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Preface

The protagonists in this thesis are the representations of Lie
algebras. The interesting ones among them are faithful and have
a finite degree. That there even exist such representations is not
at all obvious. It is a standard and non-trivial result in the theory
of Lie algebras that every finite-dimensional Lie algebra admits
a faithful representation of a finite degree. This existence-result
is classically known as the theorem of Ado and Iwasawa.

The characterisation of these representations is a hopeless
problem. By this, we mean the classification of the representa-
tions of a generic Lie algebra up to conjugation. This can already
be seen in the case of the abelian Lie algebras. But not all is
lost: many of the proofs of this Ado-Iwasawa theorem can be
modified to give an explicit construction of such representations.
The main disadvantage, however, is that these representations
have a degree that is very large with respect to the dimension
of the original Lie algebra. This is in stark contrast to the fact
that it is very difficult to show that there are Lie algebras with
only large faithful representations.

Precisely these algebras turned out to be relevant in the con-
text of a well-known conjecture by J. Milnor. Formulated al-
gebraically, he asked if every solvable Lie algebra r admits a
left-symmetric Lie algebra structure and hence a faithful repre-
sentation of degree dim(r)+1. Any solvable Lie algebra r that has
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Preface

only large faithful representations, i.e. representations of degree
at least dim(r) + 2, are counterexamples to Milnor’s conjecture.
Such examples were produced by Benoist and independently by
Burde and Grunewald. At this point, the following invariant was
introduced.

Definition Let g be a Lie algebra. Then we define
µ(g) to be the minimal degree of a faithful linear
g-representation.

Ado’s theorem then states that the µ-invariant of a Lie alge-
bra is a natural number and Milnor’s conjecture claims (incor-
rectly) that µ(r) ≤ dim(r) + 1 for all solvable Lie algebras r.

What can be said about this invariant? Its history is closely
related to that of the Ado-Iwasawa theorem, and there are typ-
ically four kinds of results. (i) Bounds were obtained for the
µ-invariant as a function of other natural Lie algebra invariants
such as the dimension (and the solvability or nilpotency class
when applicable). (ii) Stronger versions of the theorem were ob-
tained in terms of nilpotency conditions. (iii) The µ-invariant
was computed explicitly for certain families such as the family of
the generalised Heisenberg Lie algebras. And (iv) Lie algebras
with a large µ-invariant were constructed.

This thesis aims to refine two of these four points.

In chapter one, we give a proof for Ado’s theorem which will
give us an upper bound for the µ-invariant as a function of only
the dimension. We then introduce the µ-invariant and its ele-
mentary properties. A brief discussion of the different versions
of Ado’s theorem naturally leads to other invariants related to
the original µ-invariant. For example: the µ-invariant is to Ado’s
theorem, as the µ0-invariant is to a theorem by Block. For the
Lie algebras that we will consider, the µ0-invariant will have the
advantage that it can be computed much more easily than the
µ-invariant. We briefly touch the solvable and nilpotent case and
interpret the theorems of Engel and Lie in this context. Finally,
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we illustrate that the notion of a µ-invariant also makes sense
in other algebraic settings: there is one for color Lie algebras,
generalised Lie algebras, groups and so on.

Chapter two is devoted to the reductive Lie algebras and their
µ-invariants, cf. (iii). As any such Lie algebra decomposes into
a semisimple and an abelian Lie algebra, the chapter is roughly
divided into three parts. First, we illustrate how a theorem by
Schur was reinterpreted in order to compute the µ-invariant for
all abelian Lie algebras. Next the simple and semisimple Lie al-
gebras are discussed. Just as every semisimple Lie algebra is the
sum of its simple ideals, the µ-invariant of a simple Lie algebra
turns out to be the sum of the µ-invariants of its simple ideals.
Here, and in contrast to the general case, the faithful represen-
tations of minimal degree can be classified quite easily. In the
third part, we compute the centraliser of a semisimple Lie alge-
bra in a general linear Lie algebra. After this, it is not difficult
to express the µ-invariant of a reductive Lie algebra in terms of
that of a naturally associated semisimple and abelian ideal. We
also obtain formulas for Lie algebras that have a decomposition
very much like that of a reductive Lie algebra. Finally, we dis-
cuss how this is related to the classification of maximal reductive
subalgebras.

In the third chapter we consider the class of all Lie algebras
with an abelian radical. This class naturally contains the reduc-
tive Lie algebras. We illustrate how the µ0-invariant, and hence
an upper bound for µ, can be computed algorithmically (cf. (iii)
resp. (i)). In order to do this, we generalise a construction for
affine Lie algebras by introducing the so-called paired represen-
tations. These can be interpreted as a tensor product of two Lie
algebra representations. The algorithm depends on the decom-
position of tensor products into irreducible subrepresentations.
We also obtain combinatorical bounds and bounds in terms of
only the dimension. Finally, we apply these constructions to
some examples in the family sl2(C) n Ct. Additionally, we ex-
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press the µ-invariant of a Lie algebra with a filiform radical in
terms of the µ-invariant of its radical and Levi-complement.

We conclude with several remarks. There are other methods
to construct representations: extensions of Lie algebras and holo-
morphs are two of them. The class of characteristically nilpotent
Lie algebras, the family of finitely generated nilpotent Lie alge-
bras and a certain family of filiform Lie algebras seem to be very
interesting from the point of view of our invariants. We formu-
late some of the most obvious open problems in this theory (the
growth of the invariant and the role played by the characteristic
of the field) and include some extra material at the end.
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Chapter 1

The theorem of Ado and

Iwasawa

1.1 The theorem of Ado and Iwasawa

What does a Lie algebra look like? Lie algebras can be approached
in several different ways. One way to present a Lie algebra, is to give a
set of generators and a set of commutation relations. In a similar way, one
can encode the Lie algebra as a set of structure constants with respect to
a certain basis. Most well-known Lie algebras, however, occur naturally as
matrix Lie algebras. We can for example think of the classical Lie algebras
sln, son and spn. One is tempted to ask the following question:

“Can every Lie algebra be realised as a matrix algebra?”

Or more precisely: “does every Lie algebra admit a faithful linear represen-
tation?”. The answer is a definite “yes” since any Lie algebra acts naturally
and faithfully on its universal enveloping algebra. Whether every Lie alge-
bra admits a faithful representation of a finite degree is much less obvious:
the universal enveloping algebra does not have a finite dimension. Other ob-
vious examples of representations, such as the adjoint representation, need
not be faithful. Fortunately, the answer to this question too, turns out to
be pleasantly positive. In 1935, the Russian mathematician I. D. Ado pub-
lished the paper “The representation of Lie algebras by matrices” [Ado] in
which he formulated and proved the following result.

1
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1.1 The theorem of Ado and Iwasawa

Theorem (Ado). Every finite-dimensional Lie algebra over an
algebraically closed field of characteristic zero has a faithful
linear representation of finite degree.

This illustrates that the matrix Lie algebras are not some very special exam-
ples of Lie algebras: every Lie algebra can be re-written as a Lie algebra of
(finite square) matrices. Other mathematicians later showed that we need
not assume the algebraic closedness of the field. In 1947, K. Iwasawa also
removed the condition on the characteristic of the base field ([Iwas]). The
theorem in prime characteristic is generally attributed to Iwasawa, while the
theorem in characteristic zero is usually called Ado’s theorem.

Theorem (Ado-Iwasawa). Every finite-dimensional Lie algebra
has a faithful linear representation of finite degree.

1.1.1 Chronology

In the course of history, many respectable mathematicians have given a proof
for the Ado-Iwasawa theorem or some variant of it. Ado’s original proof of
1935 was quite involved and he presented an improved version in 1947. In
1937, Birkhoff gave a proof of the theorem for the class of all nilpotent Lie al-
gebras. He introduced an associative algebra with unit, associated to a given
Lie algebra [Bir]. In modern terminology, this is the universal enveloping
algebra (also independently constructed by Witt and Artin). By taking the
appropriate quotient in this algebra, Birkhoff constructed a faithful linear
representation. In fact, he noted that the matrices in the representation are
properly triangular.

A rigorous proof for Ado’s theorem (for real and complex numbers) was
given by Cartan in 1938. He used the more analytic theory of Lie groups.
About a decade later, Iwasawa [Iwas] completely removed any restriction on
the base field. He wanted to construct a proof that would work for both
kinds of characteristics (and he succeeded). Inspired by abelian extensions
in group theory, he first constructed a “universal splitting algebra”. Then,
he proved that there are finite-dimensional splitting Lie algebras in both
kinds of characteristic. The theorems of Poincare-Birkhoff-Witt and Ado-
Iwasawa then follow immediately.
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1.1 The theorem of Ado and Iwasawa

About ten years later, Harish-Chandra [HC] gave another algebraic proof
and sharpened the result slightly: “Every Lie algebra admits a faithful repre-
sentation such that the elements of the maximal nilpotent ideal are mapped
to nilpotent operators”. In [Hoc], Hochschild proved that there is always
a faithful representation such that all ad-nilpotent elements are mapped to
nilpotent operators. In 1969, Reed [Ree] tried to find out how small the
degrees of the faithful representations can be chosen in the nilpotent and
solvable case. (See subsection 1.3.1). A few other contributors that should
definitely be mentioned, are: Jacobson [Jac3], Block [Blo], de Graaf [deG]
and Neretin [Ner].

1.1.2 A proof for Ado’s theorem

Is it possible to present a constructive, compact and transparent
proof for Ado’s theorem? Let us try to do just that. The pioneering
works that were mentioned above are neither known for their compactness
nor for their transparency. We give a proof that is based on one given by
Neretin [Ner] and Burde [Bur1] and many ideas go back to Birkhoff [Bir].
We will also use notation, results and terminology that will only be intro-
duced later on. Consider a finite-dimensional Lie algebra g over the complex
numbers. We want to construct a g-module that is faithful and of finite di-
mension. We do this in two steps. First, we will use Neretin’s embedding
theorem. This will reduce the problem to the class of all nilpotent Lie al-
gebras. Next, we use the enveloping algebra to construct faithful modules
of finite dimension for these nilpotent Lie algebras. It then suffices to bring
both results together.

Theorem [Neretin] The Lie algebra g can be embedded into a
semidirect product of the reductive Lie algebra g

nil(g) and a
nilpotent ideal of dimension dim(rad(g)).

Proof: Step 0. We first introduce the so-called elementary ex-
pansions. The theorem can then be obtained by applying suc-
cessive elementary extensions. Let g be any complex Lie algebra
of finite dimension. Suppose it has an ideal I of co-dimension
one. Let 〈x〉 be a complementary subspace. Consider the vector
space

E(I, x) = Cy + Cz + I,
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where y and z are formal vectors. The restriction of adx to the
ideal I is a derivation d of this ideal. Let Let d = ds + dn be
a Jordan-Chevalley decomposition for d. Then E(I, x) is a Lie
algebra for the brackets

[y, z] = 0 , [y, u] = ds(u) , [z, u] = dn(u),

for all u in I and with the normal bracket on I. The Lie algebra
E(I, x) properly contains an isomorphic copy of g: C(y+ z) + I.
We call it the elementary expansion of g with respect to I and
x. Note that the commutator of the expansion coincides with
the commutator of the original Lie algebra.

Step 1. Fix a complex, finite-dimensional Lie algebra g. Let s be
a Levi-complement for g. Consider all triples (g, p, n) satisfying
the following properties:

(C1) p ∩ n = 0. (C2) n is a nilpotent ideal of g and
it contains the ideal [g, rad(g)]. (C3) p is a reductive
subalgebra of g and it contains the Levi-complement s

of g. (C4) p acts completely reducibly on g.

In this first part of the proof we will show that any triple (g, p, n)
satisfying the conditions (1), (2), (3) and (4) can be used to define
another triple (g′, p′, n′) satisfying the same conditions. Here, we
assume that p n n is a proper subalgebra of g.

Consider such a triple (g, p, n). Since pnn is a proper subalgebra,
there exists a subspace I of g that contains p n n and is of co-
dimension one. Since pnn contains sn [g, rad(g)] = [g, g], this I
must be an ideal of g. It is hence also invariant under the action
of p. Since the action of p on g is fully reducible, there exists
a complementary subspace, necessarily of dimension one. Let
it be generated by an element x: g = Cx + I (as p-modules).
Consider the elementary expansion g′ = E(I, x) = Cy + Cz + I

and

p′ = Cy + p

n′ = Cz + n.
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We claim that the triple (g′, p′, n′) satisfies all four conditions.
The spaces p′ and n′ have no intersection by construction. Since
I contains all commutators, Cx must be the trivial module and
x commutes with p. The Jordan-Chevalley-decomposition x =
y+z then implies that also y commutes with p so that p′ = Cy ⊕p

and p′ is reductive. Since y is a semisimple operator and p acts
fully reducibly on g, the action of p′ on q and hence on q′ will
also be fully reducible. Since the commutator of an expansion
is not bigger than the commutator of the original algebra, we
have s′ = s and [g′, rad(g′)] = [g, rad(g)]. So n′ ≥ [g′, rad(g′)]
and p′ ≥ s′. Since the semidirect product of a derivation of a
nilpotent Lie algebra with that Lie algebra is nilpotent, n′ will
be nilpotent.

Note that g is proper subalgebra of g′ of co-dimension one. Sim-
ilarly, n and p are subalgebras of p′ resp. n′ of co-dimension one.
We thus have,

dim(
g′

p′ n n′
) = dim(

g

p n n
)− 1.

Step 2. We can now prove the theorem. Let g be a finite-
dimensional Lie algebra over the complex numbers. We need
to construct an embedding ι : g −→ p n n where p is reductive
and n nilpotent. Consider the subalgebra p0 n n0 = s n nil(g). If
it is not a proper subalgebra, the identity 1 : g −→ g gives us the
desired embedding. We may thus assume that the subalgebra of
g = g0 is proper.

Since the triple (g, s,nil(g)) satisfies conditions one to four, we
may apply the above construction to the data (g0, p0, n0) and re-
peat the procedure from step 1. Define α to be the co-dimension
of p0 n n0 in g: dim( rad(g)

nil(g) ). We then obtain a sequence of Lie
algebra embeddings

g = g0 ↪→ g1 ↪→ g2 ↪→ . . . ↪→ gα.

The Lie algebra gα is the semidirect product of a perfect sub-
algebra pα and a nilpotent ideal nα. The Lie algebra pα is of
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the form Cα ⊕ p0 and thus g
nil(g) . The ideal nα has dimension

dim(n) + α = dim(rad(g)).

Consider the semidirect product p n n of a reductive Lie algebra p and a
nilpotent Lie algebra n. Then the action of p on n need not be faithful. How-
ever, since p is reductive, it is possible to write the Lie algebra as p1⊕(p2nn)
where p1 is the kernel of the action and p2 is some complementary ideal. It
follows that both p1 and p2 are reductive and that p2 acts faithfully on n.

For natural numbers c ≤ n, we define p(n, c) to be
∑

0≤j≤c

(
n−j
c−j

)
p(j). Here,

p(j) is the number of partitions of the number j. We define p(0) to be 1.

Theorem Consider the semidirect product p n n of a reductive
Lie algebra p and a nilpotent Lie algebra n of dimension n

and class c. Assume that the action of p on n is faithful.
Then p n n has some faithful module of dimension at most
p(n, c).

Proof: Consider the universal enveloping algebra U(n) of n.
Then p n n acts on U(n) in the following way. For any element
(z, y) of p n n and any monomial x1 · · · xt in U(n), we define

(z, y) ∗ (x1 x2 · · · xt) = y · (x1 x2 · · · xt)

+ [z, x1] x2 · · · xt + x1 [z, x2] · · · xt

+ . . . + x1 x2 · · · [z, xt].

We want to construct the faithful (pnn)-module as a quotient of
U(n) through some submodule. For this, we introduce an order
on U(n). Consider the natural descending series for n:

n = n1 > n2 > . . . > nc > nc+1 = 0.

Choose a basis x1, . . . , xn for n such that the first n1 of them
form a basis for the subspace nc, the first n2 form a basis for
nc−1, . . . and the first nc = n form a basis for n1 = n. We now
define the map ord : U(n) −→ N. On the monomials, it is given

6
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by the rules:

ord(1) = 0

ord(xt) = max{ m | xt ∈ nm }

ord(xα1
1 · · · xαn

n ) = α1 ord(x1) + . . .+ αn ord(xn)

ord(0) = ∞.

The theorem of Poincaré-Birkhoff-Witt states that the standard
monomials xα = xα1

1 . . . xαn
n form a basis for the universal

enveloping algebra U(n). For a linear combination
∑

α cαx
α,

with the scalars cα all different from zero, we define

ord(
∑
α

cαx
α) = min

α
{ ord(xα) }.

For any natural number m, we can define a vector subspace Um

of U(n):
Um = { u ∈ U(n) | ord(u) ≥ m }.

We show that Um is a (p n n)-submodule of U(n). Let u be any
element of U(n) and (z, y) any element in p n n. It suffices to
show that ord((z, y) ∗ u) ≥ ord(u). It follows from the definition
that ord(y · u) ≥ ord(y) + ord(u) ≥ ord(u). Since p acts on n

through derivations, it leaves every characteristic ideal invariant.
In particular, ord([z, xt]) ≥ ord(xt) for every basis element xt.
So ord(z ∗ u) ≥ ord(u). Finally, we conclude that

ord((z, y) ∗ u) = ord(z ∗ u+ y ∗ u)

= min{ ord(z ∗ u) , ord(y ∗ u) }

≥ ord(u).

Now assume that m is at least c + 1 and consider the quotient
module U = U(n)

Um . We show that it is faithful. Suppose an ele-
ment (z, y) in p n n acts on U as the zero-map. This means that
(z, y) ∗ u has degree at least m for all u in U(n).

First, take u to be the unit element of U(n). Then y = z∗1+y·1 =
(z, y) ∗ 1 so that y has order at least c+ 1. But the only element
in n with order at least c+ 1 is zero. We conclude that y = 0.

7
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Now take u to be any element of n ≤ U(n). Then the assumption
tells us that [z, u] = z ∗u has degree at least c+ 1. Since [z, u] is
an element of n and the only element of n of degree at least c+1
is zero, we conclude that [z, u] is zero for every u in n. Since the
action of p on n is assumed to be faithful, we conclude that also
z = 0. This shows that U is a faithful (p n n)-module.

What is the dimension of the module U = U(n)
Uc+1 ? Burde gave a

combinatorical estimate for the dimension in [Bur1]: he obtains
dim(U) ≤ p(n, c).

In [Bur5], he also proved the upper bound p(n, k) ≤ 3√
n
2n for all k ≤ n in N.

The Lie algebras with a trivial solvable radical, are precisely the semisimple
Lie algebras. They have a trivial centre. For such a Lie algebra g, the
adjoint-representation g → gl(g) is faithful so that µ(g) ≤ dim(g). The
other situation is described by the following corollary.

Corollary Let g be any finite-dimensional complex Lie algebra
with a non-trivial radical. Then g has a faithful module of
dimension at most

µ(
g

nil(g)
) + 3

2dim(rad(g)))√
dim(rad(g))

.

Proof: According to Neretin’s embedding theorem, we can em-
bed the Lie algebra g into a Lie algebra pnn where p is g

nil(g) and
n is some nilpotent Lie algebra of dimension dim(rad(g)). The
monotonicity of the µ-invariant gives us µ(g) ≤ µ(p n n). The
remark and the previous theorem then give us the upper bound
µ(p n n) ≤ µ(p) + p(dim(rad(g)), cn(n)). Since p(n, c) ≤ 3√

n
2n

for c ≤ n, we can combine all of these bounds to obtain,

µ(g) ≤ µ(p n n)

≤ µ(p) + p(dim(rad(g)), cnil(n))

≤ µ(
g

nil(g)
) + 3

2dim(rad(g)))√
dim(rad(g))

.

8
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The Lie algebra g
nil(g) is reductive. Since the µ-invariant of a reductive Lie

algebra is bounded by its dimension (see section 2.3), we may conclude that
µ(g) is O(2dim(g)). This finishes the proof of Ado’s theorem.

1.2 Faithful representations of minimal degree

The classification problem According to the Ado-Iwasawa theorem, ev-
ery Lie algebra has a faithful linear representation of a finite degree. For
the semisimple Lie algebras we can not only produce such a representation
but we can even describe all of them. This is done in subsection 2.2.3 by
using the standard theory for representations of semisimple Lie algebras.
Classifying the representations of the one-dimensional Lie algebra can be
reduced to a classical problem of linear algebra, as is shown in the following
example.

Example 1.2.0.1. [Jordan canonical form] Consider C, the field
of the complex numbers. It is a one-dimensional (complex) Lie
algebra that is in fact abelian. The representations ρ : C −→
gl(V ) of C on a finite-dimensional vector space V correspond
uniquely to the linear transformations of V : ρ 7→ ρ(1). Two
representations σ and τ are equivalent if and only if σ(1) and
τ(1) are so that the classification of representations of C on V

up to conjugation is reduced to the determination of the Jordan
canonical form for a given matrix. Only the zero-transformation
corresponds to a non-faithful representation.

4

These two cases are extreme: it is in general much more difficult to classify
the finite-dimensional (faithful) representations up to equivalence, than to
produce one of them. The representations of the n-dimensional (abelian)
algebra (2 ≤ n) for example cannot be classified so easily. To see this,
consider the following, closely related problem.

Problem Consider n-tuples A = (A1, . . . , An) of (m × m)-
matrices over the complex numbers. Then GLm(C) acts on A
by simultaneous conjugation: X·A = (XA1X

−1, . . . , XAnX
−1)

9
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for X ∈ GLn(C). Classify the orbits under this action, pos-
sibly under additional conditions such as commutativity and
nilpotency.

This problem is known to be very difficult. For an exact formulation of this
problem and its difficulty, we refer to [Nath], [GelPo] and [Frie]. But it is
still possible to obtain some information about the faithful representations
and we do this by introducing the µ-invariants.

