuna and swordfish) may be 

tolerated [38, 42]. 

Fish allergy should not be confused with other adverse reactions, such as allergic 

reactions to the allergens of the Anisakis simplex larva. This nematode infects 

consumers of raw or less cooked fish [43]. Hypersensitivity reactions often occur to 

Anisakis tropomyosin in individuals suffering from allergy to its homolog in 

crustaceans or mites [44, 45]. 

Finally, fish ingestion may also cause a not so common syndrome known as food 

protein induced enterocolitis syndrome (FPIES). This non-IgE mediated allergy 

syndrome is usually reported following the ingestion of cow’s milk or soy proteins, but 
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also of fish, and may lead to acidosis and shock. Only food avoidance is an appropriate 

method for patients’ treatment [38]. Fish allergy played also a historically important 

role, as IgE was first found in a fish allergic individual [46]. 

11



 

4. Food allergens 
 

“Allergens possess special features and not every protein can become an allergen: the 

finding that (1) the small number of protein families in which allergens were found and 

(2) the frequent occurrence of certain biochemical functions among allergens support 

this view” [31]. 

 
Certain biochemical features characterize food allergens. These proteins have to be 

abundant in the food source and should be resistant to digestion and processing [47]. 

Additionally, structural features enhance their thermal stability and resistance to 

proteolysis. Ligand binding capacity, intramolecular disulfide bonds, the ability to 

aggregate , the presence of glycosylation, or the interaction with cell membranes or lipid 

structures [33] preserve the allergens structure from thermal denaturing and degradation 

by digestive enzymes, low pH and surfactants, such as bile salts that are present in the 

gastrointestinal tract (GIT) [33]. 

The major food allergens identified as class 1 food allergens are water-soluble 10 to 70 

kDa proteins, stable to heat, acid, and protease treatment. Some prominent members are 

beta-lactoglobulin from milk (Bos d 5), peanut vicilin (Ara h 1), or cod parvalbumin 

(Gad c 1) [7]. These allergens sensitize via the gastro-intestinal tract (GIT). Most of the 

class 1 plant food allergens belong to the prolamin or cupin protein superfamilies. 

Members of these superfamilies are remarkably stable to proteolysis due to the presence 

of structural motifs such as the conserved skeleton of cysteine residues forming four 

disulphide bonds in the members of the prolamins or the presence of a beta-barrel in the 

case of the cupins [33]. But there are also proteins that sensitize through the GIT and are 

sensitive to gastric digestion by pepsine, like the animal food allergens shrimp 

tropomyosin or milk caseins and alpha-lactalbumin [48]. It is hypothesized that these 

proteins form large stable protelolytic fragments with a potential to bind IgE [48]. Huby 

et al. [49] stated: “an allergenic protein must possess at least two IgE binding sites, each 
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with a minimum of 15 amino acid residues”. Also the peanut allergens Ara h 1 and Ara 

h 2 are easily degraded by digestion enzymes, but fragments can bind IgE antibodies to 

elicit an allergic reaction [48, 50, 51]. 

 

Besides food allergens sensitizing via the GIT (class 1 food allergens), allergic reactions 

can occur as a consequence of an allergic sensitization to inhalant allergens (class 2 

food allergens) [14, 32]. Class 2 food allergens are labile to heat and enzymatic 

degradation, as most of them are presumably comprised of conformational epitopes 

[14]. Class 2 food allergy is the result of sensitization to labile pollen allergens via the 

respiratory tract [11], e.g. IgE antibodies directed against inhalent allergens, like Bet v 

1, recognize IgE epitopes on Bet v 1 homologues in plant foods (birch pollen-fruit 

syndrome) [32]. 

 
In addition, the modulation of allergenic properties by food by processing needs to be 

considered. Food processing, such as thermal treatments, can impair the IgE binding 

ability to epitopes of food allergens, as recently shown for birch pollen allergic patients 

[52]. Structural unfolding of the Pru av 1, the major allergen of cherries, by cooking of 

cherries with high water content reduced the allergic reactions to this Bet v 1 

homologue [52]. However, processing can also enhance the allergenic potential by 

protein aggregation (e.g. Gly m 6, soy glycinin, forms heat-set gels [52]) or chemical 

modification (e.g. cross-linking of the peanut allergens Ara h 1 and Ara h 2 to form IgE 

reactive high molecular weight aggregates by the Maillard modification [52, 53]. 

 
Whereas, most members of plant food allergens are restricted to four structural protein 

families [54], most animal food allergens are classified into only three main families 

[55]. The most important plant food allergen superfamilies are the prolamin superfamily 

[composed of cereal storage proteins (e.g. ω-5 gliadin allergen of wheat), nonspecific 
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lipid transfer proteins (e.g. Pru p 3 from peach), 2S storage albumins (e.g. Ber e 1 from 

Brazil nut) and inhibitors of trypsin and α-amylase], the cupin superfamily with the 7S 

and 11S globulin storage proteins of seeds (eg. Ara h 1, 3 and 4 from peanut), Bet v 1 

homologues (e.g. Mal d 1 in apple and Api g 1 in celery), and profilins (e.g. Api g 4 

from celery) [31, 54]. 

Most animal food allergens are members of three superfamilies: tropomyosins, caseins 

and EF-hand proteins. All of them show an ability to bind ligands. Animal food 

allergens have a high degree of similarity to human homologues, thus the evolutionary 

distance reflects their allergenicity [55]. Jenkins et al. [55] found: “proteins with a 

sequence identity to a human homologue above approximately 62% were rarely 

allergenic”. 

4.1. Ligand-binding animal food allergens 
Tropomyosins are “rod-shaped coiled-coil dimers that form a head-to-tail polymer 

along the length of an actin filament” [56]. They mediate the interactions between the 

troponin complex and actin thus regulating muscle contraction. Tropomyosins are the 

major allergens of shellfish and molluscs and they are very stable to thermal treatments 

[57]. Invertrebrates tropomyosins are highly cross-reactive. High sequence identities 

were found in crustaceans and molluscs [58]. Additionally, studies have shown that 

patients allergic to the tropomyosin of house dust mite and cockroach show IgE 

reactivity to shrimp Pen a 1 without previous exposure to shrimp [59]. 

Vertebrate tropomyosins are at least 90% identical to the closest human homologues 

and not allergenic [55]. Tropomyosins in invertebrates as inhalative allergens (e.g. the 

house dust mite allergen Der p 10) and crustacean tropomyosins as food allergens (e.g. 

the major allergen of shrimp Pen a 1) are only approximately 55% identical to human 

homologues [55]. 
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Caseins are exclusively mammalian proteins found in milk [55]. Calcium-binding is one 

structural feature that enhances their thermal stability and resistance to proteolysis [33]. 

Furthermore, caseins’ structures are disordered and dynamic (rheomorphic) and 

therefore possess many linear, thermostable IgE epitopes. Caseins comprise 4 structural 

groups, alphaS1-, alphaS2-, beta-, and kappa-caseins. The first three mentioned 

components bind calcium and assemble to casein micelles in milk [60]. Kappa-caseins 

are important for the first step of milk-clogging [61]. 

AlphaS2-caseins are not present in humans. This appears to be linked to the IgE 

reactivity of caseins. The highest number of cow’s milk allergic children had serum IgE 

against alphaS2-casein (90%), followed by alphaS1-casein (55%) [62]. Much fewer 

children had IgE against beta-casein (15%), the casein with the highest identity to a 

human homologue [62]. Beta-caseins from mammals show sequence identities in the 

range of 53 to 58% to human homologues [33, 52, 55]. 

4.2. Allergens of the EF-hand superfamily 
The EF-hand motif is found in calcium-binding proteins in the cytosol. Members of this 

superfamily contain from two to eight copies of the EF-hand domain [63]. The classical 

EF-hand domains, helix-loop-helix, consists of a calcium binding loop of 12 amino acid 

residues flanked on both sides by α-helices of 12 residues in length [63, 64]. EF-hand 

proteins are subdivided in 32 subfamilies [65], whereas 42 allergens were found 

distributed in few of them (www.meduniwien.ac.at/allergens/allfam/; data retrieved on 

March 26, 2009). Two major cross-reactive allergen families are of importance, the 

allergenic polcalcins from pollen and the allergenic parvalbumins from fish [65]. There 

is also an autoallergen, Hom s 4, recognized by patients suffering atopic dermatitis [66]. 

Calcium-binding pollen allergens, grouped into allergens with 2, 3 or 4 EF-hands, can 

be found in pollen of grasses, weeds or trees [65]. So far, no significant cross-reactivity 
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among these groups was described [65, 66]. IgE binding ability of EF hand-containing 

allergens was shown to be calcium-dependent [65-69]. 
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5. Parvalbumins 
 
Parvalbumins, found in various fish species, contain 2 calcium-binding EF-hand motifs 

(CD- and EF-site) and one silent domain (AB-site) forming a cap covering the 

hydrophobic surface of the two calcium-binding domains [33, 64, 70]. At least two 

lineages of parvalbumin existed in the ancestors of vertebrates, alpha and beta [63]. 

Birds and humans express only the alpha form, though in humans oncomodulin was 

classified as a beta parvalbumin [63]. Moncrief et al. [63] hypothesized that the beta 

form in mammals may be another isoform and the beta-parvalbumin encoding gene may 

have been deleted or inactivated [63]. Oncomodulin is a tumor protein, but is also 

expressed in the fetal placenta [71-74] and in the postnatal mammalian tissue [75]. 

Alpha parvalbumin in humans was described to protect the neurons from calcium-

mediated cell death [76]. 

Alpha parvalbumins are abundant in fish and amphibians and are not generally 

allergenic. Nevertheless, there are two reports about an allergenic alpha parvalbumin in 

frog [55, 77]. In contrast, allergenic beta parvalbumins are known in many fish species 

[55]. Fish parvalbumins of the beta-lineage are only 56% identical to the human alpha 

form [55]. Although the two calcium-binding motifs are highly conserved in all 

parvalbumins, there was no IgE cross-reactivity observed among alpha and beta 

parvalbumins from most vertebrate muscles, including human beings. The lack of the 

allergenic potential of alpha parvalbumin in fish and in humans might be explained by a 

deletion of the IgE binding site in the calcium binding motifs during evolution [55]. 

 
The first reported allergenic fish parvalbumin was from Baltic cod (Gadus callarias) 

designated as “allergen M” (later named Gad c 1) and was identified by Elsayed et al. 

[78]. Since then various allergenic fish parvalbumins were cloned and characterized 

(e.g. Gad m 1 from Atlantic cod [5, 79], Cyp c 1 from carp [80], and Sal s 1 from 
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salmon [81]). Beta-parvalbumins with a pI around 4.5 have a molecular weight of 

approximately 11 kDa. They regulate calcium- and magnesium-dependent muscle 

homoeostasis in fish muscle [82]. The calcium-bound form is responsible for the 

relaxation of the fast twitch muscles. Parvalbumin is abundant in fish species containing 

more developed white muscle, like bottom dwelling fish [42]. The protein content also 

varies in the different parts of a fish as Lim et al. [83] described for tuna. Multiple 

isoforms can be found, depending on developmental stages, muscle type and parts of the 

fish [84, 85]. Additionally, a higher expression level of parvalbumin was observed in 

younger than in older fish [86]. 

Beta-parvalbumin is described as the major allergen in many fish species eliciting 

mild to severe symptoms in fish allergic patients mainly in coastal countries [34]. The 

calcium-bound form has been shown as resistant to thermal treatment and digestive 

enzymes [79, 87, 88]. A loss of calcium results in structural changes and a substantial 

reduction of IgE binding [25, 67, 80]. Depending on the fish species, food processing 

may impair the IgE binding ability, as reported for canned tuna and salmon [89]. IgE 

reactivity may also be enhanced by formation of high molecular aggregates after 

cooking as shown for tuna, salmon, cod, and flounder [90]. 

IgE binding epitopes are distributed along the whole parvalbumin polypeptide chain 

[91]. The AB-site, also containing IgE reactive epitopes [91], is more conserved 

between frog and fish and so cross-reactivity of parvalbumin among different fish 

species [34, 36, 55, 77, 90] and even with frog were observed [35, 55]. However, no IgE 

cross-reactivity outside the fish and amphibian species have been described, as“the 

homology decreases with decreasing zoological relationship” [8]. The cross-reactivity 

among fish species is of clinical relevance, as patients are often allergic to several fish 

species [36]. The degree of IgE-binding activity might be related to the amount of fish 

consumption [25, 36]. 
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Parvalbumin is resistant to gastrointestinal digestion and can be found in the serum 

already 10 minutes after ingestion [92]. These findings may explain the rapid allergic 

reaction after fish ingestion in some fish allergic patients. The most severe and frequent 

cause of IgE-mediated fish allergy is a lethal anaphylactic shock. However, based on the 

extensive characterisation of fish parvalbumins, a hypoallergenic carp parvalbumin 

mutant was produced, by introducing mutations into the calcium binding domains [25]. 

Such an engineered hypoallergen could prove to be a promising tools for treating IgE-

mediated fish allergic patients [25]. 
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6. Aims 
 
Allergy to fish represents a severe health problem. Beside extensive studies of the 

complex interplay between the immune system and the allergen, identification and 

characterization of the involved allergens will enable a better understanding of the 

molecular pathology of allergy. 

 
The aims of this thesis were: 

 
• to investigate and compare the structural and immunological properties of natural 

and recombinant allergenic fish parvalbumins. 

 
• to determine the impact of thermal denaturation on purified parvalbumins. Cod was 

selected as a sea water fish and carp as a fresh water fish species. 

 
• to examine the IgE cross-reactivity of purified parvalbumins from cod and whiff as 

examples for high allergenic fish, and from swordfish as an example for a dark 

muscled fish. 

 
• to determine the thermal and gastric stability of native whiff parvalbumin Lep w 1 

by circular dichroism (CD) spectroscopy and in vitro gastrointestinal digestion 

experiments. Further, the digestibility of EGTA treated and untreated Lep w 1 were 

tested. At last, the gastric stability and IgE binding ability of proteins extracted from 

cooked fish were examined. 
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Allergic reaction following fish consumption can trigger life-threatening reactions in predisposed
individuals. Parvalbumins from different species have been identified as the major fish allergens.
There are two distinct phylogenetic lineages of parvalbumins, alpha and beta. Most allergic reactions
are caused by b-parvalbumins. We cloned and expressed cDNAs encoding cod (Gadus morhua) and
carp (Cyprinus carpio) b-parvalbumins and purified natural cod b-parvalbumin. CD spectra of the
purified proteins showed that their overall secondary structure contents were very similar. No differ-
ences in thermal stability were monitored in the calcium-bound or calcium-depleted form of natural
cod parvalbumin. IgE reactivity was assessed using 26 sera of fish allergic patients from Spain, The
Netherlands, and Greece in immunoblot and ELISA experiments. Twenty-five of the 26 patients with
IgE reactivity to native and recombinant cod parvalbumin also reacted to the recombinant carp par-
valbumin. IgE inhibition assays were performed using cod and carp extracts and purified recombinant
parvalbumin of cod and carp. High crossreactivity among cod and carp parvalbumins was observed in
immunoblots as well as in fluid phase assays. Natural and recombinant parvalbumins gave compara-
ble results when performing various in vitro diagnostic assays.

Keywords: Carp parvalbumin / Cod parvalbumin / Fish allergy / Food allergy / b-Parvalbumin /

Received: July 23, 2007; revised: November 16, 2007; accepted: December 12, 2007

1 Introduction

Fish are among the most common sources of food allergens.
In many countries where seafood is an integrate part of the
diet, fish represent a frequent cause of food allergy [1]. The
parvalbumins of fish represent the second largest animal

food allergen family, the largest being the tropomyosins of
crustaceans and molluscs [2]. Parvalbumins which are
abundant in the white muscle of many fish species consti-
tute a subfamily of a large evolutionary related family of
proteins with mixed type binding sites for Ca2+/Mg2+, the
so-called EF-hand [3]. The family of EF-hand proteins is
the third ranking protein family in terms of numbers of
allergenic members (www.meduniwien.ac.at/allergens/all-
fam/). The EF-hand corresponds to a helix-loop-helix motif
of 30 residues in length. Both helices E and F, with 10 resi-
dues each, are flanking a central loop that contains the
metal-binding residues [4]. Parvalbumins are important for
the relaxation of muscle fibers by binding free intracellular
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calcium [5]. The binding of the calcium ligand was found to
be necessary for maintaining the parvalbumin in a confor-
mation that is able to bind IgE. Loss of calcium results in a
change in conformation together with an associated loss of
the protein's IgE binding capacity [6–8]. Parvalbumins
with bound calcium also possess a remarkable stability to
denaturation by heat, denaturing chemicals, and digestive
enzymes [8–10] which influences their allergenic activity.

