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Introduction  9 

1  In t roduc t i on  
 

1.1 Picornaviruses 
 

Picornaviruses are small (30 nm diameter), non-enveloped viruses with a single-stranded 

RNA genome of positive sense. The particles are simple, consisting of an icosahedral protein shell 

surrounding the naked RNA genome. This virus family contains many human and animal 

pathogens of particular importance, including poliovirus, hepatitis A virus, rhinoviruses and foot-

and-mouth disease virus (Fields et al., 2007). 

 

1.2 Foot-and-mouth disease virus 
 

Foot-and-mouth disease virus (FMDV) is a member of the aphthovirus genus of the 

picornavirus family (Pringle, 1997). There are seven serotypes (A, O, C, Asia 1 and South African 

Territories 1, 2 and 3) known which contain multiple subtypes (Bachrach, 1968). FMDV is the 

causative agent of a devastating viral disease affecting cloven-hoofed animals including cattle, 

swine, sheep and goats. In addition, more than 70 species of wild animals can be infected by 

FMDV (Fenner, 1993). The disease is characterised by fever, lameness and vesicular lesions on the 

tongue, feet, snout and teats (Donaldson, 1987). Although foot-and-mouth disease does not result 

in high mortality in adult animals, the disease has debilitating effects including the failure to gain 

weight, decrease in milk production and breeding problems (Bachrach, 1968). In fact, the FMDV 

epidemic in the United Kingdom in 2001 claimed expenses of £ 2.7 billion and the destruction of 

four million animals (Davies, 2002). 

This thesis discusses experiments with the Leader protease of FMDV. Therefore, the further 

introduction is focused on FMDV. However, some aspects of the viral life cycle of FMDV have not 

been investigated in detail. Therefore, many references refer to experiments with other 

picornaviruses which are thought to show similar characteristics. 
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1.3 The virion 
 

1.3.1 Genome organisation 
 

Picornaviruses encode their genetic information on a single-stranded RNA genome of 

positive sense. Figure 1 shows the organisation of the FMDV genome which reflects a typical 

picornaviral genome (Mason et al., 2003). 

The viral protein VPg (viral protein genome linked) is covalently linked to the 5’ end of the 

viral genome (Lee et al., 1977; Sangar et al., 1977) and is thought to play an important role in 

genome replication (Wimmer, 1982). 

Upstream and downstream of the single open reading frame (ORF) the viral RNA contains 

untranslated regions (UTRs). The 5’ UTR as well as the 3’ UTR contain highly ordered structures 

important for cap independent translation and genome replication. The 5’ UTR of FMDV is more 

than 1300 nucleotides in length and contains secondary structures such as the IRES (internal 

ribosome entry site) important for translation initiation (Belsham & Brangwyn, 1990) or the cre (cis 

replicative element) important for replication (Mason et al., 2002). The 3’ UTR is followed by a 

genetically encoded poly(A) tract. The stem-loop structure found in the 3’ UTR of FMDV was shown 

to be important for genome replication (Saiz et al., 2001). 

The single ORF of picornaviruses is organised into three regions, designated as P1, P2 and 

P3 (Rueckert & Wimmer, 1984). The P1 region encodes the four structural viral proteins (VP) VP4, 

VP2, VP3 and VP1, whereas the P2 region encodes the three non-structural proteins 2A, 2B and 

2C. Furthermore, the P3 region encodes the non-structural proteins 3A, 3B, the 3C protease (3Cpro) 

and the 3D polymerase (3Dpol) (Fields et al., 2007). In contrast to other picornaviruses, such as 

poliovirus or human rhinoviruses (HRVs) (Toyoda et al., 1986; Sommergruber et al., 1989), the 

protein 2A of FMDV has no enzymatic activity. Instead, the FMDV genome encodes an additional 

protein, the Leader protease (Lpro), which is the first protein encoded on the open reading frame 

(Sangar et al., 1987). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Organisation of the FMDV RNA genome. The viral protein VPg is linked to the 5’ end of the viral RNA. The

genome is composed of the 5’ untranslated region (UTR), the protein coding region, the 3’ UTR and a poly(A) tract. The

5’ and 3’ UTR contain several secondary structure elements such as IRES (internal ribosome entry site) and cre (cis

replicative element) important for viral translation and replication. The protein coding region is composed of the regions

Lpro (Leader protease), P1 (1A=VP4, 1B=VP2, 1C=VP3 and 1D=VP1), P2 (2A, 2B and 2C) and P3 (3A, three copies of

3B, 3Cpro and 3Dpol). Adapted from Mason et al., 2003. 
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1.3.2 Capsid organisation 
 

Picornaviral capsids consist of 60 protomers, each composed of the four structural proteins 

VP1, VP2, VP3 and VP4. These four proteins are arranged in an icosahedral symmetry, displaying 

20 threefold axis and 12 fivefold axis (Acharya et al., 1989). Figure 2A shows the icosahedral 

structure of the FMDV capsid which is common to all picornaviral capsids. The three capsid 

proteins VP1-VP3 have molecular weights of about 30 kDa and form the external surface of the 

icosahedral shell, whereas the smaller protein VP4 lies on the inner surface (see Figure 2B). 

Though VP1, VP2 and VP3 share no sequence homology, they display the same structure of an 

eight-stranded, antiparallel β-sheet, also called a β-barrel jelly roll. This jelly roll forms a wedge-

shaped structure that allows packing of structural units to form a dense, rigid protein shell (Fields 

et al., 2007). Thereby, the N-termini of VP1, VP2, VP3 and VP4 form a network on the interior of 

the capsid contributing significantly to the stability of the virion. It has been shown for poliovirus 

that the interaction between the N-termini is mediated by the myristate group which is attached to 

the N-terminus of VP4 (Chow et al., 1987). However, VP4 differs significantly from the other 

proteins in its extended conformation, thereby interacting with the viral RNA (Morrell et al., 1987). 

The FMDV virion appears as a round particle with a smooth surface and a diameter of about 

25 nm (Bachrach, 1968), lacking a surface canyon (Acharya et al., 1989) (see Figure 2C). It was 

shown for other picornaviruses, such as poliovirus and human rhinoviruses, that the viral capsid 

displays a prominent, star-shaped plateau which is found at the fivefold axis surrounded by a deep 

depression, called the canyon. This canyon has been shown to be the receptor binding site for cell 

entry for entero- and cardioviruses (Rossmann et al., 1985; Luo et al., 1987; Kolatkar et al., 1999; 

Belnap et al., 2000). In contrast, FMDV attaches to cell receptors via an RGD sequence provided by 

the flexible βG-βH loop of the capsid protein VP1, as shown in Figure 2C (Neff et al., 1998) (see 

chapter 1.4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Structure of the FMDV capsid. (A) Schematic representation of the FMDV capsid which is composed of 60

copies of each of the structural proteins VP1, VP2, VP3 and VP4 (on the interior). Protomer proteins that are displayed

on the surface are labelled. A fivefold axis is labelled. (B) Cross-section of the FMDV capsid. VP1-3 are displayed on the

outer surface, whereas VP4 is located on the inside connecting the viral RNA genome to the capsid. (B) + (C) Adapted

from http://www.expasy.org/viralzone/ all_by_protein/98.html. (C) Structure of the mature type O1BFS FMD virion

based on crystal data. The capsid proteins VP1 (blue), VP2 (green) and VP3 (red) are displayed on the surface. The βG-

βH loop (yellow) providing the RGD sequence (white) important for cell attachment is shown (Grubman & Baxt, 2004). 
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1.4 Picornaviral life cycle 
 

Figure 3 shows an overview of the picornaviral life cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The picornaviral life cycle. After attachment of the virus to a cellular receptor (1), the viral RNA genome is

uncoated (2) and released into the cytoplasm. The VPg is removed from the RNA which is subsequently translated into

a long polyprotein (3). Subsequently, the polyprotein is proteolytically processed by viral proteases (4). RNA synthesis

takes place on membranous vesicles induced by viral proteins once the viral RNA polymerase is translated. In this

process, the polymerase copies the (+) strand RNA to form a full length (-) strand RNA (5) which is used to produce

additional (+) strand RNA (6). This newly synthesised (+) strand RNA is either used for further translation (early in

infection) (7) or packed into viral particles (late in infection) (8). Finally, newly synthesised virus particles are released

from the cell upon cell lysis (9). (Fields et al., 2007) 
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1.4.1 Attachment and cell entry 
 

A picornavirus infection starts with the attachment of the virus to a receptor on the host cell 

membrane. For some picornaviruses, such as major group human rhinoviruses, it has been shown 

that the canyon on the viral capsid mediates the interaction with host cell receptors (Olson et al., 

1993). In contrast, the FMDV capsid does not exhibit prominent canyons that can be used for cell 

attachment. Instead, FMDV binds to host cell receptors via a conserved Arg-Gly-Asp (RGD) 

sequence in the flexible βG-βH loop of the capsid protein VP1 (Neff et al., 1998). FMDV binds to 

one of the four different αv integrins (αvβ1, αvβ3, αvβ6 or αvβ8) to infect animal cells (Jackson et al., 

2004). However, in vitro experiments revealed that FMDV can also use heparan sulfate as an 

alternative receptor for the attachment to cultured cells (O'Donnell et al., 2008). 

After attachment to the cell, the virus is internalised via endocytosis. It was found for FMDV 

that the attachment to the cell by binding to integrin is followed by clathrin-mediated endocytosis 

(Berryman et al., 2005), whereas the binding to the the alternative receptor heparan sulfate leads 

to caveola-mediated endocytosis (Berryman et al., 2005; O'Donnell et al., 2005; O'Donnell et al., 

2008). 

It was shown for FMDV that uncoating of the viral RNA genome is dependent on the 

acidification of endocytic vesicles. The low pH leads to a breakdown of the viral capsid structure, 

converting 140S virion particles to 12S pentameric subunits. This would suggest that FMDV 

uncoating resembles the mechanism used by minor group human rhinoviruses which are 

dependent on low pH-induced virion degradation for the release of the viral genome (O'Donnell et 

al., 2005). However, the mechanism of FMDV genome release into the cytoplasm is yet unknown. 

 

1.4.2 Translation and processing of the viral polyprotein 
 

As soon as the genome is released into the cytoplasm, the picornaviral RNA is translated. As 

the replication of the viral genome is dependent on the virally encoded RNA-dependent RNA-

polymerase 3Dpol the genome has to be translated before replication can occur. 

The viral RNA lacks the 5’ cap-structure found on cellular mRNAs but has the VPg covalently 

linked to its 5’ end. However, it has been shown for poliovirus that VPg is cleaved off the viral RNA 

by a cellular enzyme before translation is initiated (Ambros & Baltimore, 1980). 

In contrast to the cap-dependent translation initiation of cellular mRNAs, the translation of 

the viral RNA is initiated via an internal ribosome entry site (IRES) found in the 5’ UTR of the viral 

genome (Belsham & Brangwyn, 1990) (see chapter 1.3.1). This cap-independent mechanism of 

translation initiation allows the translation of viral RNA during infection while cap-dependent 

translation of the host cell is inhibited (Devaney et al., 1988) (see chapter 1.4.5). 

The picornaviral genome contains only one open reading frame which is translated into a 

long polyprotein. Subsequently, the polyprotein is processed by viral proteases to form the mature 

structural and non-structural proteins (Toyoda et al., 1986). 
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The translation of the single open reading frame of FMDV can be initiated at one of two AUG 

codons lying 84 nucleotides apart. Consequently, two forms of the first protein encoded on the 

polyprotein (Lpro) are created, designated as Labpro and Lbpro (Sangar et al., 1987). Although Lbpro is 

28 amino acids shorter than Labpro, both variants were found to possess the same enzymatic 

activities (Medina et al., 1993). However, it was shown that Lbpro is the physiologically active 

protease (Cao et al., 1995). Therefore, most studies were performed with the Lbpro form. 

The processing of the FMDV polyprotein is shown in Figure 4. The processing of the viral 

polyprotein is initiated by Lpro cleaving autocatalytically between its own C-terminus and the N-

terminus of the subsequent viral protein VP4 (Strebel & Beck, 1986) (see chapter 1.5.2.1). 

The protein 2A of FMDV is only 18 amino acids in length and has no enzymatic activity. 

However, it frees itself from the subsequent protein 2B by mediating a putative ribosomal skip 

between its own C-terminus and the N-terminus of 2B (Donnelly et al., 2001). In contrast, in other 

picornaviruses, such as poliovirus and human rhinoviruses, the 2A protease is about 17 kDa in size 

and is enzymatically active cleaving the nascent polyprotein at its own N-terminus. The separation 

from the subsequent 2B protein is not mediated by a ribosomal skip, which is unique to FMDV, but 

is performed by the 3C protease (Toyoda et al., 1986; Sommergruber et al., 1989). 

All other cleavage reactions are performed by the chymotrypsin-like cysteine protease 3Cpro 

(Clarke & Sangar, 1988). 

The last step in polyprotein processing is the cleavage of VP0 into VP4 and VP2. This 

cleavage reaction is a maturation step during the assembly of new viral particles (see chapter 

1.4.4). However, the mechanism that results in the maturation cleavage has yet not been 

identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Processing of the FMDV polyprotein. Translation of the single ORF results in the production of a long

polyprotein which is processed by viral proteases. The 3C protease (3Cpro) performs most of the cleavage events of

post-translational processing. However, the Leader protease (Lpro) autocatalytically cleaves itself off, whereas the 2A

protein is N-terminally cleaved by 3Cpro and induces a ribosomal skip at its C-terminus to free itself from the polyprotein.

The protease responsible for the cleavage of VP0 has yet not been identified. The partial cleavage products are

indicated. Adapted from Mason et al., 2003. 
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1.4.3 Viral replication 
 

Viral RNA replication takes place on membranous vesicles, composed of material from 

lysosomes, Golgi and endoplasmatic reticulum induced by the viral proteins (Bienz et al., 1990). 

Upon translation, the virally encoded RNA-dependent RNA polymerase 3Dpol (3D polymerase) 

initiates replication of the viral genome by the synthesis of a minus-strand RNA transcript. The 

switch mechanism from translation to replication is unclear. However, it has been suggested for 

poliovirus infected cells that the switch is caused by the accumulation of the polymerase precursor 

3CD (Garmarnik & Andino, 1998). Whether 3CD plays a similar role in FMDV RNA replication is not 

known. It has been shown in FMDV-infected cells that the polymerase precursor is rapidly cleaved 

to 3Cpro and 3Dpol (Grubman, 1984), arguing against a role for 3CD in replication control. 

Currently, a model for minus-strand RNA synthesis has been proposed that suggests a 

circularisation of the positive-strand RNA genome (Herold & Andino, 2001). Thereby, VPg is 

thought to act as a primer for the RNA polymerase (Crawford & Baltimore, 1983). The alternative 

model suggests that minus-strand synthesis is primed on the poly(A) tail. Thereby, double-

stranded RNA molecules are formed which are used for the synthesis of plus-strand RNA (Novak & 

Kirkegaard, 1991). 

Specific secondary structures, such as the cloverleaf found in the 5’ UTR (Rivera et al., 1988) 

or the single stem loop found in the 3’ UTR (Pilipenko et al., 1992) ensure that the viral RNA is 

specifically recruited to the replicative complex. 

The cre (cis replicative element), found in the 5’ UTR of the FMDV genome, was found to 

play an important role in genome replication (Mason et al., 2002). The cre, a stem-loop structure, 

contains a conserved AAACA motif which functions as a template for the addition of U residues to 

the protein primer VPg. Interestingly, in other picornaviruses these elements, being responsible for 

the same function, are located in different regions of the genomes. In poliovirus the cre sequence 

was found to be embedded within the protein-encoding region for the protein 2C (Goodfellow et 

al., 2000), whereas in human rhinovirus 2 the cre sequence was found in the sequence encoding 

the 2A protease (Gerber et al., 2001). 
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1.4.4 Virus assembly and release 
 

The final steps in the replication cycle are the assembly of the viral particle and the 

encapsidation of the plus-stranded RNA genome. Figure 5 shows a schematic overview of the 

assembly of picornaviral particles. The viral capsid is composed of the structural proteins that are 

created as a result of 3Cpro cleavage of the P1 region (see chapter 1.4.2). The smallest 

intermediate block is the 5S protomer which contains one copy each of the proteins VP0, VP1 and 

VP3. In the mature capsid, the C-termini of the structural proteins are located on the outer 

surface, whereas the N-termini point to the interior and form a network of interactions connecting 

single protomers (Palmenberg, 1982). Five protomers form the 14S pentamer, which then build up 

the complete capsid. Currently, there are two models of picornavirus assembly. One model 

suggests that pentamers assemble into empty capsids (80S), followed by insertion of the RNA 

(Jacobson & Baltimore, 1968). In contrast, the second model proposes that pentamers directly 

interact with the RNA to form the provirion (150S) (Nugent & Kirkegarrd, 1995). However, it was 

shown that only viral positive-strand RNA linked to VPg is encapsidated (Nugent & Kirkegarrd, 

1995). In the presence of viral RNA, the maturation cleavage of VP0 into VP4 and VP2 takes place 

resulting in a fully infectious 160S virion (Basavappa et al., 1994). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Assembly of picornavirus particles. 5S protomers composed of VP0, VP1 and VP3, self-assemble into 14S

pentamers which can fit into the 80S capsid (no RNA encapsidated) or 150S provirion (RNA encapsidated). The

maturation cleavage of VP0 into VP4 and VP2 results in fully infective 160S virions. Adapted from Fields et al., 2007. 
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1.4.5 Host cell shut off 
 

The term ‘host cell shut off’ describes the collapse of protein synthesis of virus infected cells 

(Etchison et al., 1982; Etchison &  Fout, 1985; Devaney et al., 1988). In contrast, viral protein 

synthesis is not affected, enabling the virus to replicate and take over the host cell. 

Figure 6A gives an overview of cellular initiation factors involved in cap-dependent 

translation initiation. An important feature of cellular mRNAs is the 7-methyl-guanosine at the 5’ 

end. This cap structure as an anchor for the cap binding complex eIF4F, composed of the 

eukaryotic initiation factors (eIFs) 4E, 4G and 4A. eIF4E (also designated as cap binding protein) is 

able to bind to the cap structure of mRNAs (Sonenberg et al., 1978). eIF4A acts as an RNA 

helicase, whereas eIF4G acts as a central scaffold protein mediating interactions between several 

initiation factors. The binding of eIF4G to eIF4E and the poly(A) binding protein (PABP) results in 

the circularisation of the mRNA which constitutes an important event in translation initiation 

(Imataka et al., 1998). Beside eIF4A, eIF4G also binds eIF3, thereby recruiting the 40S ribosomal 

subunit to the mRNA. 

During picornaviral infection eIF4G is cleaved by a viral protease, thus separating the 

domain binding the cap-binding protein eIF4E from the domain which binds eIF3 complexed to the 

40S ribosomal subunit. In case of FMDV infection, this cleavage reaction is performed by the 

Leader protease (Devaney et al., 1988) (see chapter 1.5.2.2). Consequently, the translation 

machinery of the host cell is not able to recruit ribomes to mRNAs any more, resulting in inhibited 

protein synthesis (see Figure 6B). However, viral mRNA translation remains unaffected as it 

initiates protein synthesis internally via an internal ribosome entry site (IRES). IRES mediated 

translation initiation includes interactions with a number of cellular proteins, including translation 

initiation factors important for cap-dependent cellular mRNA translation (Borman et al., 1997). 

It was shown by Gradi and colleagues that there are two homologues of eIF4G, termed 

eIF4GI and eIF4GII (Gradi et al., 1998a). Though the two homologues share only 46 % sequence 

identity, both homolgues have to be cleaved for full host-cell shut off (Gradi et al., 1998b).  
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Figure 6 eIF4G cleavage during viral infection. (A) eIF4G plays an important role in cap-dependent translation

initiation acting as a scaffold protein for eIF4E (cap binding protein), eIF4A and eIF3, thereby recruiting the ribosome to

the mRNA. (B) During infection, eIF4G is cleaved by a viral protease, thus disrupting cap-dependent translation

initiation. Viral RNA translation is not affected as translation is initiated via an internal ribosome entry site (IRES).

Adapted from Guarne et al., 1998. 
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1.5 Leader protease 
 

The Leader protease (Lpro), the first protein on the polyprotein, is an important determinant 

of virulence in FMDV infection. It was shown that Lpro is responsible for the inhibition of translation 

in the host cell, also designated as ‘host cell shut off’ (Devaney et al., 1988) (see chapter 1.4.5). 

Lpro is also related with the degradation of NF-κB during FMDV infection, thus antagonising the 

cellular innate immune system (de Los Santos et al., 2007). Furthermore, it has been shown that a 

virus lacking the Leader sequence was avirulent when injected into cattle and pigs and unable to 

spread to cohoused animals (Chinsangaram et al., 1998). 

Therefore, Lpro represents an interesting target for antiviral therapy (Kleina & Grubman, 

1992). 

 

1.5.1 Structure of Lbpro 
 

Lbpro is a cysteine protease displaying a papain-like fold which is adapted for self-processing 

and the recognition of the eukaryotic initiation factor 4G (Guarne et al., 1998). Figure 7 shows the 

protein structures of Lbpro and papain. Like papain, Lbpro consists of a globular region devided into 

two subdomains, an α-helical N-terminal domain and a β-sheet C-terminal domain. The active site 

residues, Cys 51 and His 148 in case of Lbpro and Cys 25 and His 149 in case of papain, are 

positioned on opposite sides of a cleft separating the two domains (Guarne et al., 1998). The third 

residue of the catalytic triad of Lbpro is Asp 163, in contrast with all other cysteine proteases that 

have Asn at this position (Guarne et al., 2000). 