1.2.1 The µ-invariant

Suppose that g has a faithful representation of degree m. Then it is clear
that it also has a faithful representation of degree m+1,m+2, . . . and that
the degree of a faithful linear representation can be arbitrarily large. It
cannot be arbitrarily small however. Consider for example an embedding of
g in glm(C). Then dim(g) ≤ dim(glm(C)) = m2 and hence

√
dim(g) ≤ m.

So the degree of any faithful representation is bounded from below by the
square root of the dimension of the algebra. Let us consider the minimal
degree.

Definition [[Bur1]] Let g be a finite-dimensional Lie algebra over
a field K of arbitrary characteristic. Then we define µ(g,K)
to be the minimal dimension of a faithful g-module.

If it is clear which field we are working with, we drop K from the notation:
µ(g,K) = µ(g). There is an alternative interpretation for the invariant.
Suppose g is a finite-dimensional Lie algebra and m a natural number. Then
there exists a faithful representation of degree m, if and only if, µ(g) ≤ m.
In this thesis we will only be interested in the complex situation, K = C,
unless stated otherwise. That the invariant does depend on the field, is
suggested by the following lemma.

Lemma 1.2.1.1. Let g be a Lie algebra over a field K and let K̂ be a field
extension of K. Then ĝ = g⊗ K̂ is a K̂-Lie algebra and µ(ĝ, K̂) ≤ µ(g,K).

Proof: Consider a faithful K-linear representation ρ : g −→
gl(Km) of degree m. Let ι : K̂ −→ gl(K̂) be the natural embed-
ding. Then the tensor product ρ⊗ ι : g⊗ K̂ −→ gl(Km ⊗ K̂) is

10
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a faithful K̂-representation of degree m × 1 = m. If we take m
to be µ(g,K), then we obtain µ(ĝ, K̂) ≤ µ(g,K).

This µ has two obvious properties that are worth mentioning. The first one
states that the invariant is monotone, i.e. that it is compatible with Lie
algebra embeddings.

Lemma 1.2.1.2. Let g1 and g2 be two Lie algebras. If g1 ≤ g2, then
µ(g1) ≤ µ(g2).

Proof: Consider an embedding ι : g1 ↪→ g2. Every embedding
ρ : g2 ↪→ gl(V ) can be composed with this ι to obtain an embed-
ding of g1, ρ ◦ ι : g1 ↪→ gl(V ), of the same degree. In particular,
we can do this for a faithful embedding of g2 of degree µ(g2) to
obtain µ(g1) ≤ µ(g2).

In particular, this implies that the µ really is an invariant of Lie algebras.
The second property, the subadditivity, states that the invariant is in some
sense also compatible with the direct sums of Lie algebras.

Lemma 1.2.1.3. Let g1 and g2 be two Lie algebras. Then µ(g1 ⊕ g2) ≤
µ(g1) + µ(g2).

Proof: We consider two embeddings: ρ1 : g1 ↪→ gl(V1) and
ρ2 : g2 ↪→ gl(V2). Then the direct sum (ρ1 ◦ π1) ⊕ (ρ2 ◦ π2) :
g1 ⊕ g2 ↪→ gl(V1 ⊕ V2) gives a well-defined embedding of g1 ⊕ g2

of degree deg(ρ1) + deg(ρ2). If we take ρ1 and ρ2 to be minimal,
we obtain the desired inequality.

The three inequalities may, but need not be, strict.

Example 1.2.1.1. [Field extensions] For any field k and any
natural number n, we have µ(gln(k)) = n. Now consider the
(strict) inclusion of fields. Q < R < C. Then we have:

µ(gln(C),C) = µ(gln(R),R) = µ(gln(Q),Q) = n.

4
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Example 1.2.1.2. [Subalgebras] For any field k and any natural
number n, we have µ(sln(k)) = n. It is clear that sln(k) admits
an n-dimensional faithful representation so that µ(sln(k)) ≤ n.
Suppose that sln(k) can be embedded into glm(k) for some m.
Then [sln(k), sln(k)] ≤ [glm(k), glm(k)] = slm(k). Then it is clear
that n ≤ m and we conclude that µ(sln(k)) = n. Now consider
the (strict) inclusion sln(K) < gln(K). Then

µ(sln(k), k) = µ(gln(k), k).

4

Example 1.2.1.3. [Direct sums] For any field k and any nat-
ural number n, we consider the direct sum gln(k) ⊕ k. Sup-
pose gln(k) ⊕ k ≤ glm(k). Then n2 + 1 = dim(gln(k) ⊕ k) ≤
dim(glm(k)) = m2. This implies that m > n and µ(gln(k)⊕k) ≥
n+ 1. The subadditivity then shows that

µ(gln(k)⊕ k) = µ(gln(k)) + µ(k).

4

1.2.2 The µ-invariants

Refinements of Engel’s theorem Let g be a Lie algebra and ρ : g −→
gl(V ) a finite-dimensional representation of g. Then we say that g acts
nilpotently on V , or that ρ is a nilrepresentation, if the image ρ(g) consists
of only nilpotent operators of V . That is, for every element A in the image
of the representation, there exists some natural number ε depending on
A, such that Aε = 0. Representations into the Lie algebra of all strictly
upper-triangular matrices of a finite-dimensional vector space are examples
of nil-representations. Engel’s theorem, which holds in any characteristic,
then says that every nil-representation is of this form.

Theorem [Engel] Nil-representations are exactly the ones that
can be strictly-upper-triangularised by conjugation.

12
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Note that only nilpotent Lie algebras admit faithful nil-representations. Also
note that not every (faithful) representation of a nilpotent Lie algebra is a
nil-representation. The following lemma shows that the largest part of a
representation of a nilpotent Lie algebra is a nilrepresentation.

Theorem [Jordan-Chevalley] Consider a nilpotent Lie algebra
n. Then every representation ρ : n −→ gl(V ) of n can be
decomposed into a semisimple and nilpotent representation
of n, ρ = ρs + ρn. These two representations commute.

The theorem can actually be stated in a stronger way. Consider a repre-
sentation (ρ, V ) of n. Then there is a direct sum decomposition (ρ, V ) =⊕

c(ρc, Vc) that is indexed by characters of n, such that ρ̃c(x) = ρc(x) −
c(x)1Vc is a nil-representation. Then (ρn, V ) =

⊕
c(ρ̃c, Vc) is a nil-representation,

(ρs, V ) =
⊕

c(c · 1Vc , Vc) is semisimple and we have the decomposition
ρ = ρs + ρn. These two representations clearly commute.

From this we can immediately deduce a lower bound for µ in function of the
nilpotency class. Nilpotent Lie algebras with a high class cannot have a low
µ-invariant:

Corollary 1.2.2.1. Let n be a nilpotent Lie algebra, not 0 or C. Then

cn(n) + 1 ≤ µ(n).

Proof: First suppose n is not abelian. Consider an embedding
ρ : n −→ gl(V ). Let ρ = ρs + ρn be the decomposition of
the lemma. Then [ρ(x), ρ(y)] = [ρn(x), ρn(y)] for all x and y

in n. We see that the nilpotent Lie algebras ρ(n) and ρn(n) 6=
0 have the same class: cn(n). According to Engel’s theorem,
we see that ρn(n) is contained in the nilpotent subalgebra B of
gl(V ) that consists of all strictly upper triangular matrices. Since
the nilpotency class is monotone, we have cn(n) = cn(ρn(n)) ≤
cn(B) = dim(V )−1. If we take V to be a minimal representation,
we obtain cn(n) + 1 ≤ µ(n). In case n is abelian, then clearly
only 0 and C1 satisfy µ(n) ≤ cn(n) = 1.

We have the following general property: for any Lie algebra g and any g-
module, the nilpotent ideal [g, rad(g)] acts nilpotently. Can we also find a
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representation of g such that every nilpotent ideal acts nilpotently? The
answer was shown to be positive by Harish-Chandra and Birkhoff (among
others). We present a simplified version of their results.

Theorem [Harish-Chandra, Birkhoff] Consider a finite-dimensional
Lie algebra over an arbitrary field. Then there exists a faith-
ful representation of the Lie algebra such that the restriction
to the nilradical is a nil-representation.

Definition 1.2.2.1 (µ∞). Consider a Lie algebra g. Define µ∞ to be the
minimal dimension of a faithful representation for which the restriction to
the nilradical is a nilrepresentation.

The theorem then proves that this is a well defined invariant with values in
the natural numbers. It follows from the definition that µ(g) ≤ µ∞(g). Let
n be the nilradical of g and let c be the nilpotency class of n. Then there
exists a finite-dimensional faithful nil-representation ρ : g −→ gl(V ) of g

and, by Engel’s theorem, a natural number ε such that ρ(n)ε = 0. Note that
ε must be at least c+ 1 because of the faithfulness condition. This leads us
to the following question. Given a Lie algebra g with a nilradical n of class
c, does there exist a faithful representation of g such that ρ(n)c+1 = 0? The
answer is positive. It can be found, although not always very explicitly, in
the works by Birkhoff [Bir], Reed [Ree], Burde [Bur1], De Graaf [deG] and
Block [Blo].

Theorem [Birkhoff, Reed, Burde] Let n be a nilpotent Lie alge-
bra of class c. Then there exists a finite-dimensional faithful
representation ρ : n −→ gl(V ) of n such that ρ(n)c+1 = 0.

Theorem [Block] Consider a Lie algebra g with nilradical n of
class c. Then there exists a faithful finite-dimensional repre-
sentation ρ : g −→ gl(V ) of g such that ρ(n)c+1 = 0.

Definition 1.2.2.2 (µε). Let g be a Lie algebra with nilradical n of class
c. Let ε be some natural number. Then µε(g) is the minimal dimension of
a faithful representation ρ satisfying ρ(n)c+1+ε = 0. A representation is of
type ε if it satisfies ρ(n)c+1+ε = 0 but ρ(n)c+ε 6= 0.

The theorem of Block then states that every Lie algebra g admits a finite-
dimensional faithful representation of type 0. We can summarise the infor-
mation about the µ-invariants in the following proposition.
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Proposition 1.2.2.1. Let g be a finite-dimensional Lie algebra over an ar-
bitrary field. The sequence (µε(g))ε = (µ0(g), µ1(g), . . .) is a descending se-
quence of natural numbers. It stabilises and thus converges to its minimum.
This minimum is µ∞(g). For every natural number ε, we have

µ(g) ≤ µ∞(g) ≤ µε(g) <∞.

Proof: Let n be the nilradical of class c. If a (faithful) rep-
resentation ρ satisfies ρ(n)c+1+ε1 = 0, then also ρ(n)c+1+ε2 = 0
for ε1 ≤ ε2. This shows that the sequence (µε(g))ε is descend-
ing. Suppose ρ is faithful, nilpotent on the radical and of degree
µ∞(g). Then this ρ has a type, say ε, and (µε(g))ε stabilises in
(at most) ε.

Finally, let us remark that µ(g) = µ∞(g) if [g, rad(g)] = nil(g).

Representing the class Z≤C For convenience later, we now introduce a
class Z≤C of Lie algebras that is defined in terms of central elements and
commutators. It consists of all Lie algebras g that satisfy the condition
Z(g) ≤ [g, g]. All centreless Lie algebras belong to this class. All perfect
Lie algebras do too. Nilpotent (non-abelian) examples are: (i.) free nilpo-
tent Lie algebras, (ii.) nilpotent Lie algebras with one-dimensional centre
(e.g.: generalised Heisenberg Lie algebras and complex filiform nilpotent Lie
algebras) and (iii.) characteristically nilpotent Lie algebras.

Proof: (i.) For a (non-abelian) free nilpotent Lie algebra g of
class c, Z(g) = gc−1 ≤ g1 = [g, g]. (ii.) In a nilpotent Lie algebra,
every (non-trivial) ideal intersects the centre non-trivially. Thus
if the centre is one-dimensional, it is contained in every ideal. In
particular, Z(g) ≤ [g, g]. (iii.) If the condition fails, semisimple
derivations can be constructed, [LegTo].

The following two results have also been obtained by Calgliero and Rojas,
[CaRo], in essentially the same way (but independently). They show that
we may restrict our attention to nil-representations if the Lie algebra is
contained in the class Z≤C.
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Proposition 1.2.2.2. Consider a nilpotent Lie algebra n satisfying Z(n) ≤
[n, n]. Consider a representation ρ of n with decomposition ρ = ρn + ρs.
Then ρ is faithful if and only if ρn is.

Proof: Consider the Jordan-Chevalley-decomposition. It suf-
fices to show that ρn is faithful if ρ is. Now suppose that ρ
is faithful but that ρn is not. By applying the appropriate
conjugation, we may assume that ρs is semisimple and ρn is
strictly-upper-triangular. Since n is nilpotent, we may then se-
lect a non-zero central element z that is mapped to zero by ρn.
But then for every character c in the decomposition, we have
0 = ρn(z) = ρc(z)− c(z)1Vc , which implies that ρc(z) = c(z)1Vc

and ρ(z) =
⊕

c c(z)1Vc . The only element of this form that
is a commutator of strictly-upper-triangular transformations, is
the zero-transformation. We conclude that (ρ, V ) is not faithful,
which is a contradiction. This finishes the proof.

Corollary 1.2.2.2. Let n be a nilpotent Lie algebra for which Z(n) ≤ [n, n]
holds. Then

µ(n) = µ∞(n).

Remark 1. It is not at all obvious how to compute the µ-invariants for a
given Lie algebra. The brute-force approach using computer programmes
only works in very special cases. For some Lie algebras, there is an obvious
way to proceed. For example, if the dimension of the Lie algebra is low
(for nilpotent Lie algebras with dimension at most 5 [BNT], for Lie algebras
of dimension at most 4 [KaBa] and related to this, [GST]), the answer is
obtained by using the standard classification and explicit calculations. For
other examples, we refer to [Han] and [RaTh]. The equations involved are
in general too difficult to solve for the usual algorithms.

1.3 Nilpotent and solvable Lie algebras

1.3.1 Nilpotent Lie algebras

There is much historical background material available for the µ-invariants of
nilpotent Lie algebras. More concretely, we will present a succession of upper
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bounds for µ(g) in function of the dimension dim(g) and the nilpotency
class cn(g) of g. First, we focus our attention to two important families
of nilpotent Lie algebras: the generalised Heisenberg Lie algebras and the
filiform nilpotent Lie algebras.

Heisenberg Lie algebras Consider the family of the (generalised) Heisen-
berg Lie algebras. They form a one-parameter family of two-step nilpotent
Lie algebras and they can be defined by the presentation

hm = 〈 x1, . . . , xm; y1, . . . , ym; z | [xi, yj ] = δi,jz 〉.

They occur frequently in quantum mechanics. So it seems quite reasonable
to study their representations and the size of these representations. Note
that the centre and the commutator algebra coincide so that µ(h) = µ∞(h)
according to corollary 1.2.2.2.

Proposition [[Bur1]] For the generalised Heisenberg Lie alge-
bras we have

2µ(hm) = dim(hm) + 3.

The standard representation of minimal degree is actually of type 0 so that
µ, µ∞ and µε coincide for all ε ≥ 0. Cagliero and Rojas gave a generalisation
to current Lie algebras.

Proposition [[CaRo]] For any polynomial p(t) of degree r in
K[t], we have

µ(hm ⊗ K[t]
p(t)

) = mr + d2
√
re.

These nilpotent Lie algebras are of dimension r(2m+1) and the commutator
is defined by [v ⊗ f, w ⊗ g] = [v, w] ⊗ (f · g) for v, w ∈ hm and f, g ∈ K[t].
By considering the monomial p(t) = t of degree one, we recover the previous
proposition. The proof of Burde’s proposition can be generalised to prove
the following (slightly weaker) result.

Proposition 1.3.1.1. Consider a Lie algebra g with one-dimensional com-
mutator algebra. Then we have the lower bound dim(g)− α∗(g) ≤ µ(g).
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For a Lie algebra g, α∗(g) is the maximal dimension of an abelian subalgebra
not containing any commutators. E.g.: for an abelian Lie algebra a, we have
α∗(a) = α(a) = dim(a). For the generalised Heisenberg Lie algebras, we
have α∗(hm) + 1 = α(hm) = m+ 1 and α∗(g) + 1 ≤ α(g) for Lie algebras g

satisfying 0 < Z(g) ∩ [g, g].

Proof: Let c be a generator for the commutator algebra and
choose some faithful g-module (ρ, V ) of minimal degree. Since
the action is faithful, ρ(c) is not the zero-operator on V and there
exists a vector v in V such that ρ(c)v 6= 0. Fix this v. Consider
the evaluation map with respect to v:

E : g −→ V : x 7−→ ρ(x)v.

Define a to be the kernel and b to be the image of this map. The
dimension theorem for vector spaces gives us the (in)equalities,

µ(g) = dim(V )

≥ dim(b)

= dim(g)− dim(a).

It is clear that a is a subalgebra of g. For, suppose that x and y
are elements of a, the kernel of E. Then

E([x, y]) = ρ([x, y])v

= ρ(x)ρ(y)v − ρ(y)ρ(x)v

= 0.

In particular, [a, a] ≤ a. Since the commutator algebra of g is
one-dimensional, such an element [x, y] must be proportional to
c. Since E(c) 6= 0 by definition, we conclude that [x, y] = 0 for all
x and y in a. So a is an abelian subalgebra of g, not intersecting
the commutator. So we have,

µ(g) ≥ dim(g)− dim(a)

≥ dim(g)− α∗(g).
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Filiform Lie algebras and Milnor’s conjecture A family that is of
particular interest with respect to the µ-invariant consists of the filiform
nilpotent Lie algebras. A complex Lie algebra g is filiform if it is nilpotent
of maximal class, i.e.: cn(g) + 1 = dim(g). Since the centre of a filiform Lie
algebra g is one-dimensional, we can apply corollaries 1.2.2.1 and 1.2.2.2 to
conclude that dim(g) ≤ µ∞(g) = µ(g). (See [Ben] and [Bu6] for the original
proofs.)

The µ-invariant was used to disprove a famous conjecture by Milnor. In his
paper on the fundamental groups of complete affinely flat manifolds [Mil2],
he enquired about the existence of left invariant affine structures on Lie
groups. The question can be formulated in purely algebraic terms:

Problem Which Lie algebras admit a left-symmetric structure?

Milnor claimed that all nilpotent, and more generally, all solvable Lie alge-
bras (groups) admit such a structure. It turns out that this claim is false:
Benoist constructed an 11-dimensional nilpotent counterexample. This was
followed by the construction of a family of nilpotent counterexamples by
Burde and Grunewald. Burde later found simpler counter-examples in di-
mension 10. All of the mentioned Lie algebras g have the following crucial
property in common: they have a µ-invariant that is in a certain sense big
compared to their dimension: dim(g) + 1 < µ(g). For this reason, they
cannot admit left symmetric structures:

Proposition If a Lie algebra g admits a left symmetric algebra
structure, then µ(g) ≤ dim(g) + 1.

More detailed results can be found in the papers of Burde, Grunewald
and Benoist: [Ben], [BuGr] and [Bu6]. Propositions 3.0.4.1 and 3.0.4.2 on
page 55 express the µ-invariant of a Lie algebra g with a filiform radical f in
terms of µ(g

f ) and µ(f).

Bounds The Ado-Iwasawa theorem states that any finite-dimensional Lie
algebra has a finite µ-invariant and Iwasawa asked how the µ-invariant can
be bounded by the dimension. This question too, has a long history. Already
in 1937, Birkhoff gave attention to this problem for nilpotent Lie algebras.
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Proposition [ [Bir]] “Any c-step-nilpotent Lie algebra of dimen-
sion d is isomorphic with a Lie algebra of finite matrices of
degree at most dc+1−1

d−1 , with coefficients in the same field.”

In 1969, Reed sharpened the result for nilpotent Lie algebras and generalised
the argument to deal with the more general class of solvable Lie algebras.

Proposition [ [Ree]] Every nilpotent Lie algebra of dimension
d and nilpotency class c over an algebraically closed field of
characteristic zero has a faithful representation of degree at
most 1 + d+ dc.

Other bounds for nilpotent Lie algebras were constructed by Burde and de
Graaf, where Burde’s bound is sharper than the one of de Graaf.

Proposition [ [Bur1]] “Let g be a nilpotent Lie algebra of di-
mension d and nilpotency class c. Then µ(g) ≤ p(d, c) with
c < d. Here ν(d, c) = Σc

j=0

(
d−j
c−j

)
p(j) and p(j) is the number

of partitions of j. [Also,]

µ(g) <
α√
d
2d.”

Proposition [ [deG]] “Let g be a nilpotent Lie algebra of di-
mension d and nilpotency class c. Then the degree of [the
faithful representation] σ is bounded above by

(
d+c

c

)
.”

1.3.2 Solvable Lie algebras

Lie’s theorem We have seen that the nil-representations can be conju-
gated to a subalgebra of all strictly upper triangular matrices. Similarly, we
have a theorem that describes the (finite-dimensional) representations of a
solvable Lie algebra. Unlike in Engel’s theorem, there are restrictions on the
underlying base field.

Theorem [Lie] Consider any finite-dimensional linear represen-
tation of a finite-dimensional solvable Lie algebra. If the base
field is algebraically closed and of characteristic zero, then the
representation can be triangularised.
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The corresponding statement over the real numbers does not hold. To each
pair of non-zero real numbers α and β, we associate a (real) Lie algebra that
is two-step solvable (but not nilpotent):

Lα,β = 〈 x, y, z | [z, x] = αy, [z, y] = βx 〉.

We will show that if g is a (real) Lie algebra containing some Lα,β for αβ < 0,
then g cannot be embedded into (real) upper-triangular matrices of any de-
gree.

Proof: Suppose there is an embedding of g into strictly upper-
triangular matrices of a finite degree. We may then identify
elements of Lα,β with their images. Since x = 1

β [z, y] and y =
1
α [z, x], the elements x and y are strictly upper triangular. Let
xi,j , yi,j be their coefficients with respect to the chosen basis.
The two commutator-relations give the following system in the
variables xt+1,t and yt+1,t:

αyt+1,t = (zt,t − zt+1,t+1)xt+1,t

βxt+1,t = (zt,t − zt+1,t+1)yt+1,t.

