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Chapter 1

Introduction

The present hype of agent-based methodologies in computer science and the potentials of soft-

ware agents that interact autonomously over the Internet established the field of automated

negotiation, which is supposed to be of considerable importance for research and practice in

the future (Zeng and Sycara, 1998; Tu et al., 2000). Though in electronic business information,

orders, and payments can be handled electronically, automation for the task of negotiating the

final contract is still missing to a large extent, necessitating human intervention which increases

transaction costs and diminishes the potential value of electronic business (Maes et al., 1999).

Scholars argue that the evolution of agent-mediated electronic business will change the future of

traditional business and lead to a radical reorganization of economic structures (Kontolemakis

et al., 2004; Nwana et al., 1998). In agent-based systems on the other hand sophisticated inter-

actions between autonomous software agents like biding, voting, and negotiation are largely not

present (Kraus, 1997). Making negotiation an interaction mechanism available for autonomous

systems could replace current primitive rules of encounter and thereby improve outcomes of such

interactions (Rosenschein and Zlotkin, 1994; Kraus, 1997).

Albeit the youth of the field of automated negotiation one must not forget its roots in the more

established field of negotiation, as automated negotiation basically is a special form of negotia-

tion where the negotiation process is automated by autonomous software agents and protocols

governing their interaction. In this introductory chapter we therefore first will outline the impor-

tance of negotiation in general, briefly review the different approaches to study negotiation and

their major results, and discuss how the automation of negotiation blends in existing negotiation

research. Basing on this discussion we determine the research questions of this dissertation –

which originate from deficiencies in present simulation studies of automated negotiation – and

the research methodology to approach them.

1.1 Importance of negotiation

In private as well as in professional life a tremendous amount of conflicts among individuals,

among organizations, or between individuals and organizations exists. These conflicts are of di-

verse content and varying importance. One mechanism to cope with conflicts – among others like

for instance traditions, regulations, judicature, arbitration, mediation, or fiats – is negotiation

1
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(Raiffa, 1982). Dupont and Faure (2002) define negotiation as ’. . . a process of combining conflict-

ing positions into a common position, under the decisive rule of unanimity’ (Dupont and Faure,

2002, p. 40). As mutual agreement (unanimity) on one out of the set of possible alternatives

is necessary to settle a dispute at hand and conflicting interests over these alternatives between

the negotiating parties exist, negotiation combines the dual and most often conflicting motiva-

tions of the individual (competitive) desire to maximize the own utility of the outcome and the

collective (cooperative) desire to reach an agreement in a mixed-motive activity (Bartos, 1977;

Lewicki et al., 1994; Kersten, 1997; Dupont and Faure, 2002; Kersten, 2007) so, just like Bartos

(1977) states, ’. . . the true conflict in all negotiations is that between competitive individualism

and cooperative collectivism.’ (Bartos, 1977, p. 572).

If the parties in a negotiation mutually settle on one of the possible alternatives they have

reached an agreement, if they however fail to do so some party will break-off the negotiation so

that no agreement is reached – a situation called stalemate, deadlock, or impasse. To reach an

agreement the parties not only will exchange messages to inform and influence the opponent, but

above all have to exchange tentative proposals for settling the conflict – so-called offers (Cross,

1965). The exchange of offers is argued to be the most important type of communication in

negotiations. Thus scholars from the fields of management science, economics, and game theory

model negotiation or bargaining1 as the process of exchanging offers and counter-offers (Tutzauer,

1992).

Negotiations are prevalent in many areas such as labor-management disputes, law and court,

conflicts between whole nations or single individuals, as well as between and within organizations.

All of us are confronted with the need to negotiate not only in these contexts but also in our

private lives, e.g. when a couple has to mutually agree on how to allocate household tasks,

where to go for dinner, or what film to see at the cinema. The relevance of negotiation research

and teaching is also reflected in the developments of the academic sector in the early 80’s,

when negotiation became the perhaps fastest growing area of teaching in management schools

(Bazerman et al., 2000). Moreover it is estimated that about 20% of a manager’s time is spent on

various kinds of negotiations – with suppliers, customers, business partners and subordinates –

and remaining tasks are strongly influenced by the outcomes of these negotiations ((King, 1981;

Byrnes, 1987) cited by Wall and Blum (1991) and (Shea, 1983) cited by Foroughi (1998)).

1.2 Development of negotiation research

Hence, considering the significance of negotiations it is not surprising that negotiation – besides

in anecdotal literature from professionals, who provide case- and experience-based advice, report

best-practice, and derive principles for negotiating successfully, as e.g. Fisher and Ury (1981)

– is a major element of the research agenda of many scientific fields, including economics and

game theory, social psychology, behavioral decision research, negotiation analysis, and research

on negotiation support systems.2

1We use the terms ’negotiation’ and ’bargaining’ synonymously throughout this dissertation to refer to the
conflict resolution mechanism sketched above

2The following overview of research on negotiation not claims to be an exhaustive review – such a review would
deserve a dissertation on its own – but only aims at giving a brief overview of the different approaches to study
negotiation and their key results. Together with these short descriptions we provide additional literature for each
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Economics as a social science focuses on problems of choice under scarcity of resources and the

determination of economic value. Reviewing the development of research in bargaining until the

1950s economists criticize that for a long period of time economics did not include a theory of

bargaining (Pen, 1952; Cross, 1965, 1969, 1977). With a focus on the development of the research

in bilateral monopoly, an important application of bargaining in economics, Pen (1952) states

that due to inadequate theories the price under conditions of bilateral monopoly was designated

as ’indeterminate’3 (Edgeworth, 1881; Pen, 1952; Harsanyi, 1956) and resulting from bargaining.

Bargaining, however, was not investigated in more detail as it was not considered to be an

economic problem, but to belong to the realm of psychology (Pen, 1952). In another domain

of economics, however, first fruitful attempts come from Zeuthen (1930) and Hicks (1932), who

focus on the domain of management-union wage bargaining (collective bargaining). While these

models are domain-specific (dealing with wage rates or strike durations) and static, Cross (1965,

1969, 1977) proposes a general model to analyze bargaining as a dynamic process of learning

under incomplete information, where the parties adapt their strategies when they learn that

their expectations about their opponent’s strategy are wrong.4

Also game theory – as a branch of applied mathematics that studies strategic situations where

rational players choose different actions in an attempt to maximize their returns – provides math-

ematical modeling and analysis for research on negotiation. Von Neumann and Morgenstern’s

book ’The Theory of Games and Economic Behavior’ (1944) is – though game theoretic analyses

were already used by e.g. Bernoulli, Bertrand, Cournot, Edgeworth, or von Stackelberg before

to investigate specific questions – in common opinion the cornerstone of modern and general

game theory. In game theory the situation of interest is modeled as a game, where the parties

(’players’) have to chose separately from different alternative plans of action (’strategies’) which

then together determine the outcome (’payoff’). In their investigation of two-person bargaining

problems von Neumann and Morgenstern could not determine an unique solution but only argue

that the solution has to be on the individually rational range of the Pareto frontier. This, how-

ever, was found for bilateral monopoly by Edgeworth years before (Bishop, 1963) and therefore

does not constitute a progress in the field. Nash was the first to defined the ’bargaining prob-

lem’, as a situation in which individuals have the possibility of concluding a mutually beneficial

agreement, but conflict of interest exists among the bargainers about which agreement to con-

clude and no agreement may be imposed on any individual without his approval by the other

(Nash, 1950). A bargaining theory then is an exploration of the relation between the outcome

of bargaining, the characteristics of the situation and the actions of the individuals. Such game

theoretic approaches for the analysis of bargaining in general can be divided into axiomatic (from

the realm of cooperative game theory) and strategic (from the realm of non-cooperative game

theory) approaches.

In conjunction with his definition of the bargaining problem Nash (1950) also introduced the

of the research fields for the interested reader, a good general overview is provided by Teich et al. (1994).
3Indeterminate besides the two conditions that it (i) has to be on the contract curve – i.e. be one out of the

set of alternatives where neither party’s utility can be improved without at the same time reducing the utility of
the other party – and (ii) has to be individually rational for both parties – i.e. the limits of the settlement zone
on the contract curve are given by the parties utility of no agreement, as either party would otherwise prefer no
agreement over agreement on such an alternative of lower utility (Edgeworth, 1881; Harsanyi, 1956).

4Moreover Cross was the first who emphasized the importance of time in bargaining, by arguing that if it is
not important when an agreement is reached, why should it be important whether an agreement is reached at all
(Cross, 1965) – an idea later intensely sized by game theorist in their strategic approaches to bargaining.
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axiomatic approach to tackle it. The axiomatic approach derives solution functions for bargaining

problems basing on ’desirable’ properties of the outcome of bargaining described by axioms and

the assumption of rationality of the players, which determine the solution to the bargaining

problem without specifying the bargaining process (e.g. (Nash, 1950; Raiffa, 1953; Kalai and

Smorodinsky, 1975; Rosenthal, 1976; Roth, 1977; Thomson, 1981; Gupta and Livne, 1988; Gupta,

1989)). The strategic approach, on the other hand, determines equilibrium outcomes based on

formalized procedures for very specific bargaining problems. Strategic research in bargaining

was introduced by St̊ahl (1972) and pursued by Rubinstein (1982) – both using an alternating

offer protocol and impatient players for dividing a ’pie’ – i.e. a fixed surplus. Combining the two

former another game theoretic approach to the bargaining problem proposed by Nash (1953) -

and therefore termed ’Nash program’ (Osborne and Rubinstein, 1990) - is to relate axiomatic

solutions to the equilibrium of strategic models. This makes sense as each approach alone has its

deficiencies, the axiomatic approach on the one hand omits the negotiation process, the strategic

approach on the other hand relies on restrictive assumptions about the underlying problem and

the players interactions, as Nash states: ’The two approaches to the problem, via the negotiation

model or via the axioms, are complementary; each helps to justify and clarify the other.’ (Nash,

1953, p.129). Researchers have shown that such connections exists for: (i) Nash’s demand game

and the Nash solution (Nash, 1953), (ii) a version of Zeuthen’s conflict-risk game and the Nash

solution (Harsanyi, 1956), or (iii) a version of Rubinstein’s (1982) alternating offers game and

the Nash solution (Osborne and Rubinstein, 1990).

While in the early years emphasis was placed on the axiomatic approach of game theory in

recent years the strategic approach is used more widely. With a focus on more realistic bargain-

ing problems of multiple issues (Chatterjee and Lilien, 1984) and applying Rubinstein’s (1982)

alternating offer protocol, issues are considered separately rather than combining them to util-

ity values for whole packages (Lang and Rosenthal, 2001). Game theorists for example started

to analyze issue-by-issue bargaining under fixed agenda (Fershtman, 1990), agenda setting for

issue-by-issue bargaining (Busch and Horstmann, 1999a), compare issue-by-issue and bundle of-

fer protocols (Lang and Rosenthal, 2001; Inderst, 2000), and analyze the signaling of private

information through agenda setting (Bac and Raff, 1996; Busch and Horstmann, 1999b).5

In contrast to game theory’s symmetric normative approach to investigate how rational actors

behave in separate interactive decision making, negotiation analysis is an asymmetric descriptive-

prescriptive approach (Raiffa et al., 2002). Negotiation analysis (Raiffa, 1982; Young, 1991;

Sebenius, 1992; Raiffa et al., 2002) advises, building on approaches from decision analysis, one

focal negotiator – therefore asymmetric – how to behave in negotiations to improve his outcome

based on a descriptive analysis of the opponent – rather than on assumption of rational behavior.

Many of the deficiencies of game theory for analyzing negotiation – like for instance multiple

equilibria, departure from rational behavior by actors, or lack of common knowledge (Sebenius,

1992) – are thereby circumvented. It is argued that negotiation analysis builds the bridge between

prescriptive and descriptive methods in negotiation research so that both can inform each other

to deepen our understanding of negotiation and improve negotiation theory building (Bazerman

and Neale, 1991; Hausken, 1997).6

5Napel (2002) and Osborne and Rubinstein (1990) provide a good review of game theoretic approaches to
negotiation.

6Good introductions to this strand of research are provided by Young (1991) and Raiffa et al. (2002).
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In the 1960s and 70s social psychological studies of negotiation focused on the influences of

individual differences between negotiators and situational characteristics of negotiations on ne-

gotiation outcomes. The large body of empirical studies on the influence of individual differences

– demography and personality – however indicates that these factors to a large extent fail to ex-

plain variance in negotiation behavior and outcome (Rubin and Brown, 1975; Thompson, 1998;

Bazerman et al., 2000). A later review of studies performed in the 1980s comes to the same

result, that there is little evidence for the effects of individual traits on the negotiation (Wall

and Blum, 1991). Moreover these analyses are – though interesting in general – of limited use

for a negotiator as often the independent variables used in these studies like the personality of

the negotiator or the context of the negotiation are not controllable.

From the perspective of behavioral decision research the negotiator is regarded as decision maker.

Studies in this field focused on investigating how negotiators systematically deviate from rational

behavior in negotiations, by comparing the actual behavior in experiments to rational and optimal

behavior, in contrast to the former social psychological studies where such a benchmark was

lacking. Bazerman et al. (2000) in a summary of the findings of studies from behavioral decision

research on negotiation list a number of such systematic deviations from rational behavior. For

example empirical studies evidence that negotiators are responsive to framing and anchoring –

i.e. positively framed negotiators concede more and negotiators are inappropriately affected by

provided anchors in their decision making during negotiations. Negotiators also often ignore the

opponent’s perspective and devaluate suggestions of the opponent. In making decisions they rely

on easily obtainable information and are overconfident and over-optimistic about the likelihood of

achieving outcomes that favor themselves. Moreover evidence was found that negotiators often

falsely assume that their preferences are completely incompatible with those of the opponent

(fixed pie assumption) and refuse to change their behavior though rationality would dictate this

(conflict escalation).7

To aid negotiators in their task researchers developed negotiation support systems for negotiation

preparation and training, and to facilitate the actual negotiation process. A negotiation support

system is a computer system that supports the entire negotiation process through its main

components: (i) a decision support system for each negotiating party, and (ii) an electronic

communication channel between the negotiators (Lim and Benbasat, 1992; Delaney et al., 1997).

With these components negotiation support systems are argued to be helpful in alleviating

the negative impact of negotiator’s cognitive limitations, cognitive biases, and socio-emotional

problems which are the major stumbling blocks to successful negotiation (Foroughi et al., 1995;

Foroughi, 1998). Though the general aim is the same for all negotiation support systems, i.e.

the improvement of negotiation processes and thereby negotiation outcomes, they differ in the

support philosophies followed by the developers (DeSanctis and Poole, 1994) and therefore in the

system features that provide support. Just to give a few examples: The communication support

implemented in Negoisst (Weigand et al., 2003; Schoop et al., 2003) focuses on the efficiency

of the communication by providing a structured communication protocol. Inspire (Kersten

and Noronha, 1999b) on the other hand provides decision support in eliciting and providing

preference information (both in graphical and numerical form) to achieve efficient outcomes,

7An introductory review of work on negotiation in social psychology and behavioral decision research is provided
by Bazerman et al. (2000).
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or Negotiator Assistant (Druckman et al., 2002, 2004) tries by means of mediation – i.e.

the analysis of the current state of the negotiation and provision of context-specific advice –

to increase flexibility and thereby the prospects of reaching an agreement in case of stalemate.

Empirical evidence suggests that negotiation support systems succeed in their mission as their

usage leads to better outcomes than face-to-face negotiations or negotiations via e-mail (Delaney

et al., 1997; Rangaswamy and Shell, 1997; Foroughi, 1998; Köszegi et al., 2006).

1.3 Contributions of automated negotiation

A closer look at the above mentioned research streams indicates that – despite of methodolog-

ical differences – they all share the aim to improve negotiation outcomes. Anecdotal literature

distributes best-practice knowledge acquired by expert negotiators. Game theory and economics

demonstrate for specific situations how a negotiator should rationally behave and therefore offers

normative advice on how to cope with a negotiation problem and which outcomes one can expect.

Behavioral decision research tries to expose biases negotiators demonstrate when making deci-

sions, which when respected can be avoided. Negotiation analysis provides systematical support

for the preparation for negotiations, to reduce complexity and uncertainty of the problem, which

in turn should improve the performance of bounded rational negotiators. Finally negotiation

support systems take further this idea in facilitating the use of negotiation analytical tools (e.g.

by preference elicitation and visualization or post-settlement phases to improve reached agree-

ments) and the communication between negotiators. These improvement attempts are vital, as

despite the importance of negotiations for economic activity and every day life empirical studies

found that the performance of humans in conducting negotiations is rather poor.

’Often, disputants fail to reach an agreement when, in fact, a compromise does exist

that could be to the advantage of all concerned. And the agreements they do make

are frequently inefficient: they could have made others that they all would have

preferred’. (Raiffa, 1982, p. 358)

So the increase of the proportion of settlements reached through negotiation in cases where

alternatives exist that are preferred to an impasse by all parties involved and even incremental

improvements in the efficiency of negotiated agreements – as they frequently occur in everyday

life – could outrank improvement policies in other areas in terms of total welfare gains (Crawford,

1982). As mentioned there is evidence that the usage of negotiation support systems improves

negotiation outcomes. However, still the bounded rational human users make the decisions of

whether to accept an offer, make a counter-offer, or break-off negotiations, as well as whether or

not to make use of the manifold functionalities of these systems (Bichler, 2000). Studies show

for example that humans behave inconsistent with their preferences (elicited by the negotiation

support system) even when these utilities are displayed during the negotiation process, or that

they reject to enter a post-settlement phase though this could improve their outcome. Given the

deficiencies of human negotiators to reach (Pareto-optimal) agreements, they also might make

errors in their usage of negotiation support systems or not fully exploit the possibilities they

offer.
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Recent studies on negotiation support systems, that applied agent technology to support the

users, found out that the users not only accept the software agent’s support, but also demand

additional functions for the supporting agent and partial automation of the negotiation process

(Chen et al., 2005a). A logical further-development of these recent efforts would be that com-

puter systems entirely assume the burden of negotiation by automating negotiations (Oliver,

1996). Such automated negotiations then are negotiations in which autonomous software agents,

surrogating their human users, perform the necessary tasks and make the necessary decisions to

conduct negotiations on their users’ behalf and in their users’ interest.

Besides this automation of negotiations for problems currently addressed by means of human

negotiation, which should improve negotiation outcomes, a further area of application of auto-

mated negotiation is the coordination of software agents in autonomous systems. The automation

of negotiation makes this coordination mechanism applicable to such automated systems that

operate without human interference, and creates value if coordination by negotiation yields bet-

ter outcomes than achieved under the currently used – often simplistic and rigid – interaction

mechanisms.8

1.3.1 Automated negotiation in electronic business

Actually automated negotiation will only be applied instead of traditional negotiation between

human agents if and where there are benefits of doing so (Blecherman, 1999). Such potential

benefits of automated negotiation for electronic business can either result from lower transaction

costs, improved negotiation outcomes, or a combination of both – also trade-offs are thinkable e.g.

that the lower costs of automated negotiation outweigh inferior outcomes compared to traditional

negotiations so that the net benefit of automated negotiation still exceeds that of negotiation

between humans.

The transaction costs of negotiation, include both direct costs as lawyers’ cost as well as indi-

rect costs like opportunity costs of not being able to do other profitable activities due to the

time and effort spend on negotiating (Kersten, 2007). Doubtlessly automation of negotiation

reduces indirect opportunity costs associated with the negotiation mechanism compared to hu-

man negotiations as it surrogates human involvement and thereby reduces or avoids costs caused

when humans perform this task. Moreover the direct costs for automated negotiation itself are

negligible, it proceeds very quickly – the independence from the accessibility of humans, which

8Furthermore automated negotiation can be considered itself as an area of application of game theory. Recent
research in experimental economics criticizes the application of game theory for human interactions due to detected
economic anomalies (i.e. real phenomena that are inconsistent with the expectations of the economic paradigm)
for many of the building blocks of bargaining theory such as ultimatum bargaining (Güth et al., 1982), sequential
bargaining (Neelin et al., 1988), or equilibrium concepts (Ochs and Roth, 1989). Often formal models suffer
from unreasonable assumptions, to keep them analytically solvable, so that results have limited relevance. Game
theoretical bargaining models for example often assume common knowledge, perfect information, and perfect
rationality of participants (Sebenius, 1992). Though neither humans nor computer programs are ideal game theory
agents – as none of them are capable of unlimited reasoning power – it seams that game theory is more applicable
to software than to human agents which are closer to game theory’s idealization of an agent (Rosenschein and
Zlotkin, 1994). Hence, game theory could provide valuable inputs for the determination of interaction protocols
and software agent strategies for automated negotiation (Rosenschein and Zlotkin, 1994; Varian, 1995; Binmore
and Vulkan, 1999). Even game theory’s central notion of ’strategy’ – as a specification of what to do in every
situation during an interaction – takes a clear an unambiguous meaning when it becomes simply a computer
program – and actually is a description of reality for computer programs – while humans would not choose such
a fixed strategy before an interaction and follow it without alteration (Rosenschein and Zlotkin, 1994).
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is disrupted by time zones or geographical distance, makes automated negotiation much faster

(Bichler, 2000; Choi et al., 2001; Maes et al., 1999) than traditional negotiation – and therefore

with minimal consumption of computer resources, any consumption of resources that remains

is likely to involve resources that would otherwise be idle and for which therefore no real usage

fees can be accounted (Cranor and Resnick, 2000). Even if, due to problem characteristics (e.g.

in the case of complex or combinatorial problems), a significant amount of computer resources

is necessary these resources still are relatively cheap compared to the cost of human interference

and continuously become cheaper over time.

Concerning the utility of the outcome of automated negotiations, many scholars share the as-

sumption that automated negotiations can achieve better outcomes than human negotiations

(Oliver, 1996; Bichler, 2000; Sandholm, 1999; Choi et al., 2001; Chavez and Maes, 1996) as soft-

ware agents are superior to human agents in dealing with complex problems.9 The argumentation

in favor of this assumption bases on the one hand on the effects of the delegation of negotiation

task to software agents, as human agents often lack the experience and capabilities in negotiating

or the willingness to negotiate (Maes et al., 1999; Choi et al., 2001; Lomuscio et al., 2003).10

On the other hand it is supported by results of simulation studies that revealed that software

agents achieve (nearly) Pareto-optimal results – while humans often do not achieve such results

in experimental and field studies as discussed above.11

That automated negotiation is only used if this results in a greater net benefit – as the difference

between the utility of outcome and the costs of the transaction mechanism – than traditional

negotiation between humans is not only true for this specific comparison, but also holds for com-

parisons of and choice between transaction mechanisms in general. The higher costs associated

with negotiation compared to simpler transaction mechanisms have to be compensated by cor-

respondingly better outcomes so that not only a net benefit exists but that this net benefit also

exceeds that of alternative transaction mechanisms. While in electronic business information,

orders, and payments can be handled electronically, humans are still in the loop in all stages

of electronic business and electronic business transactions are largely conducted through web

catalogs – offering fixed package take-it-or-leave-it offers – or online auctions – over single issues

(the price of the good or service in most of the cases) – rather than by negotiations (Deveaux

et al., 2001; Lomuscio et al., 2003; Choi et al., 2001). Due to lower transaction costs, better

outcomes, or both, the net benefit resulting from automated negotiations can be greater than

9Complexity in this context can only refer to the complexity of the negotiation problem as determined by
the number of issues and the nature of options within these issues as well as the preferences of the negotiators
over the possible agreements. Automated negotiation is not an adequate approach for socially complex problems,
where relationships between the negotiators and emotions play an important role. In this case human agents as
empathic beings will outperform software agents. Furthermore, improvements of outcomes can only be evaluated in
economic dimensions of negotiation outcomes in automated negotiation, qualitative evaluations like satisfaction
with the agreement and the negotiation process or feelings about the outcome’s fairness are not applicable to
automated negotiation though they play an important role in evaluating the outcome of negotiations between
humans.

10There are not only benefits of using automated negotiation, one must not neglect the reduction of the hu-
man users’ power automated negotiation unavoidably causes. It increases negotiation speed but simultaneously
decreases channel richness and the problem dimensions that can be dealt with and therefore decreases the power
of patient, informed, and creative negotiators. Automated negotiation has to compensate for these power reduc-
tions by better outcomes, lower transaction costs, or a combination of both so that a higher net benefit remains.
(Blecherman, 1999).

11However without an actual comparison of the performance of automated negotiation and human negotiation
for a given negotiation problem a direct verification of this assumption is not possible. Only few studies do such
comparisons and come to puzzling results, finding that human negotiators reach better result than software agents
or at least equivalent ones (Oliver, 1996; Bosse and Jonker, 2005).
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that of alternative transaction mechanisms currently in use instead of negotiation between hu-

mans – like for example web catalogs or auctions used for low-involvement goods where the

additional benefit of traditional negotiations would exceed its transaction costs – and therefore

replace them (Maes et al., 1999; Bichler, 2000; Bichler and Segev, 2001; Kontolemakis et al.,

2004). Furthermore, through automation one can handle business volumes deemed impossible

without (Nwana et al., 1998; Kontolemakis et al., 2004; Lomuscio et al., 2003) as more oppo-

nents can be reached and dealt with and more information can be gathered (Deveaux et al.,

2001). Given the increasing importance of the World Wide Web and the increasing share of

electronic business on total transactions in combination with this argumentation – of new types

and larger volumes of transactions possible to handle via negotiation through its automation – it

is not surprising that a number of models for automated negotiation have already been proposed

for business-to-business and business-to-customer electronic business (Fatima et al., 2004). We

agree with Blecherman (1999) who argues: ’With both the shopping mall and the auction house

being replicated electronically, can the electronic bazaar, complete with haggling, be far behind?’

(Blecherman, 1999, p.168).

1.3.2 Automated negotiation in autonomous systems

Problems of coordination and cooperation are not unique to economic interactions between hu-

mans, but exist at multiple levels of activity in a wide range of populations. For example

animals interact – with limited language – to cooperate with each other and from communities,

and likewise coordination and cooperation is a vital topic in machine-interaction (Rosenschein

and Zlotkin, 1994; Kraus, 1997). Computers make more and more decisions in a relatively au-

tonomous fashion, some of them embedded in autonomous systems i.e. in concert with other

computers. These systems are not restricted to business interaction but require mechanisms

for cooperation and coordination for many domains like electrical power management, airport

landing coordination and evasion maneuver coordination for airplanes, workflow coordination

between warehouse robots, freight transportation systems, and supply chain management sys-

tems, grid computing and data allocation in information servers, or meeting scheduling – to name

only a few of such autonomous systems studied or proposed in recent literature (Rosenschein

and Zlotkin, 1994; Kraus, 1997; Fink, 2004; Wollkind et al., 2004). Sometimes software agents

control resources and can make decisions independent of other software agents, so no coordi-

nation is required even if cooperation with other software agents may improve the individual

software agent’s behavior or the overall behavior of the system they form. In other domains

software agents cannot go about their business without coordination with other software agents

as this interaction – to avoid interference or gain access to resources they control – is necessary

to achieve their objectives. In this case software agents need to determine a mutually beneficial

course of action acceptable to all participants over which neither has direct control due to the

software agents’ self-determination that allows them to decide what to do, as well as when and

under what conditions their actions should be performed (Rosenschein and Zlotkin, 1994; Kraus,

1997; Jennings et al., 2001).

However, it seems that negotiation as a means of coordination and cooperation only takes place

among humans, and that interactions between machines occur without such negotiation processes

but in restricted environments with often simple and rigid rules governing the interaction –
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which themselves of course are result of human negotiation. Though their general applicability

for coordination and cooperation between software agents in autonomous systems, negotiations

or other sophisticated interactions like bidding or voting to a large extent not occur among

computers (Kraus, 1997). However, simplicity and rigidity of currently used interaction rules can

easily result in outcomes that are undesirable from everyone’s point of view. If the interaction

rules are primitive and not allow to exploit opportunities of cooperation computers will act

inefficiently, making wrong or bad decisions the users will suffer from (Rosenschein and Zlotkin,

1994). Automation of the negotiation mechanism removes human interference and makes it

applicable for coordination and cooperation of software agents in autonomous systems that also

operate without human interference. This, as argued, could improve existing systems’ overall

performance on the one hand, as the currently used often simplistic and rigid rules of interaction

are replaced, and on the other hand enables the development of novel systems necessitating such

high level coordination mechanisms.

1.4 Research question and method

Given the youth of the field it is not surprising that operative systems are not available yet –

with exception of some experimental systems developed for academic purposes and applied under

controlled conditions in experiments.12 Due to this lack of operative systems for automated

negotiation, researchers relay on the one hand on analytical approaches, applicable for very

specific problems only, and on the other hand on simulation, for investigation of more complex

and realistic settings, in evaluating possible system configurations for automated negotiation

systems. Besides its applicability to complex problems, not solvable by means of analytical

approaches, the use of simulation is furthermore appropriate as (i) the risks of implementation

without testing are to high, and even simple algorithms having acceptable behavior in a specific

restricted situation might be unpredictable in a more liberal environment (Bichler and Segev,

2001; Henderson et al., 2003), (ii) it is necessary to demonstrate the performance of software

agents by some means to create user acceptance (Jennings et al., 2001), and finally (iii) software

agent strategies from computer simulations can easily be used in operative systems necessitating

only minor modifications and adaptations as they both are program code.

The central aim and research question of this dissertation is the suggestion and evaluation of

system designs for automated negotiation in electronic business and autonomous systems. To

address this research question we follow a three-step approach:

• Literature review: In a first step we perform a systematical literature review of studies

dealing with automated negotiation and its simulation – identified by a keyword search in

major scientific databases – to determine the state of the art in the domain of automated

negotiation on the one hand, and to identify deficiencies of existing approaches for the

practical use of their insights in implementations of operative systems.

12Examples for such relatively simple experimental systems applied to study automated negotiation include
Bazaar (Zeng and Sycara, 1998), Kasbah (Chavez and Maes, 1996), ADEPT (Faratin et al., 1998), or Tete-a-Tete

(Guttman et al., 1998) – consult Guttman et al. (1998) for a review.
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• Model development: Building on this review we develop a conceptual model for an auto-

mated negotiation system, where we address the shortcomings identified by incorporating

concepts from negotiation and bargaining literature that were not used in simulations yet –

especially generic offer generation and concession strategies from negotiation literature and

non-alternating protocols with possibilities for strategy interruption from game theoretic

mechanism design literature.

• Simulation and evaluation: In a last step we implement the conceptual model as a sim-

ulation program and compare different system configurations for various measures of the

outcome of negotiations. Here we use negotiation problems derived from negotiation ex-

periments between humans as input to the systems, which not only enables comparisons of

system configurations among each in a realistic environment, but also allows comparison

of the performance of automated and traditional negotiation.

1.5 Structure

The structure of the remainder of this dissertation, after this introductory chapter providing

the motivation, research questions, and the methods to tackle them, is provided in Figure 1.1.

Chapters 2 and 3 give the methodological and thematical background for simulation of automated

negotiation. Chapter 2 describes the scientific technique of simulation and explains the general

course of a simulation study, Chapter 3 on the other hand describes automated negotiation,

the necessary components of systems for automated negotiation, and systematically reviews the

literature relevant to the research question of this dissertation – describing the state of the art

of simulation of automated negotiation as well as identifying deficiencies of existing approaches.

Chapters 4 to 6 then follow the outlined general course of simulation studies. Model development

and the resulting conceptual model are covered in Chapter 4. Chapter 5 explains the experimental

design, the dependent and independent variables, as well as the statistical methods used in

analyses. The results of these analyses, which concern the comparison of the performance of

different configurations of systems for automated negotiation among each other and to human

negotiation, the effects of the single components of the system, their interactions, and a discussion

of these results can be found in Chapter 6. Finally Chapter 7 concludes the dissertation in

summarizing the study and its results, as well as outlining the limitations of this study and

possible areas of future research.

Chapters 4 to 6 are accompanied by appendices, that present additional information. Appendix

A, supporting the chapter on the conceptual model, provides information on the data used as

input and benchmark for the system and the source code of the implemented simulation program.

Appendix B provides the results of the tests accomplished to determine the minimal necessary

number of replications of a simulation run to achieve stable results, and Appendix C provides

additional tables summarizing results and statistical test for Chapter 6.13

13The appendix also contains abstracts of the dissertation in English and German language and a curriculum
vitae of the author.
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Figure 1.1: Structure of the dissertation



Chapter 2

Simulation

Simulation is a scientific technique to investigate real-world systems in performing experiments

on a computer. To study systems on a computer first the general system behavior and the system

components’ interactions have to be specified in form of mathematical or logical relationships,

which constitutes a model of the real-world system of interest – or in the special case of agent-

based simulation one specifies the individual behavior of the single agents in mathematical or

logical form to investigate the emergent behavior of the system they constitute. This model

itself is a system abstracting from the real-world system, but representing specific aspects of

interest – depending on the goals and intentions of the simulation – and can be implemented as a

simulation program that is understood by and runs on a computer (Law and Kelton, 1991; Pidd,

1992). If the model is a sufficiently accurate representation of the real-world system’s aspects

of interest and is correctly implemented in a simulation program, the results of experimentation

with the simulation program permit conclusions about the real-world system i.e. the original

(Page, 1991).1

The purpose of computer simulation in investigating a system can be (i) system analysis – the

investigation of the behavior of an existing system if insights about the system’s operations are

required e.g. for comparison of different alternative policies or configurations for existing systems

to chose the most appropriate –, (ii) system postulation – the formulation of hypotheses about

the structure and internal relationships of a system and hypotheses testing by comparing the

system’s and the simulation’s input-output relations –, and (iii) system design – the prediction

of the performance and comparison of different system variants (with different specifications in

controllable parameters) for non-existing systems before their actual implementation (Gordon,

1978).

However simulation is not the only method to study systems, but there are competing approaches

that serve the same purpose. Besides using the simulation technique, systems can also be stud-

ied by means of experimentation with the actual real-world system or by analytically solving

a model of the system. While experimentation with the actual system would cause no prob-

1To be implementable and executable on a computer, for a computer simulation all decisions must be pre-
determined by decision rules or strategies before the experimentation, as distinguished from simulation games
where decisions are not fixed in advance but made by humans interacting with the computer program between
its calculations (Müller, 1998).

13
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lems of validity, such experiments are often costly, disruptive, and risky for the focal system.

Experimentation with the actual system might also be difficult and time-intensive to conduct,

ethnically questionable, not easily comparable due to changing environmental influence factors,

and sometimes irreversible. The system’s behavior might also be too slow or too fast thereby

complicating experimentation. In these cases experimentation is better done with a model of

the system rather than with the system itself (Law and Kelton, 1991; Page, 1991; Pidd, 1992).

When using a mathematical-logical model to gain insights about a system the researcher need

not rely on simulation techniques but could also derive an exact analytic solution from the model

by mathematical methods such as algebra, calculus, or probability theory. This, however, implies

that the model is simple enough to be mathematically traceable, which may require tremendous

simplifications and rigid assumptions abstracting from the actual system of interest. If the sys-

tem is too complex to realistically represent it for the study’s purpose in an analytically solvable

model, simulation of a more realistic model will be the better choice (Law and Kelton, 1991;

Page, 1991; Pidd, 1992; Bichler and Segev, 2001).2

As a scientific technique simulation is a rather novel way to conduct research and can be used to

incorporate the two established and classical methods of induction and deduction. While induc-

tion is the discovery of patterns in empirical data and deduction involves deriving consequences

from specified assumptions, the simulation technique incorporates aspects of both. Like deduc-

tion it starts with a set of explicit assumptions, however unlike deduction it does not directly

derive consequences from those assumptions, but instead generates data through experimentation

that can be analyzed inductively. Unlike typical induction, however, the data analyzed comes

from simulation experiments with a model of rigorously specified mathematical and logical rela-

tions rather than from direct measurement of the real-world (Axelrod, 1997). So while induction

is appropriate to discover patterns in empirical data and deduction to derive consequences from

assumptions computer simulation can be used to aid intuition (Axelrod, 1997). Just like Axelrod

(1997) argues:

Simulation is a way of doing thought experiments. While the assumptions may be

simple, the consequences may not be at all obvious. The large-scale effects of locally

interacting agents are called ”emergent properties” of the system. Emergent proper-

ties are often surprising because it can be hard to anticipate the full consequences of

even simple forms of interaction. (Axelrod, 1997, p. 24-25)

Arguments about the applicability of simulation for theory development by Davis et al. (2007)

2Especially the use of analytically solvable models to represent systems, when an adequate representation of the
system for the research questions of the study calls for more sophisticated models, caused major criticism in recent
years and a call for the use of alternative approaches such as simulation. Axelrod (1997) for example criticizes neo-
classical economic models in which rational agents operating under powerful assumptions about the availability
of information and the capability to optimize can achieve an efficient re-allocation of resources among themselves
through costless trading. When agents use adaptive rather than optimizing strategies derivation of analytical
solutions becomes often impossible. He argues that the rational choice assumption, dominant in economics and
game theory, is not used because it is realistic or offers good advice to a decision maker but as it enables deduction
and mathematical solution of models. The more realistic alternative to rational choice is adaptive behavior, where
people may try to behave rationally but do not meet the requirements of information, foresight, and computational
capacity rational models impose (Simon, 1955; Cyert and March, 1963). Such adaptive behavior can be achieved
through learning at the individual level or through evolutionary mechanisms at the population level. However,
the consequences of adaptive processes are often hard to deduce when many agents interact following rules with
non-linear effects. In this case alternative methods such as simulation are necessary to investigate such more
realistic models.
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are in line with this potential to incorporate inductive and deductive methodology by means of

using simulation techniques:

Simulation is particularly suited to the development of simple theory because of

its strengths in enhancing theoretical precision and related internal validity and in

enabling theoretical elaboration and exploration through computational experimen-

tation. In particular, simulation relies on some theoretical understanding of the focal

phenomena in order to construct a computational representation. Yet simulation

also depends on an incomplete theoretical understanding such that fresh theoretical

insights are possible from the precision that simulation enforces and the experimen-

tation that simulation enables. (Davis et al., 2007, p. 481)

Besides this application in scientific research for thought experiments and theory development,

simulation is often also argued to be the last resort for investigating a system when realistic

models are to complex to solve analytically by deduction or the collection of the necessary

empirical data for induction is difficult or impossible, like e.g. in system design when studying

non-existing systems (Law and Kelton, 1991; Pidd, 1992; Axelrod, 1997).

Beyond the academic area, simulation became popular from its application in real time and fast

motion applications, first in the military sector (e.g. flight simulations for pilot training or combat

simulations) and later in computer games (e.g. flight simulators or strategy games) (Liebl, 1992).

Furthermore surveys indicate that the instruction in simulation techniques at universities is

highly appreciated among students and practitioners, often ranked second only behind ’statistics’,

concerning its practical relevance for the later professional life (Law and Kelton, 1991).3 As a

scientific technique, however, simulation is most widely used in the areas of operations research

and management science and proofed to be an useful and powerful tool for applications like

designing and analyzing manufacturing systems, evaluating hardware and software requirements

for a computer system, evaluating new military weapon systems or tactics, determining ordering

policies for inventory systems, designing communication systems and message protocols for them,

designing and operating transportation facilities – such as freeways, airports, subways, or ports

–, evaluating structures and processes for service organizations – such as hospitals, post offices,

or fast-food restaurants –, or analyzing financial or economic systems (Law and Kelton, 1991).

Furthermore – and relevant for the topic of this dissertation as we simulate (computer) systems

for automated negotiation – Maisel and Gnugnoli (1972) argue in accordance with other authors

that simulation is the most potentially powerful, flexible, and adequate technique for all purposes

of computer system evaluation in particular for the evaluation of new systems.

3Though their sources were quite old when their book was published – which again was some years ago – the
assumption of Law and Kelton (1991), that the value and usage of simulation is increasing, still is valid. This is
due to the fact that the forces that undermine the major drawbacks of simulation – which are the time-intensity
of modeling and implementing large-scale and complex systems and simulation’s high requirements of computer
time and performance – still are present with the further development of simulation languages and decreasing
costs of computing.
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2.1 Simulation process

A typical simulation study passes through a number of phases with intermediate results as de-

picted in Figure 2.1.4 Starting from an analysis of and data acquisition about the real-world

system one can define a conceptual model, which then can be implemented as simulation program.

For the correct accomplishment of the two steps modeling and implementation two controlling

activities are necessary. Correct modeling is ensured by the validation of the conceptual model

and the operational accuracy of the simulation program. On the other hand verification guar-

antees the correct implementation of the simulation program. Only after a verified simulation

program based on a valid model is established this simulation program can be used in compu-

tational experiments to gain reliable simulation results. Modeling and programming, and the

related control activities of validation and verification, are therefore two preconditions for the

desired final experimentation with the simulation program (Law and Kelton, 1991; Pidd, 1992).

Figure 2.1: Simulation process (Sargent, 2005, p. 132)

After this general introduction of simulation and an overview over the general simulation process,

the remainder of this chapter is structured according to the above mentioned phases and inter-

4Sargent (2005), who suggested this schema, defines its components and interactions as follows: The problem
entity is the system (real or proposed), idea, situation, policy, or phenomena to be modeled; the conceptual
model is the mathematical/logical/verbal representation (mimic) of the problem entity developed for a particular
study; and the computerized model is the conceptual model implemented on a computer. The conceptual model
is developed through an analysis and modeling phase, the computerized model is developed through a computer
programming and implementation phase, and inferences about the problem entity are obtained by conducting
computer experiments of the computerized model in the experimentation phase. . . . Conceptual model validation
is defined as determining that the theories and assumptions underlying the conceptual model are correct and that
the model representation of the problem entity is ’reasonable’ for the intended purpose of the model. Computerized
model verification is defined as assuring that the computer programming and implementation of the conceptual
model is correct. Operational validation is defined as determining that the model’s output behavior has sufficient
accuracy for the model’s intended purpose over the domain of the model’s intended applicability. Data validity
is defined as ensuring that the data necessary for model building, model evaluation and testing, and conducting
the model experiments to solve the problem are adequate and correct. (Sargent, 2005, p.132-133)
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mediate results. While the explanations in the following sections remain general to provide an

overview, we will follow the procedure outlined below – making and justifying decisions between

available options where necessary – to arrive at a simulation model for automated negotiation

systems in Chapter 4.

2.2 System

The real-world not only consists of an accumulation of single objects, but objects are connected

and interact through a network of relations. Whenever a subset of these objects and relations

that act and interact toward the accomplishment of some logical end is restricted and studied,

this subset can be conceived as a system (Law and Kelton, 1991). The structure and behav-

ior of such systems is often not immediately comprehensible. The better the structure and the

behavior of a system are understood, the more knowledge is available about the features of the

system components (detailed knowledge) and about the interactive behavior of these components

(structural knowledge), the higher the opportunities to successfully make purposeful interven-

tions, as the effects of such interventions and their feasibility can be estimated and evaluated

(Page, 1991).

The investigation of complex systems is the objective of the interdisciplinary approach of system

analysis. System analysis investigates the structure and behavior of systems with the aim to

provide decision makers with information about the consequences of different interventions in

the system. Though the concept ’system’ is very general, and applicable to ecological, economic,

and many other phenomena, systems share basic features independent of their domain. Domain

independent investigation of these basic features of the general structure and behavior of systems

(see Figure 2.2) is the objective of system theory. System theory establishes the frame for system

analysis as it is helpful to resort to general principles about the structure and behavior of systems

when analyzing a specific system (Page, 1991).

Figure 2.2: Notation in system theory (Page, 1991, p. 3)

Entities – also called objects or components – are parts of a system, which can be individually

identified and processed and are not further divisible – or need not be further divided for the

purpose and intention of the study. Entities can be classified in permanent entities, e.g. machines
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or humans, that remain in the system the whole time, and temporary entities, like jobs that

pass through the system and cease to be individually of interest once they left it. From a

different perspective one could also classify entities in those that process others and those that are

processed by others, where the former then are active entities while the later constitute the set of

passive entities (Pidd, 1992). To these entities attributes, which convey extra information about

the entity, can be attached for closer specification of their features. Especially for simulation

such attributes are useful for a variety of purposes, like to subdivide and distinguish entities of

a class or to control the behavior of the entity (Pidd, 1992). If these attributes change over time

they are called state variables. In a production system, for example, a specific machine could

be conceived as a permanent (and active) entity with an occupancy attribute, which can take

the values ’occupied’ or ’idle’, so that the occupancy attribute is a state variable of the system.

The values of all state variables of a system at a specific point in time determine the system

state. If the system state changes over time these changes represent the dynamic behavior of

the system. As mentioned, entities are not isolated but are in relationship with other entities.

Interactions, where the state of one entity causally influences the state of another entity, are the

most important type of relations from the point of view of system analysis, as they determine

the behavior of the system. The complexity of a system depends on the number of entities in

the system and the number and type the relations between entities (Page, 1991).

The choice of the system of interest simultaneously fixes the border of the system in determining

the elements and relations the system consists of i.e. what is inside and what is outside the

system – where all left outside is the system’s environment. If the system is not a closed one

it has at least one relation to its environment – inputs from the environment to the system or

outputs from the system to the environment. Though in a simulation study all inputs are con-

trollable (as one can easily change their values) no matter whether or not they can in reality be

set or changed at will (Law and Kelton, 1991; Kelton, 1999), for evaluating alternative policies of

decision makers or alternative system configurations it is often reasonable to distinguish between

controllable and uncontrollable inputs and focus advice on the former rather than the later (Klei-

jnen, 1987). Controllable inputs, or system parameters, are those factors that can be changed by

the decision maker, like for instance priority rules for queues in front of a machine could be set to

FIFO, LIFO, etc. On the other hand uncontrollable inputs, or environmental inputs, are those

factor that cannot be influenced by the decision maker, like the interarrival time of jobs or their

duration. Another way to categorize system inputs is the classification in quantitative factors –

like again interarrival time of jobs, number of servers, probabilities of different job types – and

logical/structural input factors – like whether failure or feedback loops are present, and whether

a queue is processed FIFO or shortest-job-first (Kelton, 1999).

Entire systems can be classified according to the entities they consist of into in natural, artificial

or technical, and – if humans are part of the system – social systems. Concerning the interaction

of the system with its environment one can distinguish open and closed systems, where open

system have at least one interaction with the system’s environment (either system input or

system output) while closed systems are independent of their environment as they have no such

interactions. Furthermore systems can be divided into static and dynamic systems according to

the system’s behavior over time – i.e. whether or not the system state changes over time (Page,

1991).
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2.3 Modeling and validation

The purpose of the modeling phase is to finally derive a model of the system of interest, i.e. a

system representing another system appropriately for the focus of the study, which can be inves-

tigated and from which conclusions about the real-world system can be drawn. For simulation

this implies that a model has to be developed that can be implemented as a computer program

so that computer experiments can be conducted. Modeling therefore involves a reduction of

complexity of the original system through either ignoring or neglecting some of the structure and

behavior of the real-world system (i.e. its entities – where the boundaries of the system are set

–, the entities’ attributes, or the relations between entities) and approximations, in a way that

important aspects of the real-world system for the purpose and intention of the study, remain

appropriately represented in the model. Types of such approximations include (Bratley et al.,

1987):

• functional approximations: like replacing nonlinear functions in the system by simpler

(piecewise) linear ones. The simpler functions then should be close to the empirical ones

at least in the regions the system is likely to operate.

• distributional approximations: unknown or approximately known empirical distributions of

values are replaced by simpler theoretical ones such as normal or exponential distribution.

The most extreme case would be to replace a random variable by a constant.

• independence approximations: assuming for simplification that various components (like

e.g. random variables) are statistically independent.

• stationarity approximations: assuming that parameters that actually change are constant

and do not vary over time, which can be justified if changes are limited and negligible,

however, many phenomena are non-stationary so that the notion of steady state is not

appropriate.