Parvalbumins can be subdivided into two distinct evolu-
tionary lineages based on the comparison of their amino
acid sequences [11]. a-Parvalbumins comprise 109 amino
acid residues and are less acidic with pIs at 5.0 or higher.
b-Parvalbumins consist of 108 amino acid residues and are
more acidic with pIs at 4.5 or lower [12]. In general, a-par-
valbumins are not allergenic with the exception of represen-
tatives from two frog species [13, 14]. In contrast, many
allergenic b-parvalbumins are found in a variety of fish spe-
cies [15, 16]. Some of them have been shown to display
more than two parvalbumin isotypes [17]. Today, allergenic
b-parvalbumins are considered as crossreactive pan aller-
gens in fish [18–20]. Sufficient IgE-reactive epitopes
remain after cooking to trigger allergic reactions in suscep-
tible individuals as has been demonstrated by double blind
placebo controlled food challenge [21]. CD analysis of carp
parvalbumin revealed a remarkable stability and refolding
capacity of the calcium-bound form [7]. However, there is
one contradictory report which questions the stability of
parvalbumins to pepsin [22]. The authors reported a
recombinant allergenic carp parvalbumin (rCyp c 1) to be
completely degraded after 30 s treatment with pepsin.

In the present study, the structural and immunological
properties of natural and recombinant allergenic fish par-
valbumins were investigated and compared. In addition, the
impact of thermal denaturation on purified parvalbumins
was studied. We have selected cod as a sea water and carp
as a fresh water fish species for our studies.

2 Materials and methods

2.1 Sera and antibodies

Fish allergic patients from Spain, The Netherlands, and
Greece (n = 26; including children and adults) were identi-
fied according to convincing case histories and positive
CAP values (Phadia Diagnostics, Uppsala, Sweden; Table
1) to fish. Sera were stored at –208C until use. The mouse
monoclonal antiparvalbumin clone Parv-19 antibody from
Sigma (St. Louis, MO, USA) and a rabbit polyclonal anti-
Gad m 1 antibody (Tepnel BioSystems, Deeside, Flintshire)
were used in this study.

2.2 Preparation of crude fish extract

Fresh filet of Atlantic cod (Gadus morhua) was purchased
from a local market. Fish muscle (500 g) was homogenized

with three volumes of 20 mM Bis-Tris buffer pH 6.5. Pro-
teins were extracted by stirring the homogenate for 3 h at
48C. After centrifugation at 170006g for 45 min at 48C
the supernatant was collected and filtered through Mira-
clothm (Merck Biosciences, Nottingham, UK) and filter
papers, subsequently, to remove cellular debris. Cod extract
was further used for purification and immunological assays.
For IgE inhibition assays 4 g of carp muscle were homogen-
ized with five volumes of double distilled H2O containing
3 mM NaN3, and extracted by stirring for 3 h at 48C. The
total extract was cleared by centrifugation at 200006g for
15 min at 48C. The protein concentration was determined
by using the BCA Protein Assay Reagent Kit (Pierce, Rock-
ford, Ireland), according to the manufacturer's instructions.
The extracts were stored at 48C.

2.3 Purification of natural cod parvalbumin

As a first purification step the cod extract was cleared by
filtration then incubated with Biocryl BPA-1000 (Supelco,
Bellefonte, PA) to remove nucleic acids and then centri-
fuged at 200006g for 10 min at 48C. The supernatant was
applied to a DEAE Sepharose Fast Flow column (GE
Healthcare, Little Chalfont, UK) and washed with 20 mM
Bis-Tris buffer, pH 6.5. Bound protein was eluted with a
linear salt gradient from 0 to 25% elution buffer (20 mM
Bis-Tris, 1 M NaCl, pH 6.5) and parvalbumin was detected
by SDS-PAGE and immunoblotting using the mouse mono-
clonal antiparvalbumin clone Parv-19 antibody. Fractions
containing parvalbumin were then loaded onto a HiPrep 16/
60 Sephacryl S-200 High Resolution column (GE Health-
care) which had been equilibrated at room temperature with
20 mM Bis-Tris, 150 mM NaCl, pH 6.5. Parvalbumin was
eluted as a single peak from the column.

2.4 cDNA synthesis and RT-PCR amplification

Total RNA was isolated from 100 mg cod muscle tissue
using the RNeasym Protect Midi Kit following the manufac-
turer's instructions (Qiagen, Hilden, Germany). Five micro-
grams of total RNA was used for cDNA synthesis. The
reverse transcription was performed with an oligo-dT pri-
mer T25NN. Gene-specific primers (59-ATG GCA TTC
GCT GGA ATT CTC G-39 for rGad m 1.01 and 59-ATG
GCT TTC GCC GGA ATT CTG A-39 for rGad m 1.02)
were synthesized according to the published N-terminal
sequences of cod parvalbumins [23]. These primers were
used in conjunction with the oligo-dT primer T25NN to
amplify Gad m 1 encoding cDNAs. The PCR reaction was
performed as described elsewhere [24].

2.5 cDNA cloning and DNA sequencing

Amplified Gad m 1 cDNA was ligated into the pCP2.1-
TOPO vector (Invitrogen, Carlsbad, USA) and competent
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TOPO10F' E. coli cells were transformed with the pCP2.1-
Gad m 1 plasmids. Sequencing of the inserts was performed
by VBC-Biotech Service (Vienna, Austria). Sequence anal-
ysis was performed using the BLAST Program of the
National Center of Biotechnology Information (Bethesda,
MD) and ClustalW program of EMBL-EBI.

2.6 Expression and purification of rGad m 1.02 and
rCyp c 1.01

The cDNA coding for Gad m 1.02 was PCR amplified from
the respective pCP2.1-plasmid and subcloned into the Hin-
dIII/BamHI sites of expression vector pET17b (Novagen,
Madison, WI). The primers for subcloning were designed in
a reading frame avoiding the expression of the T7-Tag. This
was achieved using the following oligonucleotide primer
for the 59 end of the clone: 59-AC AAG CTTATG GCT TTC
GCC GGA ATT CTG A-39, which contained a HindIII site
and a primer for the 39 end with a BamHI site: 59-AT CGG
ATC CTA TGC CTT GAT CAT GGC-39. pET17b contain-
ing the Gad m 1.02 cDNA was expressed in E. coli BL21
(DE3)-RIPL cells. Single colonies were grown overnight at
378C in LB medium containing 0.1 mg/mL ampicillin and
50 lg/mL chloramphenicol. Protein expression was
induced by addition of 1 mM isopropyl-b-D-thiogalactopyr-

anoside (IPTG) and incubation was continued for 5 h at
308C. Cells were harvested and disrupted by repeated
cycles of freezing in liquid nitrogen and thawing in a water
bath. Cell pellets were resuspended in lysis buffer (50 mM
Na2HPO4, 300 mM NaCl, 10 mM imidazole, pH 8.0).
Digestion with DNase I (0.1 lg/g cell pellet) and RNase A
treatment (0.01 lg/g cell pellet) were performed at room
temperature for 30 min under constant stirring. The lysate
was centrifuged at 130006g for 30 min at 48C. Recombi-
nant Gad m 1.02 was purified from the supernatant using
two anion exchange columns, a DEAE Sepharose Fast Flow
(buffer A: 20 mM Bis-Tris, pH 6.5, buffer B: A + 1 M
NaCl) and a MonoQ 5/50 GLTricorn high performance col-
umn (GE Healthcare, buffer A: 20 mM Tris, pH 8.0, buffer
B: A + 1 M NaCl).

Recombinant Cyp c 1.01 was expressed from the
pET17b-Cyp c 1 plasmid [25, 26]. E. coli lysate containing
rCyp c 1.01 was heated up to 758C for 40 min and centri-
fuged 130006g for 30 min at 48C. Subsequently, ammo-
nium sulfate (75%) was added and the protein extract was
centrifuged. Recombinant carp parvalbumin was obtained
from the supernatant and was applied onto a Phenyl-Cellu-
fine column (GE Healthcare) which was equilibrated with
1 M NaCl, 200 mM NaH2PO4 pH 5.0, 1 mM b-mercaptoe-
thanol (buffer A). Bound protein was eluted by a linear gra-
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Table 1. Patients’ characteristics

No. Country Age Sex CAP Symptoms

1 E 11 f Cod 3.18 OAS, AD
2 E 11 m Cod 17.2 U, V, AD
3 E 11 m Haddock 32.9 OAS, U, AD
4 E 5 m Cod 8.91 U, V, AD
5 E 6 m Cod 2.74 OAS
6 E 27 m Cod 2.42 AE, D, CU, AD
7 E 15 m Cod 0.52 OAS, AE, DY, AD
8 E 27 m Cod 55.4 U, A
9 E 4 f Cod 0.72 OAS

10 E 23 m Cod 9.6 AN
11 E 10 m Sole a 0.78 V, AD
12 E 7 f Cod 6.38 U, AD
13 E 29 m Cod 7.17 DY
14 NL 29 f Cod 37.0 R, D, AD
15 NL 22 m Cod 53.0 R, ST, AD
16 NL 41 m Cod 11.0 OAS, AD
17 NL 39 f Cod 3.2 AD
18 NL 15 m Cod 6.3 OAS, U, AD
19 NL 17 m Cod 12.0 OAS, TT, AD
20 GR 5 f Cod 5.22 AN
21 GR 10 m Cod A100 A
22 GR 14 m Cod 99.3 U, G
23 GR ND m –ND G
24 GR 12 f Cod 1.99 U
25 GR 13 m Cod 9.09 AN, A, U
26 GR 4 m Cod 11.2 AN

Patients’ sera used for immunoblotting are indicated in bold. E, Spain; NL, Netherlands; GR, Greece; f, female; m, male; CAP, cap-
sulated hydrophobic carrier polymer (kU/mL); A, asthma; AD, atopic dermatitis; AE, angioedema; AN, anaphylaxis; C, cough; CU,
contact urticaria; D, dyspnoea; DY, dysphagia; OAS, oral allergy syndrome; R, rash; ST, swelling throat; TT, tightness in the throat;
U, urticaria; G, gastrointestinal; V, vomiting.
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dient (0–100%) of buffer B (25 mM Tris/HCl pH 9.3, 8%
2-propanol). Recombinant Cyp c 1.01 enriched fractions
were further purified by an anion exchange chromatogra-
phy (DEAE Sepharose Fast Flow column). The column was
equilibrated with buffer A (20 mM imidazol pH 7.4, 2 mM
b-mercaptoethanol), the bound recombinant Cyp c 1.01
was eluted by a gradient with buffer B (buffer A + 0.4 M
NaCl). A final dialysis step was performed against 5 mM
NaH2PO4, 2 mM b-mercaptoethanol, pH 7.4.

2.7 SDS-PAGE, Western blotting, IgE
immunoblotting, and IgE inhibition

Purified nGad m 1, rGad m 1.02, and rCyp c 1.01 were sep-
arated by 15% SDS-PAGE as described by Laemmli [27]
under reducing conditions and either visualized by CBB R-
250 staining or transferred to nitrocellulose membranes
(pore size 0.2 lm, Pall Corporation, Pensacola, USA) for
immunodetection.

Blots were incubated with the mouse monoclonal anti-
parvalbumin clone Parv-19 antibody (1:4000 diluted in
TBST [50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.05%
Tween-20 v/v]) or the rabbit polyclonal anti-Gad m 1 anti-
body (1:12000 diluted in TBST) under constant shaking at
room temperature for 2 h, respectively. Subsequently, alka-
line phosphatase (AP)-conjugated swine antimouse
(DAKO, Glostrup, Denmark, 1:1000 diluted in TBST) and
antirabbit Igs (Jackson ImmunoResearch Laboratories,
West Grove, USA, 1:5000 diluted in TBST), respectively.
Development was performed with BCIP/NBTC reagent sol-
utions. In addition, blotted proteins were incubated with
fish allergic patients’ sera diluted 1:5 in buffer B (42 mM
Na2HPO4, 7 mM NaH2PO4, 0.05% w/v Na-azide, pH 7.5,
0.5% Tween-20) overnight at 48C and detected by 125I-
labelled rabbit anti-human IgE (MALT Allergy System Iso-
tope Reagent, IBL Hamburg, Germany, 1:20 diluted in buf-
fer B). Autoradiography was performed at room tempera-
ture for 2–48 h with intensifying phosphor screens and
imaged on the Storm 860 Imager (GE Healthcare) or with a
BioMax Ms film (Kodak, Sigma–Aldrich, St. Louis, USA)
at –708C. IgE inhibition assays were performed using puri-
fied nGad m 1 (50 lg/mL), rGad m 1.02 (10, 50, and
100 lg/mL) and rCyp c 1.01 (50 lg/mL) as inhibitors
respectively over night at 48C. Incubation of the blot strips
and detection were performed as above.

2.8 IgE ELISA and inhibition assays

Purified nGad m 1, rGad m 1.02, and rCyp c 1.01 (1 lg/
well diluted in 25 mM NaHCO3, pH 9.6) were coated on
microtiter plates (Nunc Maxisorp, Nalge Nunc Interna-
tional, Roskilde, Denmark) overnight at 48C. Nonspecific
binding sites were blocked with 3% milk in TBST. The
coated allergens were incubated with sera from 26 fish
allergic patients (1:4 diluted in TBST containing 0.5%

BSA) overnight at 48C. Bound IgE was detected with AP-
conjugated mouse antihuman IgE antibody (BD-Bioscien-
ces Pharmingen, San Diego, CA, USA) and developed with
the SIGMA FASTTM p-nitrophenyl phosphate substrate
(Sigma-Aldrich). Color development was measured using
an ELISA reader (Spectra Max Plus 384; Molecular Devi-
ces, Munich, Germany) at 405 and 510 nm as reference
wavelength. OD values were counted positive if they
exceeded the mean OD of the negative controls by more
than three SDs. IgE inhibition assay was performed using
cod or carp fish extracts (10 lg/mL) diluted in coating buf-
fer (25 mM NaHCO3, pH 9.6) and purified recombinant
parvalbumin of cod (10 lg/mL) and carp (10 lg/mL) as
inhibitors.

2.9 N-terminal sequencing

Fifty picomoles of purified proteins was diluted into
100 lL of 0.1% TFA and immobilized on a polyvinylidene
difluoride (PVDF) membrane (ProSorb sample preparation
cartridges, Applied Biosystems, Foster City, CA, USA),
which was soaked in 10 lL of methanol before. The PVDF
membrane was washed with 0.1% TFA. After drying at
room temperature membrane was subjected to the auto-
mated gas-phase Procise 491 sequencer (Applied Biosys-
tems). For nGad m 1, the N-terminal acetyl group was
cleaved off with TFA prior to sequencing.

2.10 Circular dichroism (CD) and stability studies

Far UV CD spectra of purified parvalbumins were recorded
with a JASCO J-810 spectropolarimeter (Jasco, Essex, UK)
at 208C in aqueous solutions. Protein samples were concen-
trated to 0.1 lg/lL and measured in quartz cuvettes
(Hellma, Mullheim, Baden, Germany) of 0.1 and 0.2 cm
path length. All spectra were corrected for the proper base-
line using the corresponding aqueous solution. Absorption
between 190 and 260 nm was monitored at 0.5 nm inter-
vals. The obtained spectra represent an average of three
consecutive scans. Results of each sample were averaged,
and the mean residue ellipticity (h) was expressed as
deg N cm2 N dmol – 1. The mean residue molecular weight of
each parvalbumin was calculated from the amino acid com-
position. For monitoring the stability to heating, samples
were incubated for 10 min at 958C.

2.11 NMR analysis

The allergens rCyp c 1.01 and nGad m 1 were analyzed by
NMR, according to the following protocol. Before and after
the NMR experiments, the allergens were stored at –208C.
A solution of each allergen was prepared in 0.45 mL of H2O
plus 0.05 mL of D2O. The concentrations were 0.52 mM for
rCyp c 1.01 and 0.05 mM for nGad m 1. The solutions were
placed into high-quality NMR tubes with Ar as head-space
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gas. Two High Resolution NMR experiments were carried
out, by a Bruker Avance 700 spectrometer operating at a
proton resonance frequency of 700 MHz (11.7 Tesla) at
258C. The two experiments were different in the method to
manage the water signal: the zgpr experiment minimizes
the water peak, while the zgesgp experiment suppresses it.
For each experiment 1024 scans were programmed to ana-
lyze nGad m 1 and 256 scans for rCyp c 1.01.