This system is regular over the real numbers since αβ < 0.
Hence, there are only trivial solutions for xt+1,t and yt+1,t. By
repeating this argument, one can show that xt+u,t and yt+u,t are
zero for all u. This implies that x and y are the zero-operators.
This contradicts the faithfulness of the embedding and it finishes
the proof.

All real solvable Lie algebras of dimension at most 2 can be embedded
into upper-triangular matrices. Thus the three-dimensional Lie algebras
above are counterexamples to Lie’s theorem over the real numbers of lowest
possible dimension. Note that for α, β,A,B 6= 0, we have Lα,β

∼= LA,B. Also
note that µ(Lα,β) = 3.

Problem Consider a field K. Which solvable K-Lie algebras
can be brought in upper triangular form?
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Bounds Also for solvable Lie algebras, we have bounds for the µ-invariant
in terms of its dimension and solvability class. For nilpotent Lie algebras,
Engel’s theorem gave us a lower bound for the µ-invariant in terms of the
nilpotency class. Similarly, in the case of solvable Lie algebras, we can
deduce a lower bound for the µ-invariant in terms of the solvability class.
Where Engel’s theorem gave a linear lower bound, Lie’s theorem gives us an
exponential bound:

Corollary 1.3.2.1. For a complex solvable Lie algebra g, we have

2cs(g)−2 ≤ µ(g).

Proof: Suppose that g ≤ gln(C). Then after conjugation, we
may assume that g is contained in the solvable Lie algebra of
all upper-triangular matrices, B(n). Then cs(g) ≤ cs(B(n)).
The latter solvability class is dlog2(n)e + 1. This implies that
2cs−2 ≤ n. The desired inequality is obtained for n = µ(g).

The following result was claimed by Reed. Note that we have obtained a
better upper bound in subsection 1.1.2.

Proposition [[Ree]] Every solvable Lie algebra of dimension d

over an algebraically closed field of characteristic zero has a
faithful representation of degree at most 1 + d+ dd.

1.4 Analogues and generalisations

An analogue to Ado’s theorem can also be formulated for other algebraic
structures such as algebras and groups, where the definitions also make
sense. In this section we mention a few parallel results.

1.4.1 Generalisations of Lie algebras

Color Lie algebras Super Lie algebras are natural generalisations of Lie
algebras. Scheunert and later Kac proved that Ado’s theorem also holds in
this setting. In his proof [Kac], Kac even uses the classical theorem of Ado
to obtain that every finite-dimensional Lie superalgebra admits a faithful
finite-dimensional representation. In particular, it is possible to extend the
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definition of µ to the larger class of Super Lie algebras. There is the even
broader class of generalised Lie algebras, also called color Lie algebras. The
following theorem is due to Scheunert [Scht].

Theorem [Scheunert] Let Γ be an abelian group, let ε be a
commutation factor on Γ [over an arbitrary field], and let L
be a finite-dimensional ε Lie algebra. Then L has a faithful
finite-dimensional Γ-graded representation.

Lie algebras over a ring Lie algebras are usually defined over a field but
it is also possible to consider Lie algebras over a ring. Churkin, Kuz’min
and Weigel generalised the theorem of Ado and Iwasawa in the following
ways (See [Chur, Wei] and [Iwas]).

Theorem [Churkin,Kuz’min,Weigel] Let D be a ring and let g

be a Lie algebra over D that is finitely generated and free.
Then g admits a faithful representation by matrices inMn(D)
for some n ∈ N if D is a

(i.) principle ideal domain of characteristic zero,

(ii.) commutative ring of prime characteristic, or

(iii.) noetherian ring of prime characteristic.

Note that the theorem of Ado is recovered from (i.) and Iwasawa’s from
(ii.), (iii.) by taking D to be a field.

1.4.2 Linear groups

Lie groups Ado’s theorem does not hold in general for the class of all
Lie groups. Consider for example the simply connected universal covering
group of SL2(R). Then it is well-known that this Lie group does not ad-
mit any faithful linear representation of finite dimension. For a complete
characterisation of the (finite-dimensional) connected Lie groups that admit
a faithful representation of finite degree, see the work [BeNe]. If we pass
to matrices of countable size, M∞(k), and to M∗

∞(k), the corresponding
subset of invertible matrices, we obtain the following theorem by Bourgin
and Robart. (See [BoRo1, BoRo2] for exact definitions and notation.)
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Theorem [Bourgin-Robart] Each finite-dimensional Lie group
can be faithfully represented in M∗

∞(k).

If we define µ(G) to be the minimal degree of a faithful Lie-representation
for the Lie group G, then the theorem says that the invariant µ(G) is either
finite or countably infinite. It is possible to compare the µ-invariant of a Lie
group with that of its Lie algebra.

Proposition 1.4.2.1. Let G be a Lie group and g its Lie algebra. Then we
have,

µ(g) ≤ µ(G).

Proof: Suppose that ρ : G −→ GL(V ) is a faithful linear rep-
resentation of the Lie group G in the vectorspace V . Then the
projection dρ : g −→ gl(V ) is a representation of g with the same
degree. Since the kernel of dρ is equal to the projection of the
kernel of ρ, it is the projection of {0} and so dρ is faithful. So
µ(g) ≤ deg(dρ) = deg(ρ) and since this is true for all faithful
embeddings ρ, we obtain µ(g) ≤ µ(G).

Linear groups The groups that admit a finite-dimensional faithful repre-
sentation are also called linear. Finite groups are linear by Cayley’s theorem
of permutation groups. The free groups and the virtually-polycyclic groups
([Aus, Hall] and [Swa]) are linear too. There are many results available in
the literature, mainly concerned with the following two questions.

Problem Which groups are linear? And what are the properties
of linear groups?

One of the first to attack these problems was Mal’cev. He studied “the
representation by matrices of some finite degree with elements from some
field” ([Mal1]). Merzlyakov devoted his thesis to the subject and many have
worked on the problems since ([Mer]): Mal’cev, Hall, Auslander, Zassen-
haus, Kolchin, Suprunenko and Tits. Mal’cev proved that linearity is a local
property. Let n be a natural number.

Theorem [Mal’cev] A group is linear of degree n if and only if
it is locally linear of degree n.
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An interesting overview of the subject can be found in “Matrix groups” by
Cameron ([Came]): linear groups that are finite, finitely generated, periodic,
solvable or nilpotent are discussed. Since Ado’s theorem fails for groups, the
µ-invariant may not be finite.

Definition The µ-invariant of a group G over a field k is,

µ(G, k) = min{ dimk(V ) | G ≤ GL(V ) }.

Note that µ(G, k) ≤ |G| since the left-regular representation is faithful
and of degree |G|. As in the Lie-algebra-case, the invariant is monotone
and subadditive. It is also known as the representation-dimension of G,
rdimk(G). For p-groups, it generically coincides with the essential-dimension
([KaMe, Flo]). Note that this invariant strongly depends on the properties
of the field. For finitely generated abelian groups, the µ-invariant is finite
and it can be expressed in terms of an other natural invariant of the group
(cf. [KaMe, Flo] and [Kar]).

Proposition Consider a finitely generated abelian group A with
torsion subgroup T . Let t be the number of invariant factors
of T . Then µ(A,C) = µ(T,C) = t.

An elementary proof can be found in the appendix. Note the importance of
the field in the above proposition. For natural numbers n > 2, µ(Zn,C) <
µ(Zn,Q). Finally, we should note that there is an other representation-
invariant associated to (finite) groups. Unfortunately, the same notation is
used in that context. According to Cayley’s theorem, every finite group G

can be embedded into some permutation group on |G| many elements. The
other µ-invariant for a finite group G is then defined as the minimal natural
number n for which there exist an embedding of G into Sn,

µ(G) = min{ n ∈ N | G ≤ Sn } ≤ |G|.

This invariant too is monotone and subadditive. In this field, there is the
following important question ([Kar],[Joh] and [Wri]). For a nice and compact
overview of the subject, we refer to [Sau].

Problem For which groups G1 and G2 do we have the equality
µ(G1 ×G2) = µ(G1) + µ(G2)?
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Chapter 2

Reductive Lie algebras

In this chapter we study the faithful representations of minimal degree for
Lie algebras that are reductive. A Lie algebra g is called reductive if every
ideal h of g admits a complementary ideal, i.e., an ideal t of g such that
g = h⊕ t as a direct sum of ideals. Every Lie algebra that does not contain
any proper ideals is reductive and it cannot be decomposed further. In this
case, there are two possibilities: the algebra is either abelian and of dimen-
sion one, or, it is not. In the latter case, we call the Lie algebra simple. In
the classical theory of Lie algebras, there is a standard classification of the
simple Lie algebras, say over the complex numbers. It turns out that every
reductive Lie algebra can be decomposed into a sum of ideals that are either
simple or abelian and that this decomposition is essentially unique.

We will first focus on the abelian Lie algebras, which are in a way the
easiest examples of reductive Lie algebras. A theorem due to Schur can be
transformed to obtain the µ-invariant for abelian Lie agebras as a function
of their dimension. Then we will consider the simple and semisimple Lie
algebras, which behave quite differently. Theorems by Weyl and Iwahori are
used to decompose representations of semisimple Lie algebras. The faithful
representations can then be characterised in terms of these decompositions.
It turns out that the µ-invariant is additive for semisimple Lie algebras. In
general, a reductive Lie algebra contains both simple and abelian ideals. To
tackle this case, we first compute the centraliser of a semisimple Lie algebra
in a general linear algebra gl(V ). From this, we can draw a number of
conclusions about the µ-invariant, including:
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Theorem Consider a reductive Lie algebra g. Let l0 = max{ 0, z−
l } where l is the length of the commutator and z is the di-
mension of the centre. Then

µ(g) = µ([g, g]) + µ(
z(g)
Cl0

).

After this, it is not difficult to produce a list of all reductive subalgebras of
a general linear algebra gl(V ) up to isomorphism, where V is an arbitrary
finite-dimensional vector space. Finally, we discuss how this is related to the
classification of maximal reductive subalgebras of a given simple Lie algebra.

2.1 Abelian Lie algebras

Abelian subalgebras In the first case, we consider abelian Lie algebras.
These Lie algebras are, up to isomorphism, completely determined by their
dimension. Note that if a Lie algebra g contains an abelian subalgebra, then
it also contains the abelian Lie algebras of lower dimensions. For convenience
later, we introduce the following invariant which respects inclusions and
direct sums. More precisely, it satisfies the monotonicity and the additivity
properties.

Definition 2.1.0.1. For any finite-dimensional Lie algebra g, we define the
α-invariant α(g) to be the maximal dimension of an abelian Lie subalgebra
of g.

Lemma 2.1.0.1. Suppose g1 and g2 are two Lie algebras. Then we have:

(i.) If g1 ≤ g2, then α(g1) ≤ α(g2).

(ii.) α(g1 ⊕ g2) = α(g1) + α(g2).

Proof: (i.) Any abelian subalgebra of g1 is an abelian subal-
gebra of g2. (ii.) Let πg1 and πg2 be the natural projections of
g1⊕g2 onto g1 resp. g2. If a is any abelian subalgebra of g1⊕g2,
then so is a = πg1(a) ⊕ πg2(a). Since a ≤ a, we may conclude
that α(g1⊕ g2) ≤ α(g1) +α(g2). The converse inequality can be
obtained from the direct sum of a1 and a2 where a1, resp. a2 is
an abelian subalgebra of maximal dimension of g1 resp. g2.
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In particular, α(g) is an invariant of g. It can be interpreted in the following
way. An abelian Lie algebra a can be embedded into a Lie algebra g if
and only if dim(a) ≤ α(g). A Lie algebra is abelian if and only if its α-
invariant and dimension coincide. An abelian subalgebra of dimension α(g)
is a maximal abelian subalgebra of g but the converse is generally not true.
To see this, consider for example a Cartan subalgebra of the simple Lie
algebra sln(C): it is maximal abelian but not of maximal abelian dimension.
Over one century ago, Schur computed what we would now call the α-
invariant of the general linear matrix algebra.

Lemma [[Schu]] The maximal dimension, α(gln(C)), of an abelian
subalgebra of gl(Cn) is given by b(n

2 )2c+ 1.

This result can be used to compute the µ-invariant for the abelian Lie alge-
bras. It says that an abelian Lie algebra a can be embedded into gl(Cn) if
and only if dim(a) ≤ b(n

2 )2c+ 1.

Proposition [[Bur1]] For a d-dimensional abelian Lie algebra
Cd, we have

µ(Cd) =


0 if d ≤ 0
1 if d = 1.

d2
√
d− 1e if d ≥ 2

Here, the first case d ≤ 0 is really a definition that will be useful later.

The history of α Schur proved in fact much more than a formula for
α(gl(V )). He even classified the abelian subalgebras of maximal dimension
(See [Schu]). Using some explicit calculations, he obtained the following
result in 1905. Let n be a natural number.

Theorem [Schur] We have α(gln(C)) = b(n
2 )2c + 1. If n > 3,

then any abelian subalgebra of this dimension is the direct
sum of the scalar subalgebra C1n and a Lie subalgebra N

consisting of only nilpotent operators such that the product
of any two such operators vanishes.

Consider a vector space V of dimension n. First suppose n = 2m is even.
Let V = V1⊕V2 be a vector space decomposition of V such that both terms
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have dimensionm. The linear transformations A of V satisfying A(V1) = {0}
and A(V2) ≤ V1, form a linear subspace of End(V ) and even an abelian Lie
subalgebra of gl(V ). Denote this space by An. Note that An ◦ An = 0 so
that [An,An] = 0. Now suppose n = 2m+1 is odd. Consider a vector space
decomposition V = V1 ⊕ V2 with (dim(V1),dim(V2)) = (m,m + 1). Define
An,1 as the space of linear transformations A satisfying A(V1) = {0} and
A(V2) ≤ V1. Consider another vector space decomposition V = W1 ⊕W2

with (dim(W1),dim(W2)) = (m+1,m). Define An,2 to be the space of linear
transformations A satisfying A(W1) = {0} and A(W2) ≤ W1. Then both
An,1 and An,2 are abelian subalgebras of gl(V ). Note that An,1 ◦ An,1 = 0
so that [An,1,An,1] = 0. The same goes for An,2.

Theorem [ctd.] Such a Lie algebra N is equivalent to:

• For n 6= 3: An, An,1 or An,2 depending on the parity of
n.

• For n = 3: A3,1, A3,2 or to the algebra of transforma-
tions with a matrix of the form, 0 0 0

a 0 0
b a 0

 .

Corollary 2.1.0.1. For every abelian Lie algebra a > 0 and every ε ∈ N,
we have

µε(a) = µ∞(a) = µ(a⊕ C).

Later, in 1944, Jacobson [Jac] simplified the techniques and generalised the
result to characteristic zero. It should be noted however, that he still makes
explicit matrix manipulations. Then, in 1975, there was a completely new
proof given by Gustafson. He noted that a maximal abelian Lie subalge-
bra is also a finite-dimensional commutative algebra with unit and so in
[Gus] he applied the standard structure theory of commutative algebra in a
very elegant way to classify abelian subalgebras of maximal dimension. In
1945, Malcev [Mal3, Mal4] generalised Schur’s result by essentially classi-
fying the abelian subalgebras of maximal dimension for the semisimple Lie
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algebras. He did this by classifying maximal commutative systems of roots.
Finally, Suter [Sut] computed the maximal dimension of abelian ideals in
the semisimple Lie algebras. He did not do it case-by-case as Malcev did,
but using a general approach with root systems.

2.2 Semisimple Lie algebras

Let s be a semisimple Lie algebra. Then it is well known that this Lie alge-
bra decomposes into simple ideals s1, . . . , sl: s = s1 ⊕ . . .⊕ sl. The number
of simple ideals into which s decomposes and the simple ideals themselves
are unique and this decomposition is unique up to order of the terms. The
length l = l(s) of s is defined as the number of simple ideals in such a de-
composition. More generally, the length of a (finite-dimensional) Lie algebra
can be defined as the maximal number of terms in a reduced direct sum de-
composition of ideals. The length and dimension coincide exactly for the
abelian Lie algebras.

2.2.1 Decomposition theorems

Just as every semisimple Lie algebra decomposes into elementary pieces,
so do their representations. These elementary pieces are the irreducible
representations. There are two theorems that describe the decomposition.

Theorem [Weyl] Every complex representation ρ : s −→ gl(V )
of a semisimple Lie algebra s is equivalent to a represen-
tation that is the direct sum of irreducible representations
ρ1, . . . , ρk: ρ = ρ1⊕ . . .⊕ρk. Two representations ρ ∼ ⊕k

i=1ρi

and ρ′ ∼ ⊕k′
i=1ρ

′
i are equivalent if and only if k = k′ and there

exists a permutation σ ∈ Sk such that ρi ∼ ρ′σ(i) for all i.

The irreducible representations of a semisimple Lie algebra can be broken up
into irreducible representations of the simple ideals. Let πj be the natural
projection of s onto sj with respect to the above decomposition.

Theorem [Schur-Iwahori] Every irreducible representation ρ :
s −→ gl(V ) is equivalent to a representation that is the
tensor product (ρ1 ◦ π1) ⊗ . . . ⊗ (ρl ◦ πl) of irreducible sj-
representations ρj : sj −→ gl(Vj). Two such (irreducible)
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representations ρ ∼ ⊗l
j=1ρj and ρ′ ∼ ⊗l

j=1ρ
′
j are equivalent

if and only if ρj ∼ ρ′j for all j.

A representation of a simple Lie algebra is either trivially zero or faithful
since the kernel is an ideal of the Lie algebra. In particular, a minimal
faithful representation of a simple Lie algebra is automatically irreducible.
Note that these minimal representations are not necessarily unique up to
isomorphism. Consider the list of invariants for the simple Lie algebras in
Table 2.1. Here, ν(s) is the number of minimal faithful representations up
to equivalence, i.e.: linear conjugation.

s d(s) α(s) µ(s) ν(s) n Type

An n(n+ 2) b(n+1
2 )2c n+ 1

1

2

1 = n

2 ≤ n
sln+1

Bn n(2n+ 1) n(n−1)
2 + 1 2n+ 1 1 3 ≤ n o2n+1

Cn n(2n+ 1) n(n+1)
2 2n 1 2 ≤ n sp2n

Dn n(2n− 1) n(n−1)
2 2n 1 4 ≤ n o2n

G2 14 3 7 1 g2

F4 52 9 26 1 f4

E6 78 16 27 2 e6

E7 133 27 56 1 e7

E8 248 36 248 1 e8

Table 2.1: Invariants of the Semisimple Lie Algebras

So consider an s-representation ρ : s −→ gl(V ). The theorems above give
an equivalent representation that decomposes as ⊕k

i ⊗l
j ρi,j . This induces a

(k× l)-matrix with (i, j)’th entry equal to [ρi,j ], the equivalence class of ρi,j

as an sj-representation:

[ρ1,1] . . . [ρ1,l]
...

. . .
...

[ρk,1] . . . [ρk,l]

.

Remark 2. Define an equivalence relation on the set R = R(s) of these
matrices as follows. Two elements P and Q of R are equivalent, P ∼ Q , if
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and only if they are of the same size (k = k′) and there exists a permutation
σ ∈ Sk such that Pi,j = Qσ(i),j for all (i, j). So we have a natural one-to-
one correspondence between the equivalence classes of s-representations and
the equivalence classes of R(s). From now on, we will identify these two
sets. The degree of [R] ∈ R/ ∼ is just

∑k
i

∏l
j deg(Ri,j), which (of course),

does not depend upon the choice of the representative. Note that for an
equivalence class there are only two possibilities: either all representatives
are faithful, or none of them are.

Lemma 2.2.1.1. For ρi,j as before, we have: ker(⊗l
tρi,t ◦ πt) = ⊕l

t ker(ρi,t ◦
πt).

Proof: We can drop the subscript i. First, assume that l = 2,
i.e.: we work with the irreducible representations ρt : st −→
gl(Vt). Then ker(ρ1 ◦π1)⊕ ker(ρ2 ◦π2) is contained in the kernel
of (ρ1 ◦ π1) ⊗ (ρ2 ◦ π2). Conversely, assume that z ∈ ker((ρ1 ◦
π1)⊗ (ρ2 ◦ π2)), i.e.: (ρ1(π1(z))v1)⊗ v2 + v1⊗ (ρ2(π2(z))v2) = O
for all v1 in V1 and all v2 in V2. Then, using explicit bases, we
see that there is a constant α ∈ C such that

ρ1(π1(z)) = α1V1 and ρ2(π2(z)) = −α1V2 .

Since ρt(πt(z)) is traceless, the constant is zero and in particular
we have that π1(z) ∈ ker(ρ1) and π2(z) ∈ ker(ρ2). For l > 2, we
can use the same argument inductively by replacing s1 by the
first l − 1 ideals and s2 by sl. This finishes the proof.

Lemma 2.2.1.2. An equivalence class [R] is faithful if and only if R has
no columns that contain only trivial elements. This does not depend on the
choice of the representative.

Proof: Suppose there is a column with all elements equal to
the trivial class. Then the corresponding ideal is contained in
the kernel. Conversely, suppose that there is no trivial column
for R = ([ρi,j ])i,j and let z be an element of the kernel. Fix an
index j. Then there exists an i such that [ρi,j ] is faithful. In
particular, we have

0 = ρi(z) = ⊗l
tρi,t(zt).
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Since ker(⊗l
tρi,t) = ⊕l

t ker(ρi,t), we have zj = πj(z) ∈ ker(ρi,j) =
{0}. Similarly, we can prove that all the other projections of z
are zero. This means that z itself is zero and this finishes the
proof.

2.2.2 The additivity of the µ-invariant

Now we are ready to compute the minimal dimension of a faithful representa-
tion for a semisimple Lie algebra and to classify the faithful representations
of this minimal degree.