• aggregation: several of something are treated as one. Forms of this type of approximation

include time intervals that are treated as single periods (temporal aggregation); divisions,

firms, product lines etc. that are treated as one (cross-sectoral aggregation), several re-

sources that are treated as one like e.g. a series of machines as one large machine, or

computer systems with two CPUs as a computer system with one CPU of twice the speed

(resource aggregation), different entities are grouped according to similar characteristics

e.g. individuals of different age are grouped in age ranges with common death rate or

working capacity (range aggregation).

As simulation is increasingly being used in problem solving and to provide advice for decision

making, individuals affected by decisions based on simulation and decision makers using the in-

formation obtained from simulations are understandably concerned with whether the conceptual

model, the simulation bases on, and therefore its results are ’correct’. This concern is addressed

by validation, which is the substantiation that a conceptual model within its intended area of

application possesses a satisfactory range of accuracy (Sargent, 2005).5 Therefore, with a ’valid’

5A topic closely related to model validation is model credibility, which is concerned with developing in (poten-
tial) users the confidence they require in order to use a conceptual model and the results derived from it, through
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model the decisions made basing on this model should be similar to those that would be made

basing on physically experimenting with the system if this were possible. On the other hand, if

a conceptual model is not valid, then any conclusions derived from the model will be of doubtful

value only (Law and Kelton, 1991). We therefore agree with (Law, 2005, p. 24), who states

that: ’[v]alidation should and can be done for all models, regardless of whether the corresponding

system exists in some form or whether it will be built in the future’. Model validation efforts can

be performed by either the (i) modeling team itself, which is the most common approach, (ii) the

user of the model, which also positively influences model credibility, or (iii) a third party other

than the modeling team and the model user having expertise in the domain of the simulation.

These experts then can either evaluate validation efforts of the modeling team and/or perform

validation themselves.

Validity is a gradual term as there is no absolute ’yes’ or ’no’ answer to the question whether

a model is valid, but the answer can only be a degree of validity, i.e. a conceptual model can

serve its purpose better or worse (Liebl, 1992). Furthermore it is important to note that there

exist no general theory about validation, but determining whether a conceptual model is valid

is specific to the type of the model and the aim of the study. Due to the diversity of applica-

tions and types of models it is impossible to determine one standard procedure or one standard

validity test.6 Validation methods available for the investigation of existing real-world system

– in case of system analysis or system postulation – for example cannot be used for validation

in studies investigating systems that do not yet exist – the case of system design. Descriptive

studies (system analysis) must be much more precise concerning the input and output relations

while prescriptive simulations only have to correctly discriminate different system configurations

according to their performance so that the concrete performance measures are not necessarily

of importance in this later case (system postulation and design) (Liebl, 1992). Though a set of

methods for validation is available7, there exist no specific guidelines which approach to apply

for a certain model and purpose of study (Liebl, 1992; Sargent, 2005).

The exercise of validation is not an one-time but actually a reoccurring task during the whole

simulation process. It has to be performed when taking observations to determine the real system,

when abstracting from the system to arrive at a conceptual model, when controlling whether the

conceptual model is a good representation of the system for the intended application – and this

for all versions of the model since there might be some intermediate ones before one finally

ends up with a satisfactory valid conceptual model (Liebl, 1992; Sargent, 2005). As illustrated

in Figure 2.1 there exist three steps during the simulation process, where validation plays an

important role, first concerning the data used to build the model and to run the simulation

program, which is referred to as data validity, second concerning how good the conceptual model

computer experiments, and which is achieved when the conceptual model and its results are accepted by the user
of the model to be valid. Though often neglected in methodological discussions model credibility is maybe as
important as validation for the actual implementation of conclusions and results of simulation (Law and Kelton,
1991; Sargent, 2005).

6General guidelines, however, are provided for example by the multistage validation approach (Naylor and
Finger, 1967; Law and Kelton, 1991), which involves (i) developing a model with high face validity in building on
knowledge from experts and existing theory, (ii) testing the assumptions of the model, like distributions of input
variables, empirically, and (iii) determining the representativeness of the simulation output data by statistical
comparison with the real-world system’s output data. However this general approach is inappropriate for studies
that investigate systems that do not exist yet (system design studies) as the last step cannot be performed due
to the lack of a real-world system.

7Consult for example Balci (1994) or Sargent (2005) for an extensive list of approaches for validation of
conceptual models for simulation.



2.3. Modeling and validation 21

represents the real-world system for the focus of the study, which is called conceptual validation,

and third operational validation, which determines how close the outcomes of the simulation are

to the outcomes of the real-world system.

2.3.1 Data validity

Gathering empirical data is of great importance in simulation studies as valid data about and

from the real-world system is needed for both, the development of the conceptual model – where it

is necessary to gain insights about entities, their attributes and their relations from observations

and discussions with experts in the domain – and as input to run the simulation program (see

Figure 2.1). However, it is also often difficult, costly, and maybe impossible to obtain appropriate,

accurate, and sufficient data for modeling and validation and there is nothing that can be done

about it other than maintaining scientific standards for data acquisition and storage (Law and

Kelton, 1991; Sargent, 2005). Once collected empirical data on input variables can find different

ways into the simulation (Law and Kelton, 1991):

1. The data values themselves are directly used in the simulation. For example, if the data

represent service times, then one of the data values is used whenever a service time is

needed in the simulation – this approach is called trace-driven simulation.

2. The data values themselves are used to determine an empirical distribution function. If

these data represent service times, whenever a service time is needed in the simulation one

is sampled from this empirical distribution.

3. Standard techniques of statistical inference are used to ’fit’ a theoretical distribution – e.g.

normal, exponential, or Poisson distribution – to the data and to perform hypothesis tests

to determine the goodness of fit. If a particular theoretical distribution with certain values

for its parameters is a good model for the service-time data, then one can sample from this

distribution when a service time is needed in the simulation.

Law and Kelton (1991) state that the above list is in increasing order of desirability, i.e. that an

appropriate theoretical distribution is preferable over an empirical distribution and trace-driven

simulation for several reasons. Trace-driven simulation can only reproduce what has happened

historically and seldom enough data is available for the desired amount of simulation runs, so

that using an empirical distribution to sample random input variables is preferable to using the

observed data itself as for continuous data any value between minimum and maximum of the

observed data points and any desired number of values can be generated. If a well fitting theoret-

ical distribution can be found for the observed data this is preferable to an empirical distribution

to avoid irregularities especially when only a small number of observations is available, as values

outside the range of observed data can be generated – i.e. extreme events – for the simulation,

and as a theoretical distribution is a compact way of representing a set of data values by only few

parameters, whereas considerably more space is needed to represent and store an empirical dis-

tribution on a computer. Furthermore, there might exist compelling reasons for using a certain

theoretical distribution, though in this case observed data should be used to provide empirical

support for the particular distribution chosen.



22

2.3.2 Conceptual validation

Conceptual validation also called ’white-box validation’ (Pidd, 1992) or ’face validation’ (Law and

Kelton, 1991) concerns determining that the theories and assumptions underlying the conceptual

model are correct, that the model is a good representation of the system of interest, and that

the model’s structure, logic, and mathematical and causal relationships are reasonable for the

intended purpose of the conceptual model (Sargent, 2005). Conceptual validation therefore

involves controlling the static and dynamic logic of the conceptual model for correctness. The

static logic concerns the entities and their attributes, while the dynamic logic concerns the rules

that govern the behavior of the entities which strongly affect the behavior of the system as a

whole, and therefore the outcome of the simulation, which should mimic those which govern

the operations of the entities in the real-world system (Pidd, 1992). In performing conceptual

validation use of all available information about the system should be made, where information

can come from: (i) conversations with experts in the domain, (ii) observation of the focal system

or of similar systems, (iii) consideration of existing theory and relevant results from similar

(already validated) simulation models, and (iv) own experience and intuition (Law and Kelton,

1991).

Conceptual validation assumes that the internal structures of both the conceptual model and

the real-world system are well understood and takes place during the model development where

it is applied to all of the entities and all of their relations. Here not the predictive power but

the detailed internal workings of the model are focus of the validation (Pidd, 1992). Aspects to

be considered for example cover the application of random numbers, which only should be used

when the process which produces a behavior cannot be understood in any deterministic sense

– or is not of relevance given the purpose of the conceptual model. In this case a theoretical

distribution for these random numbers close to the observed data should be chosen. Moreover the

correctness of conditions for the execution of activities (’if-then’ rules), etc. has to be examined.

Methods to perform conceptual validation include the use of flow charts and graphical models or

a set of equations to represent the conceptual model, structured walk-throughs and discussions

of all submodules with domain experts, animation of the model behavior and tracing of entities

and variables, as well as degenerate and extreme condition tests. A structured walk-through is a

discussion of the model step by step with experts in the field, where the discussions only move on

to the next step in the conceptual model when all concerns and questions of the audience were

addressed. Animation is the graphical and dynamical display of a model’s operations, like the

move of parts through a factory, over time. Tracing is a technique that collects the intermediate

values of variables during a model run or the state changes of entities on their way through the

model to determine if the model’s logic is correct. In degenerate tests the degeneracy of the

model’s behavior is tested by appropriate selection of input values and internal parameters, for

example it can be tested whether the average number of jobs waiting in a queue of a single server

continues to increase over time when the interarrival rate is larger than the service rate. Extreme

condition tests investigate if the model structure and output is plausible for any extreme and

unlikely combination of levels of factors in the system, for example if the in-process inventories

are zero then the production outputs should be zero too (Pidd, 1992; Sargent, 2005).
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2.3.3 Operational validation

Operational validation is the task of establishing that a conceptual model’s output data closely –

means with the accuracy required for the model’s intended purpose – resembles the output data

that would be expected from the actual system, and is argued to be the most definitive test of a

simulation model’s validity (Sargent, 2005). Operational validation therefore involves comparing

output data from the existing system with the proposed model’s output, if the two sets of data

compare favorably, then the conceptual model is considered valid (Law and Kelton, 1991). Thus,

operational validation is a form of black-box validation that ignores the detailed internal workings

of the model but is only interested in whether or not the model’s output accurately reflects that

of the real system. This type of validation is mainly performed by statistical comparisons of

the model’s and the real system’s outputs and examines the predictive power of the model, i.e.

whether it adequately predicts how a given system actually behaves and would behave under

certain conditions (Pidd, 1992; Kleijnen, 1995).

An appropriate approach to perform operational validation is the correlated inspection approach

(Law and Kelton, 1991; Pidd, 1992) – also called trace-driven validation (Kleijnen and van

Groenendaal, 1992): ’In particular, it is recommended that the system and model be compared by

driving the model with historical system input data (e.g., actual observed interarrival times and

service times), rather than samples from the input probability distributions, and then comparing

the model and system outputs. Thus, the system and the model experience exactly the same

observations from the input random variables, which should result in a statistically more precise

comparison.’ (Law and Kelton, 1991, p.316). When using the correlated inspection approach

input data from the real-world system is used to run the simulation program and then the

corresponding outputs of both the real-world system’s (historical) and the simulation program’s

outputs are compared as illustrated in Figure 2.3. It is better to use the original input data

rather than random input values – from a theoretical distribution fitted to the empirical data –

as otherwise the effects of random input variables on the one hand and the conceptual model on

the other hand could be mixed. This compounding of effects could result in wrongly rejecting

an actually valid model due to output differences induced not by an inappropriate model but by

the random input numbers used (Law and Kelton, 1991).

Figure 2.3: Correlated inspection approach (Law and Kelton, 1991, p. 317)

The resulting output data of the system and the model then can be compared either qualitatively

by Turing tests – individuals knowledgeable about the operations of the system being modeled

are asked if they can discriminate between system and model output and the model is considered
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valid if they cannot – or by plotting and visual inspection (Kleijnen, 1995; Sargent, 2005), or

quantitatively in using statistical tests of the equality distributions for paired samples, like the

parametric t-test or the non-parametric Wilcoxon signed-rank test (Law and Kelton, 1991),

or by ordinary least squares regression (Kleijnen, 1995). Concerning the statistical testing of

correspondence of system output and model output it has to be kept in mind, that due to

approximations made in the conceptual model it is likely that the model and the real system do

not have identical output and that therefore statistical tests could come to the end that outputs

are different, though the model can be useful nevertheless (Bratley et al., 1987; Law and Kelton,

1991). Even if there are differences – which clearly must not be significant enough to affect

the conclusions derived from the model – the greater the commonality between the outcomes of

the system and the conceptual model the greater the confidence in the model (Law and Kelton,

1991). Further problems of statistical testing arise as the gathered data on real system output is

often non-stationary and autocorrelated, which makes it difficult to find appropriate statistical

tests (Law and Kelton, 1991).

Assume observations ri of the output of the system and si of the output of the simulation of

the conceptual model are available for same inputs i (i = 1, . . . , n). Then the t-test for paired

samples can be used to analyze whether the distributions of the two samples are equal (Law and

Kelton, 1991; Kleijnen, 1995), in calculating the paired differences di = ri − si and the according

t statistic (2.1).

tn−1 =
d − δ

sd/
√

n
(2.1)

In (2.1) d is the average and sd the standard deviation of di i.e. the average of the n differences

between the system and the model output and its standard deviation. If for the hypothesis

H0 : δ = 0 the t-statistic is significant we reject the model otherwise the means are practically

the same so the simulation model is considered valid.

Alternatively, Kleijnen (1995) proposes to use ordinary least squares regression for the regression

function (2.2) to test hypotheses about the correspondence of the system and the model, by

estimating intercept β0 and slope β1 for the system output s and model output r for the same

historical input data. This approach takes into account the positive correlation of outputs not

just the equality of their means.

r = β0 + β1s (2.2)

The most stringent test of operational validity using ordinary least squares regression would be to

test hypothesis (2.3), which implies not only identical means of the system and model responses

but also their positive correlation. Testing this composite hypothesis involves computing the

sum of squared errors for the reduced (without the hypothesis) and full (with the hypothesis)

regression model and comparing these two values. A significantly high F statistic indicates that

the hypothesis should be rejected and the simulation model is not valid (Kleijnen, 1995). A less

stringent validation requirement would be that simulated and real responses do not necessarily

have the same mean, but they are positively correlated, which makes sense when the model is

used to predict relative response rather than absolute response, the according hypothesis for
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validation then would be (2.4). To test hypothesis (2.4) a t statistic can be used and the the

null-hypothesis – that the responses are not correlated or negatively correlated – is rejected and

therefore the model accepted as valid if there is strong evidence that the simulated and the real

responses are positively correlated.

H0 : β0 = 0, β1 = 1 (2.3)

H0 : β1 ≤ 0 (2.4)

Though operational validation is possible only for existing systems where the necessary system

output, that is compared to the model output, can be acquired, a way to achieve valid models

for different system configurations is to model the existing system and validate this model and

then change the model to reflect proposed changes in the system, assuming that this does not

undermine model validity. So for existing systems where the aim of the simulation study is to

gain new insights about the systems operations or to compare different policies or configurations

for the system to determine and implement the best, both types of validation conceptual and

operational validation can be performed as existing data on the system’s output can be compared

to the output of the simulation of the conceptual model. However, when completely new systems

are studied by simulation only the components of the simulation model and their links can be

validated, in the hope that the final result still remains satisfactory. For the validation of these

components and their relations only conceptual validation is applicable as there exists no real

system and therefore no real system’s output against which one could compare the output from

simulations of the conceptual model (Pidd, 1992). There are, however, some sources of output

data against which the model’s output can be compared, like for example already validated

simulation models or results of analytic models for simpler problems (Sargent, 2005).

2.4 Conceptual model

A model is a purpose oriented, simplified representation of an real-world system and therefore a

system too (as can be seen from Figure 2.4). In the modeling phase the system is abstracted to

a model in representing the entities and relations – important for the intention and purpose of

the simulation study – in a changed way. For conceptual models that are studied by simulation

through computer experimentation this means transformation in a form that can be understood

by a computer i.e. in form of procedures and mathematical or logical relations. The aim of

studying a conceptual model is to gain information and insights about the original system it

represents (Page, 1991; Müller, 1998). Conceptual models for simulation can be determined

verbally, graphically by flowcharts, or mathematically by equations and logical rules (Law and

Kelton, 1991), the documentation of the conceptual model, besides its implementation in a

computer program is part of the simulation process.
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Figure 2.4: Model and system characteristics (Balci, 1994, p. 122)

Models can be classified along diverse dimensions: (i) the method used for their investigation –

separating analytic models for analytic solutions and simulation models for simulation –, (ii) the

medium of representation, which leads to material or immaterial models8, (iii) if and how their

states change over time9, and (iv) their purpose10 (Page, 1991).

The most important distinction for models, when applied for simulation, is the way in which

the system states change over time, as this builds the basis for two quite distinct simulation

approaches i.e. discrete-time simulation and continuous time simulation – also called system

dynamics.11 As automated negotiation belongs more to the realm of systems with discrete state

changes over time, which is discussed in more detail in Chapter 4, and due to the major differ-

ences between these two simulation approaches we will focus on discrete-time models.12 Law and

Kelton (1991) call models studied by means of simulation ’simulation models’ and distinguish

such models depending on: (i) the concept of time used, (ii) the use of probabilistic compo-

nents, and (iii) status transitions, into static versus dynamic, deterministic versus stochastic,

and discrete versus continuous simulation models:

8Where immaterial models can be further subdivided depending on whether they are formal or informal and
whether they are written or drawn into: (a) informal verbal descriptions (e.g. natural language models), (b)
informal graphical descriptions (e.g. flow charts), (c) formal mathematical descriptions (e.g. equation systems),
and (d) formal graphical descriptions (e.g. petri-nets).

9In static and dynamic models, where dynamic models can be further subdivided depending on how they change
over time and their ambiguousness into: (a) continuous-time deterministic, (b) continuous-time stochastic, (c)
discrete-time deterministic, and (d) discrete-time stochastic models.

10Separating descriptive – to describe the behavior of the system –, prognostic – to forecast future system output
under alternative assumptions–, decision support – to evaluate alternative policies and system configurations –,
and optimizing models – to derive a system configuration that maximizes or minimizes some target function.

11Furthermore note, that with respect to the other classification criteria, a simulation program is an immaterial,
formal, and written (in computer code) model, while the conceptual model can be any kind of immaterial model.
Both the conceptual model and the simulation program can serve any of the mentioned purposes.

12In general system dynamics simulations are common in natural science and best modeled using differential
equations to model relationships between dependent and independent variables – usually time – so that the state
of the system at some point of time in the future can be calculated from a known initial configuration (Bratley
et al., 1987). A detailed discussion can be found for example in (Pidd, 1992, part III). A well-known example
are ecological ’predator-prey’ models, where the population size development of both, the predator and the prey,
is calculated from the initial population sizes and birth/dead rates for a particular point in time by numerically
integrating the differential equations (Law and Kelton, 1991).
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• (i) Concept of time – static vs. dynamic simulation models: In static simulation models

the system representation is provided for one particular point in time only, while dynamic

simulation models represent the system as it evolves over time.

• (ii) Probabilistic components – deterministic vs. stochastic simulation models: Determinis-

tic simulation models have no probabilistic components, so that the output of the simulation

given a certain input is always the same. So simulation models that experience random

inputs and operate them deterministically are classified as deterministic simulation mod-

els, while simulation models with inherent stochastic elements that govern the operations

belong to the class of stochastic simulation models.13

• (iii) Status transitions – discrete vs. continuous simulation models: If the simulation model

is dynamic – i.e. changes over time – a distinctive feature to further differentiate types of

simulation models – which is important to the field of simulation as it discriminates the

two major classes of simulation discrete and continuous or system dynamics simulation

– is the nature of state transitions in the simulation model, measured by the changes

in its state variables – the variables used to describe a system at a particular time –

over time. In discrete simulation models the state variables change instantaneously at

separate points in time (an example of a discrete simulation model would be the queue in

front of a bank counter – where the length of the queue would be a state variable of the

simulation model – that changes only if a customer is finished or a new enters the bank).

In continuous simulation models state variables change continuously with respect to time

(here an example would be an airplane moving through the air where the position, velocity,

and height – as state variables – change continuously over time).

Though the distinction between discrete and continuous simulation models is straightforward

given the operations of the simulation model, it is not easy at all to decide which type of model

to use for studying a given real world system, as systems in general are neither purely discrete

nor purely continuous, but in most cases combine both aspects. For discrete systems, such as

the production, transportation, and logistics systems that are studied in operations research and

management science and where changes in the state of a system mainly are due to certain discrete

events, discrete-event simulation is appropriate. On the other hand in physical, biological, and

medical systems studied in the natural sciences the continuous change of these systems over

time, following physical or biological rules, can be of particular interest and in this case such

systems are best studied by system dynamics simulation (Page, 1991). However, discrete events

may cause a discrete change in the value of an otherwise continuous state variable or cause the

relationship governing a continuous state variable to change at a particular time. Furthermore,

continuous state variables reaching a threshold value may cause a discrete event to occur. In such

cases it has to be decided which type of simulation model is the more appropriate for the focal

system and the purpose of its analysis or if a combination of both classes is a viable approach

(Law and Kelton, 1991; Liebl, 1992).

13A well known example of a deterministic simulation is Conway’s game of ’Life’ Gardner (1970), for which a
number of implementations can be found on the Internet – e.g. on www.bitstorm.org/gameoflife/ last accessed
23.03.09. In this simulation simple rules lead to short-lived, constant, or oscillating patterns depending on the
start pattern.
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2.5 Implementation and verification

Although simulation could be done by manual calculations in principal, the amount of data

that must be stored and manipulated, necessary replications, or experiments for different system

parameterizations dictate that simulation is performed on a computer (Law and Kelton, 1991).

To make a conceptual model run on a computer and thereby applicable for computer experiments

it has to be transformed into a computer program. For developing a simulation program one

can either use general purpose language like C++, Pascal, FORTRAN, Java, etc., for which often

simulation specific libraries are provided, or specific simulation languages like AnyLogic, GPSS,

SIMSCRIPT, Simula, etc. While general purpose languages are more flexible, more programming

effort is needed. Simulation specific programming languages on the other hand often adopt

a specific world-view or programming perspective (see Section 2.6.2) and provide supportive

routines for their specific approach to simulation. While the programming language ideally

should be chosen to fit the simulation model, the purpose of the analysis, and provide the

necessary performance, the decision which programming language to use for the implementation

of the simulation model often is based on the availability of and familiarity with the certain

programming languages (Liebl, 1992).

Verification means debugging the computer program and thereby determining that a simulation

program performs as intended. Thus, verification checks the translation of the conceptual model

into a correctly working simulation program such that the program is free of bugs and consistent

with the model (Bratley et al., 1987; Law and Kelton, 1991). Besides sophisticated software

engineering – like well structured and organized, modular or object-oriented, and transparent

source code with sufficient comments –, which is necessary in any programming project and deals

with methods for programming and debugging applications independent of their domain specific

verification methods for simulation projects include (Bratley et al., 1987; Law and Kelton, 1991;

Kleijnen and van Groenendaal, 1992; Liebl, 1992):

• Tracing: Tracing makes use of the fact that simulations could actually also be done by hand

but are done by a computer for convenience. In tracing states and intermediate variables of

the simulated system (event lists, state variables, counters, random variables), are printed

out and compared with manual calculations or just checked for plausibility to see if the

program is operating as intended (tracing facilities such as printout of intermediate results

or debuggers are provided by merely all general purpose and simulation languages).

• Structured walk-throughs: A structured walk-through is a discussion of the program code

with others, knowledgeable about programming and the domain of the system. Progression

to the next part of the program code only takes place when all concerns and questions were

addressed.

• Comparison to known results: Comparisons of the results of simplified versions of the

simulation for which the correct results are known (e.g. from analytical solutions) or can

be calculated easily.

• Sensitivity analysis: Sensitivity analysis involves running the simulation program under

a variety of settings of the input parameters and check for sensitivity of the outputs to

changed inputs and the reasonability of the changes in the output.
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• Check random number generator: i.e. comparing prespecified parameters (e.g. mean

and variance) of the input probability distribution with that calculated from the random

numbers generated to see if they are correctly generated.

• Visualization and animation: Through visualization of the simulation program behavior

one can see whether or not the logic of the conceptual model is correctly implemented (e.g.

that a job arrives before it is handled) and if there are bugs (e.g. if jobs miraculously

disappear).

• Simulation language: The use of a simulation language or simulation libraries for general

purpose languages not only reduces code lines and programming time, but also these lan-

guages or libraries provide special features that relieve the programmer of programming

these components himself and therefore also avoids possible bugs unless the simulation

software contains bugs itself.

2.6 Simulation program

Though discrete-event simulation has many applications for diverse problems typical and basic

features can be identified in all of them. The simulation program in any kind of discrete-time

simulation not only has to keep track of the states of the system but the essence of a simulation

is that the simulation program has to change the system states over time i.e. relates the state of

a system (its static structure) to the state changes over time (its dynamic behavior) (Page, 1991;

Pidd, 1992). In this section we will therefore first consider approaches how a computer program

can handle and represent time in discrete-event simulations (Section 2.6.1) and afterwards the

simulation program’s routines to relate state changes to time (Section 2.6.2).

2.6.1 Time advance in discrete-event simulation

In discrete-event simulation the computer program must keep track of the current value of simu-

lation time as the simulation proceeds, moreover a mechanism to advance simulation time from

one value to the next is necessary. The variable in a simulation model that provides the current

value of simulation time is called simulation clock and there is generally no relationship between

simulation time and the time needed to run the simulation on the computer (Law and Kelton,

1991). The two principal approaches for the advancement of the simulation clock that are dis-

tinguished in literature are the time-slicing approach (or fixed-increment time advance) and the

next-event approach (or variable-increment time advance) (Maisel and Gnugnoli, 1972; Law and

Kelton, 1991; Pidd, 1992). Note that in both approaches, due to the discrete-event type of the

simulation and in contrast to system dynamics simulation, the state changes of the simulation,

resulting from discrete events, are only considered at the discrete time points of inspection and

updating of the system and that the system state remains ’unchanged’14 in the meanwhile.

14Note that in the time-slice approach the states of the system can actually change within a time slice, but only
the changes between the points in simulation time where the system is inspected are perceived.
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2.6.1.1 Time-slice approach

Time-slicing is maybe the simplest approach to represent time and the dynamic behavior of a

system in a simulation (Pidd, 1992).

The fixed increment discrete-time system simulates time advance by a method similar

to the way motion is represented in a cinema film. A motion picture consists of the

reel of film containing a series of still scenes which are projected on a screen at a rate

of 24 frames per second. The rapidity of the projection and the correlation between

successive frames deceives the eye into interpreting the whole effect as continuous

motion. (Evans, 1988, p. 25)

In the time-slicing approach, the system is considered as changing in all of its aspects over time

and therefore its status is updated and examined in usually fixed and equal time increments –

i.e. in regular intervals – until a prescribed amount of simulation time has elapsed. Thus, for an

interval (time slice) of ∆t the model is updated at time t + ∆t for the changes occurring in the

interval t to t + ∆t (Maisel and Gnugnoli, 1972; Pidd, 1992).

In the time-slicing approach for time advance the determination of the length of the time slice –

measured in simulation time – is critical. If the time slice is too large then some state changes of

the system could be missed or actually non-simultaneous events must be handled simultaneously

by employing prioritization rules, otherwise if it is too small then the model could be examined

unnecessarily often, which negatively affects computer performance (Bratley et al., 1987; Pidd,

1992). These problems can be circumvented by using the more common next-event time advance

approach, however, time-slicing is more appropriate for complex models where many events occur

simultaneously (Maisel and Gnugnoli, 1972).

2.6.1.2 Next-event approach

In the next-event approach, in contrast to the time-slicing approach, the system is not updated

and examined at predetermined fixed intervals, but the system is considered to proceed from

one event to another until a prescribed sequence of events is completed or stopping conditions

become true. Thereby the model is only examined and updated when it is known that an event

occurs and therefore a state change is due and periods of inactivity are skipped by advancing

the simulation clock from event time to event time (Maisel and Gnugnoli, 1972; Law and Kelton,

1991; Pidd, 1992). The slack periods between two events are varying in length in many systems –

but need not for the applicability of the next-event time advance approach – and the simulation

time is moved from one event time to the closest event time of future events (the next event) at

which point the state of the system is updated. Thereby the next-event time approach has two

advantages over the time-slicing approach. It avoids unnecessary and wasteful inspection of the

state of a system when no changes are possible anyway and it clearly determines when events

occur in the simulation – which refers to the problem of simultaneous treatment of actually

non-simultaneous events during an interval of the time-slicing approach (Pidd, 1992).
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2.6.2 Programming styles

Independent of the approach to advance time the program has to relate state changes of the

system to simulation time. This can be done by various approaches each focusing on another

building block of the dynamic behavior of a system (see Figure 2.5). The classical modeling styles

differ primarily in their view of the dynamics of the system behavior (Page, 1991). Which style

is appropriate depends on which of the building blocks of the dynamic behavior is perceived as

the most appropriate to study the operations of the system. This interpretation can also be seen

as a world-view, as it is not always the problem that determines the choice of a programming

approach but also different simulation schools (different styles are prevalent in Northern America

and Europe for example) or preferences for particular simulation languages (which in turn often

favor particular programming styles), due to availability or prior experience, influence this choice

(Page, 1991; Liebl, 1992).

Figure 2.5: Events, activities, and processes (adopted from Page, 1991, p. 22)

As illustrated in Figure 2.5 the dynamic behavior of a system can be divided into (i) events, (ii)

activities, and (iii) processes (Page, 1991; Pidd, 1992; Liebl, 1992):

• Event: An event is an instant of time at which a significant state change occurs in the

system. Such events can be state changes due to temporary entities entering or leaving

the system, the beginning or ending of some operations, or state changes of an entity (e.g.

from idle to occupied for a machine). Events can be subdivided into environmental or

exogenous events that are independent of the model (e.g. a job arrival) and internal or

endogenous events that are caused by other events (e.g. an event ’start job execution’

causally determines the event ’finished job execution’ for some simulation time in the

future).

• Activity: An activity is a set of operations performed on some temporary entity of the

system. These activities cause changes in the state of the system. Thus the operations

and procedures on a temporary entity in a period of simulation time initiated by an event

and terminated by another event are termed activity (events determine the time when an

activity is started and finished).
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• Process: A process is a group of events and activities for some certain temporary entity

in chronological order of their occurrence (i.e. the life-cycle of a temporary entity in the

system).

How these basic building blocks of the dynamic behavior of a system are combined and how

important they are considered for the system determines which programming approach to use.

The three major approaches (Page, 1991; Liebl, 1992; Pidd, 1992) (i) event scheduling, (ii) activity

scanning, and (iii) process interaction are discussed in detail subsequently. These approaches

embody distinctive programming style, as each requires to divide the operations of the system

into different parts that ideally occupy their own program segment: event routines in case of

the event scheduling approach, activities in the activity scanning approach, and processes in the

process interaction approach, respectively (Page, 1991; Liebl, 1992; Pidd, 1992).

2.6.2.1 Event scheduling approach

In the event scheduling approach the dynamic behavior of the system is implemented by event

routines. This programming style for simulation is used for example in the simulation language

SIMSCRIPT and is more popular in the US than in Europe. The event routines are the dynamic

part of the simulation program which change the attributes of the temporary and permanent

entities of the system (e.g. jobs and machines). Each event routine is ideally implemented as an

separate modular program segment (e.g. a function) that changes the attribute values of entities

or schedules other events when called. For example the state of a machine could be set from

’idle’ to ’occupied’ in the event routine ’start processing’ and could schedule the event ’finished

processing’ for some simulation time in the future. At this simulation time the event ’finished

processing’ changes the occupation attribute of the machine back to ’idle’ (Liebl, 1992; Pidd,

1992).

Though time advance in event scheduling simulation could be done by time-slicing, the approach

most often used is the next-event approach, which is more appropriate for this programming

style. The next-event approach is implemented by simply using a future event list as simulation

controlling device, where all future events are registered with the name of the event and the event

time. Starting the simulation clock at time zero, at any point in simulation time the simulation is

inspected, this future event list is ordered increasingly in event time by the simulation program’s

main routine. The event routine of the event scheduled for this time is called, which changes

the system state – in changing attributes of the entities – and/or schedules new future events.

For the case of multiple events scheduled for the same simulation time prioritization rules have

to be provided to determine the processing order of event routine. Processed events are deleted

from the future event list, the list is reordered, and the system time is set to the event time of

the earliest next event (Liebl, 1992; Pidd, 1992).

Using the event scheduling approach not only allows a clear distinction between the static struc-

ture (temporary and permanent entities and their attributes) and dynamic behavior (events

changing system states – i.e. entity attributes – and causing other future events) (Page, 1991),

but also results in faster simulation programs opposed to the use of the activity-scanning or

the process-interaction approach for systems with low complexity of the system components’

interactions, like reservation and release of work stations (Liebl, 1992).
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2.6.2.2 Activity scanning approach

The activity scanning approach structures the dynamic behavior of a system and therefore the

simulation program into activities that occur in the system. This approach was popular in the

UK and is implemented in the simulation language CSL. Due to the subsequently mentioned

deficiencies of this approach it is of minor practical relevance only. Same as for event routines in

the event scheduling approach, the activities – the central concept for program structuring in this

approach – of the activity scanning approach should be separated in modular program segments.

These program segments, one for each activity, have to determine all the necessary conditions

that have to be fulfilled for performing the particular activity. If the preconditions for an activity

are met then the activity is performed and the state of the system is changed accordingly. For

example to process a product on a machine it is necessary that there is a product in the queue

in front of the specific machine and that the machine is idle at the simulation time when the

conditions for the activity ’process product’ are controlled. The program segments representing

activities are best divided into a test head, which tests if the conditions for the activity are met,

and an operations part which executes the operations that are part of the activity only if the

tests of the test head are passed (Liebl, 1992; Pidd, 1992).

At any simulation time (may it be advanced by the time-slicing or next-event approach) the

simulation program’s main routine has to test all activities and check whether the conditions for

these activities are met, and in case these tests are passed execute the activity. This highlights

the importance of the correct ordering of the activities in the simulation program, which is

more problematic than that of the event routines in the event-scheduling approach, as it is

more difficult to correctly implement the logic of the simulated system. The necessity to scan

through all possible activities for fulfillment of their conditions at each inspection of the system,

which consumes more computer performance than the event-scheduling approach, and the more

difficult structuring of the simulation program are the main disadvantages of the activity scanning

approach compared to other approaches (Liebl, 1992).

2.6.2.3 Process interaction approach

From the discussion above it can be derived that the event-scheduling and activity scanning

approach segment the whole life-cycle of an entity into its fundamental parts and implements

these parts as separate program modules – events and event routines or activities and their

execution conditions. The process interaction approach on the other hand deviates from this

fragmentation and considers the whole life-cycle of entities instead. In the process interaction

approach all the events and activities a (normally temporary) entity traverses during its life-cycle

in the simulated system are combined into a process. Both, the active phases – during which

state changes occur – and passive phases – during which the process waits for its reactivation –

of entities are represented in these processes, which again should form separate segments of the

simulation program (Page, 1991; Pidd, 1992).

The essence of the process interaction approach is closely related to object-oriented programming

and actually the simulation language Simula, that follows the process interaction approach, was

the first object-oriented programming language. Each class of entities (e.g. different kinds of

jobs) has its own process and each entity created as a member of a particular class inherits this



34

process. The ’life’ of a focal entity can be traced by checking its progress through and its current

position in its process. As entities entering the system during the simulation are initiated as

members of their class and inherit their class’ process – as a template for their future ’life’ in

the system – as many processes as entities run concurrently in the system and the number of

processes fluctuates with the number of entities entering and leaving the system (Page, 1991;

Pidd, 1992).

If entities interact so do their processes, activities of different processes for example can overlap

and run parallel, if there are no conflicts, or only sequentially if they block each other. In

the later case passive waiting times have to be modeled explicitly and active operation times

implicitly through the change from one event and activity to another (Page, 1991). The main

routine in a process interaction simulation program – which itself can be seen as a process –

has to keep track of all running processes at any point in time, which is difficult as this number

might be unknown in advance and fluctuating with the entities in the system. Each process has

to be moved forward as far as possible by the main routine, which also needs functionalities to

interrupt a process – unconditionally when an delay is determined in advance or conditionally

when the movement of an entity through its process is halted until specific conditions in the

simulation are satisfied – and to restart it again later. These additional requirements make the

process interaction approach more complex and difficult to implement in a simulation program

compared to the other programming styles discussed above (Pidd, 1992).

For the purpose of the process interaction approach the main routine has to maintain a record of

each process which contains the reactivation time and the reactivation point of the process i.e.

when and where the process of an entity has to be continued. If one considers the reactivation

of a process as an event then the executive part of the simulation program can be implemented

much like the future event list of the event-scheduling approach, with the distinction that it

contains the next reactivation times of the processes ordered increasing in time. In contrast to

event routines however the processes are not processed from their beginning and do not terminate

but can be interrupted before they completed and re-activated later to further proceed from this

point. For this reactivation it is necessary to save the process state – all attribute values as well

as information on reactivation points of the process – before the deactivation (Page, 1991; Liebl,

1992; Pidd, 1992).

2.7 Experimentation

All these previously mentioned phases and intermediate results – the creation and validation of

a conceptual model as well as the implementation of this model in a simulation program and

its verification – are ’only’ means to the end of being able to perform computer experiments

with the simulation program and derive conclusions about the original system from the results of

these experiments. For this experimentation, first the experimental design has to be determined,

i.e. which factor level constellations are of interest and how the computer experiments can be

organized efficiently, second the output of interest and subject to the later analyses of the focal

simulation has to be determined, and of course it has to be investigated how sensitive the outputs

and conclusions derived from the simulation program are to changes in the input variables.
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2.7.1 Simulation output

In contrast to validation, which is concerned with the appropriateness of the conceptual model

for questions of the intended study, output analysis of the results of computer experiments is

concerned with the outputs of this model and its performance. It therefore is mainly a statistical

task involving problems like the determination of the run length of a simulation or the necessary

number of replications (Law and Kelton, 1991). Which simulation outputs and performance

measures are relevant in the analysis of a simulation and for drawing appropriate conclusions

about the real-world system depends on the nature of the system output. Concerning their

output and behavior over time systems and their conceptual models for simulation can be divided

into (i) steady-state or transient systems (concerning the behavior of output over time) and (ii)

terminating or non-terminating systems (concerning the time horizon of the system) (Liebl, 1992;

Pidd, 1992). These two factors with each two levels combine to a total of only three reasonable

types of systems (Liebl, 1992):15

• non-terminating steady-state systems: These systems reach a long-term equilibrium state

with no trend components so that the system outputs are time-invariate. A system is

considered to be in a steady-state if its current behavior is independent of the starting con-

ditions and if the probability of being in one of its states is governed by a fixed probability

function, which means that the system may change its state but the probability of doing so

can be determined. Therefore a steady-state system embodies a steady stochastic process.

Systems that can reach a steady-state clearly should be evaluated when in this state – i.e.

when the effects of the initial conditions are no longer noticeable (Liebl, 1992; Pidd, 1992).

• non-terminating transient systems: Most systems however do not reach a steady-state but

are non-terminating as well, for example due to varying inputs over time (’rush hour’

or seasonal trends) as for example an airport which is not closed at night but has lower

airplane arrival rates during the night and higher ones during some rush hour (Liebl, 1992;

Pidd, 1992).

• terminating transient systems: Whereas non-terminating systems are considered as a con-

tinuum (like airports without night closure or phone networks that are started only once

and then are considered to run infinitely) terminating transient systems have some natural

start and end, so that their time horizon is a finite one as they are self terminating by some

particular events (Pidd, 1992). Here an example would be a post office opening at 9:00 am

and closing at 5:00 pm.

The output or response of a simulation run depends on the input – even in steady-state systems

the starting conditions as input to the system will influence if and when the system reaches

a steady-state. In simulations where these inputs are random variables a single run of the

simulation only yields information about the simulation output for this specific values of the

input variable (or combination of values in case of more than one input variable). Therefore we

are usually not interested in one input-specific response but rather on the distribution of the

15The fourth combination would be a system that reaches a steady-state but is a terminating system, which is
a contradiction, as systems with logical start and end do not satisfy the conditions of time invariance of output
measures necessary for steady state (Liebl, 1992).
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response or summary measures of this output distribution for different input variables like mean,

standard deviation, variance, quantiles, and minimum or maximum (Kelton, 1999).

The output measures of interest for non-terminating systems are usually some average measures

as it makes no sense to consider aggregate measures due to the infinite time horizon of the

system. For non-terminating steady-state systems independence of average measures from initial

input variables can be achieved by deleting observations from the so-called run-in phase, where

the output measures of the system are still influenced by the initial starting conditions of the

simulation and are not in a steady-state yet.16 However, still observations will not be independent

– a major requirement for the applicability of many statistical techniques – but are likely to be

autocorrelated (Liebl, 1992; Pidd, 1992). In a simple queuing system for example the waiting

time of a customer will depend on the number of people that are already waiting when the

customer arrives and the waiting time of the customer will therefore depend on the waiting time

of preceding customers (Pidd, 1992). To achieve independence of observations in non-terminating

steady-state systems (after removing observations of the run-in phase) the whole output time

series can be divided into batches for which average measures are calculated, which are likely to be

independent of each other when the batch size is long enough. Batches can also be used for non-

terminating transient systems if their output shows some cyclical or periodical behavior where

the cycles or periods form the batches for which average measures are calculated. If such cyclical

behavior cannot be observed then the only way to account for input dependence of the outcomes is

– same as for terminating systems – to do several replications of the simulation run and calculate

average or aggregated measures over these replications. In terminating systems one run from

the start condition of the simulation until the critical event that terminates the simulation yields

a single observation of the response of interest. This observation clearly incorporates start-up

and end effects due to the specific input variables. To yield several observations in terminating

systems, for which summary measures of the response variables can be calculated – which then

are independent of the simulation input –, several replications of the simulation over its time

horizon are necessary (Kleijnen, 1987; Pidd, 1992).

An additional possibility to increase the accuracy of outcome measurement of a system is the

artificial reduction of the output variance by means of so called variance reduction techniques

(Law and Kelton, 1991; Liebl, 1992). Variance reduction is a procedure to increase the precision

of the estimates that can be obtained from a number of replications of a simulation. Every output

variable of a simulation is in case of the usage of random input variables itself also a random

variable with a particular variance that limits the precision of the simulation results. In order to

render a simulation statistically more efficient, i.e., to obtain a greater precision for the output

variables of interest variance reduction techniques like common random numbers, antithetic

variates, control variates, indirect estimation, conditioning, importance sampling, and stratified

sampling can be used (Law and Kelton, 1991; Liebl, 1992). We will focus on common random

numbers for variance reduction which is – maybe due to its simplicity – the most popular and

powerful variance reduction technique. Furthermore the common random numbers technique is

the only one of the above mentioned directly applicable for comparisons of two or more alternative

16No matter if the simulation is started from an ’empty-and-idle’ state or with ’typical’ starting conditions –
which might be difficult to know exactly and must be equal for all runs or system versions – there will be such a
run-in phase, which has to be deleted from the observations, however, it might be shorter in the later approach
of starting the simulation (Pidd, 1992).



2.7. Experimentation 37

system configurations, which is the objective of this dissertation, while other variance reduction

techniques are applicable only for the investigation of one single configuration (Law and Kelton,

1991).17

The basic idea of the use of common random numbers is that alternative configurations should

be compared under similar experimental conditions so that observed differences are due to dif-

ferences in the system configuration rather than the result of fluctuations of the experimental

conditions i.e. the different realizations of the random number generator used in the simulation

program for interarrival times, demand sizes, etc. The common random number technique for

variance reduction requires the synchronization of the random numbers streams i.e. the use of

the same realizations of random input variables for the same purposes in system configurations

to be compared. Thereby the simulation program experiences the same environmental input for

different system configurations and differences can only be due to these differences in system

configuration (Law and Kelton, 1991).18

2.7.2 Experimental design

The insights and approaches from experimental design in statistics are applicable to computer

experiments in simulations as well. A sophisticated experimental design is necessary in simula-

tion studies whenever alternative system configuration are not externally provided (e.g. different

policies or system configurations considered by the decision maker) and only need to be com-

pared, but when the objectives are broader and more ambitious ones, like to find out which of the

possibly many parameters and structural assumptions have the greatest effect on the outputs of

a system or which of the system configurations leads to the best performance of the system (Law

and Kelton, 1991). In the experimental design terminology the system and input parameters as

well as structural configurations (under control of the decision maker) that compose the concep-

tual model are called factors and the output measures are called responses. Factors can be either

quantitative, assuming numerical values, or qualitative typically used to represent structural

configurations that cannot be quantified naturally. Furthermore, factors can be controllable or

uncontrollable depending on whether or not they represent action options to managers of the

corresponding real-world system, where it is straightforward to focus on controllable factors in

the computer experiments, since they are most relevant to decisions about the implementation

of the real-world system (Law and Kelton, 1991; Kleijnen and van Groenendaal, 1992).

When the total number of possible factor combinations results in a large amount of necessary

simulation runs, experimental design provides approaches to decide before the simulation runs,

which particular configurations to simulate to obtain the desired information with the least

amount of simulating. Therefore, carefully designed experiments are much more efficient than

a hit-or-miss sequence of runs in which a number of alternative configurations are explored un-

17We refer to the literature (e.g. Law and Kelton, 1991, chapter 11) for a detailed discussion of other variance
reduction techniques.

18Note that the variance reduction technique of common random numbers is closely related to the validation
technique of trace-driven validation (or correlated inspection) we discussed in Section 2.3.3, with the difference
that in the later case the same historical input values are used to run the simulation program for operational
validation of correspondence of system and simulation output, while the former uses the same random input values
to run the simulation program for different system configurations for comparison of output differences (Law and
Kelton, 1991). The statistical techniques presented in Section 2.3.3 are applicable for both purposes.
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systematically to see the consequences (Law and Kelton, 1991). There exist several classical

experimental designs like (i) one-factor-at-a-time design (or ceteris paribus design), (2) full fac-

torial design, or (iii) incomplete factorial design (2k−p-design or fractional factorial design) as

illustrated for three (binary) factors {x1, x2, x3}, each with only two levels {1,−1} in Figure

2.7.2 (Law and Kelton, 1991; Kleijnen and van Groenendaal, 1992).

Figure 2.6: Classical experimental designs (Kleijnen and van Groenendaal, 1992, p. 168-169)

According to Kleijnen and van Groenendaal (1992) the one-factor-at-a-time design assumes no

interactions between the factors. In contrast a full factorial design consists of all possible factor

level combinations as treatments. This design results in 2k combinations while the one-factor-

at-a-time design only requires k + 1 combinations.19 The full factorial design not only is more

effective if interactions between factors exist – as it enables the analysis of interactions between

factors – it also is more efficient than the one-factor-at-a-time design (provided k > 1) concerning

response variance. Concerning the relation of response variance and the number of observations

for a full factorial and for a fractional design, these two experimental designs are equally efficient

(Kleijnen and van Groenendaal, 1992). While a full factorial design allows the investigation of

interactions between factors and factor levels this is not possible with an one-factor-at-a-time

design and only possible with a fractional design for certain interactions. However, in case of no

interactions the one-factor-at-a-time design can give the same information as the full factorial and

19These numbers hold true only for factors with two levels, where k denotes the number of factors. Generally,
if the number of levels in factor i (i ∈ 1, . . . , k) is li then the number of necessary treatments to be considered for

a full factorial design is
∏k

i=1 li.
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the fractional design. In practice the fractional design is often preferred due to the considerably

smaller number of considered factor combinations and the therefore lower computer time and

performance necessary for the simulation runs (Kleijnen and van Groenendaal, 1992).