2.12 Mass determination

For mass determination of intact Gad m 1, approximately
2 lg of protein was reduced with the reagents of the Pro-
teoextractTM Trypsin Digestion Kit (Calbiochem, San
Diego, USA). Prior to the mass analysis, salts and reagents
were removed using C18 ZipTipsTM (Millipore, Billerica,
MA, USA), following the manufacturer's protocol, except
that trifluoro acetic acid was replaced by formic acid. Pro-
teins were eluted from the RP material with aqueous 50%
v/v HPLC-grade ACN and 0.1% v/v formic acid and
directly infused into an ESI-Quadrupole TOF (ESI-QTOF)
mass spectrometer (Ultima Global, Micromass-Waters,
Milford, MA, USA) at an infusion rate of 1 lL/min. The
intact mass of rCyp c 1.01 was determined without prior
Ziptip purification at a concentration of approx. 500 fmol/
lL and an infusion rate of 0.5 lL/min. The Waters Nano-
flow spray head was used with nitrogen as desolvation gas
and a capillary voltage of 3.4 kV. The instrument was cali-
brated with the fragment ions of [Glu]-Fibrinopeptide B
(Sigma). Spectra were recorded for 3 min in a mass/charge
range from 400 to 1900. More than 200 mass scans of 1 s
each were combined for optimal S/N. Multiply charged
peaks were processed using the MaxEnt1TM algorithm of
the MassLynxTM software package (Waters).

For nano-LC-MS/MS-based peptide mapping 50 lg ali-
quots of rCyp c 1.01 each were digested overnight at 378C
with 2 lg trypsin or V8 protease (Roche, Basel, Switzer-
land). Present cysteine residues were reduced by pretreat-
ment of the protein with a ten-fold molar excess of DTT and

a 20-fold molar excess of iodoacetamide, both incubations
lasted for 30 min at room temperature. Alternatively, 5 lg
of Gad m 1 was reduced, alkylated, and digested with the
Proteoextract Trypsin Digestion Kit (Calbiochem). Proteo-
lytic digests were diluted 1:20 in 0.1% formic acid and
5 fmol was injected to RP capillary HPLC (Nanoease Sym-
metry 300TM trap column and 0.075615 mm2 Nanoease
Atlantis dC18TM separating column on CapLC, Micromass-
Waters) directly coupled to ESI-QTOF in data-dependent
analysis mode. Tandem mass spectra were analyzed using
the ProteinLynx Global Server 2.2.5TM software (Waters)
with both automatic and manual data verification. For MS/
MS-based sequencing a combined Swiss-Prot/TrEMBL
database was used and automatic validation was enabled.
Therefore, positive identification of rCyp c 1.01- or rGad m
1.02-derived peptides by CID was based on at least four
consecutive unequivocally identified y-ions in MS/MS
mode.

3 Results

3.1 Cloning and sequence analysis

Two full-length clones of 599 and 797 bp (named Gad m
1.01 and Gad m 1.02), coding for cod b-parvalbumins were
obtained. The sequences were submitted to EMBL Gen-
bank Database (accession numbers AM497927 and
AM497928). Gad m 1.01 had one amino acid exchange at
position 101 (E/D) compared to cod parvalbumin with the
accession number AY035584 [28]. Gad m 1.02 had four
nucleotide differences with one different deduced amino
acid at position 41 (S/P) compared to cod parvalbumin with
the accession number AY035585 [28].

The coding regions of the two parvalbumin cDNAs each
encompass 330 bp coding for 109 amino acid residue pro-
teins both with a theoretical pI of 4.58 (Fig. 1). The deduced
amino acid sequences of the two cod b-parvalbumin iso-
forms are 71% identical. Both Gad m 1 isoforms share 80–
81% sequence identity with Cyp c 1.01. Like all the other
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Figure 1. Comparison of amino acid sequences and analysis of the two cod b-parvalbumins (rGad m 1.01 and rGad m 1.02) and
carp b-parvalbumin (rCyp c 1.01). The sequences are available under accession numbers AM497927 for rGad m 1.01, AM497928
for rGad m 1.02, and AJ292211 for rCyp c 1.01. Two EF-hand repeats including the calcium binding sites are boxed and the calcium
binding sites are underlined. Characteristic amino acid residues for currently known parvalbumins are highlighted. Stars indicate
conserved, “:” highly conserved, and “.” weakly conserved amino acid residues.
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known fish parvalbumins, the Gad m 1 encoding sequences
contain two characteristic EF-hand repeats which bind cal-
cium and contain conserved amino acid residues (Fig. 1).
An invariant aspartic acid residue is present at position 62
which is common to all currently known parvalbumins. In
addition, a cysteine at position 19 and an arginine at posi-
tion 76, conserved characteristics of the b lineage parvalbu-
mins [28], were also identified.

3.2 Extraction and purification of nGad m 1,
expression and purification of rGad m 1.02 and
rCyp c 1.01

Natural cod parvalbumin was purified from cod muscle
protein extract. The SDS-PAGE profile of the extract
showed a prominent band at approximately 12 kDa (Fig. 2,
nGad m 1, lane 1). Natural Gad m 1 was purified by a com-
bination of anion exchange (Fig. 2, nGad m 1, lane 2) and
size exclusion chromatography (Fig. 2, nGad m 1, lane 3).
Purified nGad m 1 representing two isoforms was detected
by immunoblotting with polyclonal and monoclonal anti-
bodies (Fig. 2, nGad m 1, lanes 4 and 5, respectively). The
total yield from 500 g fish muscle was 25 mg pure nGad
m 1.

Recombinant Gad m 1.02 and rCyp c 1.01 were
expressed in the pET17b expression vector and produced as
nonfusion proteins in BL21 (DE3)-RIPL cells. Recombi-

nant parvalbumin proteins were mostly found in the soluble
fraction of the cell cultures (Fig. 2, rGad m 1.02 and rCyp c
1.01, lane 1). After precipitation (rCyp c 1.01), proteins
were purified by several chromatographic steps (Fig. 2,
rGad m 1.02 and rCyp c 1.01, lanes 2 and 3). Purified pro-
teins were detected by immunoblotting using the mouse
monoclonal antiparvalbumin clone Parv-19 antibody and
the rabbit polyclonal anti-Gad m 1 antibody (Fig. 2, rGad m
1.02 and rCyp c 1.01, lanes 4 and 5, respectively).

3.3 N-terminal sequencing

N-terminal sequence analysis of all three purified proteins
nGad m 1, rGad m 1.02, and rCyp c 1.01 revealed that the
initiating methionine was cleaved off, resulting in the fol-
lowing first five amino acid residues AFAGI.

3.4 IgE binding activity and crossreactivity

Sera from 26 fish allergic patients from Spain, The Nether-
lands, and Greece were used for IgE ELISA. The IgE bind-
ing activities of purified natural and recombinant b-parval-
bumins of cod and recombinant b-parvalbumin of carp
were comparable for most sera (19/26, Fig. 3A). A serum
pool from five fish allergic patients (patient no. 4, 8, 10, 18,
and 21) was used for IgE inhibition experiments. The serum
pool was preincubated with cod or carp muscle extract
(10 lg/mL) purified rGad m 1.02 (10 lg/mL) or rCyp c
1.01 (10 lg/mL). IgE binding activity was inhibited by
91% to nGad m 1 and rGad m 1.02 and by 76% to rCyp c
1.01 (Fig. 3B). IgE binding to rGad m 1.02 was inhibited
98% by rCyp c 1.01 and IgE binding to rCyp c 1.01 was
reduced 86% by rGad m 1.02 (Fig. 3C).

Sera from 10 fish allergic patients (patient no. 1, 3, 4, 8,
10, 14, 15, 16, 18, and 21) were used for IgE immunoblot-
ting of the three parvalbumins (Fig. 3D). Serum no. 21 was
used for the inhibition assay (Fig. 3D, lane 21i). The band
recognized by the IgE antibodies from patients’ sera was at
12 kDa. The identity of this band as parvalbumin was con-
firmed by immunoblots with antiparvalbumin antibodies.
Most samples displayed equal IgE reactivity to all three
proteins. The immunoblot inhibition experiments were per-
formed with cod and carp muscle extract, purified nGad m
1, rGad m 1.02, and rCyp c 1.01. IgE binding to nGad m 1
and rGad m 1.02 was almost completely inhibited, and IgE
binding to rCyp c 1.01 was inhibited by more than 50%
with fish extracts (Fig. 3D, lane 21i). These results were in
agreement with the results of ELISA inhibitions (Fig. 3B).
The immunoblot inhibition experiments with purified natu-
ral and recombinant proteins showed that the IgE binding
capacity of rCyp c 1.01 was completely inhibited by carp
extract (Fig. 3E). The IgE binding capacity of nGad m 1
and rGad m 1.02 was inhibited more than 90 and 80% by
cod extract (Fig. 3E), which was measured using ChemiI-
magerTM 400 (Alpha Innotech Corporation). Normal human
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Figure 2. Purification of parvalbumins: nGad m 1: Lane 1: cod
extract. Lane 2: protein purification by anion exchange fol-
lowed by size exclusion chromatography (lane 3). Lane 4:
detection of two Gad m 1 isoforms by a rabbit polyclonal anti-
Gad m 1. Lane 5: detection of one Gad m 1 isoform by the
mouse monoclonal antiparvalbumin Parv-19 antibody. rGad m
1.02: Lane 1: cell lysate of E. coli expressing rGad m1.02, lane
2: protein purification by anione exchange followed by size
exclusion chromatography (lane 3), lane 4: detection of puri-
fied rGad m 1.02 by a rabbit polyclonal anti-Gad m 1 antise-
rum. Lane 5: detection of purified rGad m 1.02 by the mouse
monoclonal antiparvalbumin Parv-19 antibody. rCyp c 1.01:
cell lysate of E. coli expressing rCyp c 1.01. Lane 2: purifica-
tion of rCyp c 1.01 by hydrophobic interaction chromatography
followed by anion exchange chromatography (lane 3). Detec-
tion of purified rCyp c 1.01 by polyclonal (lane 4) and monoclo-
nal antibodies (lane 5) showing dimers at around 20 kDa.
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sera and buffer used as controls were negative in all experi-
ments.

3.5 NMR analysis

For both rCyp c 1.01 (Fig. 4A left) and nGad m 1 (Fig. 4A
right) the amide region (7–9 ppm), the aromatic region (6–
8 ppm), the H-a region (below and above 4.4 ppm), and the
aliphatic region (0–5 ppm) were crowded with clearly sep-
arated, narrow peaks. Moreover, aromatic and amide pro-
tons showed shifts above 9 ppm and below 7 ppm, a protons

showed shifts above 5 ppm. All these facts gave evidence of
a complete folding of rCyp c 1.01 (Fig. 4A left). The same
evaluation applied to the spectra of nGad m 1 with some
difference (Fig. 4A right). The peaks were slightly broader
for nGad m 1, and some part of the protein appeared not to
have a rigid tertiary structure.

3.6 Mass determination

The identity of rCyp c 1.01 with the UniprotKB/TrEMBL
entry Q8UUS3 for a parvalbumin of Cyprinus carpio could

S202

i 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mnf-journal.com

Figure 3. Immunological analysis of nGad m 1, rGad m 1.02 and rCyp c 1.01. (A) IgE binding to purified parvalbumins of sera from
fish allergic patients from Spain, The Netherlands, and Greece. (B, C) IgE inhibition assays were performed using cod or carp extract
or purified recombinant parvalbumin of cod or carp as inhibitors. OD values were counted positive if they exceeded the mean OD of
the negative controls by more than three SDs. (B) Residual IgE binding to rGad m 1.02, nGad m 1, and rCyp c 1.01 after preincuba-
tion with cod and carp protein extract, respectively. (C) Crossinhibition assay: Residual IgE binding to rGad m 1.02 after preincuba-
tion with rCyp c 1.01, IgE binding to rCyp c 1.01 after preincubation with rGad m 1.02. D: IgE immunoblot and IgE inhibition analysis.
1–21, sera of fish allergic patients; 21i, serum was preincubated with cod extract for nGad m 1 (top) and rGad m 1.02 (middle), or
with carp extract for rCyp c 1.01 (bottom). N1 and N2, healthy nonallergic individuals; B, buffer control. (E) Immunoblot inhibition of
IgE binding to cod or carp extract by purified nGad m 1, rGad m 1.02 or rCyp c 1.01. nGad m 1: Lane 1: IgE binding to cod extract,
lane 2: Immunoblot inhibition of IgE binding to cod extract by 50 lg/mL nGad m 1. rGad m 1.02: Lane 1: IgE binding to cod extract,
lane 2: Immunoblot inhibition of IgE binding to cod extract by 100 lg/mL rGad m 1.02, and by 50 lg/mL rGad m 1.02 (lane 3). rCyp c
1.01: Lane 1: IgE binding to carp extract, lane 2: inhibition of IgE binding to carp extract by 50 lg/mL rCyp c 1.01. Lane 3 of (a) and
(c) and lane 4 of (b): healthy nonallergic individuals. Lane 4 of (a) and (c) and lane 5 of (b): buffer controls.
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be shown by ESI-QTOF MS (Fig. 4B left). The determined
intact mass of 11 373 l 1 Da indicated cleavage of N-termi-
nal methionine, however, a second less prominent peak at
11 449 l 1 Da pointed at a partial addition of b-mercaptoe-
thanol to the free sulfhydryl groups of the single cysteine
residue in position 18 (Fig. 4B). By nano-LC-MS/MS-
based peptide mapping a sequence coverage of 69.4% was
reached (Fig. 4C).

Mass spectroscopic analysis of the purified natural nGad
m 1 revealed the presence of three peaks at 11462.5,
11364.9, and 11419 Da molecular mass (Fig. 4B right).
Nano-LC-MS/MS-based peptide mapping resulted in
sequence fragments of two different isoforms, which
showed a sequence coverage of 90% as well as 88% to pre-

viously published parvalbumin sequences from G. morhua
(Acc No: Q90YK9, Q90YL0, [23]) (Fig. 4C). In both pro-
tein sequences, the acetylated N-terminal alanine was
included. The intact mass of the least intense peak
(11419 Da) was in good agreement with the theoretical
mass of the already published Gad m 1 isoform Q90YK9
(11420 Da) [23], whereas 11462.5 Da corresponded to the
form with the deacetylated N-terminus. The mass of
11364.9 was assigned to the N-terminal acetylated Gad m 1
isoform Q90YL0 (11323.8). The difference of 42 Da com-
pared to the theoretical masses are due to modification by
acetylation of the N-termini. Mass analysis showed a higher
amount of the isoform corresponded to the previously pub-
lished Q90YK9 [23].
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Figure 4. NMR and mass spectrum analysis. (A) 1H-NMR analysis: left: 1H 700 MHz spectrum of rCyp c 1.01, zgesgp experiment,
256 scans, 258C. Right: 1H 700 MHz spectrum of nGad m 1, zgesgp experiment, 1024 scans, 258C. (B) MS analysis: rCyp c 1.01
(left) and nGad m 1 (right). (C) Results of nano-LC-MS/MS-based peptide mapping for rCyp c 1.01 and nGad m 1, black: sequence
coverage of obtained peptides, gray: no coverage.
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3.7 CD and stability studies

The natural cod parvalbumin showed a far UV CD spectrum
typical for a-helical proteins characterized by two broad
minima at 208 and 222 nm at 208C (Fig. 5), as previously
described [29]. The recombinant carp parvalbumin was
more similar to the natural than to the recombinant cod pro-
tein. The spectrum of recombinant cod parvalbumin
showed a reduced minimum at 222 nm (Fig. 5).

CD spectra of nGad m 1 were recorded at pH 2.5, 7.0,
and 8.5 (Fig. 6A). The spectra revealed conformational
changes of the natural protein under acidic conditions. The
minimum of around –8000 deg N cm2 N dmol – 1 measured
by 208 nm drifted to –10 000 deg N cm2 N dmol – 1. No
change was caused under neutral or basic conditions. Ther-
mal stability values were monitored at different pH values
(Fig. 6B). The spectrum of nGad m 1 heated to 958C at
pH 7 showed an increase of negative dichroism. Whereas
the heating of nGad m 1 to 958C at pH 2.5 and 8.5 resulted
in one broad minimum and changes in ellipticity at 208 nm
to a higher negative dichroism (Fig. 6B). The spectra of
unheated and heat-treated rCyp c 1.01 at pH 8.5 showed no
shifts, similar to the ones of nGad m 1 (data not shown). In
contrast to nGad m 1, rCyp c 1.01 changed its conformation
to an irregular structure after heating at pH 2.5 (Fig. 7).

After Ca2+-depletion by addition of 5.0 mM EGTA a
decreased signal intensity was measured in the spectrum of
rCyp c 1.01, as previously described [7]. In contrast, nGad
m 1 displayed no change in the signal intensity, but a com-
plete loss of the peak at 222 nm was monitored (Fig. 6C).
Thermal stability of natural cod and recombinant carp par-
valbumin after Ca2+-depletion was observed after heating
samples. Whereas, natural Gad m 1 treated with 5.0 mM
EGTA showed a remarkable increased negative dichroism
with a minimum at 208 nm after the heat treatment (Fig.
6C).