Theorem 2.2.2.1. Let s = ⊕l
isi as above. Then the minimal dimension

of a faithful representation is

µ(s) = µ(s1) + . . .+ µ(sl).

Proof: First, consider the classes of the form [R0] for

R0 =

[ρ1,1] [1] · · · [1]

[1] [ρ2,2]
. . . [1]

...
. . . . . . [1]

[1] [1] [1] [ρl,l]

,

where ρi,i is some minimal, faithful representation for si (in par-
ticular of degree µ(si)) and [1] is the trivial class. Then [R0]
is faithful, deg([R0]) =

∑l
i µ(si) and we have the upper bound

µ(s) ≤
∑l

i µ(si). We will prove that this inequality is an equality.
Let [R] be a minimal faithful class with R = ([ρi,j ])i,j .

• Note that for any two natural numbers p and q that are at
least two, we have the inequality p + q ≤ p · q. Suppose
that R has a row, say row i, that contains more than one
non-trivial element, say elements at the position (i, x) and
(i, y). Then we can remove this row and add two new rows:

· · · [ρi,jx ] · · · [ρi,jy ] · · · →
· · · [ρi,jx ] · · · [1] · · ·
· · · [1] · · · [ρi,jy ] · · ·

,

so that we obtain a new matrix R′. Note that this matrix is
faithful and that deg(R′) ≤ deg(R). Since R was minimal,
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we have equality. In particular, R′ is a minimal faithful
representation. By applying this transformation repeatedly,
we finally obtain a minimal, faithful matrix R such that
every row of R contains at most one non-trivial element.

• There cannot be a row that contains only trivial elements,
since removing this row would give a faithful matrix of
strictly smaller degree. So every row of R contains exactly
one element unequal to the trivial one.

• Suppose there is a column, say column j, that contains more
than one non-trivial element, say elements at position (x, j)
and (y, j). Then we can remove row x to obtain a faithful
matrix of dimension strictly smaller. This contradicts the
minimality of R. So every column contains exactly one
element different from the trivial one.

• Consider the j’th column of R. Then the non-trivial ele-
ment is a faithful representation of the ideal sj . If it is not
of minimal degree, we can replace it by an other faithful
class of strictly lower degree to obtain a faithful matrix R′

of strictly lower degree. This contradicts the minimality of
R. So, up to equivalence, R is of the form R0 from the
beginning of the proof.

This gives us µ(s) = deg([R]) = deg([R0]) =
∑l

i µ(si), which
finishes the proof.

Remark 3. In the proof we have worked with complex Lie algebras and
their complex representations. The proof holds if we work with real Lie
algebras and their complex representations because the decomposition the-
orems of Weyl and Iwahori-Schur can be used in this case. Note however,
that the additivity fails for real representations of real Lie algebras. Con-
sider for example the semisimple Lie algebra so4(R) = so3(R) ⊕ so3(R).
Then µ(so4(R),R) = 4 and µ(so3(R),R) = 3. The natural, irreducible rep-
resentation of so4(R) is an embedding of minimal degree. Hence µ(so3(R)⊕
so3(R)) 6= µ(so3(R)) + µ(so3(R)).
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2.2.3 Classification

Recall that two representations ρ1 and ρ2 of a Lie algebra g in V are called
equivalent if they are conjugated, i.e., if there exists an isomorphism T of V
such that ρ1(x) ◦ T ≡ T ◦ ρ2(x) for all x in g. We now describe the minimal
faithful representations of the semisimple Lie algebras and count them - up
to equivalence.

Definition 2.2.3.1. For a Lie algebra g we define ν(g) to be the number of
faithful representations of minimal degree µ(g), up to equivalence.

In Table 2.1, the ν-invariant for (complex) semisimple Lie algebras is pre-
sented. For sln(C) (n ≥ 2) and E6 it is two. For all other simple Lie algebras
it is one. The proof of theorem 2.2.2.1 already gave explicit examples of min-
imal faithful representations for semisimple Lie algebras but it did not give
all of them.

Example 2.2.3.1. Let s = s1⊕s2, where s1 and s2 are copies of
sl2(C). Then s1 and s2 each have a unique faithful representation
of minimal degree: ρ1 resp. ρ2. They are of degree two. Consider
the following representations of s1 ⊕ s2,

ρ1 ⊕ ρ2 : s1 ⊕ s2 −→ gl4(C)

ρ1 ⊗ ρ2 : s1 ⊕ s2 −→ gl4(C),

with associated tableaux,

[ρ1] [1]

[1] [ρ2]
resp. [ρ1] [ρ2] .

From this it is immediately clear that both representations are
faithful and of degree µ(s1⊕ s2) = 4. They are also inequivalent
since ρ1 ⊗ ρ2 is irreducible and ρ1 ⊕ ρ2 is not.

4

First case Now consider the special case: s′ = s′1 ⊕ . . . ⊕ s′l′ where every
s′i is a copy of sl2(C). Let ρ′ be a faithful representation of s′ of minimal
degree: µ(s′) = 2l′. Fix a tableau for ρ. Since, p + q ≤ p · q for natural
numbers 2 ≤ p, q with equality for only p = q = 2, we can make the following
observations:
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(i.) Any column contains exactly one non-trivial element. (ii.)
All non-trivial elements are the same, of degree two. (iii.) Any
row contains either one or two non-trivial elements.

For otherwise, it would be easy to construct an other faithful representation
of strictly smaller degree (as was shown in the proof of theorem 2.2.2.1).
Iwahori’s theorem says that two such representations are equivalent if and
only if the associated tableaux are, i.e.: if they are the same up to a permu-
tation of the rows. These observations prove the following lemma.

Lemma 2.2.3.1. The equivalence classes of minimal faithful representa-
tions of the Lie algebra s′ are in a natural one-to-one correspondence to the
partitions of the set of the l′ simple ideals of s′ into subsets of size one and
two.

In the example above, the partitions of ideals into subsets of size one and
two, are: { { s′1 } , { s′2 } } and { { s′1, s

′
2 } }. This implies that ν(s′) = 2. In

the general case, we obtain the formula, ν(s′) = cl′ where (cn)n is the unique
solution to the linear recurrence relation

cn+2 − cn+1 = (n+ 1)cn

with initial conditions c0 = c1 = 1.

Second case Now consider another special case: s′′ = s′′1 ⊕ . . .⊕ s′′l′′ where
each s′′i is simple and not isomorphic to sl2(C). Let ρ′′ be a faithful repre-
sentation of minimal degree µ(s′′) =

∑
i µ(s′′i ) and fix a tableau for it. Since

µ(s′′i ) > 2 for all i, the (p + q), (p · q)-argument shows that every row and
every column contains exactly one non-trivial element. This implies that
the tableau is square and, up to permutation, of the form,

[ρ′′1] 1 1 1

1 [ρ′′2] 1 1

1 1
. . . 1

1 1 1 [ρ′′l′′ ]

,

where each ρ′′i is a faithful representation of s′′i of minimal degree. Iwahori’s
theorem then gives the following lemma.
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Lemma 2.2.3.2. The minimal faithful representations of the Lie algebra s′′

are of the form ρ′′1 ⊕ . . .⊕ ρ′′l′′ where each ρ′′i is a faithful representation for
the simple ideal s′′i of minimal degree. Two representations are equivalent if
and only if all corresponding terms are.

This implies that ν(s′′) = ν(s′′1) · . . . · ν(s′′l′′).

General case Fix a semisimple Lie algebra s of length l and decompose
it into simple ideals. We may assume that the first l′ of them are copies of
sl2(C) and that the l′′ rest of them are not:

s = (s′1 ⊕ · · · ⊕ s′l′)
⊕

(s′′1 ⊕ · · · ⊕ s′′l′′) = s′ ⊕ s′′.

The length of s′ and s′′ is l′ resp. l′′ so that in particular, l = l′ + l′′. Fix
a faithful representation ρ of minimal degree for s and fix a tableau. Then
the usual (p + q), (p · q)-argument shows that each row contains either one
non-trivial element or two non-trivial elements. The latter can only occur
if both entries correspond to ideals of s′. Up to equivalence, we obtain a
representation with a tableau of the form,

[ρ′] [1]

[1] [ρ′′]
,

where ρ′ resp: ρ′′ is a representation of s′ resp. s′′. These are necessarily
faithful and of minimal degree. The decomposition of ρ into ρ′ and ρ′′ is
unique (up to equivalence) according to Iwahori’s theorem. These observa-
tions prove the following lemma.

Lemma 2.2.3.3. The faithful representations ρ of minimal degree for s are
the ones equivalent to those of the form ρ′ ⊕ ρ′′ = (ρ′ ⊗ 1)⊕ (1⊗ ρ′′) where
ρ′ resp. ρ′′ is a faithful representation of s′ resp. s′′ of minimal degree. Two
such representations are equivalent if and only if the corresponding terms
are.

This allows us to conclude that ν(s) = ν(s′) · ν(s′′), where the factors were
computed in the two previous cases.

2.3 Reductive Lie algebras

A reductive Lie algebra g decomposes into a direct sum of simple and abelian
ideals. We already know how to compute the µ-invariant for each of these
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ideals. We will reduce the computation of µ(g) to that of its ideals.

Lemma 2.3.0.4. For any Lie algebra g satisfying Z(g) ≤ [g, g], we have
µ(g⊕ C) = µ(g).

Proof: Consider a faithful representation ρ : g −→ gl(V ).
Then the representation ρ̃ : g ⊕ C −→ gl(V ) : (x, t) 7−→ ρ(x) +
t · 1V is faithful if g satisfies Z(g) ≤ [g, g]. For such algebras g,
we conclude µ(g⊕C) ≤ µ(g). The monotonicity of µ implies the
converse inequality.

Corollary 2.3.0.1. Let g1, . . . , gl be Lie algebras as above let and k be a
natural number. Then

µ(g1 ⊕ . . .⊕ gl ⊕ Ck) ≤ µ(g1) + . . .+ µ(gl) + µ(Cl−k).

Proof: First suppose that l ≤ k. By using the monotonicity
and lemma 2.3.0.4 we obtain,

µ(g1 ⊕ . . .⊕ gl ⊕ Ck) ≤ µ(g1 ⊕ . . .⊕ gl ⊕ Cl) + µ(Ck−l)

= µ(g1 ⊕ C) + . . .+ µ(gl ⊕ C) + µ(Ck−l)

= µ(s1 ⊕ . . .⊕ sl) + µ(Ck−l).

If k ≤ l, then we can embed g1⊕. . .⊕gl⊕Ck into g1⊕. . .⊕gl⊕Cl.
Then the monotonicity and the previous case give,

µ(g1 ⊕ . . .⊕ gl ⊕ Ck) ≤ µ(g1 ⊕ . . .⊕ gl ⊕ Cl)

≤ µ(s1 ⊕ . . .⊕ sl) + µ(Cl−l)

= µ(s1 ⊕ . . .⊕ sl) + µ(Ck−l).

Let g be a reductive Lie algebra. We already know that it decomposes into a
direct sum of ideals that are simple or abelian. The sum of all simple ideals
of g, which is a semisimple Lie algebra, coincides with the commutator
subalgebra [g, g] of g. The sum of all abelian ideals gives us exactly the
centre Z(g) of g. The reductive Lie algebras are then exactly the direct
sums of a semisimple Lie algebra s and an abelian Lie algebra a: s⊕ a.
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Corollary 2.3.0.2. For any reductive Lie algebra g with commutator s,
centre a and commutator length l(s), we have

µ(g) ≤ µ(s) + µ(Cdim(a)−l(s)).

We can already note that µ(g) ≤ dim(g) for all reductive Lie algebras g.

2.3.1 Centralisers of semisimple Lie algebras

In order to prove equality in corollary 2.3.0.2, the following lemma is crucial.

Lemma 2.3.1.1. Let s be semisimple, h be some Lie algebra and choose a
natural number n, at least µ(s). Then s⊕ h can be embedded into gl(Cn) if
and only if h can be embedded into gl(Cn−µ(s))⊕ Cl(s).

We give the proof in several steps, essentially by breaking down the rep-
resentations of reductive Lie algebras into smaller pieces. Two represen-
tations ρ1 : g1 −→ gl(V ) and ρ2 : g2 −→ gl(V ) are said to commute, if
[ρ1(x1), ρ2(x2)] = 0 for every x1 ∈ g1 and every x2 ∈ g2.

Lemma 2.3.1.2 (Cut-and-Paste). Let g1, g2 be two Lie algebras and suppose
that one of them has a trivial centre. Then there is a bijective correspondence
between representations as follows:

(1) A faithful representation ρ : g1 ⊕ g2 −→ gln(C) induces a pair of
commuting representations (ρ1, ρ2) by inclusion, given by ρj = ρ ◦ ιj :
gj −→ gln(C) for j = 1, 2, where ιj is the natural inclusion of gj into
g1 ⊕ g2.

(2) Conversely a pair of commuting faithful representations ρj : gj −→
gln(C) induces a faithful representation ρ : g1 ⊕ g2 −→ gln(C) by
ρ = ρ1 ◦π1 + ρ2 ◦π2, where πj is the natural projection of g1⊕ g2 onto
gj.

Proof. It is clear that ρ1, ρ2 are faithful representations. We have

[ρ1(x), φ2(y)] = [ρ(x, 0), φ(0, y)] = ρ([(x, 0), (0, y)]) = 0.

This shows (1). For (2) we may assume that g1 has no centre. Choose any
(x, y) ∈ ker(φ). This means ρ1(x) + ρ2(y) = 0, so that

ρ1(x) = −ρ2(y) ∈ ρ1(g1) ∩ ρ2(g2) ⊆ Z(ρ1(g1)) = Z(g1) = 0.

In particular, x and y are mapped to zero. Since both ρ1 and ρ2 are faithful,
we have (x, y) = (0, 0). This implies that ρ is faithful.
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Consider a Lie algebra embedding ρ : g −→ gl(V ). Then we define the
centraliser of this representation to be,

Cgl(V )(ρ) = C(ρ)

= {M ∈ gl(V ) | [ρ(x),M ] = 0 for every x ∈ g } .

Note that C(ρ) is a subalgebra of gl(V ). The centraliser of a representation
of a semisimple Lie algebra can easily be described in terms of it’s Weyl
decomposition. Let ρ : s −→ gl(Cn) be a representation that decomposes
into irreducibles ⊕k

i=1ρi according to theorem 2.2.1. It is possible that there
are equivalent terms in this decomposition. So, up to equivalence, we may
assume that ρ is of the form ρ =

⊕k
i=1miρi where ρi ∼ ρj if and only if

i = j. The number mi is the multiplicity of the irreducible representation
ρi in ρ. We may also assume that none of the multiplicities is zero. The
following is a generalisation of Schur’s lemma for irreducible representations.

Lemma 2.3.1.3. Consider the representation ⊕k
imiρi for inequivalent, ir-

reducible representations ρi. Then we have the isomorphisms of Lie algebras

C(
k⊕
i

miρi) ∼=
k⊕
i

C(miρi) ∼=
k⊕
i

gl(Cmi).

In particular, we see that the centraliser is automatically a reductive Lie
algebra. Note also that the lemma reduces to the traditional lemma for
k = 1 and m1 = 1.

Definition 2.3.1.1. Fix a semisimple Lie algebra decomposition s = s1 ⊕
· · · ⊕ sl of length l, and an integer n ≥ µ(s). Consider the following s-
representation, σn =

⊕l
i=1(ρi ◦ ιi)

⊕
(n − µ(s))τ, where the ρi are faithful

si-representations of degree µ(si) and where τ is the trivial representation of
dimension one, as usual. A representation of this form (or, a representation
equivalent to one of this form) is called a standard-block representation of
degree n for s = s1 ⊕ . . .⊕ sl.

Here, the associated tableaux is of the form of Figure 2.1. In particular,
it is immediately clear that the σn are faithful and that σn = σµ(s) ⊕ (n −
µ(s))τ for some standard block representation σµ(s) of degree µ(s). These
representations turn out to have the biggest centralisers: For every standard
block representation σn of degree n, we have the isomorphism of Lie algebras,

C(σn) ∼= gl(Cn−µ(s))⊕ Cl(s).
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[σn] =

[ρ1] [τ ] · · · [τ ]

[τ ] [ρ2]
. . . [τ ]

...
. . . . . . [τ ]

[τ ] [τ ] [τ ] [ρl]

[τ ] [τ ] [τ ] [τ ]
...

...
...

...

[τ ] [τ ] [τ ] [τ ]

.

Figure 2.1: Standard Block Representation σn

Lemma 2.3.1.4. The centraliser of any faithful representation ρn : s −→
gl(Cn) of degree n can be embedded into the centraliser of a standard block
representation σn of degree n:

f : C(ρn) ↪→ C(σn).

Proof: Let ρ =
⊕k

i=0miρi be a decomposition into the (in-
equivalent) irreducible representations ρi : s −→ gl(Cdi) of de-
gree di with multiplicities mi, where ρ0 = τ , the trivial repre-
sentation.

• We may assume that m1, . . . ,mr = 1 and mr+1, . . . ,mk >

1 after a permutation of the terms in the decomposition.
Consider the associated representation ρ̃ =

⊕r
i=0 m̃iρi of

the same degree, where{
m̃0 = m0 +

∑k
i=r+1(mi − 1)di,

m̃i = 1 for 0 < i.

It is obtained from the decomposition of ρ by lowering the
multiplicities of the non-trivial terms ρr+1, . . . , ρk to one.
Note that lemma 2.2.1.2 implies that this new representa-
tion is faithful. Then we have the following isomorphisms
of Lie algebras,{

C(ρ) ∼= gl(Cm0)⊕ Cr
⊕k

i=r+1 gl(Cmi),
C(ρ̃) ∼= gl(C em0)⊕ Cr ⊕ Ck−r.
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We claim that the first centraliser can be embedded into the
second one. First note that we have the natural embeddings

gl(Cα0) ↪→ gl(Cα)
gl(Cα)⊕ gl(Cβ) ↪→ gl(Cα+β)

Cα ↪→ gl(Cα)

.

for all α ≤ α0 and all β in N. It then suffices to prove that
m0 +

∑k
i=r+1mi ≤ m̃0, which is equivalent to

∑k
i=r+1mi ≤∑k

i=r+1(mi − 1)di. Since mi ≥ 2 for 1 ≤ i ≤ r and di ≥ 2
for i 6= 0, we have mi

mi−1 ≤ 2 ≤ di, which implies the desired
inequality.

• So consider the representation ρ̃ = m̃0ρ0
⊕k

i=0 ρi, for in-
equivalent ρi. Lemma 2.2.1.2 says that for every ideal sj ,
we can choose some ρij such that the restriction to sj is
faithful. Even if sj 6= sj′ , we can have ρij = ρij′ so that we
end up with t ≤ k distinct representations. After a permu-
tation of the terms, we may assume that they are ρ1, . . . , ρt.
Note that ρ = m0ρ0

⊕t
i=1 ρi, withm0 = m̃0+

∑k
i=t+1 di, is a

faithful representation of degree deg(ρ) = deg(ρ̃) = deg(ρ).
According to lemma 2.3.1.3, we have the isomorphisms of
Lie algebras,

C(ρ̃) ∼= gl(C em0)⊕ Ck,
∼= gl(C em0)⊕ Ct ⊕ Ck−t,

C(ρ) ∼= gl(Cm0)⊕ Ct.

We claim that the first centraliser can be embedded into the
second one. For this, it suffices to prove that m̃0 +(k− t) ≤
m0, or equivalently, that k− t ≤

∑k
i=t+1 di. But this is true

since di ≥ 1.

• Now consider a standard block representation σn of degree
n = deg(ρ) = deg(ρ). Then we have the isomorphisms of
Lie algebras,{

C(ρ) ∼= gl(Cm0)⊕ Ct,

C(σn) ∼= gl(Cn−µ(s))⊕ Cl(s).

We claim that the first centraliser can be embedded into the
second one. We already noted that t ≤ l(s), so it suffices to
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prove that m0 ≤ n − µ(s), or equivalently µ(s) + m0 ≤ n.
Note that the s-representation

⊕t
i=1 ρi of degree

∑t
i=1 di

is faithful so that µ(s) ≤
∑t

i=1 di. But then µ(s) + m0 ≤∑t
i=1 di +m0 = n.

We finish the proof by combining the inclusions

C(ρ) ↪→ C(ρ̃) ↪→ C(ρ) ↪→ C(σn).

Proof: [of Lemma 2.3.1.1] Consider the Lie algebra g = s⊕ h.

• Let ρ : g ↪→ gl(Cn) be a faithful representation of g. Then
by lemma 2.3.1.2 we have that ρh, the restriction of ρ to h,
is contained in the centraliser of ρs, the restriction of ρ to
s. Lemma 2.3.1.4 then gives the embedding of h into the
centraliser of some σn, which is isomorphic to gl(Cn−µ(s))⊕
Cl(s).

• If ρh : h ↪→ gl(Cn−µ(s))⊕Cl(s) is an embedding, then h em-
beds into the centraliser of any standard block s-representation
σn of degree n. According to lemma 2.3.1.2, there is an em-
bedding of s⊕ h into gl(Cn).

This finishes the proof of lemma 2.3.1.1.

2.3.2 Corollaries of the centraliser lemma

Corollary 2.3.2.1. For a reductive Lie algebra s⊕ a, we have

µ(s⊕ a) = µ(s) + µ(Cdim(a)−l(s)).

Proof: First note that we have already derived the inequality
µ(s⊕a) ≤ µ(s)+µ(Cdim(a)−l(s)). Let ρ : s⊕a ↪→ gl(V ) be a faith-
ful representation of degree µ(s⊕a). Then, after identifying s and
a with their images under ρ, we may assume that a is contained
in the centraliser of s in gl(V ). This centraliser can be embedded
into c = gl(Cµ(s⊕a)−µ(s)) ⊕ Cl(s). In particular, there exists an
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embedding of a into c and this is equivalent with dim(a) ≤ α(c) =
α(gl(Cµ(s⊕a)−µ(s))) + α(Cl(s)) = α(gl(Cµ(s⊕a)−µ(s))) + l(s). This
means dim(Cdim(a)−l(s)) = dim(a) − l(s) ≤ α(gl(Cµ(s⊕a)−µ(s)))
and it implies µ(Cdim(a)−l(s)) ≤ µ(s⊕a)−µ(s). This finishes the
proof.