In addition to those classical experimental designs the simulation literature often also considers

some other relevant techniques from statistical experimental design theory for specific simulation

purposes (Law and Kelton, 1991; Kleijnen and van Groenendaal, 1992). For example if the

number of factors is very large, so that the number of treatments (factor-level combinations) to

be considered for a full factorial design or a sophisticated fractional design grows too large to run

the simulation and do the analysis in a reasonable period of time, factor-screening techniques

could be applied to identify those factors which appear relevant and irrelevant factors can be

fixed – in replacing variables by a constant – at some reasonable value omitting them from

further consideration. Other techniques applicable if controllable factors are quantitative and

the aim of the simulation is to find some system configuration that achieves optimal output

(either maximizing or minimizing some output values) are response surface or meta-modeling

techniques, which in such settings are preferable over classical experimental designs as they

identify optimal system configurations faster and with fewer simulation runs than undirected

approaches.20

2.7.3 Sensitivity analysis

If one perceives a system as a function f transforming some uncontrollable input variables X

under some controllable system parametrization Y into output E (2.5) (Banks and Carson,

1984; Kelton, 1999) then one studies a system’s performance in its environment (contingency).

Sensitivity analysis is defined as the investigation of the reaction of model outputs to systematic

changes in the uncontrollable environmental inputs and the controllable system parametrization

(Kleijnen, 1995) i.e. the sensitivity of E to changes in both X and Y . Accordingly, many scholars

argue that sensitivity analysis is a part of the validation of the conceptual model. All inputs to

the model controllable and uncontrollable should be altered systematically to be able to observe

for which the output changes, and therefore which are sensitive to the output. These inputs then

have to be modeled with greatest accuracy and appropriate data for them has to be acquired

(Law and Kelton, 1991; Liebl, 1992; Sargent, 2005).

E = f(X, Y ) (2.5)

However, there are two problems with this kind of conceptualization of sensitivity analysis. First,

a simulation program already has to be validated and verified to achieve reliable output measures

for systematically changed input measures (Liebl, 1992), so the value of sensitivity analysis for

validation of a conceptual model is questionable unless it is used for validation of intermediate

conceptual models only. Second, in simulation studies with the purpose to evaluate different

policies or system configurations (system design) sensitivity analysis overlaps with output anal-

ysis if both controllable and uncontrollable inputs are considered in the simulation study. As

20We refer to the literature (e.g. Law and Kelton, 1991; Kleijnen and van Groenendaal, 1992) for the detailed
discussion of these techniques, which we omit here as they are not applicable to the type of our model and the
purpose of our study.
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mentioned, experimental design and output analysis is mainly concerned with the effects of con-

trollable system inputs – i.e. the system parametrization or configuration under control of the

decision maker. In simulation studies with the purpose of system design sensitivity analysis

therefore can be applied to investigate the robustness of the conclusions derived from simulation

in investigating the sensitivity of the output on the second major driving force, namely the un-

controllable environmental inputs. Sensitivity analysis can be performed by graphical plotting

and visual inspection i.e. plotting the simulation outputs and the values of the input variable on

different axes; one plot per input-output combination or – also accounting for interactions – by

means of statistical methods much like those applied for testing the sensitivity of the output to

controllable system parameters (Kleijnen, 1995).



Chapter 3

Automated Negotiation

For the study of automated negotiation, which though constituting a very specific form still

belongs to the realm of negotiation, the framework of negotiation research – with necessary

adaptations and inevitable restrictions – is applicable. Negotiation research in general – though

some approaches focus only on components and their relations, neglecting others as discussed

in Chapter 1 – studies how the preconditions of the negotiation and the context in which it

takes place influence aspects of the negotiation process, which in turn shapes the outcome of the

negotiation (see Figure 3.1).

Figure 3.1: Negotiation research framework – adapted from Köszegi (2008, p.11)

The context of negotiations can be categorized along multiple dimensions, like the number of

parties and issues, whether the party is a single individual or a group, whether or not an agree-

ment is unconditionally necessary, whether parties can exert power or make threats, whether or

not linkages to other concurrent or future negotiations exists, etc. (Raiffa, 1982). Furthermore

the context of the negotiation is influenced by the characteristics of the negotiators participating

in the negotiation and their attitudes towards negotiating, like their cooperativeness or tough-

ness, their experience in negotiating, impatience, creativity, power, etc. A further ingredient to

the negotiation context is the use of support tools (negotiation support systems and the fea-

tures they provide to the negotiation, like communication support, decision support, etc.) and

the assistance of third parties, through for example mediation or arbitration (Wall and Blum,

1991; Carnevale and Pruitt, 1992; Lewicki et al., 1992). The most important constituent of the

negotiation context, however, is the subject of the negotiation – the negotiation object –, the

preferences of the parties over this negotiation object (Greenhalgh et al., 1985), and the nego-

tiation problem resulting from the joint evaluation of this negotiation object according to these

41
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preferences (Mumpower, 1991; Carnevale and Pruitt, 1992; Clyman, 1995). The negotiation

problem (Mumpower, 1991) – also called utility scatter plot (Clyman, 1995) or joint utility space

(Carnevale and Pruitt, 1992) – is a major concept for the generalization and analysis of negotia-

tions. It is the evaluation of all possible solutions of in the negotiation object by all negotiators.

For the case of bilateral negotiations, between two parties, it can be represented by plotting the

utility values for all possible settlements in a two dimensional graph, where each axis represents

the utilities of solutions for one of the parties.

This context influences the way negotiations proceed over time. Due to cognitive complexity and

uncertainty negotiators do not settle for their first offer (Mumpower, 1991), but engage in what

Raiffa (1982) calls a negotiation dance, i.e. a sequence of offers and counteroffers. Together with

these offers, that constitute tentative proposals for settling the conflict at hand, negotiators also

exchange other messages – like promises, threats, or messages providing or requesting information

– in an attempt to influence the final outcome (Tutzauer, 1992). Negotiation processes therefore

can be studied by means of quantitative analysis – focusing on the offers exchanged –, by means

of content analysis – focusing on the content of the messages exchanged and the strategies

and tactics employed by the negotiators –, and by combinations of the two former approaches.

However, negotiation processes only can be investigated against the background of the context

in which they emerge, i.e. the negotiation problem (Zartmann, 2002). Mumpower (1991) for

example showed that the same prototypical strategies can lead to different outcomes, which

depend on the underlying negotiation problem, and that for some negotiation problems it is

more difficult to reach (Pareto-optimal) agreements than for others, independent of the strategy

employed (Mumpower, 1991; Mumpower and Rohrbaugh, 1996). So the negotiation outcome

is determined not exclusively by the structure of the negotiation problem – as proposed by

axiomatic game theoretic approaches – or gross behavioral indicators – as assumed in social

psychological research on negotiation – but also by the negotiation process emerging between

the parties (Tutzauer, 1986).

In exchanging offers the negotiation parties try to mutually arrive at an agreement for the

negotiation object, for which they have conflicting interests and preferences. The outcome of the

negotiation is an agreement on one of the possible solutions if they succeed, or non-agreement

(or break off of the negotiation) if they fail to do so. Whether or not an agreement is reached is

a major outcome measure in negotiations, however there exist several refinements of this rather

broad outcome measure that closer investigate the quality of a reached agreement (Tripp and

Sondak, 1992). Additional quantitative aspects of the outcome are for example how much time

and resources were spent on achieving the outcome (efficiency of the process) and if the solution

is good compared to alternative solutions at the dyad level (sum of individual utilities or Pareto-

optimality of the outcome) as well as at the individual level. If better solutions exist, then it might

be interesting how much better they are, which can be determined by means of distance measures

(to the Pareto frontier or to the normative solutions provided by axiomatic bargaining theory).

Furthermore one can discuss the fairness of the outcome by means of utility differences of the

agreement between parties (the contract balance). However, negotiation processes and outcomes

can also be evaluated along more qualitative and subjective measures asking the negotiators in

post-negotiation questionnaires if they perceive the process and outcomes to be favorable for the

relationship between the negotiators or if they improved trust between the parties. Furthermore

questionnaires can be used to evaluate the parties level of satisfaction with both the result of the
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negotiation (outcome) and the way they achieved it (process).

Automated negotiation is a mechanism by which autonomous software agents, following their

users preferences and an interaction protocol, conduct negotiation in automating the negotiation

process. Due to this automation of the negotiation process the use of automated negotiation is

restricted to a fragment of negotiations only, at least at the current state of the field, namely

negotiations over fixed negotiation problems. In a fixed negotiation problem neither the set of

possible solutions, nor the preferences of the negotiators change during the negotiation. The

reasons for this restriction are twofold: First if automated negotiation is to be used, then the

negotiation problem has to be well structured so that it can be communicated to the software

agents (Weigand et al., 2003; Chen et al., 2005b). This implies that the issues under discussion

and the possible settlement options for these issues are known at the beginning of the negotiation.

Second, due to the quick proceeding of automated negotiations it makes no sense to consider the

possibility of changing preferences. Therefore automated negotiation – at least at the current

state of the field – is limited to fixed negotiation problems, where the negotiation object and

the users’ preferences over the negotiation object are determined before the negotiation and

remain constant throughout its course.1 Further restrictions of the use of automated negotiations

concern the domain of the problems for which automated negotiation are appropriate. Due to

the nature of software agents, negotiation problems involving non-economic evaluation criteria –

such as fairness, justice, or satisfaction – or of social complexity – like problems concerning the

relationship or trust between the negotiators or other social criteria – can only be handled by

automated negotiation to a limited extent.

For this specific subset of negotiations, in which automated negotiation is applicable, and when

focusing on bilateral negotiations – as the most widely discussed form of negotiation, where

neither more than two nor third parties like arbitrators, mediators, etc. are not involved –

the negotiation context reduces to the negotiation problem, as the negotiation is conducted

by software agents, for which personal characteristics of the ’negotiator’ are not applicable.

1However, it is also possible to determine the negotiation problem in an automated ’meta-negotiation’ before
the actual negotiation, where the content of this meta-negotiation is the negotiation object of the subsequent
actual negotiation. Mechanisms that alter the negotiation problem during the negotiation are currently under
development (Sycara, 1991; Fatima et al., 2004), but were not used in simulation studies yet, and actually are
not elaborated sophisticatedly enough to use them in simulations at the moment. At the current state of the
art of automated negotiation the issues and settlement options, as well as the preferences over this negotiation
object have to be constant during the negotiation and communicated by the user to its software agent. An
alternative to meta-negotiations for determining the negotiation object would be an automated determination by
the system used for automated negotiation. For this purpose the software agent has to elicit the preferences of
the user (about all issues and options regarded to be important by the user) as well as their outside option –
their ’best alternative to a negotiated agreement’ (BATNA) – before the negotiation. This preference information
then has to be communicated by the software agents to a main routine of the negotiation system that is in
charge of determining the negotiation object. With preference information for all negotiation parties the system
constructs a negotiation object so that only the conflicting issues and only feasible options remain by the following
procedure: (i) issues of importance to only one party are settled for the best option for this party in advance, (ii)
issues where the parties indicate the same best option are settled for this best option, (iii) the option spaces for
the remaining issues, for which conflicting interests exist are set to the upper and lower bound indicated by the
parties reservation levels so that only feasible settlements remain in the negotiation object, and finally (iv) in a
last step all agreements that do not satisfy the participation constraints of either party (i.e. afford lower utility
than the BATNAs of the parties) are deleted from the set of possible agreements. As the preferences used for
constructing the negotiation object have to be indicated to the software agents in a first step, which follow them
during the automated negotiation, an user only would penalize himself by indicating wrong preferences. E.g. in
case of misrepresented reservation levels or BATNAs no zone of possible settlements could be the outcome of the
automated negotiation object determination by the system and therefore no agreement can be reached even if
according to the true preferences possible settlements would be found, which then would be better than the actual
BATNA, in case of misrepresented issue weights or misrepresented partial utility values for options the agreement
of the automated negotiation might change to an inferior one as the agent follows these wrong preferences.
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Moreover, for the same reason only quantitative outcome measures should be considered for the

evaluation of negotiation outcomes. In opposite to the negotiation problem and outcome, which

are besides several restrictions actually the same as in traditional negotiations, the negotiation

process is quite different as it does not emerge from the interactions of human negotiators, but

is automated and emerges from the interactions of software agents that are governed by an

interaction protocol. Therefore one major component in automated negotiation studies is the

automated negotiation system, which consist of software agents that perform negotiation tasks

and make the necessary decisions autonomously, according to the preferences of their users, and

an interaction protocol, that governs and coordinates these interaction between the software

agents. As Rosenschein and Zlotkin (1994) put it:

There are two distinct aspects to an interaction. The first aspect is the ’rules of

the game’ that constrain the public behavior of the participants. For example, if

two computers are playing chess, the rules of the game determine how pieces on the

board may be moved, the alternating turns of the two players, and when on player

has won. The second aspect of an interaction is the private strategy adopted by each

participant. The strategy determines which among the possible alternative public

actions the agent will choose at each step. In the chess game, the strategy of a player

determines how he chooses among the legal moves available to him. (Rosenschein

and Zlotkin, 1994, p. xx)

Besides the software agents and the interaction protocol, that constitute the automated nego-

tiation system, the third major component in automated negotiation studies is the negotiation

problem (Jennings et al., 2001), as input to this system – in form of the users’ preferences over

the negotiation object, which have to be communicated to their software agents – as depicted in

Figure 3.2.

Figure 3.2: Components of automated negotiation
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3.1 Current achievements in simulation of automated ne-

gotiation

Scholars reviewing the literature on simulation of automated negotiation – like for instance Kraus

(1997) or Jennings et al. (2001) – often rely on convenience sampling and tend to focus on their

own work and/or work of colleagues in their research area.2 However, as we are interested in

the state of the art of automated negotiation from a more objective perspective and to avoid

selection bias, we base the sampling of studies included in this review on a rigorous query

of databases and search engines for scientific publications. The search keywords used in the

keyword search were ’automated negotiation’ and ’negotiation simulation’, as well as ’automated

bargaining’, and ’bargaining simulation’ – as in literature ’negotiation’ and ’bargaining’ often are

used synonymously. These keywords were searched in the titles, and where possible also in the

abstracts, of publications.3 Table 3.1 shows the number of results for these keywords in popular

databases and search engines for scientific publications.

DB URL hits

JSTOR http://www.jstor.org 6
EconLit http://www.econlit.org 6
ABI Informs/ProQuest http://proquest.umi.com/login 55
SSCI http://portal.isiknowledge.com/ 126
scholar.google http://scholar.google.com 104

Table 3.1: Results of the keyword search in scientific databases and search engines

We then merged the search results to one single result list by deleting duplicates across and

within the result lists.4 This final result list contains 221 publications, 140 (63%) publications

in scientific journals and 81 (37%) contributions to conference proceedings. According to their

abstracts, and where necessary their full content, these publications were assigned to one of nine

categories (see Table 3.2).

category journal proceeding total

simulation 24 13 37
software framework 8 24 32
theory 13 18 31
analytic model 15 4 19
review 5 2 7
agent communication 3 4 7

experiments 55 2 57
auction 6 3 9
other 11 11 22

all 140 81 221

Table 3.2: Research categories in automated negotiation

As one can see from the lower part of Table 3.2 a large share of the results of our search (88

publications or 40%) are not directly related to automated negotiation. Most of these unrelated

2As mentioned in the introduction we focus on simulation studies in this review as analytical models apply
restrictive assumptions and operative systems for automated negotiation are not available yet – besides few
simplistic experimental systems.

3Searching in abstracts is possible in JSTOR, EconLit, and ABI Informs/ProQuest.
4For scholar.google in many cases there existed multiple results for the same publication.
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publications (57) deal with results of field or laboratory studies on negotiation or present negotia-

tion cases to conduct such studies. A smaller share of unrelated literature (9) deals with different

forms of auctions such as one-to-many or many-to-many, single- or multi-attribute auctions –

consult Kersten et al. (2000) for a discussion of the differences and similarities between auctions

and negotiations. Other unrelated literature (22) covers topics like negotiation support systems,

decision support, proposal generation for e-marketplaces, e-mediation, coalition formation, etc.

The remaining 133 publications (60%) actually deal with various topics in automated negotiation.

32 publications propose software frameworks that model software agents and their interactions

for software engineering purposes, 31 publications provide theoretical contributions and concepts

for the field of automated negotiations, in 19 papers analytical models dealing with automated

negotiation are presented, seven studies provide reviews on automated negotiation, and another

seven contributions deal with agent communication and argumentation.

’94 ’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03 ’04 ’05 ’06

0
5

10
15

20
25

journal articles
conference contributions

Figure 3.3: Development of publication activity in automated negotiation

The largest share of publications (37), of which 24 are papers published in scientific journals and

the remaining 13 are conference contributions, however, deals with studies of interest for this

review, i.e. simulation studies of automated negotiation.5 From the temporal development of

the publication activities in automated negotiation (illustrated in Figure 3.3) one can derive the

novelty as well as the increasing importance of automated negotiation as a research area.6

5These 37 publications build the basis for the detailed review in the subsequent section and are marked with
an asterisk in the bibliography.

6In Figure 3.3 we only illustrate the development until 2006 as the literature search was performed on July
9th, 2007 and we therefore have no complete record of publications in 2007. Furthermore note that given the
fast development of research on automated negotiation this review – conducted at the very beginning of this
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Severals studies propose criteria for the classification of automated negotiations. Rosenschein and

Zlotkin (1994) for example propose criteria desirable for negotiation protocols from a mechanism

design perspective, which are computational and communication efficiency, individual rationality

of agents, a distribution of computation, and Pareto-optimality of the results. For studying the

distinction of cooperation and competition in distributed artificial intelligence and multi agent

systems Kraus (1997) uses the level of cooperation among agents, the applied protocols, the

number of agents and their types (automated only, human only, or both), as well as communica-

tion and computation costs as review criteria. Lomuscio et al. (2003) argue that for designing a

broad variety of automated negotiations, including auctions and game theoretic models, param-

eters for the whole ’negotiation space’ have to be considered. The parameters they discuss are

the cardinality of the negotiation (i.e. number of buyers and sellers), the agents’ characteristics

including agents’ strategies, characteristics of the environment and goods traded, as well as event,

information, and allocation parameters. In this review we focus on a more parsimonious but in

return widely applicable set of review criteria adopted from Jennings et al. (2001). The three

criteria proposed by them are the main components, discussed above, which each automated

negotiation must exhibit: (i) the negotiation problem, (ii) decision making algorithms for the

software agents, and (iii) an interaction protocol. These three components are also covered in

one or the other way in all of the above-mentioned classifications. In the following sections we

first define each of the three components of automated negotiations, as well as their attributes

and possible values for these attributes (see Table 3.3), which then are used as criteria for the

review of the above identified literature on simulation of automated negotiation.

Attribute values

Negotiation problem

Number of issues one . . . many
Set of possible agreements finite . . . infinite
Negotiators’ preferences assumed . . . elicited; complexity
Negotiation problem structure distributive . . . integrative

Interaction protocol

Chronology of communication simultaneous . . . sequential
Configuration of offers single issue offer / agenda . . . package offer
Progression of the negotiation concession-based . . . improvement-based
Types of actions offer, reject, exit
Abandonment of negotiations exogenous . . . endogenous termination

Decision making algorithms of software agents

Opening offer extreme . . .moderate; as other offers
Offer generation mechanism EA-, time-, learning-based, imitation, others
Termination criteria acceptance, termination

Table 3.3: Review attributes and possible values

3.1.1 Negotiation problem

The negotiation problem is the matter the negotiation is all about, i.e. the object over which

participants have different interests and for which they seek to find an agreement through the

dissertation project – could be criticized as already out-dated. However, recently published simulation studies
(like e.g. Lai and Sycara, 2009; Lee and Chang, 2009; Ren et al., 2009) in scientific journals relevant for the field
like Group Decision and Negotiation or Decision Support Systems in the few first months of 2009, on the one hand
indicated that the field remains highly important, and on the other hand that the major shortcomings detected
in the subsequent review still are unresolved.
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exchange of offers.7 As negotiation actually is a form of decision making – i.e. joint decision

making with conflicting preferences (Mumpower and Rohrbaugh, 1996) – the constructs in nego-

tiation theory correspond to constructs in decision theory and are only termed differently. The

issues and options of a negotiation are the attributes and values of a decision problem. The set of

possible agreements, from which one has to be selected mutually as agreement by the negotiators,

corresponds to the alternatives a decision maker faces in a decision problem, etc.

3.1.1.1 Number of issues

One attribute of the negotiation problem is the number of its issues, which can be thought of

as blanks in a contract that have to be filled with values to reach an agreement. Negotiation

problems can consist of only one issue (e.g. the price for an otherwise determined product or

service) or it can consist of multiple issues on which agreement has to be reached. 24 of 37

reviewed studies use one or more (but exclusively) multi-issue negotiation problems in their

simulation, eleven studies one or more (but exclusively) single issue negotiation problems and

two studies use both single- and multi-issue negotiation problems.

3.1.1.2 Set of possible agreements

Within each of the issues there exist different options (at least two discrete ones) which the

negotiators could settle for, otherwise there would be no decision problem as the result would

be mandatory. The possible values within an issue can either be discrete (e.g. the color of a

good) or continuous (e.g. time or money). In the case of a discrete issue there exists a finite

– however sometimes large – number of possible options to settle the dispute while in the case

of a continuous issue the number of possible options is infinite. All combinations of options

for each issue (i.e. their Cartesian product) form the set of possible agreements. Therefore in

negotiation problems consisting exclusively of issues with discrete options the number of possible

agreements for the negotiation problem is finite, while it is infinite when at least one issue has

continuous options. To reduce complexity it often makes sense to discretize the options of an

issue that is continuous by nature, as for instance time or money.8 This can be done without loss

of generality when there is a minimal measurement unit or the negotiators in their preferences

distinguish only between certain sets of options and are indifferent between options within these

sets. Such discretization for example results in days, minutes, or milliseconds (depending on the

domain of the negotiation problem and the negotiators’ preferences) as unit of measure when

coping with the otherwise continuous issue of time.

A restriction on the set of possible solutions is, that its elements have to be, least in principal,

acceptable to all participants in the negotiation, i.e. the options have to respect the reservation

levels of all parties involved. For example a family with four children, when buying a family car,

7In their classification Jennings et al. (2001) term this concept ’negotiation object’. However, they only
consider single-issue negotiations in their studies, where objective and subjective valuation of the single issue
coincide, when considering multi-issue negotiations also the preferences over these multiple issues have to be
considered, and consequently ’negotiation problem’ is the more adequate term for this component of automated
negotiations.

8The reduction of complexity achieved through discretizing issues with continuous options refers only to the
number of possible solutions of the negotiation problem – which becomes finite while being infinite otherwise –
still the negotiation problem could remain complex in other aspects.
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will never negotiate over a car with less than six seats even if the car seller is willing to sell them

a two seated sports car. Moreover possible solutions that provide inferior utility than the parties

BATNAs will never be chosen as agreement from the perspective of individual rationality of the

parties – i.e. in case such a solution is the only to end the negotiation with, the party will prefer

its BATNA and non-agreement in the negotiation (Raiffa, 1982; Sebenius, 1992; Raiffa et al.,

2002; Kersten, 2007).

Twelve studies use continuous options for all issues, most often these studies consider a single

issue (e.g. the price of a good or service) in their simulation of negotiation and rely on time-based

strategies, where the offer out of the infinite set of possible solutions is determined as a function

of time. Three multi-issue negotiations with both kinds of issues, those with discrete and those

with continuous options are simulated in the reviewed literature. Here again the continuous issue

is most often the price. Finally 22 studies use negotiation problems that exclusively consist of

issues with discrete options.

3.1.1.3 Negotiators’ preferences

The participants in the negotiation have certain preferences over these different possible solutions

indicating which they prefer over others and between which they are indifferent. Often these

preferences are measured and represented in form of an utility function that assigns an utility

value to each of the elements of the set of possible solutions. Alternatives with higher utility

values are preferred over alternatives with lower utility values, and the negotiator is indifferent

between alternatives of same utility. A commonly known and widely applied utility function for

multi-issue problems is the additive utility function (Keeney and Raiffa, 1993), which assumes

preferential independence of the issues, meaning that preferences for a given option in one issue

are not influenced by changes in the options of other issues. Let X be an offer, and therefore a

possible agreement, in a multi-issue negotiation, then X = x1, . . . , xn, i.e. the offer is a vector

of specific options xi for each of the n issues i ∈ (1, . . . , n) of the negotiation. To determine the

utility of the offer u(X) the partial utilities ui(xi) for the options in each issue are weighted with

a measure of importance for the specific issue wi, i ∈ (1, . . . , n) – where these weights have to

satisfy the condition
∑n

i=1 wi = 1. Partial utilities for each issue are then aggregated by addition

to receive the overall utility of the offer (3.1)

u(X) =

n
∑

i=1

wiui(xi) (3.1)

Often partial utility functions are scaled to unity (ui(xi) = 0, ui(xi) = 1) and therefore also

the utility for a package can range between u(X) = 0 – for the package consisting of the worst

options in all issues – and one u(X) = 1 – for the package with the most preferred options in all

issues. Different approaches were proposed and experimentally implemented to let negotiation

agents elicit the preferences of their users with the objective to later use them with the software

agents that negotiate on behalf of the users according to these preferences. Guo et al. (2003) for

example propose an evolutionary algorithm to elicit preferences for a multi-issue negotiation in

form of a multi-attribute utility function. Another approach was proposed by Luo et al. (2006),

who use a default-then-adjust method where users are asked to modify domain dependent default
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preferences to their trade-off preferences between two issues.

The preferences of humans over the same negotiation object can be various and complex. Partial

utility functions might not simply be linear functions of the objective values of the options in the

issue, but could take the form of concave, convex, or non-monotonic functions of the options in

the issue, as found in some experimental studies (Vetschera, 2006). It is therefore necessary to

verify which kind of preferences were used in simulations of automated negotiation and whether

the authors accounted for the real diversity of possible preferences in their simulation setting.

All but one study – Bosse and Jonker (2005), who elicit the preferences of humans as input for

their software agents and in addition performed human versus human, human versus computer,

and computer versus computer experiments – assumed one or various preference functions for

their agents. Oliver (1996) compares the results of experiments with software agents designed by

evolutionary computing to the results of experiments with human agents for equal preferences,

which however were predefined for the human agents.

3.1.1.4 The negotiation problem structure

The joint evaluation of the negotiation object, according to the preferences of the negotiators,

determines the structure of the negotiation problem. In the case of bilateral negotiations a

graphical representation of the negotiation problem structure can be derived easily by plotting

the utility of every possible solution for both negotiators on the abscissa and ordinate in a two

dimensional graph, respectively (Mumpower, 1991; Mumpower and Rohrbaugh, 1996).

Figures 3.4 to 3.8 illustrate negotiation problem structures for five different combinations of

hypothetical negotiators’ preferences over a negotiation object with two issues (A and B) and

six discrete options (1 to 6) for settlement in each. In these figures the utility for an offer is

calculated for both negotiators – using the additive utility function (3.1) – and then plotted

as one point in the two dimensional graph, doing this for all 62 = 36 possible offers yields the

graphical representation of the negotiation problem structure.

The two extreme cases are on the one hand perfect distributiveness of the negotiation problem

structure (see Figure 3.4), where the negotiators have exactly the same weights and directly

opposing slopes of the partial utility functions in all issues – i.e. diametrically opposed preferences

over the negotiation object. The second extreme is perfect integrativeness, where the negotiators

have the same slopes of partial utility functions and the same weighting of issues (see Figure

3.5, where all possible outcomes are Pareto-dominated by one outcome that is the joint optimal

solution). Though it is often argued that single-issue problems are distributive and multi-issue

problems integrative, this need not be the case. Single issue problems may be integrative – in

case of a non-monotonic utility function – and multi issue negotiation distributive – as shown

in Figure 3.4 – (Kersten et al., 2000). Some degree of integrativeness can steam from different

weights – Figure 3.6 –, different slopes of the partial utility functions (like concave or non-

monotonic functions) – Figure 3.7 –, or consistent interests in some issues – Figure 3.8 – such

that there exists no conflict about the optimal outcome in this issue, and of course combinations

of these causes.

From the negotiation problem structure one can derive the complexity of negotiation problem and

the level of conflict between the negotiators, which obviously influence the potential performance
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of negotiators – both human and artificial ones. Therefore the negotiation problem structure has

to be considered when evaluating the performance of human and software agents as well as in

comparisons across studies.

The negotiation problem structures resulting from the preferences of the negotiation agents are

purely distributive (including all studies with only one issue) such that a loss for one agent is

a gain for the other one in twelve studies. 21 studies simulate integrative negotiation problem

structures, two studies (Goh et al., 2000; Choi et al., 2001) use both integrative and distribu-

tive negotiation problem structures, and in other two cases (Oliver, 1996; Tu et al., 2000) also

structures where the preferences are perfectly consistent are used in different settings of the

simulation.

negotiator 1 negotiator 2

issue A B A B
weight 0.5 0.5 0.5 0.5

1 0.0 0.0 1.0 1.0
2 0.2 0.2 0.8 0.8
3 0.4 0.4 0.6 0.6
4 0.6 0.6 0.4 0.4
5 0.8 0.8 0.2 0.2
6 1.0 1.0 0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3.4: Distributive negotiation problem – diametrically opposed preferences

negotiator 1 negotiator 2

issue A B A B
weight 0.5 0.5 0.5 0.5

1 0.0 0.0 0.0 0.0
2 0.2 0.2 0.2 0.2
3 0.4 0.4 0.4 0.4
4 0.6 0.6 0.6 0.6
5 0.8 0.8 0.8 0.8
6 1.0 1.0 1.0 1.0

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3.5: Integrative negotiation problem – consistent preferences in all issues
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negotiator 1 negotiator 2

issue A B A B
weight 0.3 0.7 0.7 0.3

1 0.0 0.0 1.0 1.0
2 0.2 0.2 0.8 0.8
3 0.4 0.4 0.6 0.6
4 0.6 0.6 0.4 0.4
5 0.8 0.8 0.2 0.2
6 1.0 1.0 0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3.6: Integrative negotiation problem – different weights

negotiator 1 negotiator 2

issue A B A B
weight 0.5 0.5 0.5 0.5

1 0.00 0.00 1.00 1.00
2 0.35 0.35 0.95 0.95
3 0.65 0.65 0.85 0.85
4 0.85 0.85 0.65 0.65
5 0.95 0.95 0.35 0.35
6 1.00 1.00 0.00 0.00
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Figure 3.7: Integrative negotiation problem – concave partial utility functions

negotiator 1 negotiator 2

issue A B A B
weight 0.5 0.5 0.5 0.5

1 0.0 0.0 1.0 0.0
2 0.2 0.2 0.8 0.2
3 0.4 0.4 0.6 0.4
4 0.6 0.6 0.4 0.6
5 0.8 0.8 0.2 0.8
6 1.0 1.0 0.0 1.0

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3.8: Integrative negotiation problem – consistent preferences in one issue
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The negotiation problem structure is not necessarily constant over time in real world negotiations.

For example the issues and options or the preferences over these issues (weight) and options

(partial utilities) could change over time. In this case the negotiation problem structure is

variable otherwise it is fixed. We here consider – as mentioned above – only fixed negotiation

problems. The reason for doing so is (i) first there are no studies simulating negotiations with

variable problems – though there exist some first approaches that deal with the question of how

to cope with such problems (Faratin et al., 1999a,b)9) and (ii) that it does not make sense to

alter preferences or the object during the negotiation due to the fast proceeding of automated

negotiation.

Furthermore the payoffs and therefore the utility of the possible agreements need not be certain

but could be risky when they depend on some future events the negotiators cannot influence but

only know their probability of occurrence. Though all reviewed studies use certain payoffs, one

could elicit the negotiators risk attitudes and then apply methods from multi-criteria decision

making under risk to determine expected payoffs as basis for the negotiations (Keeney and Raiffa,

1993).

3.1.2 Interaction protocol

Negotiations generally consist of one or more turns in which offers – as tentative settlement

proposals – as well as other messages are communicated. While the exchange of offers is a

constituting feature of negotiations, the particular rules governing these offer sequences can

vary (Cranor and Resnick, 2000). The interaction or negotiation protocol is the set of rules

that governs the interaction between the participants in a negotiation, these participants can

either be exclusively human, exclusively software agents, or combinations of both. The protocol

determines the possible states in a negotiation, the actions particular participants can execute

in each of these states, and the events that cause state transitions (Jennings et al., 2001).

In face-to-face negotiations or technology-mediated negotiations between humans – e.g. video

conferencing, telephone, e-mail, or fax – such interaction protocols are less strict and rigorous

as people easily can deviate from protocols, e.g. through interrupting each other, withdrawing

offers, or finding agreements after negotiations were broken off – for example when just after the

deadline a party proposes an acceptable offer. In case of human interaction general social codes

– e.g. not to interrupt a person when speaking – or norms particularly related to the domain

of negotiation – e.g. that offers once put on the ’negotiation table’ should not be withdrawn

– establish and impose a form of tacit interaction protocol causing some type of sanctions if

violated (Bartos, 1977).

However, the more automation is used in negotiation and the more activities are delegated to

software agents, the fewer flexibility concerning the negotiation procedure remains. Accordingly

in automated negotiation – where the negotiation tasks of a human are completely assumed by a

software agent – the flexibility is lowest compared to other alternatives and fully specified inter-

action protocols (so-called closed protocols) are not only necessary (Kersten and Lai, 2007), but

9If the negotiation object is allowed to be manipulated by the software agents the interaction protocol also has
to determine the rules for negotiation object manipulation, i.e. the rules that govern the addition or elimination
of issues and options during the negotiation process.
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also can be enforced by the software implementation of the interaction protocol itself. This soft-

ware implementation of the interaction protocol can restrict the possible actions of the software

agents for example by baring participants from actions in certain states or otherwise completely

ignoring actions out of the bounds of the protocol (Cranor and Resnick, 2000).

3.1.2.1 Chronology of communication

One important attribute of the interaction protocol is the timing of offers. Offers can either

be proposed simultaneously by the parties such that no party knows the current offer of the

opponent in the current round before sending the own offer, or sequentially such that offers

can be formulated in response to the opponent’s offers. In the later case the protocol has to

determine which party has to start the offering sequence. Examples for simultaneous offering

protocols can be found in the early game theoretic approaches on strategic bargaining like the

Nash demand game (Nash, 1953), the Nash-Zeuthen bargaining game formulated by Harsanyi

(1956), or the closely related iterated prisoner’s dilemma (Axelrod, 1980a,b). Sequential offering

protocols were proposed by Cross (1965) first, and later adopted by St̊ahl (1972) and Rubinstein

(1982). The alternating turn protocol – where software agents alternate in taking turns where

they can perform actions – is dominant in the recent literature on simulation of automated

negotiation. Only three of the reviewed studies use other protocols than the alternating turn

protocol. Wollkind et al. (2004) use the Nash-Zeuthen bargaining protocol, while in two other

studies (Henderson et al., 2005; Nawa, 2006) turn taking is not absolutely sequential, as one turn

by one agent is not necessarily followed by a turn of the opponent, but agents can decide to

repeat messages or pause in taking their turns in these simulations.

3.1.2.2 Configuration of offers

In single-issue negotiations offer configuration poses no problem. An offer by definition – to be

a proposal for settlement – can be any feasible option for this single issue. In case of multi-issue

negotiation problems, however, the protocol has to determine what constitutes an offer. The

two extreme values for this attribute are package offers, where offers have to include proposals

for all issues, and agenda setting, where issues are negotiated one after the other according to a

specified order called agenda, just like a series of single-issue negotiations. In the later case an

agenda has to be determined, which can be either done by the protocol or endogenously agreed

on in a meta-negotiation of the negotiation agents (Raiffa, 1982). Clearly any combination in

between these extremes is also feasible, for example different offers could cover options for all,

some, or only one of the issues of the negotiation problem.

Most of the interaction protocols used in the reviewed simulation studies require package offers in

multi-issue negotiations as they allow for trade-offs between issues, which in turn make logrolling

procedures possible. In logrolling worse options in lower priority issues are traded for better

options in higher priority issues, which finally should lead to mutually beneficial settlements

(Pruitt, 1981). An other approach, dominant in game theory, is the aggregation of preferences

over multiple issues to one single utility value of a package which reduces the multi-issue to a

single-issue problem (Lang and Rosenthal, 2001). In recent years, however, game theorists started

analyzing multi-issue negotiations with Rubinstein’s (1982) alternating offer protocol without
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aggregating the packages to utility values but in an issue-by-issue fashion under fixed agenda

(Fershtman, 1990). Other studies investigate how such agenda for issue-by-issue negotiations

can be determined (Busch and Horstmann, 1999a). Furthermore agenda protocols and package

offer protocols are compared for very specific bargaining problems (non-cooperative, zero-sum

scenarios with costs of delay) (Lang and Rosenthal, 2001; Inderst, 2000).

Agenda protocols at the moment are used with analytical models in game theory only, in simu-

lation studies most often only one issue is considered. When the negotiation problem consists of

more than one issue, package offering is imposed by the protocol in all but one of the 26 studies

that simulate multi-issue problems, so that package offers, consisting of options for each of the

negotiated issues, are required by the protocol. Wasfy and Honsi (1998) use a slightly different

protocol. In their approach, agents exchange offers in only one of the issues of the multi-issue

negotiation problem. The current demand of the agents is stored and agreement is reached when

the demands of the agents are equal in all issues – so it is a procedure of single-issue offers in a

multi-issue negotiation problem, however not following an agenda. In their approach issues for

which consistent demands are achieved during the negotiation are considered as solved and the

negotiation continues on the remaining issues of the negotiation problem only.

3.1.2.3 Progression of the negotiation

The progression of negotiation determines whether the protocol demands parties to start from

inconsistent points and reach an agreement through concession making, or whether they start

from a common basis and try to improve this basis through a number of tentative agreements

that dominate the previous ones until no Pareto-improvements are left (or can be found in

negotiations that settle for inefficient solutions). These two approaches are illustrated in Figure

3.9.

(a) Concession-based progress (b) Improvement-based progress

Figure 3.9: Concession-based and improvement-based progress in negotiations

Teich et al. (1994) call the first approach concession-based models and the second improvement-

seeking models. Concession-based progression is the predominant value for this attribute of

the interaction protocol in the reviewed simulation studies of automated negotiation. Schol-

ars argue, that when negotiators have conflicting interests they have to make concessions from

their initial starting point if any agreement is to be reached. An alternative to this predomi-
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nant perspective, that one has to start negotiations with an extremely high demand and then

continuously lower this demand by concessions, is the improvement-based progression. The

improvement-based approach to negotiations is closely related to the ’single negotiation text’

procedure proposed by Fisher (1978). The agents first determine a common basis and use this

as a reference point from which to move to other solutions preferred by both. Only Klein et al.

(2003) use a pure improvement-based negotiation protocol, where a mediator proposes possible

Pareto-improvements to the status quo to the agents, which they can either accept or reject.

It is necessary to determine this progression attribute by the protocol as otherwise any tentative

agreement which serves as a basis for later improvement in improvement-based approaches would

be rendered as a final agreement and terminate negotiations in a concession-based protocol.

While it is impossible to use both forms of progress simultaneously in a negotiation, they can

be used sequentially. One form of such a combination is implemented in the negotiation support

system Inspire (Kersten and Noronha, 1999a), which provides the opportunity for Pareto-

improvement in a post-settlement phase of negotiations, after the negotiators reached a first

agreement typically by concession-based procedures. Such post-settlement phases, however, are

not implemented in negotiation protocols for automated simulation yet, but only one form of

progression in negotiation is followed, most often the concession-based progress as mentioned

above.

3.1.2.4 Types of actions

It is necessary to determine the types of actions the protocol allows the software agents to execute.

While various kinds of actions are definitively important in negotiations, the most important

action is the communication of offers and counter-offers (Tutzauer, 1992). However, there can

also occur actions other than offer-exchange in negotiations. Two actions necessary for the

termination of a negotiation are the transmission of acceptance and termination messages, other

actions could be rejections of offers (Bartos, 1977) – leading to non-alternating offer sequences –

or the submission of messages containing (logical) argumentation.

While in bilateral negotiations the disputing parties – buyer and seller, employee and employer,

management and union, etc. – have a symmetric set of possible actions, procedures closely

related to negotiation such as the ultimatum game or most forms of auctions limit the option to

perform certain actions to only one side. In the ultimatum game only the first player is allowed

to formulate take-it-or-leave-it offers which the second player can either accept or reject, and in

most auction protocols – here the double auction is an exception – also only one side is allowed

to make offers. This side is the buyer side in English, Dutch, or Vickrey auctions – to name only

the most commonly known –, but it could also be the seller side as it is the case in a reverse

auction for example.10

In four of the reviewed studies (Somefun et al., 2004, 2006; Wollkind et al., 2004; Zeng and

Sycara, 1998) the set of possible actions of the agents is limited to the exchange of offers. In these

studies an agreement is determined by the protocol and reached when the offers of the software

agents are consistent. To avoid the necessity of exit messages in three studies it is guaranteed

10Consult Klemperer (2004) and Güth et al. (1982) for information on auctions and the ultimatum game,
respectively.
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that the agents always reach an agreement, and (Wollkind et al., 2004) use the Zeuthen-Nash

bargaining protocol where the protocol determines the end of the negotiation.11 Wasfy and

Honsi (1998) allow agents to send, messages about their power, which is determined randomly

by the environment and directly affects the opponent’s situation and strategy, in addition to their

offers. The software agents of Klein et al. (2003) can only accept or reject offers proposed by

a mediator as a Pareto-improvement of the status quo, but cannot themselves formulate offers.

As this study uses an improvement-based protocol the agents start negotiation from a common

starting point, thereby agreement is guaranteed and no exit messages are necessary. If there is no

progress in the negotiations the agents stay with the best solution available so far. 13 studies use

protocols where the set of possible actions of the agents includes offer-exchange and acceptance

of the opponent’s offer. In the studies of Chen et al. (2005b) and Chao et al. (2006) agents, with

their own offer, provide some information about their satisfaction with the opponent’s last offer.

In the other 16 studies the possible actions of the agents are offer-exchange, and termination of

negotiation by both agreement and break off.

3.1.2.5 Abandonment of negotiations

If a negotiation does not result in an agreement the abandonment of negotiations can be induced

by the protocol after a given period of time – the negotiation deadline – or by a break-off

probability at the end of each turn. Alternatively the termination of the negotiation can also

be the result of an endogenous decision of the software agents. Clearly a combination of these

options is also feasible, where the software implementation of the protocol breaks off negotiations

at a deadline unless the agents did this before.

In most (22) of the studies a commonly known deadline determined by the protocol and executed

by the protocol or the agent is used to terminate negotiations, in two studies break-off probabili-

ties after each round were used for this purpose. In six other studies agreement is guaranteed by

the experimental settings and as all negotiations end with an agreement abandonment of negoti-

ations is not discussed. In four studies the protocol terminates negotiations unless agents did so

before. As mentioned above (Wollkind et al., 2004) uses the Zeuthen-Nash bargaining procedure

where the termination criteria is defined by a protocol rule (no concessions of both parties in one

round) and (Klein et al., 2003) use an improvement-based approach where negotiation end if no

improvements can be found any more, in these two studies protocol rules exclusively determine

when the negotiation ends. Only in the study of (Cheng et al., 2006) the decision to break off

negotiations is made endogenously and exclusively by the software agents, here agents decide to

break off negotiations when there is no progress for a certain period of time.

3.1.3 Decision making algorithms of software agents

A software agent’s decision making algorithm or strategy describes its internal reasoning. It is

employed to, acting in line with the interaction protocol, achieve the goals of the human user

the software agent represents in the negotiation. Rosenschein and Zlotkin (1994) provide a good

definition:

11In the Zeuthen-Nash bargaining protocol negotiation ends if both parties refuse to make a concession in one
round.
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Given a negotiation protocol, a negotiation strategy is a function from the history of

the negotiation to the current offer that is consistent with the protocol. It specifies

precisely how an agent will continue (what move it will make) given a specific pro-

tocol, and the negotiation up to this point. The strategy is static, in the sense that

is is chosen ahead of time (before the negotiation begins). It specifies the agent’s

reaction for every possible course of events. For an automated agent (what we are

interested in), that just means that it has been programmed ahead of time, and the

program itself isn’t altered; of course, the decisions could be based on dynamics of

the negotiation itself. (Rosenschein and Zlotkin, 1994, p.41)

The strategy of the software agent therefore determines – along the course of the negotiation

– the opening offer and subsequent counter-offers by some offer generation strategy, and when

to accept an offer or break off negotiations. It determines, constricted by the restrictions im-

posed by protocol, influenced by the actions of the opponent software agent, and directed by

its parametrization and the user’s preferences, how the negotiation starts (opening offer), how

it proceeds (offer generation), and when and how it ends (acceptance or break off conditions).

The offer generation (opening offer and subsequent counter-offers) and evaluation (when to agree

or break off) decisions have to be made in line with the preferences of the human user for the

negotiation problem at hand. These preferences therefore by some way have to be made available

to the agent.12 Besides the preferences of its user the software agent’s decision making can be

based on deterministic or stochastic rules, actions of and beliefs about the opponent, etc. The

determination of the strategy of the software agent therefore is a complex and critical task.

Derived from the above discussion, the attributes of a decision making algorithm for software

agents in automated negotiation are the decision about the opening offer, algorithms for the

generation of subsequent counter-offers, and finally the criteria for the termination of the nego-

tiation by either acceptance of an offer or break off of negotiation. The methods currently used

for starting and ending automated negotiations do not differ much among the reviewed simula-

tion studies, however a variety of approaches are used to generate offers during the negotiation

process. We will therefore only briefly mention the options proposed for the former attributes

of the strategy and discuss the approaches for offer generation by software agents in automated

negotiation in more detail.

An opening offers can either be an extreme – i.e. the highest possible in a concession-based or the

lowest acceptable in an improvement-based protocol13 –, it could be generated as all other offers,

or by some other method. The opening offer in the reviewed studies is in most cases an extreme

one, more explicit the offer with the highest possible utility as the majority of the studies follow

the concession-based progression approach. These extreme offers sometimes are determined by

rules (e.g. in learning, time-based, trade-off, or imitating strategies), however they also emerge

in strategies developed by evolutionary computing, which come to the same result, i.e. to start

the negotiation with extreme offers.

12As briefly discussed in the Section 3.1.1.3 there exists some first attempts to make software agents elicit their
users’ preferences or learn them from previous experience (Guo et al., 2003; Luo et al., 2006), besides just asking
the user to input them.

13Consult the Section 3.1.2.3 for details on the progression of negotiations determined by the interaction pro-
tocol.
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Concerning the termination of the negotiation by acceptance only few alternatives are considered

in the reviewed simulation studies. One option is the use of thresholds – as a kind of aspiration

level – to determine the acceptability of offers. These thresholds can either be constant during

the negotiation or vary over time, as in most strategies determined by means of evolutionary

computing. Offers that provide higher utility than this threshold are accepted by the agent.

Gerding et al. (2003) deviate from this procedure in formulating different functions that determine

the probability of acceptance as a function increasing in the utility of the opponent’s offer – as a

’social extension’ of their agents. An alternative option to determine which offer of the opponent

to accept, applied by most approaches other than evolutionary computing, is the acceptance

criterion that the opponent’s current offer has to provide higher utility than the next own offer

to be sent would provide.

Just like for termination by acceptance, for termination by break off of the negotiation without

agreement only few options are considered in the reviewed simulation studies on automated

negotiation. Moreover, this ’decision’ is implemented quite unsatisfactory in many of the reviewed

studies, as in most cases – especially for time-based strategies – the software agent’s strategy

dictates to break off negotiations when a commonly known deadline for negotiation expires, which

could also be imposed by the protocol and therefore actually requires no decision from the agent.