A unique feature of Lbpro is the flexible 18 amino acid long C-terminal extension (CTE) which 

has no equivalent in papain (Guarne et al., 1998). The CTE was shown to be involved in self-

processing and the recognition of eIF4GI (Glaser et al., 2001). 
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Crystallography studies showed that Lbpro forms stable dimers in solution by inserting the 

CTE into the active site of the neighbouring molecule and vice versa (Guarne et al., 1998), as 

shown in Figure 8A. However, it was shown in NMR studies that one half of the dimer in the crystal 

structure is rotated about 25-30° away from the crystal structure, thus showing the formation of a 

complete symmetric arrangement of the dimer. Therefore, it is likely that crystal packing 

constraints forced the dimer into an asymmetric arrangement (Cencic et al., 2007). 

It was demonstrated by Santos and colleagues that the last seven residues of the CTE 

interact with residues of the substrate binding site (Santos et al., 2009). Figure 8A shows the 

interaction between the CTE and the active site of a neighbouring Lbpro molecule, resulting in the 

formation of stable dimers in solution. Figure 8B shows the interaction between CTE and active site 

in respect to the electrostatic interactions. For clarity, the residues of one molecule of the dimer 

are designated Met 29 (M29) to Lys 201 (K201), whereas the residues of the other molecule are 

designated Met 29’ (M29’) to Lys 201’ (K201’). 

 

 

 

 

 

 

 

Figure 7 Structures of Lbpro (A) and papain (B). α-helices are shown in green, β-sheets in yellow. The globular

domains of Lbpro and papain show high similarity, displaying an α-helical N-terminal domain and a β-sheet C-terminal

domain. The CTE of Lbpro, shown in cyan, has no equivalent in papain. The active site residues are shown in red. The

active site of Lbpro is built of Cys 51 and His 148 (H148), whereas Cys 51 was mutated to Ala (C51A) for crystallisation.

In papain, Cys 25 and His 159 (H159) form the active site, whereas Cys 25 was mutated to cysteinesulfonic acid

(C25CSA) for crystallisation. Created with PyMOL (DeLano, 2002) using the PDB ID codes 1QOL (A) and 9PAP (B). 
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Figure 8 Interaction between the CTE and the active site of neighbouring Lbpro molecules. (A) Dimerised proteases

are shown in light and dark grey. The last seven amino acids of the CTE (shown in red) bind into the active site of the

adjacent molecule (shown in green), thus forming a stable dimer. (B) The last seven C-terminal amino acids (shown as

sticks) bound to the active site of the neighbouring molecule are shown. The carbon atoms of the CTE are coloured

yellow, the nitrogen atoms are coloured blue and the oxygen atoms are coloured red. The electrostatic potential of the

globular domain of one molecule is shown. A blue colour indicates regions of positive potential (5 kT/e), whereas red

depicts negative potential (-30 kT/e). Created with PyMOL (DeLano, 2002) using the PDB ID code 1QOL. The

electrostatic potential was calculated using the APBS tool (Baker et al., 2001). 
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Residues P1 to P3 are bound in an extended conformation whereas residues P4 to P7 are 

bound in a short 310 helix (Santos et al., 2009). 

The S1 subsite of Lbpro displays a deep, narrow cleft which clearly prefers Lys at P1 in the 

self-processing reaction. Lys 201’ was found to point away from the substrate binding cleft and is 

sandwiched by Glu 96 and Glu 147, enabling the formation of electrostatic interactions (Kirchweger 

et al., 1994; Gradi et al., 2004). 

The major determinant of specificity is the S2 subsite which constitutes a deep hydrophobic 

pocket accepting only Val, Leu and to a certain extent Ile (Santos et al., 2009). It was previously 

shown by Mayer and colleagues that the substitution of Leu 200 at position P2 to Phe results in the 

inability of Lbpro to cleave itself off the polyprotein. The discrimination against Phe at position 200 

was shown to be due to sterical hindrance from Leu 143’. When leucine 143’ was substituted with 

Ala, more space was provided in the S2 pocket allowing Phe to fit into the pocket. This led to a 

complete recovery of Lbpro self-processing (Mayer et al., 2008). 

The side chain of Lys at position P3 points away from the active site and was found to 

occupy a lose pocket (Kuehnel et al., 2004). 

Lbpro clearly prefers Arg at position P4 that is involved in hydrogen bonds and Van der Waals 

interactions. There is no real binding site for Gln at position P5. However, it is possible that Gln is 

involved in making the 310-turn referred to above. The P6 subsite is composed of hydrophobic 

residues which can accept the wildtype Val, but also Phe and Pro. Also Ser is well accepted, 

probably because it does not fully enter into the pocket. The Lys residue at position P7 of the CTE 

builds Van der Waals and ionic interactions with residues of the active site (Santos et al., 2009). 

Interestingly, the two residues Leu 143 and Leu 178 are involved in more than one 

interaction with the CTE of the neighbouring molecule, fitting with the strategy of viruses to 

conserve genome space. Leu 143 is involved in the S2 and the S4 subsite as well as in Van der 

Waals interactions with Lys at position P7. Leu 178 is involved in the S2 as well as the S6 subsite 

(Santos et al., 2009).  

It was shown by Cencic and colleagues that the dimer is indeed very stable as several 

attempts to inhibit dimer formation failed. Dilution of the enzyme to 0.3 mM as well as increasing 

the sodium chloride concentration to 2 M did not affect dimer formation. In a further attempt, 

12mer oligopeptides were designed containing either the cleavage sequence of the polyprotein or 

that of eIF4G. Titration with these model peptides mimicking the substrates destabilised the dimer. 

Transient peptide binding led to a chemical shift of residues in essentially two regions of Lbpro. One 

region lies in the dimer interface between the two globular domains of dimerised molecules (Trp 

105, Thr 113, Thr 117 and Ser 119) and the second region contains certain residues of the CTE 

(Tyr 183, Asp 184, Gln 185 and Glu 93) (Cencic et al., 2007). However, it was not possible to 

dissociate the dimer. 
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1.5.2 Enzymatic activities 
 

In contrast to papain, Lbpro is a very specific protease, cleaving only three known substrates, 

the viral polyprotein (Strebel & Beck, 1986) and the two homologues of the cellular eukaryotic 

initiation factor 4G (eIF4G) (Kirchweger et al., 1994; Gradi et al., 2004). 

As shown in Table 1 the cleavage sequences vary strongly amongst substrates, not allowing 

the determination of a consensus sequence. In contrast to Lbpro, papain has a broad range of 

specificity which is mainly caused by the architecture of the S1 subsite. The S1 subsite of papain is 

a wide, unrestricted pocket which exerts relatively little influence on the substrate specificity. In 

contrast, the subsite of Lbpro is narrower and deeper, resulting in increased substrate specificity 

(Guarne et al., 1998) (see chapter 1.5.1). 

 

 

Table 1 Cleavage sites recognized by Lbpro 

Substrate 
 
 

Cleavage sequence 
P          P’ 

6 5 4 3 2 1↓1 2 3 4 5 6 

Lbpro/VP4 VQRKLK↓GAGQSS 

eIF4GI SFANLG↓RTTLST 

eIF4GII PLLNVG↓SRRSQP 

 

 

1.5.2.1 Self-processing 
 

The unique role of Lbpro in viral maturation is to free itself from the polyprotein by cleavage 

between its own C-terminus and the N-terminus of VP4 at the sequence VQRKLK↓GAGQSS, as 

shown in Figure 9. This self-processing event can either occur in an inter- or intramolecular 

process (Glaser et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Lbpro self-processing. Lbpro (red) is translated by the ribosome (green) as the first protein from the single

ORF. Still part of the polyprotein it is entirely folded and enzymatically active. Lbpro can free itself from the polyprotein

either by intramolecular (in cis) or intermolecular (in trans) processing. Adapted from Guarne et al., 1998. 
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The presence of the CTE in the active site of neighbouring molecules found in the crystal 

and NMR structure argues for intermolecular self-processing; however, structural features of the 

CTE suggest for self-processing in cis. Since the interface between the globular domains of 

dimerised molecules is composed of weak interactions, this region does not seem to be designed 

to promote an intermolecular reaction (Guarne et al., 1998). 

Indeed, certain residues of the CTE favour a turn towards the own active site and promote 

interactions with the globular domain. Thus, the CTE would reach the active site where 

electrostatic and van der Waals interactions would maintain the correct orientation of the CTE for 

self-processing in cis. A model for intramolecular self-processing of the Lbpro is presented by 

Guarne et al., 1998. 

Furthermore, it was shown by Glaser and colleagues that self-processing in cis is preferred 

to the trans cleavage reaction. Using an in vitro assay they could simultaneously investigate the 

inter- and intramolecular cleavage reaction of Lbpro. Thereby, the intramolecular cleavage reaction 

of the polyprotein substrate was found to be performed much more rapid than the intermolecular 

one. This led to the conclusion that cis cleavage is preferred over the trans reaction (Glaser et al., 

2001). 

 

1.5.2.2 eIF4G cleavage 
 

During FMDV infection Lbpro plays an important role in host cell shut off, as it completely 

disrupts the translation machinery by cleaving the two homologues of the eukaryotic initiation 

factors 4GI and 4GII (Devaney et al., 1988) (see chapter 1.4.5). eIF4GI is cleaved at the sequence 

SFANLG674↓GRTTLST, whereas eIF4GII is cleaved at the sequence PLLNVG700↓SRRSQP (Kirchweger 

et al., 1994; Gradi et al., 2004). The amino acid sequence of the eIF4GII cleavage site differs 

significantly from the one of eIF4GI. Interestingly, the region of eIF4GII that corresponds to the 

cleavage site on eIF4GI is not recognised by Lbpro, even when the correct site is blocked. However, 

this phenomenon remains to be investigated. 

Interestingly, the CTE was shown to play an important role in the trans cleavage reaction. 

Investigations by Foeger and colleagues indicated that the cleavage of eIF4GI is a multistep-

process that involves the binding of the C-terminal residues Tyr 183 to Lys 195 of Lbpro to a distinct 

domain of eIF4GI which promotes cleavage of eIF4GI, presumably by bringing the active site into 

close proximity of the cleavage site (Foeger et al., 2002). 
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1.5.3 Nuclear localisation 
 

Upon uncoating, Lbpro is subsequently translated from the viral RNA in the cytoplasm. 

However, it was previously shown that a small fraction of Lbpro locates to the nucleus during 

infection and is directly associated with the degradation of accumulated p65/RelA in the nucleus. 

This prevents NF-κB induced expression of IFN-β and other inflammatory cytokines, resembling a 

global strategy to counteract the immune system (de Los Santos et al., 2007). Furthermore, de los 

Santos and colleagues reported that Lpro contains a SAP (SAF-A/B, Acinus and PIAS) domain. This 

protein structure is associated with the nuclear retention of molecules involved in transcriptional 

control in some cases (de los Santos et al., 2009).  

In principal, there are two possibilities how the Leader protease can enter the nucleus, 

either by passive diffusion or via receptor-mediated transport through the nuclear pore complex 

(NPC). In fact, small molecules such as ions and metabolites can freely diffuse between the 

cytoplasmic and the nucleic compartment. Also small proteins are able to translocate to the 

nucleus by simple diffusion. However, if the molecular weight of the proteins approach 20 - 40 

kDa, diffusion becomes inefficient (Fried & Kutay, 2003). 

Receptor-mediated transport across the NPC is dependent on a nuclear localisation signal 

(NLS). A nuclear localisation signal consists of one or two sequences that are rich in the positively 

charged amino acids Lys and Arg. The precise sequence is varying for different nuclear proteins 

and there are signals which are not yet characterised (Alberts, 2002). The import across the NPC is 

mediated by binding of the importin α-β heterodimer to the NLS of the import substrate in the 

cytoplasm. The transfer through the nuclear pore complex is energy-dependent and requires GTP-

hydrolysis by Ran. In the nucleus, the cargo is released and importin subunits are separately 

returned to the cytoplasm for another round of transport (Gorlich, 1997). 

De los Santos and colleagues showed that Lpro could be detected in the nucleus of infected 

cells three hours post infection. However, as the Leader protease was found to be distributed 

throughout the cytoplasm already two hours post infection (de Los Santos et al., 2007), diffusion 

of the Leader protease into the nucleus could be excluded. In that case, Leader protease would 

already have been detected in the nucleus 2 hours post infection. We speculated that the Leader 

protease might possess a nuclear localisation signal to pass the nuclear pore complex. Therefore, 

we wanted to investigate the nucleocytoplasmic transport of Lbpro more precisely. 
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2  A im o f  the  work  
 

The overall aim of the work was to investigate the mechanism of intramolecular self-

processing of FMDV Lbpro in order to provide the background for an inhibition of this process. 

Consequently, Lbpro would stay connected with VP4 which would no longer be able to fit correctly 

into the viral capsid structure. Therefore, we assumed that the inhibition of the intramolecular self-

processing of Lbpro would disrupt the formation of viable virus particles, as has previously been 

shown for poliovirus (Crowder & Kirkegaard, 2005). 

However, due to stable dimer formation of Lbpro this was not yet possible. Therefore, we 

attempted to inhibit dimer formation by site-directed mutagenesis in order to find mutants that 

appeared monomeric, but remained enzymatically active. 

On the basis of previous studies, several residues that were thought to be involved in dimer 

stabilisation should be substituted with different residues. The mutated residues were either 

located in the interface region between dimeric molecules or in the interacting regions of the CTE 

and the active site. We then aimed to investigate the enzymatic activity of the different mutants by 

kinetic studies on self-processing and eIF4GI cleavage. At the same time the oligomerisation state 

of the Lbpro mutants should be checked by size-exclusion chromatography and NMR analysis. 

Furthermore, NMR provides the possibility to investigate the structural and dynamic properties of 

the flexible CTE. Thus, NMR is a useful tool to investigate the interaction of the CTE with the active 

site in order to gain more information about intramolecular self-processing of Lbpro. 

As a side project, we set out to investigate the nucleocytoplasmic transport of Lbpro more 

precisely. In this context, we addressed the question whether Lbpro contains a nuclear localisation 

signal (NLS) in order to be transported through the nuclear pore complex. Therefore, Lbpro was 

intended to be expressed in a human cell line and cellular localisation should be investigated via 

western blot analysis and immunodetection. Should Lbpro appear in the nucleus, the putative NLS 

could be modified and the resulting effects on the localisation of Lbpro could be investigated. 
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3  Mate r i a l s  and  Methods  
 

3.1 Tissue culture 
 

3.1.1 Cell lines 
 

Human embryonic kidney (HEK) 293T cells were used for cell culture experiments due to 

their easy handling and high transfectability. This variant of HEK 293 cells contains, in addition, the 

SV40 Large T antigen which allows episomal replication of transfected plasmids containing the 

SV40 origin of replication. 

 

3.1.2 Media and Solutions 
 

Dulbecco’s Modified Eagle Medium (DMEM) (Gibco BRL) was supplemented with 10 % (v/v) 

Foetal Calf Serum (FCS) (Gibco BRL), 1 % (v/v) 200mM L-Glutamine (Gibco BRL) and 1 % (v/v) 

100 x Penicillin/Streptomycin (Gibco BRL). This medium was used for monolayer culture of HEK 

293T cells. 

For the transfection of cells, DMEM was supplemented with 1 % (v/v) 200mM L-Glutamine 

(Gibco BRL) and varying concentrations of (v/v) Foetal Calf Serum (FCS) with or without the 

addition of 100 x Penicillin/Streptomycin (Gibco BRL). 

The buffer used to wash the cells was Phosphate Buffered Saline (PBS) containing 1.4 mM 

KH2PO4, 2.7 mM KCl, 4.3 mM Na2HPO4 and 137 mM NaCl dissolved in H2O. PBST additionally 

contains 0.1 % (v/v)Tween 20. 

 

3.1.3 Cell culture 
 

Cells were cultured either in Petri dishes or flasks (Nunc, Corning) with DMEM supplemented 

with 10 % (v/v) FCS, 1 % (v/v) 200 mM L-Glutamine (Gibco BRL) and 1 % (v/v) 100 x 

Penicillin/Streptomycin (Gibco BRL) at 37°C in presence of 5 % CO2. 
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3.1.4 Cell splitting 
 

When monolayer cells were about 90 % to 95 % confluent, they were split to avoid 

overgrowth. The old medium was removed and the cells were washed with PBS. Subsequently, the 

cells were treated with trypsin/EDTA and incubated for about 5 min at 37°C to dissociate the cells 

from the surface. Immediately, the cells were resuspended in 10 ml of medium. A part of the cell 

suspension was removed according to the desired splitting ratio. To the rest of the cells medium 

was added to the desired end volume. 

 

3.1.5 Cell counting 
 

Cells were trypsinised and taken up in a known volume of medium. 200 µl of the cell 

suspension were mixed with 800 µl of trypan blue. The cell number was counted using a 

haemocytometer (Neubauer improved counting chamber) under a light microscope. 

 

3.1.6 Thawing of cells 
 

For seeding fresh cells, cells were recovered from liquid nitrogen by quickly warming them to 

37°C in a waterbath for a few min. Subsequently, the cells were transferred to 10 ml DMEM 

supplemented with 10 % (v/v) FCS, 1 % (v/v) 200 mM L-Glutamine (Gibco BRL) and 1 % (v/v) 

100 x Penicillin/Streptomycin (Gibco BRL). After centrifugation at 1200 rpm for 3 min at RT the 

supernatant was removed and the cell pellet was washed with 10 ml PBS. After centrifugation at 

1200 rpm for 3 min at RT the cell pellet was resuspended in 10 ml medium and transferred to a 

new flask. The cells were incubated at 37°C in the presence of 5 % CO2. 

 

3.1.7 Freezing of cells 
 

The cells were grown and split as usual with the exception that the cells that are normally 

discarded were kept for freezing. They were centrifuged for 5 min at 1200 rpm at room 

temperature (RT). The supernatant was discarded and the cell pellet was resuspended in 2 ml FCS 

and 10 % (v/v) DMSO. 1 ml aliquots were transferred to cryo tubes (Nunc) and stored at -80°C in 

a freezing container (Nalgene) overnight or over the weekend. Afterwards, the cells were 

transferred to liquid nitrogen for long time storage. 
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3.2 Bacterial culture 
 

3.2.1 Bacterial strains 
 

3.2.1.1 E. coli Top 10F’ 
 

For modification and amplification of plasmids the strain E. coli Top10F’ (F-mcrA∆(mrr-

hsdRMS-mrcBC) Φ80lacZ∆m15∆lacX74recA1deoRaraD139(ara-leu)7697 galU galK rpsL (StrR) 

endA1 nupG) (Invitrogen) was used. 

 

3.2.1.2 E. coli BL21 (DE3) LysS 
 

The expression of recombinant proteins was performed using E. coli BL21 (DE3) LysS (hsdD 

gal (λclts857 ind1 Sam7 nin5 lacUV5-T7gene1) (Novagen). The gene for the T7 polymerase is 

cloned into the chromosome under the control of the lac operon. Therefore, protein expression can 

be induced by the addition of IPTG. Additionally, the genes for chloramphenicol resistance and the 

T7 lysozyme are episomally encoded. The T7 lysozyme protein has two effects. It degrades the cell 

wall and it inhibits T7 RNA polymerase. This inhibition helps to keep expression of the T7 promoter 

off until the IPTG is added. When IPTG is added, the amount of T7 RNA polymerase increases and 

overcomes the inhibition by lysozyme. 

 

3.2.1.3 Media and solutions 
 

Luria Bertani (LB) medium (Roth) is composed of 10 g/l of tryptone, 5 g/l of yeast extract 

and 10 g/l of NaCl, pH 7.0 ± 0.2.  The medium was autoclaved before use. Bacteria were grown in 

LB medium for amplification of DNA or the expression of proteins. 

For the expression of isotope-labelled proteins, bacteria were grown in minimal medium 

containing 33.7 mM Na2HPO4˙2H2O, 22 mM KH2PO4, 8.5 mM NaCl and 18.7 mM 15NH4Cl. This 

solution was autoclaved and added to a sterile filtered solution of 2 mM MgSO4, 1 % trace 

elements, 0.4 % glucose or 13C labeled glucose in case of double-labelling, 0.3 mM CaCl2, 1 µg/ml 

biotine, 1 µg/ml thiamine and 100 µg/ml of each ampicillin and chloramphenicol. 

To grow bacteria on solid medium, 1.5 % (w/v) Bacto-agar (Roth) was added to liquid LB 

medium before autoclaving. When the temperature of the medium was below 50°C, the antibiotics 

were added and the medium was subsequently poured into Petri dishes. 

Ampicillin sodium salt (Sigma) dissolved in dH20 (100 mg/ml) and Chloramphenicol 

(Calbiochem) dissolved in absolute ethanol (34 mg/ml) were used for working dilutions of 100 

µg/ml. 
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3.2.2 Preparation of competent cells 
 

For the preparation of competent cells, a starter culture was set up by inoculation of 3 ml LB 

medium with the desired bacterial strain, shaking overnight at 37°C. 200 ml LB medium were 

inoculated with the starter culture on the next day. The culture was grown at 37°C for 2 - 4 h until 

an OD600 of 0.4 - 0.5 had been reached. The cells were harvested by centrifugation in sterile Falcon 

tubes at 5000 rpm for 5 min at 4°C in a swinging bucket. After harvesting, cells were constantly 

kept at 4°C. Subsequently, the bacterial pellet was resuspended in 25 ml ice-cold 0.1 M CaCl2 

solution and incubated on ice for 25 min. After repeating the centrifugation, the pellet was again 

resuspended in 10 ml 0.1 M CaCl2 solution and incubated at 4°C overnight. The next day the 

suspension was mixed gently with 2 ml sterile glycerol, portioned into 200 µl aliquots and frozen in 

liquid nitrogen. Competent cells were stored at -80°C. 

 

3.2.3 Transformation of competent cells 
 

For efficient introduction of foreign DNA into bacterial cells, an aliquot of 200 μl of 

competent cells was thawed on ice. Afterwards 10 μl of PCR product or 1 µl of a 1:50 diluted 

midiprep were added, mixed gently and left on ice for 10 to 15 min. After cells had been heat-

shocked at 42°C for 30 - 60 seconds, 400 μl of pre-heated (37°C) LB medium were added quickly. 