Corollary 2.3.2.2. For a Lie algebra of the form s⊕ r, with s semisimple
and r arbitrary, we have

µ([r, r]) ≤ µ(s⊕ r)− µ(s) ≤ µ(r).

Proof: The upper bound µ(s ⊕ r) ≤ µ(s) + µ(r) follows from
the subadditivity of µ. To prove the remaining inequality, we
now consider an embedding ρ : s ⊕ r −→ glµ(s⊕r)(C) of mini-
mal degree. Lemma 2.3.1.1 implies that r can be embedded into
c = glµ(s⊕r)−µ(s)(C) ⊕ Cl(s). In particular, we have an embed-
ding of [r, r] into slµ(s⊕r)−µ(s) ≤ glµ(s⊕r)−µ(s). We conclude that
µ([r, r]) ≤ µ(s⊕ r)− µ(s). This finishes the proof.

Corollary 2.3.2.3. For a Lie algebra of the form s⊕ p, with s semisimple
and p perfect, we have

µ(s⊕ p) = µ(s) + µ(p).

In general, for two perfect Lie algebras p1 and p2, we do not have the iden-
tity µ(p1 ⊕ p2) = µ(p1) + µ(p2). We will illustrate this with some examples
later (Example 3.1 and corollary 3.1.0.2 on page 60). Note that both per-
fect and centreless Lie algebras g satisfy the condition z(g) ≤ [g, g]. Other
Lie algebras satisfying this condition, are: nilpotent Lie algebras with one-
dimensional centre (e.g.: generalised Heisenberg Lie algebras, filiform nilpo-
tent Lie algebras), free nilpotent Lie algebras. This leads us to the following
generalisation:

Proposition 2.3.2.1. Let h be any Lie algebra satisfying Z(h) ≤ [h, h].
Then, for any semisimple Lie algebra s, we have:

µ(s⊕ h) = µ(s) + µ(h).
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Proof: The subadditivity of µ provides the upper bound. To
prove the lower bound, we use the centralising lemma. Suppose
that s⊕h can be embedded into gln(C) for some n ≥ µ(s). Then
h can be embedded into gln−µ(s)⊕Cl(s). Consider the projection
π : gln−µ(s)(C)⊕ Cl(s) −→ gln−µ(s)(C). It is a morphism and we
claim that h ∼= π(h) ≤ gln−µ(s)(C) so that µ(s) + µ(h) ≤ n. The
lower bound is then obtained for n = µ(s⊕ h).

Note that the commutator of h is contained in gln−µ(s)(C). The
restriction of π to commutators of h is then nothing but the
identity. To prove the faithfulness of π, we choose an element x
in the kernel of π. Then, for any y ∈ h, we have:

0 = [π(x), π(y)]

= π([x, y])

= [x, y].

So x is a central element. This implies that x = π(x) = 0. So π
is faithful and this suffices to finish the proof.

With some minor adjustments to the proof of the centraliser-lemma, we can
obtain a formula for the µε-invariants for Lie algebras that are the direct
sum of a semisimple and nilpotent Lie algebra, s ⊕ n. Unlike for the µ-
invariant, we will have additivity. For this we only need to remark that
the Cl(s)-term in the centraliser-lemma gives us semisimple endomorphisms.
Since the representations we consider here are of finite type, we obtain the
following result.

Corollary 2.3.2.4. Let s and n be a semisimple resp. nilpotent Lie algebra.
Then for every ε ∈ N, µε(s ⊕ n) = µε(s) + µε(n). For a abelian, we obtain
µε(s⊕ a) = µε(s) + µε(a) = µ(s) + µ(a⊕ C).

2.3.3 Reductive subalgebras of gln(C)

We can use the formula above to obtain a list of all reductive subalgebras
of gln(C) up to isomorphism. We do this explicitly for gl(C1), . . . , gl(C8) in
Table 2.2. For each gln(C), we present a set Sn of reductive subalgebras.
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The set of all subalgebras of gln(C) then consists of all quotients of all Lie
algebras in Sn. For example, S2 = {C ⊕ C, A1 ⊕ C } so that the reductive
subalgebras of gl2(C) are 0,C,C2, A1 and A1⊕C. Note that we consider the
Lie algebras up to isomorphism and not up to linear conjugation in gln(C).

In general, the Lie subalgebras of gln(C) can be obtained in the following
algorithmic way. First list all simple Lie algebras s with µ(s) ≤ n. From this,
we obtain a list of all semisimple subalgebras of gln(C). To such an s, we can
add an abelian Lie algebra of dimension 0, 1, . . . up to l(s) +α(gln−µ(s)(C)).
In this way we obtain all reductive subalgebras of gln(C).

2.3.4 Maximal reductive subalgebras

Suppose we have a reductive Lie algebra g. A faithful representation ρ :
g −→ gln identifies g with a subalgebra of a proper maximal reductive
subalgebra of gln, unless g ∼= gln. There is a complete classification of all
maximal reductive Lie algebras in semisimple Lie algebras, due to Malcev
[Mal3, Mal4], Dynkin [Dyn1], [Dyn2], and Borel. These lists allow us to give
an alternative way to compute the µ-invariant of reductive Lie algebras, at
least in certain cases. Consider the following example.

Example 2.3.4.1. [We have µ(A1 ⊕ C4) = 5.] First, we note
that there is an obvious five-dimensional faithful representation
for g: g ∼= gl2 ⊕ C3 is a decomposition so that we can take the
direct sum of the natural representations of the terms. In par-
ticular, we have µ(g) ≤ 5.

For the converse inequality, we proceed as follows. Supposing
we can embed g into gl4, we derive a contradiction. So suppose
g is identified with a subalgebra of gl4 = A3 ⊕ C and let π :
A3 ⊕ C −→ A3 be the natural projection through the centre.
Then π(g) is a subalgebra of A3 isomorphic to g

ker(π) . There are
two possibilities: either π(g) ∼= g or π(g) ∼= A1 ⊕ C3 since the
kernel is a central ideal of dimension at most one. So in either
case, we may assume that g0 = A1 ⊕ C3 is contained in A3.
This g0 is reductive and thus contained in a (proper) maximal
reductive subalgebra of A3, say h. But the maximal reductive
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gln Sn

gl1 C1

gl2 C2, A1 ⊕ C1

gl3 C3, A1 ⊕ C2, A2 ⊕ C
gl4 C5, A1 ⊕ C3, A2 ⊕ C2, A3 ⊕ C1, C2 ⊕ C1, A1 ⊕A1 ⊕ C2

gl5
C7, A1 ⊕ C4, A2 ⊕ C3, A3 ⊕ C2, A4 ⊕ C1,

C2 ⊕ C2, A1 ⊕A1 ⊕ C3, A1 ⊕A2 ⊕ C2

gl6

C10, A1 ⊕ C6, A2 ⊕ C4, A3 ⊕ C3, A4 ⊕ C2,

A5 ⊕ C1, C2 ⊕ C3, C3 ⊕ C1, A2 ⊕A2 ⊕ C2,

A1 ⊕A2 ⊕ C3, A1 ⊕A3 ⊕ C2, C2 ⊕A1 ⊕ C2,

A1 ⊕A1 ⊕ C4, A1 ⊕A1 ⊕A1 ⊕ C3

gl7

C13, G2 ⊕ C, B3 ⊕ C1, A6 ⊕ C, C3 ⊕ C2, A5 ⊕ C2, A4 ⊕ C3,

C2 ⊕ C4, A3 ⊕ C4, A2 ⊕ C6, A1 ⊕ C8, A4 ⊕A1 ⊕ C2,

C2 ⊕A2 ⊕ C2, C2 ⊕A1 ⊕ C3, A3 ⊕A2 ⊕ C2, A3 ⊕A2 ⊕ C2,

A3 ⊕A1 ⊕ C3, A2 ⊕A2 ⊕ C3, A2 ⊕A1 ⊕ C4,

A1 ⊕A1 ⊕ C5, A2 ⊕A1 ⊕A1 ⊕ C3, A1 ⊕A1 ⊕A1 ⊕ C4

gl8

C17, D4 ⊕ C1, C4 ⊕ C1, A7 ⊕ C1, G2 ⊕ C2, B3 ⊕ C2,

A6 ⊕ C2, C3 ⊕ C3, A5 ⊕ C3, A4 ⊕ C4, C2 ⊕ C6,

A3 ⊕ C6, A2 ⊕ C8, A1 ⊕ C11, C3 ⊕A1 ⊕ C2, A5 ⊕A1 ⊕ C2,

A4 ⊕A2 ⊕ C2, A4 ⊕A1 ⊕ C3, C2 ⊕ C2 ⊕ C2, C2 ⊕A3 ⊕ C2,

C2 ⊕A2 ⊕ C2, C2 ⊕A1 ⊕ C4, A3 ⊕A3 ⊕ C2, A3 ⊕A2 ⊕ C3,

A3 ⊕A1 ⊕ C4, A2 ⊕A2 ⊕ C4, A2 ⊕A1 ⊕ C5,

A1 ⊕A1 ⊕ C7, C2 ⊕A1 ⊕A1 ⊕ C3, A3 ⊕A1 ⊕A1 ⊕ C3,

A2 ⊕A2 ⊕A1 ⊕ C3, A2 ⊕A1 ⊕A1 ⊕ C4,

A1 ⊕A1 ⊕A1 ⊕ C5, A1 ⊕A1 ⊕A1 ⊕A1 ⊕ C4

Table 2.2: The sets Sn
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subalgebras are summed up in the following list:

C2, A2 ⊕ C, A1 ⊕A1, A1 ⊕A1 ⊕ C.

Since g0 ≤ h for some element h in the list above, and because of
the monotonicity of the α-invariant, we have α(g0) ≤ α(h). Since
α is additive, α(g0) = α(A1)+α(C3) = 4. But every Lie algebra
from the list above will have an invariant at most three. Malcev
computed α(r) for all reductive Lie algebras r. In a more recent
article, Suter [Sut] obtained the same results. For example,

h C2 A2 ⊕ C A1 ⊕A1 A1 ⊕A1 ⊕ C
α(h) 3 3 2 3

.

This produces a contradiction and finishes the proof.
4

Using similar techniques, one can again obtain a formula for sl2(C) ⊕ Ck.
The following result, however, illustrates that the use of Dynkin’s results
can lead to very complicated situations.

Example 2.3.4.2. [µ(A1⊕C3⊕C6) = 12.] There is an obvious
twelve-dimensional faithful representation suggested by the de-
composition g = (A1⊕C)⊕(C3⊕C)⊕C4: simply take direct sum
of the natural embeddings of each of the terms A1 ⊕ C, C3 ⊕ C
and C4. We may conclude that µ(g) ≤ 12.

Now suppose that we can embed g into gl11 = A10 ⊕ C in an
attempt to obtain a contradiction. Using arguments that are
similar to those from the previous example, we may assume that
g0 = A1⊕C2⊕C5 is a reductive subalgebra of A10. In particular,
g0 is contained in a maximal (proper) reductive subalgebra of
A10, say h. The following list describes those subalgebras with
their corresponding α-invariant:

h A9 ⊕ C A1 ⊕A8 ⊕ C A2 ⊕A7 ⊕ C
α(h) 26 22 19

h A3 ⊕A6 ⊕ C A4 ⊕A5 ⊕ C B5

α(h) 17 16 11
.
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Since g0 ≤ h, we have α(g0) ≤ α(h). Now, α(g0) = α(A1) +
α(C3) + α(C5) = 12. Unfortunately, the only Lie algebra that
can be excluded immediately, is B5. All remaining Lie algebras
need to be treated in a similar way and these ramify to even
more cases in the next step. Moreover, the maximal reductive
subalgebras of types other than “An” play a role.

4

Finally we note that the knowledge of µ(g) for reductive Lie algebras g

does not allow us to recover the results of Dynkin and others. They are
specifically working with representations up to linear conjugation, which is
a special kind of isomorphism.
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Chapter 3

Lie algebras with an abelian

radical

In the previous chapter we studied the faithful representations for reductive
Lie algebras. These Lie algebras are exactly the ones for which the solvable
radical and the centre coincide. In general, the radical need not be central.
We now consider the larger class of all Lie algebras with a solvable radical
that is in fact abelian. Ideally, we would like to construct faithful linear
representations of small degree for Lie algebras of this type.

Since the representations of semisimple Lie algebras are well-understood, we
would like to reduce this problem to the semisimple case. In order to do
this, we introduce the so-called paired modules. Suppose a semisimple Lie
algebra s acts on the vector space V through a morphism σ : g −→ gl(V ).
Then s also acts on Hom(V, V ) by conjugation:

(s ·M)(v) = (σ(s) ◦M −M ◦ σ(s))(v)

for all s ∈ s,M ∈ Hom(V, V ) and v ∈ V . According to Weyl’s theorem, the
module Hom(V, V ) decomposes completely into (irreducible) submodules. If
we identify Hom(V, V ) with gl(V ), we notice that some of these submodules
are at the same time Lie subalgebras. This leads us to the following problem.

Problem Let s be a semisimple subalgebra of gl(V ). Describe
the abelian subalgebras of gl(V ) that are invariant under the
conjugation-action of s.
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The decomposition theorem of Levi will be used to translate the first problem
into the second. As an application we present a method that is algorith-
mic and combinatorical in nature, to compute the µ0-invariant for all Lie
algebras with an abelian radical. This algorithm relies on the (abstract) de-
composition of a tensor product of two irreducible s-modules into irreducible
submodules. We also obtain upper-bounds for the µ-invariant in terms of
other invariants associated to the Levi-decomposition. As a third example,
we have:

Proposition Let g be a complex, finite-dimensional Lie algebra
with an abelian radical. Then we have the sharp bounds√

dim(g) ≤ µ(g) ≤ dim(g).

Finally, we consider the family of Lie algebras that have an abelian radical
and a Levi-complement isomorphic to sl2(C). We obtain some results about
the µ-invariant.

The Levi-decomposition

Finite-dimensional Lie algebras g over a field of characteristic zero can be
decomposed as a semidirect product of an ideal and a complementary sub-
algebra. These two pieces come from special classes of Lie algebras that are
very far away from each other. The ideal is in fact the solvable radical rad(g)
of g, i.e., the (unique) maximal solvable ideal of g. The complementary al-
gebras are in this case semisimple and there is a lot of theory available for
semisimple Lie algebras.

Theorem [Levi] For every Lie algebra g of finite dimension over
a field of characteristic zero there exists a semisimple Lie
algebra complement s to the solvable radical r, i.e.: g ∼= sn r.

Such an algebra s is called a Levi-complement for g.

The action of s on r is described by a homomorphism δ : s −→ Der(r). We
will say that δ describes this Levi-decomposition. We will also write g ∼=
s nδ r. Although the radical of a Lie algebra is unique, it Levi-complements
are not:
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Theorem [Mal’cev] The Levi-complements are unique up to
conjugation by an inner automorphism of the form, exp(Ad(z)),
for some z in the nilradical.

So, even though Levi-complements need not be unique, they are unique up
to conjugation and in particular up to isomorphism. Let us mention the
following result without proof. For a Lie algebra g with abelian radical a,
Levi-complement s and defining representation δ, the following conditions
are equivalent: (a) z(g) = 0. (b) multδ1(δ) = 0. (c) [s, a] = a.(c’) g is perfect.
(d) H0(s, a) = 0. (e) H0(g, g) = 0.

Corollary 3.0.4.1. Let g be a Lie algebra with an abelian radical. If it is
perfect, then

µ(g) = µ∞(g).

Lie algebras with a filiform radical We illustrate the use of Levi’s
theorem by applying it to the family of Lie algebras with a radical that is
filiform nilpotent. In his paper ([Camp]), the author writes “Any complex
perfect Lie algebra [. . .] with a Heisenberg radical h admits a faithful repre-
sentation of degree dim(h) + 1 [. . .]” - which is incorrect. He assumes that
the action of the Levi-complement on the radical is faithful. We have the
following result:

Proposition 3.0.4.1. Let g be a Lie algebra such that rad(g) ∼= h1. Then
we have the formula,

µ(g) = µ(
g

rad(g)
) + µ(rad(g))−

{
1 if [g, g] = g,

0 otherwise.

Proof: Let g = s nδ h1 be a Levi-decomposition for g. Con-
sider the characteristic filtration h1 > [h1, h1] > 0. Since s acts
through derivations of h1, it leaves all characteristic ideals in-
variant. Since s is semisimple, each invariant subspace has an
invariant complement. This implies that δ is either of the form
δ1 ⊕ δ1 ⊕ δ1 or α⊕ β with α and β irreducible of degree 2 resp.
1. In the first case, g decomposes into the direct sum s ⊕ h1

and it is clearly not perfect. Since the centre of h1 consists of
commutators, we can apply proposition 2.3.2.1 to s and h1. This

55



Lie algebras with an abelian radical

finishes the proof in the first case.

So assume that δ is not the trivial representation. It can be
verified easily that g is perfect in this case. First assume that
the representation δ is faithful. As we have noted before, δ must
be of the form δ2 ⊕ δ1. This δ is faithful if and only of δ2 is.
This implies that s is either 0 or sl2(C). We may assume that
s = sl2(C) since δ is assumed to be non-trivial. This leaves us
with exactly one Lie algebra: g0 = sl2(C) nδ2⊕δ1 h1. It can be
verified that µ(g0) = 4. Now we drop the faithfulness condition
on δ. Write g as ker δ⊕( s

ker δ nδ0h1). Note that the second term is
perfect, that its radical is h1 and that the defining representation
is faithful. So this term must be g0. Lemma 2.3.2.3 gives µ(g) =
µ(ker δ) + µ(g0) = µ(s) + µ(g0)− 2 = µ(s) + 2. This finishes the
proof.

The Lie algebra h1 is the complex filiform Lie algebra of dimension three.
Any other filiform Lie algebra can also occur as the radical of a Lie algebra,
but only in a trivial way. This was shown by Bermudez, Campoamor and
Vergnolle using deformation theory: see [BeCaVe]. We give an alternative
proof and an immediate corollary.

Proposition 3.0.4.2. Let g be a Lie algebra with filiform radical. If rad(g) 6=
h1, then

µ(g) = µ(
g

rad(g)
) + µ(rad(g)).

Proof: Consider the Levi-decomposition g ∼= snδ r and assume
that r > h1. It suffices to show that the defining representation
is the zero-map. Then the Levi-decomposition s nδ r splits triv-
ially and we can apply proposition 2.3.2.1 to finish the proof.
We suppose the converse and try to deduce a contradiction.

Suppose that the defining representation is non-trivial. We may
then replace g by a subalgebra with the same radical such that
the defining representation is non-trivial and faithful. Consider
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the natural characteristic filtration of r with co-dimensions (2, 1, 1, . . . , 1):

r = r1 > r2 > . . . > rd−2 > rd−1 > rd = 0.

Note that s acts trivially on r2. Let E be an s-complement to
r2 in r. Let y be a generator of rd−1 and let {y, z} be a set of
generators for rd−2. Take an element x in E such that [x, y] = z.
Any derivation f in δ(s) ≤ Der(r) then satisfies [f(x), y] = 0
since d > 3. This means that [δ(s)x, y] = 0. Since δ is non-
trivial, δ(s)x = E. We then have,

0 = [E, y] = [E, y] + [r2, y] = [r, y] = [r, y] + [r, z] = [r, rd−2],

which contradicts the fact that r is nilpotent of class d− 1.

Remark 4. We can obtain an other proof using weight theory. If a semisimple
Lie algebra acts on a filiform nilpotent Lie algebra g, it is faithful if and only
if the action on the abelianisation is. So we may assume that the semisimple
Lie algebra is sl2(C). The action is fully reducible. Using the descending
central series, we obtain a chain of modules with alternating parity of the
weights. We then have dim(g) ≥ 3dc(g)/2e. The only two solutions are
g = h1 and g = C2.

3.1 Paired representations

Let us start from an easy example and consider the affine Lie algebra
affn(k) = gln(k) n k over a field k. It is quite obvious how to compute
the µ-invariant from what we know already: it is n + 1. Suppose we can
embed affn(k) into glm(k) for some m. Since the dimension is monotone,
we have n2 + 1 = dim(affn(k)) ≤ dim(glm(k)) = m2 and hence also n < m.
This implies n+ 1 ≤ µ(affn(k)). It will be equality since we can construct a
faithful representation of this degree:

ρ : affn(k) −→ gln+1(k) : (A, b) 7−→
A b

0 0
.

Note that the blocks on the diagonal define a representation for gln(k) ≤
affn(k) and that the blocks off the diagonal are the natural affn(k)-module
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k and its dual. Both modules are even abelian as Lie algebras (cf. Schur’s
theorem). We would like to generalise this construction in order to obtain
many faithful representations for a given Lie algebra. All that we require, is
a semidirect product decomposition as for the affine Lie algebras. In view of
Levi’s theorem, every Lie algebra has such a decomposition (or indeed one
that is quite similar).

Paired representations Consider a Lie algebra g and a g-module (ρ, V ).
Then the vector space Hom(V, V ) of all V -endomorphisms is also a g-module
for the following action. For x ∈ g and M ∈ Hom(V, V ) we define x ·M to
be ρ(x) ◦M −M ◦ ρ(x). More generally, we have the following definition.

Definition 3.1.0.1 (Pairing). Let g be a Lie algebra. Consider two finite-
dimensional g-representations (α, V ) and (β,W ). Then g defines a module
structure on Hom(W,V ) by 〈α, β〉 : g −→ gl(End(W,V )) : x 7−→ Lα(x) −
Rβ(x) : I.e., for x ∈ g, f ∈ End(W,V ) and w ∈W :

((〈α, β〉(x))(f))(w) = α(x)f(w)− f(β(x)(w)).