In some other studies agents decide to terminate the negotiation when reaching a reservation

level (Winoto et al., 2005; Lawley et al., 2003b,a; Lin and Chang, 2001; Goh et al., 2000), or the

negotiation fails to progress (Cheng et al., 2006). Only in these later cases the decision to break

off negotiations actually is a decision endogenously made by the software agents according to

their strategies.

The subsequently mentioned approaches for offer generation by software agents in automated

negotiation are those extracted from the reviewed literature, which are in turn derived from

related fields. Research in negotiation has a long tradition – as can be seen from the short review

in the introduction –, therefore scholars studying automated negotiation argue that developers

of software agents for automated negotiation do not have to ’reinvent the wheel’ (Kraus, 1997;

Jennings et al., 2001). But, when determining the software agents’ decision making algorithms,

one can redeploy the insights of other fields like game theory, evolutionary computing, behavioral

social science, or distributed artificial intelligence. When basing agent’s decision making algo-

rithms on heuristics derived e.g. from behavioral social science, however, simulations of these

agents in various settings are necessary to determine their performance, which is – different from

other fields as e.g. game theory – unclear in advance due to the heuristic nature of the resulting

strategy (Kraus, 1997; Jennings et al., 2001), as Henderson et al. (2003, p.137) state: ’A sig-

nificant problem in distributed e-commerce applications is the choice of algorithms used to carry

out automated negotiation on behalf of a client. Even very simple algorithms can have behavior

which is acceptable in a restricted scenario but which might be unpredictable in a more liberal

environment.’

3.1.3.1 Evolutionary computing-based strategies

Agent strategies developed by evolutionary computing were the very first applied in simulation of

automated negotiation (Oliver, 1996), and still hold a large share of software agents in simulations

of automated negotiation. The rational behind the use of evolutionary computing to develop
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agents is its successful previous application for problems closely related to negotiation, like the

iterated prisoner’s dilemma or double auctions (Oliver, 1996). In their most basic form agent

strategies developed by evolutionary computing consist of a sequence of utility thresholds and

offers – sometimes also other actions like exit messages are implemented –, so called sequential

threshold rules, for the negotiation problem (Oliver, 1996). These combinations of thresholds

and offers are encoded in so called ’chromosomes’. On receiving an offer of the opponent the

software agent evaluates this offer using an utility function that indicates its user’s preferences,

if the offer is above the threshold for the round, as determined in the chromosome, the agent

accepts it otherwise it submits the counter-offer for this round determined in the chromosome.

However, the chromosomes encoding the strategy, need not only consist of offers, i.e. one value

for single-issue negotiations or package offers for multi-issue negotiations. Beyond the basic

form mentioned above whole finite state machines can be encoded in chromosomes, which then

consist of states of the finite state machine, actions for each state, as well as conditions for state

transitions (Tu et al., 2000).

At the beginning of the ’evolutionary process’, by which the agent strategies are improved, the

chromosomes are determined randomly. After a negotiation is conducted the utility of the out-

come of negotiation can be used as a measure of fitness of the agent’s strategy. Evolutionary

computing uses, basing on this fitness measure and in analogy to biological evolution, evolution-

ary operators to improve the chromosomes. These evolutionary operators are:

• Selection: Strategies with highest fitness are selected as parts of the next generation.

• Cross-over: Strategies with highest fitness are allowed to produce ’children’ which then are

also parts of the next generation. These children strategies are combinations of the parent

strategies.

• Mutation: With a small probability mutation changes some components of the strategy

chromosomes of the next generation, so that they are different from their parents or the

selected strategies.

The repeated application of these evolutionary operators over many generations of agent strate-

gies was demonstrated to lead to agent strategy generations that reach Pareto-optimal outcomes

in simple negotiations and match human performance in more complex settings (Oliver, 1996).

3.1.3.2 Imitating strategies

Another offer generation mechanism, again derived from strategies for the iterated prisoner’s

dilemma, are imitating – also called responsive or reciprocative – strategies, which base their

decision making on the previous behavior of their opponent. The most commonly used imitat-

ing strategy for automated negotiation is a strategy analog to the tit-for-tat strategy for the

iterated prisoner’s dilemma. Tit-for-tat starts with a cooperative move and then mirrors the

opponent’s move of the previous round in the iterated prisoner’s dilemma. Translated to nego-

tiation problems this means reducing the demand when the opponent reduced demand in his

previous offer (i.e. conceding) or otherwise demanding more or the same if the opponent did so

(i.e. demanding or insisting, respectively) – all in terms of the utility of offers. Scholars argue

that tit-for-tat strategies have many conveniences like being responsive in suddenly retaliating
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and therefore cannot be exploited easily, but fast forgiving. However, simulation studies of the

iterated prisoner’s dilemma also showed that with small uncertainties about the opponent’s true

moves (noise) two such imitating strategies can get stuck in an uncooperative vendetta. To cir-

cumvent uncooperative phases moving averages or exponential smoothing (Filzmoser, 2007) can

be used. Such uncertainties about the opponents true move are always present in negotiations

when the opponent’s preferences are his private information.

3.1.3.3 Trade-off strategies

Trade-off offer generation mechanisms aim to propose offers of the same utility but of different

option configuration in the issues. Some strategies also aim to establish offers with an option

configuration as similar as possible to the opponent’s last offer – using Euclidean, Hamming, or

fuzzy distance measures – to explore opportunities for mutual benefit. Such trade-offs are the

individual counterpart of dyadic logrolling in negotiations (Pruitt, 1981), where the parties trade

worse options in less important issues for better options in more important issues with the aim

to achieve mutual benefit.

3.1.3.4 Learning-based strategies

Learning-based offer generation mechanisms hold a model of the opponent in mind, which consists

of parameters that measure the opponent agent’s preferences – e.g. its reservation or aspiration

level – or negotiation attitudes – e.g. its concession rate or concession function. Initial expec-

tations about these parameters of the opponent’s strategy and preferences are updated with the

information acquired during the course of negotiation. For this learning mechanism several ap-

proaches are applied in simulation studies on automated negotiation, like for instance Q-learning

or Bayesian updating. Basing on the information acquired by learning, the software agents calcu-

late the optimal response to the opponent’s actions in order to maximize their expected outcome

of negotiations – i.e. they economize on learned information.

3.1.3.5 Time-based strategies

Time-based offer generation mechanisms determine (the utility of) the offer as a function of time.

Time-based strategies are derived from observations of real and experimental human negotiations

– as reported e.g. by Pruitt (1981). The functions used to generate offers can have different forms

as illustrated in Figure 3.10.

Typically agents start with their best offer affording highest utility – due to the concession-based

approach applied in most simulation studies – and then concede to the reservation level of the

negotiator which they offer at the deadline of the negotiation. The negotiation ends when two

consistent offers are proposed by the negotiators or the deadline is reached without such an

agreement. Typical forms for such offer functions discussed in literature are linear functions,

that make concession steps of the same size – i.e. have a constant concession rate – during the

whole negotiation as indicated by the middle line in Figure 3.10, convex functions, resulting in

larger concessions at the beginning and smaller concessions towards the end of the negotiation –

so called conceder strategies represented by the lower line in Figure 3.10 –, or concave functions,
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making only small concessions at the beginning but considerable concessions towards the end of

the negotiation. This last type of concession functions are also called Boulware strategies and

are depicted as the upper line in Figure 3.10.
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Figure 3.10: Concession functions of time-based strategies

3.1.3.6 Other strategies

Offer generation based on other than the above mentioned approaches are often very simple

’dummy’ strategies employed to verify the performance of strategies based on evolutionary com-

puting, imitation, learning, or time. Such simple approaches continuously make concession steps

of a predetermined magnitude (Park and Yang, 2004; Zeng and Sycara, 1998), by reducing the

gap in the demands by some fixed proportion (Somefun et al., 2004, 2006), or simply take ran-

dom steps (Winoto et al., 2005; Henderson et al., 2003). In some simulation studies, however,

such ’other’ strategies are also quite sophisticated ones but build on approaches different from

those mentioned above. Such alternative sophisticated strategies are not so frequently used and

we therefore only briefly enumerate them: hill-climbing and annealing (Klein et al., 2003), least-

cost-issue concession (Wasfy and Honsi, 1998), Zeuthen-risk strategy (Wollkind et al., 2004), case

experience-based strategies (Paurobally et al., 2003), or competition-based strategies (An et al.,

2006).

In eight studies evolutionary computing are used to determine the offer generation of the soft-

ware agents. While most of them use simple binary chromosomes with offers and thresholds

(sequential threshold rules), Tu et al. (2000) and van Bragt and La Poutre (2003) encode finite

state machines in form of chromosomes for evolutionary computing. 14 studies employ imitating

strategies, which in most cases acted purely reciprocating. However, some variations of imitating

strategies also employed include those proposed by Krovi et al. (1999), which are: (i) recipro-

cating strategies that fully reciprocate the behavior of the opponent, (ii) cooperative strategies

that more than match the opponents concessions, and finally (iii) exploitative strategies that
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concede less than the opponent. Trade-off mechanisms employing fuzzy-similarity measures,

Pareto-search, or other similarity measures to make offers close to those of the opponent were

used in ten studies – such trade-off mechanisms for multi-issue negotiation problems find in-

creasing attention in recent years. Trade-off mechanisms typically are combined with some rules

about how to determine changes in the demanded utility level, if no trade-off offers (with same

utility) are left to propose, to form the final strategy of the agent. In nine studies learning agents

with a variety of learning techniques were investigated. The employed learning techniques range

from Bayesian network updating (Zeng and Sycara, 1998) over neural networks (Rau et al., 2006;

Park and Yang, 2004) and pattern recognition (Lin and Chang, 2001) to Q-learning (Cardoso

and Oliveira, 2000). Another 14 studies rely on time-based concession functions to determine

offers.

As many studies derive strategies by a combination of approaches or compare different types

of strategies in their simulation studies, the overall number of types of strategies used for offer

generation in the studies not matches the number of studies reviewed. These comparisons lead

to interesting results, which are informative for the design of decision making algorithms for

software agents. Zeng and Sycara (1998) show that learning agents can exploit and outperform

simple agents with continuous concession strategies. Deveaux et al. (2001) show that agents

that hold a model and an expectation about the opponent’s strategy in mind and adapt their

strategy according to the information they gathered during the negotiation outperform time-

based strategies. van Bragt and La Poutre (2003) find that strategies embodying a finite state

machine improved by means of evolutionary computing can exploit time-based and imitating

strategies, and Tu et al. (2000) state that strategies based on evolutionary computing with

chromosomes encoding finite state machines do not perform significantly better than those with

chromosomes encoding sequential threshold rules.

In addition to comparisons of different software agent strategies in terms of their performance,

few studies also compare the results of software agents in automated negotiation (i.e. simula-

tion results) to the results predicted by game theory (i.e. analytical solutions), to unsupported

human negotiation experiments or experiments where humans are supported by negotiation sup-

port systems, or even let humans negotiate against software agents in negotiation experiments.

Gerding et al. (2003) show that agents based on evolutionary computing reach the results pro-

posed by game theory for rational agents in bargaining games. They propose and accept extreme

take-it-or-leave-it offers at the final round of games with a finite number of rounds and reach

results near the analytically derived subgame-perfect equilibrium (Rubinstein, 1982) in the first

round when the game is characterized by a small probability of negotiation break off after each

round. The results for human agent versus software agent comparisons, however, are somewhat

disappointing for the field of automated negotiations. Oliver (1996) compares the performance

of his software agents ,based on evolutionary computing, to the performance of humans in exper-

iments for negotiations reported by Raiffa (1982) and Rangaswamy and Shell (1997). He finds

that his software agents matched the performance of unassisted negotiators but are outperformed

by humans that use negotiation support systems in integrative negotiation problems. Similarly

Goh et al. (2000) find that in distributive negotiation problems there is no significant difference

in performance for humans negotiating via a messaging system, via a negotiation support sys-

tem that provides analytical support, or software agents that use simple continuous concession

functions. In integrative negotiation problems ,however, negotiation support system users out-



64

perform messaging system users, which in turn outperform software agents. Bosse and Jonker

(2005) use preferences elicited from human users to simulate automated negotiations and also

find that the performance of software agents based on simple concession functions matches the

performance of human negotiators if the agents face opponents of the same type – i.e. computer

versus computer and human versus human. However, in an experiment where humans negotiated

with software agents, that use the preferences elicited from humans as input, the human subjects

reached significantly better outcomes than their opponent software agents.

3.2 Future challenges

This section discusses challenges for future research that, in our opinion, need to be approached

for the advance of the field of automated negotiation, the implementation of its insight in op-

erative systems, and its application in practice. These challenges, derived from deficiencies of

existing simulation studies of automated negotiations, are organized along the components of

automated negotiation in the next subsections and generally deal with the exploitation of the

simulation technique’s ability to cope with complex interdependencies and the avoidance of un-

necessary assumptions in the context of automated negotiations.

Unlike game theoretic approaches that separate the components of automated negotiation14,

when simulating automated negotiation especially these interdependencies of the components

can be studied. And there exist many of such interdependencies between the components of

an automated negotiation. As mentioned in the review, the software agents’ strategies are

not only constricted by the protocol, but their performance also depends on the negotiation

problem. The performance of an interaction protocol also might depend on the structure of the

negotiation problem for which it is used, and different combinations of software agent strategies

and interaction protocols might perform best for different negotiation problems. When comparing

different strategies or protocols for automated negotiation these contingencies and interactions

have to be considered.

Furthermore simplifying and restricting assumptions concerning the negotiation problem and the

software agents’ behavior – necessary in game theory to keep strategic interaction or mechanism

design problems analytically solvable –, like common knowledge of the agents’ preferences or

rationality of the agents (Sebenius, 1992), can be avoided in simulation to some extent to make

the problem more realistic. In our opinion when simulating automated negotiations, to test

various system configurations before their implementation, one should attempt to exploit the

computational performance provided by simulation techniques and therefore avoid unrealistic

assumptions but model reality as good as possible and necessary.

14Branches of game theory investigate for a given negotiation problem and interaction protocol what the optimal
(equilibrium) strategy of rational agents should be, given rational behavior of the opponent – strategic approach
in bargaining theory –, or how interaction protocols should be configured to achieve a desired outcome for a given
strategy and negotiation problem – mechanism design (Rosenschein and Zlotkin, 1994; Binmore and Vulkan, 1999;
Cranor and Resnick, 2000).
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3.2.1 Realistically complex negotiation problems

The inherent problem solving potential of negotiation lies with multi-issue problems where ne-

gotiators can strive for joint gains in integrative negotiation problems. The preconditions that

cause integrativeness of the negotiation problem are very weak, as demonstrated different weights

for the issues, some issues of shared interest, or concave partial utility functions are sufficient.

In distributive negotiation problems – like most single-issue problems – on the other hand, the

benefit of negotiations as a joint problem solving mechanism is not that significant and conflicts

are more likely to arise.

Moreover the multi-issue negotiation is the more realistic case, for which negotiation is actually

used, as real world problems typically consist of more than just one dimension. In multi-issue

negotiations combinations of weights for issues and various shapes of the partial utility functions

can result in a variety of possible preferences over the negotiation object. Studies revealed that

the preferences elicited from humans differ considerably for one and the same negotiation object

(e.g. Vetschera, 2006). Therefore it is, in our opinion, necessary to use many different – instead

of just one or some few – and as realistic as possible – instead of just assumed – user preferences

in simulation of automated negotiation as input for software agents. The combination of various

preference settings for the parties in turn forms different negotiation problems, which then can

be used to examine the performance of protocols and strategies in various environments.15

This idea also coincides with an other criticism of current simulation studies in automated negoti-

ation research. Simulation techniques are actually used for problems too complex to be analyzed

analytically by mathematical modeling. Though it is necessary to hold the amount of param-

eters small to avoid to complex simulation designs, current studies on automated negotiation

do not fully exploit the potential complexity simulations can cope with, but unnecessarily make

restricting assumptions – e.g. concerning the negotiators’ preferences – that make simulation

models deviate significantly from the real world problem and therefore undermine their validity

and practical relevance.

Validation of the simulation model, a major part of simulation studies, necessary for the useful-

ness and application of the results of the proposed systems, was neglected in most of the studies.

For the automated negotiation system itself – i.e. the interaction protocol and the software

agents – no validation is necessary as they are computer code and can be implemented in an

operative system for automated negotiation as they are implemented in the simulation system.16

However, there are real world components that have to be validated if the simulation results

are to be valid. These components are the preferences of the users and the characteristics of

the negotiation object – i.e. the number of issues and the type of options. The most adequate

approach to this validation problem would be the use of real preferences of humans as input for

software agents that perform the automated negotiation. Otherwise one should assume prefer-

ences as close as possible to human preferences, these assumptions then have to be validated if

results of the simulation are to be of any use (Law and Kelton, 1991; Pidd, 1992).

15Moreover other than just additive utility models have to be investigated. Additive utility models are easy to
handle and could be a good approximation of the user’s real preferences (Keeney and Raiffa, 1993), which justifies
to use them in simulation systems, however, operative systems should support alternative models that might fit
the user’s real preferences better.

16Furthermore operational validation is not possible as operative systems are not available yet, but current
research focuses on system design, and therefore the real system’s and simulation’s outputs cannot be compared.
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Our suggestion for the negotiation problem component of automated negotiations is to study

multi-issue problems, where negotiation can be used as a mechanism to effectively search for mu-

tual benefits. For these negotiation problems many different user preferences should be assumed

and validated, or even better, real preferences should be elicited from human users and used as in-

put for the software agents. This would not only allow to test the software agents’ strategies and

the interaction protocols in realistically complex settings, but would also enable the evaluation

of the performance of strategy-protocol combinations for various negotiation problems.

3.2.2 Alternative decision making algorithms

Existing approaches for determining the software agents’ strategies ignore inherent features of

the World Wide Web, as an open medium for automated negotiation, where software agents

for automated negotiation can easily be programmed by human users. This openness – for new

software agents of user with various preferences and for many different negotiation problems

– of media for automated negotiations has to be considered when designing decision making

algorithms for software agents.

Evolutionary computing needs many repetitions of negotiations over one negotiation problem in

the best possible environment – consisting of opponent software agents as realistic as possible –

to achieve competitive strategies for automated negotiation by means of co-evolution (Beam and

Segev, 1997). However, when automated negotiations are conducted in the World Wide Web,

the number of negotiations with one specific opponent might be quite low and opponents and

negotiation problems may change from one negotiation to the other. Moreover, novel software

agents might enter the market and new negotiation problems could appear. Therefore it is un-

likely that a software agent has many trials against one opponent for one negotiation problem,

which causes a major disadvantage for evolutionary computing in developing the agents’ deci-

sion making algorithms for automated negotiations (Bichler, 2000). Especially strategies based

on sequential threshold rules will have problems to cope with different opponents if they are

optimized against only some opponent strategies and preferences (Tu et al., 2000).

While learning software agents are designed to cope with opponents with various preferences in

learning them, the possibility of novel software agents also causes problems for them. The model

of the opponent, learning agents hold in mind to learn the parameters of this model from the

course of negotiation with the opponent, will probably be inadequate to model the diversity of

possible existing as well as novel opponents. Furthermore the learning capacities are severely

limited by the small number of parameters learning agents can effectively process in automated

negotiations.

Also time-based strategies for automated negotiation have their drawbacks, though the incor-

poration of time in strategies for a basically dynamic processes like negotiation is in general

appreciable. In traditional negotiations time is likely to have a major impact on the process and

outcome of negotiations, as stated by Cross (1965, p.72): ’As any economist knows, time has

a cost, both in money and in utility terms; it is our position that it is precisely this cost which

motivates the bargaining process. If it did not matter when people agreed, it would not matter

whether or not they agreed at all.’ However, it is questionable whether this statement is valid in

automated negotiation that reach agreement – or otherwise terminate without an agreement – in

some seconds only. The fast and low cost proceeding of automated negotiation is one of the possi-
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ble sources of comparative advantage over alternative dispute resolution mechanisms, besides the

assumed better outcome and novel transactions it enables. Furthermore it is arguable whether

designers of software agents should base their decision making algorithms for software agents

in automated negotiation on behavioral heuristics – as mentioned above, time-based strategies

build on the observation of human negotiation behavior in experiments – given the aim of such

agents to improve the outcome of negotiations over that reached by humans through automating

the negotiation process. Interestingly simulation studies revealed that time-based and imitating

strategies reached more agreements and agreements of higher utility in negotiations with later

deadlines (Faratin et al., 1998). This raises the question of why to impose a deadline at all when

the decision to terminate negotiations could be delegated to the software agents as well.

Finally, imitating and trade-off strategies do not face the problems mentioned so far, but are

for their own insufficient to determine a complete decision making algorithm for a software

agent. Imitating strategies can decide the extent of a negotiation step (concession, demand, or

insistence) in terms of the difference in utility between two subsequent offers of the software

agent. They can easily derive this difference from this difference of their utility between the

two previous offers of the opponent. However, this reciprocation of the concession magnitude

provides no guidelines for the final configuration of an offer, which is a problem when there exist

some offers between which the user is indifferent. In contrast to imitating strategies trade-off

strategies have problems to determine when and how much to concede or demand, as they are

designed to determine the package configuration for a given utility level. Changes in the utility

level of offers, however, will at some point in the negotiation be necessary to avoid getting stuck

when no more offers of the same utility level are available.

Given these deficiencies of existing approaches for determining the the decision making algo-

rithms of software agents in automated negotiation, continuous concession strategies proposed

in negotiation literature seem to be a viable alternative. Continuous concession strategies follow

rule-based deterministic concession algorithms that neither model their opponent nor try to learn

something about their preferences or strategy, but are therefore (re)usable for various negotiation

problems with different and novel opponents. Furthermore, in not making offers dependent on

time, they also respect the low transaction costs associated with automated negotiation in the

World Wide Web. The continuous concession strategies proposed in Chapter 4 are not novel

ones, but were partly proposed in negotiation literature and not yet implemented in simulation

studies on automated negotiation. These strategies are similar to the ’dummy’ strategies used for

comparison purposes in some of the studies reviewed above, however more sophisticated. Though

these mechanisms seem very simplistic, this plainness also has its advantages. First, for accep-

tance of software agents it must be clear to human users how they decide and act to establish

trust and thereby enhance their application in practice (Nwana et al., 1998; Maes et al., 1999).

Second, not the complexity of software agents but its performance counts. In a problem closely

related to negotiation – the iterated prisoner’s dilemma – the tit-for-tat strategy, though being

the simplest – measured in number of code lines – repeatedly outperformed opponent strategies

in tournaments (Axelrod, 1980a,b).

Obviously it is important to investigate the performance of the agents’ strategies when negotiating

against each other, for different negotiation problems and in different interaction protocols, to

determine which one yields the best outcomes. However, in the decision whether to use automated

negotiation instead of traditional negotiation between humans the benchmark for the evaluation
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of software agents is the outcome of human negotiation. To automate negotiations in substituting

their human users, or replace other currently used transaction mechanisms, software agents have

to achieve better outcomes (Blecherman, 1999).17 Therefore it is not only necessary to use

preferences as close as possible to human preferences as input for the software agents – as

advocated in the previous section –, but it is also necessary to compare the results of automated

negotiations between software agents to the results of traditional negotiations between humans

(or the currently used transaction mechanisms) – for the same preferences and therefore the same

negotiation problems – to evaluate the performance of software compared to human agents. Even

if one strategy outperforms all the others it will not be applied in automated negotiations if it fails

to outperform human negotiators, unless saved transaction cost compensate for this deficiency.

3.2.3 Flexible interaction protocols

As mentioned in the description of this component of automated negotiation, the interaction

protocol determines what actions can be taken by which participants in the negotiation for each

of its possible states. In determining these rules of interaction the negotiation protocol not only

establishes the basis for the actions of software agents, but also restricts them. Such restrictions

are good where necessary, however, in our opinion they reduce the flexibility of agents and thereby

maybe negatively impact their performance. Therefore, where possible, decisions should remain

with the software agent, which then can decide whether to take actions according to a more

restricted protocol but also is free to take other actions when this is considered beneficial. In

case of possible gains enabled by more open and flexible interaction protocols the computational

complexity should be no counter-argument, as simulation is an adequate technique for complex

and analytically intractable problems.

As can be derived from the review the predominant protocol used is an alternating offers protocol

or variants of it, where the software agents alternate in making their offers until they reach an

agreement. Most often there exists an exogenously determined fixed deadline until which an

agreement has to be reached or otherwise negotiations are broken off and in many studies the

agents do not have the choice to break off the negotiation. This concern about fixed deadlines

actually is not about the nature of deadlines itself, which might be important constitutes of the

context in which a negotiation takes place. Actually automated negotiation – due to its fast

proceeding – is beneficial for meeting such deadlines – a run in our simulation for example takes

on average less than a second as reported in Chapter 5 – so that these deadlines will be no

binding constraint in the majority of automated negotiations. Our criticism rather bases on the

fact that these deadlines in current simulation studies are imposed in form of a predetermined

number of possible rounds or turns for the automated negotiation. Alternating offer protocols

with fixed deadlines cause no inconveniences for the agents’ decision making algorithms studied

in simulations so far. Actually they are beneficial to them, as fixed deadlines introduce the notion

of time – in form of a certain number of turns – that is necessary for any time-based strategy to

determine the offer for a given point in time or turn. Fixed deadlines also only make it possible to

determine sequential threshold rules chromosomes in evolutionary computing, where otherwise

there is no possibility to determine their length.

17Alternatively they have to compensate inferior outcomes with correspondingly lower costs.
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However, as mentioned, these software strategies are not readily applicable for operative systems.

Though the continuous concession strategies, proposed as a viable alternative in the previous

section, function in such an alternating offers protocol without exit option, the denial of non-

alternating offer sequences and the exogenous termination of negotiations could result in inferior

performance of these strategies. In case of a fixed deadline in form of a maximal number of turns

for negotiations opponents of continuous concession strategies can simply wait until this deadline

and accept the last offer before the negotiation expires, without making any offer or concession

at all. Thereby they could squeeze out the maximal possible of continuous concession strategies.

Even if such exploitative strategies would not exist, fixed deadlines could inhibit agreements

when there are only some more concession steps required to reach an agreement. In our opinion,

the termination of negotiations should be the outcome of a decision of the software agents.

Having this opportunity, they can themselves decide to break off negotiations if the progress is

not satisfactory and therefore no satisfactory outcome can be expected for the combination of

agents’ strategies and the given negotiation problem.18

As mentioned continuous concession strategies can be exploited easily if the interaction protocol

provides no means to circumvent this. Even if there is no fixed deadline, if agents do not have the

possibility to discontinue their strategy they could be exploited by other agents that wait until

the continuous concession strategy makes the offer with highest utility to them. The possibility

to break off negotiations could prevent this but would also cause many opportunities for a good

outcome to be forgone. A way to circumvent both, exploitation and missing agreements due

to negotiation abort, is the stipulation of possibilities in the interaction protocol, that enable

a software agent to interrupt its strategy.19 Such an option can easily be implemented in an

interaction protocol by allowing an agent to send a reject message instead of an offer when

it is its turn. This modification of the interaction protocol not necessarily results in a non-

alternating offer sequence, but the decision whether to alternate in the offering process or not is

up to the software agents. This possibility to reject offers and thereby interrupt the continuous

concession strategy until the opponent catches up can avoid exploitation, however, the possibility

to reject offers, is not only beneficial for agents following a continuous concession strategy when

negotiating with exploitative agents, but also when such software agents negotiate with each

other. As mentioned above human users can have various preferences over one and the same

negotiation object. Consider the case where one negotiator assigns different utility values to

all possible agreements, while the other one is indifferent between many of them. In a protocol

without the possibility to reject offers a continuous concession strategy could cause disadvantages

to the later negotiator.

18Model validation considerations contribute a further argument in favor of termination by the agents – in real
world there also exist no (absolutely) fixed deadlines. However, to avoid infinite negotiations, the negotiation
protocol could overrule the agents decisions if they fail to make progress and still not terminate the negotiation.
Here one rule adopted from the Zeuthen-Nash bargaining game could be, that the protocol terminates negotiations
if the two agents both reject the last offer of the opponent – see Chapter 4.

19For example the fair concession making approach proposed by Bartos (1977) in his ’simple model of negotia-
tion’ could be applied for this purpose. Basing on the egalitarian norm of reciprocity Bartos (1977) proposes that
if the opponent makes an unfairly small concession, an agent should stop to make further concessions and wait
until the opponent catches up. A concession is unfairly small if the reduction of utility between the last two offers
of the opponent is smaller than the reduction of utility between the last two offers of the focal software agent.





Chapter 4

Model Development and

Conceptual Model

This chapter documents the model development process and the resulting conceptual model for

the simulation of automated negotiation, covering the steps outlined in Chapter 2. As men-

tioned in Chapter 3 many studies investigating automated negotiation make use of simulation

techniques, however they do not document the model development process (e.g. validation pro-

cedures, etc.) though this is an important prerequisite for the transparency and the traceability

of a study. We therefore follow the steps outlined in Chapter 2, making and justifying necessary

decisions, together with a detailed description of the resulting model.1

The conceptual model resulting from the development process aims at addressing the draw-

backs of existing simulation studies on automated negotiation, summarized in the conclusions of

Chapter 3 which systematically reviewed these studies. These concerns were organized along the

components of automated negotiation – (i) the negotiation problem, (ii) the interaction protocol,

and (iii) the software agents’ decision making algorithms – and generally dealt with the avoid-

ance of unnecessary assumptions and the exploitation of the simulation technique’s potential to

cope with complex interdependencies. For the negotiation problem we argued that more realistic

preferences should be assumed and validated, or even elicited from users, so that the negotiation

problems used in simulations better represent the variety and complexity of the environment in

which actual automated negotiations will take place. Immanent decisions in negotiations, like

rejecting offers or breaking off negotiations, should rather be made be the software agents than

being imposed by an overly restrictive negotiation protocol – like the alternating offers protocol

(with fixed deadline), which was used in the majority of simulation studies so far. Concern-

ing the methods applied for determining the decision making of software agents, we argue that

generic concession strategies are more appropriate than evolutionary computing-, learning-, or

time-based approaches for an inherently open medium as the the Internet, over which auto-

mated negotiations take place in some seconds only, for various negotiation problems, and with

an unknown population of opponent agents.

1Considerations concerning experimentation are not discussed in this chapter but in Chapter 5, where the
experimental design for the computer experiments, as well as the dependent and independent variables are deter-
mined.
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Applying simulation techniques for the design of systems for automated negotiation (system de-

sign) implies performing computer experiments with various system configurations to evaluate

their outcomes and accordingly chose an appropriate one. The objects of an automated negotia-

tion system, relevant for system analysis and modeling, mainly are the components of automated

negotiation – discussed in detail in Chapter 3 – i.e. the negotiation problem, the interaction pro-

tocol, and the software agents. The interaction protocol and the software agents constitute the

entities in an automated negotiation systems. They can be described in more detail through their

attributes e.g. whether the protocol allows reject or quit messages or which offer generation

strategy and concession strategy a software agent follows. These entities represent the static

structure of the system and thereby form the ’automated negotiation system’.2 Besides these

’permanent’ entities there also exist temporary entities in automated negotiation systems, which

are the messages exchanged by the software agents, that only exist in the system as long as it

takes to generate, transmit, and evaluate them – or as long as they are stored by the software

agents in case they keep a track of the negotiation history. These messages and their succession

have to be in accordance with the rules imposed by the interaction protocol and change the state

of the system. For example an offer message sent by one software agent implies a change of the

’last offer sent’-attribute of the focal software agent and a change of the ’current opponent offer’

attribute of its opponent, or an agree message of one software agent to an offer of the opponent

causes the negotiation protocol to terminate the negotiation and save its outcome. Consequently

the flow of these temporary message entities represents the dynamic behavior of the system. For

their operations, the software agents need information concerning the negotiation object – which

is common to the software agents – and their users’ preferences over this negotiation object –

which is private information. These components form – as discussed in Section 3.1.1 – the ne-

gotiation problem, as the input to the automated negotiation system. Furthermore, as already

mentioned in the example above, some types of messages like the acceptance of an offer or mes-

sages indicating that the software agent intends to abort negotiations lead to the satisfaction of

termination criteria so that the interaction protocol terminates the automated negotiation, in

this case the system terminates the specific negotiation which produces some kind of output.

We therefore consider a system for automated negotiation to consist of one software agent for

each user and an interaction protocol (as illustrated in Figure 3.2 in Chapter 3). The inputs

to this automated negotiation system are the negotiation object and the users’ preferences – as

private information to the user’s software agent – over this negotiation object, which together

form the negotiation problem. A conceptual model for simulation of automated negotiation has

to represent these entities accordingly. The following Section 4.1 discusses the input component

i.e. the negotiation object and the preference functions, provides information on data acquisition,

and presents descriptive statistics on this data. Section 4.2 afterwards discusses the conceptual

model’s entities that represent the automated negotiation system, i.e. the interaction protocol

and the software agents.

2The system configuration – the static structure of an automated negotiation system – actually only needs to
be static for the time it takes to conduct the specific negotiation at hand. For this time, i.e. the duration of the
focal negotiation, the interaction protocol and the software agents can be conceived as permanent entities of the
system for automated negotiation. Clearly if the automated negotiation system is an open system software agents
can freely join or leave the system for different negotiation instances and alternative interaction protocols can be
chosen.
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4.1 Input

Basing on the review of existing simulation studies on automated negotiation we criticized in

Chapter 3, that these studies often fall short in representing the potential complexity of real

negotiation problems by assuming simple preferences and in most cases considering only one

negotiation problem in their studies, for which different software agent strategies are tested

and compared. Actually only one of the reviewed studies (Bosse and Jonker, 2005) elicited

preferences from humans as input for their software agents. If preferences, that form the input

to the simulation of automated negotiation, are assumed rather than elicited then they should

be validated as any input to a simulation model, which however is often neglected in simulation

studies on automated negotiation. So either way there is a need to collect data on the users’

preferences to use them as an input or for validation of assumed preferences.

A further concern was that the true problem solving potential of negotiations lies with multi-

issue problems where joint gains could be achieved through cooperative integration of interests,

however, many studies focused on single-issue negotiations (most often the price of an other-

wise specified deal), which normally are more competitive. Additionally multi-issue negotiation

objects seem to be the more realistic use case, as they are more frequent in real negotiation

situations. For such multi-issue objects integrative negotiation problems can emerge easily from

the users’ utility functions, as the prerequisites for an integrative negotiation problem are not

very demanding.3 The problem of higher complexity should not be an argument against the

consideration of many different negotiation problems, as the simulation technique evidenced to

be able to cope with such complexity.

Addressing these concerns, we used the preferences elicited from subjects in negotiation exper-

iments as input for the software agents in our study. The multiple-issue negotiation object

for which the preferences were elicited, and the utility functions resulting from this elicitation

procedure, are the topic of this section.4

4.1.1 Negotiation object – the Itex-Cypress case

The negotiation object used in the experiments, and as input to this simulation study, was the

Itex-Cypress negotiation case written by Dr. David Cray from Carleton University (Kersten and

Noronha, 1999a). The case deals with a bilateral buyer-supplier negotiation about the purchase

of bicycle parts. The subjects in the experiments represent either the seller of these parts ’Itex

Manufacturing’ or the buyer ’Cypress Cycles’. In developing the case an effort has been made

to make the case ’culture neutral’ in choosing appropriate names and a negotiation object with

which users from any country are familiar so that no additional explanations are necessary.

Furthermore the language used in the case description is simple and the case is well structured,

fitting on a half page, to account for possibly low language proficiencies of the experimental

subjects (Kersten and Noronha, 1999a). According to the case description ’Cypress Cycles’, an

3We showed in Chapter 3.1.1 that e.g. different priorities for the issues, shared interests concerning options
for issues, concave partial utility functions, etc. are sufficient.

4Furthermore the results of these experiments will act as a benchmark for the evaluation of automated ne-
gotiation systems (combinations of software agents and an interaction protocol) in Chapter 6, in which we also
discuss these results of human negotiation experiments.
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established manufacturer of high quality mountain bikes, plans to launch a new line of bikes

and requires a new component its current suppliers cannot provide. A possible supplier of this

components is ’Itex Manufacturing’, which seeks to increase its share of the component market

and is interested in settling a contract for the prestigious supply of ’Cypress Cycles’ if this business

is profitable (Kersten and Noronha, 1999a). The experiment subjects representing either Itex

or Cypress are informed that their companies are interested in achieving a good deal, but that

there are also alternative suppliers and buyers so that reaching an agreement is not obligatory

if they cannot reach a good deal. The outside options are held vague in order to avoid further

specifications as to what a good deal means in this situation (Kersten and Noronha, 1999a). The

two parties negotiate about four issues of a supply contract: the price of the parts, delivery time,

terms of payment, and the conditions for return of defective parts and refund. The case specifies

several discrete options for each issue provided in Table 4.1.

Attribute Possible Values

Price $ 3.47, $ 3.71, $ 3.98, $ 4.12, or $ 4.37
Delivery time 20, 30, 45, or 60 days
Payment terms Payment on receipt, 30, or 60 days after delivery
Returns Items may be returned for refund when ...

Any part is defective (full return)
5% are defective
10% are defective

Table 4.1: Attributes and possible values in the Cypress-Itex case

For each issue the parties have to choose one of these discrete options to compose offers and to

finally reach an agreement on such an option configuration eventually. The five possible values

for the price, the four options for delivery time, and three for each of the two other attributes,

result in a total of 5∗4∗3∗3 = 180 alternative packages the parties can chose from to individually

make an offer and collectively settle the negotiation. There is a time limit of three weeks for the

negotiation experiments, but either party is free to terminate the negotiation before this deadline

is reached without agreement.

4.1.2 Data acquisition with Inspire

The experiments on the above mentioned negotiation case were conducted with the negotiation

support system Inspire (Kersten and Noronha, 1999b,a) developed by the InterNeg research

centre5 at John Molson School of Business of the Concordia University in Montreal, Canada.

Inspire – an abbreviation for InterNeg Support Program for Intercultural Research – is a

web-based negotiation support system developed for educational and academic purposes, i.e. to

facilitate negotiation teaching and study intercultural electronic negotiations.

Inspire’s support functions base on a three phase model of the negotiation process, consist-

ing of the phases: pre-negotiation, conduct of negotiation, and post-settlement (Kersten and

Noronha, 1999b,a). In the pre-negotiation phase users study the case instructions in order to

gain understanding about the open issues and options available for their settlement. Afterwards

the preferences of the users are elicited by Inspire using a hybrid conjoint analysis approach

5http://www.interneg.org – last accessed on 17.03.09
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(Kersten and Noronha, 1999a). The users first indicate the relative importance of the issues in

dividing 100 points over the issues. In a next step the users indicate the relative importance

of each issue’s options by assigning the maximum of the points, assigned to the issue in the

former step, to the most preferred option, 0 points to least preferred option, and values between

the issue’s maximum and zero to the remaining options. The system uses this information to

calculate the overall utility of several packages for holistic evaluation by the user as a controlling

device. If the calculated overall utilities for these packages do not reflect the actual preferences

of the user he can modify this overall utility value for the package and the system decomposes

the information to partial utility values by ordinary least squares regression – consult Kersten

and Noronha (1999a) for a detailed description of Inspire’s utility elicitation approach. The

preferences indicated to the system can be revised anytime during the negotiations if preferences

change or initial errors are detected.6

u(X) =
n

∑

i=1

wiui(xi) (4.1)

Although the hybrid conjoint analysis does not explicitly distinguish between issue weights and

partial utility functions, it is equivalent to the additive multi-attribute utility function (4.1)

proposed by Keeney and Raiffa (1993). In (4.1) X = (x1, . . . , xn) is the vector of proposed

options xi, for the n issues i = 1, . . . , n to be negotiated, which constitutes an offer. wi is the

weight as a measure of importance of issue i and ui(·) is the partial utility function of issue i.

Adding the partial utility values of the options in all issues yields the overall utility of the offer

u(X). While the case descriptions for both parties clearly indicate the preference direction for

all issues, e.g. that the seller favors higher options for the price, no specific trade-off values –

i.e. no complete scoring scheme – is provided, so that the subjects in the experiments have to

establish their own priorities and trade-offs within and across issues. The partial utility functions

therefore could be linear as well as non-linear (Kersten and Noronha, 1999a) and as preferences

about the negotiation object were by no means enforced in the experiments there were also cases

with non-monotonic partial utility functions and even few cases with monotonic partial utility

functions in the wrong direction – i.e. contradicting the case description (Vetschera, 2006).

In the second phase the actual negotiation is conducted. The users can exchange free-text

messages and structured offers. Each offer has to consist of options for all issues negotiated,

which means that package offers are enforced by the system. The multi-attribute utility function

of the user is applied for negotiation support in this phase. Inspire automatically calculates and

provides utility values during the construction of offers, using the preferences indicated in the

pre-negotiation phase, and also evaluates offers of the opponent. The history of the exchanged

messages and offers is tracked during the negotiation and can be inspected by the user anytime.

Moreover the utilities of all sent and received offers is graphically represented as a function of

time. If the negotiators reach an agreement – and the users mutually accept this – negotiations

enter its third phase; the post-settlement phase. Inspire then calculates Pareto-improvements

to the current tentative agreement i.e. packages that offer to at least one negotiator a higher

6Therefore it is necessary to determine which preferences of the users to employ as input to the simulation. We
decided to use the latest preferences indicated by the subjects in the experiments as this preference information
probably is free of errors and therefore representing the actual preferences of the user best.
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utility without lowering the utility of the other negotiator. If such dominating packages exist

they are presented to the negotiators and negotiations may be continued.

All the data generated during the course of a negotiation experiment with Inspire is saved

in the Inspire database. The results of the utility elicitation procedure are saved in the table

OPTRATE, with one row per user and utility elicitation, in which the partial utility values for the 15

options are stored. A further table OFFERS tracks all the offers exchanged during the negotiation

experiment, and two additional tables save the answers to a pre-negotiation questionnaire and

a post-negotiation questionnaire. While the pre-negotiation questionnaire deals with questions

about the subject’s demographic data, negotiation experience, and expectation and reservation

levels for the upcoming negotiation after the case description was read and before the negotiation

experiment starts, the post-negotiation questionnaire asks the subjects for their satisfaction

with the negotiation process and outcome, their perception of their own and their opponent’s

negotiation behavior, and their attitudes toward the negotiation support system used. These

last two tables are due to the focus of this dissertation not considered in this study.

Though the main purposes of the experiments on the Itex-Cypress case are negotiation teaching,

as well as testing and further-development of the the negotiation support system Inspire, the

data that form a by-product of this endeavor was analyzed in a multitude of studies not only

in research on negotiation support systems but also in studies on negotiation in general and

electronic negotiation in particular.7 However up to now – at least to the knowledge of the

author – this data was not used as input for simulations of automated negotiations.

From October 1996 to September 2004 a total of 2,990 negotiation experiments on the Itex-

Cypress case have been set up in Inspire. The majority of the subjects in these experiments

were students, participating in fulfilling course requirements of their studies. We selected those

experiments in which the subjects remained constant during the whole period of the negotia-

tion and where each party sent at least one offer so that negotiations are actually conducted.

This reduces the sample of experiments to 2,065 negotiations. The experiment IDs of these

negotiations are saved in the vector experiments to access them during the simulation. For

these relevant experiments the negotiators’ (latest) preferences and the negotiation processes

were queried from the Inspire database and saved to the tables PREFERENCES and PROCESS. We

furthermore created an additional table OUTCOME where we stored if an agreement was reached

in the experiment and in case an agreement was reached we additionally stored the utilities to

the parties and whether the agreement is a Pareto-optimal solution to the negotiation problem

or not. Furthermore we saved information on the integrativeness of the negotiation problem in

this table as it is the only one that structures the data by the negotiation dyad (see Appendix

A).

4.1.3 Preferences

Table 4.2 and Figure 4.1 present descriptive statistics on the importance of the four issues –

price, delivery, payment, and return – of the negotiation object to the seller and the buyer

7Consult the ’research papers’ and ’publications’ sections of the InterNeg web page at
http://interneg.concordia.ca/interneg/research/papers/ – last accessed on 17.03.09 – for a sample of
these studies
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party according to the preferences indicated in the above mentioned first step of the elicitation

procedure – and eventually adapted to the holistic evaluation in the procedure’s third step if

necessary. For both the seller and the buyer party price was the issue of highest importance,

achieving nearly 40% of the 100 points to be divided over the issues. However, due to different

importance of other issues some integrative potential in the negotiation problems can be assumed.

For the seller parties price was followed by the issues payment – as the issue of second highest

importance receiving about quarter of the points – return, and delivery, where the two later

achieved only lower importance of about 18% and 16%, respectively. For the buyers delivery, the

issue of lowest importance to the seller, was in place of second highest importance, followed by

return and payment. Buyers considered these remaining three issues about equally important

assigning around one fifth of the overall points to each of them. Comparing the overall ordering

some potentials for trading off issues for mutual benefit can be identified. Though the price could

be a rather competitive issue as it is the one of highest importance to both parties, payment is

of second highest importance to the sellers while only of lowest importance to the buyers and for

delivery the situation is opposite.

seller buyer
price delivery payment return price delivery payment return

min 0.60 0.00 0.97 0.00 0.00 0.00 0.00 0.00
1st Q. 30.00 10.00 20.00 10.00 30.00 15.00 10.00 11.32
median 40.00 15.00 25.00 18.18 37.50 21.43 20.00 20.00

3rd Q. 50.00 20.00 31.25 25.00 45.00 30.00 25.00 27.00
max 97.09 70.00 79.37 96.04 97.00 91.00 100.00 80.00

⊘ 38.98 16.40 26.06 18.56 37.72 22.62 18.91 20.76
± 13.49 8.14 11.29 9.68 13.25 9.50 9.79 10.48

Table 4.2: Parties’ importance of issues
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Figure 4.1: Importance of the issues

The following four tables and figures, in the same way as for the importance of issues, present

descriptive statistics for the importance of the different available options for settling the four
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issues. Preferences of the subjects in the experiments again are derived from the points they

distributed over the options of the issues in the second step of Inspire’s preference elicitation

procedure – again eventually adapted to the holistic evaluation in the procedure’s third step.

seller buyer
$ 3.47 $ 3.71 $ 3.98 $ 4.12 $ 4.37 $ 3.47 $ 3.71 $ 3.98 $ 4.12 $ 4.37

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1st Q. 0.00 5.00 16.00 22.43 25.00 30.00 20.00 12.00 4.55 0.00
median 0.00 10.00 24.00 30.00 35.71 36.00 30.00 20.00 9.52 0.00
3rd Q. 0.00 20.00 33.08 40.00 45.45 45.00 35.00 25.00 10.34 0.00
max 40.91 67.00 97.09 81.74 82.61 97.00 87.00 83.00 60.00 33.33

⊘ 0.74 13.71 25.02 31.14 34.98 36.12 28.01 19.78 9.19 0.21
± 4.01 11.21 13.59 14.73 17.16 14.91 13.49 11.48 7.89 1.97

Table 4.3: Parties’ preferences over the options of the issue price
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Figure 4.2: Preferences for the issue price

seller buyer
20 days 30 days 45 days 60 days 20 days 30 days 45 days 60 days

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1st Q. 0.00 5.00 6.25 4.11 15.00 10.00 4.00 0.00
median 0.00 8.70 10.00 10.00 20.00 15.00 6.67 0.00

3rd Q. 0.00 13.64 16.67 20.00 30.00 20.00 10.00 0.00
max 39.16 70.00 69.00 70.00 91.00 85.00 80.00 21.43

⊘ 2.20 9.59 11.88 12.39 21.86 15.79 7.78 0.22
± 5.37 7.08 7.77 9.89 10.16 9.02 6.35 1.68

Table 4.4: Parties’ preferences over the options of the issue delivery
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Figure 4.3: Preferences for the issue delivery

seller buyer
on receipt 30 days 60 days on receipt 30 days 60 days

min 0.00 0.00 0.00 0.00 0.00 0.00
1st Q. 16.67 10.00 0.00 0.00 5.00 10.00
median 25.00 15.00 0.00 0.00 10.00 15.00
3rd Q. 30.00 22.86 4.76 0.00 15.00 23.53
max 79.37 76.19 70.87 75.00 75.00 100.00

⊘ 24.55 17.29 5.01 3.23 12.18 16.44
± 12.05 11.50 10.37 8.36 9.07 10.71

Table 4.5: Parties’ preferences over the options of the issue payment
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Figure 4.4: Preferences for the issue payment



80

seller buyer
full return 5% defective 10% defective full return 5% defective 10% defective

min 0.00 0.00 0.00 0.00 0.00 0.00
1st Q. 0.00 5.00 10.00 10.00 5.00 0.00
median 0.00 10.00 15.62 20.00 9.52 0.00
3rd Q. 0.00 15.00 25.00 27.00 15.00 0.00
max 28.57 96.04 63.38 80.00 60.00 27.04

⊘ 0.88 11.73 16.90 20.05 9.83 0.38
± 3.49 8.56 10.65 11.06 7.77 2.18

Table 4.6: Parties’ preferences over the options of the issue return
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Figure 4.5: Preferences for the issue return

As can be seen from Table 4.3 and Figure 4.2 both parties distributed the points for the issue

price quasi linearly over the five available options for settling this issue, which even exacerbates

the competitiveness of this issue, caused by its equal importance to the parties. Concerning

the issue delivery Table 4.4 and Figure 4.3 indicate that similar to price the preferences for the

options of delivery are quasi linearly distributed over the available options by the buyers. The

sellers however evaluate the different options as about equal – with exception of the option ’20

days’, which is the shortest possible delivery time, – where the range of the partial utility values

assigned to the options increases with option values for delivery time. The scores for the options

of payment (Table 4.5 and Figure 4.4) and return (Table 4.6 and Figure 4.5) again are distributed

quasi linearly from best to worst, where best and worst are oppositional for the two parties.