Incubation at 37°C for 15 to 30 min was followed by plating of 100 to 150 µl on LB-Amp Agar-Agar 

plates. As a backup, the remaining bacterial cells were spun down at 4000 rpm for 60 seconds at 

RT. The supernatant was discarded except for 100 µl which were used to resuspend the pellet and 

subsequently plated. 
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3.3 DNA methods 
 

3.3.1 Plasmids 
 

3.3.1.1 Plasmids used for in vitro experiments and protein expression 
 

The vector pCITE 1d (Novagen) was used for in vitro experiments. This vector is 4682 bp in 

size and contains a CITE (Cap-Independent Translation Enhancer) sequence allowing correct 

translation initiation and sites for T7 driven protein expression. The FMDV cDNA encoding the 

polypeptide Lb, VP4 and VP2 was introduced via the NcoI and PstI restriction sites by Glaser et al., 

2001. For plasmid propagation in E. coli Top 10F’, the ampicillin gene allows to screen for bacterial 

clones that carry the plasmid. 

For the expression of proteins in E. coli BL21 (DE3) LysS, the vector pET 11d (Novagen) was 

used. This vector is 6165 bp in size and provides sequences for T7 driven protein expression as 

well as a lac operator region. Therefore, protein expression can be induced by the addition of 

IPTG. The Lb cDNA of FMDV was introduced via the NcoI and BamHI restriction sites (Kirchweger 

et al., 1994). An ampicillin gene allows screening for bacterial clones that carry the plasmid. 

 

3.3.1.2 Plasmids used for cell culture experiments 
 

For protein expression in HEK 293T cells the ecdysone-inducible mammalian expression 

system from Invitrogen was used (see chapter 3.5.1.1). Therefore, the vectors pMZI (developed by 

(Zeghouf et al., 2004) and pVgRXR were transfected corporately. 

The pVgRXR vector is 8.8 kb in size and contains the Zeocin gene as resistance gene for 

propagation in bacteria. Upon addition of the ecdysone analog ponasterone A, the expression of a 

receptor is induced. 

The pMZI vector is 6856 bp in size and contains an ampicillin restistance gene for 

propagation in bacteria. The pMZI vector encodes the recombinant protein of interest, which is 

expressed upon binding of the pVgRXR encoded receptor to the ecdysone response element.  
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3.3.2 Preparation of plasmid DNA from bacteria 
 

3.3.2.1 DNA miniprep 
 

To screen for positive mutants, small scale DNA preparations (minipreps) from transformed 

E. coli were done using Solution I-III of the Nucleobond AX plasmid Midi Kit from Machery Nagel 

(see chapter 3.3.2.2). 

To this end, 4 ml of LB-Amp were inoculated with a transformed bacterial colony and grown 

overnight, shaking at 37°C. The cells were harvested by centrifugation at 8000 rpm for 60 seconds 

at RT. The pellet was resuspended in 100 µl of Solution I. 200 µl of Solution II were added to lyse 

the cells. The suspension was mixed gently and incubated for not more than 5 min at RT. Proteins 

and chromosomal DNA were precipitated by addition of 150 µl Solution III and gentle mixing. The 

precipitate was separated by centrifugation for 5 min at 14000 rpm at 4°C. The supernatant 

containing the plasmid DNA was transferred to a new tube and the DNA was precipitated by 

addition of 1 ml icecold ethanol. Centrifugation was repeated as before and the supernatant was 

discarded. The DNA pellet was dissolved in 200 µl of TE buffer and mixed with 200 µl of 5 M LiCl. 

After centrifugation at 14000 rpm for 5 min at 4°C, the supernatant was transferred to a new 

eppendorf tube and the DNA was again precipitated with 1 ml icecold ethanol. Centrifugation was 

repeated as before and the supernatant was discarded. The DNA pellet was dried on air for about 

1 h and then resuspended in 50 µl dH2O. 

 

Solution I: 50 mM Tris/HCl pH 8.0, 10 mM EDTA, 100 µg/ml RNase A 

Solution II: 20 mM NaOH, 1 % (w/v) SDS 

Solution III: 2.8 M potassiumacetate pH 5.1 

TE buffer: 10 mM Tris/HCl pH 8.0, 1 mM EDTA 

 

3.3.2.2 DNA midiprep 
 

Higher amounts of pure plasmid DNA were obtained with the Nucleobond AX plasmid Midi 

Kit (Macherey-Nagel), used according to the instructions of the manufacturer. The DNA was 

resuspended in 200 µl of dH2O and stored at -20°C before further use. 
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3.3.3 DNA gelelectrophoresis 
 

To check the outcome of different reactions and procedures, DNA fragments were separated 

on gels composed of 1 % (w/v) agarose (GenXpress) melted in 0.5 x TAE buffer. The DNA samples 

were mixed in 1/10 volume of 10 x loading buffer. Gels were run at 90 to 110 V using a power pack 

300 from Biorad. DNA was visualised by a UV-transilluminator after 20 - 30 min of 

ethidiumbromide staining. The size marker consisted of 1 µg of HindIII digested λ-DNA (Promega). 

 

0.5 x TAE buffer: 20 mM Tris base, 5 mM sodiumacetate, 1 mM EDTA 

10 x Loading Buffer: 1 mM EDTA, 0.1 % Orange G, 10 % Ficoll in 0.5 x TAE 

Ethidium bromide solution: 10-4 % ethidium bromide in 0.5 x TAE 

 

3.3.4 DNA quantification 
 

To quantify DNA concentrations the Nanodrop spectrophotometer ND-1000 from Peglab was 

used, following the instructions of the manufacturer. 

 

3.3.5 Restriction digestion of DNA 
 

Restriction endonucleases and 10 x reaction buffers (New England Biolabs) were used, 

following the instructions of the manufacturer. Analytical digestions were performed in a total 

volume of 20 µl, composed of:  

       x µl DNA 

       2 µl NE buffer (1-4) 

       0.3 µl enzyme 

       y µl dH2O 

     20 µl  
 

Preparative digestions were performed in a total volume of 100 µl, composed of: 

 

       x µl DNA 

     10 µl NE buffer (1-4) 

0.5 -1.0 µl enzyme 

       y µl dH2O 

   100 µl  
 

Temperature and time of incubation were chosen according to the properties of the enzyme 

used. 
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3.3.6 DNA dephosphorylation 
 

To avoid the religation of restricted plasmids the 5’ end of the DNA was dephosphorylated. 

The restricted vector (see chapter 3.3.5) was purified using the Clean-Up System (see 

chapter 3.3.10.1) and eluted in 44 µl dH2O. Further, 5 µl NEB 3 (New England BioLabs) and 1 µl 

calf-intestine alkaline phosphatase (CIP) (New England BioLabs, 10 u/µl) were added. The 

dephosporylation reaction was performed at 37°C for 60 min.  

 

3.3.7 Phosphorylation and annealing of oligonucleotides 
 

In order to insert synthetic oligonucleotides into a dephosphorylated vector, oligonucleotides 

were phosphorylated at the 5’ end using the T4 polynucleotide kinase (PNK) (New England 

BioLabs, 10 u/µl). Phosphorylation reactions were performed in a total volume of 20 µl composed 

of: 

 

 

       2 µl 100 mM ATP 

       2 µl 10 x PNK buffer 

       1 µl TIM XXXX (1 µg/µl) 

       1 µl TIM XXXX (1 µg/µl) 

       1 µl T4 PNK (New England BioLabs, 10 u/µl) 

     13 µl dH2O 

     20 µl  

 

The phosphorylation and annealing reaction was performed using the T3 Thermocycler 

Biometra. The temperature program was as follows: 30 min at 37°C, 30 seconds at 90°C and 5 

min at 37°C. 

 

3.3.8 Extraction of DNA from agarose gel 
 

DNA bands were visualised by UV light and cut out of the gel. The DNA was isolated from 

the gel using the Wizard SV Gel and PCR Clean-Up System from Promega (see chapter 3.3.10.1). 
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3.3.9 DNA ligation 
 

Prior to ligation 1 µl of the dephosphorylated vector was loaded on an agarose gel to 

estimate the DNA concentration. The ligation reaction was performed at RT over night in a total 

volume of 20 µl composed of: 

 

 

     50 ng vector 

       1 µl phosphorylation mix 

       2 µl 10 x ligase buffer (Promega) 

       0.5 µl T4 DNA ligase (Promega, 3 u/µl) 

       x µl dH2O 

     20 µl  

 

 

3.3.10 DNA purification 
 

3.3.10.1 Wizard SV Gel and PCR Clean-Up System (Promega) 
 

The Wizard SV Gel and PCR Clean-Up System was used for the extraction of DNA from an 

agarose gel as well as for cleaning DNA. 

To extract DNA from an agarose gel, the excised DNA band was transferred to an eppendorf 

tube and an equal volume of membrane binding solution was added. The mixture was vortext and 

incubated at about 60°C until the gel slice was completely dissolved. To clean DNA, an equal 

volume of membrane binding solution was added to the DNA sample. The following steps were 

performed for both approaches. 

The SV minicolumn was inserted into the collection tube before the prepared DNA sample 

was transferred to the minicolumn assembly. After incubation for 1 min at RT, the DNA sample was 

centrifuged at 14000 rpm for 1 min. The flow-through was discarded and the column reinserted 

into the collection tube. Afterwards, the minicolumn was washed once with 700 µl and another 

time with 500 µl of membrane wash solution. Centrifugation was carried out at 14000 rpm for 1 

min and the flowthrough was discarded. The collection tube was then sucked dry and the 

minicolumn assembly was centrifuged at 14000 rpm for another 5 min. Afterwards the column was 

dried for 10 - 15 min on air. For elution, the minicolumn was transferred to a clean 1.5 ml 

eppendorf tube and 30 - 50 µl of dH2O were added to the minicolumn. After incubation at RT for 1 

min, centrifugation at 14000 rpm for 1 min was performed. The purified DNA sample was stored at 

-20°C. 
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3.3.10.2 Phenol/chloroform extraction 
 

To purify DNA from enzymes or other contaminants, 2 - 3 µl of 0.5 M EDTA pH 8.0 per 100 

µl of DNA sample were added. After the addition of one volume of phenol, the sample was vortext 

and centrifuged at 14000 rpm for 2 min. The aqueous phase was transferred to a fresh eppendorf 

tube and one volume of chloroform was added. After centrifugation at 14000 rpm for 1 min, the 

aqueous phase was transferred to a clean eppendorf tube. The purified DNA sample was stored at 

4°C or -20°C. 

 

3.3.11 Site-directed PCR mutagenesis 
 

Site-directed PCR mutagenesis was performed using two primers complementary to each 

other bearing the desired mutation. A 50 µl reaction is composed of 0.5 µl DNA, 1 µl forward 

primer (1 µg/µl), 1 µl reverse primer (1 µg/µl), 4 µl dNTPs (20 mM), 5 µl Pfu buffer (Promega), 1 

µl Pfu DNA polymerase I (Promega, 3 u/µl) and 47.5 µl dH2O. The T3 Thermocycler Biometra with 

a heated lid was used to perform the following PCR cycles: 

 

 

 

 

 

 

 

 

 

 

 

 

As a negative control, a PCR reaction without primers was performed. To remove the 

methylated DNA template from the PCR reaction, 1 µl DpnI (New England Biolabs, 20 u/µl) and 4.5 

µl NE buffer 4 were added to 40 µl of the PCR reaction and digested for 5 h at 37°C. The 

remaining 10 µl of the PCR reaction were kept as an undigested control. 10 µl of the template-free 

PCR reaction were tested on a 1 % agarose gel (see 3.3.3), together with all control samples. 10 µl 

of digested DNA were used for transformation in competent E. coli cells (see 3.2.1.1). 

 

 

 

 

 

95°C   2 min  

95°C 30 sec melting temperature 

  x°C   1 min annealing temperature, 
depends on the Tm of the primers 

69°C   y min elongation time 
depends on the length of the DNA template 
(2 min per 1000 bp of sequence length) 

4°C   ∞  
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3.3.12 Cassette cloning 
 

For more extensive manipulation of DNA, cassette cloning was performed. Oligonucleotides 

containing the desired changes in DNA sequence were ordered from VBC biotech (see Table 2). 

Complementary oligonucleotides were phosphorylated and annealed (see chapter 3.3.7). Before 

ligation with these oligonucleotides (see chapter 3.3.9), the vector had to be restricted with 

appropriate restriction enzymes (see chapter 3.3.5), followed by dephosphorylation (see chapter 

3.3.6) and gel extraction (see chapter 3.3.8). The ligation was then transformed into bacteria (see 

chapter 3.2.3). 

 

3.3.13 DNA sequencing 
 

DNA sequencing was performed by Gotthold Schaffner from the IMP sequencing service. For 

sequencing of the pCITE 1d vector, the primers TIM 550 and TIM 554 were used; for pET 11d 

vector sequencing the primers for T7 promoter and T7 terminator provided by the IMP sequencing 

service were used. 

 

3.3.14 Primers 
 

3.3.14.1 Primers used for site-directed PCR mutagenesis 
 

Table 2 Primers used for site-directed PCR mutagenesis 

ID sequence purpose 

TIM 1528 5’ GCTCTCGTGATCGCGAACATCAAGCAC 3’ primers to introduce 
W105A mutation into 
Lbpro TIM 1529 5’ GTGCTTGATGTTCGCGATCACGAGAGC 3’ 

TIM 1635 5’ ACCGGCATCGGCGCCGCCTCGCGACCC 3’ primers to introduce 
T117A mutation into 
Lbpro TIM 1636 5’ GGGTCGCGAGGCGGCGCCGATGCCGGT 3’ 

TIM 1655 5’ GCTCTCGTGATCCGGAACATCAAGCAC 3’ primers to introduce 
W105R mutation into 
Lbpro TIM 1656 5’ GTGCTTGATGTTCCGGATCACGAGAGC 3’ 

TIM 1657 5’ GTTCAACGCAAGTTCAAATGATAAGGA 3’ primers to introduce 
L200F mutation into 
Lbpro cloned in pET 
11d TIM 1658 5’ TCCTTATCATTTGAACTTGCGTTGAAC 3’ 
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3.3.14.2 Oligonucleotides used for cassette cloning 
 

Table 3 Oligonucleotides used for cassette cloning 

ID sequence purpose 

TIM 1690 5’ GTACGATCAAGAACCACTCAACGGGGAATGGAAA 
GCCAAGGTTCAACGCAAGCAAGCTCAAATGATAAG 3’ oligonucleotides 

to remove TAP 
tag from pMZI 
Lbpro TIM 1691 5’ AATTCTTATCATTTGAGCTTGCGTTGAACCTT 

GGCTTTCCATTCCCCGTTGAGTGGTTCTTGATC 3’ 

 

 

3.3.14.3 Primers used for sequencing 
 

 

Table 4 Primers used for sequencing 

ID sequence purpose 

TIM  550 5’ GGACGTGGTTTTCCTTTG 3’ primers used for 
sequencing Lbpro 
cloned in pCITE 1d TIM  554 5’ ATTTAGGTGACACTATAG 3’ 

TIM 1522 5’ GACCGCTCGAGATGGAACTGACACTGTAC 3’ primers used for 
sequencing Lbpro 
cloned in pMZI TIM 1523 5’ CGCGCACATATGTTTGAGCTTGCGTTGAACC 3’ 
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3.4 RNA methods 
 

3.4.1 In vitro transcription 
 

First, the pCITE 1d vector was linearised by SalI digestion for 4 h at 37°C. SalI cleaves 

within the coding sequence of VP2, thereby clipping a part of VP2. This allows that self-processing 

of LbproVP4/VP2 results in cleavage fragments of different size. 2 µl of the digestion were checked 

on a 1 % agarose gel (see 3.3.3) to verify whether linearisation was complete. The linearised 

plasmid was purified using Wizard SV Gel and PCR Clean-Up System (see 3.3.10.1). The purified 

DNA was directly eluted with 61 µl of dH2O for the following in vitro transcription. A 100 µl 

transcription approach is composed of: 

 

    61 µl eluted DNA 

    20 µl Buffer 5x (Promega) 

      5 µl 100 mM DTT (Promega) 

    10 µl 2.5 mM NTP mix 

      3 µl RNasin (Promega, 40 u/µl) 

      1 µl T7 polymerase (Promega, 19 u/µl) 

100 µl  

 

The mix was incubated for 90 min at 37°C before adding 0.6 µl deoxyribonuclease 

(Invitrogen, 185.1 u/µl) and 1 µl RNasin (Promega, 40 u/µl). The mix was incubated for another 20 

min at 37°C. The RNA was then extracted using Phenol/Chloroform extraction (see chapter 

3.3.10.2). Afterwards, the RNA was precipitated with 1/3 volume of 8 M NH4Oac and 2.5 volumes of 

absolute ethanol. The precipitation mix was incubated for 15 min at -80°C. After centrifugation at 

14000 rpm for 15 min at 4°C, the supernatant was discarded carefully with a pipette. The pellet 

was washed with 500 µl of 70 % ethanol and centrifugation was repeated as before. The 

supernatant was discarded carefully with a pump and the pellet was air-dried for 20 - 30 min. 

Finally, the pellet was resuspended in 25 µl of RNase-free water. 
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3.4.2 RNA gelelectrophoresis 
 

After in vitro transcription, 2 µl of RNA were checked on a 1 % agarose gel containing 0.1 % 

of SDS (see 3.3.3). The RNA samples were mixed in 1/10 volume of 10 x loading buffer. Separation 

of RNA fragments was performed at 90 to 110 V using a power pack 300 from Biorad. The agarose 

gel was washed twice in dH2O for 15 min before incubation in ethidium bromide solution for 20 to 

30 min. RNA bands were visualised via UV transillumination. The size marker consisted of 1 µg of 

HindIII digested λ-DNA (Promega). 

 

10 x Loading Buffer: 1 mM EDTA, 0.1 % Orange G, 10 % Ficoll in 0.5 x TAE-buffer 

Ethidium bromide solution: 10-4 % ethidium bromide in 0.5 x TAE 

0.5 x TAE buffer: 20 mM Tris base, 5 mM sodiumacetate, 1 mM EDTA 

 

3.4.3 In vitro translation 
 

In vitro translation reactions were performed at 30°C in a total volume of 10 µl composed 

of: 

 

   4 µl RRL (rabbit reticulocyte lysate) 

   2.5 µl RNA 

   0.8 µl translation mix lacking methionine 

   0.4 µl 35S-methionine 

   0.32 µl 2.5 M KCl  

   0.2 µl 2.5 mM MgAc2 

   1.78 µl H2O 

 10 µl  

 

This translation reaction was multiplied by 9 for a time course experiment with 8 time points. 

After pre-incubation of the translation mix for 2 min at 30°C, the translation was started by the 

addition of 20 µl of RNA (eightfold). 10 µl aliquots were removed at the following time points: 0, 4, 

8, 12, 20, 30 and 60 min after translation start. The aliquots were immediately transferred to 41 µl 

icecold stop solution. As a negative control, dH2O was added to the translation mix instead of RNA. 

Translation products were analysed by SDS PAGE described by Dasso & Jackson (see 3.5.8.2) and 

fluorography (see 3.5.10). 10 µl of the translation reaction were loaded on the polyacrylamide gels. 

 

Stop solution: 9 µl 25 mM methionine-cysteine mix, 225 µl 2 x Laemmli sample 
buffer and 135 µl dH2O 

2 x Laemmli sample buffer: 20 % glycerol, 10 % β-mercaptoethanol, 6 % SDS, 125 mM Tris, 
0.01 % bromophenol blue, pH 6.8 
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3.5 Protein methods 
 

3.5.1 Protein expression in HEK 293T cells 
 

3.5.1.1 Ecdysone-Inducible Mammalian Expression System (Invitrogen) 
 

The ecdysone-inducible mammalian expression system from Invitrogen was used for the 

transient expression of recombinant proteins in HEK 293T cells. Since mammalian cells are 

normally not responsive to the insect hormone ecdysone and do not contain the ecdysone 

receptor, basal levels of transcription are very low or absent. This expression system is based on 

the ability of the insect hormone 20-OH ecdysone to activate gene expression via the ecdysone 

receptor. In the presence of a ligand such as ecdysone or its analog ponasterone A, a 

heterodimeric ecdysone receptor, encoded by the pVgRXR vector, binds to a modified ecdysone 

response element on the pMZI vector and therefore activates transcription of the encoded 

recombinant protein. 

 

3.5.1.2 Transfection and protein expression 
 

One day prior to transfection, 2 x 106 cells were seeded in a 6-well-plate in antibiotic-free 

medium, so that the cells were 80 - 90 % confluent on the day of transfection. 1.6 µg of the pMZI 

vector as well as 1.6 µg of the pVgRXR vector from the ecdysone-inducible mammalian expression 

system (see chapter 3.5.1.1) were diluted in 200 µl of OptiMEM medium at RT and devided into 4 

aliquots of 50 µl. 36 µl of Lipofectamine 2000 (Sigma) were diluted in 200 µl of OptiMEM medium 

and incubated at RT for 5 min. Subsequently, 50 µl of the lipofectamine solution were added to 

each aliquot of the DNA solution and incubated for 20 min at RT. Meanwhile, the cells were 

supplied with 1.5 ml of antibiotic-free DMEM, containing 2 % (v/v) FCS and 1% (v/v) glutamine. 