4 Discussion

This work reports the comparison of natural and recombi-
nant forms of parvalbumin of Atlantic cod and carp. Parval-
bumins have previously been identified as major and cross-
reactive allergens in various fish species [6, 30]. As the
major cod allergen Gad m 1 is well studied and regarded as
a representative for fish allergen, it is used for the develop-
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Figure 5. Comparison of Ca2+-bound nGad m 1, rGad m 1.02
and rCyp c 1.01. CD spectra analysis revealed conformational
differences between the natural and recombinant parvalbu-
mins. Black: nGad m 1, black dotted: rGad m 1.02, gray: rCyp
c 1.01.

Figure 6. CD spectra of stability measurements of nGad m 1.
(A) pH stability. No significant conformational changes at
pH 7.0 and 8.5, but a complete loss of the minimum at 222 nm
at pH 2.5. (B) heat stability. An increased dichroism and a loss
of the minimum at 222 nm were monitored for each heated
sample. (C) Ca2+-depletion. Only one minimum at 208 nm was
observed for the Ca2+-depleted form. An increase of negative
dichroism was revealed in the samples after heating.
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ment and validation of novel diagnostic tools [15, 31]. In
our study, we established new purification protocols for nat-
ural and recombinant cod parvalbumin and recombinant
carp parvalbumin. Cod muscle contains several IgE-reac-
tive parvalbumin isoforms including at least two b-iso-
forms, which were purified and characterized by mass spec-
troscopy and NMR. In addition, we cloned two b-parvalbu-
mins (rGad m 1.01 and rGad m 1.02) and produced rGad m
1.02 from cod.

IgE ELISA, IgE immunoblotting and inhibition experi-
ments revealed a high crossreactivity between cod and carp
parvalbumins (Fig. 3). Almost all sera of fish allergic
patients (25/26) in this study, which had IgE reactivity to
native and recombinant cod parvalbumin, also had IgE
reactivity to recombinant carp parvalbumin (Fig. 3A). This
result supports the assumption that cod and carp parvalbu-
mins share at least some B-cell epitopes. The high amino
acid sequence identities between the two parvalbumins of
cod (71%) and between parvalbumins of cod and carp (80–
81%) support this finding. The results of immunoblotting
performed with the mouse monoclonal antifrog parvalbu-
min antibody Parv-19 and a rabbit polyclonal anti-Gad m 1
antiserum further illustrate the crossreactivity of parvalbu-
mins (Fig. 2). The IgE binding capacity of rGad m 1.02 was
comparable to nGad m 1. Interestingly, some serum sam-
ples (sera 2, 13, 17, 20, 24, 25, and 26) showed stronger IgE
binding to rGad m 1.02 than to nGad m 1 (Fig. 3A). Hence,
standardized batches of recombinant cod parvalbumin can
replace nGad m 1 for diagnostic assays. The second band
detected in immunoblot of nGad m 1 with the polyclonal
anti-Gad m 1 antiserum (Fig. 2, nGad m 1, lane 4) repre-
sents a second isoform of cod parvalbumin according to the
results from MS. An approximately 22 kDa band present in
both lanes 4 and 5 (Fig. 2) of the rCyp c 1.01 blot could be a
protein dimer according to the results of immunoblots with
fish allergic patients’sera (data not shown).

CD analysis revealed that purified rGad m 1.02 and rCyp
c 1.01 were present in solution as a folded protein with a
predominantly a-helical secondary structure similar to that
of the native cod parvalbumin, as was previously described
for the recombinant carp parvalbumin rCyp c 1.01 [26].
However, we could observe a similarity between the CD
spectra of rGad m 1.02 and the Ca2+-depleted form of natu-
ral cod parvalbumin (Figs. 5 and 6C). In contrast to nGad m
1, which did not show conformational differences after add-
ing Ca2+ (data not shown), we could detect a conformational
change of rGad m 1.02 after dialysis against a Ca2+-contain-
ing buffer (data not shown). These data indicate that the
native parvalbumin contained bound calcium ions even
after undergoing the purification procedure. This may not
be the case with the protein produced in E. coli. The Ca2+

depletion experiments for carp parvalbumin described in
the literature [7] were performed with the recombinant pro-
tein rCyp c 1.01. In contrast, our Ca2+ depletion experiments
for cod parvalbumin were performed with the natural pro-
tein. For carp parvalbumin no comparison was made
between the natural and the recombinant proteins regarding
their stability depending on bound Ca2+. The conformation
of natural cod parvalbumin appears to be more resistant to
calcium depletion than the conformation of recombinant
carp parvalbumin. Recombinant Cyp c 1.01 seems to be sta-
ble at pH 7.0 even after heating to 958C as previously
described [7]. Additionally, we could observe an effect of
pH 2.5 on conformation and the stability after heating the
sample (Fig. 7). As the glutamate residues of the Ca2+-bind-
ing site [32] are uncharged at pH 2.5, the binding of the che-
late ion is hindered. The similarity of the spectra of EGTA
treated rCyp c 1.01 and at pH 2.5, as well as the instability
of rGad m 1.02 under basic conditions (data not shown) are
most likely due to the reduced amount of bound Ca2+. In
contrast, natural cod parvalbumin was stable at each pH
value tested and we could observe only a loss of the broad
minimum at pH 2.5, and at pH 2.5 after heating (Figs. 6A
and B). These observations illustrate that the binding of the
chelate ion plays an important role for the conformation
and for the stability of the recombinant proteins.

The mass data obtained for rCyp c 1.01 showed a second
less prominent peak at 11 449 l 1 Da (Fig. 4B left). This
pointed at a partial addition of b-mercaptoethanol to the
free sulfhydryl groups of the single cysteine residue of the
protein in position 18. This addition in a minor component
of the recombinant protein might be a likely leftover from
the purification procedure involving trace amounts of the
reducing agent. The mass data for nGad m 1, in addition to
the least intense peak showed two additional peaks with
masses of 11462.5 and 11364.9, respectively (Fig. 4B
right). Noticeably, both masses showed a difference of
42 Da compared to the theoretical masses of isoform
Q90YK9 (11420.9) and isoform Q90YL0 (11323.8). We
therefore speculate that the majority of nGad m 1 molecules
was post-translationally modified by acetylation. This
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Figure 7. Stability of rCyp c 1.01. An increased negative
dichroism after heating was monitored. Conformational
change of the heated protein to an irregular structure at
pH 2.5. Black line: room temperature; black dotted line: heated
at 958C; gray line: pH 2.5; gray dotted line: heated to 958C at
pH 2.5.
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assumption was confirmed by MS/MS analysis of the pepti-
des obtained by tryptic digest of nGad m 1 (Fig. 4C). When
92% of the Q90YK9 sequence could be confirmed, the ace-
tylated N-terminal alanine was included.

Our data indicate that natural and recombinant parvalbu-
mins can be used equally well for in vitro diagnostic assays
to detect parvalbumin-specific IgE. Nevertheless, the vari-
ous batches of recombinant proteins need to be character-
ized by several physico-chemical methods to assure their
consistent quality. However, when the natural and recombi-
nant allergens are compared in more detail, differences do
emerge.
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Abstract: 

Background: Parvalbumins are the most important fish allergens. Polysensitization to 

various fish species is frequently reported and linked to the cross-reactivity of their 

parvalbumins. Studies on cross-reactivity and its association to the allergenicity of 

purified natural parvalbumins from different fish species are still lacking. In addition, 

some studies indicate that dark muscled fish such as tuna are less allergenic. 

Methods: Total protein extracts and purified parvalbumins from cod, whiff, and 

swordfish, all eaten frequently in Spain, were tested for their IgE-binding capacity with 

16 fish allergic patients’ sera from Madrid. The extent of cross-reactivity of these 

parvalbumins was investigated by IgE ELISA inhibition assays. Additionally, the 

cDNA sequences of whiff and swordfish parvalbumins were determined. 

Results: Extractable amounts of parvalbumins from cod were 20 times and from whiff 

30 times higher than from swordfish. Parvalbumins were recognized by 94% of the 

patients in extracts of cod and whiff, but only by 60% in swordfish extracts. 

Nevertheless, a high cross-reactivity was determined for all purified parvalbumins by 

IgE inhibition. The amino acid sequence identities of the three parvalbumins were in a 

range of 62 to 74%. 

Conclusions: The parvalbumins of cod, whiff and swordfish are highly cross-reactive. 

The high amino acid sequence identity among cod, whiff and swordfish parvalbumins 

results in the observed IgE cross-reactivity. The low allergenicity of swordfish is due to 

the lower expression levels of its parvalbumin. 

 

Keywords: beta-parvalbumin, cross-reactivity, fish allergy, food allergen, whiff 
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Introduction 

Especially in coastal countries, fish constitute an important part of the diet. In Norway 

allergy to fish is found in 0.1% of the population [1,2]. In a cross-sectional study carried 

out in Spain, fish allergy was diagnosed in 36 of 4991 patients (0,72%) referred to for 

allergy evaluation [3]. Patients are often allergic to certain fish species while they 

tolerate others [4]. In Spain, whiff, cod and swordfish are commonly consumed [5,6]. 

Allergic reactions to fish can be mild to severe [5,7]. 

 

The major allergens of fish are parvalbumins besides minor allergens such as collagen 

and aldehyde phosphate dehydrogenase [8,9]. Parvalbumin is an acidic, calcium-

binding 12 kDa protein resistant to heat and digestive enzymes [10-14]. Fish muscles 

express multiple parvalbumin isoforms, which can be divided into two distinct 

evolutionary lineages. Alpha-parvalbumins are generally not allergenic [15] with the 

exception of two alpha-parvalbumins reported in frog [16-19]. In contrast, various  IgE-

reactive beta-parvalbumins of bony fish have been described [10,20,21]. Based on the 

high amino acid sequence identity of beta-parvalbumins from different fish, cross-

reactivity among different fish species occurs frequently [4,5,20,22-24].  

 

Bony fish have fast twitching white muscle for rapid movements and dark muscle for 

continuous swimming. Active fish such as tuna, skipjack [25], and swordfish have a 

higher proportion of dark muscles than bottom dwelling fish, such as cod, flounder [25], 

or whiff. Dark muscle contains lower levels of parvalbumins, thus these fish species are 

expected to be of lower allergenicity [25,26]. 
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In this study we investigated the IgE cross-reactivity of purified parvalbumins from cod 

and whiff as examples for allergenic fish, and from swordfish as an example for dark 

muscled fish.
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Material and Methods 

Protein extracts 

Atlantic cod, swordfish, and whiff filets were purchased from local markets in Vienna, 

Austria, and Madrid, Spain. 500 g cod or 250 g whiff filet were homogenized and 

extracted in three volumes (w/v) of 20 mM Bis-Tris, pH 6.5. After centrifugation at 

17,000 x g for 45 min at 4°C, the supernatants were filtered through Miracloth (Merck 

Biosciences, Nottingham, UK) and filter papers (Macherey-Nagel, Düren, Germany). 

An 80 g swordfish filet was extracted in double distilled water. The supernatant, 

obtained as described above, was dialysed against 20 mM Bis-Tris, pH 7.0. Protein 

extracts were stored at 4°C. Protein concentrations were determined by the BCA Protein 

Assay Reagent Kit (Pierce, Rockford, Ireland). 

Protein purification 

All fish extracts were treated with 0.1% Biocryl BPA-1000 (Supelco, Bellefonte, PA) 

and centrifuged at 17,000 x g for 30 min at 4°C. The supernatants were applied to a 

DEAE Sepharose Fast Flow column (GE Healthcare, Little Chalfont, UK). Selected 

fractions were loaded onto a HiPrep 16/60 Sephacryl S-200 column (GE Healthcare). 

Cod or whiff parvalbumins were eluted as a single peak. For swordfish, a pool of 

fractions containing parvalbumin was dialyzed against 50 mM Na-acetate, pH 5.0 and 

purified by a SP-Sepharose Fast Flow column (GE Healthcare). The flow through was 

collected, dialyzed against 20 mM Tris-HCl, pH 8.0 and purified by anion exchange 

chromatography using a MonoQ 5/50 GL column (GE Healthcare). 

Mass and sequence determination 

The mass of whiff beta-parvalbumin was determined as described [21]. For nano-liquid 

chromatography-tandem mass spectrometry (nanoLC-MSMS)-based peptide mapping 
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50 µg aliquots of each parvalbumin was digested overnight at 37°C with 2 µg trypsin or 

V8 protease (Roche Applied Science, Vienna, Austria). The N-terminal sequence of 

whiff parvalbumin was determined as described [21]. 

RNA isolation and cDNA synthesis 

Total RNA of 60 mg whiff or 400 mg swordfish muscle tissue was extracted according 

to the RNeasy kit procedure (QIAGEN, Hilden, Germany). First strand cDNA was 

synthesized from 2 µg total RNA with an oligo-dT25 primer (5'-GGAGAAGGAT25VN-

3'), using MuLV reverse transcriptase (Fermentas, St. Leon-Rot, Germany). 

PCR amplification and sequencing 

A fragment of whiff cDNA encoding beta-parvalbumin was amplified by PCR using 

oligo-dT25 and the degenerate primer Wh1-fwd (5’-

ATGACITTYGCIGGIYTIGAYGC-3’) designed on the basis of an internal amino acid 

sequence obtained by MS analysis. For swordfish, PCR amplification was carried out 

with the primer pair oligo-dT25 and Sw1-fwd (5’-CTGAAGCTGTTCCTGCAGAAC-

3’), which corresponded to the Chub mackerel parvalbumin sequence (EMBL: 

AB091470). In order to obtain the 5’ends, 5’-RNA ligase-mediated rapid amplification 

of cDNA ends was performed using the GeneRacer Kit (Invitrogen, Carlsbad, CA, 

USA), according to the manufacturer’s instructions. For swordfish, a modified 5’-

primer was used (5'-GAGCACGAGGACACTGAC-3'). 3’-primers for whiff 

parvalbumin were Wh2-rev (5’-CCTAACAAGGTCGGTGAACTC-3’) and Wh3-

nested: (5’-GCCATCAACGTCACCGGCCTTCAG-3’) and for swordfish Sw2-rev (5’-

CGCAGCCGCCTTGAAGTTCT -3’) and Sw3-nested: (5’-

GTTCTGCAGGAACAGCTTCAG-3’). PCR products were gel purified, cloned into 

the pCR2.1-TOPO vector (Invitrogen) and sequenced (IBL, Vienna, Austria). 

Sequences were aligned using AlignIR 2.0 (LI-COR Biosciences, Lincoln, NE, USA). 
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Sera and antibodies 

Sera from 16 patients with clinical histories of type 1 fish allergy were selected in the 

Allergy Department of the Hospital Clinico San Carlos (Table 1). Diagnosis of fish 

allergy was verified by determination of fish-specific IgE using ImmunoCAP (Phadia, 

Uppsala, Sweden) and skin prick testing to different fish species and Anisakis simplex, a 

fish parasite [27]. All patients were negative to Anisakis. Parvalbumins were detected 

by the mouse monoclonal anti-parvalbumin clone Parv-19 antibody (Sigma, St Louis, 

Missouri, USA) and rabbit polyclonal anti-Gad m 1 antibody (Tepnel BioSystems Ltd., 

Deeside, UK). 

SDS-PAGE and immunoblotting 

Total protein extracts and purified allergens were separated by SDS-PAGE under 

reducing conditions and either visualized by Coomassie Brilliant Blue or transferred to 

nitrocellulose membranes for immunodetection of purified parvalbumins by the mouse 

monoclonal and rabbit polyclonal antibodies [21]. In addition, blotted proteins were 

incubated with individual fish allergic patients’ sera and bound IgE was detected by 

125I-labelled rabbit anti-human IgE (MALT Allergy System Isotope Reagent, IBL 

Hamburg, Germany). 

IgE ELISA and inhibition assays 

Purified Gad m 1, whiff and swordfish parvalbumins (2 µg/ml) were coated to 

CovaLink NH plates (Nunc, Roskilde, Denmark). Non-specific binding sites were 

blocked with Tris buffered saline, 0.5% Tween-20 (TBST), 3% (w/v) milk. Plates were 

then incubated with sera diluted in TBST 0.5% (w/v) BSA. Bound IgE was detected 

with AP-conjugated mouse anti-human IgE antibody (BD-Biosciences Pharmingen, San 

Diego, CA, USA) and developed with p-nitrophenyl phosphate (Sigma-Aldrich, St. 
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Louis, MO, USA). Inhibition assays were performed by pre-incubating a serum pool 

with increasing concentrations of parvalbumins (1, 10, 20, 50, 100 µg/ml) or extracts (1 

or 100 µg) and determining residual IgE-binding to fish extract. In order to control for 

IgE binding to high molecular weight (HMW) allergens of cod and whiff, 

chromatographic fractions containing these proteins but no parvalbumins were used as 

inhibitors (1 or 100 µg/ml). Cross-reactivities between parvalbumins were determined 

with 4 patients’ sera using purified parvalbumins (50 µg/ml) as inhibitors. Inhibition 

values are given as percent reduction of bound IgE compared with the controls where 

no inhibitor protein had been added. 