4.2 Automated negotiation system

As discussed in the introduction of this Chapter in automated negotiation the combination of the

software agents, representing the parties in the negotiation, and the negotiation protocol, regu-

lating the interactions between these software agents, form the automated negotiation system.

The preferences over the negotiation object and the negotiation object itself are only input to
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this system and are not object to choices of the system user, as we assume they are exogenously

determined by their interests. The configuration of the automated negotiation system i.e. the

choice of software agents and interaction protocol to perform automated negotiation, however,

can be determined by the system users. So while the negotiation object and the preferences of

the users over this negotiation object are taken as given, users can decide about the configuration

and parameterization of the system employed to handle this negotiation problem by means of

automated negotiation.8

In the subsequent sections we propose, addressing the drawbacks of existing simulation studies

mentioned in Chapter 3, alternative interaction protocols and different types of continuous con-

cession strategies for software agents in automated negotiation. The three interaction protocols

proposed in Section 4.2.1 result from different combinations of types of messages the protocols

enable software agents to send. The nine software agents proposed in Section 4.2.2 embody

continuous concession strategies that result from different combinations of offer generation and

concession strategies. Both, the software agents and the interaction protocols, are not novel but

have been proposed in negotiation literature – for software agents – and game theoretic bar-

gaining literature – for interaction protocols – the relevant literature is reviewed and discussed

with the model’s components in the according sections. At least to the knowledge of the author

these concepts have not been applied in simulations of automated negotiation so far. In imple-

menting these components we therefore do not ’reinvent the wheel’ but follow the suggestion to

build on existing research for designing software agents and interaction protocols for automated

negotiation (Kraus, 1997; Jennings et al., 2001).

4.2.1 Interaction protocol

The interaction protocol builds the basis and restriction for the interaction of the software agents

in an automated negotiation system. Our concerns about the interaction protocols used in

current studies on automated negotiation was above all, that in the majority of the simulation

studies variants of only one specific negotiation protocol – namely the alternating offers protocol

(Rubinstein, 1982), where the software agents alternate in making offers until they reach an

agreement – was considered. Only in some cases the negotiations are terminated earlier – most

often by the protocol if a deadline – in terms of a maximal number of turns – is reached before

agents reach an agreement – and only in some of these cases the agents had the choice to break off

negotiations – again this decision often based on whether or not a prespecified deadline is reached.

This alternating offer protocol causes no inconveniences for most of the methods to determine

agents’ decision making algorithms applied so far, but is beneficial to them as fixed deadlines

introduce the notion of time necessary for any time- or evolutionary computing-based strategy

as discussed in the previous chapter. Though continuous concession strategies function under

such an interaction protocol it causes problems of possible exploitation and inferior outcomes.

As mentioned we argue that continuous concession strategies are – in contrast to strategies

proposed up to now – applicable for automated negotiation in an open environment as they can

easily adapt to novel problems and are independent of the opponent software agent. Therefore

8Note that a single party actually can only select its own agent autonomously and cannot determine the
software agent choice of the other party. Furthermore the interaction protocol has to be chose jointly by the
parties.



82

we are interested in applying protocols that are suitable for a population of software agents that

follow these strategies. Such protocols should exhibit features that enable the software agents

to either permanently – by breaking off the negotiation – or temporarily – by stopping to make

concessions for some time – interrupt their continuous concession strategy if they think it is in

their interest – i.e. to avoid exploitation or unfavorable outcomes.

4.2.1.1 Initiation

At the beginning of the negotiation in our conceptual model the protocol calls the agents in their

initiation mode, which implies that it provides the software agents, registered with the system

as representing their parties, with the negotiation object indicated by the parties as input –

which thereby is identical for both agents –, as well as utility values for possible solutions, and

let the agents create private storage variables where they store this information together with

information on the negotiation process – e.g. the last own and the opponent’s last messages –

for later reuse during the negotiation. After this initiation of the software agents the negotiation

protocol randomly chooses one agent – either agent is chosen with equal probability – and sends

to him a call for offer.

4.2.1.2 Messages

The software agent that receives the call for offer from the interaction protocol is the first to

make an opening offer and the one sending messages at odd turns during the following negotiation

process, while the other software agent sends his opening offer in the second turn and thereafter

sends messages in the even turns of the negotiation process. As the messages need not be

exclusively offers we term this protocol an alternating turn protocol, in which the agent alternate

in taking their turns. The possibility to send messages other than offers addresses the above

mentioned drawbacks of the alternating offers protocol, which is used in simulation of automated

negotiation. In their turn software agents can send one out of a set of messages determined by

the protocol; either offer, reject, agree, or quit – described in detail subsequently. While a

message of the type offer proposes one of the possible settlement of the negotiation object as

agreement, which the opponent can accept or not, the other three message types are necessary

for controlling the negotiation process.

4.2.1.2.1 offer An offermessage in our conceptual model constitutes a proposal for settling

the negotiation. In human negotiations there are many different kinds of messages besides offers,

like threats, provision of or request for information, etc. all aiming at influencing the final

outcome of the negotiation. However, it is argued that, though other messages are clearly of

importance, offers are the most important type of messages in negotiations as they promote

proposals for the settlement (Tutzauer, 1992). Many fields studying bargaining and negotiation,

like game theory or management science, exclusively focus on offers and model negotiation as a

process of exchanging offers and counteroffers. Therefore, and as research on argumentation by

software agents in automated negotiation is still in an early stage of development, we focus on

offer messages. To be a proposal for settling the negotiation an offer has to provide options

for all issues of the negotiation object, i.e. it has to be a full package offer. The interaction
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protocol not only demands full package offers due to this, there are other protocols that operate

in simulation of automated negotiation that work on an issue-by-issue basis or allow partial

package offers, but negotiation literature emphasis the opportunities to reach mutually beneficial

agreements through package offers, which allow to trade off issues of lower importance against

issues of higher importance in a logrolling procedure (Froman and Cohen, 1970; Mumpower,

1991; Milter et al., 1996).

4.2.1.2.2 reject If a software agent sends a reject message this means that in this turn it

does not propose a new offer, or make any other changes to the current state of the negotiation,

but insist on its last offer. This message was proposed as a move in non-cooperative bargaining

games (Harsanyi, 1956) and as a strategy to avoid unfairly small concessions and exploitation by

the opponent (Bartos, 1977). Sending a reject message enables the software agent to discontinue

the offer generation strategy it normally follows, according to which they would make some

predetermined offer, for some reasons without necessarily terminating the negotiation.9 The

situations in which such an interruption might be beneficial to the agents are discussed in Section

4.2.2, which deals with the software agents’ decision making algorithms.

4.2.1.2.3 agree Several bargaining games in non-cooperative game theory do not require

the explicit acceptance of an offer, but terminate the negotiation if the offers of the parties are

compatible (Nash, 1953; Harsanyi, 1956), i.e. if for both players the demanded utility of their

offer is lower or equal to their utility of the offer proposed by the opponent. If the offers do not

coincide division rules can be used to divide the surplus or chose one of the compatible offers

as agreement. For this purpose equal division of the surplus or some kind of arbitration, where

either offer is chosen with equal probability, are usually applied. The problem of choosing one out

of two compatible offers by some arbitration rule mainly arises from the fact that in the above

mentioned bargaining games players have to make offers simultaneously. An alternating turn

protocol, however, is sequential by nature and the problem of deciding between compatible offers

is circumvented by the acceptance criterion discussed in Section 4.2.2. A software agent in the

situation to send a message will first compare the opponent’s last offer to the own offer to be sent

next, if the opponent’s offer affords higher or equal utility the software agent accepts it rather

than proposing its next offer. So the software agents in our sequential interaction protocol detect

and utilize compatible offers themselves rather than relying on the interaction protocol to do so.

On the other hand splitting procedures are only applicable if the ’zone of possible agreements’

is an area rather than a set of points, furthermore splitting does not definitely specify the actual

outcome of the negotiation as more than one of these possible settlements may afford the same

utility to the parties (Osborne and Rubinstein, 1990). Therefore splitting procedures – without

additional refinements – are actually only applicable in a single-issue negotiation with continuous

options for this single issue. As this is a very demanding prerequisite for the negotiation object –

which is not met for many negotiation objects including the one used in this study – we demand

an explicit agree message. Sending an agree message means that the agent accepts the last

offer of the opponent as agreement. This clearly determines what the negotiation was settled for,

as the last offer of the opponent is required to be a full package offer with options for all issues

9However, termination of the negotiation could be the final result of sending a reject message if the opponent
does the same as discussed in the section on termination criteria.
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of the negotiation object – as discussed above.

4.2.1.2.4 quit Like in negotiations between humans, which do not need to end with an

agreement (Beam and Segev, 1997) an interaction protocol can allow the software agents to send

a quit message. Sending this message fulfills one of the termination criteria of the interaction

protocol and negotiations will end without agreement. Therefore quit messages can be used by

the software agents to break off negotiations if they decide this is in their interest in the given

context e.g. to avoid exploitation or to stop a negotiation which will not lead to a favorable

outcome. For software agents following continuous concession strategies the quit message is a

means to permanently interrupt the offer generation strategy the software agent normally would

follow, in not only denying to propose the next offer – as in case of the reject message – but in

aborting to negotiate at all.

4.2.1.3 Termination criteria

The interaction protocol terminates the negotiation either if (i) a software agent sends an agree

message, thereby accepting the last offer of the opponent, or (ii) if a software agent sends a quit

message, thereby breaking off the negotiation, or finally (iii) if two subsequent messages of the two

software agents were reject messages. This last termination criterion is applied to avoid infinite

negotiations without progress towards an outcome, may this outcome be an agreement or break

off of negotiations. If a software agent sends a reject message it does not change its internal

state, which means that the same message will also be sent in its next turn unless a message of

the opponent causes state changes and therefore, due a changed situation, the message of the

software agent could be different from that of the previous round. If both agents send reject

messages subsequently there will be no state changes that lead to either agreement in or break off

of the negotiation anymore but only an infinite number of alternating reject messages and the

protocol terminates negotiations if this would occur. This last termination criterion is equivalent

to the mechanism in the Zeuthen-Nash bargaining game (Harsanyi, 1956), where the negotiation

ends without agreement if both players reject to make a concession, with the difference that

in this game proposals are made simultaneously rather than sequentially and under complete

information about the opponents preferences. Note that repeating the same offer would have

the same effect as sending a reject message, namely no changes in the state of the negotiation.

For simplicity the subsequently proposed offer generation strategies are therefore designed in a

way that they do not repeat offers but send reject messages to interrupt concession making. In

principle, however, this repetition of offers could easily be detected by the interaction protocol

and treated the same as if a reject message was sent, or – the other way around – software

agents could be allowed to repeat the previous offer rather than to propose a new offer and the

interaction protocol terminates negotiations if the two software agents subsequently repeated

their last offers.

4.2.1.4 Interaction protocols and negotiation processes

The combination of enabled messages leads to the three protocols provided in Table 4.7. As can

be derived from the above discussion of the messages, offer and agree messages are a necessary
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component for any interaction protocol in our conceptual model for simulation of automated

negotiation. However, the others are optional and used in different combinations resulting in

the three protocols considered in our study. protocol 1 allows only offer and agree messages,

protocol 2 additionally enables the software agents to send quit messages and protocol 3

allows besides sending and accepting offers to reject them and to thereby elicit a new offer

from the opponent. There is a fourth possible combination i.e. an interaction protocol that

enables software agents to send – besides the mandatory offer and agree messages – both

reject as well as quit messages. As can be derived from Figure 4.9, which represents the

generic structure and decision making algorithm of the software agents of our conceptual model,

software agents will always chose reject to keep on negotiating and eventually still reach an

agreement rather than instantly breaking off negotiations by sending a quit message. Here the

reject message provides a sufficient means of preventing exploitation or unfavorable agreements,

making it not necessary to break off negotiations by a quit message for the same purpose, but

keep the opportunity of reaching an agreement later in the negotiation, which would be forgone

when sending a quit message as this terminates the negotiation. Therefore if software agents

have the possibility to reject they will always do so rather than breaking off the negotiation, and

the negotiation processes and outcomes with an interaction protocol that allows both reject and

quit messages coincide with those achieved in protocol 3 that only allows reject messages.

We therefore omit this redundant protocol.

offer agree quit reject

protocol 1 x x
protocol 2 x x x
protocol 3 x x x

Table 4.7: Protocols resulting from the combination of allowed messages

The combination of these three protocols with the software agents’ generic structure presented

in Figure 4.9 leads to the negotiation processes depicted in Figures 4.6 to 4.8. protocol 1 is

implemented as a benchmark as it coincides with the alternating offer protocol. In protocol

1 neither reject nor quit messages are possible so software agents negotiating in protocol 1

are able to send only either offer or agree messages in their turn. As agree messages lead

to the termination of the negotiation the resulting negotiation process from the application of

protocol 1 is an alternation of offers which always results in an agreement – see Figure 4.6.10

protocol 2 in addition to offer and agree messages allows to send quit messages, which

like agree messages lead to a termination of the negotiation, however, in contrast to an agree

message the outcome of the negotiation in case a quit message is sent is no agreement. As either

message, agree as well as quit, terminates the negotiation and the only alternative to this is

to send offer messages, protocol 2 just like protocol 1 leads to alternating offer negotiation

processes, however, the outcome of these processes need not to be agreements.

10Though this is a very strong restriction of the interaction between software agents imposed by the protocol,
it might be useful in case that reaching an agreement is obligatory. On the other hand, if this is not the case the
reached agreements might be inferior to those reached when exploitation can be circumvented by reject messages
like in protocol 3, or negotiations can be broken off by quit messages to circumvent unfavorable outcomes like
in protocol 2. So there are pros and cons of such a protocol and maybe trade-offs between outcome dimensions
in negotiations – e.g. the probability of reaching an agreement versus the quality of agreements reached – which
have to be evaluated.
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Figure 4.6: Flowchart in protocol 1

Figure 4.7: Flowchart in protocol 2

Figure 4.8: Flowchart in protocol 3
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In protocol 3, though the software agents alternate in taking their turns and sending their

messages, they can also send reject messages instead of offers. These reject messages not

necessarily terminate the negotiation – they only terminate the negotiation if two subsequent

messages of the two negotiation parties are of the type reject. So protocol 3 may but need not

lead to negotiation processes with non-alternating offers – which is the case when offer sequences

are interrupted by single rejections of one party –, which may but need not lead to agreements,

as the negotiation could be terminated without agreement if two subsequent reject messages

are sent by the agents so that the protocol terminates the negotiation due to lack of progress.

4.2.2 Software agents

In the review in Chapter 3 we stated that the strategies of most software agents, used in simu-

lation studies of automated negotiation so far, base on evolutionary computing, learning mecha-

nisms, or time-based concession functions. We further argued that these software agents are not

readily applicable to actual automated negotiation – i.e. for an implementation in operative sys-

tems – for various reasons. First time-based concession functions are not suitable due to the fast

proceeding and therefore time insensitivity of automated negotiation, and the aim to improve

outcomes over those reached by the human negotiation behavior these strategies imitate. Though

the impatience of the negotiator or the costs associated with the mechanism of negotiation are

good arguments for the reduction of the utility level demanded over time – which is the way

time-based strategies are actually modeled – the validity of these argumentation is undermined

if the procedure only takes several seconds at most like in automated negotiation.

Moreover, the possible variety and complexity of negotiation problems and opponent strategies

in automated negotiation causes problems for software agent strategies basing on evolutionary

computing or learning mechanisms. In the World Wide Web software agents for automated

negotiation can easily be programmed by or for human users. This openness of media for au-

tomated negotiations – for new software agents of user with various preferences and for many

different negotiation problems – has to be considered when designing decision making algorithms

for software agents. We argue that software agent strategies basing on evolutionary computing

or learning algorithms are not flexible and generic enough to cope with this variety of possible

(novel) opponents, negotiation objects, and therefore negotiation problems – determined by the

various preferences over various objects. Evolutionary computing-based strategies – especially

those implementing sequential threshold rules – for software agents might not have the chance

to have the large number of interactions with the same opponent and for the same negotiation

problem these software agents need to reach good agreements by means of co-evolution (Beam

and Segev, 1997; Tu et al., 2000), and models of the opponent held by learning strategies might

be inadequate for the variety of (novel) opponent strategies, especially given the limited learning

capacities and small number of parameters such strategies can effectively process.

Due to these concerns about existing approaches to determine the software agents’ decision

making algorithms we focus on the class of continuous concession strategies. These rule-based

and rather deterministic algorithms neither model their opponent nor try to learn something

about the opponent’s preferences or strategy, but are therefore (re)usable for various negotiation

problems with different opponents. Furthermore, in not making offers dependent on time, but

only on the negotiation object, the preferences of their users over this negotiation object, and
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the opponent’s behavior they also respect the low transaction costs and therefore invariance

of time associated with the fast proceeding of automated negotiation. The components of the

subsequently presented software agents – i.e. their offer generation and concession strategies – are

not novel but proposed in negotiation and bargaining literature and only were not implemented in

simulations of automated negotiation yet – at least to the knowledge of the author. We therefore

implement software agents on an established theoretical basis and test them in our simulation

study.

4.2.2.1 Initiation and negotiation mode

The software agents basically consist of two modes in which they can be called by the interaction

protocol, the initiation mode and the negotiation mode. When called in the initiation mode the

interaction protocol has to provide the software agent with the negotiation object and utility

values for all possible settlements according to the preferences of the agent’s user. The software

agent stores this private information in agent specific data variables for later retrieve and use

during the negotiation, these data variables are also used during the negotiation to save the state

of the negotiation – i.e. which offers were already proposed by the agent and its opponent. This

initiation mode is just a procedural prerequisite for the operations in the negotiation mode, which

is more interesting to this study and therefore described in detail in the subsequent sections. The

code of the software agent followed, when called in the negotiation mode, determines the opening

offer and the procedure to follow when generating subsequent offers, how to react on messages

of the opponent, which offer to accept, and when and how to terminate the negotiations, etc.,

thereby representing the software agent’s decision making algorithm or strategy.11

4.2.2.2 Opening offers

When the software agent is called by the interaction protocol in the negotiation mode the first

time – no matter if it is the first agent to send a message, as it received the call for offer

from the interaction protocol, or the second agent to send a message – the agent sends a message

of the type offer i.e. its opening offer. This offer is the most preferred by the software agent

according to the utilities indicated by its user. In case there are more offers which afford the same

and highest level of utility – as for all other cases of indifference between offers in the subsequent

offer generation of the software agents in this conceptual model – the software agent choses one

out of these tied offers randomly with equal probability for all tied offers to be chosen.12 By

proposing this opening offer of highest utility the software agent does not risk anything. Nothing

is lost if this offer is accepted as no concession is made with this initial offer – as it affords highest

utility – which could be exploited by the opponent.

After proposing this opening offer, when a software agent is called in the negotiation mode and

11Scholars argue that the game theoretic notion of ’strategy’ as a fixed plan of action for all possible situations
during a game is more applicable to software than to human agents as their code must explicitly and unchangeably
determine all actions to be performed in all possible situations (Rosenschein and Zlotkin, 1994; Binmore and
Vulkan, 1999; Vulkan, 1999).

12This random choice of one out of the offers between which the user is indifferent, together with the random
choice which agent receives the call for offer and therefore has to start the negotiation, constitute the only
stochastic components of the otherwise deterministic negotiation procedure and causes the conceptual model to
be a stochastic discrete event model as discussed in Section 4.3.
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with the last message of the opponent as input, all agents follow the generic agent template

presented in the flowchart of Figure 4.9. Though there are differences between the specific

instances of software agents concerning the offer generation and concession strategy the general

structure is equal for all of them - in object oriented programming language one could say they

are children of a generic class. They start with updating their private information according to

the message they received – additionally they will update their private information after sending

an offer message –, generate the next offer to be proposed according to their offer generation

strategy, determine whether the course of the negotiation builds a basis for further negotiating

according to their concession strategy, choses an action – i.e. a specific message to be sent – in

accordance with the protocol and the user’s preferences, and finally perform this action i.e. send

the chosen message. The detailed content of each of these steps is discussed in the subsequent

sections with the differences between the specific instances of software agents in these steps.

Figure 4.9: Flowchart of the agent template

4.2.2.3 Information updating

In a first step the software agent evaluates the message it received from the opponent in this

turn. This message can be either of type offer or reject – if this message is possible due to the

protocol – as an agree or quit message would have caused the interaction protocol to terminate

the negotiation and not to call the software agent with this last message of the opponent as

discussed above.13 If the message is of type offer then the software agent evaluates the offer

13Clearly for learning agents it is a necessary and valuable information, how the negotiation ended – with a
break off or with an agreement – which can be utilized together with information on the course of the focal
negotiation for later negotiations, however, in their present form the software agents in this study do not learn
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in determining the utility of this last offer of the opponent and updates its private information

by saving this utility value in the agent’s data variables. This change of information due to

the receipt of an offer implies a state change in the simulation. Furthermore if the strategy

of the software agent implies to submit an offer in the given state of the negotiation, this also

constitutes a state change in the simulation, the utility of this offer to be proposed in this turn

also is saved and the package is marked as offered in the private information after the message

is sent and before the turn is finished by the software agent.

4.2.2.4 Offer generation strategy

Depending on the combinations of the options in the issues – i.e. the offer configuration – and

the user’s preferences over these options, the difference in the demanded utility between the last

and penultimate offer of a negotiator can either be positive – indicating a higher demand –, the

same – indicating an insistence– , or negative – indicating a concession – from the point of view

of the focal negotiator. When negotiators follow a concession-based approach in negotiations,

i.e. start with extreme demands and lower these in the course of the negotiation – as the

agents proposed in this conceptual model do and as found to be the dominant approach in

human negotiations (e.g. Pruitt, 1981) – then making concessions in continuously lowering the

demand is the only viable way to reach an agreement. The software agents in our conceptual

model follow this concession making approach in generating their offers. Different forms of

concession making to generate offers – depending only on the negotiation object and the user’s

preferences over this negotiation object – are discussed in detail in the subsequent paragraphs.14

Current research identified concessions as a common phenomenon in negotiations, as almost

all negotiation processes consist of at least some concessions. Frequent concessions increase

the probability to reach an agreement and reduce the duration of negotiation. Obviously the

reduction of demand implied by concessions leads to agreements that provide lower utility to

the conceding negotiator, however, the joint performance – i.e. Pareto optimality – of reached

agreements is not negatively influenced by concession making, which underlines the importance

of concessions for successful negotiations (Filzmoser and Vetschera, 2008).

When an agent has no information about the preferences of its opponent, which is the case in

our study, an offer intended by one party as a concession to the other party could be perceived

by the opponent as a reverse concession (higher demand) or no change in the demanded utility

level (insistence) (Kersten et al., 2000). To avoid problems of wrong perceptions, in our setting

of unavailable information about the opponent’s preferences, the software agents act purely

myopic in making their decisions. Offers are evaluated according to the only available precise

information the agents have access to, namely the preferences of the software agent’s user over

the negotiation object. Therefore the opponent is perceived to make a concession if the utility

difference – from the point of view of focal software agent – between the last and the penultimate

offer of the opponent is positive i.e. the last offer affords a higher utility to the focal software

agent. Similarly a bargaining step is said to be a concession by the focal software agent if the

for future negotiations but this remains an aspect to be investigated in subsequent studies.
14Note that some of the agents do not follow strict concession making, but if possible propose offers of same

utility level, like the subsequently discussed monotonic concession strategy, however if there are no such offers of
same utility level these agents also reverse to concession making, so their general strategy allows to classify them
as concession strategies.
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utility difference between its last and penultimate offer is negative i.e. the last offer affords lower

utility to the software agent.

4.2.2.4.1 Strictly monotonic concession SMC Contini and Zionts (1968) propose a model

in which the players in a bilateral negotiation start with an extreme offer and afterwards follow

a strictly monotonic concession strategy. Unlike the monotonic concession strategy discussed

next, in the strictly monotonic concession strategy the demanded utility is continuously lowered

with every offer proposed, so that never two offers of the same utility are submitted. In this

game as in our conceptual model (due to the acceptance criterion discussed below) agreement is

reached when the demanded utility levels of the negotiators intersect. To avoid exploitation a

software agent following this offer generation strategy has to reduce the demanded utility with

each subsequent offer it makes by the minimal amount possible. This offer generation strategy

can be implemented easily by ordering all offers not sent yet and that afford strictly lower utility

than the last offer sent by decreasing utility – offers of same utility between which the agent is

indifferent are ordered randomly so that they are chosen with equal probability – and the first

offer on this ordered list is selected to be the next offer to propose.

4.2.2.4.2 Monotonic concession MOC Kelley (1966) proposes an algorithm for offer se-

quencing to navigate the progression of offers towards the Pareto frontier of the negotiation

problem. He calls this algorithm ’systematic concession making model’. Negotiators start with

an extreme opening offer, if their offer is not accepted by the opponent, they propose alterna-

tive offers of same utility. The sequence in which these offers of same utility are proposed is

arbitrary as the negotiator is indifferent between offers of equal utility. Only if all offers for a

given level of utility are proposed the negotiator lowers the demanded utility level to the next

lower one and again proposes all offers of this utility level. In the systematic concession making

model proposed by Kelley (1966) offers are accepted if the utility levels demanded by the two

negotiators intersect – as in our acceptance criterion discussed below. Such an intersection of

demands then is likely to present a Pareto-optimal solution as found in experimental studies,

where subjects following this systematic concession making strategy succeeded in settling for

Pareto-optimal solutions (Kelley, 1966). This offer generation strategy can simply be followed

by software agents in ordering all offers not proposed so far decreasingly according to the utility

the offers afford to the software agent – as the agent is indifferent between offers of same utility

they can be ordered randomly so that there is always the same probability of choosing one out

of a set of offer with same utility. The next offer to be proposed then is always the first on this

ordered list. Unlike the strict monotonic concession strategy discussed above the software agent

not necessarily makes a concession with each offer it proposes, but the utility of the proposed

offer could be the same as the utility of the last offer if there exist offers of same utility, so that

in this step no concession is made, though the whole process in general constitutes a concession

making process.

4.2.2.4.3 Least-cost-issue concession MUM The least-cost-issue concession strategy was

proposed by Mumpower (1991) and Mumpower and Rohrbaugh (1996) as a simple heuristic

negotiators could follow in negotiations. The authors argue that negotiators due to uncertainties

and complexities associated with negotiations and their limited cognitive capacities will apply
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simple ’rules of thumb’ when making their decisions about offers and counter-offers. An example

for such a heuristic, they propose for multi-issue negotiations, is what we call the least-cost-issue

concession strategy (Mumpower and Rohrbaugh, 1996, p. 395): ’One common heuristic, for

instance, is simply to offer concessions successively on that issue for which such concessions cost

least in terms of the negotiator’s utility.’

Basing on the last offer proposed the negotiator compares the last offer with those where only

the option in one of the issues is changed and choses the offer where this change in one issue

causes the lowest costs i.e. constitutes the lowest concession. Minimal concessions are chosen

to avoid exploitation as the negotiator has limited or no information about the preferences of

the opponent, which are private information of the negotiator, and also not knows when the

threshold of acceptability of an offer is reached by his concessions. Unlike the two previously

mentioned strategies the least-cost-issue strategy no purely bases on utilities of offers but also

on the content of the offer. The next offer to propose must not differ from the last one by more

than one issue in terms of options. From all these offers that differ in just one issue the one

where this change costs least is chosen as next offer, i.e. the one where the difference between

the last offer and the next offer is zero or the smallest positive value of all the candidate offers

– again in case of ties an offer is chosen randomly with equal probability for all tied offers to be

chosen as next offer to be sent. The implementation of this offer generation strategy in a first

step needs to determine the similarity of the not yet sent offers and the last offer in comparing

in how many issues the options of the last offer and the not yet sent offers are the same and

selecting those offers that differ only in one issue as candidates for the next offer to be submitted.

In a second step the software agent has to chose that offer out of these candidates for which the

utility difference between last and candidate is zero or the minimal positive one.

4.2.2.4.4 Lexicographic concession LEX This software agent starts with the highest utility

offer and then bases offer generation on a lexicographical ordering of offers. Lexicographical

ordering of alternatives in multi-attribute decision making problems as an alternative to additive

multi-attribute utility functions was proposed and investigated by Beroggi (2003). The software

agent changes the option in the issue of the lowest weight to the next lower level and evaluates

whether or not this offer constitutes a concession (or at least no increase of the level of demanded

utility) which is the case when the offer has lower utility than (or equal utility as) the last offer of

the focal software agent. If no concession is found in changing the options of the issue of lowest

importance the software agent continues to change the option in the second lowest weighted issue

to find such an offer etc. To implement the lexicographic concession strategy the software agent

first has to establish a lexicographic ordering of all offers in ordering the issues and within the

issues the options by decreasing utility, i.e. by the issues weights and the options partial utility

to the user (and randomly in case of ties). Next the software agent has to chose the subset of

offers from this ordered list that afford same or lower utility compared to the last offer made and

propose the first package of this resulting subset as the next offer.

4.2.2.4.5 Tit-for-tat concession TFT Recently Shakun (2005) proposed a slightly modified

version of tit-for-tat – a strategy known for being very successful in the iterated prisoner’s

dilemma (Axelrod, 1980a,b), which is closely related to negotiation – for software agents in

automated negotiation, which fully reciprocates concession – in terms of their own utilities –
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received by the opponent’s last offer. As mentioned in the review, imitating strategies can

simply define the level of utility the next offer should provide, but have no means to determine

the actual configuration of the next offer. Therefore Shakun’s software agent not only reciprocates

concessions but also informs the opponent on which of the issues it would like the opponent to

make the next concession. As this is not possible with the messages allowed by the protocols

in our conceptual model we decided to combine tit-for-tat concession making with a trade-off

mechanism for offer generation. Trade-off mechanisms try to propose offers as similar as possible

to the opponents last offer, thereby trading issues to potentially achieve mutually beneficial

outcomes. Similarity of offers could be defined in many ways like Hamming distance, for a

discrete set of possible solutions, or Euclidean distance, otherwise. The software agent resulting

from the combination of tit-for-tat concession and trade-off offer generation operates as follows:

In a first step the offers constituting the same (or higher) concession as that provided to the

software agent by the opponent with his last offer are selected from the not yet sent offers. In

case of ties the offer with the lowest Hamming distance to the last offer of the opponent is

chosen i.e. that offer which is most similar to the opponents last offer in terms of the options for

the issues. Note that in contrast to the other software agents the TFT concession strategy also

considers the configuration of the opponents offers in making its decisions about the configuration

of the next offer and the magnitude of the concession to be made. Concessions of the opponent are

fully reciprocated therefore considerations about following either an active or passive concession

strategy – discussed in the next section – are not applicable for the tit-for-tat agent. It always has

a basis to further negotiate and reciprocates a concession made by the opponent, however it also

reciprocates reject messages in protocol 3, thereby triggering termination of the negotiation

by the interaction protocol.

Note that different weights can be given to the similarity of the concession to the last concession

of the opponent, on the one hand, and the similarity in offer configuration to the last offer of

the opponent on the other hand, in designing such tit-for-tat trade-off strategies. As can be seen

from the above discussion our design first considers reciprocation of concessions – i.e. assigns

highest weight on this aspect – and only in a second step considers the similarity of offers. This is

justified with the concerns about avoiding exploitation or unfavorable agreements in relation with

continuous concession strategies. The offer of highest similarity to the last offer of the opponent

would be an offer that coincides with it – i.e. proposing the same package – which would lead to

the acceptance of the first offer of the opponent according to the acceptance criterion employed

in our study. Accordingly all offers more similar to those of the opponent increase the probability

that these offers are accepted, which however could result in inferior outcomes for the software

agent that focuses too much on similarity of offers and concedes too much. However, following the

logic of trade-off offer generation proposing more similar offers could result in offer configurations

acceptable for the opponent without having to give in too much in terms of utility and thereby

leading to favorable agreements. So there exist many possible parameterizations for such tit-

for-tat trade-off strategies (with different weights assigned to concession reciprocation and offer

similarity), however, to evaluate them would exceed the scope of this study and we therefore

focus on the design proposed above for the mentioned reasons and postpone a detailed analysis

of the possible configurations to later studies.

If a software agents runs out of offers according to the above determined offer generation strategies

it checks whether the opponent made an offer of higher or same utility compared to the last own
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offer sent (see Figure 4.9). If this is the case values are manipulated so that this last offer of

the opponent is accepted. Thereby the software agent does not risk to break off negotiations

by sending reject or quit messages but rather accepts the opponent’s offer. Otherwise, if the

software agents has no offers left to propose according to its offer generation strategy and the

last offer is not acceptable it rejects the last offer of the opponent, breaks-off the negotiations,

or finally accepts the last offer of the opponent (in this order), whatever is possible according to

the restrictions of the interaction protocol.

4.2.2.5 Concession strategy

In this section we discuss the available options for determining whether or not the current

course of the negotiation builds for a software agent the basis to keep negotiating in further

following the above mentioned offer generation strategies, or to interrupt these strategies to

avoid exploitation by the opponent or unfavorable outcomes, if this is enabled by the protocol.

According to the approach for fair concession making proposed by Bartos (1977) in his ’simple

model of negotiation’ one possibility to avoid exploitation is to reject making further offers – and

therefore concessions in the case of continuous concession strategies. Basing on the egalitarian

norm of reciprocity Bartos (1977) proposes a simple non-mathematical theory of negotiation.

Essential to this theory is the rule of distributive justice according to which men view as fair,

rewards that are proportional to the recipients’ contribution to society – i.e. equal rewards

only for equal contribution. For negotiation, as a special form of social interaction, this means

that negotiators should receive a payoff proportional to their feasible maximal payoff. The

maximal utility is defined in this model as the utility reached by a negotiator when the other

negotiator achieves an utility equivalent to his evaluation of the BATNA – as the participation

constraint for negotiation –, which are for the two negotiators the extremities of the individually

rational zone of the Pareto frontier. These points are also reference points in several normative

axiomatic solution approaches for bargaining problems (Rosenthal, 1976; Roth, 1977; Thomson,

1981). This maximal payoff is also the opening offer proposed by Bartos – and used for our

software agents as discussed above. After having these first offers on the table the midpoint

between these offers achieved by splitting the difference – which is also proposed by Raiffa

(1982) as an important strategy in negotiations, and a common wisdom for reaching agreements

– acts as an expectation for the final outcome. After having determined the opening offer how

large should the subsequent concessions be? For the concession after the opening offer Bartos

argues that the first concession should be only small to avoid being exploited, although he

states that other aspects could play an important role in determining the first concession like

for instance personality, reputation, or institutional constraints. Later concessions should be fair

if the opponent’s concessions were fair, otherwise the negotiator should not concede until the

opponent is up to his level of concession to avoid being exploited. The negotiator should not

retract a concession made as there exists a common code in negotiations, that offers once made

and therefore on the table should not be withdrawn or otherwise there will be some sanctions like

for the violation of any code. Rational negotiators would expect fair concessions if the opponent

reciprocates their own last concession, however, due to lack of knowledge of the opponent’s

payoffs we cannot measure if the opponents concession matches the own last concession. Fair

in this context of concession making is operationalized as the demand that the expected final

outcome – the midpoint of the two opening offers – should remain the same. Bartos finally
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shows that the midpoint of the initial offers in his model, for a negotiation problem where the

Pareto frontier is a straight continuous line, equals the well-known and empirically supported

Nash solution (Nash, 1950), which is due to its symmetry axiom considered as a fair solution.

Adopting Bartos’ ’simple model of negotiation’ to our conceptual model, where software agents

also have no information about the payoffs of the opponent, a concession is considered unfairly

small if the total reduction of utility from the starting point of negotiation – assumed to be the

worst payoff for the focal software agent as described above – to the current offer of the opponent

is smaller than the reduction of utility between the opening offer of the focal software agent – its

most preferred offer, as argued in the model and implemented in the opening offer of the software

agents – and the current offer of the focal software agent, as this would make it necessary to

change the first expectations about the final agreement, which was the midpoint of the opening

offers. Denoting j as the focal agent, −j as its opponent and letting uj be the utility function

of software agent j, and oj,t the offer of agent j proposed in round t, then due to the sequential

nature of our alternating turn protocol two different reference values against which to compare

the opponent’s concession made with its last offer o−j,t−1 exist, the own concession determined

by the last own offer oj,t−2 or the next offer to be proposed oj,t as depicted in Figure 4.10.

Figure 4.10: Focal negotiator’s and opponent’s concessions

Using the next own offer to be proposed oj,t according to the software agent’s offer generation

strategy as reference point leads to a rather passive concession strategy formulated in (4.2). With

the passive concession strategy a software agent only further negotiates if it does not exceed the

opponent’s concession magnitude up to the last offer of the opponent with the own concession

determined by their next offer to be sent. So this strategy could be considered rather pessimistic

and offers are only made in a way to stay at or below the opponent’s concession magnitude

to avoid exploitation. Only if this is the case the software agent further negotiates in making

offers according to his offer generation strategy or accepting the opponent’s offers. This passive

strategy can be expected to lead to better agreements for the focal negotiator, however, maybe

also to fewer agreements.

negobasis =







TRUE if 100 − uj(oj,t) ≤ uj(o−j,t−1)

FALSE else
(4.2)

By contrast if the software agent uses the last own offer oj,t−2 as the basis for comparing own

and opponent’s concession magnitudes this leads to the considerations represented in (4.3), which

can be considered to be more active and optimistic. If the opponent with his last offer matched

the concession magnitude the focal software agent reached with his last offer then the software
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agent further negotiates in making a new offer and a concession step ’ahead’. By contrast in the

passive concession strategy the own concession magnitude will always be lower or at most equal

to the concession magnitude of the opponent. Though this going ahead in making concessions

possibly could be exploited – actually only the one concession the agent goes ahead – it could

be a good means to keep negotiations running and reach agreements where passive concession

strategies fail to do so.

negobasis =







TRUE if 100 − uj(oj,t−2) ≤ uj(o−j,t−1)

FALSE else
(4.3)

In Figure 4.10 for example the current offer of the opponent constitutes a concession magnitude

larger than the concession made by the focal agent with its last offer but smaller than the

concession to be made with the next offer. Therefore agent following the active concession

strategy – act represented in equation (4.3) – would have a negotiation basis – as the opponent’s

concessions are larger than the own made up to this point in time – while an agent following the

passive concession strategy – pas represented in equation (4.2) – would have no negotiation basis

as the opponent’s concessions are smaller than those to be made with the next offer. Furthermore

note, that if the next offer is to be proposed – here only in the case of the active agent – the

software agent will accept the last offer of the opponent, due to the acceptance criterion discussed

subsequently, rather than proposing its own next offer as it affords higher utility.

4.2.2.6 Action execution

If the opponent evaluates the current course of the negotiation to establish no basis for further

negotiation according to the their concession strategy, they will try to interrupt the offering

procedure, determined by their offer generation strategy if this is enabled by the protocol, in

a predefined order. If the protocol allows to send reject messages (in protocol 3) the agent

will do so and elicit a new, maybe better offer, from the opponent which could allow to continue

its strategy. This is done at the risk of a termination of the negotiation if the opponent also

sends a reject message. However, if it is not possible to reject offers and thereby interrupt the

offering procedure temporarily the software agent will try to interrupt it permanently to avoid

exploitation and unfavorable outcomes by sending a quit message and breaking off negotiations

(in protocol 2). As can be seen from the flowchart in Figure 4.9 the agents will always first

try to temporarily interrupt their offering procedure before they break off negotiations, i.e. wait

for the opponent to catch up in making sufficiently large concessions to keep on negotiating

rather than sacrificing the opportunity of an agreement. If the protocol neither allows to send

reject nor quit messages (in protocol 1) the opponent cannot interrupt its offering strategy

and has to send an offer or if no more offers are left, accept the last offer of the opponent. In this

protocol, as discussed, an agreement is certain but maybe unfavorable for the software agent that

not wants to further negotiate but cannot follow its intention due to restrictions of the protocol.

Otherwise, in case the software agent comes to the conclusion – due to the concession strategy

it follows – that the current course of the negotiation builds the basis for further negotiating, it

has to decide whether to accept the opponent’s last offer or make the counteroffer determined

according to its offer generation strategy before. The criterion for accepting an offer of the
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opponent is simple and equal for all agents: Software agents accept the last offer of the opponent

if it affords same or higher utility compared to the next own offer to be proposed. If this is

the case then the agent sends an agree message thereby terminating the negotiation with this

agreement, otherwise it sends a message of the type offer proposing the generated offer. Using

the notation from the previous section acceptance or offer submission is determined by (4.4).

messagej,t =







agree o−j,t−1, if uj(oj,t) ≤ uj(o−j,t−1)

offer oj,t, else
(4.4)

Note that this acceptance criterion could have drawbacks when the opponent proposes an offer

of high utility early in the negotiation process but the software agent at this point in time is not

ready to accept it as the level of own demands is still too high. Normally the software agent

would come back to this offer first proposed by the opponent later in his own offering sequence

and then the opponent would accept the offer. As both agents follow the same acceptance

rules and as the agents follow concession strategies a previous offer proposed is always of higher

or equal utility to the software agent than later offers and so if a previously proposed offer is

back on the negotiation table as it is proposed again by the opponent following the acceptance

criterion it will be accepted. However, the negotiations might terminate earlier with an inferior

agreement, a break off of negotiations by one party, or termination by the protocol due to

lack of progress. In these cases the opportunity of a favorable agreement is forgone due to the

acceptance criterion. One alternative to circumvent this drawback would be a fixed acceptance

threshold – as implemented in most evolutionary computing-based strategies for software agents

(e.g. Oliver, 1996) – for the utility of the opponent’s offers, where the offer is accepted if it passes

this threshold, however then there exists the problem to define this threshold, which might

be not trivial for diverse negotiation problems and without information about the opponent’s

preferences. If the threshold is to high negotiations often would end without agreement, if it

is too low potential value could be left unrealized. For example Chavez and Maes (1996), who

implemented a fixed acceptance threshold in their experimental automated negotiation system

’Kasbash’, report:

Users expect their agent not to do clearly stupid things. Even though most partic-

ipants knew the details of how their agents worked, they were disappointed when

agents did ’dumb’ things that a human would never do, such as accept an offer when

a better one was available. This happened because the agents always accept the first

offer which meets their asking price; however, there might be another offer which

also meets the asking price but is even better. If Kasbash’s agents are to serve as

intelligent assistants to the user, then they will have to be made free of such ’bugs’.

(Chavez and Maes, 1996, p. 86)

An alternative to this fixed threshold would be a variable threshold like the acceptance functions

proposed by Gerding et al. (2003) as a ’social extension’ of their evolutionary computing-based

software agent strategies. These functions determine a probability of accepting the offer of the

opponent which increases with the utility of the proposed offer. However, again the problem to

determine the function exists and due to determining only a probability it is not certain that a

favorable offer is actually accepted and the problem of our acceptance criterion therefore with
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such an approach also remains unsolved. Therefore we implemented our acceptance criterion,

which also is commonly used in other studies, as other approaches do not solve this problem but

rather create additional ones.

4.2.2.7 Resulting software agents

Four of the five proposed offer generation strategies – namely strict monotonic concession SMC,

monotonic concession MOC, least-cost issue concession MUM, and lexicographic concession LEX –

can be used with both concession strategies, the active – act represented in equation (4.3) –

and the passive one – pas represented in equation (4.2). In the tit-for-tat trade-off strategy

TFT reciprocation of concessions received from the opponent is already implemented such that

here no choice between active and passive concession making is necessary. The combination

of these distinct offer generation and concession strategies – and TFT – with the other decision

components equal for all agents results in 4 ∗ 2 + 1 = 9 distinct software agents for which the

general strategies were discussed in this section and for which the source codes are provided in

Appendix A.

4.3 Modeling and validation

The conceptual model outlined in the previous sections is a dynamic stochastic discrete-event

model. Stochastic results from the random effects in the interaction protocol and the software

agents’ decision making algorithms – i.e. the random determination of the software agent starting

the negotiation by the interaction protocol and the random determination of the offer to be sent

in case of ties by the software agents. However, as discussed in Chapter 5 and Appendix B the

influence of these stochastic components on the outcome is rather low. The model is dynamic

as the model’s state changes over time with the exchanged messages at discrete points in time.

Between these exchanges of offers the system stays unchanged so that we can speak of a discrete-

event model.15 Finally, automated negotiation can be conceived as terminating as the process

ends with some outcome, which could either be an agreement or a break off of the negotiation.

In developing the conceptual model we focus on the basic and higher level interactions of soft-

ware agents in automated negotiation, which deal with the interaction protocols and software

agent strategies in general (Rosenschein and Zlotkin, 1994). In this sense the abstraction from

– yet non-existing – operational systems for automated negotiation is that we neglect operative

issues of this interaction such as ontologies for negotiation objects, preference elicitation from

the users, agent communication languages, or communication security (Rosenschein and Zlotkin,

1994; Nwana et al., 1998). We assume that the software agents can communicate and understand

each other – leaving these operational issues, increasingly considered in research and practice and

experiencing significant progress in recent years, to software developers – and pose the question

how should they interact in automated negotiations, i.e. what are appropriate interaction pro-

tocols to implement and successful software agent strategies to follow for a given negotiation

15Though the majority of scholars view this exchange of messages as the most important factors that change
the state of the negotiation, there also exist few models that consider continuous concession and resistance forces
or impatience of negotiators (e.g. Balakrishnan and Eliashberg, 1995), which would call for a system dynamic
rather than a discrete-event model.
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Itex (seller) Cypress (buyer)
same pref. frequency subtotal frequency subtotal

6 1 6 1 6
5 – – – –
4 1 4 4 16
3 1 3 5 15
2 19 38 23 46

unique 2,014 2,014 1982 1982
total 2,065 2,065

Table 4.8: Frequency of identical and unique preferences

problem (Rosenschein and Zlotkin, 1994).