After incubation, the 100 µl aliquots of DNA-lipofectamine-mix were equally distributed over the 

wells. The cells of two wells were not transfected to serve as a negative control. The cells were 

incubated in a humidified chamber at 37°C for 4 h. Afterwards, the cells were trypsinised with 200 

µl of trypsin/EDTA solution (Gibco) and neutralised with 800 µl of antibiotic-free DMEM, containing 

10 % (v/v) FCS and 1% (v/v) glutamine. The cell suspension of two equally treated wells 

(transfected and non-transfected) were combined and seeded in a 100 mm cell culture dish. The 

final volume of 10 ml was filled with antibiotic-free DMEM, containing 10 % (v/v) FCS and 1 % 

(v/v) glutamine. The cells were incubated in a humidified chamber at 37°C overnight. The 

following day, the medium was changed to DMEM supplemented with 10 % FCS, 1 % glutamine 

and 50 units/ml of each penicillin and streptomycin. To start the induction of protein expression, 1 

mM ponasterone A (Invitrogen) was added to the medium of one dish of transfected cells. Protein 

expression was induced for 36 to 48 h, dependent on the density of cells. 
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3.5.2 Protein expression in E. coli BL 21 (DE3) LysS 
 

3.5.2.1 Protein expression in LB medium 
 

Expression of recombinant proteins was performed in E. coli BL 21(DE3) LysS using pET 11d 

vectors. First, bacteria were transformed with the pET 11d vector containing cDNA coding for Lbpro 

(see chapter 3.2.3). 100 ml of LB-Amp-Cam medium were then inoculated with a single colony and 

grown overnight at 37°C, shaking at 150 rpm. 900 ml of LB-Amp-Cam medium were inoculated 

with the overnight culture and incubated at 30°C on a shaker at 150 rpm. Once cell density had 

reached an OD600 between 0.5 and 0.6 (after about 2 h of incubation), induction of protein 

expression was performed by the addition of 0.4 mM IPTG (Isopropyl β-D-1-

thiogalactopyranoside). 25 ml of culture were removed as a non-induced fraction before IPTG 

induction. For protein expression, the culture was incubated at 110 rpm for 5 h at 30°C shaking. 

Cells were harvested by centrifugation at 5000 rpm for 15 min at 4°C on a Sorvall RC5C centrifuge. 

The cell pellet of the induced fraction was resuspended in 30 ml of Buffer A, the pellet of the non-

induced fraction in 1 ml and stored at -80°C. 

 

Buffer A: 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mM DTT, 5 % glycerol, 50 
mM NaCl 

 

3.5.2.2 Protein expression in minimal medium 
 

Expression of recombinant proteins, single-labelled with 15N or double-labelled with 13C and 
15N was performed in E. coli BL 21(DE3) LysS (see chapter 3.2.1.2) using pET 11d vectors (see 

chapter 3.3.1.1). After bacteria were transformed (see chapter 3.2.3), 10 ml of minimal medium 

were inoculated with a single colony and grown overnight at 37°C shaking at 160 rpm. On the next 

day, 990 ml of minimal medium were inoculated with the overnight culture. Once cell density had 

reached an OD600 between 0.5 and 0.6 (after about 7 h of incubation), induction of protein 

expression was performed by the addition of 0.4 mM IPTG (Isopropyl β-D-1-

thiogalactopyranoside). 25 ml of culture were taken away as a non-induced fraction before IPTG 

induction. For protein expression, the culture was incubated at 110 rpm overnight at 37°C shaking. 

. Cells were harvested by centrifugation at 5000 rpm for 15 min at 4°C on a Sorvall RC5C 

centrifuge. The cell pellet of the induced fraction was resuspended in 30 ml of Buffer A, whereas 

the pellet of the non-induced fraction was resuspended in 1 ml and stored at -80°C. 

 

Minimal medium: 33.7 mM Na2HPO4˙2H2O, 22 mM KH2PO4, 8.5 mM NaCl and 18.7 
mM 15NH4Cl, autoclaved and added to sterile filtered solution of 2 
mM MgSO4, 1 % trace elements, 0.4 % glucose or 13C labelled 
glucose, 0.3 mM CaCl2, 1 µg/ml biotine, 1 µg/ml thiamine, and 100 
µg/ml of ampicillin and 100 µg/ml chloramphenicol 

Buffer A: 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mM DTT, 5 % glycerol, 50 
mM NaCl 
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3.5.3 Preparation of HEK 293T cell extracts 
 

After cells were washed with 3 ml of PBS, 0.5 ml of low-salt lysis buffer were supplied to the 

cells for 5 min. Then, the cells were scraped off the cell culture dish and incubated on ice for 20 

min. Subsequently, the cells were centrifuged at 6000 g for 10 min at 4°C and the supernatant 

was collected as the cytoplasmic fraction. The pellet was washed with 0.5 ml low-salt lysis buffer 

and centrifuged. And the pellet was resuspended in 0.5 of high-salt lysis buffer. After sonication at 

a 10 % cycle for 20 sec using the homogeniser Sonoplus HD 200 from Bandelin combined with the 

probe tip MS 73D, the solution was centrifuged and the supernatant was collected as nucleic 

fraction. Protein fractions were further investigated by Western blot analysis (see chapter 3.5.11). 

 

Low-salt-lysis buffer: 10 mM HEPES pH 7.9, 10 mM NaCl, 3 mM MgCl2, 0.5 % Igepal-CA 
630 

High-salt-lysis buffer: 25 mM HEPES pH 7.9, 25 % glycerol, 0.42 M KCl, 1.5 M MgCl2, 0.2 
mM EDTA, 0.5 mM DTT 

 

3.5.4 Preparation of BL 21(DE3) LysS cell extracts 
 

The resuspended bacterial pellets were thawed on ice and cell disruption was completed by 

sonication with the homogeniser Sonoplus HD 200 from Bandelin in combination with the probe tip 

MS 73D. For the induced fraction, sonication was performed at a 40 % cycle, 4 times for 30 sec 

and finally one continuous cycle for 30 sec, on ice. The non-induced fraction was sonicated at a 20 

% cycle, 3 times for 30 sec. The sample of the induced fraction was centrifuged at 18000 rpm for 

30 min at 4°C in a Sorvall RC5C centrifuge to separate the soluble fraction (supernatant) from the 

insoluble one (pellet). The sample from the non-induced fraction was centrifuged in an eppendorf 

centrifuge at 14000 rpm for 20 min at 4°C. The supernatant from the induced fraction was kept for 

further protein purification steps, such as ammonium sulfate precipitation. 

 

Buffer A: 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mM DTT, 5 % glycerol, 50 
mM NaCl 
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3.5.5 Protein purification 
 

3.5.5.1 Ammonium sulfate precipitation 
 

The first step of protein purification of Lbpro was precipitation by adding 30 % ammonium 

sulfate. Accordingly, the supernatant of the bacterial cell lysate was mixed with a saturated 

ammonium sulfate solution and gently stirred overnight at 4°C. After centrifugation at 20000 rpm 

in a Sorvall RC5C or RC5C plus centrifuge for 40 min at 4 °C, the supernatant was kept for further 

precipitation. Among other proteins Lbpro precipitated upon the addition of 60 % saturated 

ammonium sulfate solution. Again, the mixture was gently stirred overnight at 4°C. After 

centrifugation at 20000 rpm for 30 min at 4°C, the supernatant was discarded and the pellet of a 1 

l culture was resuspended in 8 ml of Buffer A. 

 

Buffer A: 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mM DTT, 5 % glycerol, 50 
mM NaCl 

 

3.5.5.2 Dialysis 
 

To desalt the protein sample after ammonium sulfate precipitation, the sample was dialysed 

against Buffer A. Therefore, the protein solution was transferred into a semi-permeable membrane 

bag made of cellulose acetate with a cut-off of 10 kDa. Dialysis bags were prepared as 

recommended by the manufacturer (Sigma). The sample was dialysed against 100 times the 

volume of Buffer A. Dialysis was performed at 4°C in a beaker under slow stirring of the bag from 

3 h to overnight. During the dialysis process the buffer was changed 2 - 3 times. 

 

Buffer A: 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mM DTT, 5 % glycerol, 50 
mM NaCl 

 

3.5.5.3 FPLC 
 

Protein purification was performed using anion-exchange and size-exclusion chromatography 

on an ÄKTA FPLC (Fast Protein Liquid Chromatography) system from Amersham Biosciences. All 

used columns were purchased from Amersham Biosciences. For the collection of 2 ml fractions an 

automatic fraction collector was used. The handling of the columns was performed according to 

the instructions of the manufacturer. Fractions were analysed by SDS PAGE (see chapter 3.5.8.1). 
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3.5.5.3.1 Anion exchange chromatography 
 

Proteins that differ in electrostatic interactions can be separated via anion-exchange 

chromatography. Therefore, a Mono Q HR 10/10 column was used. Before loading the protein 

sample, Buffer A was used to equilibrate the column. Buffer B was used as elution buffer creating a 

NaCl gradient. The gradient program was as follows: 5 column volumes (CVs) of 100 % of Buffer 

A, 2.5 CVs of 0-30% of Buffer B, 15 CVs of 30-60 % of Buffer B, 2 CVs of 60-100 % of Buffer B 

and 5 CVs of 100 % Buffer B. 

 

Buffer A: 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mM DTT, 5 % glycerol, 50 
mM NaCl 

Buffer B: 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mM DTT, 5 % glycerol, 1 M 
NaCl 

 

3.5.5.3.2 Size-exclusion chromatography 
 

Proteins of different molecular size can be separated via size-exclusion chromatography. For 

preparative gelfiltration a HiLoad 26/60 Superdex 75 pg column was used. Analytical size-exclusion 

chromatography was performed on a a HiLoad 16/60 Superdex 75 pg column. The samples were 

separated over 1.2 column volumes of Buffer A. 

 

Buffer A: 50 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mM DTT, 5 % glycerol, 50 
mM NaCl 

 

3.5.6 Protein concentration 
 

To concentrate protein samples Amicon Ultra Centrifugal Devices (Millipore) were used. The 

instructions of the manufacturer were followed. The centrifugations were performed at 4°C on an 

eppendorf centrifuge 5810 R. 

 

3.5.7 Protein quantification 
 

To quantify protein concentrations the Nanodrop spectrophotometer ND-1000 from Peglab 

was used according to the instructions of the manufacturer. 
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3.5.8 SDS PAGE (Sodiumdodecylsulfate Polyacrylamide Gelelectrophoresis) 
 

3.5.8.1 SDS PAGE (Laemmli, 1970) 
 

For separation of protein fractions, SDS PAGE was performed in the mini-PROTEAN® 3 

system from Biorad, assembled according to the instructions of the manufacturer. Table 5 shows 

the composition of Laemmli separation gels with different percentages of polyacrylamide. The mix 

was poured and overlaid with isopropanol. After polymerisation, the gel was rinsed with dH2O and 

the stacking gel was prepared. Afterwards, the gel unit was assembled and the tank was filled with 

Laemmli running buffer. Protein samples were mixed with 2 x Laemmli sample buffer and heated 

to 95°C for 5 min; 20 min in case of bacterial or cellular lysates. The samples were loaded on the 

gel and protein separation was performed at 20 mA using an electrophoresis power supply from 

ISCO. The prestained precision marker from Biorad was used as a size marker. 

 

Table 5 Composition of ‘Laemmli’ separation gels and stacking gel 

 Separation gel 
15 % (ml) 

Separation gel 
17.5 % (ml) 

Stacking gel 
(ml) 

30 % Polyacrylamide 3 3.5 0.333 

2.5 % Bisacrylamide - - 0.104 

4 x LGS 1.5 1.5 - 

4 x UGS - - 0.481 

dH2O 1.5 1 1.060 

10 % APS 0.05 0.05 0.02 

TEMED 0.005 0.005 0.002 

LGS: lower gel solution; UGS: upper gel solution; APS: Ammoniumperoxidisulfate; TEMED: N,N,N’,N’ 
Tetramethyl-ethylene diamine 
 

LGS (lower gel solution): 1.5 M Tris base pH 8.8, 0.4 % SDS 

UGS (upper gel solution): 0.5 M Tris base pH 6.8, 0.4 % SDS 

2 x Laemmli sample buffer: 20 % glycerol, 10 % β-mercaptoethanol, 6 % SDS, 125 mM Tris, 
 0.01 % Bromophenol Blue pH 6.8 

Laemmli running buffer: 25 mM Tris base, 0.2 M Glycine, 0.1 % (w/v) SDS 
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3.5.8.2 SDS PAGE (Dasso et al., 1989) 
 

To separate in vitro translation products, the protocol of Dasso and Jackson was used in 

order to gain a higher resolution for proteins of small size. The composition of different separation 

gels is listed in Table 6. The composition of the stacking gel is the same as used for ‘Laemmli’ PAA 

gels (see chapter 3.5.8.1). The radioactively-labelled translation products were detected by 

fluorography (see chapter 3.5.10). The 14C-labelled protein marker CFA626 from Amersham 

Bioscience was used as size marker. 

 

 

Table 6 Composition of ‘Dasso & Jackson’ separation gels 

 Separation gel 
6 % (ml) 

Separation gel 
17.5 % (ml) 

30 % Polyacrylamide 1.2 3.5 

2.5 % Bisacrylamide 0.209 0.158 

4 x LGS 1.5 1.5 

dH2O 3.06 0.754 

10 % APS 0.05 0.05 

TEMED 0.005 0.005 

LGS: lower gel solution; UGS: upper gel solution; APS: Ammoniumperoxidisulfate; 
TEMED: N,N,N’,N’-Tetramethyl-ethylene diamine 

 

 

LGS (lower gel solution): 1.5 M Tris base pH 8.8, 0.4 % SDS 

UGS (upper gel solution): 0.5 M Tris base pH 6.8, 0.4 % SDS 

Dasso & Jackson 
running buffer: 50 mM Tris base, 385 mM Glycine, 0.1 % (w/v) SDS 
 

3.5.9 Coomassie Staining 
 

The ‘Laemmli’ PAA gels were stained by incubation in commassie staining buffer for 15 - 30 

min. The gels were destained by transferring them to H2O and boiling them for several times in the 

microwave. Gels were vacuum-dried on WhatmanTM 3MM paper for 1 h at 80°C using a Slab Gel 

Dryer SGD 4050 from Savant. 

 

Commassie staining buffer: 0.4 % (w/v) Biorad Commassie Brilliant Blue R250, 45 % (v/v) 
methanol, 10 % (v/v) acetic acid 
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3.5.10 Fluorography 
 

During in vitro translation, proteins were labelled with 35S-methionine and separated on a 

‘Dasso & Jackson’ PAA gel. After gelelectrophoresis, the gel was washed 2 times in enhancer 

solution for 15 min at RT. Thereby, the radiation is shifted to a wavelength which can be detected 

more sensitively by an autoradiography film. After vacuum-drying on WhatmanTM 3MM paper, the 

gel was exposed to a BioMax MR film (Kodak) or a CL-X PosureTM film (Thermo Scientific) for 20 - 

90 h at -80°C. 

 

Enhancer solution: 1 M sodium salicylate, 45 % methanol 

 

3.5.11 Western blot analysis 
 

For western blot analysis protein samples were separated by SDS PAGE (see chapter 3.5.8), 

together with a prestained precision protein marker (Biorad). Proteins were transferred to a PVDF 

ImmobilonTM-P Transfer Membrane (Millipore) that was activated with methanol before use. The 

western blot sandwich was composed of 2 pads and 3 pieces of WhatmanTM 3MM paper, which 

were pre-soaked in transfer buffer, enclosing the SDS gel and the transfer membrane. The TE 22 

Mini Transfer Tank Unit from Hoefer scientific instruments was used for blotting. The transfer tank 

was filled with transfer buffer and blotting was performed overnight at 40 mA. 

For immunoblot analysis the transfer membrane was incubated with blocking buffer for 30 

min shaking at RT to block the non-specific binding sites. Subsequently, the membrane was 

incubated with the primary antibody shaking at RT for 1 h. After two times washing with PBST for 

10 min, the membrane was incubated with the secondary antibody shaking at RT for 1 h. After two 

times washing with PBST, the immunolabelled proteins were detected. 

For the detection of alkaline phospatase (AP) conjugated secondary antibodies, the 

membrane was incubated with 5 ml alkaline phospatase buffer supplemented with 25 µl NBT and 

25 µl BCIP until proteins became visible (2 - 10 min). The colour reaction was stopped with dH2O.  

For horseradish peroxidase (HRP) conjugated antibodies, the detection was performed using 

the Super Signal® West Pico chemiluminescent substrate kit from Pierce. The membrane was 

covered with 1 ml of each of the two solutions of the detection kit and incubated for a few min. 

After removal of the solution, the membrane was wrapped in a clingfilm and exposed to an 

autoradiography film (BioMax MR film from Kodak or CL-X PosureTM film from Thermo Scientific). 
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Transfer buffer: 1 % (w/v) glycine, 20 % (v/v) methanol, 25 mM Tris base pH 8.8 

Blocking buffer: 0.2 % Tween 20, 0.2 % I-Block (Tropix) in PBS 

PBS(T): 1.4 mM KH2PO4, 2.7 mM KC, 4.3 mM Na2HPO4, 137 mM NaCl, 
 (0.1 % Tween 20) 

Alkaline phosphatase buffer: 5 mM MgCl2, 100 mM NaCl, 100 mM Tris-HCl pH 9.6 

NBT: 5 % (w/v) nitro blue tetrazolium in 90% dimethylformamide 

BCIP: 2.5 % (w/v) 5-bromo-4-chloro-3-indolyl phosphate disodium salt in 
dH2O 

 

 

Table 7 Primary antibodies used for immunodetection 

Primary antibody dilution 

rabbit anti eIF4GI (N-terminal, antiserum, gift from R. Rhoads, 
Shreveport, LA) 1:8000 

rabbit anti Leader protease (antiserum) 1:2000 

rabbit anti HRV14 (antiserum) 1:400 

mouse anti α tubulin (monoclonal, Sigma) 1:30000 

mouse anti lamin A/C (monoclonal, Mc Keon et al., 1986) 1:30000 

 

 

Table 8 Secondary antibodies used for immunodetection 

Secondary antibody dilution 

anti rabbit alkaline phosphatase coupled (Sigma) 1:5000 

goat anti mouse horseradish peroxidase coupled (Pierce) 1:20000 
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3.6 NMR (Nuclear Magnetic Resonance) 
 

NMR (nuclear magnetic resonance) was chosen as technique to give information on the 

protein structure, molecular dynamics and quaternary interactions of Lbpro. Further, measurements 

can be performed in solution, which reflect native physiological conditions. However, for NMR 

investigations protein concentrations of 1 mM are required, which exceeds the cellular 

concentrations by many times. 

 

3.6.1 Principles 
 

The fundament of NMR analysis is a quantum mechanical magnetic phenomenon of the 

nucleus, called spin. The spinning nucleus can be thought of as a rotating positive charge, creating 

a minute magnetic field. In NMR studies nuclei with a spin ½, such as 1H, 15N and 13C, are 

investigated. In the absence of an external magnetic field, the direction of the spin axis is random. 

If an external magnetic field is present, each nuclear magnet will adopt specific orientations. For 

spin ½-nuclei, two orientations are possible: a low-energy (or α) state, which is aligned parallel to 

the applied magnetic field, and a higher-energy (or β) state, which is aligned in an anti-parallel 

way. In the equilibrium, there are marginally more spins in the α-state than in the β-state. This 

small difference in populations gives rise to an NMR signal which makes NMR an insensitive 

spectroscopic method. Transitions between the α- and the β-state occur when an appropriate 

amount of energy (resonance) is supplied to the system. The energy is supplied in form of a pulse 

of electromagnetic radiation in the radio frequency (rf) range, which lies between 50 and 800 MHz. 

The higher the external magnetic field, the greater is the difference between the two transition 

states which results in more sensitive NMR signals.  

The equilibrium is perturbed by rf pulses for a precise length of time. This leads to a rotation 

of the magnetisation vector by an angle, mostly 90° or 180°. Subsequently, the system returns to 

the equilibrium state by precission around the magnetic field which induces a detectable electric 

voltage. The detected time domain signals are transformed via Fourier transformation into a one-

dimensional NMR spectrum.  
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3.6.1.1 Chemical shift 
 

In the presence of an external magnetic field, the electrons of a nucleus generate a local 

magnetic field and thus shield the nucleus. The density of electrons around the nucleus is 

dependent on the electro-negativity of neighbour-atoms. If electrons are pulled away from the 

nucles, there is less shielding and vice versa. Thus, the resonance of this nucleus is shifted to 

higher frequencies. Therefore, each nucleus has a unique chemical environment and specific 

absorption frequencies. The chemical shift of a nucleus is the difference between its own 

resonance frequency and that of a reference nucleus. The quantity is reported in parts per million 

(ppm) and given the symbol δ. Chemical shifts in proteins are influenced by non-covalent 

interactions such as hydrogen bonding, electrostatic and Van-der-Waals interactions. These 

interactions can give information on the local environment of the nucleus and thus allows 

conclusions about the secondary, tertiary as well as quaternary structure of the protein. 

 

3.6.1.2 Spin relaxation 
 

Spin relaxation describes the return of the spins to equilibrium after an rf pulse. The rate of 

relaxation is influenced by the physical properties and the dynamics of the molecules as well as the 

sample. There are two relaxation mechanisms that can be observed: spin-lattice or longitudinal 

relaxation (T1) and spin-spin or transverse relaxation (T2). The longitudinal relaxation time 

measures the average lifetime of nuclei in the higher energy level and is dependent on the 

gyromagnetic ratio and the mobility of the lattice. The transverse relaxation measures how efficient 

the exchange of energy between spins is. An isolated nuclear spin would present rather long 

relaxation times. Within molecules, relaxation can be induced by exchange of energy with the 

surrounding or with other spins in the same molecule. Therefore, relaxation rates give important 

information on molecular dynamics. 

 

3.6.2 NMR sample 
 

For NMR experiments Lbpro mutant proteins were expressed in E. coli BL 21(DE3) LysS (see 

chapter 3.2.1.2) using pET 11d vectors (see chapter 3.3.1.1). Bacteria were grown in minimal 

medium containing the preferred isotopes for protein labelling (see chapter 3.5.2.2). The proteases 

were purified as described in Materials and Methods (see chapter 3.5.5). The isotope-labelled 

proteins were dialysed into NMR buffer and concentrated to 0.5 - 2 mM (see chapter 3.5.6) (see 

Table 9). Furthermore, 5 - 10 % (v/v) 2H2O was added to the sample as internal standard.  
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Table 9 Proteins analysed by NMR 

protein volume (µl) concentration (mM) 
15N Lbpro L200F 500 2 
15N Lbpro L143A L200F 500 1 
13C 15N Lbpro L200F 300 0.5 

 

NMR buffer 20 mM sodium phosphate (pH 7.0), 50 mM NaCl, 5 mM DTT 

 

3.6.3 NMR experiments 
 

All NMR investigations and analysis were performed together with Georg Kontaxis at the 

Department of Biomolecular Structural Chemistry at the MFPL, Vienna. Isotope-labelled protein 

samples were investigated at 25°C on Varian Inova 500 MHz and 800 MHz and Varian Direct Drive 

600 MHz spectrometers which were equipped with 5 mm triple resonance probes and pulsed field 

gradients. The resulting NMR spectra were processed with NMRPipe and data analysis was 

performed using Sparky software. 