Statistic analysis 

Mean and standard deviations (sd) were calculated for the ImmunoCAP and IgE ELISA 

results. Comparisons of ImmunoCAP results for the 3 fish species and of the IgE 

ELISA for the 3 parvalbumins were carried out by non-parametric tests for paired 

samples (Friedman and Wilcoxon tests). Paired correlations of the IgE responses to cod, 

whiff and swordfish whole extracts and parvalbumins were performed with the 

Spearman test. P values < 0.05 were considered significant. Statistical analysis was 

carried out with SPSS (SPSS, Chicago, IL, USA).
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Results 

cDNA cloning and sequencing of whiff and swordfish parvalbumins 

The full-length cDNA sequence of whiff parvalbumin was obtained (EMBL: 

AM904681, designated Lep w 1.0101 by the IUIS allergen nomenclature sub-

committee). It comprised 671 base pairs (bp) with an open reading frame (ORF) of 327 

bp encoding a protein of 109 amino acids including the initiating methionine. The full-

length cDNA of swordfish parvalbumin consisted of 692 bp with an ORF of 327 bp 

encoding a protein of 109 amino acids including the initiating methionine (FM202668, 

designated Xip g 1.0101). Both sequences contained conserved residues characteristic 

of beta-parvalbumins (Fig. 1, highlighted) [21,28,29]. Theoretical isoelectric points 

were calculated as 4.5 for Lep w 1 and 4.43 for Xip g 1. The translated sequences were 

aligned with the published cod parvalbumin isoforms Gad m 1.01 (AM497927) and Gad 

m 1.02 (AM497928) [21] (Fig. 1A). All 4 parvalbumins shared sequence identities in 

the range of 62 to 74% (Fig. 1B).  

Patients’ characteristics 

Clinical data of the patients are summarized in Table 1. All had a history of type 1 

allergy to more than one fish species. The patients, 10 children (age 1-3 years) and 6 

adults (age 21-36), showed moderate to severe symptoms. All displayed positive skin 

prick test reactions to cod, whiff or swordfish. Fifteen patients (94%) had positive (≥ 

0.35 kU/L) ImmunoCAP results to cod and whiff, 12 (75%) to swordfish. ImmunoCAP 

values to swordfish were significantly lower than those to cod (p = 0.002) and whiff (p 

= 0.003), whereas no significant differences were observed between whiff and cod 

ImmunoCAP values (p = 0.12). A strong and significant correlation (p < 0.001) was 

observed between ImmunoCAP values to cod and whiff (r = 0.88), whereas the 
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correlations between ImmunoCAP values to cod and swordfish (r = 0.37) and 

ImmunoCAP values to whiff and swordfish (r = 0.29) were not significant (p > 0.05). 

IgE recognition patterns to fish extracts 

All 16 patients had IgE to at least one allergen in cod or whiff protein extract (Fig. 2). 

Fifteen patients (94%) recognized a 12 kDa protein (Fig. 2A, B), identified as 

parvalbumin by a mouse monoclonal anti-parvalbumin and a rabbit polyclonal anti-Gad 

m 1 antibody (data not shown). In cod, two additional  IgE-reactive bands were 

observed at 30 kDa and around 40 kDa (Fig. 2A). In whiff extract, IgE-reactive proteins 

were detected at 17 kDa and in the high molecular weight range (33-72 kDa) (Fig. 2B). 

Twelve of 16 patients showed IgE reactivity to parvalbumin in swordfish extract. One 

patient also had IgE to a 40 kDa protein in all fish extracts (Fig. 2C). 

Purification and biochemical characterization of natural parvalbumins 

Protein extracts of cod and whiff displayed similar protein patterns in SDS-PAGE with 

a prominent band at 12 kDa. The swordfish extract showed a remarkable amount of 

high molecular weight proteins and two less prominent bands at 12 kDa (Fig. 3A; lanes 

1). The 12 kDa proteins were identified as parvalbumins in all extracts by 

immunoblotting with monoclonal and polyclonal anti-parvalbumin antibodies (data not 

shown). 

 

Twenty milligrams parvalbumin from cod, 30 mg from whiff and 1 mg from swordfish 

were purified from 100 g fish muscle (Fig. 3B). The mouse monoclonal antibody 

detected one band for Gad m 1, Lep w 1 and Xip g 1 (Fig. 3A; lanes 3). The polyclonal 

anti-parvalbumin antibody detected two isoforms of Gad m 1 and Xip g 1 (Fig. 3A; 

lanes 5). A purity of >98% was determined for Gad m 1 and Lep w 1 by size exclusion 
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chromatography (data not shown). Coomassie staining showed that Xip g 1 was >99% 

pure (Fig. 3A; right panel, lane 2). 

 

The identity of Lep w 1 was confirmed by N-terminal sequencing which revealed the 

first five amino acid residues as TFAGL. Mass spectrometric analysis of Lep w 1 

revealed a single peak at 11624 Da, which is in agreement with the predicted theoretical 

mass of 11581.8 Da (data not shown). The difference of 42 Da is due to the acetylation 

of the N-terminus as previously reported for Gad m 1 [21]. Mass spectrometric analysis 

confirmed the identity of the purified cod parvalbumin as Gad m 1 (data not shown) as 

described [21]. In swordfish, two parvalbumin isoforms were identified by nanoLC-

MSMS-based peptide mapping (data not shown). The lower molecular mass isoform 

was consistent with the cDNA sequence. 

 

IgE reactivity of purified parvalbumins 

IgE reactivity of the purified parvalbumins Gad m 1, Lep w 1 and Xip g 1 was 

confirmed by IgE ELISA using 14 patients’ sera (Table 1). Gad m 1 and Lep w 1 were 

recognized by all patients in ELISA. The IgE titer to Lep w 1 was significantly higher 

(p = 0.001). Ten patients’ sera recognized the swordfish parvalbumin. The IgE level to 

Xip g 1 was significantly lower (p = 0.001) than those to Gad m 1 and Lep w 1. Strong 

and significant paired correlations (p < 0.001) were observed between the ELISA values 

to Gad m 1 and Lep w 1 (r = 0.99), Gad m 1 and Xip g 1 (r = 0.83) and between Xip g 1 

and Lep w 1 (r = 0.85). 

 

Purified Gad m 1, Lep w 1 and Xip g 1 dose-dependently inhibited the IgE-binding of a 

serum pool (P1, 4, 8, 14) to fish protein extracts of cod, whiff and swordfish, 
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respectively (Fig. 4). Pre-incubation of the serum pool with 100 µg/ml Gad m 1 or Lep 

w 1 revealed an IgE inhibition of 89% and 92% to cod and whiff protein, respectively 

(Fig. 4, grey bars). IgE binding was inhibited by HMW proteins of cod (38% at 100 

µg/ml) and whiff (45% at 100 µg/ml) extracts (Fig. 4, transparent bars). IgE-binding to 

immobilized swordfish extract was inhibited by 84% after pre-incubation with 100 

µg/ml Xip g 1 (Fig. 4, grey bars). Pre-incubation of the serum pool with fish extracts as 

positive control showed 100% inhibition (Fig. 4, squared bars). 

 

Gad m 1 was able to inhibit IgE-binding to immobilized Lep w 1 between 63 to 97%, 

and sera pre-incubated with Lep w 1 were reduced in their IgE-binding to Gad m 1 by 

42 to 75% (Table 2). A reduction of IgE-binding to Lep w 1 and Gad m 1 was achieved 

bewtween 52 to 85% using Xip g 1 as inhibitor. The IgE reactivity to Xip g 1 was 

reduced between 78 to 100% by inhibition with Gad m 1 or Lep w 1. The lowest 

inhibition of IgE- binding of approximately 20% to whiff parvalbumin was determined 

for serum P3 preincubated with Gad m 1 or Xip g 1 (Table 2). Pre-incubation of serum 

P3 with Gad m 1 and Lep w 1 did not reduce the IgE-binding to Xip g 1. 
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Discussion 

Fish allergic patients are often allergic to more than one fish species due to the cross-

reactivity of their beta-parvalbumins [4,30]. However, differences in IgE reactivity to 

dark and white muscled fish have been reported [25]. Active fish with a higher amount 

of dark muscles [25] were regarded as low allergenic [4]. 

 

In this study, we compared the IgE-binding of fish allergic patients’ sera to cod, whiff 

and swordfish extracts and purified parvalbumins. We selected swordfish as an active 

dark muscled fish and analyzed its IgE cross-reactivity with cod and whiff, both 

frequent causes of fish allergy in Spain [5]. We describe for the first time the 

parvalbumins from whiff (Lep w 1) and swordfish (Xip g 1) as major allergens. 

Additionally, we cloned cDNAs of whiff and swordfish beta-parvalbumins. 

 

We purified cod, whiff and swordfish parvalbumins under native conditions to preserve 

calcium-binding, which is important for the conformation of the proteins [20,21,31]. For 

whiff and swordfish we established new purification protocols. The low yield of 

swordfish parvalbumin (1 mg/100 g filet) compared to cod (20 mg/100 g) and whiff (30 

mg/100 g) parvalbumins reflected the weak signals in IgE immunoblotting of the 

extract. We found only one parvalbumin isoform (Lep w 1) in whiff, whereas two 

isoforms could be identified in cod and swordfish using a polyclonal anti-parvalbumin 

antibody. A nearly complete inhibition of IgE-binding to cod and whiff extracts by 

purified Gad m 1 and Xip g 1 suggested that all IgE- reactive parvalbumin isoforms 

were purified. All patients’ sera also recognized HMW proteins (Fig. 4, transparent 

bars), thus no complete inhibition could be obtained. In swordfish additional 
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parvalbumin isoforms may be present. Only 84% inhibition of patients’ IgE to this 

extract was achieved after incubation with purified Xip g 1. 

 

IgE cross-reactivity of all studied parvalbumins was shown by IgE ELISA inhibition 

assays. The parvalbumins may share several identical IgE-binding epitopes, consistent 

with their high protein sequence identities (62-74%). We detected a lower reduction of 

IgE-binding to Gad m 1 after pre-incubation of sera with Lep w 1 (in a range of 42 to 

75%) than to Lep w 1 after sera had been pre-incubated with Gad m 1 (63-97%). These 

findings could indicate the presence of  IgE-reactive to species-specific IgE epitopes in 

cod and whiff parvalbumins. Patients might not have been sensitized by swordfish 

parvalbumin as IgE-binding to Xip g 1 was inhibited in a range of 80 to 100% with Gad 

m 1 and Lep w 1, respectively. Interestingly, patient P3’s serum seemed to contain 

mainly species-specific IgE to the parvalbumin of the frequently eaten whiff. IgE-

binding to Lep w 1 could only be reduced by around 20% using Gad m 1 and Xip g 1 as 

inhibitor (Table 2). 

 

In previous studies it was hypothesized that the degree of IgE-binding activity might be 

related to the amount of consumption [5,32]. As whiff is one of the most frequently 

consumed fish in Spain, it is not unlikely that this patient was initially sensitized by Lep 

w 1. In our present work, all fish belonged to different taxonomic orders, but the protein 

sequence identities of parvalbumin isoforms were similar within the species and among 

fish species (around 70%) as already reported for Alaska pollock, Atlantic cod and 

salmon [7]. 

 

In conclusion, this study demonstrates the cross-reactivity among the parvalbumins of 

high allergenic cod and whiff, and the “low allergenic” swordfish. High sequence 
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identities support this finding. Parvalbumin was the major allergen in all studied fish 

including swordfish. According to our results the weak reaction of only 12 sera to 

swordfish parvalbumin, when tested by IgE immunoblotting, was due to the low 

parvalbumin content of swordfish. We therefore suggest that cod or whiff parvalbumins 

are responsible for sensitization of fish allergic patients. Additionally, we have 

demonstrated that swordfish is hypoallergenic. Clinical studies involving oral 

challenges are currently ongoing to confirm its lower allergenicity in fish allergic 

patients. 
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Figures 

Figure 1: (A) Protein sequence alignment of Gad m 1.01 (EMBL Acc. No. AM497927), 

Gad m 1.02 (AM497928), Lep w 1 (AM9046811), and Xip g 1 (FM202668) generated 

by ClustalX, Version 1.83; highlighted: characteristic amino acid residues of beta-

parvalbumins. Boxed: EF-hand 1 and 2, underlined: calcium-binding sites, indicated 

and highlighted: conserved amino acid residues characteristic of beta-parvalbumins, “*” 

indicate conserved, “:” highly conserved, “.” weakly conserved amino acid residues and 

“-“ a gap. (B) Protein sequence identities. 

 

Figure 2: IgE-binding of fish allergic patients’ sera to cod (A), whiff (B) and swordfish 

extract (C) was determined by IgE immunblotting. M, molecular weight marker (kDa); 

1-16, sera of fish allergic patients; NHS, control serum; B, buffer control. 

 

Figure 3: Purification and identification of parvalbumins. (A) Fish protein extracts (lane 

1) and purified parvalbumins (lane 2) were detected by Coomassie staining and 

immunoblotting with monoclonal (lane 3) and polyclonal (lane 5) antibodies, 

respectively. Lanes 4 and 6 show negative controls. (B) Extraction of 100 g fish yielded 

different amounts of purified parvalbumin. 

 

Figure 4: IgE ELISA inhibiton assay with immobilized fish extracts. Grey: Purified 

parvalbumins Gad m 1, Lep w 1 and Xip g 1, respectively as inhibitors; transparent: 

binding of IgE to HMW proteins as inhibitor; squared: fish extract were used as 

inhibitor. 
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     Cod Gad m 
1 

Whiff Lep w 
1 

Swordfish Xip g 1 

Patient Age 
(years) 

Sex Fish-
related 
symptoms 

Total 
IgE 
(kU/L) 

CAP 
(kU/L) 

ELISA 
(OD) 

CAP 
(kU/L) 

ELISA 
(OD) 

CAP 
(kU/L) 

ELISA 
(OD) 

P1 11 m AE, A 264 74.5 3.1 48.5 3.88 2.33 0.26 

P2 5 m U 33.5 8.91 0.77 14.2 1.08 1.16 0 

P3 12 m AE 422 9.6 1.02 6.06 1.43 1.02 0 

P4 26 f AN 1272 12.3 1.79 10.2 2.43 4.6 0.049 

P5 36 m OAS, U 1633.5 7.37 1.98 10 2.64 0.38 0.2 

P6 35 f U, AE >2000 2.69 0.59 1.43 0.88 0.39 0.011 

P7 9 m U, V 56.3 17.2 2.49 11.3 3.19 4.32 0.75 

P8 2 f OAS 143 15.3 0.8 13.5 1.11 0.87 0.041 

P9 30 f AE, A, D 389 3.07 0.77 2.07 1.16 0 0.172 

P10 34 f AN 311 30.3 1.23 5.9 1.67 5.74 0.198 

P11 21 f U, AE 1724 45.1 0.98 19.9 1.32 9.7 0.039 

P12 5 m OAS 61.5 1.82 0.06 1.17 0.06 0 0 

P13 1 f AN 72.4 1.18 0.19 2.14 0.25 0 0 

P14 3 m OAS 450 47.5 3.58 83.8 3.62 10.9 0.335 

P15 13 m U 961 47.5 nd 23.2 nd 0 nd 

P16 4 m U 276 0 nd 0 nd 10.9 nd 

mean     20.27 1.38 15.83 1.76 3.29 0.15 

sd     22.16 1.06 21.75 1.20 4.01 0.20 

 

Table 1: Clinical and serologic characteristics of patients with type 1 fish allergy. 