On the other hand, for the given representations α and β, β∗ ⊗ α defines a
g-module structure on the vector space W ∗ ⊗ V . For x ∈ g, f ∈ W ∗ and
v ∈ V ,

((β∗ ⊗ α)(x))(f(·)⊗ v) = −f(β(x)·)⊗ v + f(·)⊗ ((α(x))(v)).

Lemma 3.1.0.1. For g, α, β, V and W as above, we have the isomorphism
of modules

(Hom(W,V ), 〈α, β〉) ∼= (W ∗ ⊗ V, β∗ ⊗ α).

Proof: Consider the natural map θ : W ∗ ⊗ V −→ End(W,V ) :
f ⊗v 7−→ f(·)v. By applying the definitions, we can see that this
map defines an isomorphism of modules.

Remark 5. Fix a Lie algebra g and consider its associated pairing 〈·, ··〉 :
Rep(g) × Rep(g) −→ Rep(g) : (α, β) 7−→ 〈α, β〉. Here, Rep(g) is the set of
all finite-dimensional g-modules up to isomorphism. For g-representations
α, β, γ and the trivial representation ε, we have the following identities:

• deg(〈α, β〉) = deg(α) deg(β).
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• 〈α⊕ β, γ〉 = 〈α, γ〉 ⊕ 〈β, γ〉 and 〈α, β ⊕ γ〉 = 〈α, β〉 ⊕ 〈α, γ〉.

• 〈α, ε〉 = α and 〈ε, α〉 = α∗.

Block decomposition Suppose we have a representation ρ : s −→ gl(V )
of a semisimple Lie algebra s. Then there are some obvious invariant sub-
spaces of (〈ρ, ρ〉, gl(V )): we have the decomposition gl(V ) = sl(V ) ⊕ C1V .
Clearly, ρ(s) is an invariant subspace of sl(V ) and every ideal of s is mapped
by ρ to an invariant subspace of ρ(s). But we can go even further. Decom-
pose (ρ, V ) into irreducibles: (⊕rρr,⊕rVr). Then the s-module Hom(V, V )
decomposes (as direct sum of modules) into the invariant block-submodules
(〈ρp, ρq〉, Hom(Vq, Vp))p,q of (dim(ρq)× dim(ρp))-matrices:

gl(V ) =

〈ρ1, ρ1〉 〈ρ1, ρ2〉

〈ρ2, ρ1〉
. . .

〈ρq, ρp〉
. . .

〈ρr, ρr〉

.

These submodules need not be irreducible. In particular, the study of the
submodules of Hom(V, V ) is reduced to the study of the submodules of
〈ρp, ρq〉 (equivalently, of ρ∗q ⊗ ρp) with ρp and ρq irreducible. Note, however,
that these submodules need not be subalgebras.

Example 3.1.0.3. Consider the simple Lie algebra s = sl2(C).

• Let δ2 be the irreducible representation of degree 2 on C2.
Then the induced module (Hom(C2,C2), 〈δ2, δ2〉) decom-
poses as an isomorphic copy of δ1 ⊕ δ3, or more explicitly:

Hom(C2,C2) =
r

r

⊕ z x

y −z
.

Both modules are Lie algebras with the bracket induced by
gl2(C): the first one is the scalar subalgebra, hence abelian,
and the second one is sl2(C), hence simple.

• Let δ3 be the irreducible representation of degree 3. Then
the induced module (Hom(C3,C3), 〈δ3, δ3〉) decomposes as
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δ1 ⊕ δ3 ⊕ δ5, or more explicitly:

Hom(C3,C3) =
t

t

t

⊕ 2z x

2y 2x

y −2z

⊕ a b d

−2c −2a −2b

e c a

.

We note that even though the first two modules are Lie
subalgebras of gl3(C), the third one is not. The subalgebras
of gl2(C) that are invariant under the action of s are : 0,
δ1, δ3, δ1 ⊕ δ3 and gl3(C) itself.

• The module 〈δ2, δ3〉 decomposes as δ2 ⊕ δ4, or more explic-
itly:

Hom(C3,C2) =
2q p

q 2p

⊕ c −b a

d −c b
.

Note that the only abelian submodules are the trivial ones. The
decompositions can be obtained by using arguments from linear
algebra.

4

Note that for sl2-representations α, β, γ (not necessarily irreducible) and the
trivial representation ε we have the following isomorphisms of modules:

〈α⊕ β, γ〉 ∼= 〈α, γ〉 ⊕ 〈β, γ〉 and 〈α, β〉 ∼= 〈β, α〉 and 〈ε, α〉 ∼= α.

Example In subsection 2.3.2 we have seen examples of pairs of perfect Lie
algebras (p1, p2) for which the equality µ(p1 ⊕ p2) = µ(p1) + µ(p2) holds. A
sufficient condition would be that one of the terms is semisimple. We now
wish to illustrate that also µ(p1 ⊕ p2) < µ(p1) + µ(p2) can occur. For this,
we consider the family of perfect Lie algebras Ln = sln n1 Cn, for every
n ∈ N \ {0, 1}. Then it is clear that µ(Ln) = n+ 1. We will show that

µ(Lm1 ⊕ . . .⊕ Lmt) = µ(Lm1) + . . .+ µ(Lmt) + 1− t

= m1 + . . .+mt + 1.

Proof: Consider such a Lie algebra L = Lm1 ⊕ . . .⊕Lmt . First
we construct a faithful representation of degreem = m1+. . .mt+
1. Let ιj : slmj (C) −→ glmj

(C) be the natural embeddings and
let τ be the trivial representation of slm1 ⊕ · · · ⊕ slmt(C). Then
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ρm1 ⊕ . . .⊕ ρmt ⊕ τ is a faithful representation of slm1(C)⊕ . . .⊕
slmt(C) ≤ L of degree m+ 1. Then

ρ : L −→ glm+1(C) : ((Mj ;xj))j 7−→

ι1(M1) x1

. . .
...

ιt(Mt) xt

τ

is a faithful representation of L of the desired degree. So we
conclude that µ(L) ≤ m+ 1.

We will prove the converse inequality by induction on the number
t of terms of L. If there is only one term, then there is nothing to
prove. So assume that µ(Lm1⊕. . .⊕Lmt) = m1+. . .+mt+1 and
consider the Lie algebra L = Lm0 ⊕ (Lm1 ⊕ . . .⊕Lmt). Let L be

L
Lm0

. Suppose L is embedded into gls(C). Then L is contained
in the centraliser of slm0(C) in gls(C). The centraliser-lemma
then gives us an embedding of L into gls−µ(L)(C)⊕C. Since L is
perfect, it can even be embedded into gls−µ(L)(C). In particular,
we have m0 = µ(slm0(C)) ≤ s − µ(L) and thus m0 + µ(L) ≤ s.
For s = µ(L), we obtain m0 + µ(L) ≤ µ(L). The induction
hypothesis can then be applied to L to finish the proof.

Corollary 3.1.0.2. In particular, there are many pairs of perfect Lie alge-
bras (p1, p2) satisfying

µ(p1 ⊕ p2) < µ(p1) + µ(p2).

3.2 Constructing representations

We have seen that the pairing of modules gives us a rich family of modules
and submodules. We now want to use these pairing to compute µ-invariants
(or bounds for them). As in the reductive case, we can cut embeddings into
pieces and glue them together (see lemma 2.3.1.2). These two processes are
each others’ inverse. This gluing and cutting process is described in the
following two lemmas.

61



Lie algebras with an abelian radical
3.2 Constructing representations

Lemma 3.2.0.2. Let g be a complex, finite-dimensional Lie algebra with
a Levi-decomposition s nδ r. Consider a finite-dimensional vector space V
and a pair of Lie algebra morphisms σ : s −→ gl(V ) and ρ : r −→ gl(V ).
Define the representation θ : g −→ gl(V ) by θ|s = σ and θ|r = ρ. Then θ is
a well-defined embedding of g if

1. σ : s −→ gl(V ) resp. ρ : r −→ gl(V ) are embeddings of Lie algebras.

2. [σ(s), ρ(r)] = ρ([s, r]) for all s ∈ s and r ∈ r.

Proof: It is clear that the map θ is a Lie algebra morphism.
We only need to check the faithfulness. Define M to be the set
of elements s in s for which σ(s) ∈ ρ(r). We will first prove that
M is a solvable ideal of s. Suppose s ∈ s and m ∈ M . Then
there exists an r in r such that ρ(r) = σ(m). Then we have,

σ([s,m]) = [σ(s), σ(m)]

= [σ(s), ρ(r)]

≤ ρ([s, r]) ≤ ρ(r).

This implies that [s,M ] ≤M and that M is an ideal of s. Since
M is the image of the morphism σ−1 ◦ ρ, it is also solvable. But
in a semisimple Lie algebra, there are no non-zero solvable ideals.
This implies that M is zero. So ρ(r)∩ σ(s) = 0 and we conclude
that θ is faithful.

Lemma 3.2.0.3. Let g be a complex, finite-dimensional Lie algebra with a
Levi-decomposition snδ r. Consider a faithful representation θ : g −→ gl(V )
on a finite-dimensional vector space V . Define the representations σ and ρ
by restricting θ to s resp. r. Then,

1. σ : s −→ gl(V ) resp. ρ : r −→ gl(V ) are embeddings of Lie algebras.

2. [σ(s), ρ(r)] = ρ([s, r]) for all s ∈ s and r ∈ r.

These two lemmas allow us to shift our attention to the following problem.

Problem Let s be a semisimple subalgebra of gl(V ). Describe
the abelian subalgebras of gl(V ) that are invariant under the
conjugation-action of s.
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We can put even more structure on the submodules. Suppose a is such an
abelian submodule of gl(V ). Consider the commutative algebra A in gl(V )
that is generated by a and 1V . Then this A and various natural subspaces,
such as the space 〈A1 ◦ A2 ◦ · · · ◦ At | A1, A2, . . . , At ∈ a〉 for some t ∈ N,
are also invariant under the action of s. Conversely, every commutative
subalgebra that is invariant under conjugation by s defines an invariant
abelian Lie algebra. It seems reasonable that the standard structure theory
of commutative algebra could be used to obtain more information about the
abelian submodules of gl(V ).

Problem Let s be a semisimple subalgebra of gl(V ). Describe
the commutative subalgebras of gl(V ) that are invariant un-
der the conjugation-action of s.

3.2.1 Representations of type zero

Invariant subspaces We will now characterise the faithful representa-
tions (ρ, V ) of type zero for the Lie algebras s n a with a solvable radical a

that is abelian. In this context we should consider s-invariant subspaces of
V . We can obtain some of them from images and invariants of character-
istic ideals. Recall that an ideal of a Lie algebra g is characteristic if it is
invariant under the action of the derivation algebra Der(g) of g. If M is a
g-module, then Mg is the submodule of all invariants, i.e. the set of vectors
of M that are annihilated by the Lie algebra g.

Lemma 3.2.1.1. Consider the linear Lie algebra s n r ≤ gl(V ). For any
characteristic ideal c of r, 〈c(V )〉 and V c are invariant subspaces of V as an
s-module.

Proof: Let c be a characteristic ideal of r. Then for every
element c in c, every s in s and every v in V , we have:

s(c(v)) = ([s, c] + c ◦ s)(v)

= [s, c](v) + c(s(v))

≤ c(v) + c(V )

≤ 〈c(V )〉.

Hence the vector space generated by c(V ) is invariant under the
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action of s. Similarly, for every c ∈ c, s ∈ s and v ∈ V c, we have:

c(s(v)) = ([c, s] + s ◦ c)(v)

= [c, s](v) + s(c(v))

≤ c(v) + s(0)

= 0.

This means that V c ≤ V is invariant under the action of s.

Corollary 3.2.1.1. If the Levi-complement of a linear Lie algebra is irre-
ducible, then the radical is abelian.

Proof: Let g = s n r ≤ gl(V ) be a Levi-decomposition. Since r

is solvable, it can be triangularised by Lie’s theorem. The derived
ideal c = [r, r] is characteristic and is strictly upper triangular.
In particular, there exists a non-trivial c-invariant in V . The
subspace V c of V is then also invariant under the action of s by
the previous lemma. Since s is assumed to be irreducible, V c

must be V . This is equivalent to [r, r] = 0 and it finishes the
proof.

A flag Let n be any nilpotent Lie algebra and let (ρ, V ) be any n-module.
Then we can associate to n and V a flag of V in a very natural way. Let
V0 be V itself and define Vt+1 recursively as 〈n · Vt〉. Equivalently, Vt is
the space generated by all elements of the form ρ(n1) ◦ · · · ◦ ρ(nt)(v) for
n1, . . . , nt ∈ n and v in V . Note that this gives us a descending chain of
subspaces and it satisfies the following property: for every t ≥ 0, we have
ρ(n)Vt ≤ Vt+1 ≤ Vt. This chain will not terminate in the zero-vector space
unless the representation is a nilrepresentation, i.e. if it has a finite type.
If the representation is of type zero, the chain will terminate after exactly
c+ 1 steps:

0 = Vc+1 < Vc < . . . < V1 < V0 = V.

Lemma 3.2.1.2. Consider a Lie algebra g with nilradical n of class c. Let
V be a finite-dimensional g-module of type zero. Then there exists a flag
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(Vi)i of V of length c+ 1 such that for all t ∈ N:

s · Vt

Vt+1
≤ Vt

Vt+1
and n · Vt ≤ Vt+1.

Here, we identify Vt
Vt+1

with a suitable s-complement Wt+1 of Vt+1 in Vt.

Proof: Let 0 < Vc < . . . < V1 < V0 = V be the flag associated
to n and V . Then it is not only invariant under n but also under
s. We use induction to show this. It is clear that s · V0 ≤ V0.
Now assume that s · Vt ≤ Vt. Consider elements s ∈ s, n ∈ n and
v ∈ Vt. Then,

s · (m · v) = [s,m] · v + (m · s) · v

≤ n · v +m · (s · Vt)

≤ n · Vt + n · Vt

≤ Vt+1.

This implies that s ·Vt+1 ≤ Vt+1, which completes the induction.
We will construct the Wt from the Vt. For every t ≥ 0, we can
find an s-module complement Wt+1 for Vt+1 in Vt. We can then
identify Wt+1 with Vt

Vt+1
and we have the desired identities.

Characterisation We now assume that the radical of the Lie algebra g

is in fact abelian. Let s n a be a Levi-decomposition. Then any finite-
dimensional module (g, V ) of type 0 decomposes as a direct sum of two
proper s-invariant subspaces V1 and W1 such that a ·W1 ≤ V1 and a ·V1 = 0.
In particular, the type-zero faithful representations of s n a are of the form,

ρ(s n a) =
ρ1(s) ρ(a)

O ρ2(s)
.

Note that ρ(a) can be identified with a vector subspace of Hom(W1, V1). In
this way, it is even a submodule of (〈ρ1(s), ρ2(s)〉,Hom(W1, V1)). Conversely,
every representation of this form has type zero.

Corollary 3.2.1.2. The type-zero representations of a Lie algebra s n a

correspond to the triples (α, β, b) where α and β are s-representations and b

is a submodule of 〈α, β〉, isomorphic to a quotient of a. Such a representation
(α, β, b) is a faithful representation of g if and only if: α ⊕ β is a faithful
representation of s and b ≤ Hom(Vβ, Vα) is isomorphic to a as an s-module.
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Fix a Lie algebra g = s n a and a natural number n. We are now ready,
at least in theory, to check if there is a faithful type-zero-representation of
g of degree n. If there is one, the following procedure will produce all such
representations of degree n. If there is no such representation, the output is
empty.

[Algorithm] Decompose s into simple ideals s1, · · · , sl. Let
Σ(si) be the set of irreducible si-representations. Then according
to theorem 2.2.1, Σ(s) = Σ(s1) × · · · × Σ(sl) is the set of all
irreducible s-representations. According to Weyl’s theorem, the
set Σ of all s-representations consists of the (finite) direct sums
of elements in Σ(s). Construct the finite set

Pn(s) = { (σ, τ) ∈ Σ× Σ | deg(σ) + deg(τ) = n } .

Lemma 2.2.1.2 describes faithful representations of s in terms
of the mentioned decomposition. Let Pn(s) be the set elements
(σ, τ) in Pn(s) such that σ⊕τ is faithful. For each element (σ, τ)
in Pn(s), one can decompose the s-module 〈σ, τ〉 into irreducibles
and check if a ≤ 〈σ, τ〉 as an s-module. Define the set

Qn(s, a) = { (σ, τ) ∈ Pn(s) | a ≤ 〈σ, τ〉 } .

If Qn(s, a) is empty, there is no n-dimensional faithful represen-
tation of sn a of the desired form. If Qn(s, a) is not empty, then
every element (σ, τ) ∈ Qn(s, a) induces an n-dimensional faithful
representation of s n a:

ρ(s n a) =
σ(s) f(a)

O τ(s)
,

where f : a −→ 〈σ, τ〉 is an embedding of s-modules.

Finally, fix a natural number n. Applying the above algorithm to n, we
conclude that either n < µ0(s n a) or µ0(s n a) ≤ n. In the former case,
we increase n by one and repeat the algorithm until it gives a positive
answer. Then µ0(s n a) = n. In the latter case, we decrease n by one until
the algorithm produces a negative answer. Then µ0(s n a) = n + 1. For
practical applications, we refer to subsection 3.3.1 and to section 4.4.
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3.2.2 Combinatorical bounds

In the above it was explained how the µ0-invariant can be computed for an
arbitrary Lie algebra with abelian radical. This computation uses the ex-
plicit decomposition of tensor products of representations into irreducibles,
which can be quite involved. Here, we present an upper bound for µ0(g),
and hence for µ(g), in terms of the dimensions and multiplicities of the irre-
ducible components of the defining representation. For convenience, we also
assume that this latter representation is faithful.

So suppose we are working with a Lie algebra g = snδ a and assume that the
defining representation δ is faithful. In particular, the faithful representation
ρs = δ ⊕ τ of the semisimple part s induces a faithful representation of the
entire Lie algebra (that squares to zero on the radical). This representation
has degree deg(δ) + 1. But it is possible to refine this upper bound.

Definition 3.2.2.1. For any natural number k, we define the function p =
pk : Nk

0 × Nk
0 −→ N0 as follows. Let (m; d) = ((m1, . . . ,mk); (d1, . . . , dk)) ∈

Nk
0 × Nk

0, then

pk((m; d)) = min

{
M0 +

k∑
i=1

Midi |Mi ∈ N0 and M0Mi ≥ mi

}
.

Let k be the number of inequivalent irreducible representations in the de-
composition of δ. If we take the mi to be the multiplicities of these repre-
sentations and di to be their degrees, we obtain the following result.

Proposition 3.2.2.1. For snδa as above, µ(snδa) ≤ µ0(snδa) ≤ pk(m; d).
And in particular, an upper bound for pk(m; d) gives,

d2
√

deg(δ)e ≤ µ(s nδ a) ≤ d
√

deg(δ)e+
∑

i

did
mi√
deg(δ)

e.

This upper bound for pk(m; d) is in general a very rough one so it is worth
it to compute the value for pk(m; d) explicitly. In the appendix we give
algorithms for this computation.

Proof: Since the algebra g is perfect, every embedding will
be traceless. In particular, we have an embedding ρ : g −→
sl(Cµ(g)). This induces an embedding of the radical a in sl(Cµ(g))
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and the lower bound µ(Cdeg(δ)+1) ≤ µ(g). For the upper bound,
it suffices to check that

(M0;M1, . . . ,Mk) = (d
√

deg(δ)e; d m1√
deg(δ)

e, . . . , d mk√
deg(δ)

e)

satisfies the condition mi ≤M0Mi for all i. And this is the case
since,

mi =
√

deg(δ)
mi√
deg(δ)

≤ d
√

deg(δ)ed mi√
deg(δ)

e = M0Mi.

3.2.3 Dimensional bounds

What is known about the µ-invariant of a Lie algebra if only the dimension
of that Lie algebra is given? In this subsection we present some lower and
upper bounds which turn out to be sharp bounds.

Proposition 3.2.3.1. The µ-invariant of a Lie algebra g with abelian rad-
ical satisfies, √

dim(g) ≤ µ(g) ≤ dim(g).

In particular, we have that any Lie algebra h with dim(h) < µ(h) must have
a non-abelian radical.

Proof: The lower bound is obvious. For suppose that g can
be embedded into gln. Then dim(g) ≤ dim(gln) = n2 and√

dim(g) ≤ n. In particular this is true for n = µ(g). For
reductive Lie algebras, the upper bound is obtained from the
subadditivity of µ and the fact that it holds for the simple and
the abelian ones.

So suppose that g = s nδ a is not reductive. Note that g ∼=
ker(δ)⊕ (s nδ a) with s = s

ker(δ) and δ : s −→ gl(a) the induced,
faithful representation. Since g is not reductive, s is a proper
ideal of s. Then, dim(ker(δ)) = dim(s) − dim(s) ≤ dim(s) − 3.

68



Lie algebras with an abelian radical
3.2 Constructing representations

This gives us the following estimates,

µ(g) ≤ µ(ker(δ)) + µ(s nδ a)

≤ dim(ker(δ)) + deg(δ) + 1

= dim(ker(δ)) + dim(s)− dim(s) + dim(a) + 1

= dim(g)− dim(s) + 1

≤ dim(g)− 2.

This finishes the proof.

These bounds are sharp. The Lie algebras that satisfy
√

dim(g) = µ(g)
are of course full linear algebras gln(C) for n ∈ N. The ones that reach the
upper bound are described in the following lemma.

Proposition 3.2.3.2. The Lie algebras g with abelian radical that satisfy
µ(g) = dim(g), are precisely

0,C,C2,C3,C4 and ne8 for n ∈ N.