As mentioned in Section 2.3 validation can be divided in data validity, conceptual, and opera-

tional validation. Concerning data validity of the input data for the simulation, which are the

negotiation problems resulting from the negotiation object and the users’ preferences over it,

we criticized that existing studies often assumed few and simple negotiation problems when it

would be better to consider various of these problems or even elicit user preferences as input for

automated negotiation systems to render the simulation more realistic. Acquiring valid input

data for simulations is a hard and laborious endeavor (Law and Kelton, 1991; Liebl, 1992; Pidd,

1992; Sargent, 2005), however, we are in the fortunate position to have access to the Inspire

database on the ’Itex-Cypress’ negotiation experiments consisting of data on nearly 3,000 nego-

tiation experiments.16 Though this database forms a good basis for our simulation project we

have to admit two shortcomings of this data concerning its validity. First, the data is only about

one single negotiation object – the Itex-Cypress case – and second it is only data on negotia-

tion experiments with student subjects not on actual negotiations carried out by professionals.

Regarding the first concern it has to be stated that the preferences over this negotiation object

elicited from the subjects vary to a large degree as presented in Table 4.8.17

Though some of the utility functions of the seller and buyer parties are not unique, in all exper-

iments they combine to unique negotiation problems. So though we have only one negotiation

object the data on the experiments provides information on 2,065 distinct negotiation problems.

With regard to the second concern – the use of laboratory experiments with student subjects

rather than the examination of real negotiation with professionals – the standard answers of

experimental negotiation researchers apply. Though one might argue that in understanding and

evaluating negotiations one should focus on professional negotiators in research, many others

than experienced negotiators are involved in negotiations – as mentioned in the introduction to

this dissertation. Furthermore professionals are busy so that it is expensive and time-consuming

to get professionals as participants for experiments, which might render many research projects

problematic or even impossible to conduct. Finally substantial evidence from experiments (e.g.

Bazerman et al., 1985; Neale and Northcraft, 1986; Northcraft and Neale, 1987; Bazerman and

16We would like to thank the InterNeg Research Group, especially Rudolf Vetschera, for providing access to this
database and InterNeg and the many associated researcher for performing these experiments, which are invaluable
for this research project.

17In case of the multiple identical preference functions indicated in Table 4.8 the subjects often chose quite
apparent distributions of partial utility values over the options of an issue, like linear or nearly linear distribution
of the partial values over the options, or giving all issues the same weight and only the most preferred option the
full score for the issue and all other options in that issue a score of zero.
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Neale, 1992) suggests that negotiation professionals do not differ in fundamental ways from

novices to negotiation i.e. they acquire the same skills and make the same types of errors (Moore

and Murnighan, 1999; Loewenstein and Thompson, 2006).

As mentioned in Chapter 2 conceptual validation – also called white-box validation (Pidd, 1992)

or face validation (Law and Kelton, 1991) – is concerned with determining that the theories and

assumptions underlying the conceptual model are correct, that the model is a good representation

of the problem entity, and that the model’s structure, logic, as well as mathematical and causal

relationships are reasonable for the intended purpose of the model (Sargent, 2005). To achieve

conceptual validity we adopt findings of other areas applicable to the simulation of automated

negotiation, as argued to be more reasonable than ’reinventing the wheel’ by researchers in

the field (Kraus, 1997; Jennings et al., 2001). We heavily rely on work from game theory –

especially concerning the determination of the interaction protocols – and negotiation theory –

for determining the software agents’ concession and offer generation strategies. Furthermore,

the conceptual model was presented in form of a structured walk through in the Ph.D. research

seminar at the faculty of business administration and economics of the University of Vienna

and at the GDN 200818 in Coimbra in front of an expert audience in the domain of negotiation

(Filzmoser, 2008). We also validated the basic assumptions of the conceptual model which

deal with random moves in starting the negotiation and the choice of an offer in case of ties.

Stochastic components should only be used when the underlying behavior cannot – or should

not, due to the aggregation level and purpose of the model – be broken down and analyzed

any further. In our model we have two such random influences. First, the choice of offers if

there are ties in the preferences i.e. if the user is indifferent between two or more offers as they

afford the same level of utility. In this case we randomly take one of the alternatives the user

is indifferent between with same probability, which can be theoretically justified by the concept

of indifference. The second stochastic component, which comes into play in our model, is the

choice which software agent starts the negotiation. Clearly one could model the software agents’

strategies in a way to determine endogenously which agent starts, however, in our model the

opening offer is only one offer and many others follow so the influence is rather low, moreover

the opening offer is standardized to the one (or one of those) that afford the maximum utility

as the agents subsequently follow concession strategies. This also lowers the importance of who

starts the negotiation as the opening offer (of both) is the maximal utility offer and thus it is

the same no matter if the agent starts or is the one to respond first. The only influence the

decision of who starts has is on the ordering of the turns i.e. who will send his messages at odd

or even turns. Moreover the data on the negotiation experiments indicates that the negotiations

are started (most often by the party that logs in first) to 49.06% by the seller party and to

50.94% by the buyer party which does not deviate from the equal probabilities of starting the

negotiation assumed in the model.19

Concerning operational validation we already mentioned that it is impossible due to the non-

18The joint conference of the INFORMS section on Group Decision and Negotiation, the EURO Working Group
on Decision and Negotiation Support, and the EURO Working Group on Decision Support Systems.

19A χ2 goodness-of-fit test indicates that the observed proportions of starting the negotiations by the two
parties do not differ significantly from the expected equal distribution; χ2 = 0.74, df = 1, p = 0.39. Furthermore
also for the results of the simulation runs no differences in individual utility – the only outcome measure at the
individual level, while all other outcome measures are at the dyad level as discussed in Chapter 5 – were found
between first mover and second mover in the simulations.
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existence of operative systems for automated negotiation. However, as the code and functions

used to run the simulation program easily can be applied to implement a real system for auto-

mated negotiation we argue that operational validity is given. The higher level interaction will

be the same and only some additional features have to be added. Actually if the parties to a real

negotiation would agree to use the simulation program and input their preferences directly to

the agents the simulation program would be such a real system for automated negotiation and

operative validity therefore achieved.

4.4 Implementation and verification

The conceptual model described in his chapter was implemented in R and a Firebird-database

for data handling. The reasons for using R were that is allows for flexible data manipulation,

advanced functions for statistical analysis and graphical representation of data, and provides

good features for database interaction, however, besides these aspects, which are all important

to our study, the most immediate reason for using R was, as in many cases when it comes to chose

a software for simulation, the author’s familiarity with the language. Commented R-code of the

simulation program and the data structure of the Firebird-database can be found in Appendix

A.

The simulation program follows the process-interaction approach with a next-event time advance

approach to handle the simulation clock. This approach seems to be the easiest way to implement

the simulation program and in our opinion best reflects the structure an operative system for

automated negotiation may adopt. The software agents are implemented as functions which have

their own variables to store information about the negotiation object, the user’s preferences, and

the state of the negotiation. The interaction protocol is also implemented as a function, which

calls the agent functions providing them with the last message of the opponent and getting back

the message of the focal agent function. Messages are checked for termination criteria and if

they pass the message is used to call the opponent agent function.20 From this brief overview

two differences to the standard process-interaction approach and next-event time advance can be

derived, which are due to its application in the domain of automated negotiation rather than some

scheduling system. First we model the permanent entities rather than the temporary entities as

processes i.e. the software agents and not the messages exchanged. However, the software agents

are best conceived as processes in an automated negotiation system as they evaluate incoming

messages and change the system state accordingly by changing their own information variables,

as well as generating and sending new messages. They are stopped after they sent a message

and the current status – which offers were sent and received up to that point of simulation time

– is saved in their information variables and reactivated with the new message of the opponent.

Therefore the simulation program is some kind of degenerated process interaction approach as

the processes never run parallel but one software agent is always halted during the other is

executed. Furthermore also the time advance is kind of a degenerated approach compared to

the next-event time approach as time is handled in turns and at each turn there occurs one

20An actual negotiation protocol should, besides informing the agents which messages are possible, also control
that the agents follow this advice, however, for simplicity we programmed the negotiation protocol function to
just indicate the possible messages and the agents to strictly follow this instruction.
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event i.e. a message is sent by one agent function at all odd turns and by the other at all even

turns, this allows the negotiation function simply to call the agents with the opponent messages

alternately instead of keeping, updating, and inspecting a future event list – actually only a turn

index is necessary which is incremented and the according software agent is called at odd and

even turns. The simulation program for the automated negotiation system is extended by a main

loop which handles the database interaction and agent registration. This part of the simulation

program queries the users preferences from the input database, calls the single simulation runs

with specified software agents, preferences, and interaction protocols, and saves the outcome of

a simulation run to the output database. Through iterating the negotiation experiments to be

simulated as well as the software agents and protocols used for the simulation the main loop

establishes the full-factorial tournament experiment design discussed in Chapter 5.

To verify that the simulation program works correctly we used a modular programming approach,

so that the agents consist of the same modules, same variable names, etc. We not only inspected

whether final results are meaningful i.e. the outcome of test runs of the simulation, but for all

agents in all protocols and for several randomly selected negotiation problems we collected inter-

mediate results on the random numbers generated, the updating of variables, and the messages

sent to ensure that the program works as intended.



Chapter 5

Experimentation

This chapter discusses the experimental design of the simulation with the conceptual model

provided in Chapter 4. We will also discuss the dependent and independent variables we use for

the evaluation of these experiments in Chapter 6, together with the choice of statistical methods

for these analyses.

5.1 Experimental design

To configure a system for automated negotiation for a given negotiation problem in our simulation

we have to determine three components, namely the interaction protocol and the software agents

representing the two parties in the automated negotiation. These components are the factors

in our experimental design and for each factor different factor levels are available. For the

interaction protocol there exist three alternatives protocol 1 – which enables to send offer

and agree messages –, protocol 2 – which additionally allows to send quit messages –, and

protocol 3 – which enables the temporary interruption of the offering sequence by sending

reject messages in addition to messages for proposing and accepting offers – as discussed in the

previous chapter. Concerning the other two factors – the software agents for the parties – there

exist nine possible levels for each factor – namely MOCact, MOCpas, SMCact, SMCpas, MUMact,

MUMpas, LEXact, LEXpas, or TFT – resulting from combinations of different offer generation and

concession strategies.

Similar to Henderson et al. (2003) we use a tournament-based simulation approach – a method

already used by Axelrod (1980a; 1980b; 1984a; 1984b) to compare and evaluate strategies for

the iterated prisoner’s dilemma. This means for a given interaction protocol we let each type of

software agent assuming one party’s role in the automated negotiation negotiate with each other

type of software agent assuming the role of the other party. Repeating this tournament for all

three protocols results in a full factorial experimental design as depicted in Table 5.1.

The protocol and the two agents for the two parties together with the negotiation problem – i.e.

the preferences of the two parties over the negotiation object – as input to the simulation fully

parameterize a simulation run. In this full factorial design one system configuration i.e. one

specific combination of a protocol, an agent representing the seller, and an agent representing

103
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the buyer is one treatment of the experimental design. The three levels for the factor interaction

protocol and the nine levels for each of the two parties’ software agents results in a total of

3 ∗ 9 ∗ 9 = 243 treatments.

treatment protocol seller buyer

1 protocol 1 MOCact MOCact

2 protocol 1 MOCact MOCpas

3 protocol 1 MOCact SMCact

4 protocol 1 MOCact SMCpas

5 protocol 1 MOCact MUMact

6 protocol 1 MOCact MUMpas

7 protocol 1 MOCact LEXact

8 protocol 1 MOCact LEXpas

9 protocol 1 MOCact TFT
... protocol 1 MOCpas

...
... protocol 1 SMCact

...
... protocol 1 SMCpas

...
... protocol 1 MUMact

...
... protocol 1 MUMpas

...
... protocol 1 LEXact

...
... protocol 1 LEXpas

...
73 protocol 1 TFT MOCact

74 protocol 1 TFT MOCpas

75 protocol 1 TFT SMCact

76 protocol 1 TFT SMCpas

77 protocol 1 TFT MUMact

78 protocol 1 TFT MUMpas

79 protocol 1 TFT LEXact

80 protocol 1 TFT LEXpas

81 protocol 1 TFT TFT

82 protocol 2 MOCact MOCact
... protocol 2

...
...

162 protocol 2 TFT TFT

163 protocol 3 MOCact MOCact
... protocol 3

...
...

243 protocol 3 TFT TFT

Table 5.1: Experimental design

For each treatment we use the preferences elicited from human subjects in the 2,065 experiments

on the Cypress-Itex case as input to evaluate the system configuration in different settings, which

results in 243∗2, 065 = 501, 795 unique simulation runs. However, as mentioned in Chapter 4 the

negotiation procedures of a system configuration are not purely deterministic, therefore several

replications of these simulation runs have to be performed to account for stochastic effects. The

number of necessary replications was set to three replications for each simulation run due to

the analyzes in the subsequent section and Appendix B, so the total number of simulation runs

multiplies to 501, 795 ∗ 3 = 1, 505, 385 in our experimental design.

Though in general a high number of simulation runs – and the related high computational effort

– could be reduced by some experimental design techniques, like using fractional designs, factor
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aggregation or reduction, factor screening techniques, or optimization techniques like response

surface methods (Law and Kelton, 1991; Kleijnen and van Groenendaal, 1992) for our specific

simulations, however, these methods are not applicable or appreciated. We have only three

factors and all seem to be relevant so factor screening is not appropriate for our study, also

we are highly interested in all treatments and the interactions of factors, which could get lost

in fractional designs. Furthermore, optimization by response surface methods is not readily

applicable in our setting with qualitative factor levels – though we are looking for systems that

perform best – as the direction of improvement, necessary for the applicability of response surface

methods, cannot be derived from qualitative factors easily. The cons, of more combinations and

more computer resources needed in a full factorial design, are in our opinion outweighed by the

pros, of being able to reliably study interactions between the factors, so that we decided to use

the full factorial design for our study.

5.1.1 Replication

Due to stochastic effects in the interaction protocol and the decision making algorithms of the

software agents1 it does not make sense to look at only one particular simulation run, where

stochastic effects could cause or influence the particular outcome, but in analyzing the data one

has to focus on aggregated or average results. As mentioned in Chapter 2 in terminating systems –

like automated negotiation – one run from the start condition of the simulation until the critical

event that terminates the simulation yields a single observation on the response of interest.

This observation clearly incorporates effects of the specific input variables or stochastic in the

simulation procedure. To yield several observations in terminating systems, for which summary

measures of the response variables can be calculated, several replications of the simulation run

are necessary (Kleijnen, 1987; Pidd, 1992).

However, for achieving several observations of one simulation run first the necessary number of

replications – over which summary measures then are calculated for further analyses – has to be

determined. This number could be arbitrary large, but then would cause enormous computational

effort – even if one single simulation run only takes some seconds or even a fraction of a second –

especially if many treatments are to be considered in the experimental design, as it is the case for

our study. To avoid unnecessary computational efforts and to avoid the risk of unreliable results

in arbitrarily determining a too high or too low number of replications, respectively, we aim at

determining a number of replications such that additional replications do not significantly effect

average outcomes.

To determine whether or not there are significant differences in the average outcomes between

one number of replications and the next higher number we statistically tested for differences in

the means of several outcome measures between different numbers of replications. These outcome

measures were the average proportion of agreements, the average duration of negotiations, and

the two parties’ average utility of reached agreements. In case there exist no significant differences

between a given number of replications and the next higher one, this number of replications will

1As discussed in Chapter 4 the two aspects where stochastic comes into play are the start of negotiations –
which is determined randomly by the interaction protocol with equal probability for each agent to start – and
the choice of offers in case of ties – where the software agents choses one out of the alternatives it is indifferent
between with equal probability as the next offer.



106

be sufficient to provide stable average results.

For the parametrization of the simulation runs of these pre-tests we use all agent combinations

in all protocols and randomly sampled ten out of the 2, 065 negotiation problems considered for

this study. Stable average results are found for a number of three replications as in none of the

ten negotiations, none of the three protocols, and for none of the considered outcome measures

there existed significant differences between the average outcomes of three and four replications.

We therefore set the number of replications of one single simulation run to three.2 The low

number of only three replications to achieve stable average results is actually not very surprising.

On the one hand only few stochastic effects play a role in the simulation model, which therefore

only have little influence on the final outcome of a simulation run. On the other hand, if these

stochastic effects accidentally influence the outcome of one simulation run it is reasonable that

already a low number of replications will balance out their effect.

5.1.2 Variance reduction

We use the same set of negotiation problems as input for the automated negotiation systems –

which are the treatments of our experimental design resulting from the combination of a specific

software agent for each party and an interaction protocol – to reduce variance of the simulation

output and therefore increase the precision of the results. Clearly the negotiation processes

and outcomes are influenced by the negotiation problem for which automated negotiations are

performed, therefore different system configurations should be compared in a similar setting

to ensure that differences in the results are due to the system configuration and not due to

differences in the input used to run the system. The use of common negotiation problems as

input to the automated negotiation systems is closely related to the ’common random numbers’

technique for variance reduction, where the same streams of random input numbers are used

for different system configurations to ensure that these experience the same environmental input

and therefore differences can only be due to differences in the system configuration.

However, distinct from the ’common random numbers’ technique we do not use random numbers

– sampled from some fitted theoretical or empirical distribution – as input to the systems, but

the empirical data from the negotiation experiments. Law and Kelton (1991) argue against using

empirical data as input for simulations, which is called trace-driven simulation. On the one hand

with historical data as input to the simulation, only conditions that happened in the past can

be reproduced, but other potentially interesting conditions – outside the range of the historical

input data – cannot be examined as no such input data is available, but would be available if

using fitted theoretical distributions. On the other hand seldom enough data is available for the

desired amount of simulation runs, while here empirical or theoretical distributions fitted to the

data can deliver any number of values necessary. These arguments, though valid in general, do

not apply in our specific simulation study as we have many negotiation problems that can be

used as input to the automated negotiation systems and as it would be difficult to determine

and fit a theoretical or empirical distribution for complex utility functions.

2Consult Appendix B for detailed outcomes and statistical tests concerning the determination of the minimal
necessary number of replications. Furthermore note, that we tested for up to five replications in a first attempt
and also found no significant differences between average outcomes of four and five replications.
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Using the empirical data in a trace-driven simulation furthermore enables to use the correlated

inspection approach (Law and Kelton, 1991) for our analyses, which was originally proposed

for operational validation, i.e. for comparing the correspondence of the real system’s and the

simulation system’s outcomes to determine the validity of the simulation system. By using

the negotiation problems from the experiments between humans we can apply the correlated

inspection approach for outcome analysis rather than operational validation – which was argued

to be impossible for automated negotiation as operative systems do not exist yet – to compare

the performance of human negotiation and automated negotiation.

5.1.3 Execution of simulations

Simulations were performed on a HP Compaq 8510p Notebook with Intel Dual Core CPU T8300

@ 2.40 GHz and 2 GB RAM, with the applications R 2.7.1 and Firebird 2.1, running on the

Windows Vista operation system. The simulation time for the software agent tournament under

each protocol, the total number of turns, and the average turns per run, as well as the average

time per turn are summarized in Table 5.2.

total time total turns avg. turns avg. time
(h) per run1 per run (sec)1

protocol 1 104.11 15,166,908 30.23 0.75
protocol 2 53.45 4,893,501 9.75 0.38
protocol 3 96.61 14,504,694 28.91 0.69

total 254.17 34,565,103 22.96 0.61
1 On the basis of 501, 795 simulation runs per protocol, and 1, 505, 385 runs in total

Table 5.2: Simulation time and turns

From this table it can be derived, that the major driver of the time needed for simulation are

the number of turns in which messages are exchanged, as the simulation time increases with

the number of turns necessary to finish the automated negotiation. protocol 2 needs much

fewer turns to come to an outcome in the negotiation than the other two protocols, which need

about equal numbers of turns – protocol 3 slightly fewer than protocol 1 – and therefore

simulation time. These differences mainly result from the possibility to abort the negotiations

without agreement and from the proportion of simulation runs where such abruptions occur, as

the number of turns and therefore the necessary simulation time actually does not differ between

automated negotiations that reached an agreement, but are much lower for aborted negotiations.

As protocol 1 does not enable abruption of the negotiation, for all simulation runs negotiations

have to be performed until an agreement is reached. However, agreements are not mandatory

in protocol 3 in which about 30% of the simulation runs were terminated earlier due to a

lack of progress in the simulation, indicated by two subsequent reject messages by the two

parties. These reject messages available to the software agents in protocol 3 prolong the

negotiation process and thereby reduce the differences between protocol 1 and protocol 3.

The effect of abruption of the automated negotiation becomes most obvious from the results for

protocol 2, for which agreements were reached only in about 20% of the simulation runs. The

average number of turns per simulation run and the time necessary for simulations is therefore

significantly lower for protocol 2 than for the other two protocols – results concerning the

proportion of agreements reached and other outcome measures are presented and discussed in
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the subsequent chapter. Note that though the average duration of one simulation run for neither

of the protocols exceeded on second, the overall time to perform the 1,505,385 simulation runs

necessary for our experimental design accumulated to about ten and a half days.

5.2 Measurement

This section describes the dependent and independent variables used in the analyses of the output

of the simulation.

5.2.1 Independent variables

The independent variables in the output analyses coincide with the components of automated

negotiation, the automated negotiation system and the negotiation problem as input to this

system. While the evaluation and comparison of different configurations for the automated

negotiation system (Section 5.2.1.1) is the main concern of our system design study – and covered

in the analyses in Sections 6.1 to 6.4 of Chapter 6, one must not forget to account for the

sensitivity of outcomes to the system input – i.e. the negotiation problem, which is done in the

sensitivity analyses in Section 6.5 of Chapter 6, by investigation of plots of the relations between

the outcome measures and the integrativeness of the negotiation problem for different system

configurations (Section 5.2.1.2).

5.2.1.1 System configuration

As mentioned a system configuration is fully determined by a software agent for each of the

two parties and an interaction protocol. The three protocols together with nine possible agents

for both the seller and the buyer party combine to 243 treatments. However, as discussed in

Section 5.3, in case we are interested in the main effects of one component we merge the results

of the treatments that are equal in the component of interest – e.g. analyzing the main effects

of the protocols we group together all treatments that use the same protocol in the system

configuration. For these groups of treatments with different protocols the remaining components

are all equal i.e. the same combinations of agents and negotiation problems are represented in

every group such that differences can only be due to the protocols.

5.2.1.2 Integrativeness of the negotiation problem

While the system configuration is controllable by the users – or the system designer – a further

independent variable not at the discretion of the system designer or user is the negotiation

problem as an input to the system. In sensitivity analysis – concerning the sensitivity of the

output of the simulation to its inputs – we use the integrativeness of the negotiation problem as

an aggregate measure for the input to the system – i.e. the negotiation problem resulting from the

preferences of the users over the negotiation object as discussed in Section 3.1.1 – an investigate

how outcome measures not only depend on the components of the system configuration but also

on this uncontrollable input factor.
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A commonly used classification of negotiation problems is to distinguish between distributive and

integrative negotiations, which was first introduced by Walton and McKersie (1965) and is often

used as structuring criterion for courses or books about negotiation (e.g. Lewicki et al., 1994;

Raiffa et al., 2002; Kersten, 2007). Though used exchangeably in this text the term ’bargaining’

often is used to refer to distributive and ’negotiation’ to integrative settings (Lewicki et al.,

1994). Many models of bargaining and negotiation focus exclusively on one of these two, either

on distributive bargaining or on integrative negotiation – while Walton and McKersie (1965) see

them as only two of four subprocesses, besides attitudinal structuring as efforts to influence the

quality and nature of the relationship between the negotiating parties and intra-organizational

bargaining as the conflict resolution within negotiating teams of one party, of their theory of

negotiation (Lewicki et al., 1992). Others limit distributive bargaining to the exchange of more

or less specific proposals for the terms of agreement on particular issues (Gulliver, 1979), while

integrative negotiation is seen as the broader approach of defining and redefining the terms of

the interdependence of parties (Walton and McKersie, 1965). Integrative negotiation then covers

more than just offer exchange for specific issues, but also the search for new alternatives, issues,

and options for mutual benefit, and is a more cooperative and creative task (Lewicki et al., 1992;

Kersten et al., 2000).

The subsequently proposed measure of ’integrativeness of the negotiation problem’ is inspired by

the work of Tripp and Sondak (1992), who propose and discuss measures for assessing the integra-

tiveness of an agreement found by parties in bilateral negotiations.3 Assessing the integrativeness

of one solution (the agreement) means comparing this focal solution to other possible solutions of

the negotiation problem, however, assessing the integrativeness of the whole negotiation problem

is more problematic as it involves the discussion of the whole set of possible solutions of the

negotiation problem. Basis for our measure of integrativeness of the negotiation problem is a

discussion of integrative and distributive negotiations. The distinction between integrative and

distributive negotiations, though as mentioned, often used in negotiation literature and having a

long tradition reaching back to the seminal contributions of Walton and McKersie (1965), is not

clear at all, but definitions of integrative and distributive negotiations are ambiguous (Kersten

et al., 2000). We define distributive negotiations as negotiations where the parties (at best –

i.e. without leaving potential value at the bargaining table) can divide a fixed pie, such that

any gain of one party is made at the expense of the other party. Therefore the best outcomes of

distributive negotiations lie on the line connecting the maximum outcome of the two parties. On

the other hand in integrative negotiations there exist solutions in the negotiation problem that

allow for gains of both parties beyond splitting a fixed pie. Therefore the outcomes of integrative

negotiations can exceed the linear combination of the maximal payoffs of the parties – see Figure

5.1.

3The measure of integrativeness of the agreement proposed by Tripp and Sondak (1992) bases on the comparison
of the agreement with the number of other solutions in the negotiation problem that either dominate it or are
dominated by it. Integrativeness of an agreement then is defined as ’1-(the number of possible agreements
Pareto superior to the reference agreement/the sum of the number of possible agreements Pareto superior to the
agreement and the number of possible agreements Pareto inferior to the agreement)’ (Tripp and Sondak, 1992,
p.291).
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Figure 5.1: Distributive and integrative negotiation problems

A measure of integrativeness therefore needs to determine the amount of such integrative so-

lutions possible due to the structure of the negotiation problem at hand. Having a set X =

{x1, . . . , xn} of n solutions xi, and preferences of the negotiators represented by utility functions

uj(·) and u−j(·) we define the set of distributive solutions D as those lying at or below the

line connecting the best outcome for the two parties. The set of distributive solutions therefore

consists of those solutions where the parties at best split a fixed pie among them (5.1).
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Figure 5.2: Integrativeness of the negotiation problem

D = {x ∈ X |u−j(x) ≤ −maxxi
u−j(xi)

maxxi
uj(xi)

uj(x) + maxxi
u−j(xi)} (5.1)

In contrast all other solutions of the negotiation problem – i.e. those that lie above the line



5.2. Measurement 111

connecting the extreme outcomes – are assigned to the set I of integrative solutions (5.2). The

sets D and I are also presented graphically in Figure 5.2.

I = {xi|u2(xi) > −maxxi
u−j(xi)

maxxi
uj(xi)

uj(x) + maxxi
u−j(xi)} (5.2)

Integrativeness of the negotiation problem then can be calculated by (5.3).

Integrativeness =
|I|
n

(5.3)

This measure has the appealing feature that it ranges from 0 – if all solutions of the negotiation

problem are distributive – to 1 – in case all solutions of the negotiation problem are integrative –

and allows to compare different negotiation problems as it standardizes for the number of possible

solutions. The measure depends on the structure of the negotiation problem and therefore covers

the effect of all the factors influencing it – weight differences, partial utility curves, etc.4

For the negotiation problems of this study, where the best possible outcomes for the parties

achieve a maximum utility of 100, this measure of integrativeness implies that all solutions that

afford a sum of utilities of both negotiators of at most 100 are conceived as distributive solutions.

Descriptive statistics of the integrativeness of the 2,065 negotiation problems of the experiments

used for this study are provided in tabular form in Table 5.3, as well as in form of a histogram

and a box-plot in Figure 5.3.
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Figure 5.3: Illustrations on the integrativeness of the negotiation problems

4Integrativeness as determined above can be conceived as the proportion of integrative solutions of all possible
solutions of the negotiation problem, or the probability of selecting a integrative solution if one solution out of all
possible solutions of the negotiation problem is chosen randomly.
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min 0.00
1st Q. 0.48
median 0.66
3rd Q. 0.77
max 1.00

⊘ 0.61
± 0.22

Table 5.3: Integrativeness of the negotiation problems

5.2.2 Dependent variables

For the dependent variables of our simulation study we focus on negotiation outcome measures.

Several outcome measures are considered as dependent variables of the study as each of them

covers an specific aspect of the negotiation outcome. Prior research on negotiation identified

fundamental trade-offs between different outcome measures for negotiations, so that these trade-

offs can also be expected for different configurations of systems for automated negotiations –

i.e. a system configuration achieving good results in one measure need not perform well for

others. As the importance attached to different outcome measures by the users is not obvious

and can differ between users we opt for a holistic evaluation of the negotiation outcome in using

several outcome measures that complementary evaluate different aspects of the outcome of the

negotiation.

5.2.2.1 Proportion of agreements

The outcome of negotiations can be defined in various ways (Tripp and Sondak, 1992). One obvi-

ous way, commonly used in empirical studies (e.g. in Coursey, 1982; Neale and Bazerman, 1985;

Moore et al., 1999), is to consider whether or not an agreement was reached in the negotiation.

For a set of comparable negotiations this results in a proportion of agreements or its inverse the

impasse rate (Tripp and Sondak, 1992). In their review of dependent variables of negotiation

studies Tripp and Sondak (1992) conclude that the impasse rate is rarely considered as a measure

for the negotiation outcome, but that more often negotiations ending with an impasse are deleted

from the sample and only of the negotiations that reached an agreement joint payoff – the sum

of the parties utilities of the agreement – as the most widely used measure of joint performance

is reported. Therefore we report the proportion of agreements agr

n
in the treatments as one

outcome measure, which is simply the number of simulation runs that reached an agreement agr

divided by the number of simulation runs in a treatment – or group of treatments – n.

While the outcome if the negotiation ends with the acceptance of an offer is an agreement on a

specific set of options for the issues under negotiation, the outcome of termination due to quit

or two subsequent reject messages is no agreement. For simulation runs without agreement we

cannot report more than the proportion of agreements reached in the treatment. However, when

an agreement is reached in a simulation run, the evaluation – according to the preferences of the

parties – of this agreement provides additional information about the quality of the agreement.

A high proportion of agreements does not necessarily indicate that one system configuration is

better than an other, that achieves a lower proportion of agreements as not all agreements are

equally good.



5.2. Measurement 113

5.2.2.2 Proportion of Pareto-optimal agreements

As not all agreements are equally good, measures evaluating the quality of an agreement are

necessary. One such measure evaluating the dyadic performance of the negotiators – or a system

for automated negotiation – from an economic perspective is the Pareto-optimality of an agree-

ment – or for a set of comparable negotiation the proportion of Pareto-optimal agreements. An

agreement is Pareto-optimal if there exist no other possible solutions to the negotiation problem

that dominates this focal agreement – i.e. that provides higher utility to one party without

making the other party worse off compared to the focal agreement:5

Pareto optimal agreements are those from which no additional joint gains are possible.

When negotiators have achieved Pareto optimal agreements, no agreement is possible

that would be preferred by both negotiators or would be preferred by one and to which

the other would be indifferent. (Tripp and Sondak, 1992, p.279)
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Figure 5.4: Pareto-optimal solutions in a negotiation problem

As Pareto-optimality can only be determined for agreements and not for outcomes of simulation

runs other than an agreement, the simulation runs reaching Pareto-optimal solutions can only

be a subset of those simulation runs that reach an agreement. Pareto-optimality distinguishes

agreements between those that are and those that are not Pareto-optimal. So for several com-

parable negotiations we again can calculate the proportion of Pareto-optimal agreements for the

treatments – or groups of treatments – as the number of simulation runs that reached a Pareto-

optimal agreement eff divided by some basis. Candidates for this basis for calculation of the

proportion of Pareto-optimal agreements are on the one hand the total number of simulation

runs in the treatment n, or on the other hand the number of simulation runs that achieved an

agreement agr. Using the total number of simulation runs in a treatment as divisor – which re-

sults in eff

n
as measure of the proportion of Pareto-optimal agreements – compounds the number

5Formally – using the notation from the previous section – the set P of Pareto-optimal solutions – illustrated
as the filled points in Figure 5.4 – is the subset of the set X consisting of the solutions x only, for which holds
true 6 ∃y s.t. uj(y) > uj(x) ∧ u

−j(y) ≥ u
−j(x) or uj(y) ≥ uj(x) ∧ u

−j(y) > u
−j(x), x, y ∈ X, x 6= y.
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of agreements reached with the Pareto-optimality of agreements. Even if most of the agreements

reached in a treatment are Pareto-optimal, a low number of agreements reached would result in

a low proportion of Pareto-optimal agreements as Pareto-optimality can only be determined for

simulation runs that reached an agreement.

Using the the number of agreements reached in the simulation runs agr as basis for determining

the proportion of Pareto-optimal agreements ( eff

agr
) would avoid the above mentioned deficit.

However, the consensus of discussions and previous presentations of the results of this study was

that one should not consider the Pareto-optimality of agreements independent of the number

of agreements, we therefore accept the bias of this measure and determine the proportion of

Pareto-optimal agreements on the basis of the total sample size as eff

n
.6

5.2.2.3 Minimal distance to the Pareto frontier

As said Pareto-optimality discriminates between agreements that are or are not Pareto-optimal.

However, just like not all agreements are equally good, not all agreements that are not Pareto-

optimal are equally bad. Some of the possible solutions can be closer to the Pareto frontier than

others, like solution B is closer to the Pareto frontier than solution A in Figure 5.5(a). Therefore

we calculate for an agreement x̂ the minimal Euclidean distance to the Pareto frontier. Using

the notation and definitions provided in the previous sections the minimal euclidean distance

ED – the length of the shortest straight line between the agreement and one of the solutions of

the set of Pareto optimal solutions P i.e. the Pareto frontier – can be determined by (5.4).

ED = minx∈P

√

(uj(x) − uj(x̂))2 + (u−j(x) − u−j(x̂))2 (5.4)

5.2.2.4 Contract imbalance

One further measure of joint performance often considered is the fairness of the agreement. Fair-

ness could for example be determined by the distance to axiomatic solutions for the bargaining

problem provided by cooperative game theory. The axiomatic approach, first proposed by Nash

(1950), defines axioms as properties desirable for the solution and then determines solution func-

tions that select for a given bargaining problem a certain package as solution to the bargaining

problem, which features the properties stated in the axioms. One of these axioms used in many

axiomatic solutions is symmetry – e.g. used in the well known Nash solution (Nash, 1950) or

the Raiffa solution axiomatized by Kalai and Smorodinsky (1975). Symmetry is argued to be an

axiom assuring fairness as it requires that for the same preferences the outcome should also be

the same. However, another axiom most axiomatic solutions share is Pareto-optimality. When

taking distance measures between actual agreement and axiomatic solutions that have to be both

fair and Pareto-optimal the two concepts are compound: Distances between the agreement and

the Pareto frontier can be large but the utilities of the agreement to the parties quite equal –

and the agreement therefore could be considered fair.

6Note that if the proportion of Pareto-optimal agreements on basis of the agreements reached is of interest it
can easily be derived by multiplying the proportion on total runs eff

n
with the proportion of agreements agr

n
–

both provided as outcome measures in this dissertation – as
(

eff
n

)

( agr
n

)
= eff

agr
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We therefore decided to employ contract imbalance as a measure of unfairness as an additional

outcome measure for negotiations in our study – the smaller the contract imbalance of an agree-

ment, defined as the absolute value of the difference in utilities of the agreement x̂ for the two

parties (| uj(x̂) − u−j(x̂) |), the fairer is the agreement.

5.2.2.5 Individual utility

Besides the former outcome measures for negotiations which evaluate the quality of agreements

at a dyadic level, we also consider the individual utility of an agreement for the two party as an

additional outcome measure. Individuals might evaluate agreements quite different even if they

are equal at the dyad level according the other outcome measures discussed so far. Consider that

either of the solutions A or B in Figure 5.5(b) is chosen as agreement to the negotiation problem

by the parties, then both agreements would not be Pareto-optimal, have the same distance to

the Pareto frontier, and the same contract imbalance. However, due to the different utilities they

provide to the individuals they clearly are not indifferent between these two possible solutions.
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Figure 5.5: Distance to the Pareto frontier and individual utilities of the agreement

5.3 Analysis

The standard statistical method for analysis for the type of data and experimental design –

cardinal scaled dependent variables and several ordinal scaled independent variables – of our

simulation study would be a three-way – due to the factors interaction protocol, seller software

agent, and buyer software agent – analysis of variance (ANOVA) where the factor level com-

binations determine the different treatments to be investigated. For those treatments found to

influence the dependent variables then some post-hoc comparisons can be performed to closer

investigate these influences as the ANOVA itself only indicates whether such influences exist but

not their direction and strength. Also a three-way analysis of covariance (ANCOVA) can be
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used when adding the integrativeness of the negotiation problems as additional cardinally scaled

independent variable to the model, or when considering simultaneously all dependent variables in

one model a multiple analysis of variance (MANOVA) or multiple analysis of covariance (MAN-

COVA) could be used (Backhaus et al., 2003; Hair et al., 2006).

So we examine whether our data fulfills the requirements for the analysis of variance, which are

independence of observations, normal distribution of the dependent variables, and homogeneity of

variances (Backhaus et al., 2003; Hair et al., 2006). Independence of observations is guaranteed

by the settings of our simulation as one observation has no influences on other observations.

To test normal distribution of the independent variables we use the Lilliefors test, a Kolomorov-

Smirnov test for the composite hypothesis of normality for empirical distributions with estimated

parameters (mean and variance).7 Furthermore we use the Fligner-Killeen (median) test of

homogeneity of variances across the treatments, which is the test most robust against departures

from normality of all tests available for this purpose (Conover et al., 1981). The results of the

normality tests and homogeneity of variances tests are presented in Table 5.4 together with

parameters of the distributions of the independent variables (skewness and kurtosis).

Lilliefors test distribution parameters Fligner-Killeen test

Variable D p-value skewness kurtosis χ2 DF p-value

prop. agr. 0.38 0.0000 -0.56 -1.60 127707.27 242 0.0000
prop. eff. 0.34 0.0000 0.73 -1.18 78925.01 242 0.0000
distance 0.24 0.0000 2.41 8.91 69251.01 242 0.0000
u. seller 0.06 0.0000 -0.79 1.04 59763.07 242 0.0000
u. buyer 0.08 0.0000 -0.79 1.04 63051.95 242 0.0000
imbalance 0.11 0.0000 1.35 1.94 69447.38 242 0.0000

Table 5.4: Results of normality and homogeneity of variances tests

As can be derived from Table 5.4 for all dependent variables the Lilliefors test of normality

indicates significant non-normal distribution and the Fligner-Killeen test significant heterogeneity

of variances across treatments. Note that it is argued that the F-test is robust if either the

normality or the variance homogeneity assumption of the analysis of variance is violated, when

the number of observations in the treatments is large and about equal in all treatments – so that

under these conditions ANOVA still can be applied even if the data does not comply with its

requirements. Though our sample sizes are large we do not have equal numbers of observations

in the treatments for the dependent variables minimal distance to the Pareto frontier, utility of

the agreement to the seller, utility of the agreement to the buyer, and contract imbalance, as

these can be calculated only for simulation runs that reached an agreement and the proportion of

agreements considerably differs between treatments. Furthermore as the statistical tests indicate

highly significant violation of two of the three requirements for ANOVA, we decided not to apply

ANOVA for analyses.

An alternative to parametric ANOVA, not relying on the requirements for ANOVA, is the non-

parametric Kruskal-Wallis test which performs an one-way variance analysis by ranks – results

7Note that the test statistic of the Lilliefors test equals that of the Kolomorov-Smirnov test when comparing
the sample against a normal distribution with mean and variance estimated from the sample, but it is not valid to
use the p-value from the Kolomorov-Smirnov test for the composite hypothesis of normality (with unknown mean
and variance) since the distribution of the test statistic is different when the parameters are estimated. Therefore
we use the Lilliefors test which accounts for this difference (Thode, 2002).
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presented in Table 5.5.

outcome χ2 df p-value

prop. agr. 288713.04 242 0.0000
prop. eff. 119499.12 242 0.0000
distance 50481.55 242 0.0000
u. seller 135324.22 242 0.0000
u. buyer 140494.10 242 0.0000
imbalance 88011.86 242 0.0000

Table 5.5: Results of Kruskal-Wallis one-way variance analysis by ranks

Unlike m-way ANOVA, from which the main and interaction effects of m factors can be derived,

the Kruskal-Wallis test is a one-way test, only testing whether all treatments are equal (null

hypothesis) or whether there are differences between at least two treatments (alternative hy-

pothesis), which is the case for all dependent variables in our study – as can be seen from Table

5.5. We therefore do post hoc tests to the Kruskal-Wallis test comparing (groups of) different

treatments, to determine the sources of differences between the treatments. As the samples are

not normal distributed we use non-parametric tests in multiple pairwise comparisons of the out-

comes in different treatments. The statistical tests employed are the parameter free Wilcoxon

rank sum test (equivalent to the Mann-Whitney-U test – with continuity correction) to test for

differences in the means across treatments for minimal distance to the Pareto frontier, utility of

the agreement to the seller (or focal party), utility of the agreement to the buyer (or opponent),

and contract imbalance. For testing differences in proportions of agreements and Pareto-optimal

agreements, as the two remaining outcome measures, we apply Pearson’s non-parametric χ2

test of independence (χ2 contingency table test – with Yate’s continuity correction) in multiple

pairwise comparisons.

In multiple statistical hypothesis tests the problem of alpha-error inflation arises – i.e. an in-

creased probability to incorrectly reject the null hypothesis – as a set of hypothesis is tested

simultaneously on the same data in multiple comparison (Miller, 1981). A comparison refers

to the comparison of two groups – treatment vs. control or treatment vs. treatment – and

multiple comparison then means that several of such comparisons are performed on the same

data set. For example with just one hypothesis test performed by comparison of two groups at

the standard alpha level of 5% also the chance of incorrectly rejecting the null hypothesis is 5%.

However, having multiple comparisons, e.g. 100 hypothesis tests where all null hypotheses are

actually true, it is highly likely that at least some null hypothesis will be rejected incorrectly.

At an alpha of 5% the expected number of incorrect rejections of the null (for 100 tests) is five

i.e. on average in 5% of the comparisons, only due to the number of multiple comparisons not

due to the underlying data, the null hypotheses are incorrectly rejected. To prevent this we

control for the family wise error rate in adjusting the p-values by the – simple and conservative

– Bonferroni-Holm method (Holm, 1979).





Chapter 6

Results

Table 6.1 and Figure 6.1 provide descriptive statistics for the six outcome dimensions discussed

in the previous chapter, note that the proportion of agreements for all simulation runs was

63.41% and the proportion of Pareto-optimal agreements was 32.80%. Interestingly automated

negotiation achieves higher utility to the seller party than to the buyer party though neither

the protocol nor the agent distinguish between parties. This phenomenon is not only found for

the overall results but consistently in all treatments and all analyses. The better performance

of automated negotiation for the seller party is even more puzzling if one compares the overall

results to the negotiation experiments, where no such differences in individual utility of the two

parties exist and is discussed in detail in Section 6.6.2.

distance u. seller u. buyer imbalance

min 0.00 20.01 18.45 0.00
1stQ. 0.00 58.67 56.00 9.69

median 2.00 71.67 68.74 19.33

3rdQ. 6.36 84.44 81.05 32.67
max 15.91 100.00 100.00 67.13
⊘ 4.29 70.31 67.48 23.65
± 6.02 18.18 18.88 18.87

Table 6.1: Descriptive statistics for dependent variables – automated negotiation

In line with the research questions of this study this chapter presents and discusses the analyses

of the performance of automated negotiation versus human negotiation – in negotiation exper-

iments with human subjects – (Section 6.1), analyses of the influence of different the system

components – i.e. the different interaction protocols (Section 6.2) and the different software

agents (Section 6.3) on the performance of the automated negotiation system for the different

outcome measures for negotiation, as well as interactions between these components (Section

6.4). In a sensitivity analysis (Section 6.5) we also investigate the influence of the system input

variables – i.e. factors other than the system configuration that cannot be controlled by the

system user or designer – which in our case are the negotiation problems – summarized by their

integrativeness for sensitivity analyzes – on the performance of different system configurations

for automated negotiation for the outcome measures. All of these analyses are performed for

all six, above discussed, outcome measures as dependent variables: proportion of agreements,

proportion of Pareto-optimal agreements, minimal distance to the Pareto frontier, utility of the

119
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agreement to the seller (focal party’s utility), utility of the agreement to the buyer (opponent’s

utility), and contract imbalance, to achieve a holistic evaluation of the system performance for

various aspects of the outcome of the negotiation.
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Figure 6.1: Results for the dependent variables over all simulation runs

For the comparison of automated negotiation with human negotiation we perform all 243 pairwise

comparison of the 3∗9∗9 = 243 treatments – i.e. the automated negotiation systems – versus the

control – i.e. human negotiation in the negotiation experiments – for the six outcome measures.

However, for the analyzes of the influence of different system configurations on the outcome

measures we do not perform all pairwise comparisons. For these analyzes, rather than performing
t∗(t−1)

2 pairwise comparisons of all the t = 3 ∗ 9 ∗ 9 = 243 treatments resulting in 29, 403 pairwise

comparisons – which would become not only complex but also confusing and therefore hard to

interpret – we will perform multiple pairwise comparisons of our dependent outcome measures in

grouping together treatments by their levels in the factors – means we merge all the observations

for specific factor levels and compare the results among the different levels of the factor, thereby

holding equal all the other factors (at all possible values) to get unbiased results.

For example when analyzing the influence of the protocol we group all treatments which use

protocol 1 in one sample, all treatments that use protocol 2 in one sample, and those that

use protocol 3 in another sample. Therefore, within these samples the same agent combinations

and the same negotiation problems are used in the simulation runs, and the samples only differ

in the interaction protocol. Outcome measures then are compared across samples in multiple

pairwise comparisons. For the comparison of the performance of specific agents we group together
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all treatments where one side is represented by this focal agent.1 Combining results from all

treatments with same seller agent and pairwise comparing these groups again leaves all other

factors equally represented i.e. all three protocols, all nine opponent agents, and all negotiation

problems are represented in each of the groups.

These analyses deal with the ’main effects’ of choosing different software agents and interaction

protocols for an automated negotiation system. For detailed analyses of the sources of differences

we also investigate the impact of different offer generation strategies – LEX, MOC, MUM, and SMC –

and concession strategies – act and pas – in the three protocols which should provide insights

about the interaction of these components in determining the performance of an automated

negotiation system.2 For this purpose we compare the performance of software agents in the

different protocols in grouping the treatments that use both the same seller agent and the same

protocol to one sample – with all opponent agents for the buyer party and all negotiation problems

represented in all samples –, which results in 3 ∗ 9 = 27 samples and 27∗26
2 = 351 pairwise

comparisons per outcome measure.