For 15N labelled probes the 2D 1H-15N HSQC (Heteronuclear Single Quantum Correlation) as 

well as the T2 relaxation times were determined. Dependent on the concentration of the protein 

sample the measurement takes about 1 – 2 h. For 13C and 15N labelled protein samples 3D triple 

resonance experiments were performed. The measurement period takes about 48 h. 

 

3.6.3.1 2D 1H-15N HSQC 
 

The 2D 1H-15N HSQC correlates the frequency of the amide nitrogen atom with its attached 

proton. Therefore, every backbone amide gives rise to a signal, except for Pro which is an imide 

nitrogen rather than an amide. Also, signals of Asn, Gln and Arg side chain amides as well as Trp 

indole 15N-1H are detectable.  

 

3.6.3.2 3D triple resonance experiments 
 

3D triple resonance experiments performed in this work included the measurement of the 

HN(CO)CA/HNCA and CBCA(CO)NH/HNCACB spectra. 

In the HN(CO)CA the frequencies of an amide proton and an amide nitrogen are correlated 

with those of 13Cα of the preceding residue. However, in the HNCA the frequencies of the amide 

proton and nitrogen are connected to the 13Cα of the preceding as well as to the same residue. 

Together, HN(CO)CA and HNCA provide data for sequential backbone chemical shift assignment. 
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The CBCA(CO)NH correlates the frequencies of a 13Cα and a 13Cβ with those of the amide 

proton and nitrogen of the next residue. In the HNCACB the frequencies of the amide proton and 

nitrogen are correlated with the 13Cα and 13Cβ of the preceeding as well as to the same residue. 

Together, CBCA(CO)NH and HNCACB provide a further method for sequential assignment due to 

larger 13Cβ
 shift ranges. 

In combination, HN(CO)CA/HNCA and CBCA(CO)NH/HNCACB, provide the basis for almost 

complete structure assignment. 
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4  Resu l t s  
 

4.1 Investigating intramolecular self-processing of Lbpro 
 

In order to be able to investigate intramolecular self-processing of Lbpro by NMR it is a 

prerequisite to inhibit dimer formation of Lbpro. As several attempts to dissociate the dimer have 

failed so far (see chapter 1.5.1), we tried to dissociate the dimer via site-directed mutagenesis of 

residues involved in dimer formation. Thus, we were looking for Lbpro mutants that were 

enzymatically active but remained monomeric. Essentially, mutations were introduced at two 

distinct sites of Lbpro, either at the interface region or in the CTE. Wildtype Lbpro (Lbpro WT) and 

shortened Lbpro (sLbpro) served as reference proteins. 

The enzymatic activity was analysed by an in vitro assay using rabbit reticulocyte lysates. At 

the same time, the oligomerisation state was analysed by size-exclusion chromatography. 

 

4.1.1 Lbpro wildtype and shortened Lbpro 
 

Wildtype Lbpro (Lbpro WT) and shortened Lbpro (sLbpro), lacking the last six amino acids of the 

CTE, were analysed as they serve as reference proteins for the Lbpro mutants. It was shown that 

Lbpro WT appears as a dimer, whereas sLbpro appears in a monomeric state. The enzymatic activity 

of Lbpro WT is measurable in cis and trans, whereas sLbpro is only active in trans (Glaser et al., 

2001). The sLbpro lacks the last six residues of the CTE, resembling the P region of the polyprotein 

cleavage sequence; there is thus no basis to investigate the self-processing activity. Furthermore, 

the dimerisation state of Lbpro WT and sLbpro was analysed. 

 

4.1.1.1 Enzymatic activity of Lbpro WT 
 

The enzymatic activity of the Lbpro mutants was investigated performing an in vitro assay. To 

this end, the desired mutations were introduced into the vector pCITE 1d LbproVP4/VP2 by site-

directed PCR mutagenesis (see chapter 3.3.11) using specific oligonucleotides (see chapter 

3.3.14.1). After confirmation of the correct sequence of the mutagenised plasmids (see chapter 

3.3.13), RNA coding for LbproVP4/VP2 was transcribed in vitro (see chapter 3.4.1). Subsequently, in 

vitro translation was performed using the rabbit reticulocyte lysate system (see chapter 3.4.3). The 

translation mix contained 35S-labelled methionine which was incorporated into the newly 

synthesised precursor protein LbproVP4/VP2. The enzymatic activity was reflected in the rate at 

which Lbpro cleaves the precursor protein into the cleavage products Lbpro and VP4/VP2. In course 

of the translation process, aliquots were taken at defined time points and analysed by SDS PAGE, 

using the protocol of Dasso & Jackson (see chapter 3.5.8.2). 35S-labelled proteins were visualised 

via fluorography (see chapter 3.5.10). 
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The kinetics of eIF4GI cleavage was analaysed via western blot analysis of the in vitro 

translation sample (see chapter 3.5.11) using polyclonal α-eIF4GI primary antibodies (see Table 7) 

and α-rabbit alkaline phosphatase conjugated secondary antibodies (see Table 8). 

Figure 10 shows the enzymatic activity of Lbpro WT, reflected in the kinetics of self-

processing and eIF4GI cleavage. The high efficiency of the self-processing reaction of Lbpro WT is 

indicated by the low amount of uncleaved precursor LbproVP4/VP2. The cleavage products Lbpro and 

VP4/VP2 are visible for the first time after 4 to 8 minutes after translation initiation. Lbpro encoded 

by pCITE LbproVP4/VP2 has four methionines, whereas VP4/VP2 has only two. Therefore, the 

intensity of the Lbpro band is twice that of VP4/VP2. Furthermore, the majority of eIF4GI molecules 

is cleaved at the 8 minutes time point. The cleavage process is completed after 12 to 20 minutes 

after translation initiation. Aberrant cleavage products appear 30 and 60 minutes after translation 

initiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Enzymatic activity of Lbpro WT. Rabbit reticulocyte lysate was programmed with RNA (10 ng/µl) coding

for LbproVP4/VP2 and incubated at 30°C. Negative controls (-) were prepared by addition of water instead of RNA and

incubation at 30°C for 60 minutes. 10 µl samples were taken at the indicated time points and protein translation was

terminated by mixing the samples with an icecold mix of 25 μl 2 x Laemmli sample buffer, 15 μl H2O and 1 μl unlabelled

methionine/cysteine (20 mM). 

The top panel shows the self-processing activity of Lbpro WT on the precursor LbproVP4/VP2. Viral proteins were

separated by SDS PAGE on a 17.5 % ‘Dasso & Jackson’ PAA-gel and visualised by fluorography. The fluorograph was

exposed for 20 hours. The positions of uncleaved LbproVP4VP2 and the cleavage products Lbpro and VP4/VP2 are

marked. Aberrant cleavage products are marked with a white arrow. 

The bottom panel shows the cleavage of eIF4GI. Cleavage products were separated by SDS PAGE on a 6 %

‘Dasso & Jackson’ PAA-gel and blotted on a PVDF membrane. For detection, a polyclonal α-eIF4GI primary antibody and

an α-rabbit alkaline phosphatase conjugated secondary antibody were used. The multiple protein bands of eIF4GI are

caused by translation initiation at different AUG codons. 

Protein standards (kDa) are shown on the left. 
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4.1.1.2 Oligomerisation state of Lbpro WT and sLbpro 
 

For the analysis of the oligomerisation state of the Lbpro mutants, the proteases were 

expressed in E. coli BL21 (DE3) LysS cells (see chapter 3.5.2.1) using pET 11d vectors. Once 

again, the desired mutations were introduced by site-directed PCR mutagenesis (see chapter 

3.3.11) using specific primers containing the desired mutations (see chapter 3.3.14.1). To ensure 

long-time stability of the samples the protease was inactivated by mutating the active site Cys 51 

to Ala. This mutation results in the inactivation of the enzyme by removing the sulfhydryl group 

required for nucleophilic attack at the scissile peptide bond. Subsequently, the proteases were 

purified as described in Materials and Methods (see chapter 3.5.5).  

In order to investigate the oligomerisation state of Lbpro molecules, analytical size-exclusion 

chromatography was performed using a HiLoad 16/60 Superdex 75 pg column (see chapter 

3.5.5.3.2). The molecular weight of a protein was estimated by comparing its elution volume with 

those of standard proteins of known molecular weight, such as ovalbumin (43 kDa), 

chymotrypsinogen A (25 kDa) and ribonuclease A (13.7 kDa) (Gel Filtration Calibration Kit LMW 

from GE Healthcare) (see Figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the elution volumes of proteins can slightly vary, each Lbpro mutant was analysed 

together with ribonuclease A. Ribonuclease A has a known molecular weight of 13.7 kDa and is 

therefore used as an internal control. To make a comparison between the chromatograms of 

different Lbpro mutants easier, the chromatogram of each Lbpro mutant was overlayed with the 

chromatogram of the standard proteins. Subsequently, the chromatogram of the standard proteins 

was shifted along the X-axis and normalised to the ribonuclease A peak. 

Figure 11 Chromatogram of standard proteins. Separation of proteins according to their size was achieved by size-

exclusion chromatography using the HiLoad 16/60 Superdex 75 pg column (from Amersham Biosciences). 3 mg of each

of the standard proteins ovalbumin (43 kDa), chymotrypsinogen A (25 kDa) and ribonuclease A (13.7 kDa) were

analysed. The respective elution volumes (ml) are indicated. 
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In Figure 12, the pure proteases are shown on a PAA gel. Although sLbpro has a lower 

molecular weight than Lbpro WT it appears to migrate more slowly. A similar effect was observed 

by Sangar and colleagues, as a result of the treatment of Lbpro with carboxypeptidase B (Sangar et 

al., 1988). This enzyme is specific for C-terminal basic amino acids. As the last six amino acids of 

the CTE contain three basic residues, this lack might be the reason why the mobility of sLbpro is 

decreased on SDS PAGE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following, the oligomerisation state was analysed via size-exclusion chromatography. Figure 

13 shows the chromatograms of Lbpro (WT) (A) and sLbpro (B) compared to the chromatogram of 

the standard proteins. 

As previously shown by Cencic and colleagues (Cencic et al., 2007), Lbpro WT elutes at about 

58 ml. A comparison with the standard proteins reveals a molecular weight of about 40 kDa, 

representing the presence of a dimer (Figure 13A). In contrast, sLbpro elutes at about 68 ml which 

corresponds to a molecular weight of about 20 kDa. This indicates the presence of a monomer 

(Figure 13B). The chromatogram of sLbpro displays a lower amount of protein due to inaccurate 

loading of the protein to the column. 

 

 

 

 

 

 

 

 

 

Figure 12 PAA gel showing the pure proteases Lbpro WT and sLbpro. The inactive forms of Lbpro WT and sLbpro were

expressed in LB medium and purified using the methods described in Materials and Methods (see chapter 3.5.5). 2 µg

of the pure protein sample are shown on a 17.5 % ‘Laemmli’ SDS gel. Protein standards (kDa) are shown on the left. 
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4.1.2 Effects of mutations at the interface on dimerisation 
 

In order to inhibit dimer formation, we considered removing potential interactions between 

dimeric Lbpro molecules by mutating specific residues. Based on the NMR studies by Cencic and 

colleagues (Cencic et al., 2007), Trp 105 and Thr 117, located in the interface between dimeric 

Lbpro molecules, were considered to be involved in dimer stabilisation (see Figure 14) (see chapter 

1.5.1). 

To analyse their importance in dimer formation, Trp 105 and Thr 117 were substituted with 

Ala either as single mutations or together as a double mutation to remove the putative attractive 

interactions between the two globular domains of dimerised molecules. Furthermore, Trp 105 was 

substituted with the large, positively charged amino acid Arg in an attempt to provoke repulsion 

between dimeric molecules. The enzymatic activity as well as the oligomerisation state of the Lbpro 

interface mutants was examined. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Chromatograms of Lbpro WT and sLbpro. Separation of proteins according to their size was achieved by

size-exclusion chromatography, using the HiLoad 16/60 Superdex 75 pg column (from Amersham Biosciences). 1 mg of

each Lbpro WT and sLbpro was analysed together with 2 mg ribonuclease A (13.7 kDa) used as an internal standard; the

chromatogram of Lbpro WT (A) and sLbpro (B) is shown in red. The respective elution volumes (ml) are indicated. The

chromatogram of standard proteins, shown in grey, was shifted along the X-axis to align the elution volume of

ribonuclease A. 
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4.1.2.1 Enzymatic activities of interface mutants 
 

Figure 15 shows the kinetics of self-processing and eIF4GI cleavage of the various Lbpro 

interface mutants. Lbpro W105 (A) displays similar enzymatic activities compared to the wildtype. 

The cleavage products Lbpro and VP4/VP2 are visible after 8 minutes of translation initiation and 

eIF4GI cleavage is completed at the 8 minutes time point. 

The mutants Lbpro T117A (B), Lbpro L143A L200F (C) and Lbpro W105R (D) display full activity 

in self-processing, as only a low amount of uncleaved precursor protein could be detected. The 

slight shift in mobility observed for Lbpro T117A might be caused by the mutation. However, the 

slight delay in self-processing might result from a lower concentration of Lbpro due to unfavourable 

conditions during the translation process. This is also reflected by a slight delay in eIF4GI cleavage. 

Nevertheless, the majority of the eIF4GI molecules are cleaved by the Lbpro mutants at the 12 

minutes time point.  

In summary, all interface mutants were shown to be enzymatically active and showed little, 

if no difference to the wildtype. 

 

 

 

 

 

 

 

 

 

 

Figure 14 Mutated residues of Lbpro interface mutants. The two Lbpro molecules of the dimer are shown in light and

dark grey. Trp 105 (W105) and Thr 117 (T117) (shown in red) are located in the interface between the two globular

domains of dimeric molecules. Generated with PyMOL (DeLano, 2002) using the PDB ID code 1QOL. 
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Figure 15 Enzymatic activity of Lbpro interface mutants. The mutants Lbpro W105A (A), Lbpro T117A (B), Lbpro

W105A T117A (C) and Lbpro W105R (D) are shown. Rabbit reticulocyte lysate was programmed with RNA (10 ng/µl)

coding for LbproVP4/VP2 and incubated at 30°C. Negative controls (-) were prepared by addition of water instead of RNA

and incubation at 30°C for 60 minutes. 10 µl samples were taken at the indicated time points and protein translation

was terminated by mixing the samples with an icecold mix of 25 μl 2 x Laemmli sample buffer, 15 μl H2O and 1 μl

unlabelled methionine/cysteine (20 mM). 

Top panels show the self-processing activity of Lbpro on the precursor LbproVP4/VP2. Viral proteins were separated

by SDS PAGE on 17.5 % ‘Dasso & Jackson’ PAA gels and visualised by fluorography. Fluorographs were exposed for 20

to 90 hours. The positions of uncleaved LbproVP4VP2 and the cleavage products Lbpro and VP4/VP2 are marked. 

Bottom panels show the cleavage of eIF4GI. Cleavage products were separated by SDS PAGE on 6 % ‘Dasso &

Jackson’ PAA gels and blotted on a PVDF membrane. For detection, a polyclonal α-eIF4GI primary antibody and an α-

rabbit alkaline phosphatase conjugated secondary antibody were used. The multiple protein bands of eIF4GI are caused

by translation initiation at different AUG codons. 

Protein standards (kDa) are shown on the left. 
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4.1.2.2 Oligomerisation state of interface mutants 
 

In order to examine whether the mutations at the interface region had an effect on the 

oligomerisation state, the Lbpro mutant proteins were expressed and analysed by size-exclusion 

chromatography. Figure 16 displays the PAA gel showing the pure proteins that were used for 

further analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 displays the elution profiles of the interface mutants Lbpro W105A (A), T117A (B), 

W105A T117A (C) and W105R (D) that were compared with the chromatogram of the standard 

proteins. The interface mutants elute between 57.96 and 60.14 ml. These elution volumes are 

comparable with that of ovalbumin (43 kDa), suggesting a molecular weight of about 40 kDa. This 

and the fact that Lbpro WT elutes at a similar volume of about 58 ml (see chapter 4.1.1.2) suggest 

that the interface mutant proteins appear in a dimeric state. 

Altogether, the mutations in the interface region of dimeric Lbpro molecules failed to affect 

both the enzymatic activity and dimer formation. 

 

 

 

 

 

 

 

 

Figure 16 PAA gel showing the pure proteases Lbpro W105A, Lbpro T117A, Lbpro W105A T117A and Lbpro W105R.

The inactive form of the mutant proteases was expressed in LB medium and purified using the methods described in

Materials and Methods (see chapter 3.5.5). 2 µg of the pure protein sample are shown on a 17.5 % ‘Laemmli’ SDS gel.

Protein standards (kDa) are shown on the left. 
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4.1.3 Effects of mutations in the CTE on dimerisation 
 

In further attempt to separate the dimer, residues of the CTE and the active site were 

chosen for mutagenesis. It was shown by Mayer and colleagues that the substitution of Leu 200 

with Phe leads to a disruption of self-processing activity. However, the additional replacement of 

Leu 143 to Ala restored the enzymatic activity to wildtype levels (Mayer et al., 2008). 

As self-processing of Lbpro is impaired by the L200F mutation, we assumed that the 

dimerisation state might also be affected. Therefore, the enzymatic activity as well as the 

oligomerisation state of the mutants Lbpro L200F and Lbpro L143A L200F was analysed (see Figure 

18. 

 

 

 

 

 

Figure 17 Chromatograms of Lbpro interface mutants. Separation of proteins according to their size was achieved

by size-exclusion chromatography, using the HiLoad 16/60 Superdex 75 pg column (from Amersham Biosciences). 1 mg

of each of the interface mutants was analysed together with 2 mg ribonuclease A (13.7 kDa) used as an internal

standard; the chromatograms of Lbpro W105A (A), Lbpro T117A (B), W105A T117A (C) and Lbpro W105R (D) are shown in

red. The respective elution volumes (ml) are indicated. The chromatogram of standard proteins, shown in grey, was

shifted along the X-axis to align the elution volume of ribonuclease A. 
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4.1.3.1 Enzymatic activities of CTE mutants 
 

In Figure 19, the kinetics of self-processing and eIF4GI cleavage of the CTE mutants Lbpro 

L200F (A) and Lbpro L143A L200F (B) are shown. As demonstrated by Mayer and colleagues (Mayer 

et al., 2008), the Lbpro L200F self-processing is delayed compared to the wildtype (see chapter 

4.1.1.1). The first cleavage products are detectable after 20 minutes of translation initiation and 

even after 60 minutes the precursor protein LbproVP4/VP2 is not completely processed. However, 

the mutation L200F did not affect the cleavage rate of eIF4GI. 50 % cleavage could be detected at 

the 8 minutes time point and the reaction was completed after 12 minutes. 

Interestingly, the additional mutation L143A fully restores the enzymatic activity. The first 

cleavage products of Lbpro L143A L200F were detected after 8 minutes of translation initiation, 

resembling wildtype levels. The cleavage of eIF4GI is complete between 12 and 20 minutes after 

translation initiation, showing similar trans cleavage activity as Lbpro WT. 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 Mutated residues of Lbpro CTE mutants. The two Lbpro molecules of the dimer are shown in light and

dark grey. Leu 200 (L200) of one molecule, reflecting the P2 position, binds to the S2 pocket of the neighbouring

molecule, containing Leu 143’ (L143’) (shown in red). Generated with PyMOL (DeLano, 2002) using the PDB ID code
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Figure 19 Enzymatic activity of Lbpro CTE mutants. The mutants Lbpro L200F (A) and Lbpro L143A L200F (B) are

shown. Rabbit reticulocyte lysate was programmed with RNA (10 ng/µl) coding for LbproVP4/VP2 and incubated at 30°C.

Negative controls (-) were prepared by addition of water instead of RNA and incubation at 30°C for 60 minutes. 10 µl

samples were taken at the indicated time points and protein translation was terminated by mixing the samples with an

icecold mix of 25 μl 2 x Laemmli sample buffer, 15 μl H2O and 1 μl unlabeled methionine/cysteine (20 mM). 

Top panels show the self-processing activity of Lbpro on the precursor LbproVP4/VP2. Viral proteins were separated

by SDS PAGE on 17.5 % PAA gels and visualised by fluorography. Fluorographs were exposed for 20 to 90 hours. The

positions of uncleaved LbproVP4VP2 and the cleavage products Lbpro and VP4/VP2 are marked. 

Bottom panels show the cleavage of eIF4GI. Cleavage products were separated by SDS PAGE on 6 % PAA gels

and blotted on PVDF membrane. For detection, a polyclonal α-eIF4GI primary antibody and an α-rabbit alkaline

phosphatase conjugated secondary antibody were used. The multiple protein bands of eIF4GI are caused by translation

initiation at different AUG codons. 

Protein standards (kDa) are shown on the left. 
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4.1.3.2 Oligomerisation state of CTE mutants 
 

In order to investigate the oligomerisation state of Lbpro L200F and Lbpro L143A L200F, the 

Lbpro mutant proteins were expressed and analysed by size-exclusion chromatography. The PAA gel 

showing the pure proteases used for size-exclusion chromatography is presented in Figure 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 shows the elution profiles of the single mutant Lbpro L200F and the double-mutant 

Lbpro L143A L200F. The mutant Lbpro L200F displays an elution volume of about 66.9 ml. A 

comparison with the chromatogram of standard proteins indicates a molecular weight of Lbpro 

L200F of about 20 kDa. This and the fact that sLbpro elutes at about 68.3 ml suggests that Lbpro 

L200F is present in a monomeric state. 