Proof: The proof of the previous lemma shows that such a
Lie algebra is necessarily reductive. The abelian Lie algebras
a that satisfy dim(a) = µ(a) are C0,C1,C2,C3 and C4. For
the semisimple case s = ⊕jsj , we have µ(s) ≤

∑
j µ(sj) ≤∑

j dim(sj) = dim(s). So the µ-invariant and dimension of s

coincide, precisely when the same is true for all the simple ide-
als sj . The only simple, (non-zero) Lie algebra sj for which
µ(sj) = dim(sj), is e8.

Now suppose that g = s⊕ a. Then we have

µ(g) ≤ µ(s) + µ(Cdim(a)−l(s))

≤ dim(s) + max{0,dim(a)− l(s)}

≤ dim(s) + dim(a)

= dim(g).

If µ(g) = dim(g), then µ(s) = dim(s) and max{0,dim(a) −
l(s)} = dim(a). The latter equality implies that either a = 0
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or s = 0. This reduces the classification to the semisimple, resp.
abelian case. This finishes the proof.

Note that this only covers the algebras with abelian radical. Take for ex-
ample the three-dimensional Heisenberg Lie algebra h1. Then this two-step
nilpotent Lie algebra satisfies µ(h1) = dim(h1), but the (non-abelian) Lie
algebra equals its own radical.

Corollary 3.2.3.1. The Lie algebras g with abelian radical satisfying µ(g)+
1 = dim(g) are reductive and they are given by sl2(C),C5,C6, ne8 ⊕ C for
n > 0 and e8 ⊕ C, . . . e8 ⊕ C5.

Proof: Because of 3.2.3.1, we see that g must be reductive.
The Lie algebras in the list clearly satisfy the condition. Using
an argument as before, we can exclude all other possibilities.

One can see that most Lie algebras g with an abelian radical have a µ-
invariant that is much smaller than this sharp, but rough bound dim(g)
(see 3.2.1). The above procedure can be generalised to obtain the following
results.

Proposition 3.2.3.3. For any Lie algebra of the form h nδ a with h reduc-
tive, a abelian and δ faithful, we have µ(h n a) ≤ dim(a). In particular, for
h = b abelian, we have µ(b n a) ≤ dim(a).

3.3 The family sl2(C) n Ct

3.3.1 The µ0-invariant

In the previous section we have sketched how one can compute the µ0-
invariant for Lie algebras with an abelian radical in a combinatorical way.
We will now illustrate this result by applying it to a family of Lie algebras for
which the combinatorics is not too complicated. So consider the Lie algebras
with an abelian radical a and a Levi-complement s isomorphic to sl2(C):
g = s n a. Note that this family is parametrised by the finite-dimensional
s-representations. These representations are either faithful or identically
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zero. The trivial representations correspond precisely to the reductive Lie
algebras with commutator sl2(C). From corollary 2.3.2.4, we get

µ0(s⊕ a) = µ0(s) + µ0(a) = µ(s) + µ(a⊕ C).

A finite problem So we may assume that the defining representation ρ is
faithful. Remember that sl2(C) has, up to conjugation, a unique irreducible
representation δn for every natural number n ≥ 1. So the representations ρ
correspond to sequences of natural numbers (ρt)t = (ρ1, ρ2, . . .) (the multi-
plicities of the δ1, δ2, . . . in ρ) which have only finitely many non-zero terms:
l1(N). The faithful representations are those for which at least one ρα is
non-zero for some α ≥ 2. From now on we identify the representations with
their sequence of multiplicities.

This identification is compatible with addition in the natural way: if ρ and σ
are two representations, then (ρ⊕σ)t = ρt+σt for all t. It is also compatible
with inclusion: the representation α = (αt)t is a subrepresentation of the
representation β = (βt)t if and only if αt ≤ βt for all t ≥ 1. The degree of α
is simply

∑
i iαi. Consider the pairing of two representations:

〈·, ··〉 : l1(N)× l1(N) −→ l1(N) : (α, β) 7→ 〈α, β〉.

What is 〈α, β〉u in terms of the αs and βt? Since the pairing is additive in
each component, we have 〈α, β〉 =

⊕
i,j αiβj〈δi, δj〉 and thus also 〈α, β〉u =∑

i,j αiβj〈δi, δj〉u. So we only need to determine the multiplicities of 〈δi, δj〉.
Let P (n) be the parity of the integer n. The formula of Clebsch-Gordan
tells us that 〈δi, δj〉u is either 1 or 0. More precisely:

〈δi, δj〉u =


1 if |i− j|+ 1 ≤ u ≤ i+ j − 1

and P (u) 6= P (i− j)
0 otherwise.

For example, 〈α, β〉1 =
∑

i αiβi. Similarly, we have 〈α, β〉2 =
∑

i(αiβi+1 +
αi+1βi) and so on. We now fix the Lie algebra g = s nθ a, or equivalently,
the representation θ. We wish to determine the minimal degree of a faithful
type-zero representation of g. Let c be an upper bound for µ0(g), for example
deg(θ) + 1. Consider the finite, non-empty class,

Cc
θ = { α⊕ β ∈ l1(N)⊕ l1(N) | θ ≤ 〈α, β〉 and deg(α⊕ β) ≤ c }.
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Note that θ is not the zero-map by assumption. So every (α, β) ∈ C de-
fines a representation of g that is of of type zero, of degree at most c and
faithful. Up to irrelevant identifications, Cc

θ contains all such faithful g-
representations that are of type zero and have a degree at most c. Then
we have by definition µ0(g) = min{ deg(α ⊕ β) | (α, β) ∈ Cc

θ }. So we are
minimising

∑
k k(αk + βk) ≤ c under the conditions θu ≤

∑
i,j αiβj〈δi, δj〉u

for all u ≥ 1. For special choices of θ, the combinatorics can be reduced
even more using the symmetry of the problem.

Multiplicity graphs Let α = (αi)i and β = (βj)j be two representations
and let u be a non-zero natural number. Let us define a bipartite graph
Gu = Gu(α, β) = (Vu, Eu) for α and β and u. The set Vu of vertices
consists of { (1, d) | d ∈ N0 } ∪ { (0, d) | d ∈ N0 }. Let us label the
vertices: L : V −→ N such that L(1, d) = αd and L(0, d) = βd. Connect two
vertices (ε, d) and (ε′, d′) if 1 = 〈δd, δd′〉u. Note that such a labelling is just
a re-writing of the pair of representations and we may identify (α, β) with
Gu(α, β). The degree of α ⊕ β and 〈α, β〉u can then be seen in the graph:
deg(α⊕ β) =

∑
d(d(αd + βd)) and

〈α, β〉u =
∑

((ε,d),(ε′,d′))∈Eu

L(ε, d)L(ε′, d′).

There is a natural order associated to this graph: (ε, d) ≤ (ε′, d′) if and only
if d ≤ d′. There are also natural transformations associated to such a graph.
Any morphism f : Gu −→ Gu satisfying f(ε, d) ≤ (ε, d) for all (ε, d) ∈ V

is called a acceptable morphism for the u’th component. It is acceptable
if the property holds for all u. It defines a new labelling Lf : G −→ G

(i.e. a pair of representations) as follows: if (1, d) is mapped to (1, d′),
then L(1, d) is decreased by L(1, d) and L(1, d′) is increased by L(1, d).
Similarly for (0, d). The pair (L,Lf ) satisfies the following two properties:
if (α, β) corresponds to the labelling L and (α′, β′) to the labelling Lf for
some acceptable morphism f , then deg(α′⊕β′) ≤ deg(α⊕β) and 〈α, β〉u ≤
〈α′, β′〉u for all u. In particular: the degree will not increase and the pairing
will not decrease. Acceptable morphisms can often be realised as reflections
or other elementary symmetries.

Example 3.3.1.1. Consider the Lie algebra associated to θ =
mδ2 = (0,m, 0, . . .) for some m ∈ N0. Then the pairing 〈α, β〉
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contains θ if and only if m ≤ 〈α, β〉2 =
∑

i(αiβi+1 + αi+1βi). So
we only need to consider the graphs G2(α, β):

β1 β2 β3 β4 β5

α1 α2 α3 α4 α5

So suppose we have a pair (α, β) with m ≤ 〈α, β〉2. Folding
from right to left then clearly defines an acceptable morphism.
We may apply such folding morphisms successively to obtain a
reduced graph of the form,

β1

α1

β2

α2

Then the transformation (α1, β1, α2, β2) 7→ (β1, β1, α2, α2) is also
an acceptable morphism. In particular, we obtain the graph

α1 + β1

α2 + β2

So we conclude that µ0(sl2(C)nmδ2) = p(m; 2) from subsec-
tion 3.2.2.

4

Example 3.3.1.2. Similarly, we can use acceptable morphisms
to reduce the graph G3 for θ = mδ3 and G4 for θ = mδ4 to one
of the form

β1 β2 β3

α1 α2 α3

resp. β1 β3

α2 α4

and so on. Note that the graphs do not depend, of course, on
the parameter m ≥ 1.

4
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Low dimensions Let us write Lδ for the Lie algebra with defining repre-
sentation δ, i.e.: Lδ = sl2(C)nδCdeg(δ). We include a table (3.1) of µ0(Lδ) up
to dimension 9. We identify the defining representation δ = ⊕αmαδα with
the sequence (mα)α. The representations that correspond to a reductive Lie
algebra are marked with an asterisk.
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deg(δ) δ µ0(Lδ)

1 (1) 2∗

2 (0, 1) 3

(2) 3∗

3 (0, 0, 1) 4

(1, 1) 4

(3) 4∗

4 (0, 0, 0, 1) 5

(1, 0, 1) 4

(0, 2) 4

(2, 1) 5

(4) 5∗

5 (0, 0, 0, 0, 1) 6

(1, 0, 0, 1) 6

(0, 1, 1) 5

(2, 0, 1) 6

(1, 2) 5

(3, 1) 6

(5) 6∗

6 (0, 0, 0, 0, 0, 1) 7

(1, 0, 0, 0, 1) 6

(0, 1, 0, 1) 5

(2, 0, 0, 1) 7

(0, 0, 2) 5

(1, 1, 1) 7

(3, 0, 1) 7

(0, 3) 5

(2, 2) 4

(4, 1) 6

(6) 6∗

Table 3.1: µ0(Lδ) up to dimension 9.
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3.3.2 The µ-invariant

Irreducible representations

Lemma 3.3.2.1. Consider an irreducible representation (ρ, V ) of s = sl2(C).
Then there is only one abelian submodule of (End(V ), 〈ρ, ρ〉): the scalar one.

Proof: Consider such a representation ρ : s −→ gl(V ) of degree
x. Then according to the Clebsch-Gordan formula, we have the
following isomorphism,

〈ρ, ρ〉 ∼=
x−1⊕
j=0

δ1+2j .

Note that the multiplicities of all components are one and that
all occurring irreducible representations have an even highest
weight. After conjugation, we may assume that ρ has the stan-
dard form. Then the zero-weight space for ρ is exactly the cen-
traliser of ρ(H) in gl(V ) and consists of the diagonal matrices.

Suppose that W ≤ gl(V ) is an abelian submodule. We will
prove that any irreducible submodule of W (which is necessarily
abelian) consists of only scalar matrices. This implies that W is
scalar and this proves the proposition.

So take any irreducible, abelian submodule U ≤ gl(V ). As noted
above, there is a non-trivial zero-weight vector M ∈ gl(V ). (This
matrix is diagonal.) Define the two elements

A+ = (〈ρ, ρ〉(E)) (M) = [ρ(E),M ]

A− = (〈ρ, ρ〉(F )) (M) = [ρ(F ),M ].

The matrices A+ and A− belong to the module U since M does.
Since U is abelian, A+ and A− commute. A straightforward
calculation shows that this is only possible if M is scalar. This
finishes the proof.

Proposition 3.3.2.1. For any x ∈ N, we have µ(Lδx) + 2 = dim(Lδx).

Proof: Suppose first that x = 1. Then the Lie algebra is de-
composable and isomorphic to gl2(C). The µ-invariant is then
of course 2.
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So we may now assume that x > 1. Let ρ̃ : s nδx a −→ gl(V )
be any faithful representation with restriction ρ : s −→ gl(V ).
Since ρ induces an (abelian) δx-submodule of gl(V ), there must
exist irreducible representations δ and δ′ of degree α resp. β

in a fixed decomposition of ρ (where δ and δ′ can be the same
representation) such that P (x) 6= P (α− β) and

α− β + 1 ≤ x ≤ α+ β − 1.

We use the previous lemma to show that δ and δ′ can be chosen
distinct. For suppose the converse. Then the δx-module induced
by ρ is exactly the one induced by δ = δ′. The lemma says that
the module can only be abelian if x = 1 which contradicts our
assumption.

So we may assume that δ and δ′ are distinct terms in the decom-
position of ρ. In particular, we have

x ≤ α+ β − 1

≤ deg(ρ)− 1 = deg(ρ̃)− 1.

This holds for any faithful representation ρ̃ of s nδx a so that
x + 1 ≤ µ(s nδx a). The converse inequality is induced by the
representation ρ = δx ⊕ δ1. This finishes the proof.

Corollary 3.3.2.1. The Lie algebras L = ne8 ⊕ Lδx satisfy µ(L) + 2 =
dim(L).

Proof: We may suppose that x is at least two. Then Lδx is per-
fect and lemma 2.3.2.3 tells us that µ(L) = µ(ne8)+µ(Lδx). The
previous proposition then implies µ(L) = dim(ne8)+dim(Lδx)−
2 = dim(L)− 2.
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Reducible representations

Example 3.3.2.1. We have the following formula’s for µ:

µ(Lδ) =


x+ 3 for δx ⊕ δx+1

max(2r, 2s+ 1) + 2 for δ2r ⊕ δ2s+1

x+ 3 for δx−1 ⊕ δx ⊕ δx+1

x+ 2k + 1 for δx ⊕ δx+2 ⊕ . . .⊕ δx+2k

Proof: (i) Consider any faithful representation ρ̃ : Lδ −→
gl(V ) with restriction ρ : s −→ gl(V ). Fix a decomposition
of δ into irreducibles. Then ρ induces abelian δx and δx+1-
submodules. Just as in the proof of the previous proposition,
we can show that there exist terms δ 6= δ′ and η 6= η′ in the de-
composition of ρ such that δx is a submodule of 〈δ, δ′〉 and δx+1

is a submodule of 〈η, η′〉. Since the parities of x and x+1 differ,
at least one of the sets {δ, δ′, η′}, {δ, δ′, η}, {η, η′, δ′} or {η, η′, δ}
consists of three distinct elements. Without loss of generality,
we assume it is true for the latter. Then we have

x+ 1 ≤ deg(η) + deg(η′)− 1

≤ deg(η) + deg(η′) + deg(δ)− 2

≤ deg(ρ)− 2

= deg(ρ̃)− 2.

Since this holds for all faithful representations ρ̃ of Lδ, we have
the bound x + 3 ≤ µ(Lδ). The representation ρ = δx ⊕ δ2 ⊕ δ1

induces the other inequality. This finishes the proof of the first
point. (ii) Note that the proof above can be generalised to prove
µ(δx ⊕ δy) = max(x, y) + 2 for x and y of different parity. The
lower bound is obtained in the same way. The upper bound is
induced by ρ = δmin(x,y)⊕ δ(max−min)(x,y)+1⊕ δ1. (iii) Using the
same ρ as above, we obtain the upper bound µ(Lδ) ≤ x+3. Us-
ing the monotonicity and the previous case, we obtain equality.
(iv) Using the monotonicity and proposition 3.3.2.1, we obtain
x+2k+1 as a lower bound. The representation ρ = δx+k⊕ δk+1

gives the other inequality.
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Example 3.3.2.2. For t ≥ 1, we have the fowllowing formula’s:

µ(Lδ) = µ0(Lδ) =

{
d2
√

2te for tδ2

d2
√

3te for tδ3.

Proof: (i) Note that L = Lδ is perfect for all t, so that d2
√

2te =
µ(a ⊕ C) ≤ µ(L ⊕ C) = µ(L) ≤ µ0(L). This gives us the lower
bound. This lower bound Bt is reached by µ0(L) so that the
inequalities are actually equalities. We can even explicitly con-
struct a a faithful representation of type zero of this degree. For
this, it is sufficient to find a, b ∈ N0 such that the following
conditions hold:

2a+ b ≤ Bt

ab ≥ 2t,

We define a to be d b
Bt
2
c

2 e and b to be Bt − 2a. Since t ≥ 1,
Bt will be at least 3 and a is at least 1. It can then be checked
that the representation aδ2⊕bδ1 induces a faithful representation
for L. (ii) Similarly, for δ = tδ3, we can consider the bound
Bt = d2

√
3te and the representation aδ3 ⊕ bδ1. We define b as

Bt − 3a and a to be d b
Bt
2
c

3 e.

Proposition 3.3.2.2. Consider a non-reductive Lie algebra L = sl2(C)nδa.
If δ is reducible, then µ(L) < dim(L)− 2.

As noted in proposition 3.2.3.1, the Lie algebras g with abelian radical satisfy
µ(g) ≤ dim(g). In case g is reductive, we have obtained an explicit formula
for µ and we proved that the bound is sharp. In the other case, the non-
reductive one, we have the upper bound µ(g) ≤ dim(g)− 2. It follows from
proposition 3.3.2.1 that this bound is sharp.

Corollary 3.3.2.2. The non-reductive Lie algebras g with abelian radical
satisfying µ(g)+ 2 = dim(g) are precisely the Lie algebras of the form ne8⊕
sl2(C) nδx a with n ∈ N and x ∈ N0.

Remark 6. Consider a Lie algebra with an abelian radical. If the Lie al-
gebra happens to be reductive, then the centre is maximal in the following
sense: the centre coincides with the radical and we have used this to obtain
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a formula for the µ-invariant. In the other extreme, the Lie algebra is per-
fect. Experimental evidence in low dimensions seems to suggest a very close
relationship between µ0, µ∞ and µ:

deg(δ) δ µ0(Lδ) = µ(Lδ)

2 (0, 1) 3

3 (0, 0, 1) 4

4 (0, 0, 0, 1) 5

(0, 2) 4

5 (0, 0, 0, 0, 1) 6

(0, 1, 1) 5

6 (0, 0, 0, 0, 0, 1) 7

(0, 1, 0, 1) 5

(0, 0, 2) 5

7 (0, 0, 0, 0, 0, 0, 1) 8

(0, 1, 0, 0, 1) 7

(0, 0, 1, 1) 6

(0, 2, 1) 6

8 (0, 0, 0, 0, 0, 0, 0, 1) 9

(0, 1, 0, 0, 0, 1) 7

(0, 0, 1, 0, 1) 6

(0, 0, 0, 2) 6

(0, 2, 0, 1) 6

(0, 1, 2) 7

(0, 4) 6

Table 3.2: g
rad(g)

∼= sl2(C) and z(g) = 0.

Problem Do µ(g), µ∞(g) and µ0(g) coincide for perfect Lie
algebras with an abelian radical?

A positive answer is desirable since µ(g) is difficult to compute, whereas
µ0(g) can be computed easily.
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Chapter 4

Remarks

In this final part we would like to discuss some other methods to construct
faithful representations of low degree, classes of Lie algebras that are inter-
esting in this field and some of the most evident open problems.

4.1 Construction of modules

In the first chapter we gave a proof of Ado’s theorem by explicitly con-
structing faithful modules of finite dimension. Neretin’s embedding theo-
rem reduced the problem to the essential case, that of the nilpotent Lie
algebras. For these nilpotent Lie algebras n there is a standard way to pro-
ceed. Simply consider the universal enveloping algebra U(n) of n. This is an
infinite-dimensional faithful representation of n. By considering the appro-
priate quotients we obtain faithful representations, although not necessarily
of low dimension.

4.1.1 Extensions

We can consider extensions of Lie algebras in order to construct modules.
Consider for example the following proposition on central extensions.[Bu6]

Proposition [Burde] Suppose the Lie algebra g is the quotient
of a Lie algebra h through its centre z(h), i.e., we have a
short exact sequence, 0 −→ z(h) −→ h −→ g −→ 0. Then
µ(g) ≤ dim(g) + dim(z(h)).
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Derivations One can use derivations to construct split extensions. Con-
sider a Lie algebra g and the Lie algebra Der(g) of all derivations. Then
Der(g) acts on g and more generally, every subalgebra D of Der(g) acts on
every characteristic ideal gchar of g. We may then consider the associated
semidirect product (split extension): Der(g)ngchar. Clearly, every derivation
δ generates a subalgebra of Der(g): ĝ = 〈δ〉n1 g.

Lemma 4.1.1.1. Let g be a Lie algebra and suppose δ is an outer derivation.
Then the one-dimensional extension ĝ of g by δ satisfies z(ĝ) = z(g)∩ ker δ.

Proof: In the Lie algebra ĝ = 〈δ〉n1 g, the Lie bracket is given
by

[(λδ, x), (νδ, y)] = (0, λδ(y)− νδ(x) + [x, y]),

for all (λδ, x) and (νδ, y) in ĝ. An element z = (λδ, x) of ĝ

is in the centre of ĝ if and only if, for every (νδ, y) ∈ ĝ, 0 =
λδ(y)− νδ(x) + [x, y]. Suppose (λδ, x) is central. For ν = 1 and
y = 0, we obtain δ(x) = 0 so that x is contained in the kernel of
δ. The equation then reduces to λδ(y) = [−x, y] for all y in g.
Since δ is an outer derivation, λ must be zero. This implies that
x is central so that (λδ, x) ∈ ker(δ) ∩ z(g). It is also clear that
z(ĝ) ≥ z(g) ∩ ker δ. This finishes the proof.

Corollary 4.1.1.1. Let g be a Lie algebra and f a derivation that induces
an isomorphism on the centre. Then µ(g) ≤ dim(g) + 1.

Proof: Consider the extension ĝ from the previous lemma. Then
ĝ has no centre and the restriction of the adjoint representa-
tion of ĝ to g defines a faithful linear representation of degree
dim(ĝ) = dim(g) + 1.