Mean, mean value; sd, standard deviation; m, male; f, female; A, asthma; AD, atopic 

dermatitis; AE, angioedema; AN, anaphylaxis; U, urticaria; D, dysphagia; V, vomiting; 

OAS, oral allergy syndrome; nd, not done. 
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Coated Gad m 1   Xip g 1   Lep w 1  
Inhibitor Xip g 1 Lep w 1  Gad m 1 Lep w 1  Gad m 1 Xip g 1 
Patients         
P1 85 75  91 78  68 64 
P2 57 42  99 86  63 52 
P3 81 60  0 0  22 19 
P4 75 59  100 88  97 80 

 

Table 2: IgE ELISA cross-inhibition of three fish parvalbumins. 
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 Amino acid identity (%) 
Allergens Gad m 1.01 Gad m 1.02 Lep w 1.0101 Xip g 1.0101 

Gad m 1.01 100 71 65 74 
Gad m 1.02 71 100 62 71 
Lep w 1.0101 65 62 100 69 
Xip g 1.0101 74 71 69 100 
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Abstract 

Whiff (Lepidorhombus whiffiagonis) is a fish frequently consumed in Spain. Lep w 1, 

its major allergen, is a calcium-binding beta-parvalbumin. The resistance of Lep w 1 to 

heat denaturation and to digestion were studied by circular dichroism (CD) 

spectroscopy and by in vitro gastric digestion systems. Purified Lep w 1 was thermally 

stable up to 65°C at neutral pH. Calcium-depletion resulted in a change of its structure 

as determined by CD spectroscopy. A partial loss of structure was also observed at 

acidic pH, however the allergen retained its full IgE binding ability. The partially 

denatured Lep w 1 was easily digested by pepsin within 2 minutes. Further, the IgE 

reactivity of proteins extracted from cooked fish and their stability to proteolysis were 

analysed. The extract revealed a higher number of IgE reactive bands than an extract 

from uncooked fish. IgE binding to these proteins could not be inhibited by an extract 

from uncooked fish. In contrast to a raw fish extract the cooked extract showed higher 

resistance to pepsinolysis. The stability of Lep w 1 to thermal denaturation and 

digestion, explain the high allergenicity of whiff. 
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1. Introduction 

Fish is an important source of dietary protein but also a common elicitor of food 

allergies in coastal countries. One of the most allergenic fish species in Spain is the 

frequently consumed whiff (Lepidorhombus whiffiagonis) [1]. Allergic reactions to fish 

often manifest already in small children with a tendency to  persist [2]. In Spain, 18% of 

food allergic children suffer from fish allergy [3]. Fish consumption may lead to severe 

clinical symptoms and even to lethal anaphylaxis [1]. The major fish allergen is 

parvalbumin, a 12 kDa small and soluble, acidic protein. It belongs to the second largest 

animal food allergen family, the EF-hand family [4]. Parvalbumins comprise 3 EF-hand 

motifs, two of which are able to bind calcium with high affinity [5]. The N-terminal 

region may regulate the binding affinity of the active calcium-binding motifs. 

Parvalbumins are subdivided into two different phylogenetic lineages, alpha and beta. 

Many allergenic cross-reactive beta-parvalbumins are found in various fish species [6], 

including whiff. 

 

Beta-parvalbumins  with bound calcium are remarkably stable [6-8]. Many studies 

report a significant resistant to heat, chemical denaturation and proteolytic enzymes [7, 

9, 10]. Calcium binding is essential for the conformational stability but also for the 

allergen’s immunoreactivity [6, 11]. 

 

It has been described that food allergens are usually abundant in the food and 

structurally stable [12, 13]. Additionally, food allergens must preserve their structure 

from degradation by digestive enzymes to be taken up by the gut and to be presented to 

the immune system [14]. Calcium-bound parvalbumins are known as remarkably stable 

food allergens [6, 11]. However, one study questions the proteolytic stability of fish 
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proteins. Untersmayer et al. reported the pepsinolysis of raw codfish proteins to small 

fragments after incubation with simulated gastric fluid, pH 2 for one minute [15]. 

Physiochemical changes can impair proteolysis during gastrointestinal digestion and 

alter the way of presentation of the protein  to the immune system [16]. Modifications, 

like heat denaturation, during food processing are sometimes responsible for the higher 

allergenic potency of proteins [16]. Processing may cause interactions between proteins 

and other food matrix proteins [14]. Heat-denatured proteins may rearrange their 

disulphide bonds and form homo- and heteromeric aggregates [17]. The cooking of fish 

can change the protein pattern observed for raw fish extracts and as well as its 

allergenicity. Cooked fish extracts formed immunoreactive high molecular weight 

aggregates of denatured proteins [18]. At present only little data about physicochemical 

properties of parvalbumins has been published. 

 

In our present study we aimed to investigate the thermal and gastric stability of native 

whiff parvalbumin Lep w 1 by CD spectroscopy and in vitro gastrointestinal digestion 

experiments, respectively. Ca2+-depletion experiments were performed in order to 

examine the relevance of bound Ca2+ for the protein’s conformational stability and IgE 

reactivity. The thermal stability was studied at two different pH values, acidic pH 2.5 to 

simulate the conditions of gastric digestion, and pH 7.0 as control. Further, the 

digestibility of EGTA treated and untreated Lep w 1 was tested. Finally, we examined 

the gastric stability and IgE binding ability of proteins extracted from cooked fish. 
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2. Material and Methods 

2.1. Patients’ sera 

Five patients’sera were selected based on the presence of a positive clinical history of 

type I fish allergy and positive skin-prick test to different fish species (table 1). Fish-

specific IgE antibodies were determined using the Pharmacia CAP system (Pharmacia, 

Uppsala, Sweden). All sera contained IgE specific for Lep w 1 as tested by IgE 

immunoblotting. 

2.2. Native protein extraction 

Fresh whiff filets were purchased from a local market in Madrid, Spain. 

Twohundredfifty grams of raw fish muscle were homogenized by grinding in three 

volumes (w/v) of 20 mM Bis-Tris-HCl, pH 6.5. Proteins were extracted by stirring for 3 

h at 4°C. Subsequently, the homogenate was centrifuged (17,000 x g, 45 min, 4°C) and 

the pellet discarded. After removing cellular debris by filtration through Miracloth 

(Merck Biosciences, Nottingham, UK) and filter papers the extract of soluble whiff 

proteins was freeze-dried. 

 

For the extraction of proteins from cooked fish, a 60 g raw fish filet was  heated to 100° 

C in 600 ml double distilled H20 for 10 minutes. Subsequently, the cooked fish was 

homogenized in 1.6 volumes (w/v) of double distilled H2O, and extracted as described 

above. The extract was stored at 4°C for further use. 

2.3. Purification of Lep w 1, the whiff parvalbumin 

The freeze-dried protein extract was suspended in 20 mM Bis-Tris-HCl, pH 6.5, and its 

protein content was determined by using the BCA Protein Assay Reagent Kit (PIERCE, 

Rockford, Ireland). The extract was treated with 0.1% Biocryl BP-100 (Supelco, 
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Bellefonte, PA) for 10 min at room temperature with stirring. Precipitates were pelleted 

at 17,000 x g, 30 min at 4°C and subjected to a DEAE Sepharose Fast Flow column (GE 

Healthcare, Chalfont St. Gilles, Great Britain). The column material was pre-

equilibrated in 20 mM Bis-Tris-HCl, pH 6.5. Bound proteins were eluted by a linear 

gradient from 0 to 25%, 120 ml length with 20 mM Bis-Tris-HCl, pH 6.5, 1 M NaCl. 

The elution process was monitored at 280 nm, fractions were collected, and analyzed by 

15% SDS-PAGE and immunoblotting using a rabbit polyclonal anti-Gad m 1 antibody 

(Tepnel Biosystems Ltd., Deeside, Flintshire, UK). Fractions containing parvalbumin, 

eluting at approximately 150 mM NaCl, were pooled. Gel filtration chromatography 

was carried out on a HiPrep 16/60 Sephacryl S-200 High Resolution column (GE 

Healthcare) using 20 mM Bis-Tris-HCl, 150 mM NaCl, pH 6.5. The whiff parvalbumin, 

designated Lep w 1 by the IUIS allergen nomenclature sub-committee, was separated 

from higher molecular weight proteins and eluted from the column as one peak. The 

fractions were analyzed by SDS-PAGE and the purified parvalbumin detected by a 

polyclonal anti-Gad m 1 antibody (Tepnel BioSystems Ltd.). 

2.4. N-terminal sequencing 

The N-terminus of Lep w 1 was obtained as described for Gad m 1 [6]. 

2.5. Structure modelling 

Structures of parvalbumins from Cyprinus carpio (Cyp c 1) and Lepidorhombus 

whiffiagonis (Lep w 1) were modeled using the Swiss-Modelserver 

(http://swissmodel.expasy.org, [19]) The structure of carp parvalbumin (PDB code 5cpv 

[20]) was used as template. Visualisation, building and manipulation of the structure 

were carried out using DeepView/Swiss-PdbViewer 4.0. 

79



 

2.6. Circular dichroism (CD) spectroscopy  

Far ultraviolet CD spectra of native and unfolded Lep w 1 (unfolding induced by heat, 

Ca2+-depletion and at pH values 7.0 and 2.5), were recorded with a JASCO J-810 

spectropolarimeter (Jasco, Essex, UK) at 20°C in aqueous solutions. Protein samples 

dissolved in 10 mM KPO4, pH 7.0, KH2PO4, pH 2.5, 4.5 or K2HPO4, pH 8.5 were 

concentrated to 0.1 µg/µl and measured in quartz cuvettes (Hellma, Müllheim, Baden, 

Germany) of 0.1 cm path length. The temperature dependence of the CD at 222 nm was 

measured at heating rates of 2°C/min and spectra were recorded from 25 to 95°C at 

intervals of 10°C, and the reversibility of the heat-induced unfolding transition was 

assayed by measuring the spectra of the sample cooled down in a single step to 25°C. 

Absorption between 190 and 260 nm was monitored at 0.5 nm intervals. Each spectrum 

was obtained by averaging three individual runs, and corrected by subtraction of the 

solvent spectrum obtained under identical conditions. The results were expressed as 

mean residue ellipticity (θ) = deg.cm2.dmol-1. 

2.7. IgE enzyme-linked immunosorbent assay (ELISA) inhibition assay 

In order to evaluate the recognition of the treated proteins by patients’ sera IgE 

Covalink NH plates (Nunc A/S, Kamstrupvej, Roskilde, Denmark) were used. Purified 

Lep w 1 (2 µg/ml diluted in 50 mM KPO4, pH 8.2) was covalently bound to activated 

(1,25% (w/v) glutaraldehyde in 50 mM KPO4, pH 8.5, overnight, 37°C) microtiter 

plates overnight at 4°C. Plates were saturated with 1 M ethanolamine, pH 8.0, and 

subsequently, non-specific binding sites blocked by Tris buffer saline, 0.5% Tween-20 

(TBST), 3% (w/v) bovine serum albumin (BSA). Four individual patients’ sera (diluted 

in TBST, 0.25% (w/v) BSA) were pre-incubated with 50 µg/ml untreated and treated 

proteins for 3 hours and further transferred to ELISA plates. Buffer and sera of three 

non allergic subjects were used as negative controls. OD values at 405 nm were 
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regarded positive when they exceeded the mean OD of the negative controls. Bound IgE 

was detected with alkaline phosphatase (AP)-conjugated mouse anti-human IgE 

antibody (BD-Biosciences Pharmingen, San Diego, Calif., USA) and developed with 

the SIGMA FASTTM p-nitrophenyl phosphate substrate (SIGMA-Aldrich, Inc., St. 

Louis, USA). Colour development was measured using an ELISA reader (Spectra Max 

Plus 384; Molecular Devices GmbH, Munich, Germany) at 405 nm and 510 nm as 

reference wavelength. The assay was analysed in duplicates. Samples were heat-treated 

by incubation for 10 min at 95°C. For calcium-depletion 5 mM EGTA were added to 

the protein solution and subsequently incubated for 1 hour. 

2.8. SDS-PAGE and immunoblotting 

Whiff protein extract and Lep w 1 were separated by SDS-PAGE under reducing 

conditions (2.5% beta-mercaptoethanol). Purity of Lep w 1 was assessed by Coomassie 

staining. For immunoblotting proteins were transferred to a nitrocellulose membrane 

and whiff parvalbumin was detected by the rabbit polyclonal anti-Gad m 1 antibody as 

previously described for Gad m 1 [6]. In order to determine the IgE reactivity of 

patients’ sera to undigested and digested proteins, blotted proteins were incubated with 

a serum pool of 4 fish allergic patients and bound IgE was detected with an AP-

conjugated mouse anti-human IgE antibody (BD-Biosciences Pharmingen, San Diego, 

Calif., USA) and developed with a BCIP/NBTC reagent solution. 

2.9. In vitro gastric and duodenal digestion 

In vitro gastric (phase I) and duodenal (phase II) digestions were performed as 

described by Moreno et al. [21]. In brief, digestions of purified Lep w 1 with or without 

bound Ca2+ were performed. For calcium depletion 5 mM EGTA in KPO4 buffer, pH 

7.5 were added and the protein solution incubated for at least one hour. Half a milligram 

of Lep w 1 (2 mg/ml) with or without EGTA treatment was dialyzed against simulated 
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gastric fluid (SGF; 0.15 M NaCl, pH 2.5) for 3 hours at room temperature, and further 

dissolved in SGF (Lep w 1: 0.15 mg/ml). The pH was adjusted to 2.5 with 1 M HCl. A 

solution of pepsin (3.2 mg/ml in SGF, pH 2.5; porcine pepsin, Sigma, Dorset, UK; 

product no. P6887, activity: 4,230 U/mg) was added at an approximately physiological 

ratio of enzyme/substrate (1:20, w/w). The digestion was carried out at 37°C and 

aliquots were taken from the single digestion mixture at 0, 2, 5, 15, 30, 60 and 120 min 

for further analysis. The reaction was stopped by raising the pH to 7.5 adding 1 M 

NaOH. 

 

In vitro duodenal digestion was performed as previously described [21] using 120 min 

in vitro gastric digesta as starting material. Intestinal digestion was carried out at 37°C 

with shaking for 120 min using 125 mM bile salt mixture (sodium taurocholate (Sigma; 

product no. T4009), gylcodeoxycholic acid (Sigma; product no. G9910), 1 M CaCl2 and 

0.25 M Bis-Tris-HCl, pH 6.5) and a solution of trypsin (Sigma; product no. T-1426, 

activity: 12,400 U/mg) and alpha-chymotrypsin (Sigma; product no. C-7762, activity: 

52 U/mg) 1.400:100 (w/w/w). Aliquots were taken at 2, 5, 15, 30, 60, 120 min for 

analysis. The digestion was stopped by adding a solution of a Bowman-Birk trypsin-

chymotrypsin inhibitor from soybean (0.25 mg/ml in water; Sigma; product no. T-

9777). For control of gastric and duodenal enzymes, alpha-lactalbumin was digested 

under identical conditions. Samples without added enzymes were used as negative 

controls. 
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3. Results 

3.1. Extraction and purification 

Whiff parvalbumin was abundant in the protein extract as visualised by Coomassie 

staining (Fig. 1A, lane 1). Thirty milligram Lep w 1 were obtained from approximately 

100 g fish filet. Coomassie staining of the purified parvalbumin showed only one band 

at 11 kDa (Fig. 1A, lane 2). The identity was confirmed by immunoblotting using a 

polyclonal anti-Gad m 1 antibody (Fig. 1A, lane 3) and N-terminal sequencing. The 

initiating methionine was cleaved off, resulting in the first five amino acid residues 

TFAGL. 

3.2. Structure 

On the basis of the conserved EF-hand motifs of parvalbumins, a model of Lep w 1 

(Acc. No. AM904681) was constructed using the structure of the calcium-bound carp 

parvalbumin (PDB Acc. No. 5cpv) as template (Fig. 1B). The sequence alignment used 

for building the Lep w 1 model is shown (Fig. 1C). This alignment exhibits 

approximately 70% amino acid sequence identities. The N-terminal calcium-binding 

loop (CD loop) showed 4 conserved amino acid residues (Asp 51, 53, Ser 55 and 

Glu59) and the backbone oxygen of phenylalanine residue as binding partners. Four 

conserved interaction partners of the molecule with calcium were found at the C-

terminal loop (EF loop) (Asp 90, 92, 94 and the backbone oxygen of the lysine residue) 

(Fig. 1B). 

3.3. Stability studies by circular dichroism 

The extent of secondary structural changes induced in Lep w 1 at different pH values 

and temperatures was observed by far-UV CD. The CD spectra of the native whiff 

parvalbumin unheated and heated were nearly superimposable and showed 
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characteristic double minima at 208 and 222 nm, and a maximum at 190 nm (Fig. 2A, 

black). However, at pH 2.5, the protein lost the broad minimum at 222 nm. An increase 

of negative ellipticity, monitored at 208 and 222 nm, indicated a partial loss of structure 

before and after heating (Fig. 2A, grey). 

 

In order to compare the thermal stability at different pH values, the thermal unfolding of 

whiff parvalbumin at pH 7.0 and 2.5 was investigated. The secondary structure of the 

native protein was highly resistant to thermal unfolding. Temperatures higher than 65°C 

were reached before Lep w 1 started to unfold (Fig. 2B, continuous line). Upon cooling, 

the denaturation was reversible (Fig. 2A, dotted). As mentioned above, the protein at pH 

7.0 incubated with EGTA lost its structure at room temperature (Fig. 2B, dotted). No 

thermal induced conformational change of the partial unfolded Lep w 1 at pH 2.5 was 

observed (Fig. 2B, grey). 