Interestingly, Lbpro L143A L200F elutes at 66.4 ml which reflects an intermediate elution 

volume between the one of Lbpro WT of about 58 ml and the one of sLbpro of about 68 ml. This 

would suggest that Lbpro L143A L200F also appears as a monomer. Furthermore, the alteration of 

the protein concentration from 50 nM to 25 nM did not affect the elution volume of Lbpro L143A 

L200F, showing that the elution volume of Lbpro L143A L200F is reproducible. As the additional 

mutation L143A restores the enzymatic activity of Lbpro L143A L200F, we assumed that also the 

dimeric structure of the protein would be reconstituted. However, this assumption could not be 

confirmed by size-exclusion chromatography. 

 

 

 

 

 

Figure 20 PAA gel showing the pure proteases Lbpro L200F and Lbpro L143A L200F. The inactive form of the mutant

proteases was expressed in LB medium and purified using the methods described in Materials and Methods (see

chapter 3.5.5). 2 µg of the pure protein sample are shown on a 17.5 % ‘Laemmli’ SDS gel. Protein standards (kDa) are

shown on the left. 
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4.1.3.3 NMR studies of CTE mutants 
 

The mutants Lbpro L200F and Lbpro L143A L200F were analysed by NMR studies to gain 

further information about the oligomerisation state and the structural features of the proteins (see 

chapter 3.6). The T2 transverse relaxation times of the 15N labelled Lbpro mutants were measured in 

order to determine the oligomerisation state (see chapter 3.6.3). Furthermore, a 2D 1H-15N HSQC 

spectrum of the CTE mutants was recorded and compared to the spectra of Lbpro WT and sLbpro in 

order to determine any structural changes in the protein backbone structure (see chapter 3.6.3.1). 

To this end, both mutant proteins were expressed in minimal medium containing 15N (see 

chapter 3.5.2.2). Again, the protease was inactivated by mutating Cys 51 to Ala in order to ensure 

stability during NMR analysis. The proteases were purified as described in Materials and Methods 

(see chapter 3.5.5). The protein sample was dialysed into NMR buffer and concentrated (see 

chapter 3.6.2). Lbpro L200F was concentrated to about 2 mM, whereas the Lbpro L143A L200F 

reached a concentration of about 1 mM. The pure protein fractions used for NMR analysis are 

shown in Figure 22. 

 

 

 

 

 

 

 

 

 

Figure 21 Chromatograms of Lbpro CTE mutants. Separation of proteins according to their size was achieved by

size-exclusion chromatography, using the HiLoad 16/60 Superdex 75 pg column (from Amersham Biosciences). 1 mg of

each of the CTE mutants was analysed together with 2 mg ribonuclease A (13.7 kDa) used as an internal standard; the

chromatograms of Lbpro L200F (A) and Lbpro 143A L200F (B) are shown in red. The respective elution volumes (ml) are

indicated.The chromatogram of standard proteins, shown in grey, was shifted along the X-axis to align the elution

volume of ribonuclease A. 
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4.1.3.3.1 T2 transverse relaxation times of CTE mutants 
 

In order to determine the oligomerisation state of the CTE mutants more precisely, the 15N 

T2 transverse relaxation times for the mutants Lbpro L200F and Lbpro L143A L200F were measured. 

The 15N T2 transverse relaxation times of Lbpro WT and sLbpro were measured by Cencic and 

colleagues (Cencic et al., 2007) who showed that the monomeric sLbpro displays T2 relaxation times 

that are about twice as long compared to the dimeric Lbpro WT. 

Figure 23 shows the 15N transverse relaxation times of Lbpro L200F compared to sLbpro and 

Lbpro L143A L200F compared to Lbpro WT. Figure 23A shows an overlay of the T2 values of Lbpro 

L200F and sLbpro. The compared T2 relaxation times display similar values of about 60 milliseconds, 

suggesting the presence of a monomer. In fact, the unstructured CTE displays T2 relaxation times 

that are substantially longer compared to the globular domain, exceeding the detection range. 

However, no signals were detected that could be assigned to the last 12 residues of the CTE. 

Relaxation rates could only be detected up to Asn 189. 

Figure 23B shows a comparison of the 15N T2 transverse relaxation times of Lbpro L143A 

L200F and Lbpro WT. The compared relaxation times show T2 values of about 30 milliseconds 

illustrating about half the value of Lbpro L200F and sLbpro. These findings suggest that the dimeric 

structure of Lbpro L143A L200F is restored. However, the findings from size-exclusion 

chromatography, that Lbpro L143A L200F appears as a monomer, could not be confirmed. This 

suggests that the quaternary structure of Lbpro L143A L200F is different in size-exclusion 

experiments and in NMR analysis due to different protein concentrations. 

 

 

 

Figure 22 PAA-gel showing the pure proteases 15N Lbpro L200F and 15N Lbpro L143A L200F. The inactive form of the

mutant proteases was expressed in minimal medium containing 15N. The proteins were purified using the methods

described in Materials and Methods (see chapter 3.5.5). 2 µg of the pure protein sample are shown on a 17.5 %

‘Laemmli’ SDS-gel. Protein standards (kDa) are shown on the left. 
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4.1.3.3.2 2D 1H-15N HSQC spectra of CTE mutants 
 

Differences in the structure of the protein backbone between two protein variants can be 

examined by measuring the 2D 1H-15N HSQC (see chapter 3.6.3.1). The spectrum shows signals 

that arise from the correlation of the frequency of the amide nitrogens with their protons. 

Therefore, every backbone amide gives rise to a signal. However, Pro residues can not be detected 

as they are an imide nitrogen rather than an amide. Furthermore, signals for Asn, Gln and Arg side 

chain amides as well as Trp indole are detectable. 

Here, the 1H-15N HSQC spectra of the Lbpro mutants were compared to those determined for 

Lbpro WT and sLbpro by Cencic and colleagues (Cencic et al., 2007). An overlay of the HSQC spectra 

of Lbpro L200F and sLbpro is shown in Figure 24. The compared spectra correlate to a high extent, 

as the majority of the signals show either no or only few differences. The signals displaying the 

greatest shifts (Asp 49, Trp 52, Val 127 and Gln 146) are pointed out with an arrow. 

Table 10 shows the differences of the signals detected in the 1H-15N HSQC spectrum for Lbpro 

L200F compared to those of sLbpro. Residues that were found to be shifted to the greatest extent 

are Asp 49 (0.60 ppm), Trp 52 (0.56 ppm), Val 127 (0.53 ppm) and Gln 146 (0.70 ppm). However, 

it was not possible to detect a signal for each residue of Lbpro L200F. In particular, signals for the 

last 12 residues of the CTE were missing. 

 

 

Table 10 Shift differences (∆ δ) of Lbpro L200F compared to sLbpro
 

residue ∆ δ 
(ppm) 

residue ∆ δ 
(ppm) 

residue ∆ δ 
(ppm) 

residue ∆ δ
(ppm) 

residue ∆ δ
(ppm) 

residue ∆ δ 
(ppm) 

residue ∆ δ 
(ppm) 

Met 29 - Asn 54 0.08 Thr 79 0.14 Ile 104 0.22 Gly 129 0.00 Val 154 0.00 Val 179 0.10 
Glu 30 - Ala 55 0.03 Leu 80 0.23 Trp 105 0.15 Thr 130 0.22 Thr 155 0.04 Phe 180 0.10 
Leu 31 0.10 Ile 56 0.11 Glu 81 0.16 Asn 106 0.24 Asp 131 0.06 Ser 156 0.09 Val 181 0.14 
Thr 32 0.19 Leu 57 0.13 Ala 82 0.10 Ile 107 0.09 Met 132 0.10 Asn 157 0.07 Pro 182 - 
Leu 33 0.10 Gln 58 0.01 Ile 83 0.19 Lys 108 0.13 Cys 133 0.05 Gly 158 0.03 Tyr 183 0.13 
Tyr 34 0.04 Leu 59 0.05 Lys 84 0.12 His 109 0.04 Leu 134 0.15 Trp 159 0.00 Asp 184 0.15 
Asn 35 0.11 Phe 60 0.24 Gln 85 0.00 Leu 110 0.16 Ala 135 0.03 Tyr 160 0.05 Gln 185 0.23 
Gly 36 0.05 Arg 61 0.15 Leu 86 0.12 Leu 111 0.10 Asp 136 0.13 Ala 161 0.05 Glu 186 0.21 
Glu 37 0.05 Tyr 62 0.06 Glu 87 0.30 His 112 0.36 Phe 137 0.06 Ile 162 0.00 Pro 187 - 
Lys 38 0.01 Val 63 0.09 Asp 88 0.00 Thr 113 0.44 His 138 0.13 Asp 163 0.14 Leu 188 0.20 
Lys 39 0.03 Glu 64 0.05 Leu 89 0.01 Gly 114 0.13 Ala 139 0.05 Asp 164 0.12 Asn 189 0.01 
Thr 40 0.05 Glu 65 0.13 Thr 90 0.12 Ile 115 0.24 Gly 140 0.09 Glu 165 0.16 Gly 190 - 
Phe 41 0.10 Pro 66 - Gly 91 0.00 Gly 116 0.10 Ile 141 0.16 Asp 166 0.09 Glu 191 - 
Tyr 42 0.20 Phe 67 0.16 Leu 92 0.12 Thr 117 0.04 Phe 142 0.18 Phe 167 0.13 Trp 192 - 
Ser 43 0.02 Phe 68 0.12 Glu 93 0.14 Ala 118 0.07 Leu 143 - Tyr 168 0.00 Lys 193 - 
Arg 44 0.12 Asp 69 0.12 Leu 94 0.00 Ser 119 0.29 Lys 144 0.00 Pro 169 - Ala 194 - 
Pro 45 0.00 Trp 70 0.03 His 95 - Arg 120 0.10 Gly 145 - Trp 170 0.12 Lys 195 - 
Asn 46 0.16 Val 71 0.05 Glu 96 - Pro 121 0.00 Gln 146 0.70 Thr 171 0.10 Val 196 - 
Asn 47 0.17 Tyr 72 0.24 Gly 97 - Ser 122 0.10 Glu 147 - Pro 172 - Gln 197 - 
His 48 0.22 Ser 73 0.04 Gly 98 0.00 Glu 123 0.22 His 148 0.40 Asp 173 0.22 Arg 198 - 
Asp 49 0.60 Ser 74 0.05 Pro 99 - Val 124 0.03 Ala 149 - Pro 174 0.00 Lys 199 - 
Asn 50 - Pro 75 - Pro 100 - Cys 125 0.05 Val 150 - Ser 175 0.10 Phe 200 - 
Ala 51 - Glu 76 - Ala 101 0.26 Val 126 0.00 Phe 151 0.13 Asp 176 0.55 Lys 201 - 
Trp 52 0.56 Trp 77 - Leu 102 0.42 Val 127 0.53 Ala 152 0.12 Val 177 0.10   
Leu 53 - Leu 78 0.12 Val 103 0.20 Asp 128 0.00 Cys 153 0.06 Leu 178 0.10   

Residues for which no signal could be detected are indicated (-)
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The residues of Lbpro L200F that showed differences were mapped to the structure of sLbpro 

as shown in Figure 25. Interestingly, the signals that show the greatest shifts mostly map to 

residues that are located in the substrate binding cleft. 

There was no signal detected for the active site Ala 51 and also the signals of the flanking 

residues appeared to be either shifted or missing. Residues Asp 49 and Trp 52 of the active site 

display the greatest signal shifts within this region. In addition, the area around His 148 was found 

to show differences, including almost the entire loop connecting the sheets β5 and β6. Within this 

loop, the signal of Gln 146 appears to differ most. All residues of the helix α4 that are located at 

the surface appear to be changed by structural rearrangements. The β-sheet domain of Lbpro 

L200F was found to be mainly unaffected by structural changes. Nevertheless, prominent signal 

shifts could be detected for Val 127 and Asp 176 building flanking residues of the binding cleft. 

Although it was not possible to detect signals for the full-length CTE, it is likely that the 

observed signal shifts in the binding cleft are caused by a transient binding of the CTE to the active 

site of the same molecule. 

 

 

 

Figure 25 Differences in 15N signal shifts between Lbpro L200F and sLbpro. Signal shifts of Lbpro L200F detected in

the 1H-15N HSQC spectrum were mapped to the structure of the sLbpro monomer. The chemical shift changes are colour-

coded and range from low (0.00 ppm, blue) through medium (purple) to high (0.53-0.70 ppm, red). Residues for which

no signal could be detected are shown in white. The active site residues Cys 51 (mutated to Ala) (A51) and His 148

(H148) are shown. Created with PyMOL (DeLano, 2002) using the PDB ID code 1QOL. 
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Figure 26 shows an overlay of the 1H-15N HSQC spectra of Lbpro L143A L200F and Lbpro WT. 

The comparison of the spectra showed an overall similarity of Lbpro L143A L200F and Lbpro WT. The 

signals which show the greatest shifts (Ala 118, Trp 170 and Tyr 183) are pointed out with an 

arrow. 

Table 10 shows the differences of the signals detected in the 1H-15N HSQC spectrum for Lbpro 

L143A L200F compared to those of Lbpro WT. The greatest signal shifts were detected for the 

residues Ala 118 (2.83 ppm), Trp 170 (6.07 ppm) and Tyr 183 (4.25 ppm). 

 

 

Table 11 Shift differences (∆ δ) of Lbpro L200F L143A compared to Lbpro WT 

residue ∆ δ 
(ppm) 

residue ∆ δ 
(ppm) 

residue ∆ δ
(ppm) 

residue ∆ δ
(ppm) 

residue ∆ δ
(ppm) 

residue ∆ δ 
(ppm) 

residue ∆ δ
(ppm) 

Met 29 - Asn 54 - Thr 79 0.05 Ile 104 - Gly 129 - Val 154 0.21 Val 179 0.36
Glu 30 - Ala 55 - Leu 80 0.10 Trp 105 - Thr 130 - Thr 155 0.23 Phe 180 0.43 
Leu 31 0.20 Ile 56 0.04 Glu 81 0.20 Asn 106 - Asp 131 0.31 Ser 156 0.12 Val 181 - 
Thr 32 0.10 Leu 57 0.04 Ala 82 0.00 Ile 107 0.31 Met 132 - Asn 157 - Pro 182 - 
Leu 33 0.01 Gln 58 0.00 Ile 83 0.12 Lys 108 0.28 Cys 133 0.49 Gly 158 0.20 Tyr 183 4.25 
Tyr 34 - Leu 59 0.06 Lys 84 0.20 His 109 0.00 Leu 134 - Trp 159 0.13 Asp 184 0.00 
Asn 35 0.20 Phe 60 0.10 Gln 85 0.14 Leu 110 0.24 Ala 135 0.23 Tyr 160 0.23 Gln 185 0.11 
Gly 36 0.10 Arg 61 - Leu 86 0.20 Leu 111 0.16 Asp 136 0.18 Ala 161 0.31 Glu 186 - 
Glu 37 0.20 Tyr 62 0.20 Glu 87 0.14 His 112 0.68 Phe 137 0.32 Ile 162 - Pro 187 - 
Lys 38 0.20 Val 63 0.32 Asp 88 0.63 Thr 113 0.80 His 138 0.00 Asp 163 0.55 Leu 188 - 
Lys 39 0.10 Glu 64 0.11 Leu 89 0.12 Gly 114 0.10 Ala 139 0.32 Asp 164 0.00 Asn 189 - 
Thr 40 0.20 Glu 65 0.83 Thr 90 0.18 Ile 115 0.44 Gly 140 0.63 Glu 165 0.00 Gly 190 - 
Phe 41 0.21 Pro 66 - Gly 91 0.10 Gly 116 0.20 Ile 141 - Asp 166 0.23 Glu 191 - 
Tyr 42 0.23 Phe 67 - Leu 92 0.36 Thr 117 0.32 Phe 142 0.60 Phe 167 0.10 Trp 192 - 
Ser 43 0.13 Phe 68 0.31 Glu 93 0.20 Ala 118 2.83 Ala 143 0.25 Tyr 168 - Lys 193 - 
Arg 44 0.54 Asp 69 0.20 Leu 94 0.30 Ser 119 0.26 Lys 144 0.61 Pro 169 - Ala 194 - 
Pro 45 - Trp 70 0.21 His 95 0.21 Arg 120 0.25 Gly 145 1.03 Trp 170 6.07 Lys 195 1.20 
Asn 46 0.20 Val 71 0.00 Glu 96 0.26 Pro 121 - Gln 146 0.19 Thr 171 0.39 Val 196 - 
Asn 47 - Tyr 72 - Gly 97 0.43 Ser 122 0.15 Glu 147 - Pro 172 - Gln 197 - 
His 48 0.10 Ser 73 0.12 Gly 98 - Glu 123 - His 148 - Asp 173 - Arg 198 - 
Asp 49 0.22 Ser 74 0.20 Pro 99 - Val 124 0.12 Ala 149 - Pro 174 - Lys 199 - 
Asn 50 0.21 Pro 75 - Pro 100 - Cys 125 0.21 Val 150 - Ser 175 0.00 Phe 200 - 
Ala 51 - Glu 76 - Ala 101 - Val 126 - Phe 151 - Asp 176 0.14 Lys 201 - 
Trp 52 0.00 Trp 77 - Leu 102 0.17 Val 127 - Ala 152 - Val 177 0.26   
Leu 53 - Leu 78 0.11 Val 103 3.50 Asp 128 - Cys 153 0.30 Leu 178 0.00   
Residues for which no signal could be detected are indicated (-)
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The overall changes found in the Lbpro L143A L200F spectrum were mapped to the structure 

of Lbpro WT as shown in Figure 27. This figure points out that the majority of the signals appear to 

be shifted in the rescue mutant Lbpro L143A L200F. As the measurement of the T2 relaxation times 

clearly suggests that Lbpro L143A L200F appears as a dimer, these findings indicate that the dimer 

is destabilised relative to the wildtype. Therefore, the additional mutation L143A could not 

completely restore the dimeric structure displaying the stability of a wildtype dimer. 

The different oligomerisation states of Lbpro L143A L200F observed in size-exclusion 

chromatography and in NMR might be caused by the difference in protein concentration. It might 

be that the relatively low protein concentration of 50 nM used for size-exclusion chromatography 

allows the destabilised dimer to transiently dissociate into monomers, thus displaying an 

intermediate state of Lbpro L143A L200F. The relatively high concentration of 1 mM used for NMR 

analysis might shift the of Lbpro L143A L200F intermediate into the dimeric state; however, the 

dimer appears rather destabilised. 

 

 

 

 

 

 

 

 

Figure 27 Differences in 15N signal shifts between Lbpro L143A L200F and LbproWT. Signal shifts of Lbpro L143A

L200F detected in the 1H-15N HSQC spectrum were mapped to the structure of the Lbpro WT dimer. The chemical shift

changes are colour-coded and range from low (0.00 ppm, blue) through medium (purple) to high (1.03-6.07 ppm, red).

Residues for which no signal could be detected are shown in white. The active site residues Cys 51 (mutated to Ala)

(not visible) and His 148 (H148) are shown. Created with PyMOL (DeLano, 2002) using the PDB ID code 1QOL. 
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4.1.3.3.3 3D triple resonance experiments of Lbpro L200F 
 

As the 1H-15N HSQC spectrum of 15N labelled Lbpro L200F suggested that the intramolecular 

binding of the CTE to the active site might be measurable, the assumed structural assignment of 

Lbpro L200F should be confirmed by performing 3D triple resonance experiments (see chapter 

3.6.3.2). To this end, inactive Lbpro L200F was expressed in minimal medium containing 13C and 15N 

(see chapter 3.5.2.2). The purification of the protease was performed as described in Materials and 

Methods (see chapter 3.5.5). The protein sample was dialysed into NMR buffer and concentrated 

to about 0.5 mM (see chapter 3.6.2). A PAA gel showing the pure protein sample used for NMR 

analysis is displayed in Figure 28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As 0.5 mM lies below the optimal concentration for NMR analysis of 1 mM, the signals that 

could be detected were quite weak.  

However, it could be shown that the 1H-15N HSQC spectra of the double-labelled Lbpro L200F 

is identical to the one of the single-labelled sample. The measurement of the HN(CO)CA/HNCA 

spectrum was also possible despite low protein concentration and the assignment of the backbone-

Cα’s could be performed. Thereby, it could be shown that the signal assignment of the double 

labelled Lbpro L200F is identical to the assumed one that was based on the assignment of sLbpro. 

This confirms the finding observed for the single-labelled sample that there is a transient binding of 

the CTE to the active site of the same molecule. The only difference concerns residue Leu 188 for 

which two signals could be detected in the HN(CO)CA/HNCA spectrum. 