As mentioned in Chapter 5 we do not compare all system configurations with each other for

differences in outcome measures for several reasons. First, it would be technically complex and

confusing to perform and report all 29, 403 comparisons of the 243 treatments. Second, the

additional value of these analyses is questionable, the results of the treatments are presented

in the comparison of the treatments versus human negotiation anyway and from studying these

results, provided in Table C.1 in the Appendix C, one can see that the combinations of two

software agents actually only combines the effects found for these two agents against all oppo-

nents. Finally, from the perspective of the context in which the analyses take place the users of

automated negotiation systems can only choose their own agent and influence the choice of the

protocol – which has to be chosen jointly by the parties – but have no influence on the software

agent chosen by the opponent.

The last analyses performed are sensitivity analyses of the performance of system components

for the six outcome measures depending on the integrativeness of the negotiation problem, which

is used as input to the automated negotiation system. For sensitivity analyzes we graphically

analyze for the different interaction protocols and the different software agents if the results in

the outcome measures for different values of the integrativeness of the negotiation problem, as

well as the direction and size of these effects.

6.1 Automated negotiation vs. human negotiation

As argued in Chapter 3 the benchmark for the evaluation of automated negotiation should be

the currently used mechanism, which is – as we use the preferences human subjects indicated

in negotiation experiments – for this study the outcome of human negotiation. Table 6.2 and

1Note that we take the seller side as focal side, and that it actually not matters which side is taken as agents
do not distinguish between the party they represent but make decisions solely dependent of the preferences and
the opponent’s behavior.

2Note that the offer generation strategy and concession strategy comparison is not applicable to TFT, as TFT

determines the next offer by reciprocating the last concession of the opponent and making it as similar as possible
to the opponent’s last offer in case of ties as discussed in Chapter 4. We do, however, compare the performance
of TFT in the different protocols.
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Figure 6.2 provide descriptive statistics of the results of the human negotiation experiments for

the outcome measures of our study. 1,441 (69.78%) of the 2,065 experiments reached agreements,

of which 707 were Pareto-optimal given the negotiation problem determined by the preferences of

the subjects in the experiments (i.e. 34.24% of total experiments and 49.06% of the experiments

that reached an agreement).

distance u. seller u. buyer imbalance

min 0.00 24.00 26.00 0.00
1stQ. 0.00 57.00 58.40 7.86
median 1.00 69.57 70.00 16.67

3rdQ. 7.07 80.77 80.00 29.17
max 17.49 100.00 100.00 60.73
⊘ 5.24 67.93 67.42 20.40
± 8.80 18.22 17.28 16.58

Table 6.2: Descriptive statistics for dependent variables – negotiation experiments
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Figure 6.2: Dependent variables in experiments with human subjects

As discussed it is – most often implicitly – assumed in literature that automated negotiation can

achieve superior results than humans could. Due to a lack of empirical studies this argument

remains an assumption. For the overall data of all treatments the results on our outcome mea-

sures are mixed concerning this hypothesis. Comparing Tables 6.1 and 6.2 – which provide the

descriptive statistics for the six outcome measures for all simulation runs and the negotiation

experiments, respectively – and the proportions of (Pareto-optimal) agreements one can see that

automated negotiation seems to be inferior in the proportion of agreements and the proportion

of Pareto-optimal agreements reached, and also leads to greater contract imbalance of the utility
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of the parties if an agreement was reached, indicating unfairer outcomes. On the other hand

agreements in automated negotiation are closer to the Pareto frontier and the utility of agree-

ments to the seller party are higher than in human negotiation, while it is fairly the same for the

buyer side.

As these effects could result from some treatments performing worse than others we conduct

multiple pairwise comparisons of the 243 treatments – which constitute as mentioned above

different system configurations for automated negotiation – with human negotiation as control –

i.e. 243 comparisons treatment versus control – and test the one-sided hypothesis that automated

negotiation achieves better results than human negotiation for the six outcome measures. Better

means different things for the different outcome measures. The alternative hypothesis is that

the outcome is greater in automated negotiation than in human negotiation for proportion of

agreements, proportion of Pareto-optimal agreements, utility of an agreement to the seller and

the buyer, but it is that the outcome is less in automated negotiation than in human negotiation

for the outcome measures distance to the Pareto frontier and contract imbalance. Table C.1 –

due to its length, as covering all 243 pairwise comparisons, shifted to Appendix C – provides the

results of these comparisons.

For the same negotiation problems as input to the automated negotiation systems, at p < 0.05,

130 of the 243 treatments (53.50% of all treatments) reached a higher proportion of agreements

than humans did in experiments, 90 (37.04%) treatments reached a higher proportion of Pareto-

optimal agreements, and the distance to the Pareto-efficient frontier was smaller in 79 (32.51%)

treatments. Furthermore the utility of agreements to the seller was higher than the utility

sellers achieved in human negotiations for 154 (63.37%) system configurations but higher for the

buyer only in 127 (52.26%) system configurations. Contract imbalance was smaller in automated

negotiation – and therefore fairness larger – in 112 (46.09%) of the 243 treatments. We derive

from this that not all treatments outperform human negotiations but some system configurations

do worse, while others do better. Furthermore, when comparing the treatments in Table C.1

it becomes evident that trade-offs between the outcome measures exist. In most cases system

configurations performing better than humans in experiment for some outcome measures perform

worse than humans in others.

However, though these trade-offs are present three systems significantly outperformed human

performance in negotiation experiments in all six outcome measures (at p < 0.05). These

three system configurations are (protocol-selleragent-buyeragent): (i) 3-MOCact-MOCact, (ii)

3-MOCact-MOCpas, and (iii) 3-MOCpas-MOCact. These systems achieve between five and ten per-

cent more agreements than human negotiation and between 25% and 30% more Pareto-optimal

agreements, furthermore agreements reached are on average about five utility points better for

both the seller and the buyer party, closer to the Pareto frontier by five points and more balanced

by twelve points – measured in the utility space of the negotiation problem – than agreements

reached in the negotiation experiments for the same negotiation problems – see Table C.1. Note

that the system configuration of these automated negotiation systems outperforming human ne-

gotiation reveals an interesting pattern. Given the negotiation problems used, for an automated

negotiation system to outperform human negotiation in all outcome dimensions it has to operate

under protocol 3 and consist of MOC software agents only, that follow the monotonic concession

strategy in generating offers, of which at least one has to follow the active concession strategy

and therefore make first concession steps if the opponent reciprocated past concessions – i.e. at
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least either the buyer or the seller agent, or both, has to be of type MOCact.

A further interesting result of the comparison of the treatments to the human negotiation control

group is the difference between the performance of agents for the different parties – only in

127 treatments agreements with higher utility to the buyer were reached, but 154 treatments

achieved agreements of higher utility to seller party. This is interesting because the treatments

are symmetric for both the seller and the buyer party – i.e. besides the 27 treatments where

the same types of software agents are used for both the seller and the buyer, for each treatment

where the seller is represented by a software agent of type A and the buyer by a software agent

of type B there exists an other treatment where the seller is represented by B and the buyer by

A. So the overall results should not differ due to treatments. Furthermore even for treatments

where the seller and the buyer are represented by the same software agent the utility of an

agreement to the buyer is always lower than the utility to the seller, which is interesting as the

decision making of the software agents by no means depends on the role of the user it represents

in the negotiation, but only on the preferences of the user and the behavior of the opponent,

as discussed in Chapter 4.3 Both the trade-offs between different outcome measures and the

seemingly ’role-dependent’ performance of automated negotiation systems are analyzed in detail

in Section 6.6.

6.2 Comparison of interaction protocols

We compare the performance of automated negotiation systems using different protocols in their

configuration to analyze the main effects of the protocol on the outcome measures – proportion of

agreements, proportion of Pareto-optimal agreements, utility of the agreement to the buyer and

seller, distance of the agreement to the Pareto frontier, and contract imbalance.4 The results of

the multiple pairwise comparisons of these samples – within which the same agent combinations

and negotiation problems were used in the simulation runs and between which therefore only the

protocol differs – are presented in Tables 6.3 to 6.8 for our six outcome measures.

% protocol 1 protocol 2

protocol 1 100.00
protocol 2 19.85 0.0000
protocol 3 70.39 0.0000 0.0000

Table 6.3: Proportion of agreements in different
protocols

% protocol 1 protocol 2

protocol 1 46.47
protocol 2 11.48 0.0000
protocol 3 40.47 0.0000 0.0000

Table 6.4: Proportion of Pareto-optimal agree-
ments in different protocols

3The only exception here are the three treatments that use only TFT-agents in the three protocols, which not
only achieve about equal utilities for both sides – around 66 utility points – within a treatment – i.e. for the same
protocol –, but also across the treatments – i.e. for the different protocols.

4Proportions of agreements and Pareto-optimal agreements in the samples are compared using Pearson’s χ2

independence tests, differences in all other outcome measures are analyzed by means of Wilcoxon ranked sum
tests. Samples sizes for proportion measures are 81 ∗ 3 ∗ 2065 = 501795 as each agent combination is used for
three replications of all negotiation problems as input to the systems, for all other measures it is 501795 times
the proportion of agreement reached in the protocols provided in Table 6.3. Test statistics are omitted in the
subsequent tables to save space and to be consistent with the presentation of the results in subsequent tables,
where the provision of the test statistics would consume too much space, and can be requested from the author.
All p-values reported are adjusted for multiple comparisons by the Bonferroni-Holm method.
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⊘ protocol 1 protocol 2

protocol 1 67.70
protocol 2 77.04 0.0000
protocol 3 71.45 0.0000 0.0000

Table 6.5: Utility of the seller in different pro-
tocols

⊘ protocol 1 protocol 2

protocol 1 63.81
protocol 2 75.89 0.0000
protocol 3 69.45 0.0000 0.0000

Table 6.6: Utility of the buyer in different pro-
tocols

⊘ protocol 1 protocol 2

protocol 1 5.30
protocol 2 3.28 0.0000
protocol 3 3.34 0.0000 0.0000

Table 6.7: Minimal distance to the Pareto fron-
tier in different protocols

⊘ protocol 1 protocol 2

protocol 1 29.43
protocol 2 18.38 0.0000
protocol 3 17.99 0.0000 0.1520

Table 6.8: Contract imbalance in different pro-
tocols

The proportion of agreements clearly is highest in protocol 1, which by the mechanisms of this

protocol reaches agreements in all simulation runs. That the proportion of reached agreements

is 100% in protocol 1, which neither allows software agents to break off negotiations by quit

messages nor enables termination due to two subsequent reject messages – as these are not

permitted under protocol 1 – is not further surprising but actually adds to the verification of

the implementation of the simulation program. The second highest proportion of agreements

(70.39%) is reached by systems employing protocol 3, while in only 20% of the simulation

runs an agreement is reached when using protocol 2. Differences between the proportions of

reached agreements are highly significant as can be seen from Table 6.3 (p < 0.001 for all pairwise

comparisons). The sources of these differences are obvious from the protocol descriptions, while

protocol 1 forces the agents to reach an agreement, in protocol 3 the software agents have the

possibility to reject unfavorable offers but keep on negotiating, which could lead to a termination

of the negotiation if the opponent also sends a reject message as it was the case in the 30%

of the simulation runs that achieved no agreement under protocol 3. Finally, software agents

immediately break off the negotiation in case of such unfavorable offers in protocol 2. So

the the possibility to reject unfavorable offers of the opponent under protocol 3 allowed to

achieve agreements in additional 50% of the simulation runs where the immediate termination

by quit messages under protocol 2 prevented such agreements. However, the possibility of

rejecting offers also caused 30% of the simulation runs to fail to reach an agreement compared

to protocol 1, where this was not possible.

The absolute proportion of Pareto-optimal agreements – as a proportion of the total number

of simulation runs in a sample – shows the same tendency (Table 6.4). The proportion of

Pareto-optimal agreements is higher for the protocols that reach more agreements and therefore

highest in protocol 1 (46.47 %), followed by protocol 3 (40.47 %), and systems that use

protocol 2 (11.48 %) – again differences between the proportion of Pareto-optimal agreements

are highly significant (p < 0.001 for all pairwise comparisons). These numbers, however, indicate

that the differences in proportions are smaller for the proportion of Pareto-optimal agreements,

than for the overall proportion of agreements. This becomes more evident when looking at

the relative proportions of Pareto-optimal agreements – i.e. proportions calculated not on the

basis of all simulation runs but on the basis of those that reached an agreement as discussed

in the previous chapter – as provided in Table 6.9. The relative proportion of Pareto-optimal

agreements is highest for protocol 3, followed by protocol 2, but lowest – in contrast to the



126

absolute proportion of Pareto-optimal agreements – in simulation runs with systems that use

protocol 1. This indicates that the possibility to not engage in further negotiations on the

basis of unfavorable offers of the opponent through breaking off the negotiation (protocol 2)

or eliciting a new offer from the opponent (protocol 3) moves agreements closer to the Pareto

frontier, which consequently match it more often, than not having these options (protocol 1),

however, this is achieved at the cost of risking a negotiation break-off, which can be seen from

the former results on the proportion of agreements.

⊘ protocol 1 protocol 2

protocol 1 46.47
protocol 2 58.48 0.0000
protocol 3 57.73 0.0000 0.0002

Table 6.9: Relative proportion of Pareto-optimal agreements in different protocols

Results comparable to those for the relative proportion of Pareto-optimal agreements are obtained

for the minimal distance to the Pareto frontier (Table 6.7) – the similarity of these measures is

not further surprising as the minimal distance to the Pareto frontier is zero when agreements

are Pareto-optimal – so this measure covers aspects of the relative proportion of Pareto-optimal

agreements well. The distance of reached agreements to the Pareto frontier is smallest when

using protocol 2, followed by protocol 3, and both, protocol 2 and 3, achieve agreements

closer to the Pareto frontier than protocol 1 does (all p < 0.001).

Similar to the relative proportion of Pareto-optimal agreements and minimal distance to the

Pareto frontier, both parties, the seller and the buyer party, achieve – in case of agreement –

highest utility of the agreement in protocol 2 followed by protocol 3 and 1 (all p < 0.001 as

can be seen from Tables 6.5 and 6.6, respectively). As already mentioned above from Tables 6.5

and 6.6 one can see that the utility of an agreement is lower for the buyer than for the seller in

all protocols. Note that the differences in utilities between the parties slightly differs between

the protocols used for the system and is highest for protocol 1 (difference of 4 utility points),

followed by protocol 3 (2 points) and protocol 2 (around 1.5 points) – so that the difference

between the utility of an agreement to the buyer and the seller increases with the proportion of

agreements reached and decreases with the relative proportion of the Pareto-optimal agreements.

Finally if an agreement is reached, the contract imbalance – as the difference between the utilities

of the agreement to the parties – is smallest and therefore agreements are fairest in protocol 3

and protocol 2 without significant differences between these two protocols, which both achieve

more balanced agreements than protocol 1 (p < 0.001 in both cases). This partly is explained

by the differences between the utility of an agreement to seller and buyer, discussed above, if

these differences are low – as in protocol 2 and 3 – also the contract imbalance is low, while it

is high otherwise – as found for protocol 1.

The lower contract imbalance found for protocol 2 and protocol 3 also can be explained by

the mechanisms of these protocols. While unfavorable offers can be rejected and new offers can

be elicited in protocol 3, or negotiations can be broken off in protocol 2, which either leads to

a more favorable and balanced agreement or no agreement at all, such messages are not enabled

in protocol 1, where strategies have no means to cope with bad offers and interrupt their

offering strategies, which could lead to unfavorable agreements for the weaker party – in terms of

preferences over the negotiation object – and therefore result in higher contract imbalance and
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consequently unfairer agreements. This argumentation also provides a hint for the reason behind

the seemingly ’role-dependent’ performance of automated negotiations that achieves agreements

of higher individual utility for the seller than for the buyer, found in this and the previous

section, as the system components do not discriminate between the roles the reason must lie

in the preferences of the parties and the group of buyers seems to have unfavorable preferences

compared to the group of sellers.

6.3 Comparison of software agents

After this analysis of the general influence of the protocol on different outcome measures – for

the same software agent combinations and negotiation problems – we shift our attention to

the software agents as the second main component in automated negotiation systems. As the

software agents do not discriminate between the parties they represent, but base decision making

only on the preferences indicated to them, we analyze the performance for a focal party – in our

case the seller party – grouping together in one sample all treatments that use the same type of

software agent to represent the seller party. Thereby across the samples only the software agent

that represents the seller differs and within the samples this seller agent is used in simulation

runs with all other agent types representing the buyer party (including a version of itself), in all

protocols, and for all negotiation problems.5

% LEXact LEXpas MOCact MOCpas MUMact MUMpas SMCact SMCpas

LEXact 66.22
LEXpas 58.12 0.0000
MOCact 64.09 0.0000 0.0000
MOCpas 58.96 0.0000 0.0000 0.0000
MUMact 71.56 0.0000 0.0000 0.0000 0.0000
MUMpas 61.40 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact 65.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas 58.60 0.0000 0.0151 0.0000 0.0363 0.0000 0.0000 0.0000
TFT 66.62 0.0264 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.10: Proportion of agreements for different software agents

The proportion of agreements reached in automated negotiation with the nine different software

agents representing the seller party – negotiating in all three protocols, with all nine software

agents representing the buyer, for three replications of all 2,065 negotiation problems – and

multiple pairwise comparisons of these proportions are presented in Table 6.10. The proportions

of agreements reached and their statistical comparison – with Pearson’s χ2 independence test –

5Same as for the comparison of protocols, the proportions of agreements and Pareto-optimal agreements in the
samples are compared using Pearson’s χ2 independence tests and differences in all other outcome measures are
analyzed by means of Wilcoxon ranked sum tests. In the nine samples (one for each type of software agent) the
samples sizes for proportion measures are 9 ∗ 3 ∗ 3 ∗ 2065 = 167265. This number of simulation runs results from
the combination of a specific software agent with all nine other software agents for three replications of the 2065
negotiation problems in the three protocols. As the outcome measures minimal distance to the Pareto frontier,
contract imbalance, and utility of the agreement to the focal party and the opponent can be calculated for those
simulation runs that resulted in an agreement only, sample sizes for these outcome measures can be derived by
multiplying the total number of simulation runs in the sample (167265) with the proportion of agreements reached
in this sample – provided in Table 6.10. In Tables 6.10 to 6.15 we omit test statistics due to space restrictions
but gladly provide the interested reader with values on request. All p-values reported are adjusted for multiple
comparisons by the Bonferroni-Holm method.



128

reveal, holding all other factors equal at all possible levels, a clear ranking of the software agents

(as all p < 0.05 at least). In systems where for the seller party MUMact is used the proportion

of reached agreements is highest (71.56 %), followed by TFT, LEXact, SMCact, MOCact, MUMpas,

MOCpas, SMCpas, and LEXpas, which reached with 58.12% agreements over all simulation runs

the lowest performance in this outcome measure. This ranking indicates that software agents

with active concession strategies and TFT reach a higher proportion of agreements than software

agents embodying a passive concession strategy. The higher proportion of agreement with active

concession making and TFT can be explained by their mechanisms, as these software agents make

offers with first concession steps if the opponent reciprocated previous concessions (act) or fully

reciprocate the opponents previous concessions (TFT) – thereby also making concession steps

ahead –, which is beneficial to the prospects of reaching an agreement in negotiations that could

result in a break off or termination of negotiations – in case the protocols enable this – if such

concession steps are not taken. The effect of the offer generation strategy is not clear from this

ranking, also the effect of the protocol – as in the compared samples all protocols are covered –

and whether this ranking is insensitive of the protocol used in the automated negotiation system

or if there exist interactions between the software agent and the protocol – this is analyzed for the

proportion of agreements, as well as for the other outcome measures, in the subsequent section.

% LEXact LEXpas MOCact MOCpas MUMact MUMpas SMCact SMCpas

LEXact 28.16
LEXpas 24.15 0.0000
MOCact 42.32 0.0000 0.0000
MOCpas 38.35 0.0000 0.0000 0.0000
MUMact 34.41 0.0000 0.0000 0.0000 0.0000
MUMpas 28.98 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact 32.29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas 28.66 0.0046 0.0000 0.0000 0.0000 0.0000 0.0442 0.0000
TFT 37.93 0.0000 0.0000 0.0000 0.0223 0.0000 0.0000 0.0000 0.0000

Table 6.11: Proportions of Pareto-optimal agreements for different software agents

Also for the proportion of Pareto-optimal agreements a clear ranking of software agents emerges

from the multiple pairwise comparisons summarized in Table 6.11 (all p < 0.05). While we

found no differences between the ordering of interaction protocols concerning the proportion of

agreements and the proportion of Pareto-optimal agreements that are achieved with automated

negotiation systems using different interaction protocols in the previous section of this chapter,

for the software agents these rankings differ. Automated negotiations in which – for all opponent

software agents, negotiation protocols, and negotiation problems – MOCact represents the seller

party reach a significantly higher proportion of Pareto-optimal agreements than all other agents

with 42.32 % of the simulation runs ending with a Pareto-optimal agreement. MOCact – which

makes offers with monotonically decreasing utility and first concession steps if the opponent

reciprocated previous concession – is followed by MOCpas, TFT, MUMact, SMCact, MUMpas, SMCpas,

LEXact, and finally LEXpas, which reaches Pareto-optimal agreements only in 24.15% of the

simulation runs where this software agent is used for the seller party.

This ranking is not only different from the previous one concerning the proportion of agreements,

but also reveals a different pattern. While for the proportion of agreements reached the concession

strategy was of highest importance, for the upper and lower end of the ranking of software agents

for the proportion of Pareto-optimal agreements the offer generation strategy matters – as the two
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MOC-agents achieved the two highest while the two LEX-agents achieved the two lowest proportions

of Pareto-optimal agreements. The concession strategy then determines in a second step the

ordering of these agents, as for both MOC and LEX the active version is ranked higher. Higher

influence of the concession strategy can be found for the middle of the software agent ranking

for the proportion of Pareto-optimal agreements, as for both MUM and SMC, the active versions

achieve better values in this outcome measure than the passive concession making versions do.

That the offer generation strategy is of higher importance for the proportion of Pareto-optimal

agreements than for the proportion of agreements is plausible as Pareto-optimality depends more

on the actual configuration of the offers, while for the acceptance of an offer of the opponent

it ’only’ has to provide higher utility than the next offer the focal software agent would send –

according to the acceptance criterion used with the software agents (see Chapter 4). However,

one must not forget, that the proportions of Pareto-optimal agreements are absolute proportions

over all simulation runs, so that the proportion of agreements reached influences this outcome

measure. This can be an explanation for the higher proportions of Pareto-optimal agreements

reached by active concession making strategies and TFT compared to passive concession making

for the same offer generation strategy – which reach more agreements – as we would assume

the opposite here. Passive concession making strategies resist making first concession steps

and thereby should increase the utility of an agreement – however, simultaneously lowering the

prospect of reaching an agreement as can be derived from Table 6.10 – to the party using a

software agent that follows this strategy and thereby should push agreements towards the Pareto

frontier. Given this we will see the actual effect of software agents concerning the efficiency of

reached agreements in the discussion of the next outcome measure – minimal distance to the

Pareto frontier, which only can be calculated for simulation runs that reached an agreement –

which was found to closely resemble the results concerning the relative proportion of Pareto-

optimal agreements in Section 6.2.

⊘ LEXact LEXpas MOCact MOCpas MUMact MUMpas SMCact SMCpas

LEXact 5.56
LEXpas 5.78 0.0014
MOCact 2.52 0.0000 0.0000
MOCpas 2.61 0.0000 0.0000 0.0127
MUMact 4.85 0.0000 0.0000 0.0000 0.0000
MUMpas 5.13 0.0000 0.0000 0.0000 0.0000 0.0092
SMCact 3.96 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas 4.07 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0274
TFT 4.06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.12: Minimal distance to the Pareto frontier for different software agents

The results and comparative analyses concerning the minimal distance to the Pareto frontier

again form a clear ranking of software agents (all p < 0.05), similar to that found for the

proportion of Pareto-optimal agreements – see Table 6.12. MOCact agents achieve results closest to

the Pareto frontier – with an average minimal distance of 2.52 points in the utility space – followed

by MOCpas, SMCact, TFT, SMCpas, MUMact, MUMpas, LEXact, and with an average minimal distance

of 5.78 points agreements reached in automated negotiation systems with LEXpas representing

the seller were farthest from the Pareto frontier.

Compared to the software agent ranking found for the proportion of Pareto-optimal agreements,

this ranking shows the importance of the offer generation strategy more clearly, however the
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assumed better outcomes of passive concession making are not present as for the same offer

generation strategy actively conceding software agents always achieve agreements closer to the

Pareto frontier than passively conceding versions.

Tables 6.13 and 6.14 show the average individual utilities of a reached agreement to the focal

party (seller – Table 6.13) and the opponent party (buyer – Table 6.14) for specific software

agents used to represent the seller side in the automated negotiation systems, as well as the

outcomes of multiple pairwise comparisons for these outcome measures.

⊘ LEXact LEXpas MOCact MOCpas MUMact MUMpas SMCact SMCpas

LEXact 68.24
LEXpas 68.82 0.0000
MOCact 82.31 0.0000 0.0000
MOCpas 82.98 0.0000 0.0000 0.0000
MUMact 63.91 0.0000 0.0000 0.0000 0.0000
MUMpas 64.94 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact 72.42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas 73.11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT 58.64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.13: Focal agent’s (seller) utility for different software agents

⊘ LEXact LEXpas MOCact MOCpas MUMact MUMpas SMCact SMCpas

LEXact 68.13
LEXpas 68.33 0.0326
MOCact 56.83 0.0000 0.0000
MOCpas 56.66 0.0000 0.0000 1.0000
MUMact 72.22 0.0000 0.0000 0.0000 0.0000
MUMpas 72.19 0.0000 0.0000 0.0000 0.0000 1.0000
SMCact 65.99 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas 65.99 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6008
TFT 78.83 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.14: Opponent’s (buyer) utility for different software agents

Utilities of agreements achieved for the party they represent significantly differ between the

software agents (all p < 0.001) as can be seen from Table 6.13. Here, MOCpas achieves, with

82.98 points the highest utility score for its party, followed by MOCact, SMCpas, SMCact, LEXpas,

LEXact, MUMpas, MUMact, and finally TFT, which achieved a relatively low utility score of 58.64

points only. So, as for the proportion of Pareto-optimal agreements and the minimal distance

to the Pareto frontier outcome measures, also for the individual utility of an agreement to the

focal software agent the offer generation strategy has major impact. Moreover, for individual

utility of the agreements – and therefore the individual performance of software agents – we find

the positive effects assumed for passive concession making strategies – which, however were not

found for joint performance measures as discussed above. We argue that this ordering results

from the more systematic offer generation followed by the higher ranked agents. As can be

derived from the description of the different offer generation mechanisms in Chapter 4, MOC is

the most systematic offer generation mechanism, proposing first all offers of a given utility level

before this level is decreased to the next lower level, where again all offers are proposed etc.

SMC only is different from MOC in that it never proposes offers of the same utility level but strict

monotonically decreases the level of demanded utility. MUM proposes offers with least concession

in one issue only, and LEX proposes offers that constitute concession following a lexicographic
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ordering of possible solutions. TFT, which is ranked lowest in the average utility of agreements

achieved for the party it represents, on the other hand, can be considered as following the least

systematic offer generation as it generates offers that reciprocate the opponents’ concessions but

does not follow any rules in this offer generation that prescribe a specific path through the set

of possible solutions.

Concerning the utility of a reached agreement – with different software agents representing the

seller side and all types of software agents representing the buyer side in systems using all pro-

tocols and negotiating all negotiation problems – to the opponent the highest average utility

is achieved when TFT is used by the focal party (78.83). Second best results for this outcome

measure are achieved for the opponent if the focal party’s software agent is of type MUM, fol-

lowed by LEX, SMC, and MOC, which results in the worst agreements from the point of view of

the opponent’s utility. While differences are highly significant between offer strategies, they are

insignificant between active and passive concession making strategies for software agents follow-

ing the same offer generation strategy – with exception of LEX, which follows a lexicographical

ordering of offers in its offer generation strategy, where passive concession making is slightly

better than active concession making and this difference is significant at p < 0.05. That it is

better for the opponent if the focal party uses a LEXpas rather than a LEXact software agent

is surprising, as passive concession making means fewer and smaller concessions compared to

active concession making, but can result from canceling out of ’bad’ negotiation problems, which

could lead only to mediocre agreements when LEXpas is used, as LEXpas is the software agent

that achieved the lowest proportion of agreement. So negotiation problems that would lead to

unfavorable agreements, reach no agreement at all in simulation runs that use LEXpas and the

remaining negotiation problems cause not only higher utility to the focal party but also to the

opponent – compared to the usage of LEXact.

⊘ LEXact LEXpas MOCact MOCpas MUMact MUMpas SMCact SMCpas

LEXact 19.65
LEXpas 20.36 0.0002
MOCact 27.31 0.0000 0.0000
MOCpas 28.12 0.0000 0.0000 0.0000
MUMact 23.87 0.0000 0.0000 0.0000 0.0000
MUMpas 24.63 0.0000 0.0000 0.0000 0.0000 0.5405
SMCact 21.95 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas 22.60 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008
TFT 24.58 0.0000 0.0000 0.2350 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.15: Contract imbalance for different software agents

These results, for the opponent’s utility of an agreement if different software agents are used

by the focal party, not only underline the higher influence of the offer generation strategy for

both, the focal as well as the opponent’s individual utility of an agreement, but also show that

the ordering of offer generation strategies is opposite for the parties. Moreover, from the above

considerations concerning the effects on the utility of the focal and the opponent party when

a certain agent is used by the focal party, one already can derive some expectation about the

effects of the usage of agents on the contract imbalance – unfairness – of reached agreements. As

the agents that perform good for a focal party make the opponent party worse of and vice versa,

those agents which lie in the middle of both rankings should be the best in terms of contract

imbalance – i.e. achieve more balanced and therefore fairer agreements. Recall that the ranking
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of offer generation strategies in decreasing order of their average utility score for the focal agent

was MOC – SMC – LEX – MUM – TFT, and for the opponent party’s average utility score exactly

inverse, i.e. TFT – MUM – LEX – SMC – MOC. So we assume LEX agents to lead to fairer agreements

followed by SMC and MUM agents and finally TFT and MOC agents.

Table 6.15 supports this assumption, as LEX agents achieve smaller contract imbalance than

SMC agents, which again achieve fairer contracts than MUM agents. Furthermore, TFT and MOC

software agents used to represent the focal party (seller) in the automated negotiations achieve

agreements where the difference between the two parties utilities is highest (all p < 0.001, with

exception of MOCact versus TFT). The significant differences between active and passive versions

of the agents – for same offer generation strategies – indicates a minor but significant effect of

the concession strategy on the contract imbalance, namely that active conceding leads to fairer

outcomes than passive conceding (all p < 0.001, except for MUM offer generation – which makes

offers in order to provide concessions in the issue where they cost least – where differences in

contract imbalance between MUMact and MUMpas are not significant). So besides the major effects

of the offer generation strategy, the positive effect of passive concession making strategies on the

utility of the agreement to the party that uses them and the lack of effects on the opponent

party’s utility shown in Tables 6.13 and 6.14 respectively, leads to imbalance and therefore

smaller fairness of the agreements.

6.4 Agent features and agent-protocol interaction

After this analyses of the main effects of the interaction protocols (Section 6.2) and the software

agents – used by a focal party – (Section 6.3) of different configurations of the automated nego-

tiation system on the six outcome measures, we will focus on the interaction effects and effect

sizes in this section. For this purpose we group all treatments which use the same software agent

to represent a focal party (seller) in a specific interaction protocol in one sample. This results

in 9 ∗ 3 = 27 different samples and (3∗9)∗(3∗9−1)
2 pairwise comparisons of samples. Within the

samples again all other components are equal i.e. all nine software agents are used as opponent

for three replications of the 2065 negotiation problems. The tables providing the full results of

these multiple pairwise comparisons (Tables C.2 to C.19) are, due to their length, moved to Ap-

pendix C and the Tables of this section (Tables 6.16 to 6.21) provide a summary of the relevant

comparisons only.6

From Table 6.167 it can be derived, that the main influence on the proportion of agreements

steams from the interaction protocol used in the automated negotiation system. This propor-

tion differs for the same software agents between protocol 2 – that allows quit messages and

thereby a break off of negotiations by the software agents – and protocol 3 – that allows

reject messages to temporary interrupt the offering strategy and terminates negotiations if two

6Note that both, the results of comparisons with the TFT agent and the p-values for the comparisons of different
protocols are not presented in Tables 6.16 to 6.21, but only the results of these comparisons are discussed – for
the actual values we refer to the Appendix C. This is necessary as on the one hand TFT cannot be divided into
concession strategy and offer generation strategy – see Chapter 4 for a discussion –, and therefore does not fit in
the structure of the tables. On the other also providing significance values for the comparison between protocols
would consume too much space and therefore undermine the idea of these tables, to summarizing the main results.

7Note that we omit comparisons of the proportion of agreement for protocol 1 as all simulation runs in this
protocol are forced to reach agreements and so the proportions are all equal and all 100%.
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such reject messages are sent by the software agents subsequently – between around 42% (for

MUMpas) to 68% (for MOCact). Compared to protocol 1, which allows neither quit nor reject

messages and therefore results in agreements in all simulation runs, differences in the proportion

of agreements to protocol 3 vary in the range of 42% (for LEXpas) to 16% (for MUMact), and

difference to protocol 2 are in a range of 88% (for MOCpas) to 70% (for MUMact). Same as for

the comparison of interaction protocols – for all software agents – in Section 6.2, it can be seen

from Tables C.2 to C.4 in Appendix C, that each software agent achieves significantly higher

proportions of agreements in protocol 1 than in protocol 3, where the proportion again is

higher than in protocol 2 (all p < 0.001).

protocol 2 act pas act-pas

% LEX MOC MUM % LEX MOC MUM

LEX 21.08 LEX 16.55 0.0000
MOC 12.32 0.0000 MOC 11.58 0.0000 0.0005
MUM 30.31 0.0000 0.0000 MUM 20.99 0.0000 0.0000 0.0000
SMC 17.98 0.0000 0.0000 0.0000 SMC 15.12 0.0000 0.0000 0.0000 0.0000

protocol 3 act pas act-pas

% LEX MOC MUM % LEX MOC MUM

LEX 77.57 LEX 57.82 0.0000
MOC 79.94 0.0000 MOC 65.30 0.0000 0.0000
MUM 84.36 0.0000 0.0000 MUM 63.22 0.0000 0.0000 0.0000
SMC 77.47 1.0000 0.0000 0.0000 SMC 60.69 0.0000 0.0000 0.0000 0.0000

Table 6.16: Summary of system component interactions for the proportion of agreements

When comparing the ranking of the software agents concerning the proportion of agreements they

reach in all protocols and separated in the different protocols, one can see that the influence of the

offer generation strategy mainly steams from the differences offer generation makes in protocol

3 – between 15% for MOC agents and 30% for LEX agents – while it has only minor influence on the

proportion of agreements in protocol 2. The opposite holds true for the concession strategy.

While both concession strategies achieve a proportion of agreements in a range of 7% under

protocol 3 this range is much broader and between 9% (for passive conceding agents) and 12%

(for active conceding agents) for protocol 2 – as mentioned the proportion of agreements for

simulation runs with protocol 1 is equal and 100% for all software agents. The ranking of

offer generation strategies varies considerably between the different protocols for some of them –

especially MOCact, which is ranked second in protocol 3 but only penultimate in protocol 2 –

and only minor or not at all for others – like MUMact is ranked second (behind TFT) in protocol

2 and also first in protocol 3, or LEXact which holds the third place in the rankings for both

protocols.

Comparing the results of different combinations of software agents (representing the seller) and

protocols concerning the proportion of Pareto-optimal agreements yields the results summarized

in Table 6.17. The results for the protocols for the single software agents coincide with the results

presented in Section 6.2 – namely all software agents reach higher proportions of Pareto-optimal

agreements under protocol 1 than under protocol 3, which again is better than protocol 2

(all p < 0.05). The only exception is MUMact which achieves under protocol 3 significantly more

Pareto-optimal agreements than under protocol 1 (p = 0.0001). That this higher proportion

of Pareto-optimal agreements in protocol 1 than in protocol 2 and 3 is due to the higher

proportion of agreements reached in these protocols is somewhat revealed by this deviation, as
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MUMact reached a very high proportion of agreements – compared to the other software agents –

under protocol 3 (84.36%).

Besides these differences due to the protocol – which are all significant but larger for protocol

1 and 3 compared to protocol 2 and not so large between protocol 1 and protocol 3 – the

main differences between the performance of software agents in all protocols is caused by the

different offer generation strategies of the agents. This strong influence of the offer generation

strategy was also found in the comparison of software agents for all protocols in Section 6.3. In

protocol 1 the proportion of Pareto-optimal agreements differs in a range of 20% for the offer

generation strategies, but not at all for the concession strategies, when the same offer generation

strategy is used by the software agent. This is not surprising, as in protocol 1 no interruption

of offering is permitted and therefore it should not make a difference how the decision about

offer interruption – i.e. following either the active or passive concession strategy – is made.

So this result ’only’ adds to the verification of the correct implementation of the simulation

program. However, the proportion of Pareto-optimal agreements varies in a range of 7% for the

offer generation strategies in protocol 2, where different concession strategies (for otherwise

identical software agents) lead only to differences of at most 5% (for MUM), and it varies in a

range of 24% for the offer generation strategies under protocol 3, where different concession

strategies account for a maximal difference of 11% only (between MOCact and MOCpas).

protocol 1 act pas act-pas

% LEX MOC MUM % LEX MOC MUM

LEX 37.23 LEX 36.53 0.1947
MOC 57.89 0.0000 MOC 58.10 0.0000 1.0000
MUM 42.74 0.0000 0.0000 MUM 42.06 0.0000 0.0000 0.2681
SMC 44.26 0.0000 0.0000 0.0000 SMC 44.32 0.0000 0.0000 0.0000 1.0000

protocol 2 act pas act-pas

% LEX MOC MUM % LEX MOC MUM

LEX 10.91 LEX 8.85 0.0000
MOC 8.88 0.0000 MOC 8.29 0.0133 0.0089
MUM 16.35 0.0000 0.0000 MUM 11.31 0.0000 0.0000 0.0000
SMC 10.37 0.0517 0.0000 0.0000 SMC 9.00 1.0000 0.0005 0.0000 0.0000

protocol 3 act pas act-pas

% LEX MOC MUM % LEX MOC MUM

LEX 36.35 LEX 27.07 0.0000
MOC 60.20 0.0000 MOC 48.67 0.0000 0.0000
MUM 44.13 0.0000 0.0000 MUM 33.56 0.0000 0.0000 0.0000
SMC 42.23 0.0000 0.0000 0.0000 SMC 32.66 0.0000 0.0000 0.0234 0.0000

Table 6.17: Summary of system component interactions for the proportion of Pareto-optimal
agreements

Same as found for samples grouping together all agent combinations for different protocols – in

Section 6.2 – also in samples separating the different software agents, most of them (SMC, MUM,

and LEX – as can be seen from Tables C.8 to C.10 in Appendix C) reach agreements significantly

closer to the Pareto frontier in automated negotiation systems operating under protocol 2,

followed by systems using protocol 3, and protocol 1. Only for TFT no significant difference

of the minimal distance to the Pareto frontier is found for protocol 2 and protocol 3, and both

MOC agents (MOCact and MOCpas) reach agreements significantly closer to the Pareto frontier in

protocol 3 compared to the agreements reached in protocol 2 with these agents (p < 0.001).
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protocol 1 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 6.74 LEX 6.89 1.0000
MOC 3.60 0.0000 MOC 3.58 0.0000 1.0000
MUM 6.17 0.0000 0.0000 MUM 6.53 0.0000 0.0000 0.2536
SMC 4.89 0.0000 0.0000 0.0000 SMC 4.92 0.0000 0.0000 0.0000 1.0000

protocol 2 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 3.96 LEX 3.77 0.9355
MOC 1.81 0.0000 MOC 1.82 0.0000 1.0000
MUM 3.42 0.0001 0.0000 MUM 3.43 0.3344 0.0000 1.0000
SMC 2.92 0.0000 0.0000 0.0258 SMC 2.79 0.0000 0.0000 0.0001 0.5078

protocol 3 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 4.64 LEX 4.74 1.0000
MOC 1.39 0.0000 MOC 1.45 0.0000 1.0000
MUM 3.98 0.0000 0.0000 MUM 3.86 0.0000 0.0000 0.2336
SMC 3.16 0.0000 0.0000 0.0000 SMC 3.26 0.0000 0.0000 1.0000 1.0000

Table 6.18: Summary of system component interactions for the minimal distance to the Pareto
frontier

Concerning the components of the software agents it can be seen from Table 6.18 that the

higher importance of a software agent’s offer generation strategy as opposed to its concession

strategy, found when comparing different software agents in all protocols in Section 6.3, also

can be observed for the protocols individually. While there are only insignificant differences in

the minimal distance of the utility of reached agreements to the Pareto frontier with respect

to the concession strategy, these distances vary around two to three points in utility space for

different offer generation strategies. MOC, the offer generation strategies that operates most

systematical – as discussed above – is ranked first in all interaction protocols concerning the

closeness of agreements reached to the Pareto frontier. The following ordering also decreases with

systematical offer generation of the software agents and is SMC, MUM, and LEX. The differences in

average minimal distance to the Pareto frontier this ranking bases on are significant at p < 0.05

at least, with exception of the differences between the passively conceding versions of MUM and

LEX for protocol 2, as well as SMC and MUM for protocol 3.

The results for the individual utility of an agreement to the focal party and its opponent, when

a certain interaction protocol and a certain software agent to represent the focal party are used

together in the automated negotiation system, can be found in Tables 6.19 (focal parties utility)

and 6.20 (opponent’s utility). Some of the differences in the individual utilities of the focal party

are caused by the interaction protocol used in the automated negotiation and are in general

consistent for all software agents with the results found in Section 6.2. Namely that agreements

reached in protocol 2 are of higher utility to the focal party than those reached in protocol

3 and protocol 1 (all p < 0.001). Furthermore protocol 3 combined with each software agent

achieves higher utility scores than protocol 1 for six of the nine software agents. The differences

in the focal parties utility of the agreement, however, are not significantly different between

protocol 1 and protocol 3 for the agents SMCact and TFT, and MOCpas achieved significantly

higher utility when combined with protocol 1 than with protocol 3 (p < 0.001).
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While the performance of identical software agents combined with different protocols varies

maximally around 15 utility points between the protocols, within a protocol offer generation

strategies account for differences of up to around 25 utility points – where differences are higher

for protocol 1 than for protocol 2 and lowest in protocol 3 – so the offer generation strategy

has stronger influence on the individual utility of the focal party than the interaction protocol

has. The ordering of these agents in each of the protocols is the same as that found in Section

6.3 - namely in decreasing average utility achieved for the party they represent in the automated

negotiations MOC – SMC – LEX – MUM – TFT (all p < 0.001).

protocol 1 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 65.15 LEX 64.78 1.0000
MOC 82.96 0.0000 MOC 82.98 0.0000 1.0000
MUM 58.10 0.0000 0.0000 MUM 57.15 0.0000 0.0000 0.0715
SMC 70.09 0.0000 0.0000 0.0000 SMC 69.96 0.0000 0.0000 0.0000 1.0000

protocol 2 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 78.26 LEX 80.54 0.0000
MOC 91.30 0.0000 MOC 91.61 0.0000 0.7173
MUM 73.72 0.0000 0.0000 MUM 78.03 0.0000 0.0000 0.0000
SMC 81.78 0.0000 0.0000 0.0000 SMC 83.94 0.0000 0.0000 0.0000 0.0000

protocol 3 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 68.80 LEX 71.15 0.0000
MOC 80.00 0.0000 MOC 81.35 0.0000 0.0000
MUM 66.17 0.0000 0.0000 MUM 70.65 0.0000 0.0000 0.0000
SMC 72.44 0.0000 0.0000 0.0000 SMC 74.40 0.0000 0.0000 0.0000 0.0000

Table 6.19: Summary of system component interactions for the utility of the focal agent (seller)

Finally results vary only up to five utility points for different concession strategies, with passive

concession making achieving significantly higher individual utility for the focal party than active

concession making in protocol 2 and protocol 3 – with exception of MOC, for which differences

between MOCact and MOCpas in protocol 2 are not significant. Note that in protocol 1 there

are no significant differences between active and passive concession making as the protocol allows

no interruption, and therefore it adds to the verification of the simulation program that different

mechanisms to interrupt offering do not influence the results for a given offer generation strategy

in this protocol.

The tendencies observed for the utility of the represented party also hold true for the utility of

the opponent. The offer generation strategy has the strongest effect on the opponent’s utility of

an agreement – at least for protocol 1 and protocol 2, followed by the interaction protocol

used in the automated negotiation system, and the concession strategy of the software agent.

The effects of the interaction protocol are merely the same for the own and the opponent’s utility

– i.e. automated negotiation systems operating under protocol 2 achieve higher utility than

systems operating under protocol 3 and protocol 1 – as can be derived from Tables C.14 to

C.16 in Appendix C – where differences are significant at p < 0.001 for all comparisons except

that MUM software agents achieve agreements of similar utility for the opponent in protocol 1

and protocol 2 and so differences are insignificant (p = 1.0000 for MOCact and p = 0.3969 for

MOCpas respectively).



6.4. Agent features and agent-protocol interaction 137

protocol 1 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 65.38 LEX 65.45 1.0000
MOC 49.45 0.0000 MOC 49.49 0.0000 1.0000
MUM 72.01 0.0000 0.0000 MUM 72.17 0.0000 0.0000 1.0000
SMC 62.07 0.0000 0.0000 0.0000 SMC 62.14 0.0000 0.0000 0.0000 1.0000

protocol 2 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 73.82 LEX 75.46 0.0000
MOC 74.22 1.0000 MOC 74.60 0.1135 1.0000
MUM 73.38 1.0000 0.2303 MUM 73.99 0.0001 1.0000 0.2805
SMC 74.79 0.0408 0.9003 0.0000 SMC 75.81 1.0000 0.0081 0.0000 0.0204

protocol 3 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 69.63 LEX 70.38 0.0002
MOC 62.36 0.0000 MOC 62.98 0.0000 0.0047
MUM 71.95 0.0000 0.0000 MUM 71.49 0.0000 0.0000 0.0379
SMC 68.03 0.0000 0.0000 0.0000 SMC 68.55 0.0000 0.0000 0.0000 0.0444

Table 6.20: Summary of system component interactions for the utility of the opponent (buyer)

It is intuitive that software agents achieving better agreements in automated negotiations for the

focal negotiator they represent consequently cause lower utility of this agreement to the opponent,

which can also be seen from Table 6.20 for protocol 1 and protocol 3. The order of software

agents achieving higher utility for the opponent is the inverse of the order of software agents

achieving high utility for the focal party – i.e. TFT – MUM – LEX – SMC – MOC. Note that the same

result was found when comparing the performance of software agents from the perspective of the

opponent’s utility of the agreement for all protocols in Section 6.3. However, for protocol 2

both the offer generation strategy as well as the concession strategy of the focal party’s software

agents have only minor influence on the utility of the opponent, so that in this protocol the

software agent chosen to represent the opponent seems to be of higher influence.

The concession strategy of the software agent representing the focal party has minor influence on

the opponent’s utility score of an agreement. Comparisons for MOC and MUM in protocol 2 show

only insignificant differences between different concession strategies for these offer generation

strategies, in all other cases passive concession making of the focal software agents leads to

higher utility to the opponent than active concession making (p < 0.05 at least). That there are

no differences between act and pas software agents in protocol 1 is caused by the mechanisms

imposed by this protocol, which do not allow offering interruption so that these results are

not surprising, but add to the verification of the simulation program. That passive concession

making by the focal software agents benefits the opponent is surprising if one considers that this

concession strategy causes lower and fewer concessions compared to active concession making,

however, it may result from the fact that many negotiation problems that would lead to inferior

agreements are already terminated or broken off before an agreement is achieved as passive

concession making strategies reach a lower proportion of agreements in the simulation runs.