 

Conformational changes and structural stability were further tested by Ca2+ depletion at 

pH 7.0 and 2.5 using EGTA. The calcium-depleted Lep w 1 showed no minimum at 222 

nm. Two nearly coincident spectra were obtained of the untreated and heat-treated 

protein at pH 7.0 without calcium (Fig. 2C, dotted black and grey). The negative 

ellipticity at 222 nm and the maximum at 190 nm were remarkably diminished. At pH 

2.5, the spectrum obtained of Lep w 1 after EGTA treatment (data not shown) was 

superimposable to this of the undepleted form under acidic conditions (Fig. 2A, grey). 

3.4. IgE reactivity of EGTA and heat treated Lep w 1 

Pretreated  proteins were further tested by IgE ELISA inhibition assays. Four individual 

fish allergic patients’ sera containing IgE specific for Lep w 1 were used. Thermal and 
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EGTA treated proteins showed similar inhibitions of IgE binding (approximately 90 - 

100%) to immobilized native and uncooked Lep w 1 (Tab. 1). 

3.5. In vitro gastric digestion of purified parvalbumin 

Calcium-bound and unbound parvalbumins were evaluated individually for gastric 

digestibility in SGF (Fig. 3). Immediately after adding pepsin, around 90% of Lep w 1 

were degraded with or without adding EGTA (Fig. 3, lane 2 or 4). Two fragments of 

lower molecular weight of approximately 4.5 kDa were still visible at the earliest time 

point of the digestion in Coomassie staining (Fig. 3, lane 2 and 4). Both fragments were 

completely digested by pepsin within 2 minutes (Fig. 3, lane 3 and 5). Alpha-

lactalbumin, a positive control, was degraded within 120 minutes as published 

previously [22] (data not shown). 

3.6. IgE binding to uncooked and cooked fish 

The protein pattern of uncooked and cooked fish extracts were compared by IgE 

immunoblotting (serum pool of #1, 2 and 4). The protein extract of the thermally treated 

fish revealed a higher number of IgE reactive bands than the extract of uncooked fish 

(Fig. 4A, B lane 1) as described previously for Indian fish species [23]. Several high 

molecular weight (HMW) bands ranging from 55 kDa to around 130 kDa were 

observed in the cooked fish extract (Fig. 4B, lane 1). Whereas, a double band of around 

40 kDa appeared only in the uncooked fish extract (Fig. 4A, lane 1). An 11 kDa protein 

band, corresponding to Lep w 1, was detected in both extracts. The immunoreactivity of 

the extracts was analyzed by IgE inhibition experiments. IgE binding to the HMW 

proteins, formed after cooking, could not be inhibited by the extract of uncooked fish 

(Fig. 4B, lane 2). Whereas, cooked extract showed 100 % inhibition of specific IgE to 

uncooked fish extract proteins (Fig. 4A, lane 2). 
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3.7. In vitro gastric digestibility of uncooked and cooked fish 

To assess whether the heating of fish proteins affected the digestion rate, the 

degradation of proteins from uncooked and cooked fish by pepsinolyis was evaluated. 

By in vitro gastric digestion, uncooked fish extract (EN) (Fig. 5A, lane 1) was degraded 

to small fragments evident on Coomassie stained SDS-PAGE, even after 15 minutes 

(Fig. 5A), which in accordance with a digestion study of raw cod protein extract, using 

a gastric tablet from Fédération International Pharmaceutique (FIP). [15]. In contrast to 

raw fish extract, the cooked extract (EC) (Fig. 5B, lane 2) showed higher resistance to 

gastric proteolysis. EC precipitated in SGF at pH 2.5, and subsequent in vitro gastric 

digestion gave rise to a complex mixture of peptides immediately after adding pepsin 

(Fig. 5B, lane 0’). Some of them were still evident at 120 minutes of the digestion 

reaction (Fig. 5B). In detail, the Lep w 1 (11 kDa band) started degrading immediately, 

after adding the enzyme. As digestion proceeded, a prominent band with a molecular 

weight of 130 kDa, showed a partial breakdown and disappeared after 60 minutes (Fig. 

5B). Fragments of another abundant protein, at approximately 34 kDa, were still 

detected by Coomassie staining after two hours pepsinolysis. Additionally, one protein 

band at approximately 24 kDa (Fig. 5B, lane 2), absent in uncooked fish (fig. 5B, lane 

1), was only degraded at the time point of 60 minutes. A turbidity of the sample was 

observed during all 120 minutes of incubation time. Whereas, after raising the pH to 

6.5, mimicking the transfer to duodenum, precipitates were dissolved and completely 

degraded as visualized by Coomassie staining (data not shown). 

 

The digested extracts EN (Fig. 6A, lane 1) and EC (Fig. 6A, lane 2) were tested for IgE 

reactivity by IgE immunoblotting. A serum pool of patients’ sera no.1, 2, 3 and 5 was 

used. The immunoblot detecting EN proteins showed that the immunoreactivity was lost 

after 15 minutes (data not shown). In contrast, patients’ serum IgE could bind to the 
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fragmented proteins of EC even at 120 minutes. The IgE binding decreased as the 

proteins, inclusiding the 34 kDa protein, were degraded (Fig. 6A). IgE from sera also 

bound the approximately 24 kDa protein and its digestion products. No IgE bound  to 

the abundant 130 molecular weight protein after adding pepsin. To evaluate the time of 

complete digestion of Lep w 1, the anti-Gad m 1 antibody was used by immunoblotting. 

A double band at 11 kDa, corresponding to whiff parvalbumin, was detected in EN (Fig. 

6B, lane 1) and EC (Fig. 6B, lane 2). Additionally, the anti-Gad m 1 antibody could also 

recognize a protein with the molecular weight of approximately 24 kDa in EC (Fig. 6B, 

lane 2). Although visible in the Coomassie stain and the IgE immunoblot, the polyclonal 

antibody failed to detect the proteolytic fragments of two minutes digestion of whiff 

parvalbumin in EC (Fig. 6B) and EN (data not shown). 

87



 

4. Discussion 

Complete food allergens are characterized as structurally stable to thermal treatments 

and gastrointestinal digestion. Thus  the intact allergen can be presented to the immune 

system. Besides the stability, interactions with the food matrix and food processing are 

also responsible for the allergenicity of proteins [14]. 

 

The beta-parvalbumin Lep w 1 of whiff was stable to thermal treatment up to 65° C, but 

only when calcium was bound as a ligand and the tests were performed at neutral pH. In 

contrast to natural Gad m 1 [6], Lep w 1 lost its structure completely when calcium was 

depleted from the protein. In line with an earlier study of Gad m1, Lep w 1 underwent a 

structural change at pH 2.5 resulting in a loss of the broad minimum observed at 222 

nm, (Fig. 2A). Only a partial denaturation was recorded as the glutamate residues were 

uncharged at acidic conditions [6]. Hence, the calcium ion of the EF-loop closer to the 

surface [20] was lost, only the calcium of the CD-site persisted due to the stronger 

binding of five binding partners. Interestingly, the structural change at pH 2.5 did not 

influence the IgE binding ability of the protein tested by IgE ELISA inhibition assay 

(Tab. 1). All treated proteins showed similar percentages of inhibition of approximately 

90 to 100%. This is in contrast to one report that indicated a much stronger IgE binding 

to the calcium-bound form of carp parvalbumin as opposed to the calcium-depleted 

protein [11]. It was suggested that the binding sites of parvalbumin-specific IgE were 

distant from the calcium binding loop, and only the conformational changes after 

calcium depletion impaired the IgE binding ability [24]. 

 

The CD measurements showed a partial denaturation of the protein at pH 2.5, which 

could explain the efficient pepsinolyis of Lep w 1 within seconds in in vitro gastric 
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digestion assays. No difference of gastric stability was observed between the EGTA 

treated and untreated parvalbumin as the chelator was inactive in the acidic SGF, pH 2.5 

(Fig. 3). 

 

It is interesting to note that whiff parvalbumin, although a major allergen, is completely 

degraded by pepsin within seconds. Therefore, we examined the role of processing. As 

only thermally treated whiff is consumed in Spain, we extracted proteins from boiled 

and raw whiff filet and determined their IgE reactivity. IgE binding to various proteins 

within the high molecular weight range was only observed in the cooked fish extract 

(Fig. 4). The IgE reactivity to these proteins could not be inhibited by raw fish extract 

(Fig. 4B). These findings were in accordance with an already published report of 

Bernhisel-Broadbent et al., where immunoreactive high molecular weight protein 

conglomerates were formed from cooked protein extracts of tuna, salmon, cod, and 

flounder [18]. Subsequently, we examined the digestibility of the whole fish protein 

extract as compared to uncooked fish and determined the IgE binding capacity of the 

resulting digestion fragments by IgE immunoblotting. Fish allergic patients’ sera could 

detect fragments after than 15 minutes of the digestion process of raw fish (data not 

shown), but after more than 120 minutes of digestion of the cooked fish extract (Fig. 

6A) after digestion by pepsin. As one report detected aggregates or polymers of 

parvalbumins in raw cod extracts depending on storage duration by an anti-parvalbumin 

antibody [25], we tested our cooked protein extract for parvalbumin oligomers with an 

anti-Gad m 1 antibody. The antibody failed to recognize high molecular protein bands 

in cooked fish, but detected a protein at 24 kDa (Fig. 6B). Such a molecular weight is 

characteristic for a parvalbumin dimer [6, 26]. Thus, we speculate that the additional 

proteins in cooked fish were protein aggregations of Lep w 1 or Lep w 1 with 

interacting extract proteins [17]. 
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We observed that despite the remarkable stability to heating, Lep w 1 was easily 

digested using physiological gastric conditions. Additionally, food processing, like 

cooking, could generate allergenic aggregates that were partially stable in gastric 

digestion. It is likely that these observations explain the high allergenicity of this fish. 

However, to explain the role of food allergens the importance of the food matrix should 

also be considered. 
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Figure legends 

Figure 1. A: Purification and characterization of whiff parvalbumin. Lane 1: protein 

extract of whiff; lane 2: Coomassie staining of the purified Lep w 1; lane 3: detection of 

Lep w 1 by anti-Gad m 1 antibody. B: Secondary structure of modelled Lep w 1 (Acc. 

No. AM904681). Binding partners of calcium are indicated. Four bidentate (Asp 51, 

Asp 53, Ser 55 and Glu 59) and one monodentate (Phe 57) binding partners of calcium 

at the CD-loop. Three bidentate (Asp 90, 92 and 94) and one monodentate (Lys 96) 

contacts to the cation at the EF-site. Bold: bidentate ligation; italic: monodentate 

ligation; spheres: calcium. C: Sequence alignment for building the Lep w 1 model. 

Ca2+-binding sites are underlined; bold: bidentate cation-binding partners, italic: 

monodentate binding partners.  

 

Figure 2. Stability studies of Lep w 1 by CD: A: Thermal stability of thermally 

untreated (solid line) and treated (dotted line) protein at neutral (black) and acidic (grey) 

pH. B: Thermal unfolding of native Lep w 1 at 222 nm wavelength. Black: Lep w 1, pH 

7.0; dotted: calcium-depleted (+EGTA); grey: Lep w 1, pH 2.5. C: CD of calcium-

depleted protein (+EGTA) before and after thermal treatment; black: calcium-bound, 

grey: calcium-depleted, dotted: calcium-depleted and cooked protein. RT: room 

temperature, nE: thermally treated. 

 

Figure 3. In vitro gastric digestion of whiff parvalbumin with (+EGTA) or without (-

EGTA) bound calcium. Lane 1: undigested Lep w 1 in SGF, pH 2.5; lanes 2 and 4: 

immediately after adding pepsin; lanes 3 and 5: 2 minutes gastric digestion. 
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Figure 4. IgE inhibition assay using cooked or uncooked whiff protein extract. A: 

Residual IgE binding to uncooked extract after incubation with cooked fish proteins 

(lane 2); lane 1: uncooked extact; lane 3: normal human sera. B: Inhibition of the IgE 

binding to cooked extract (lane 1) with uncooked extract. Lane 2: inhibition with 

uncooked extract; lane 3: normal human sera; Lep w 1 is indicated by an arrow  

 

Figure 5. In vitro gastric digestibility of uncooked and cooked fish protein extract. A: 

Digestion of uncooked extract. Lane 1: raw fish extract; lanes 0’, 2’, 5’ and 15’: minutes 

of digestion. B: Gastric degradation of cooked fish extract. Lane 1: uncooked extract; 

lane 2: cooked extract; lanes 0’, 2’, 5’, 15’, 30’, 60’ and 120’: minutes digestion; Lep w 

1 dimer is indicated by an arrow. 

 

Figure 6. Immunoblotting of in vitro gastric digested cooked fish extract. A: IgE 

immunoblotting using a serum pool (patients’ serum no.1, 2, 3 and 5) and B: Detection 

of whiff parvalbumin by anti-Gad m 1 antibody. Lane 1 unheated and lane 2 heated fish 

proteins. Lanes 0’, 2’, 5’, 15’, 30’, 60’ and 120’: minutes digestion; dimeric Lep w 1 is 

indicated by an arrow. 
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Table 1. Patients’ characteristics and results of IgE ELISA inhibition assay. 

CAP: capsulated hydrophobic carrier polymer (kU/L), A: asthma, AE: angioedema, 

AN: anaphylaxis, U: urticaria, nd: not done 

 

    Results of IgE ELISA inhibition assay 

    pH 7.0    pH 2.5   

Patients Symptoms 

CAP 

(kU/L) 

IgE-

blot Untreated Cooked EGTA  Untreated Cooked EGTA 

#1 AE, A 48.5 + 100% 100% 100%  96% 98% 99% 

#2 AN 10.2 + 100% 100% 100%  91% 89% 99% 

#3 AN 5.9 + 100% 100% 100%  100% 100% 100% 

#4 U, AE 19.9 + 97% 100% 100%  87% 87% 90% 

#5 AE 6.06 + nd nd nd  nd nd nd 
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Lepw1_model_5cpv -----LDAAEIKAALDGCAAADSFDYKKFFGACGLAKKSAEEVKAAFNK 55

Lepw1 TFAG-LDAAEIKAALDGCAAADSFDYKKFFGACGLAKKSAEEVKAAFNK 59

5cpv AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAII 60

*: *:* ***:.* *****::* **. **:.***::** ** ****:******

Lepw1_model_5cpv LKLFLQNFSASARALTDKETANFLKAG FTDLVR-- 102
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5cpv LKLFLQNFKADARALTDGETKTFLKAG FTALVKA- 108
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Chapter V 
 

 

General Discussion 
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Final Discussion 
 
Only three protein families contain the majority of clinically relevant animal food 

allergens. These are the tropomyosins, the caseins and the parvalbumins [1]. Physico-

chemical characteristics like the resistance to proteolysis and thermal denaturation, and 

certain biochemical features including ligand-binding as well as the abundance of the 

allergen in its source are some of the factors that contribute to the allergenicity of these 

proteins [2, 3]. Beta-parvalbumins, the major allergens of various fish species, possess a 

remarkable stability to thermal treatments and denaturation by digestive enzymes in 

their calcium bound form due to the presence of a highly conserved calcium-binding 

EF-hand motif [1, 4-7]. These proteins are the main elicitors of fish allergic reactions in 

coastal countries [8, 9]. Due to the high amino acid sequence identities among 

parvalbumins, fish allergic patients are often allergic to parvalbumins of various fish 

species [9, 10]. Interestingly, some fish species, like tuna and swordfish can be tolerated 

[9, 10] and may be designated as low allergenic. 

 

In the following, the physiochemical and immunological characterization of 

parvalbumins of the highly allergenic cod and whiff and from low allergenic swordfish 

are discussed. The cDNAs of the parvalbumins from these fish species were cloned and 

the recombinant proteins can be used for in vitro single allergen based tests. 

Additionally, recombinant and native parvalbumins from cod and carp were compared 

for their application in clinical diagnosis. 

 

Based on extensive studies of their structural and immunological properties [5, 11-14], 

fish beta-parvalbumins can be used for the establishment of novel diagnostic tools for 

fish allergy. For this purpose, we compared recombinant and natural beta-parvalbumins 
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regarding their IgE reactivity and structural stability. IgE ELISA, IgE immunoblotting 

and IgE ELISA inhibition experiments, the recombinant and natural allergens gave 

comparable results (Chapter II, Fig. 3). Almost all sera (25/26) of fish allergic patients 

displayed IgE reactivity to the tested parvalbumins (II, Fig. 3A). In addition, the results 

of the inhibition experiments (II, Fig. 3C) and the high amino acid sequence identities 

between the two parvalbumin isoforms of cod (71%) and between parvalbumins of cod 

and carp (80-81%) illustrated the high cross-reactivity among sea water (cod) and fresh 

water (carp) fish species. 