 

 

 

Figure 28 PAA gel showing the pure protease 13C 15N Lbpro L200F. The inactive form of the mutant protease was

expressed in minimal medium containing 13C and 15N. The protein was purified using the methods described in Materials

and Methods (see chapter 3.5.5). 2 µg of the pure protein sample are shown on a 17.5 % ‘Laemmli’ SDS PAGE. The

sample was further used for NMR experiments. Protein standards (kDa) are shown on the left. 
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Figure 29 demonstrates the assignment of residues Glu 186 to Asn 189 using Sparky 

software. For each of these residues a strip plot showing the HN(CO)CA and an HNCA spectrum is 

presented. In the HN(CO)CA spectrum the frequencies of an amide proton and nitrogen are 

correlated with those of the 13Cα of the preceding residue, whereas in the HNCA spectrum the 

frequencies of an amide proton and nitrogen are correlated with those of the 13Cα of the preceding 

residue as well as the same residue. Therefore, in the HN(CO)CA spectrum only the signal of the 
13Cα of the preceding residue is detectable, whereas in the HNCA spectrum two signals for the 13Cα 

of the preceding residue and the observed residue are detectable. By this way, the chemical shifts 

of the protein backbone residues were assigned. The findings, that there are two signals 

detectable for Leu 188, might suggest that there are two different chemical environments provided 

to this residue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Backbone assignment using Strip Plots in Sparky. The proton (x-axis) and the carbon dimension (y-axis)

of the amide region of the protein backbone is shown. The strip plots of an HN(CO)CA (cyan) and an HNCA spectrum

(blue) of residues Glu 186 to Asn 189 are shown. The HN(CO)CA/HNCA spectrum was measured as described in

Materials and Methods (see chapter 3.6.3). As Pro 187 does not contain an amide that can be detected, there is no strip

plot available. For residue Leu 188, two peaks could be detected that are connected to Asn 189. Frequencies of the

amide protons and the amide nitrogens that correlate are indicated by the red bar. 
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The two peaks for Leu 188 (named Leu 188a and Leu 188b) were also labelled in the 1H-15N 

HSQC spectrum of Lbpro L200F, as shown in Figure 30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, in the CBCA(CO)NH/HNCACB spectrum, the low protein concentration gave signals 

that were too weak to assign the side chain Cβ’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 1H-15N HSQC spectrum of Lbpro L200F showing two signals for Leu 188. The 1H-15N HSQC spectrum was

measured as described in Materials and Methods (see chapter 3.6.3). The two signals detected for Leu 188 are

designated as L188a and L188b. 
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4.2 Investigating the nuclear localisation of Lbpro 
 

De los Santos and colleagues recently presented experiments indicating that Lpro is found in 

the nucleus of infected cells. Assuming that Lbpro enters the nucleus by a receptor-mediated 

mechanism, we analysed the sequence of Labpro in order to find a nuclear localisation signal (see 

Figure 31). Typically, a NLS is composed of one or more short sequences of the positively charged 

amino acids lysine and arginine. The only region of Labpro that exhibits a higher frequency of basic 

amino acids was found within the last nine amino acids of the CTE, KAKVQRKLK. 

 

MNTTDCFIALVQAIREIKALFLSRTTGKMELTLYNGEKKTFYSRPNNHDN50 
CWLNAILQLFRYVEEPFFDWVYSSPENLTLEAIKQLEDLTGLELHEGGPP100 
ALVIWNIKHLLHTGIGTASRPSEVCMVDGTDMCLADFHAGIFLKGQEHAV150 
FACVTSNGWYAIDDEDFYPWTPDPSDVLVFVPYDQEPLNGEWKAKVQRKL200 
K201 

 

 

 

 

The first 28 amino acids do not contain a high rate of basic amino acids; therefore, we 

excluded that the N-terminus plays an important role in nucleocytoplasmic transport. Therefore, all 

experiments were performed using the Lbpro form, lacking the first 28 amino acids of the N-

terminus. 

In order to confirm that Lbpro really enters the nucleus and, if so, whether this is dependent 

on an NLS, an ecdysone-inducible mammalian expression system (see chapter 3.5.1.1) was used 

to express inactive Lbpro in HEK 293T cells. Three different pMZI-constructs were used as shown in 

Table 12. The constructs pMZI TAP and pMZI Lbpro-TAP were obtained from Carla Sousa. The TAP 

tag contains the sequence for Protein A which is able to bind immunoglobulins. Here, this feature 

is used to detect the TAP tag with an α-HRV14 antibody. 

Assuming that the NLS of Lbpro is located at the end of the CTE, a TAP tag directly fused to 

the C-terminal extension might shield the NLS, thus inhibiting the transport into the nucleus. 

Therefore, an additional pMZI Lbpro construct was created lacking the TAP tag. To remove the TAP 

tag, the vector pMZI Lbpro-TAP was cleaved with the enzymes BsiWI and EcoRI, followed by the 

ligation with the oligonucleotides described in chapter 3.3.14.2. After confirmation of the correct 

sequence of the mutagenised plasmids (see chapter 3.3.13) they were used cell culture 

experiments. 

 

 

 

Figure 31 Amino acid sequence of FMDV O1K Labpro. The positively charged amino acids Lys (K) and Arg (R) are

shown in red. A higher frequency of basic residues is found within the last nine amino acids of the CTE, reflecting a

putative nuclear localisation signal (highlighted in grey). 
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Table 12 pMZI constructs 

pMZI TAP pMZI vector containing the sequence of the TAP tag 

pMZI Lbpro-TAP * pMZI vector containing the sequence of Lbpro fused to a TAP tag 

pMZI Lbpro * pMZI vector containing the sequence of Lbpro 

* Lbpro sequence contains the mutation C51A which inhibits enzymatic activity 

 

 

HEK 293T cells were transiently transfected with each of the three different pMZI constructs 

together with the pVgRXR vector using Lipofectamine 2000. Protein expression was induced by 

adding 1 mM ponasterone A to the cell culture medium (see chapter 3.5.1.2). Cell extracts were 

separated into cytoplasmic and nucleic fractions using buffers of different salt and detergent 

concentrations (see chapter 3.5.3). The fractions were separated by 15 % SDS PAGE (see chapter 

3.5.8.1) and blotted on a PVDF membrane (see chapter 3.5.11). The indicated proteins were 

detected using specific primary antibodies (see Table 7) and secondary antibodies either coupled 

to alkaline phosphatase or horseradish peroxidase (see Table 8). For each construct, the cells were 

treated with three different conditions: cells that were non-transfected (Ø), cells that were 

transfected with the plasmids, without the induction of ponasterone A (0) and cells that were 

transfected and induced with 1 mM ponasterone A (1). 

To monitor the quality of fraction separation, proteins that are exclusively found in the 

cytoplasm or the nucleus were detected. To this end, α-tubulin was used as a marker for the 

cytoplasmic fraction, whereas lamin A/C was used for the nucleic fraction. As a control for the 

sensitivity of immunostaining, recombinant control proteins that had previously been expressed in 

bacteria were loaded (see chapter 3.5.2.1). For cell extracts containing TAP constructs, the protein 

HRV2 2Apro-TAP was chosen as it also contains a TAP tag for detection. For cell extracts containing 

Lbpro, Lbpro WT from gelfiltration analysis (see chapter 4.1.1.2) was used as control protein. 

Figure 32 shows the result of the transfection of HEK 293T cells with the vector pMZI TAP, 

only expressing the TAP tag as a control protein. The TAP tag was detected in the cytoplasmic 

fraction of transfected and induced cells (cytoplasm 1), but not in the control cells (cytoplasm Ø 

and 0). In addition, there was no TAP signal detected in the nucleic fractions (nucleus Ø, 0 and 1). 

The control proteins α-tubulin and lamin A/C indicate a sufficient separation of cytoplasmic and 

nucleic fractions. The detection of the control protein HRV2 2Apro indicates proper 

immunodetection. It is important to mention that the protein concentration of the cytoplasmic and 

the nucleic fraction is substantially different as both fractions were brought to the same volume. As 

the signal detected in the cytoplasmic fraction is quite weak, it might be the case that a signal for 

the TAP tag in the nucleic fraction is not detectable because the protein concentration is too low. 
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Figure 33 shows the result of the transfection of HEK 293T cells with the vectors pMZI Lbpro 

(A) and pMZI Lbpro-TAP (B). Figure 33A shows that Lbpro could be detected in the cytoplasmic 

fraction of transfected and induced cells (cytoplasm 1), but not in the control cells (cytoplasm Ø 

and 0). Indeed, also a faint signal could be detected in the nucleic fraction (nucleus 1). The quality 

of immunostaining was confirmed by the detection of the control protein Lbpro WT. However, the 

distribution of the control proteins α-tubulin and lamin A/C shows that the separation of the 

fractions was of lower quality, implying the possibility that there is contamination of the nucleic 

fraction with cytoplasmic material. 

 

 

 

 

Figure 32 Immunoblot of HEK 293T fractions showing the expression of the TAP tag. HEK 293T cells were

transfected and protein expression was induced for 36 to 48 hours. Cell extracts were separated into cytoplasmic and

nucleic fractions. Proteins were separated on 15 % ‘Laemmli’ PAA gels and blotted on PVDF membranes. The TAP tag

was detected using a polyclonal rabbit α-HRV14 primary antibody (1:400) and an α-rabbit alkaline phosphatase

conjugated secondary antibody (1:5000). The primary antibody targets the protein A sequence which is part of the TAP

tag. Tubulin was detected via a monoclonal mouse α-α-tubulin primary antibody (1:30000) and lamin A/C was

detectable via a monoclonal mouse α-lamin A/C primary antibody (1:30000). For both, an α-mouse horseradish

peroxidase coupled secondary antibody (1:20000) was used. Protein standards (kDa) are shown in lane M. Lane C

shows the positive control for the immunoblot HRV2 2Apro-TAP (0.1 μg). 
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Figure 33B shows the localisation of Lbpro-TAP in HEK 293T cells. A signal for TAP-fused Lbpro 

was detected in the cytoplasm of transfected and induced cells (cytoplasm 1). A faint signal in the 

cytoplasmic fraction of transfected and non-induced cells resembles basal expression from the 

plasmid (cytoplasm 0). Interestingly, a faint signal for Lbpro-TAP was also detectable in the nucleic 

fraction of transfected and induced cells (nucleus 1). Proper immunostaining was confirmed by the 

detection of the control protein HRV2 2Apro-TAP. The distribution of the control proteins α-tubulin 

and lamin A/C shows that the separation of the cytoplasmic and nucleic fractions was adequate. 

These findings show that Lbpro is also detected in the nucleic fraction of cell extracts. 

However, as the amount of Lbpro is not significant, this suggests that the signal evolves from a 

contamination with cytoplasmic material and is not related with receptor-mediated import of Lbpro 

into the nucleus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 Immunoblot of HEK 293T fractions showing the expression of Lbpro (A) and Lbpro-TAP (B). HEK 293T cells

were transfected and protein expression was induced for 36 to 48 hours. Cell extracts were separated into cytoplasmic

and nucleic fractions. Proteins were separated on 15 % ‘Laemmli’ PAA gels and blotted on PVDF membranes. Lbpro was

detected using a rabbit α-Lpro antiserum (1:2000) and an α-rabbit alkaline phosphatase conjugated secondary antibody

(1:5000). The TAP tag of Lbpro-TAP was detected using a polyclonal rabbit α-HRV14 primary antibody (1:400) and an α-

rabbit alkaline phosphatase conjugated secondary antibody (1:5000). The primary antibody targets the protein A

sequence which is part of the TAP tag. Tubulin was detected via a monoclonal mouse α-tubulin primary antibody

(1:30000) and lamin A/C was detected via a monoclonal mouse α-lamin A/C primary antibody (1:30000). For both, an

α-mouse horseradish peroxidase coupled secondary antibody was used (1:20000). Protein standards (kDa) are shown

in lane M. Lane C shows the positive control for the immunoblot; Lbpro WT (0.1 mg) was used for Lbpro containing

fractions and for HRV2 2Apro-TAP (0.1 mg) was used for Lbpro-TAP containing fractions. 
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5  Discuss ion  
 

5.1 Investigating intramolecular self-processing of Lbpro 
 

The self-cleavage reaction of Lbpro is a crucial step during polyprotein processing. In this 

study, we consider that the self-processing reaction represents a target point to inhibit the 

formation of viable virus particles. A similar effect has been shown for the 2A protease of poliovirus 

(Crowder & Kirkegaard, 2005). The inhibition of the enzymatic activity of the viral protease 2A 

keeps it connected to VP1. Such, proteins can then dominantly interfere with the growth of viruses 

that are not defective in 2A protease activity. 

Based on the findings of Crowder and Kirkegaard, we considered that the inhibition of Lbpro 

self-processing would keep it connected to the capsid protein VP4; this would considerably 

interfere with proper capsid formation. It was previously shown that intramolecular self-processing 

is preferred over the intermolecular reaction (Cao et al., 1995). Thus, these observations make the 

cis-cleavage mechanism interesting. 

However, a closer investigation of cis self-processing was yet not possible as the Leader 

protease has been shown to form stable dimers in solution (Cencic et al., 2007) making structural 

analysis difficult. In this study, we attempted to prevent dimer formation of Lbpro by the 

introduction of site-directed mutations, whilst maintaining enzymatic activity. In the best case, the 

CTE of Lbpro should remain devoid of mutations, as otherwise the interpretation of intramolecular 

self-processing would be difficult. 

 

5.1.1 Interface mutants 
 

Our first attempt to dissociate the Lbpro dimer examined the residues Trp 105 and Thr 117, 

found in the interface region, which were thought to contribute to the stabilisation of dimeric 

molecules (Cencic et al., 2007). 

To this end, residues Trp 105 and Thr 117 were mutated to Ala either as single mutations or 

combined as a double mutation in order to remove putative stabilising interactions between 

dimeric molecules. The substitution of Trp 105 with the large, positively charged amino acid Arg 

was proposed to disrupt the dimer due to repulsion of the dimeric Lbpro molecules. 

All Lbpro interface mutants displayed self-processing activities similar or slightly delayed to 

those of the wildtype. However, the analysis of the oligomerisation state revealed that all of the 

mutants show elution volumes similar to the wildtype, indicating the presence of a dimer. These 

findings show that the mutation of Trp 105 and Thr 117 to Ala or Arg was insufficient to disturb 

dimer formation. 
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The NMR structure was used to calculate the shortest distance from Trp 105 and Thr 117 of 

one Lbpro molecule to the closest residues of the opposite molecule, as presented in Figure 34. It 

had been shown that one half of the dimer is rotated about 25-30° in the crystal structure due to 

crystallisation conditions (Cencic et al., 2007); thus, the NMR data was used for calculations as the 

dimers are not rotated and the structure more closely reflects the native conditions. Interestingly, 

Arg 120’ was found to be in close proximity to the opposite Trp 105 and Thr 117. 

Figure 34A shows the distances between Trp 105 and residues Trp 105’, Thr 117’ and Arg 

120’ of the neighbouring molecule. Interestingly, Arg 120’ is located closest to Trp 105, lying only 

2.68 Å away, allowing the formation of Van der Waals interactions. The opposing Trp 105’ lies 3.96 

Å away, also allowing Van der Waals interactions to occur. The Thr 117 residues are located 6.07 Å 

apart, being out of range for any relevant interaction. 

Figure 34B displays the shortest distances of Thr 117 to the residues of the neighbouring 

molecule constituted by Trp 105’, Thr 117’ and Arg 120’. These residues are the same as those 

found at close range to Trp 105. Again, Arg 120’ is located closest to Thr 117, displaying a distance 

of 5.06 Å. However, as Trp 105’ and Thr 117’ are positioned more than 7 Å apart from Thr 117, 

none of the three residues is close enough to interact and contribute to the stabilisation of the 

dimer. 

In respect of the structural data analysis, the substitution of Trp 105 with Ala would 

probably abrogate Van der Waals interactions. As Ala is a very small residue the distance to Arg 

120’ is increased, thus being out of range for any attractive interactions. As Thr 117 does not 

contribute to interactions between dimeric Lbpro molecules, the substitution to Ala would not have 

any effect. 

Due to the low number of interactions formed between residues of the interface, these 

mutations do not affect the stability of the dimer. This is reflected in the obtained results, namely 

no effect on self-cleavage nor on dimer formation. 

In the mutant Lbpro W105R, two Arg residues of each molecule from positon 105 and 120 

meet in the dimer interface and are supposed to induce repulsion due to the same electric charge. 

From structure analysis we would expect a distance of 2 – 4 Å between the opposite Arg residues. 

However, the analysis of Lbpro W105R resembled full enzymatic activity and unchanged dimer 

formation. 

As residues Trp 105 and Thr 117 do not essentially contribute to the stability of the dimer, 

we assumed that dimer stability might be mostly constituted by interactions between the CTE and 

the active site, as was investigated further (see chapter 5.1.2). 
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The assumption that Trp 105 and Thr 117 are important for dimer stability arose from NMR 

studies performed by Cencic and colleagues (Cencic et al., 2007) (see chapter 1.5.1). However, 

our studies suggest that Trp 105 and Thr 117 do not contribute to interactions in the dimer 

interface. The reason for the signal shifts of Trp 105 and Thr 117 observed in NMR studies might 

have been caused by the competition of the model peptides with the CTE for the binding to the 

active site causing a reorientation of the interface residues. However, this does not explain why 

Arg 120’ was not found to be shifted in these studies, though it displays a central position in the 

dimer interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.2 CTE mutants 
 

The described investigations of the Lbpro interface mutants suggested that the dimer is 

stabilised by the interactions between CTE and active site. Therefore, we considered investigating 

the mutant Lbpro L200F, which was previously shown to be impaired in self-processing (Mayer et 

al., 2008). 

Our analysis of the enzymatic activity of Lbpro L200F confirmed the findings of Mayer and 

colleagues that the substitution of Leu 200 to Phe impairs self-processing. Furthermore, we could 

show that eIF4GI cleavage was not affected by the substitution of Leu 200 with Phe. It was 

previously shown by Glaser and colleagues that Lbpro is fully enzymatically active when it is still 

connected to the polyprotein (Glaser et al., 2001). Therefore, self-processing is not a prerequisite 

for Lbpro to cleave eIF4GI, when inhibited by this mutation. 

Although the self-processing activity of Lbpro L200F is impaired, the analysis of this mutant 

gave interesting insights in respect to intramolecular self-processing. 

Figure 34 Distances between opposing residues in the dimer interface. The distances of the residues Trp 105 (A)

and Thr 117 (B) of one molecule (black) to the closest residues of the second molecule (grey, surface) of the dimer are

shown. Both residues are located in proximity to residues Trp 105’ (red), Thr 117’ (red) and Arg 120’ (green) of the

adjacent molecule. The closest distance between carbon or nitrogen atoms of the side chains were used for calculation.

Distances are labelled (Å) and shown as dashed lines. Created with PyMOL (DeLano, 2002) using the PDB ID code

2JQF. 
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The oligomerisation state of Lbpro L200F was analysed by size-exclusion chromatography and 

NMR analysis measuring the T2 transverse relaxation times. Both investigations showed that Lbpro 

L200F appears as a monomer showing that the single mutation L200F was sufficient to disrupt the 

dimer. This suggests that the dimer is exclusively stabilised by the interactions between CTE and 

active site, which corresponds with the findings that residues located at the interface of dimeric 

Lbpro molecules do not contribute to the stabilisation of the dimer. 

The analysis of the protein structure by measuring the 1H-15N HSQC spectrum of Lbpro L200F 

revealed that its structure is very similar to that of sLbpro. Figure 35A shows the structure of the 

monomeric sLbpro, onto which all signal shifts of Lbpro L200F were mapped in a colour-coded 

manner. Interestingly, the majority of the signals that were either shifted or missing were 

observed for residues of the substrate binding cleft. Despite 13C labelling of Lbpro L200F it was not 

possible to assign the full length CTE as there were no signals detectable for the last 12 C-terminal 

residues. 

These results were compared to the model for intramolecular self-processing suggested by 

Guarne and colleagues (Guarne et al., 1998) (see Figure 35B and C). In the model of Guarne and 

colleagues, the globular domain and the C-terminal residues Asp 184 to Asn 189 were taken from 

one molecule of the crystal structure (PDB ID code 1QOL). Lys 195 to Lys 201 illustrate the last 

seven residues of the CTE of a neighbouring molecule in the crystal (see Figure 35B). The stretch 

of Gly 190 to Ala 194 connecting Asn 189 and Lys 195 was modelled (see Figure 35C). 

A comparison of the structural changes found in Lbpro L200F with the model shows that 

differences in the signals were found in the area where the CTE protrudes from the globular 

domain as well as in the active site, reflecting a similar binding of the CTE to the active site as 

present in the dimer. 

However, for the stretch of C-terminal residues Gly 190 to Ala 194 only a few effects on 

residues of the binding cleft could be detected that would indicate a tight binding of the CTE. This 

area of the molecule does not exhibit specific binding pockets for residues of the CTE. Therefore, 

there might be no close contact between the CTE and residues of the binding cleft resulting in 

signal changes. Nevertheless, signals for Trp 105’ and Val 127’ were found to be shifted which 

might result from interactions with certain residues of the stretch Gly 190 to Ala 194. Trp 105’ 

shows a slight shift of 0.15 ppm that might be caused by the stacking interaction with the C-

terminal residue Trp 192, as has been suggested in the model of Guarne and colleagues. 
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Residue Val 127’ was also found to be shifted to an extent of 0.53 ppm. This shift might be 

caused by interactions with Lys 195 at position P7. However, the closest distance found in the NMR 

structure of the dimer between Val 127’ and Lys 195 was 5.3 Å (see Figure 36). Therefore, 

interactions in form of Van der Waals interactions are not likely to occur. This might suggest that 

Lys 195 is oriented slightly differently in the self-processing reaction, enabling Lys 195 to interact 

with Val 127’. 

 

 

 

 

Figure 35 Model for intramolecular self-processing of Lbpro. (A) Signal shifts of Lbpro L200F detected in the 2D 1H-
15N spectrum are mapped on the structure of sLbpro. The globular domain is shown as the surface, whereas the CTE is

shown as a cartoon. The chemical shift changes are colour-coded and range from low (0.00 ppm, blue) through

medium (purple) to high (0.53-0.70 ppm, red). Residues for which no signal could be detected are shown in white.

Residues Trp 105 (W105) and Val 127 (V127) are labelled. Created with PyMOL (DeLano, 2002) using the PDB ID code

1QOL. (B) Model for self-processing of Lbpro in cis. The electrostatic potential surface of the globular domain of Lbpro is

shown. The CTE, shown as sticks, is modelled into the binding cleft. Adapted from Guarne et al., 1998. 
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The fact that there are no signals detectable that could be assigned to the last 12 residues 

of the CTE might be caused by the rate of transient interaction between the CTE and the active 

site. If this interaction occurs in the time regime of a few hundred ‘microseconds’, the resulting 

signal suffers a broadening which renders it undetectable. This would explain why there are no C-

terminal signals detectable. If this interaction occurs more slowly, for example in the ‘milliseconds’ 

range, there would be two signals detectable for each residue of the C-terminus for the free- and 

the bound-state of the CTE. If the interaction is more rapid, for example in the lower 

‘microseconds’ range, only one averaged signal would be detectable. 