Example 4.1.1.1. Consider a Levi-decomposition g = s n a for
a Lie algebra g with an abelian radical. Consider the natural
projection onto the radical π : g −→ g : (x; y) 7−→ (0; y). Then
this map is a derivation of g that is non-singular on the centre.
We conclude that µ(g) ≤ µ(ĝ) ≤ dim(g) + 1. Note however
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that we have already obtained the strictly better result µ(g) ≤
dim(g).

4

Is it possible to lift derivations of the radical to the entire Lie algebra in the
obvious way? The following proposition gives us a necessary and sufficient
condition.

Proposition 4.1.1.1. Let g = s n r be a Levi-decomposition for the Lie
algebra g, with s ≤ Der(r). Suppose δ is a derivation of the radical. Then
the extended map π : s n r −→ s n r : (x; t) 7−→ (0; δ(t)) is a derivation of g

if and only if δ commutes with s.

Proof: Consider any pair a = (x, t) and b = (y, s) of elements
in g. We need to show that π([a, b]) = [π(a), b] + [a, π(b)]. The
commutator of a and b is given by [(x, t), (y, s)] = ([x, y], x(s)−
y(t) + [t, s]) so that

π([(x, t), (y, s)]) = (0, δ([t, s]) + (δ ◦ x)(s)− (δ ◦ y)(t))

= (0, [δ(t), s] + [s, δ(t)] + (δ ◦ x)(s)− (δ ◦ y)(t)).

We have π(x, t) = (0, δ(t)) and π(y, s) = (0, δ(s)) so that

[π(x, t), (y, s)] + [(x, t), π(y, s)] = [(0, δ(t)), (y, s)] + [(x, t), δ(s)]

= (0, [δ(t), s] + [t, δ(s)] + (x ◦ δ)(s)− (y ◦ δ)(t)).

We see that π is a derivation of g if and only if these two ex-
pressions coincide for all values of x, y ∈ s and s, t ∈ n. This
condition reduces to [δ, x](s) = 0 for all x ∈ s and s ∈ n. This
finishes the proof.

Corollary 4.1.1.2. If the radical of g is at most two-step nilpotent, we have

µ(g) ≤ dim(g) + 1.

Proof: Let s n n be a Levi-decomposition. We wish to show
that µ(g) ≤ dim(g)+1. We may assume that n is of class two and
that s ≤ Der(n). Then s acts on n and the subspace n2 = [n, n]
is invariant. So there exists an s-invariant complement n1 to
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[n, n]. The decomposition n1 + n2 of n defines a derivation δ of
n: δ|n1 = 1n1 and δ|n2 = 21n2 . Then it also commutes with s

in Der(n). The proposition allows us to lift δ to a derivation of
g = s n n. It is an isomorphism when restricted to the centre of
g so that µ(g) ≤ dim(g) + 1. Alternatively, we can construct an
invertible derivation of the radical using the upper central series
of the radical and lift this derivation.

More generally, we can consider the class of Lie algebras that are Z-graded.
Such a gradation ⊕αgα defines a derivation δ by δ|gα = α1gα . The derivation
is non-singular if the gradation is strictly positive.

Cohomology Instead of taking a one-dimensional subalgebra of Der(g),
let us consider any subalgebra D. Then g and any characteristic ideal are
D-modules and we can consider the associated cohomology.

Proposition 4.1.1.2. Consider the inclusion of subalgebras Inn(g) ≤ D ≤
Der(g). If H0(D, g) = 0, we have µ(g) ≤ dim(g) + dim(D).

Proof: Consider the extension ĝ = Dng of g. Let us first show
that z(Dn g) = z(g)D. Let z = (δ, x) be a central element of the
extension. Then for every (θ, y) in ĝ, we have

(0, 0) = [(δ, x), (θ, y)]

= ([δ, θ], δ(y)− θ(x) + [x, y]).

For y = 0, we obtain θ(x) = 0 so that x is an invariant. Since
D contains all inner derivations, also [x, y] = 0. We then have
δ(y) = 0 for all y in g. This means that δ is the zero map
and (δ, x) = (0, x) ∈ z(g)D. Conversely, z(g)D ≤ z(D n g).
Since Inn(g) ≤ D, all invariants are central and H0(D, g) =
H0(D, z(g)). The adjoint representation of ĝ is faithful of degree
dim(g) + dim(D) ≤ dim(g) + dim(g2). By noting that g ≤ ĝ we
obtain the desired inequality.

Corollary 4.1.1.3. A Lie algebra g satisfying H0(Der(g), g) = 0 also sat-
isfies µ(g) ≤ dim(g) + dim(g)2.
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4.2 Classes of interest

Characteristically nilpotent Lie algebras So which Lie algebras have
a nice derivation? According to Jacobson, every Lie algebra with an in-
vertible derivation is necessarily nilpotent. The two previous examples of
abelian and two-step nilpotent Lie algebras would suggest that the converse
also holds. Namely, that every nilpotent Lie algebra has a non-singular
derivation. That this is far from true was shown by Dixmier and Lister.

Definition 4.2.0.1 (Dixmier, Lister). A Lie algebra is characteristically
nilpotent, a CNLA, if all its derivations are nilpotent.

Such a Lie algebra cannot have any invertible derivations. It is nilpotent
since all inner derivations are nilpotent. Since every nilpotent Lie algebra
of class at most two admits a non-singular derivation, a CNLA must be of
class at least three. In their paper [DiLi], Dixmier and Lister produced a
first example of a characteristically nilpotent Lie algebra and it has mini-
mal class: it is nilpotent of dimension 7 and class 3. Later, it was shown
that there are in fact many CNLA’s. Even more surprisingly, there are Lie
algebras n such that both n and Der(n) are CNLA.

For which Lie algebras g does the zeroth cohomology H0(Der(g), g) vanish?
Engel’s theorem tells us that every characteristically nilpotent Lie algebra
has a non-trivial invariant with respect to the derivation algebra. So corol-
lary 4.1.1.3 cannot be used to construct faithful representations of a low
degree. It does not imply however that the µ-invariant is large [Schn]:

Theorem [Scheuneman] Every three-step nilpotent Lie algebra
admits an affine structure.

Free nilpotent Lie algebras The free nilpotent Lie algebras fg,c of class
c with g generators are not characteristically nilpotent. This is easy to
see: every free nilpotent Lie algebra is graded by the positive integers and
hence admits an invertible derivation. We have in particular that µ(fg,c) ≤
dim(fg,c) + 1. If the nilpotency class is low, the µ-invariant is smaller. Can
we explicitly compute µ(fg,c)?
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4.3 Open problems

4.3.1 The growth of the µ-invariant

The exact behaviour of the µ-invariant as a function of the dimension is not
known. There are some obvious upper and lower bounds for µ. Consider for
example the function f(d) = d

√
de: then f ◦ dim is clearly a lower bound

(see also 3.2.3) for µ. For the general linear algebras glm(C) and the affine
Lie algebras affm(C), it it is even an equality. So we cannot expect to find
a lower bound that is much sharper than this f . The upper bound is more
problematic. The proof for Ado’s theorem in subsection 1.1.2 tells us that
µ(g) is O(2dim(g)).

Polynomial bounds Let us focus on the nilpotent Lie algebras, since
these have been studied the most. We already mentioned that Milnor con-
jectured µ(n) to be bounded by dim(n) + 1 for all nilpotent Lie algebras n.
We also mentioned that this guess was in fact wrong. The worst examples
until now are nilpotent and satisfy dim(n) + 2 ≤ µ(n). So there is no direct
evidence suggesting that the µ-invariant increases much faster than the di-
mension. On the contrary, for many classes of Lie algebras, the µ-invariant
will be much smaller. A suggestive selection of results:

Proposition 4.3.1.1. Let g be a complex Lie algebra of dimension d and
with µ-invariant µ.

• If g has an abelian radical, we have µ ≤ d.

• If g has a radical that is two-step nilpotent, we have µ ≤ d+ 1.

• If g is at most three-step nilpotent, we have µ ≤ d+ 1.

• If g is graded by the positive integers, we have µ ≤ d+ 1.

• If H0(Der(g), g) = 0, we have µ ≤ d+ d2.

• If g is nilpotent of class c, we have µ ≤ 1 + dc.

And of course we have µ ≤ d if g has a trivial centre. These observations
naturally suggest the following question. Does the µ-invariant grow polyno-
mially (linearly) as a function of the dimension? And can the cohomology of
a Lie algebra be used to compute the µ-invariant, or the other way around?
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Lie algebras with a large µ-invariant Just as it is unclear how prove
that the µ-invariant is not too large, it is also not at all clear how to show
that a given Lie algebra has a large µ-invariant. The current world records
are not very intimidating. So far, the best candidates come from a very
specific class, that of the filiform nilpotent Lie algebras. The examples
are all characteristically nilpotent. We present a family of Lie algebras
here, for which we guess the µ is much larger than d. Let K be a field
of characteristic zero. In this section we define a filiform Lie algebra fn in
each dimension n ≥ 13 having interesting properties concerning Lie algebra
cohomology, affine structures and faithful representations. The ideas behind
the construction of fn are explained in [Bu6] (see also [BEG]), where a family
of Lie algebras is defined, of which fn is a specialisation. Define an index set
I by

I0 = {(k, s) ∈ N× N | 2 ≤ k ≤ [n/2], 2k + 1 ≤ s ≤ n},

I =

I0 if n is odd,

I0 ∪ {(n
2 , n)} if n is even.

Now fix n ≥ 13. We define a filiform Lie algebra fn of dimension n over
K as follows. For (k, s) ∈ I let αk,s be a set of parameters, subject to the
following conditions: all αk,s are zero, except for the following ones:

α`,2`+1 =
3(

`
2

)(
2`−1
`−1

) , ` = 2, 3, . . . , bn−1
2 c,

α3,n−4 = 1,

α4,n−2 =
1
7

+
10
21

(n− 7)(n− 8)
(n− 4)(n− 5)

,

α4,n =

22105
15246 , if n = 13,

0 if n ≥ 14,

and

α5,n =
1
42

− 70(n− 8)
11(n− 2)(n− 3)(n− 4)(n− 5)

+
25
99

(n− 6)(n− 7)(n− 8)
(n− 2)(n− 3)(n− 4)

+
5
66

(n− 5)(n− 6)
(n− 2)(n− 3)

− 65
1386

(n− 7)(n− 8)
(n− 4)(n− 5)

.

89



Remarks
4.3 Open problems

Let (e1, . . . , en) be a basis of fn and define the Lie brackets as follows:

[e1, ei] = ei+1, i = 2, . . . , n− 1

[ei, ej ] =
n∑

r=1

( b j−i−1
2

c∑
`=0

(−1)`

(
j − i− `− 1

`

)
αi+`, r−j+i+2`+1

)
er,

2 ≤ i < j ≤ n.

One could also consider Lie algebras snr with a non-trivial Levi-complement.
Is it possible to choose the action of s on r in such a way that µ(snr) is large?
In this context it is necessary to analyse the structure of the derivation al-
gebras Der(g), in particular the maximal semisimple subalgebra Der(g)

rad(Der(g)) .
Characteristically nilpotent and abelian Lie algebras are then immediately
excluded as candidates for the radical r.

On the other hand one could ask for the general properties of Lie alge-
bras g for which µ(g) is large compared to dim(g). It is also not clear
whether the class of all Lie algebras with a large µ-invariant is itself large,
say dim +m ≤ µ for some m in N (since almost all Lie algebras g for which
the invariant has been computed so far, satisfy µ(g) ≤ dim(g) + 1). Propo-
sition 4.3.1.1 suggests that almost all Lie algebras with an abelian radical
have a “small” µ-invariant, which could be made more precise after a com-
binatorical analysis.

4.3.2 Role played by the field

In this thesis we have mainly focussed our attention on Lie algebras over the
field of the complex numbers. The fact that the characteristic of the field
was zero and that the field was algebraically closed, was crucial. We can
naturally also ask what happens if one of these conditions fails. Counter-
intuitive phenomena may occur.

Fields of prime characteristic A Lie algebra over a field of prime char-
acteristic need not have a Levi-decomposition. Simplicity and the existence
of derivations can be significantly different from the characteristic-zero case.

Real Lie algebras Even for the semisimple Lie algebras the behaviour of
the µ-invariant will be different. Weyl’s theorem does not necessarily hold.
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Recall that the invariant was additive in the complex case and that it need
not be so if the Lie algebras are real (see theorem 2.2.2.1 and remark 3).
Lie’s theorem fails for solvable Lie algebras in general. The counter-example
in 1.3.2 used the fact that the field of the real numbers is not algebraically
closed. Does this imply that the µ-invariant will be significantly bigger in
the real case?

4.3.3 Groups

There is a close connection between groups and Lie algebras. It seems
natural to want to exploit this connection. Can we use the results from
group theory, and the corresponding µ-invariants to obtain better bounds
for Lie algebras? We also include a proof of proposition 1.4.2

Proposition Consider a finitely generated abelian group A with
torsion subgroup T . Let t be the number of invariant factors
of T . Then µ(A,C) = µ(T,C) = t.

In the proof we will identify GL1(C) with C∗ and we denote by Γq ≤ C∗ the
group of q’th-roots of unity. It is isomorphic to Zq. The proof does not use
the essential dimension.

Proof: First suppose the group is free of rank r. Take r multi-
plicatively independent unit elements x1, . . . , xr. Then the one-
dimensional representation χ : Zr −→ C∗ : (z1, . . . , zr) 7−→
xm1

1 · · ·xmr
r is faithful and we conclude that rdim(Zr) = 1.

Now suppose that the group A is finite abelian and non-trivial.
Every representation ρ : A −→ GLn(C) satisfies ρ(A)exp(A) =
1n. The Jordan canonical form implies that for every element
a ∈ A, ρ(a) can be diagonalised. Since all of these operators
commute, they can be diagonalised simultaneously. We con-
clude that every representation of degree n actually maps into
(Γexp(A))n ≤ GLn(C).

Since A is finite abelian and non-trivial, it can be written as
the direct product Za1 × . . . × Zat for some unique a1, . . . , at ∈
N \ {0, 1} such that each ai divides its successor. We will prove
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that rdim(A) = t. For every ai, take an ai-th primitive root of
unity ζai . The representation

χ : Za1×. . .×Zat −→ GL1×. . .×GL1 : (z1, . . . , zt) 7−→ (ζz1
a1
, . . . , ζzt

at
)

is faithful of degree t so that rdim(A) ≤ t. For the converse
inequality we proceed as follows. Take a prime p dividing a1.
This prime divides all of the ai. Cauchy’s theorem implies that
Ap = Zp × · · · × Zp = Zt

p is a subgroup of A. In particu-
lar, rdim(Ap) ≤ rdim(A). Any embedding of A into GLn(C)
induces an embedding of Ap into GLn(C) by restriction. As
was remarked above, it is even an embedding of Ap

∼= Zt
p into

(Γp)n ∼= Zn
p . This implies that t ≤ n and we conclude that

rdim(Ap) = t = rdim(A).

Finally, suppose that A is a finitely generated abelian group.
Then A is the direct product of its torsion free part AF of rank
r and its torsion subgroup AT with t invariant factors. We may
suppose that AT and AF are non-trivial. Take a faithful repre-
sentation χ : AT −→ Γt

exp(AT ) ≤ GLt(C) of AT and a faithful
representation ψ : AF −→ GL1(C) as above. Then the product,

χ⊗ ψ : AT ×AF −→ GLt(C)⊗GL1(C) : (u, v) 7−→ χ(u) · ψ(v)

is representation of degree t× 1 = t. Furthermore, it is faithful.
Suppose namely that χ(u) · ψ(v) = (χ ⊗ ψ)(u; v) = 1. Then
every power of this transformation is the identity and in partic-
ular, 1 = (χ(u) · ψ(v))exp(AT ) = (χ(u))exp(AT ) · (ψ(v))exp(AT ) =
(ψ(v))exp(AT ). This implies that v is contained in the torsion
subgroup of the torsion-free group AF , so that v = 1AF

. Then
χ(u) = χ(u) · ψ(v) = (χ ⊗ ψ)(u; v) = 1. Since χ is faithful,
u = 1AT

and in particular (u; v) = 1A. We conclude that the
the inequalities in t = rdim(AT ) ≤ rdim(A) ≤ rdim(AT ) = t are
actually equalities.
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4.4 The algorithm for sl2(C) n a

Algorithm In subsection 3.2.1 we described how one can compute the
µ0-invariant for Lie algebras with an abelian radical and a Levi-complement
isomorphic to sl2(C). We now implement this method in the following Math-
ematica-algorithm. This Lie algebra is completely determined by its defining
representation δ, which in turn is described by the multiplicities of any de-
composition into irreducible subrepresentations. Let (m1, . . . ,ml) be these
multiplicities. The algorithm will test if g has a faithful representation of
dimension TestValue. If not, it will test this for TestValue +1, TestValue
+2 and so on until it finds a faithful representation.

Input

• m = (m1, . . . ,ml).

• TestValue.

• TestValueStop.

It then gives as output the faithful representation as {x}{y}{M}, where

Output

• x = (x1, . . . , xk),

• y = (y1, . . . , yl),

• M = (M1, . . . ,Mt).

Here, x represents the multiplicities of the first representation of s, y repre-
sents the multiplicities of the second representation of s - see subsection 3.2.1.
The list M gives the multiplicities of M = 〈x, y〉 ≥ m.

Algorithm:

MultiplicityList = {0,0,1,8};

TestValue = 2; TestValueStop = 20;

Print["Start."];
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booleanFound = False;

While[TestValue <= TestValueStop && booleanFound == False,

ContentList = Range[Max[Length[MultiplicityList],

TestValue-1]];

t1 = 1; While[t1 <= Floor[TestValue /2],

SetPartitionsX = IntegerPartitions[TestValue - t1];

SetPartitionsY = IntegerPartitions[t1];

SetPartitionsXY = Tuples[{SetPartitionsX,SetPartitionsY}];

t2 = 1; While[t2 <= Length[SetPartitionsXY],

MultiPartX = Range[Max[SetPartitionsXY[[t2 , 1]]]]; t3 = 1;

While[t3 <= Length[MultiPartX], MultiPartX[[t3]] = { t3 ,

Count[ SetPartitionsXY[[t2 , 1]] ,t3] }; t3 = t3+1;];

MultiPartY = Range[Max[SetPartitionsXY[[t2 , 2]]]]; t3 = 1;

While[t3 <= Length[MultiPartY], MultiPartY[[t3]] ={ t3 ,

Count[ SetPartitionsXY[[t2 , 2]] ,t3] }; t3 = t3+1;];

MultiPartXY = Tuples[{MultiPartX,MultiPartY}];

t = 1; While[t <= Length[ContentList],

ContentList[[t]] = 0;t = t + 1;];

t4 = 1; While[t4 <= Length[MultiPartXY],

If[MultiPartXY[[t4,1,2]] * MultiPartXY[[t4,2,2]] != 0,

t5 = Abs[MultiPartXY[[t4,1,1]] -

MultiPartXY[[t4,2,1]]] + 1;
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While[t5 <= MultiPartXY[[t4,1,1]] +

MultiPartXY[[t4,2,1]] - 1,

ContentList[[t5]] = ContentList[[t5]]

+ MultiPartXY[[t4,1,2]] * MultiPartXY[[t4,2,2]];

t5 = t5 + 2;];

];

t4 = t4 + 1;];

booleanMultiplicity = True; t = 1;

While[booleanMultiplicity == True

&& t <= Length[MultiplicityList],

If[MultiplicityList[[t]] > ContentList[[t]],

booleanMultiplicity = False;];

t = t + 1;];

If[booleanMultiplicity , Print[SetPartitionsXY[[t2 , 1]],

SetPartitionsXY[[t2 , 2]],":",ContentList];

Print["-----"]; booleanFound = True;];

t2 = t2 + 1;];

t1 = t1 + 1;];

TestValue = TestValue + 1;];

Print["Stop."];

The algorithm was used to compute the µ0-invariant in Table 3.1 and it was
also used to compute Table 3.2.
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In dieser Dissertation untersuchen wir die sogenannte µ-Invariante von Lie
Algebren. Für eine endlich-dimensionale Lie Algebra g ist sie die minimale
Dimension eines treuen g-Moduls. Es ist bereits nicht-trivial zu zeigen, daß
diese Invariante Werte in den natürlichen Zahlen annimmt, d.h., daß jede
endlich-dimensionale Lie Algebra eine endlich-dimensionale treue Darstel-
lung besitzt. Das wurde ursprünglich von Ado und Iwasawa bewiesen, und
ist ein fundamentales Resultat. Es hat eine lange Geschichte. In dieser Ar-
beit geht es um eine Verfeinerung des Ado-Iwasawa-Theorems, und zwar in
folgender Hinsicht:

Sei g eine endlich-dimensionale Lie algebra. Berechne µ(g) und finde einen
treuen Modul dieser Dimension. Beschreibe die Eigenschaften treuer Mod-
uln minimaler Dimension. Berechne obere und untere Schranken für µ(g)
als Funktion anderer Invarianten.

Im allgemeinen kann man keine explizite Formel für µ(g) erwarten, insbeson-
dere nicht für nilpotente Lie Algebren. Die Frage ist daher, ob man für re-
duktive bzw. halbeinfache Lie Algebren µ(g) bestimmen kann. Tatsächlich
gelingt dies für den Fall daß g abelsch, einfach, halbeinfach oder reduktiv ist.
Der Beweis dazu ist im wesentlichen kombinatorischer Natur und verwen-
det klassiche Resultate der Darstellungstheorie für reduktive Lie-Algebren.
Allgemeiner untersuchen wir die µ-Invariante auch für Lie Algebren deren
auflösbares Radikal abelsch ist. Wir betrachten weitere Invarianten, die
mit der µ-Invariante zusammenhängen. Abschliessend werden dazu einige
spezielle Familien von solchen Lie Algebren im Detail betrachtet.
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