 

Stability studies by CD spectroscopy revealed folded recombinant and natural 

parvalbumins with predominantly alpha-helical secondary structures (II, Fig. 5). We 

then subjected the proteins to various pH and temperature conditions and checked the 

influence on the protein structure. We observed a denaturation of the recombinant carp 

parvalbumin at pH 2.5 after heating (II, Fig. 7). Further, CD spectroscopy results of 

recombinant cod parvalbumin revealed a similarity to the untreated, calcium-depleted 

natural cod parvalbumin at pH 7.0 (II, Fig. 5, 6C). In addition, the protein was unstable 

at basic pH conditions (data not shown). These findings suggest that calcium-binding is 

more important for the stability of recombinant proteins than for their natural 

counterparts. Nevertheless, the recombinantly produced parvalbumins showed 

comparable IgE reactivity and thus are useful tools for in vitro single allergen-based 

tests, like component resolved diagnosis (CRD). 

 

Despite lack of standardization and heterogeneity among different batches, total protein 

extracts from food have been used for routine clinical diagnosis [15, 16]. CRD is a 

concept utilising well defined and highly purified individual allergens instead of total 

protein extracts [17, 18]. This approach can improve allergy diagnosis using single 
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natural or recombinant allergens either on a protein CHIP or for ImmunoCAP analysis 

[19]. Individual allergens could serve as markers for IgE cross-reactivity elicited by 

homologous allergens, e.g. Bet v 1 homologues in birch pollen-related food allergy [20, 

21] or highly cross-reactive parvalbumins in fish allergy. Based on the results of oral 

challenges on adults, cod parvalbumin was designated as a marker for fish allergy in 

Norway [9]. Most patients were allergic to cod parvalbumin, but could tolerate other 

species. Due to the high protein identity among the parvalbumins, cod parvalbumin may 

be used for fish allergy diagnosis in the CRD approach [9]. Whereas in Norway allergy 

to cod parvalbumin is very common, most Spanish patients are allergic to whiff [9, 10]. 

These geogragphic differences in sensitization could be ruled out by the CRD approach 

[16]. We suggest recombinant swordfish and whiff parvalbumins as additional 

diagnostic tools, especially for Spain. Swordfish parvalbumin as an example for low 

allergenic and whiff parvalbumin as an example for high allergenic fish may contribute 

to improve conventional diagnosis. Pascual et al. [22] have already used swordfish as 

low allergenic fish for challenges, to conclude that patients who reacted to this species 

“were very unlikely to tolerate any of the other tested species” [22]. Furthermore, well 

characterized allergens allow the development of hypoallergenic derivatives for specific 

immunotherapy [23]. 

 

The success of allergen isolation from its natural source or the production of the 

recombinant protein in a heterologous expression system very much depends on the 

biochemical characteristics of each individual allergen [16]. The purification from 

natural sources might be preferred, if the allergen is stable and abundant in the food, or 

if post-translationally modified [16]. Additionally, when various isoforms contribute to 

the overall allergenicity, the natural protein isoform mixture should be used in order to 

reproduce the original food composition [16]. For proteins that are either of low 
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abundance or degraded through the extraction from the natural source, the recombinant 

production is an important alternative [19, 24]. The protein abundance of fish 

parvalbumins depend on their different expression levels (III, Fig. 3). In our study we 

found that the parvalbumin of swordfish was of low abundance in the protein extract 

and that the purification procedure required several chromatographical steps. Thus 

swordfish extracts may be replaced by the individual recombinant allergen for in vitro 

diagnosis using the parvalbumin clone produced in this thesis. 

 

Another aspect of this thesis was to determine the allergenicity of some fish species that 

are consumed in Spain. In countries, where fish is frequently consumed and processed, 

fish allergy represents a severe health problem causing mild to severe symptoms, and in 

some cases anaphylaxis [8-10, 22, 25]. Some fish species show a higher potential to 

elicit allergic reactions. In Spain, mainly fat-poor white fish like whiff, sole or hake can 

elicit fish allergy in young infants from 6 months to 1 year [22]. At this age fish will be 

introduced in the diet of Spanish children [22]. As fish allergy is persistent, 

approximately 80% of patients are still allergic even after 10 years after initial diagnosis 

[22]. Polysensitization to multiple fish species like cod and whiff is very common, but 

patients may tolerate some fish like tuna or swordfish [10, 22]. 

 

Thus, in the second study we examined the IgE binding capacity of 16 sera from 

Spanish patients to cod, whiff, and swordfish protein extract. IgE of 15 sera recognized 

the parvalbumins in cod and whiff extracts, however only 12 sera showed a weak IgE 

binding to swordfish parvalbumin (III, Fig. 2). Additionally, the extractable amount of 

swordfish parvalbumin was considerably less in comparison to the abundance of 

parvalbumins present in cod and whiff tissues (III, Fig. 3). We confirmed the cross-

reactivity of all purified parvalbumins with a sequence identity of 62 to 74% (III, Fig. 
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1B). Further, we could attribute the low allergenicity of swordfish to the low expression 

level of its parvalbumin. These results are in line with the study of Pascual et al. [10, 

22] who describes the members of the Tunidae (e.g. tuna) and Xiphiidae (e.g. 

swordfish) families as least common to elicit allergic reactions. The high cross-

reactivity was explained by the presence of the highly conserved EF-hand motifs of 

parvalbumins. Beta-parvalbumins from fish have at least 53% sequence identity 

between homologues from unrelated fish species [26]. 

 

IgE mediated allergic reactions may result from ingestion, but also from inhaling the 

allergen [10, 22]. Since some patients have IgE to parvalbumins from fish species which 

were clinically tolerated [27], “food challenges should represent the most reliable way 

to establish or rule out an adverse reaction to a food in children and adults [28].” 

Pascual et al. [22], for example, started fish challenges with swordfish, the species with 

the lowest IgE response. If the patients could not tolerate this fish, they were 

recommended to exclude all fish species from their diet [22].  

 

Knowing that whiff parvalbumin is a common allergen in Spain [10], we finally studied 

the resistance of whiff parvalbumin to heat treatment and digestion. The calcium-bound 

beta-parvalbumin showed a remarkable thermal stability up to 65°C as observed by CD 

spectroscopy (IV, Fig. 2B). Structural changes at acidic pH (IV, Fig. 2A) did not impair 

the IgE binding ability of this major fish allergen tested by IgE ELISA inhibition assay 

(IV, Tab. 1). In contrast to calcium-depleted Gad m 1 [4], the calcium-unbound Lep w 1 

lost its natural conformation (IV, Fig. 2C). 

 

The whiff parvalbumin with or without bound calcium was easily degraded by pepsin 

(IV, Fig. 3). In contrast to proteins in raw fish extract, that are digested in vitro within 
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15 minutes (IV, Fig. 5A), cooked fish proteins were detected for more than 120 minutes 

by IgE immunoblotting after the start of the digestion process (IV, Fig. 6A). 

Additionally, a different IgE binding capacity of raw or cooked whiff protein extracts 

was observed (IV, Fig. 4). We concluded that the high molecular weight proteins, only 

present in the cooked fish extract, were parvalbumin aggregates. This conclusion was 

supported by detecting a parvalbumin dimer of 24 kDa using a polyclonal anti-Gad m 1 

antibody (IV, Fig. 6B). Dimerization of parvalbumins has already been described for 

Gad c 1, as detected by a monoclonal anti-parvalbumin antibody [29]. In our study, 

protein aggregates were formed by cooking, which could explain the high allergenicity 

of whiff. 

 

Thermal treatment during food processing can influence the IgE binding ability to 

epitopes of food allergens by inducing protein aggregation or chemical modification 

[30]. The enhancement of allergenicity by protein aggregation due to processing has 

been observed in soya, where glycinins form heat set gels [31]. Another common 

protein modification by thermal treatment is the Maillard’s reaction. The interaction of 

free amino groups on proteins and the aldehyde or ketone groups of sugars and further 

rearrangements during roasting may lead to the formation of adducts (Amadori 

products) [32, 33]. These high molecular weight aggregates are more resistant to gastric 

digestion and may affect the allergenicity of food proteins like Ara h 1 from peanut [33, 

34]. Further observations of food allergen aggregation have been shown for milk alpha- 

and beta-lactoglobulin after pasteurization [35]. Systemic administration of aggregated 

beta-lactoglobulin and alpha-lactalbumin induced anaphylactic reactions in mice [35].  

Besides food processing, the influence of the food matrix on the stimulation of the 

immune system should be considered. The susceptibility of some allergens to 

degradation and interactions between allergens and other food ingredients, particularly 
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lipids or polysaccharides has been reported [36]. Digestion of beta-lactoglobulin by 

duodenal enzymes was retarded by polysaccharides such as pectins or gum Arabic [36, 

37]. This observation was explained by the existence of non-specific interactions 

between allergen and polysaccharides [30, 37]. Additonally, Moreno et al. [38] 

observed a retarded gastric digestion of alpha-lactalbumin in the presence of 

phosphatidylcholine.  

 

The physico-chemical and immunological characterization of animal food allergens are 

essential for the understanding of the structural and biological features which together 

result in their allergenicity. The observed stability of the parvalbumins to high 

temperatures and low pH values contributes to the understanding of the sensitizing 

potential of these proteins. In addition, the results described in this thesis are also useful 

for explaining the high cross-reactivity of different fish species and the existence of low 

allergenic fish. 
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Summary 
 

Food allergy is increasing worldwide. One of the most frequent causes of IgE-mediated 

food allergy in coastal countries is fish. Following ingestion, in severe cases fatal 

anaphylaxis can be induced. Thus, fish is of high interest in allergy research. 

Parvalbumins were identified as the major allergens in various fish species and are 

subdivided into two distinct phylogenetic lineages, alpha and beta. Most allergic 

reactions are caused by beta-parvalbumins. In this study, we cloned and expressed 

cDNAs encoding cod (Gadus morhua) and carp (Cyprinus carpio) beta-parvalbumins 

and purified natural cod beta-parvalbumin. Biochemical characterizations revealed a 

similarity of their overall secondary structure. The IgE reactivity of fish allergic patients 

sera was similar to the natural and to the recombinant proteins. Additionally, a high 

cross-reactivity among cod and carp parvalbumins was observed. Natural and 

recombinant parvalbumins displayed comparable biochemical properties and allergenic 

activity. 

Furthermore, polysensitization to various fish species is frequently reported possibly 

due to the cross-reactivity of their parvalbumins. Nevertheless, some studies indicate the 

existence of low allergenic fish such as tuna and swordfish. These findings prompted us 

to compare the cross-reactivity and allergenicity of the purified natural parvalbumins 

from cod, whiff (Lepidorhombus whiffiagonis) and swordfish (Xiphias gladius), all 

eaten frequently in Spain. We tested total protein extracts for their IgE binding capacity 

and found fewer patients’ IgE reactive to swordfish as to cod and whiff. The extractable 

amounts of parvalbumins from cod and whiff were considerably higher than from 

swordfish. We observed a high cross-reactivity and comparable sequence identities of 

the three parvalbumins. The low allergenicity of swordfish is due to the lower 

expression levels of its parvalbumins. 

A further report describes the stability of Lep w 1, the major allergen of whiff. Purified 

Lep w 1 was thermally stable at neutral pH. Calcium depletion and acidic conditions 

resulted in structural changes, however the allergen retained its full IgE binding ability. 

Further, the allergenic activity of proteins extracted from cooked fish, and their stability 

to proteolysis, were analysed. A higher number of IgE reactive bands was observed in 

the cooked in contrast to the uncooked fish extract. IgE binding to these proteins could 
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not be inhibited by an extract from uncooked fish. Furthermore, the cooked extract 

showed higher resistance to pepsinolysis. It is likely that the observation of stability of 

Lep w 1 to thermal denaturation and the formation of protein aggregates in cooked fish, 

partially resistant to in vitro gastric digestion, explain the high allergenicity of whiff. 

 

In conclusion, identification and characterization of fish parvalbumins, their cross-

reactivity and physiochemical properties will contribute to a better understanding why 

these proteins are able to elicit allergic reactions. 
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Zusammenfassung 
 
Allergie auf Nahrungsmittel ist ein weltweites Problem. In Küstenländern ist die, durch 

IgE Antikörper vermittelte, allergische Reaktion gegen Fisch sehr häufig. Die 

Aufnahme von Fisch kann schwere Symptome in Fischallergikern auslösen. Im 

schlimmsten Fall kann es zu einem tödlichen, anaphylaktische Schock kommen. Aus 

diesem Grund beschäftigt sich die Allergieforschung mit Fischallergie. 

Parvalbumine sind die Hauptallergene in vielen Fischarten. Sie werden phylogenetisch 

in zwei Typen aufgeteilt, die Alpha- und Beta-Parvalbumine. Allergische Reaktionen 

werden aber meist von Beta-Parvalbuminen ausgelöst. In unserer Studie haben wir die 

Beta-Parvalbumine von Kabeljau (Gadus morhua) und Karpfen (Cyprinus carpio) 

kloniert und exprimiert. Außerdem haben wir das natürliche Beta-Parvalbumin von 

Kabeljau gereinigt. Biochemische Charakterisierungen zeigte eine Ähnlichkeit der 

Sekundärstruktur der Parvalbumine. Das natürliche Parvalbumin von Kabeljau war 

sowohl mit als auch ohne gebunden Kalzium thermisch stabil. Patientenseren von 

Fischallergikern aus Spanien, den Niederlanden und aus Griechenland zeigten eine 

vergleichbare IgE-Reaktivität auf natürliche und rekombinante Proteine. Zusätzlich 

konnten wir eine hohe Kreuzreaktivität zwischen Kabeljau- und Karpfen-Parvalbumin 

feststellen. Das Ergebnis dieser Studie ergab vergleichbare Resultate bei der 

Biochemischen und allergenen Charakterisierung von rekombinanten und natürlichen 

Parvalbuminen. 

 

Es wird oft über Polysensibilisierung von Fischallergikern auf mehrere Fischarten 

berichtet, die wahrscheinlich durch die Kreuzreaktivität ihrer Parvalbumine erklärt 

werden kann. Trotzdem zeigen einige Studien Fische auf, die geringere allergische 

Reaktion auslösen. Zu diesen Fischen gehören der Thunfisch und der Schwertfisch. Um 

herauszufinden, warum Fische verschieden starke allergische Reaktionen auslösen 

können, haben wir die Kreuzreaktivität und die allergene Wirkung von Kabeljau, 

Flügelbutt (Lepidorhombus whiffiagonis) und Schwertfisch (Xiphias gladius) 

untersucht. Alle erwähnten Fische werden in Spanien häufig gegessen. Wir haben die 

IgE-Reaktivität von spanischen Patientenseren auf die Proteinextrakte aller drei Fische 

getestet, und fanden heraus, dass auf Schwertfischextrakt weniger Seren reagierten als 

auf Kabeljau- und Flügelbuttextrakt. Anschließend wurden die Parvalbumine dieser 

Fische gereinigt und die cDNA von Flügelbutt und Schwertfisch bestimmt. Aus 
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Kabeljau und Flügelbutt konnte beträchtlich mehr Protein extrahiert werden als aus 

Schwertfisch. Wir stellten eine hohe Kreuzreaktivität und eine vergleichbare 

Sequenzidentität der Parvalbumine fest. Die geringere Allergenität von Schwertfisch 

erklärten wir durch die niedrigere Expressionsrate von Parvalbumin in diesem Fisch. 

 

Ein weiterer Themenbereich beschäftigt sich mit der Stabilität von Lep w 1, den 

Hauptallergen von Flügelbutt. Wir untersuchten die Stabilität des Proteins gegen Hitze 

und während des Verdauvorganges. Das Allergen war thermisch stabil unter neutralen 

Bedingungen, aber durch die Entfernung von Kalzium oder durch sauren pH änderte es 

seine Struktur. Es wies aber trotzdem eine vollständige IgE-bindende Aktivität auf. 

Weiters analysierten wir die Allergenität und die proteolytische Stabilität von 

extrahierten Proteinen aus gekochten Fisch. Es wurden mehr IgE-reaktive Banden im 

Proteinextrakt aus gekochtem als aus ungekochtem Fisch gefunden. Die IgE-Bindung 

an diese Proteine konnte nicht durch den Extrakt aus ungekochtem Fisch inhibiert 

werden. Zusätzlich war der Extrakt aus gekochten Fisch, im Gegensatz zum rohen 

Fischextrakt, stabiler im Verdau durch Pepsin. Die Stabilität gegenüber der thermischen 

Denaturierung und die Bildung von Proteinaggregaten in gekochten Fisch, die teilweise 

im in vitro gastrischen Verdau stabil waren, kann die hohe Allergenität von Flügelbutt 

begründen. 

 

Die Identifizierung und Charakterisierung von Fischallergenen, Studien deren 

Kreuzreaktivität und dessen physiochemische Eigenschaften können einen Beitrag zum 

besseren Verständnis leisten, warum diese Proteine Allergie auslösen können. 
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