In this respect, Pro 187 seems to play a crucial role, as C-terminal signals beyond this 

residue could hardly ever be detected. Further support concerning the importance of Pro 187 is 

given by the sequence alignment of different FMDV subtypes representing the seven serotypes, as 

shown in Figure 37. Residues Ile 141 to Lys 201 of the following FMDV subtypes are presented: 

Asia 1 subtype IND 97-03 (DQ989323), SAT 2 subtype 3kenya_11/60 (NC_003992), SAT 3 subtype 

2sa57/59 (NC_011452), SAT 1 subtype 1bech (NC_011451), A subtype A10 (NC_011450), O 

subtype O1k (NC_004004) and C subtype C-S8 (AF274010). Interestingly, Pro 187 appears as the 

final conserved residue of the CTE. All preceding residues are conserved whereas the subsequent 

ones differ. 

The two signals detectable for the C-terminal residue Leu 188 of the double labelled Lbpro 

L200F might also be related to Pro 187. As the peptide bond of Pro can either exist in a cis or trans 

conformation, two different chemical environments could be provided for the adjacent residue. 

This might be the reason why there are two signals detectable for Leu 188. 

 

 

 

 

Figure 36 Distance between Val 127’ and Lys 195 of the Lbpro dimer. The CTE of one Lbpro molecule (black) binds to

the active site of the neighbouring molecule (grey, surface). The distance of 5.3 Å between Val 127’ (V127’) (pink) and

Lys 195 (K195) (red) is labelled and indicated as dashed lines. Created with PyMOL (DeLano, 2002) using the PDB ID

code 2JQF. 
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The additional mutation L143A restores the self-processing activity of Lbpro L143A L200F; 

therefore, we assumed that also the dimeric state would be reconstituted. Surprisingly, data from 

size-exclusion chromatography suggest that Lbpro L143A L200F appears in an intermediate state, 

that is more towards a monomeric than to a dimeric state. In contrast to these findings, the T2 

transverse relaxation times of Lbpro L143A L200F showed an overall similarity to those of Lbpro WT, 

suggesting the presence of a dimer. However, it is important to mention that the concentration 

used for NMR analysis was about 1 mM, being 20 times higher than the concentration used for 

size-exclusion chromatography. The comparatively high protein concentration used in NMR analysis 

might shift the oligomerisation state of Lbpro L143A L200F towards the dimeric state. Therefore, 

these findings suggest that Lbpro L143A L200F appears as a destabilised dimer at high 

concentrations used in NMR analysis, which separates into monomers at lower concentrations used 

for size-exclusion chromatography. 

The comparison of the 1H-15N spectra of Lbpro L143A L200F and Lbpro WT revealed massive 

structural changes in the Lbpro mutant, reflected by signals that are either shifted or missing. Only 

a few regions of Lbpro L143A L200F show signals corresponding to the Lbpro WT.  

The effects observed in the Lbpro L143A L200F mutant might be related to the L143A 

mutation. It was shown by Santos and colleagues (Santos et al., 2009) that Leu 143 is not only 

involved in the S2 subsite, but also in the S4 subsite and additionally makes Van der Waals 

interactions with Lys 195 at position P7 (shown in Figure 38). Therefore, Leu 143 is an important 

residue for the stabilisation of the dimeric structure. As Leu 143 is substituted with Ala in the 

mutant Lbpro L200F L143A, this would provide a further explanation why the dimeric state is not 

stable. 

 

 

 

 

Figure 37 Sequence alignment of residues Ile 141 to Lys 201 of the Leader protease of different FMDV subtypes.

The sequences of the Leader protease of the FMDV serotype Asia 1 strain IND 97-03 (DQ989323), serotype SAT 2

strain 3kenya_11/60 (NC_003992), serotype SAT 3 strain 2sa57/59 (NC_011452), serotype SAT 1 strain 1bech

(NC_011451), serotype A strain A10 (NC_011450), serotype O strain O1k (NC_004004) and serotype C strain C-S8

(AF274010) are aligned. The conserved Pro at position 187 (shown in red) appears as the last C-terminal residue that is

conserved. 
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Figure 38 Contributions of Leu 143’ to the interactions of the active site with the CTE. The Lbpro dimer is formed by

the binding of the CTE to the active site of the neighbouring molecule. The last seven residues of the CTE of one chain

(black) are shown as sticks making interactions with the active site of the neighbouring molecule (grey, surface)

(Santos et al., 2009). Leu 143’ (L143’) (red) contributes to several interactions with residues of the CTE (green). It

contributes to the S2 and S4 subsites, thereby binding Leu 200 (L200) (P2) and Arg 198 (R198) (P4). Furthermore, it

forms Van der Waals interactions with Lys 195 (K195) (P7). Created with PyMOL (DeLano, 2002) using the PDB ID code

1QOL. 
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5.2 Investigating the nuclear localisation of Lbpro 
 

The data presented by de los Santos and colleagues showed that in western blot analysis as 

well as in immunofluorescence studies Lpro localises to the nucleus of cells infected with wildtype 

virus (de Los Santos et al., 2007). In this respect, the nuclear import could occur either by 

diffusion or NLS-mediated; however, we wanted to examine this further. 

To this end, Lbpro was expressed in HEK 293T cells either in a free form or as a fusion 

protein C-terminally coupled to the TAP tag. Both proteases were found in the cytoplasmic fraction; 

interestingly, a faint signal for both proteases could also be detected in the nucleic fraction. These 

findings could suggest that Lbpro is able to enter the nucleus. However, it seems more likely that 

the signals detected in the nucleic fraction result from the contamination with cytoplasmic material. 

This statement is based on the quality of fraction separation as analysed by the detection of α-

tubulin that should be found in the cytoplasmic fraction and lamin A/C that should be found in the 

nucleic fraction. However, as the separation was not 100 %, it is likely that the separation was not 

perfect, resulting in the contamination of the nucleic fraction with cytoplasmic material containing 

Lbpro or Lbpro-TAP. 

A comparison with the data shown by de los Santos and colleagues supports the argument 

of cytoplasmic contamination. They similarly showed in western blot analysis that Lpro is found in 

the cytoplasmic, as well as to a lower extent in the nucleic fraction of whole virus (A12-IC) infected 

cells. The fact that a small portion of the viral capsid protein VP1, which is not thought to enter the 

nucleus, is found in the nucleic fraction also suggests a contamination with cytoplasmic material. 

The TAP tag was expressed in HEK 293T cells as a control protein. The data shown here 

indicate that the TAP tag could be detected in the cytoplasmic fraction, but not in the nucleic 

fraction. However, as the signal in the cytoplasmic fraction is quite low, it is more likely that any 

signal in the nucleic fraction is too low for detection. Therefore, the investigation of the cellular 

localisation of the TAP tag did not give further information in regard to nucleocytoplasmic 

transport. 

Thus, in western blot analysis we could not confirm the findings of de los Santos and 

colleagues that Lpro localises to the nucleus. Therefore, a closer investigation of the 

nucleocytoplasmic transport of Lbpro was not possible. The reason for the differing results 

concerning the nuclear localisation of the Leader protease might be caused by the differences 

between the approach presented here and the one presented by de los Santos and colleagues. 

The most obvious differences between these two approaches are displayed by the fact that 

in this study Lbpro is expressed as single viral protein which is enzymatically inactive, whereas in 

the de los Santos approach the Leader protease is expressed in the course of a whole virus 

infection, being fully enzymatically active. In this regard, the enzymatic activity might be essential 

for Lbpro to translocate to the nucleus. Although there are only eIF4GI and eIF4GII known that are 

cleaved by Lbpro, there might be further cellular substrates which enable Lbpro to enter the nucleus. 
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Another aspect is illustrated by the fact that the Leader protease of whole virus infected cells 

may benefit from effects caused by the other viral proteins. As the FMDV genome encodes 3Cpro as 

a second protease, its enzymatic activity might also play a role for the nuclear localisation of Lbpro. 

It has been shown for poliovirus that 2Apro is involved in the disruption of nucleocytoplasmic 

trafficking by cleaving two components, Nup 153 and Nup 62, of the nuclear pore complex (NPC) 

(Gustin & Sarnow, 2001). This permeabilisation of the nuclear envelope allows cytoplasmic proteins 

of 125 kDa to pass the nuclear pore and localise to the nucleus (Belov et al., 2004). However, no 

similar mechanism has been determined during FMDV infection. 

Another possibility how Lbpro enters the nucleus might be a hitch-hiking mechanism. By the 

binding to a protein that contains a NLS, it could enter the nucleus without containing a NLS itself. 

It was shown for simian virus 40, which represents a large nucleoprotein complex, that only one 

nuclear localisation signal displayed by the capsid protein VP3 is sufficient for receptor-mediated 

transport of the whole complex through the nuclear pore (Nakanishi et al., 2002). However, no 

further proteins, beside two homologues of eIF4G, have yet been shown to interact with Lbpro. 

In summary, we could not confirm the nuclear localisation of Lbpro; therefore, it remains 

unclear whether Lbpro enters the nucleus and if yes, by which mechanism. 
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6  Summary  
 

Foot-and-mouth disease virus (FMDV), being a member of the picornavirus family, is a small, 

non-enveloped virus with a single-stranded RNA genome of positive polarity. The RNA genome is 

directly translated into a long polyprotein which is subsequently processed by viral proteases. The 

first protein encoded on this polyprotein is the Leader protease that can exist in two different 

forms, Labpro and Lbpro, dependent on the translation initiation at two different start codons. 

Lbpro is a papain-like cysteine protease that frees itself from the polyprotein by cleavage 

between its own C-terminus and the N-terminus of the subsequent protein VP4. Lbpro is a very 

specific protease cleaving only two cellular substrates, the two homologues of the eukaryotic 

translation initiation factor 4G (eIF4G), eIF4GI and eIF4GII. eIF4G plays an important role in 

eukaryotic translation initiation as it acts as a scaffold protein that brinds together the capped 

mRNA and the ribosome. The term ‚host cell shut off’ describes the process during FMDV infection, 

at which eIF4G is cleaved by the Leader protease resulting in the inhibition of cellular cap-

dependent translation initiation. However, the translation of the viral RNA remains unaffected as 

translation is initiated via an IRES (internal ribosome entry site). 

The overall goal of this study is to inhibit the Lbpro self-processing step. Consequently, Lbpro 

would remain connected with the capsid protein VP4. As a result, VP4 would not be able to fit 

correctly into the viral capsid structure, thus inhibiting the formation of viable virus particles. Lbpro 

self-processing can occur either inter- or intramolecularly; however, the cis cleavage reaction was 

shown to be preferred. Therefore, intramolecular self-processing of Lbpro is an important target for 

the development of anti-virals. 

Due to these facts, in this work we focused on the investigation of the intramolecular self-

processing reaction of Lbpro at the molecular level. It was observed that Lbpro forms stable dimers 

in solution by inserting the C-terminal extension (CTE) of one molecule into the active site of the 

neighbouring molecule. Therefore, we tried to separate the dimer by site-directed mutagenesis in 

order to be able to investigate self-processing in cis. Mutations were introduced at two regions of 

the protease: the interface region between dimeric Lbpro molecules and the CTE which binds to the 

active site of the neighbouring molecule. 

As Trp 105 and Thr 117 were thought to contribute to the intermolecular interactions in the 

interface region between dimeric Lbpro molecules, these residues were substituted either by Ala to 

remove potential attractive interactions or by Arg to provoke repulsion. However, the mutations 

W105A, T117A, W105A T117A and W105R in the interface region neither affected the enzymatic 

activity of Lbpro nor could they inhibit dimer formation. Therefore, residues Trp 105 and Thr 117 do 

not appear to make crucial contributions to the stability of the dimer. 

Interestingly, the single mutation of the C-terminal residue Leu 200 to Phe was sufficient to 

disrupt the dimer. Although monomeric Lbpro L200F appeared delayed in self-processing, a 

transient binding of the CTE to the active site could be determined. Therefore, these findings 
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provide interesting insights concerning intramolecular self-processing. The data indicate that the 

last seven amino acids of the CTE are bound to the active site in a similar way as present in the 

dimer. However, it was not possible to detect signals for the last 12 residues of the CTE. This is 

probably caused by the rate of transient interaction between the CTE and the active site, which is 

difficult to detect by NMR. 

The additional mutation L143A restores the self-processing activity as well as the dimeric 

structure of Lbpro L200F, although the Lbpro L143A L200F dimer appears rather destabilised. 

Further investigations concerned the nuclear localisation of Lbpro. It was considered that Lbpro 

enters the nucleus via receptor-mediated transport. Therefore, enzymatically inactive Lbpro was 

expressed in human cells. However, it was not possible to detect Lbpro in the nucleus in appreciable 

amounts. Due to these findings, nuclear localisation and receptor-mediated nuclear transport of 

Lbpro into the nucleus could not be confirmed. 
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7  Zusammenfassung  
 

Das Maul-und Klauenseuchevirus (MKSV) stellt ein Mitglied der Picornavirus-Familie dar und 

ist ein kleines, nicht-umhülltes Virus mit einem einzelsträngigen RNA-Genom mit positiver Polarität. 

Das RNA-Genom wird direkt in ein Polyprotein translatiert, welches anschließend von viralen 

Proteasen prozessiert wird. 

Das erste Protein dieses Polyproteins ist die Leader-Protease, die in Abhängigkeit von der 

Translationsinitiation an zwei verschiedenen Startkodons in den beiden Formen Labpro und Lbpro 

vorkommen kann. 

Lbpro ist eine papain-ähnliche Cystein-Protease, die sich durch einen Schnitt zwischen dem 

eigenen C-Terminus und dem N-Terminus des nachfolgenden Proteins VP4 vom Polyprotein 

abspaltet. Lbpro ist eine sehr spezifische Protease, die nur zwei zelluläre Substrate schneidet, 

nämlich die beiden Homologe des eukaryotischen Initiationsfaktors 4G (eIF4G), eIF4GI and 

eIF4GII. eIF4G spielt eine wichtige Rolle bei der eukaryotischen Translationinitiation, da es als 

Gerüstprotein dient und dadurch die „gecappte“ mRNA und das Ribosom zusammenführt. Der 

Begriff „Host cell shut off“ beschreibt den Vorgang während einer MKSV Infektion, bei dem eIF4G 

von der Leader Protease geschnitten wird und dadurch die zelluläre cap-abhängige 

Translationsinitiation verhindert wird. Dabei bleibt die Translation der viralen RNA allerdings 

unbeeinträchtigt, da die Translation durch eine IRES (internal ribosome entry site) eingeleitet wird. 

Das letztendliche Ziel dieser Studie ist die Verhinderung der Selbst-Prozessierung von Lbpro. 

Infolgedessen würde Lbpro mit dem viralen Capsidprotein VP4 verbunden bleiben. Daher wäre VP4 

nicht mehr in der Lage sich korrekt in die virale Capsidstruktur einzugliedern, weshalb die Bildung 

von lebensfähigen Viruspartikeln verhindert wäre. Die Selbstprozessierung von Lbpro kann entweder 

inter- oder intramolekular ablaufen; allerdings wurde gezeigt, dass die cis-Spaltungsreaktion 

bevorzugt wird. Aus diesem Grund stellt die intramolekulare Selbst-Prozessierung von Lbpro einen 

wichtigen Angriffspunkt für die Entwickung von antiviralen Medikamenten dar. 

Aufgrund dieser Fakten haben wir uns in dieser Arbeit darauf konzentriert die 

intramolekulare Selbst-Prozessierung von Lbpro auf molekularer Ebene zu untersuchen. Es wurde 

beobachtet, dass Lbpro durch Insertion des C-terminalen Fortsatzes in das aktive Zentrum des 

benachbarten Moleküls stabile Dimere in Lösung bildet. Daher haben wir versucht das Dimer durch 

zielgerichtete Mutagenese zu trennen um in der Lage zu sein die Selbst-Prozessierung in cis 

untersuchen zu können. Zwei Regionen der Protease wurden mutiert: die Grenzflächen-Region 

zwischen den dimeren Lbpro Molekülen und der CTE, der an das aktive Zentrum des benachbarten 

Moleküls bindet. 

Da angenommen wurde, dass Trp 105 und Thr 117 zu den intermolekularen Interaktionen in 

der Grenzflächen-Region zwischen dimeren Lbpro Molekülen beitragen, wurden diese Aminosäuren 

entweder durch Ala ersetzt um potenzielle anziehende Interaktionen zu entfernen oder durch Arg 

um eine Abstoßung hervorzurufen. Die Mutationen W105A, T117A, W105A T117A und W105R in 
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der Grenzflächen-Region konnten weder die enzymatische Aktivität von Lbpro beeinflussen, noch 

konnten sie die Bildung von Dimeren verhindern. Aufgrund dieser Tatsachen, scheinen die 

Aminosäuren Trp 105 und Thr 117 keinen maßgeblichen Beitrag zur Dimer-Stabilität zu leisten. 

Interessanterweise war eine einzelne Mutation der C-terminalen Aminosäure Leu 200 zu Phe 

ausreichend um das Dimer zu trennen. Obwohl das monomere Lbpro L200F eine verzögerte Selbst-

Prozessierung aufweist, konnte eine transiente Binding des CTE an das aktive Zentrum festgestellt 

werden. Daher liefern diese Untersuchungen interessante Einblicke im Bezug auf die 

intramolekulare Selbst-Prozessierung. Die Daten zeigen, dass die letzten sieben Aminosäuren des 

CTE in einer ähnlichen Weise an das aktive Zentrum gebunden sind wie es im Dimer der Fall ist. 

Allerdings, war es nicht möglich Signale für die letzten 12 Aminosäuren des CTE zu detektieren. 

Dies wird wahrscheinlich durch die Frequenz der transienten Interaktion zwischen CTE und aktivem 

Zentrum bedingt, die mit Kernresonanzspektrometrie schwierig zu detektieren ist. 

Die zusätzliche Mutation L143A stellt die Aktivität in der Selbst-Prozessierung wie auch die 

dimere Struktur von Lbpro L200F wieder her, obwohl das Lbpro L143A L200F Dimer destabilisiert 

erscheint. 

Weitere Untersuchungen betrafen die nukleäre Lokalisation von Lbpro. Es wurde 

angenommen, dass Lbpro durch rezeptor-vermittelten Transport in den Zellkern eindringt. Aus 

diesem Grund wurde enzymatisch inaktives Lbpro in humanen Zellen exprimiert. Allerdings war es 

nicht möglich Lbpro in nennenswerten Mengen im Zellkern nachzuweisen. Aufgrund dieser 

Ergebnisse, konnte eine nukleäre Lokalisation und ein rezeptor-vermittelter Transport von Lbpro in 

den Zellkern nicht bestätigt werden. 
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8  Append i x  
 

8.1 Amino acids 
 

A Ala alanine 

C Cys cysteine 

D Asp aspartic acid 

E Glu glutamic acid 

F Phe phenylalanine 

G Gly glycine 

H His histidine 

I Ile isoleucine 

K Lys lysine 

L Leu leucine 

M Met methionine 

N Asn asparagine 

P Pro proline 

Q Gln glutamine 

R Arg arginine 

S Ser serine 

T Thr threonine 

V Val valine 

W Trp tryptophan 

Y Tyr tyrosine 
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8.2 Abbreviations 
 

°C degrees centigrade 

µl microliter 

µM micromolar 

Amp ampicillin 

AP alkaline phosphatase 

APS ammonium persulfate 

ATP adenosine triphosphate 

BCIP 5-bromo-4-chloro-3-indolyl phosphate 

bp basepairs 

CIP calf intestine phosphatase 

CITE cap-independent translation enhancer 

cpN cleavage products 

cre cis replicative element 

CTE C-terminal extension 

dH2O deionised water 

DMEM Dulbecco’s Modified Eagle Medium 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

dNTP deoxynucleotide triphosphate 

DTT dithiothreitol 

EDTA ethylenediaminetetraacetic acid 

eIF eukaryotic initiation factor 

ER endoplasmic reticulum 

FCS foetal calf serum 

FMDV foot-and-mouth disease virus 

FPLC fast protein liquid chromatography 

g gram 

h hour 

HEK human embryonic kidney 

hpi hours post infection 

HRP horseradish peroxidase 

HRV human rhinovirus 

IPTG isopropyl β-D-1-thiogalactopyranoside 

IRES internal ribosome entry site 

kb kilo bases 

kDa kilo Dalton 

l liter 

Labpro Leader protease ab 

LB Luria Bertani 
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Lbpro Leader protease b 

LGS lower gel solution 

Lpro Leader protease 

M molar 

MHz megahertz 

min minute 

ml milliliter 

mM millimolar 

mRNA messenger ribonucleic acid 

NBT nitro blue tetrazolium 

NLS nuclear localisation signal 

nm nanometer 

NMR nuclear magnetic resonance 

NMR nuclear magnetic resonance 

NPC nuclear pore complex 

NTP nucleotide triphosphate 

ORF open reading frame 

PABP poly(A) binding protein 

PAGE polyacrylamide gelelectrophoresis 

PBS phosphate buffered saline 

PBST PBS-Tween 

PCR polymerase chain reaction 

PNK polynucleotide kinase 

ppm parts per million 

RNA ribonucleic acid 

RNase ribonuclease 

rpm rotations per minute 

RRL rabbit reticulocyte lysate 

RT room temperature 

SDS sodiumdodecylsulfate 

SDS PAGE SDS polyacrylamide gelelectrophoresis 

sec second 

TAE Tris-acetate-EDTA 

TAP tandem affinity purification 

TE trypsin/EDTA 

TEMED tetramethylethylenediamine 

u units 

UGS upper gel solution 

UTR untranslated region 

UV ultra-violet 

V volts 
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v volume 

VP viral protein 

VPg viral protein genome 

w weigth 

WT wildtype 
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