The contract imbalance – as difference between the parties utilities of the agreement – strongest

differs between protocol 1 and the other two protocols with differences between the same agents

of up to 24 utility points – for software agents following the MOC strategy in offer generation.

Furthermore, though differences are not so large, contract imbalance is significantly larger for

many software agents if combined with protocol 3 than with protocol 2 (p < 0.001 for MOC,
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SMC, TFT, and the active conceding version of MUM as can be seen from Tables C.17 to C.19 in

Appendix C).

protocol 1 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 24.67 LEX 24.99 1.0000
MOC 35.49 0.0000 MOC 35.46 0.0000 1.0000
MUM 31.54 0.0000 0.0000 MUM 32.71 0.0000 0.0000 1.0000
SMC 28.37 0.0000 0.0000 0.0000 SMC 28.57 0.0000 0.0000 0.0000 1.0000

protocol 2 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 15.33 LEX 15.48 1.0000
MOC 18.84 0.0000 MOC 18.74 0.0000 1.0000
MUM 16.69 0.0000 0.0000 MUM 16.45 0.0002 0.0000 1.0000
SMC 16.04 0.9188 0.0000 0.0040 SMC 15.99 1.0000 0.0000 0.1939 1.0000

protocol 3 act pas act-pas

⊘ LEX MOC MUM % LEX MOC MUM

LEX 14.97 LEX 14.95 1.0000
MOC 19.31 0.0000 MOC 19.94 0.0000 0.0009
MUM 18.38 0.0000 0.0000 MUM 16.54 0.0000 0.0000 0.0000
SMC 16.17 0.0000 0.0000 0.0000 SMC 16.15 0.0000 0.0000 0.0803 1.0000

Table 6.21: Summary of system component interactions for the contract imbalance

Differences within a protocol for different offer generation strategies are in a range of four to ten

utility points and are higher in protocol 2 than in the other two protocols. While the ordering

of the offer generation strategies is consistent with respect to LEX, SMC, MUM, and MOC, which

achieve agreements of increasing contract imbalance – and thereby of decreasing fairness – in

this order, TFT is on the first place of this ranking in protocol 1 (achieving agreements of lowest

contract imbalance in this protocol) but only at the bottom of the ranking in protocol 2 and

protocol 3.

The concession strategy of the software agents, on the other hand, only matters for some offer

generations strategies in protocol 3, while having no significant influence on the contract im-

balance in other protocols, where MOC agents cause agreements of significantly higher contract

imbalance if used with a passive concession strategy and MUM agents cause agreements of signifi-

cantly higher contract imbalance if used with an active concession strategy (p < 0.001 for both

software agents).

The lower contract imbalance in protocol 2 and protocol 3 results from the possibility to

interrupt offering these protocols provide by enabling the software agents to send quit and

reject messages, respectively, which avoids unfavorable and therefore imbalanced agreements.

The variance in the ranking of TFT compared to the other software agents can be explained by

its quite stable contract imbalance – achieved by reciprocating concession of the opponent – over

all protocols. Contract balance is 23.05 points in protocol 1, 27.28 points in protocol 2, and

25.15 points in protocol 3 for TFT and therefore varies much less between protocol 1 and the

other protocols than observed for the remaining software agents, as can be derived from Table

6.21 and Tables C.17 to C.19 in Appendix C. So TFT performs best with this stable contract

imbalance in protocol 1 concerning this outcome measure, but on the other hand worst in the

other protocols where this protocol-stable result is below that observed for LEX, SMC, MUM, and

MOC.
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6.5 Sensitivity analysis

The factors and factor level combinations discussed in the previous sections of this chapter – i.e.

the different interaction protocols and the software agents, consisting of different offer generation

and concession strategies – are components of the automated negotiation system, and as such

under the control of the user or the system designer – at least partly in case of the interaction

protocol, which has to be chosen jointly by both negotiation parties. To perform simulation runs

and analyze the output of the automated negotiation systems for our six outcome measures we

used the negotiation problems of human negotiation experiments as input to these systems. As

the same negotiation problems were used as input for all 243 treatments this factor was held

constant in the analysis of the components and therefore the basis for comparison was the same

in all comparisons. However, it is of interest how the systems performance depends on different

negotiation problems, i.e. on the uncontrollable input (Kleijnen, 1995).

We perform sensitivity analyses to address this question by means of plotting and inspection

(Kleijnen, 1995) of the results in the outcome measures achieved by different automated negoti-

ation system components in different negotiation problems – see Figures 6.3 to 6.8. For different

system components – as columns in the figures – we plot the integrativeness of the 2065 negotia-

tion problem (see Chapter 5) on the x-axes in all plots and the value achieved for the six outcome

measures – averaged over all simulation runs with this negotiation problem and system compo-

nent – each on one y-axis of the six plots. Moreover an ordinary least squares fitted regression

line is included in the smoothed scatter plots to indicate the general direction of the relationship

between input and output for the different system components.

As can be seen from Figure 6.3, where the relation between the performance in the six outcome

measures and the integrativeness of the negotiation problems is illustrated for the three interac-

tion protocols, simulation output is sensitive to the input to the automated negotiation system,

and the directions of these relations differ for some outcome measures and interaction protocols.

While protocol 1 is totally insensitive to the negotiation problem concerning the proportion

of agreements – as this protocol forces agreements in all settings and therefore also for all ne-

gotiation problems irrespective of their integrativeness – in protocol 2 and protocol 3 the

proportion of agreements increases with the integrativeness of the negotiation problems. Fur-

thermore this positive relation is much stronger for protocol 3 than for protocol 2. The same

positive relation can be observed for the proportion of Pareto-optimal agreements – which is not

further surprising as they are a proportion of the agreements – while the integrativeness of the

negotiation problems has merely no influence on the proportion of Pareto-optimal agreements in

protocol 1, this proportion increases with more integrative negotiation problems in protocol

2 and protocol 3. Again in protocol 3 the measures are stronger positively correlated than in

protocol 2. These results indicate that it is easier to find agreements in automated negotiation

when there exist more possible agreements in the negotiation problem that allow for mutual

benefit over purely distributive outcomes.

Interestingly the minimal distance to the Pareto frontier in simulations with protocol 1 start at

a high level (of about 10 utility points) compared to the other protocols and then decreases with

more integrative negotiation problems, while the values for this outcome measure slightly increase

with the integrativeness in protocol 2 and protocol 3. This indicates that the latter protocols
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achieve agreements close the Pareto frontier no matter how integrative the negotiation problem

is, while protocol 1 depends on integrative negotiation problems to achieve results close to the

Pareto frontier. This result can be explained by the mechanisms of the protocols. Note that

this outcome measure, in contrast to the proportion of Pareto-optimal agreements, bases only

on the simulation runs that actually reached an agreement. Given this, protocol 1 provides

no means to circumvent inferior agreements as it does not enable the software agents to send

quit or reject messages and thereby forces automated negotiations to reach agreements even

if the negotiation problem only allows for inferior agreements. As this messages are available for

software agents in protocol 2 and protocol 3, automated negotiations in negotiation problems

that only allow for inferior agreements can be broken of and such agreements can be avoided

consequently.

The utility of an agreement to the seller and the buyer increases with the integrativeness of the

negotiation problem in all three protocols, which is intuitive as it becomes easier to find agree-

ments of higher utility if more such solutions exist that afford higher utility than distributive

solutions. Given this increase in utility of an agreement for both sides with more integrative

negotiation problems one might assume contract imbalance to be quite similar regardless of the

negotiation problem. However, the interaction protocols differ considerably concerning the fair-

ness of the agreements they can reach for negotiation problems of different integrativeness. While

protocol 1 achieves fairer outcomes with higher integrativeness of the negotiation problem –

however on a relatively higher level of contract imbalance compared to the other protocols –,

there is no such influence of integrativeness in protocol 2, and contract imbalance (unfairness)

even increases with the integrativeness of negotiation problems in protocol 3. This indicates

that the possibility to reject unfavorable offers of the opponent (without immediately breaking off

the negotiation) in protocol 3 leads to more (Pareto-optimal) agreements when integrativeness

is higher but these agreements are unbalanced and favor one side. In protocol 2 on the other

hand the immediate break off of negotiations if the offering is to be interrupted rules out many

agreements in advance so that only the negotiation problems that allow for balanced agreements

remain. Finally in protocol 1, where agreements are mandatory, parties handicapped concern-

ing their preferences have no means to avoid unbalanced agreements, but inferior preferences

over the negotiation problem compared to the other party are not likely to be present if integra-

tiveness is high and therefore the contract imbalance reduces with more integrative negotiation

problems.

As can be seen from Figures 6.4 to 6.8, where the performance of different software agents (in

all protocols) in the six outcome measures is illustrated for different values of the integrativeness

of the negotiation problem, the integrativeness also influences the performance of the software

agents, and strengths and directions of the relationships differ in some cases. Integrativeness of

negotiation problems favors the proportion of agreements regardless of the software agent used

to represent a focal party, which is the seller for these analyses, in the automated negotiation

system. This positive correlation is slightly stronger for the actively conceding versions of the

software agents than for the passively conceding ones.8

8Note that all observations start at 33% reached agreements as lower bound due to protocol 1 which forces
agreements in all simulation runs.
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Figure 6.3: Sensitivity analysis – protocols
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More integrative negotiation problems also go along with higher proportions of Pareto-optimal

agreements and lower distances to the Pareto frontier for all agents. No differences can be

identified here between actively and passively conceding versions of software agents following the

same offer generation strategy, but the offer generation strategies have an impact on the strength

– not the direction – of this correlation. While the relations are quite strong for MOC, SMC, and

MUM offer generation – which as mentioned generate offers more systematically – it is weaker for

TFT and especially LEX – which bases offer generation on a lexicographic ordering of possible

solutions.

Just like for the interaction protocols, also for the different software agents representing the

seller as focal party in the automated negotiations higher integrativeness results in agreements

of higher utility to both the focal party (seller) and the opponent (buyer). The strength of these

relationships again differs for the software agents in negotiation problems of varying integrative-

ness, especially due to the offer generation strategy of the software agents, while the concession

strategy causes only marginal differences between the performance of software agents following

the same offer generation strategy in their decision making. Not surprisingly strategies that

reach agreements of higher utility for the party they represent, even in negotiation problems

with low levels of integrativeness, only show a weak positive relationship to integrativeness and

therefore the utility only slowly increases with more integrative negotiation problems (MOC and

LEX), the agreements achieved by these software agents simultaneously provides lower utility to

the opponent, which is stronger positively correlated to the integrativeness of the negotiation

problem – especially for MOC as can be seen from Figure 6.5. On the other hand strategies that

achieve agreements of low utility in less integrative negotiation problems like MUM or SMC show a

stronger positive correlation to integrativeness, achieve better agreements from the perspective

of the opponent even for lower levels of integrativeness of the negotiation problems, which then

only increases slowly with more integrative problems. The combination of these effects leads to

a reduction of contract imbalance with higher integrativeness of the negotiation problems.

Only TFT achieves results remarkably different from the tendencies found for the other software

agents. Starting with medium level of own utility of agreements and about the same level of

opponent utility, the own utility is merely independent of the integrativeness of the negotiation

problem, while the opponent’s utility increases with it and therefore also the contract imbalance

increases with the integrativeness of the negotiation problem, in favor of the opponent i.e. the

TFT-agent achieves the same utility regardless of the integrativeness of the negotiation problem,

while the opponent does better. These results can be explained with the offer generation of TFT,

which generates offers that fully reciprocate the opponents previous concessions – while all other

offer generation mechanisms base offer generation on some systematical ordering of the possible

solutions –, which seems to be too generous in integrative negotiation problems. As discussed the

source of integrativeness is the compatibility of the preferences of the parties – due to different

weights for issues, issues with the same best option, non-monotonic or concave partial utility

functions, etc. In such integrative negotiation problems the perceived concession – measured

in own utility – is likely to be greater than the actual concession – measured in the opponents

utility – note that these two concession magnitudes coincide in purely distributive negotiation

problems – and fully reciprocating this perceived concession therefore favors the opponent.
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Figure 6.4: Sensitivity analysis – LEX agents
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Figure 6.5: Sensitivity analysis – MOC agents
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Figure 6.6: Sensitivity analysis – MUM agents
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Figure 6.7: Sensitivity analysis – SMC agents
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6.6 Discussion

This section discusses the outcomes of our simulation study presented in the previous sections of

this chapter with respect to our research questions: (i) the comparison of automated negotiation

systems to human negotiation, and (ii) the comparison of automated negotiation systems among

each other, both for various outcome measures covering different aspects of the negotiation

outcome. Furthermore we address interesting results of the simulation study in more detail,

especially the ’role-dependent’ performance of automated negotiation found in Sections 6.1 and

6.2.

6.6.1 Comparison to the benchmark

As mentioned in the introduction to this dissertation automated negotiation will only be em-

ployed if there are benefits of doing so compared to the currently used transaction mechanism

(Blecherman, 1999). While for other applications other benchmarks are appropriate, the basis

for our simulation study are the negotiation problems – resulting from the preferences of the

parties over the negotiation object – elicited from human subjects in negotiation experiments.

Therefore, the results of these negotiation experiments build the benchmark for evaluating the

automated negotiation systems proposed and simulated in this study. The outcome measures

for which we do this comparison cover various aspects of the negotiation outcome, as different of

these aspects can be of importance to different negotiators and it is not clear in advance which

of these measures is more important. These outcome measures are the proportion of agree-

ments reached, the proportion of Pareto-optimal agreements reached, and in case an agreement

is reached: the minimal distance of the agreement to the Pareto frontier, the individual utility

of the agreement to the parties, and the contract imbalance of the agreement as a measure of

fairness.

We have seen in Section 6.1 that it is not easy at all for automated negotiation – at least

with the systems proposed in this study – to outperform human negotiation, though this is a

common and often implicit assumption of many researchers in the field of automated negotiation

as discussed in the introduction. Of our 243 automated negotiation systems – or treatments

– which result from all possible combinations of the three interaction protocols and the nine

software agents – embodying different offer generation and concession strategies – for the two

parties, and for identical negotiation problems, only 130 (53.50% of all treatments) reached a

higher proportion of agreements than humans did in experiments. 90 automated negotiation

systems (37.04%) reached a higher proportion of Pareto-optimal agreements, and the minimal

distance to the Pareto frontier was smaller in 79 (32.51%) treatments. Furthermore the utility of

the agreement to the seller was higher than the utility sellers achieved in human negotiations for

154 (63.37%) automated negotiation systems, but higher for the buyer only with 127 (52.26%)

system configurations. Contract imbalance was smaller in automated negotiation – and therefore

fairness larger – in 112 (46.09%) of the 243 treatments.

While a good share of the systems achieved better results than humans in negotiation experiments

in one or several outcome dimensions, only three automated negotiation systems were better in

all outcome dimensions (at p < 0.05 – see Table C.1 in Appendix C). These three systems all

consisted exclusively of software agents, for representing both parties in the negotiation, that
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follow monotonic concession making – proposed by Kelley (1966) – in their offer generation

(MOC) i.e. they lower the demanded utility level to the next lower one only if all offers of this

utility level were already proposed and not accepted. Furthermore, at least one of the software

agents has to be of type MOCact, which means it has to follow an active concession strategy and

therefore make first concession steps if the opponent reciprocated past concessions. Finally, the

interaction protocol in all three systems was protocol 3, which enables the software agents to

reject offers of the opponent and thereby elicit a new offer to avoid exploitation or unfavorable

agreements, however, simultaneously risking a termination of the negotiation if the opponent

also send a reject message.

So these are very specific requirements for an automated negotiation system if it is to outper-

form human negotiation in all six outcome measures considered in this study. However, they

are understandable, the negotiation process resulting from such a system configuration features

systematic offering of all possible solutions with decreasing utility to the party making the of-

fer and rejecting offers if they are considered to provide a too low concession. This rejection,

however, does not cause immediate break off of the negotiation but the software agent following

the active concession strategy is likely to propose a new offer that might build the basis for

continuing the negotiation, which increases the prospects of reaching an agreement. As utility

levels are only reduced marginally – if at all – between offers, reached agreements are likely to

be Pareto-optimal or at least very close to the Pareto frontier, be of high utility to both parties

and therefore also have low contract imbalance. As mentioned in Section 6.1 the consequence

of this negotiation process, induced by the three automated negotiation systems, are up to 10%

(30%) more (Pareto-optimal) agreements, that afford about 5 more utility points to both parties,

are 5 points closer to the Pareto frontier on average, and have a twelve points lower contract

imbalance compared to human negotiation.

While the other systems did not achieve better results than humans in all outcome measures,

most of them at least managed to achieve better results in some measures, however at the cost

of being inferior in others. Table C.1 in Appendix C reveals some consistent patterns of these

trade-offs between different outcome dimensions, which are the topic of the subsequent section.

6.6.2 Design trade-offs for different outcome dimensions

Trade-offs between different outcome dimensions in negotiations are well documented by em-

pirical studies for traditional – face-to-face or electronically mediated – negotiations between

humans, e.g. concerning the effectiveness of negotiations – i.e. the probability to reach an

agreement – and the efficiency of agreements – i.e. the probability that reached agreements

are Pareto-optimal. Aspects increasing the prospects of a favorable agreement – if an agree-

ment is reached –, like for instance a though approach to negotiation, high opening offers, or

small concession rates, simultaneously decrease the prospects to reach an agreement at all (e.g.

Pruitt, 1981; Zartmann, 2002). We call this fundamental trade-off between outcome dimensions

in negotiations – as sometimes done in literature – the negotiation dilemma.

After having presented and discussed outcomes for the different components of automated ne-

gotiation systems and the interactions of these components in sections 6.2 to 6.5 this section

changes the perspective and primarily focuses on the outcome measures. Given the prevalence

of the negotiation dilemma in traditional negotiations, it is obvious to assume it also for auto-
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mated negotiation, and not much surprising that we also found design trade-offs concerning the

configuration of an automated negotiation system with respect to different outcome dimensions

in negotiations.

In general – as can be seen from Section 6.4 where we compared the interaction of components and

the effect sizes – components of the automated negotiation system influencing the proportion of

agreements – and thereby also the proportion of Pareto-optimal agreements as they are a share of

the total agreements –, which were above all the interaction protocol and the concession strategy,

only have minor or no influence on the quality of the agreement reached, measured on various

dimensions – minimal distance to the Pareto frontier, individual utilities of the agreement, and

contract imbalance –,, which is mainly influenced by the offer generation strategies the software

agents follow.

For a high proportion of agreements the configuration of the automated negotiation system should

consist of protocol 1, which neither allows quit nor reject messages of the software agents

and therefore results in an agreement in each simulation run irrespective of the software agents

applied. If protocols other than protocol 1 are used, however, it is possible that automated

negotiations end without agreement, if a quit message is sent by one software agents in protocol

2, or if two subsequent messages of the software agents were of the type reject in protocol 3,

which negatively impacts the proportion of agreements reached especially for protocol 2. In this

case the software agents should follow active concession making strategies, making first concession

steps if the opponent reciprocated previous ones, which obviously increases the prospects of

reaching an agreement when this is not mandatory. The offer generation strategies were found

to be of minor influence on the proportion of agreements only, but last-cost-issue concession MUM

and full reciprocation of perceived concessions of the opponent TFT, both making more generous

offers to the opponent, demonstrated to reach more agreements than the other offer generation

mechanisms, which explore the set of possible agreements more systematically and resist in

making too large concessions.

Given an agreement is reached the quality of this agreement can be studied for various aspects

of the outcome. The components of the automated negotiation system influencing the quality of

an agreement, however, are quite different from those influencing the existence of an agreement.

For the minimal distance to the Pareto frontier, the individual utility of the agreement to the

parties, and contract imbalance it was found that the offer generation strategy of the software

agents has major influence, followed by the interaction protocol, and only little effects were

found for concession strategies of the software agents. Moreover, within these components also

the options to chose for achieving high-quality agreements considerably differ from those to be

chosen for a high proportion of agreements. These two observations imply that just like for

traditional negotiation also for the configuration and design of automated negotiation systems

major trade-offs between outcome aspects of the negotiation – i.e. the negotiation dilemma –

exist.

protocol 2, which accounts for the lowest proportion of agreements, achieves agreements closest

to the Pareto frontier, of highest utility to the parties, and lowest contract imbalance. In these

outcome measures it is followed by protocol 3, which achieves nearly the same results, which

indicates that the possibility to interrupt the offering sequence, which is possible in these proto-

cols by sending quit and reject messages, increases the quality of agreements reached in these
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outcome measures. However at the cost of less agreements, especially for protocol 2, where the

rigid interruption rule causes a break off of negotiations often and leads to agreements only in

about 20% of the simulation runs. protocol 1, on the other hand, achieves agreements in all

simulation runs but of inferior quality in these outcome measures. The concession strategy of the

software agents has not so much influence on the quality of the agreement concerning its Pareto

optimality, utility to the parties, and contract balance. In most of the cases where it was found

to have significant influence – albeit the lower effect sizes – passively conceding software agents

achieve outcomes of higher quality than actively conceding software agents, while it is opposite

for the proportion of reached agreements.

Finally concerning the offer generation strategies, we already mentioned, that they have the major

influence on the quality of the agreement. For the minimal distance to the Pareto frontier the

offer generation strategies that propose offers in a more systematic fashion (MOC and SMC) achieve

better performance than those found to reach a high proportion of agreements (MUM and TFT).

Furthermore, concerning the other quality measures of an agreement – individual utility to the

parties and contract imbalance – additional trade-offs emerge. In case an agreement is reached

it is higher for the focal party (lower for the opponent party) if the focal party is represented

by – in this order – MOC, SMC, LEX, MUM, and finally TFT. As the ordering is exactly inverse for

the opponent’s utility of an agreement a major trade-off can be identified for the individual

utilities of the parties. Moreover, as those offer generation strategy lying in the middle of these

two rankings (LEX and SMC) of agents for agreements of high utility to the own party and the

opponent, achieve agreements of lowest contract imbalance the optimal software agent to use if

fairness is of importance also differs from those to use if the party’s utility of an agreement is

important (MOC) or if the opponent’s utility of an agreement is important (TFT).

Summarizing, no system configuration is superior in all aspects of the outcome of negotiations,

but the optimal system configuration has to be determined according to the intentions of the

users and the purpose of the system. However, if we are to suggest a system configuration in

general, we opt for systems consisting of protocol 3 and MUM agents – MUMact if reaching an

agreement is critical or MUMpas if the quality of agreements reached is of higher importance.

Though such a system not achieves best performance in all outcome measures, in our opinion

the lower proportion of agreements is outweighed by the higher quality of the agreements, and

at least in comparison to human negotiation these systems achieve higher performance in all

outcome dimensions as discussed in the previous section.

6.6.3 Role ’dependence’

In Section 6.1 and 6.2 we found that the individual utility of an agreement is higher for the seller

party than for the buyer party. In the comparison of the performance of different automated

negotiation system configurations (treatments) to the results of the negotiation experiments

between human subjects (Section 6.1) 154 treatments (63.37% of all 243 treatments) achieved

higher individual utility for the seller side, while only 127 treatments (52.26%) did so for the

buyer side. This is interesting as the set of treatments is symmetric for the two parties – i.e.

besides the 27 systems where the same type of software agent is used for both parties, for each

system where the seller is represented by a software agent of type A and the buyer by a software

agent of type B, there exists another system in the set of treatments where the seller uses agent
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B and the buyer agent A. Furthermore, even in the setting where the same software agents are

used to represent the buyer and the seller side – with exception of combinations of TFT agents –

the same software agent achieves higher individual utility, in case of an agreement, for the seller

than for the buyer on average. Which is surprising as the decision making of the software agents

is by no means influenced by the party they represent, but only by the preferences of the party

over the negotiation object and the actions of the opponent – as can be seen from the discussion

in Chapter 4 and the source code provided Appendix A. As the components of the automated

negotiation system do not distinguish between roles, the only source of the differences in the

individual utility to the parties can be the negotiation problem, i.e. the seller side in general

seems to have preferences over the negotiation object that allow for more beneficial agreements to

them than the buyer side has, which leads in the combination of these preferences to negotiation

problems that favor sellers.

The seemingly ’role dependent’ performance of the software agents with respect to the individual

utility of agreements for the party they represent is even more disturbing when looking at the

performance of the parties in the negotiation experiments between human subjects, where one

cannot observe such a difference in individual utilities of the agreement. In the negotiation

experiments the average utility of agreements to the sellers is 67.93 and that to the buyers

67.42, without significant difference between the parties according to a Wilcoxon rank sum

test (W = 1051174 and p = 0.5624 for n = 1441). However, note that these results are in

contradiction to previous results of negotiation experiments with students as subjects, where

normally the seller side performs worse than the buyer side (e.g. Bazerman et al., 1985). It

is argued that the comparative inferior performance of sellers in such negotiation experiments

results for the familiarity of students of being in the position of a buyer, while students often

have no negotiation experience in the role of a seller. Though the majority of the subjects in

the negotiation experiments on the ’Itex-Cypress’ case conducted with the negotiation support

system Inspire were students, in these experiments the seller side did not perform worse than

the buyer side, but no significant differences are found for the average utility of agreements to

the two parties. An explanation of the source of this difference of the ’Itex-Cypress’ experiments,

which build the basis for the simulations in this dissertation, to other negotiation experiments

is the way preferences are determined in the experiments, which differs between negotiation

experiments with Inspire and the majority of the experimental designs of other studies.

In most negotiation experiments the preferences of the parties are imposed to the subjects in

form of point schemes, indicating the partial utilities of the available options in the issues under

negotiation. These point schemes typically are symmetrical for the parties, unless differences

in the preferences of the parties are under investigation, to reduce outcome variance, establish

the negotiation problem of interest, and make it easier to compare the individual performance

of parties in one negotiation experiment and across different negotiation experiments (Croson,

2005). For such experiments it is found that student subjects perform worse as sellers than

as buyers. However, in negotiation experiments conducted with Inspire the preferences are

not imposed to the subjects but elicited from the subjects by the negotiation support system,

so they need not be symmetric for the parties. And actually they are not symmetric as the

average utility over all 180 possible solutions for the ’Itex-Cypress’ case was significantly higher

for the seller side (55.58) than for the buyer side (50.78) – according to a Wilcoxon rank sum test

W = 287633 and p < 0.0001 for n = 2065. Also the standard deviation of the utility of possible
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solutions was significantly smaller according to the preferences of the sellers (21.51) than it was

the case for the buyers (21.96), which indicates that the utility values were more concentrated

around this higher average utility for the seller, while they were more spread for the buyers –

according to a Wilcoxon rank sum test with W = 1971819 and p < 0.0001 for n = 2065. The

worse performance of student subjects representing the seller side in the negotiation experiments

on the ’Itex-Cypress’ case is mediated by their systematically better preferences.

This discussion also explains the seemingly ’role-dependent’ performance of the software agents

concerning the individual utility of an agreement to the parties. Actually performance does not

depend on the party represented in the negotiation, but only depends on the preferences of the

represented party over the negotiation object – and the behavior of the opponent software agents

–, which favored better outcomes for the seller side than for the buyer side in the negotiation

problems used as input to the simulation of automated negotiation systems, and therefore also

better individual performance for the seller side was reached in automated negotiation.

Summarizing this discussion, we find, in line with Blecherman (1999), that a more powerful,

experienced, or creative negotiator – in our setting the buyer side in general, where the subjects

have more experience in negotiations in this position – is worse off in automated negotiation

compared to traditional negotiation between humans, while the less powerful, experienced, or

creative negotiator is better off. Furthermore software agents and the outcomes of automated

negotiations are sensitive to the underlying preferences of the parties and the resulting negotiation

problem – as also can derived from the sensitivity analysis in Section 6.5 –, which is actually

desirable. It also indicates that there will be resistance to the use of automated negotiation

instead of traditional negotiations between humans if there exist differences in the parties power,

negotiation experience, creativity, etc. – which is likely to be the case – as the party in the better

position cannot exploit its beneficial situation, unless automated negotiation can compensate for

this loss by lower transaction costs or even better outcomes – which is possible as discussed in

Section 6.6.1. This, together with the possibility to determine preferences directly and objectively

from the context and domain of the negotiation – and not through time-consuming elicitation

from the human user – maybe also renders coordination of agents in autonomous systems the

more appealing area of application of automated negotiation than electronic business.





Chapter 7

Conclusion

The motivation of this dissertation are the prospects of the use of automated negotiation for elec-

tronic business or coordination of software agents in autonomous systems. Automated negotia-

tion is argued to achieve better outcomes than negotiation between humans, at lower transaction

cost, and enabling higher volumes and new sorts of transactions in electronic business. Through

its automation the mechanism of negotiation becomes available to autonomous systems, thereby

improving the performance of these systems when negotiation is used for agent coordination and

cooperation instead of existing often simplistic and rigid interaction mechanisms.

However, currently no operative systems for automated negotiation are implemented and system

designers rely – besides the use of analytical models for very specific problems – on simula-

tion studies to propose and evaluate configurations for automated negotiation systems. We

systematically reviewed the state of the art in simulation of automated negotiation – along its

main components: (i) negotiation problem, (ii) interaction protocol, and (iii) software agent

strategies – based on studies identified by a keyword search in scientific databases. This review

revealed deficiencies of existing approaches concerning their implementation in operative systems

and practical applicability for all components of automated negotiation. The central research

question of this dissertation therefore was to propose, simulate, and evaluate different system

configurations for automated negotiation systems in a first attempt to address the identified

deficiencies of existing approaches.

Concerning the negotiation problems used in the reviewed studies we argued that they often fell

short in representing the potential complexity of real negotiation problems by assuming simplistic

preference functions and in most cases considering only one negotiation problem to evaluate

different software agent strategies. Addressing these concerns, we used the preferences elicited

from subjects in negotiation experiments as input for the software agents in our study. The

multiple-issue negotiation object for which the preferences were elicited and the utility functions

resulting from this elicitation procedure combined to a variety of realistically complex negotiation

problems as basis for our study. The use of the negotiation problems from negotiation experiment

between human subjects also enabled the comparison of the results of the experiments to the

results of the simulation and thereby to test the implicit assumption that automated negotiation

can outperform human negotiation – a sine qua non for the actual application of automated

negotiation in practice.
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As the interaction protocol of an automated negotiation system not only builds the basis for but

also restricts the interactions of software agents, our concern was that current studies merely

only use different versions of one single interaction protocol, that restrictively forces the software

agents to alternately propose offers, often without a possibility to endogenously decide to break

off the negotiation, but the termination of the negotiation is determined exogenously in form

of deadlines or reservation levels the software agents have to respect. We therefore focused

on protocols – derived from game theoretic literature on mechanism design – that enable the

temporary or permanent interruption of the strategy the software agent otherwise would follow,

which allows software agents to circumvent exploitation or unfavorable agreements.

Concerning the software agents currently used in simulations of automated negotiations, we

argued that these are not readily applicable to actual automated negotiations – i.e. for an imple-

mentation in operative systems – as they ignore the openness of the media over which automated

negotiations are conducted as well as the low importance of time in automated negotiation due

to its fast proceeding. Time-based concession functions are not suitable due to the time insensi-

tivity of automated negotiation. Furthermore, the possible variety and complexity of negotiation

problems and opponent strategies in automated negotiation causes problems for software agent

strategies basing on evolutionary computing or learning mechanisms. On the one hand the

many trials against the same opponents for the same negotiation problems, necessary for a good

performance of software agents developed by means of evolutionary computing, are likely not

possible. On the other hand the models of the opponent, learning agents hold in mind and

update according to the course of the negotiation to economize on learned parameters of these

models, likely are not able to satisfactory cover the variety of (novel) opponent agents. Conse-

quently we focused on the class of continuous concession strategies and implemented rule-based

rather deterministic algorithms proposed in negotiation literature but not used in simulations

yet. These strategies neither make offers dependent on time, nor model their opponent or try

to learn something about the opponent’s preferences or strategy, but base decision making in

negotiation solely on the preferences of the party they represent and the behavior of the op-

ponent and are therefore (re)usable for various negotiation problems with changing opponents.

The proposed software agents in general consist of two parts the offer generation strategy, which

determines the next offer to propose, and the concession strategy, which given the history of

the negotiation, determines whether to propose the generated offer or to interrupt the offering

strategy if this is enabled by the protocol.

We used a tournament-based simulation approach and let all combinations of software agents

in all protocols – which constituted the 243 system configurations or treatments of our study –

negotiate in three replications – to account for stochastic influences on the simulation outcome

– of all negotiation problems elicited from the subjects of the negotiation experiments, which

resulted in a full factorial design. The protocol and the two software agents representing the

two parties together with the negotiation problem as input to the system fully parameterize a

simulation run. The output of the simulation then was analyzed for several outcome measures to

cover various aspects of the negotiation outcome, which were the proportion of (Pareto-optimal)

agreements, and for those simulation runs that reached an agreement, additionally as measures

of the quality of the outcome, the minimal distance to the Pareto frontier, the individual utility

of the agreement to the parties, and the contract imbalance as a measure of fairness of the

agreement.
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The evaluation of the results of the simulations indicated that the negotiation dilemma found in

traditional negotiation – i.e that aspects favoring an agreement negatively effect the quality of

the agreement – also could be observed for the components of automated negotiation systems.

The interaction protocol and the concession strategies of the agents which had been found to

have high influence on the proportion of agreements reached, only had low influence on various

quality measures of the outcome, but here the offer generation strategy of the software agents

mattered more. Additionally the different options available in the components in general op-

positely influenced the proportion of agreements and the quality of reached agreements. Given

these fundamental trade-offs between the different outcome dimensions, it is not surprising that

most system configurations only managed to outperform the benchmark – the result of the nego-

tiation experiments with human subjects – only for some outcome measures but were inferior in

others. Only a set of systems, consisting of an interaction protocol that enables to reject unfa-

vorable offers and software agents that systematically propose offers of monotonically decreasing

utility representing the parties in the negotiation – at least one of them making first concession

steps if the opponent reciprocated previous concessions –, though they were not the best in all

outcome measures, performed comparably well and managed to significantly outperform human

negotiations in all outcome measures.

After this summary of the dissertation’s results the remainder of this section deals with future

research on (simulation of) automated negotiation, which necessarily has to be address before the

insights from simulation studies on automated negotiation can find their way in implementations

of operative systems. In our opinions such future research could cover the limitations of this

study, further develop the components proposed, or proceed to the next steps on a research

agenda for automated negotiations.

A first limitation to the generalizability of the results of this dissertation results from the input

used for the simulations. Though the elicited preferences combined to a variety of different

negotiation problems all negotiation problems deal with the identical negotiation object of the

’Itex-Cypress’ negotiation case. The structure of the negotiation object – i.e. the number of

issues under negotiation and possible options for settlement within the issues –, however, might

influence the performance of the software agents. Therefore it is necessary to investigate the

existence, strength, and direction of effects of different negotiation objects on the performance of

automated negotiation systems. A further limitation of the validity of the results emerges from

the fact that the majority of the subjects in the negotiation experiments were students. Though

students are often used in negotiation experiments and such experiments are argued to be a

good proxy to actual negotiations, it would be interesting to compare the results of automated

negotiations to outcomes of experiments with negotiation practitioners or even the outcomes of

actual negotiations for given negotiation problems. Finally we only could compare the software

agents proposed in this study among each other, but not to the software agents proposed in

former simulation studies, due to the different design philosophies followed. As mentioned the

majority of software agents used in previous simulation studies require a predetermined number

of rounds or turns for the negotiation, which we avoided in this study. However, the number of

packages of the negotiation object on the one hand, and the interaction protocol on the other

hand, determine also in our design a maximal number of rounds, which could be used in future

research for comparing the software agents proposed in this study to those proposed in literature.

There are many ways to further develop and refine the components of the proposed automated
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negotiation systems, which however are beyond the scope and purpose of this dissertation. For

example, the effect of different configurations of the TFT agent deserves attention, where different

weights for the similarity and the reciprocation criteria could be evaluated, as we only considered

one configuration in the simulations. Furthermore, the decision making of the software agent

could be made more sensitive to the stage of the negotiation, especially in the protocol that

allows to break off negotiations, and the behavior of the opponent, especially in the protocol that

allows to reject offers of the opponent. It does not make much sense to break off negotiations

in an early stage of the negotiation, due to one unfavorable offer of the opponent, where the

level of demanded utility is still high and therefore the risk of exploitation low. Moreover, if

necessary the same result – i.e. no agreement – can be achieved in later rounds too. In the

protocol allowing reject messages software agents should be cautious about the behavior of their

opponents as the rejection of offers – at least in the current implementation of the software agents

– reveals information about the preferences of the opponent, which can be used for own or mutual

benefit in the automated negotiation. Furthermore protocols and software agents similar to those

proposed in this study could be used – with only minor adaptations – for the implementation of

improvement-based progress in automated negotiation, rather than the concession-based progress

prevalent in current simulation studies and also used in this dissertation. The software agents

in improvement-based negotiations would start at the lowest acceptable level of utility, rather

than with the best offer, and then continuously demand more instead of less, but can use similar

offer generation strategies. Agents accept an offer of the opponent unless it is of lower utility

than the last tentative agreement, and otherwise reject the offer. The protocol terminates the

negotiation if there is no progress in the negotiation, i.e. if both software agents rejected their

opponent’s last offer. In this case the last accepted offer is the final agreement. Such automated

negotiation systems – if they reach comparable outcomes – might be easier to accept for users

for psychological reasons as they do not give in but ask for more.

Especially this acceptance of automated negotiation systems by the possible users is critical

for the actual application of automated negotiation in practice. We actually only considered

benefits in terms of superior outcome and lower transaction costs – from an optimistic point

of view, which is also present in the literature. Other sources of costs, like the loss of power –

due to better information, patience, or creativity –, maybe the lost pleasure of negotiating and

competitive interaction with other people, the difficulty of preference elicitation, and efforts spent

on the configuration or even programming of a software agent, must not be neglected. Humans

even could be more satisfied with worse outcomes, compared to those possible with automated

negotiation, they reached themselves, due to the effort spent on negotiating and the feeling to

have done the best they could, or if social aspects like trust or relationship between the parties

are important. These aspects need to be addressed in experiments – that go beyond questions

of performance but tackle questions of acceptance, satisfaction, and usage – in future research.

Though the simulation system used in this dissertation could be easily transformed into an

operative system – or even used directly for automated negotiation if the negotiation object

and the parties’ preferences are fed into our database – as discussed there remain several issues

to be addressed, in the novel but fast developing field of automated negotiation, to make the

insights from simulations studies applicable for the development and implementation of operative

systems.

This, not the mere simulation of automated negotiation, has to be the final purpose of our
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endeavor as only the implementation of operative systems will realize to the prospected benefits

of automated negotiation. However, we are confident to have made valuable contributions to the

field of automated negotiation, in identifying deficiencies of current studies on the simulation of

automated negotiations, proposing, simulating, and evaluating a conceptual model for automated

negotiation in a first step to address them, and pointing out the next steps on a research agenda

for automated negotiation research – and its ultimate goal, the implementations of operative

systems and their actual application for electronic business and coordination of autonomous

systems in practice – with this dissertation.
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Appendix A

Data and Source Code

This appendix provides information on the structure of the data used in and generated by the

simulation study, furthermore it provides the code of the simulation program.

A.1 Input and output data

All data is queried from and saved to a Firebird 2.1 database. The input data for the simulation,

which is also used for the comparison of the performance of automated negotiation and human

negotiation, is stored in the three tables PREFERENCES, PROCESS, and OUTCOME – Figure A.1.

–, which were generated from the data provided by the InterNeg Research group on the Itex-

Cypress negotiation experiments with the negotiation support system Inspire (see Figure A.1).

The table PREFERENCES contains the result of Inspire’s utility elicitation procedure – i.e. partial

utility values for all options of the negotiation object in the cells PRI347 to RET101 – as results of

the hybrid conjoint method used for utility elicitation. This data is combined with information

about the user from whom these preferences were elicited (an unique ID for the user as primary

key, the ID of the negotiation and the role of the user in the experiment). The table PROCESS

contains a documentation of the offers exchanged in all negotiation experiments again combined

with the ID of the negotiation, the ID and role of the user that sent the message, the cell ACTION

that determines whether it was an offer or an acceptance message, the unique offer ID, the utility

rating of this offer (the sum of the partial utility values of table PREFERENCES for this combination

of options), and negotiation object specific columns that indicate the options the offer consists

of. The last input table OUTCOME consists of a cell for the unique negotiation ID, the number

of messages exchanged by both parties during the negotiation, a binary variable AGR indicating

whether an agreement was reached (1) or not (0), and a binary variable indicating whether an

agreement was Pareto-optimal (1) or not (0). Furthermore the cell DIST contains the minimal

distance to the Pareto frontier if an agreement was reached. The utility of the final agreement –

if one was reached – for both parties according to their preferences is stored in in the cells UITEX

for the seller party and UCYPRESS for the buyer party and the integrativeness of the negotiation

1Note the name convention ISSUEOPTION for the table PREFERENCES and throughout the simulation program
for determining the partial utilities of subjects in experiments and software agents in simulations for an option in
an issue.
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problem is saved in the cell INT.2

Figure A.1: Input tables of the database

The output of the simulation is stored by the simulation program in the database table SIMOUTCOME

(see Figure A.2). This table consists of the ID of the negotiation simulated, the protocol used

for simulation, the replication number, the number of turns the simulation took, the name of

the seller and the buyer agent, the type of the last message – which can be either of agree in

all protocols, quit in protocol 2 only, or terminated in protocol 3 only – and the option

values for the issues of the negotiation object if an agreement was reached. Furthermore the cells

USELLER and UBUYER contain the utility values to the parties if an agreement was reached. In

EFF a binary variable is stored which indicates whether an agreement was Pareto-optimal (1) or

not (0), and in DIST the minimal distance to the Pareto frontier is stored if an agreement was

reached. Finally the number of messages sent by either party in total and divided into offer,

reject, and quit messages is stored in the respective cells of table SIMOUTCOME.

2We save the integrativeness calculated according to the formula provided in Chapter 5 in the table OUTCOME,
though it is actually no outcome of the negotiations but a result from the joint evaluation of the negotiation
object, as this table is the only one that consists of unique tuples for each negotiation experiment.
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Figure A.2: Output table of the database

A.2 Source code

For the implementation of the conceptual model in a simulation program we used R3. R is a lan-

guage and environment for statistical computing and graphics. It runs on a variety of platforms

like UNIX/Linux, Windows, and MacOS, and is available as free software under the terms of

the Free Software Foundation’s GNU General Public License. It is similar to the S language,

which was developed at Bell Laboratories by John Chambers and colleagues, and now is further

developed as a different implementation of S by a core team and many people contributing soft-

ware packages to the project. R not only provides a wide variety of statistical techniques – linear

and nonlinear models, classical statistical tests, time-series analysis, clustering, etc. – but also

functions for graphical illustration of data – including mathematical symbols and formulas – and

is highly extensible. The strengths of the R language are the facility of data manipulation and

database interaction, its simple and effective programming language – including conditionals,

loops, user-defined function, etc. –, its sophisticated array and matrices operations, and its large

collection of tools for statistical data analysis and graphical display.

Besides its functionality as general statistical computing program, R recently is also used in

simulation studies. Many types of simulations can easily be implemented in R, like differential

equation models (e.g. predator-prey-simulations), individual-based models (e.g. population dy-

namics or particle diffusion), or cellular automates (e.g. Conway’s game of life) Petzoldt (2003).

The strength of R in simulation, compared to standard simulation tools for these purposes, is its

3www.r-project.org
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high flexibility and customizability concerning the users’ special requirements.

The database interaction facilities and the possibility to systematically perform statistical test in

combination with simulation are a great benefit to this study. Though, for the implementation

of an operative system for automated negotiation other programing languages are more adequate

as the resulting system has to be platform independent, operate over the Internet, be capable of

handling agent registration and online message exchange, perform preference elicitation, ensure

communication security, provide ontologies, etc., for the purpose of our study – i.e. the evalu-

ation and comparison of different automated negotiation systems by means of simulation – R is

sufficient.

A.2.1 Sourcing and parametrization

Before running the simulation the necessary functions have to be sourced and parameters for

the simulation have to be determined, as shown in Listing A.1. First the current version and

therefore the path from where to source the functions for the simulation is determined in the

variables version and path. Then the database connection is established and the negotiation

IDs of the experiments to be simulated is queried from the input database and saved in the

vector experiments.

1 version <-15

2 path <-paste("W:/data/AN/V",version ,"/",sep="")

3 source (paste (path ,"DB_connection .r",sep=""))

4 experiments <-as.vector (t(sqlQuery (db , "SELECT NEGOID FROM OUTCOME ")))

5

6 source (paste (path ,"preferences .r",sep=""))

7 negoobject <-list(PRI=c(347 ,371 ,398 ,412 ,437),

8 DEL=c(20,30,45,60) ,

9 PAY=c(0,30,60),

10 RET=c(0 ,5 ,10))

11

12 source (paste (path ,"negotiation .r",sep=""))

13 pnum <-3

14 protocol <-switch (pnum ,

15 "1"=c(REJECT =FALSE ,EXIT=FALSE),

16 "2"=c(REJECT =FALSE ,EXIT=TRUE),

17 "3"=c(REJECT =TRUE ,EXIT=FALSE ))

18

19 source (paste (path ,"MCact .R",sep=""))

20 source (paste (path ,"MCpas .R",sep=""))

21 source (paste (path ,"SMCact .R",sep=""))

22 source (paste (path ,"SMCpas .R",sep=""))

23 source (paste (path ,"MUMact .R",sep=""))

24 source (paste (path ,"MUMpas .R",sep=""))

25 source (paste (path ,"LEXact .R",sep=""))

26 source (paste (path ,"LEXpas .R",sep=""))

27 source (paste (path ,"TFT.R",sep=""))

28 agents <-c("MCact",

29 "MCpas",

30 "SMCact ",

31 "SMCpas ",

32 "MUMact ",

33 "MUMpas ",

34 "LEXact ",

35 "LEXpas ",

36 "TFT")

Listing A.1: Initiation of the simulation
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After these initial steps the actual components of the simulation of automated negotiation are

determined. The function preferences, for querying the users’ preferences over the negotiation

object from the input database, is sourced and the negotiation object is determined in the

variable negoobject – for our study the negotiation object is the Itex-Cypress negotiation case

(see Chapter 4). Afterwards the function with the generic interaction mechanism negotiation

is sourced, which is closer specified in determining the protocol to be used in the simulation as

being one out of the three protocols discussed in Chapter 4. After the protocol the nine agents

are sourced as functions with their respective names and all agents are registered in the vector

agents.

A.2.2 Database connection

To enable the simulation program to query data from the input tables and save simulation results

to the output table of the Firebird database a link to the database has to be established in the

variable db for reused during the simulation by the code provided in Listing A.2.

1 library (RODBC)

2 fblink <-function ()

3 {

4 odbcDriverConnect("DRIVER = Firebird /InterBase (r) driver ;

5 UID=sysdba ;

6 PWD= masterkey ;

7 DBNAME =C:/Users /fedaykin /Documents /switch /an.fdb",

8 case="toupper ")

9 }

10 db<-fblink ()

Listing A.2: Database connection

A.2.3 Preference determination

To bring the simulation in accordance to the existing data on the Itex-Cypress experiments we

first have to re-frame the the buyer and seller role as ’Cypress’ and ’Itex’ which were the names of

the buyer and seller party in the experiment. In a next step the partial utilities for all options in

all issues of the negotiation are queried from the table PREFERENCES of the database. Note that

we here apply a name convention: The columns in the database containing the partial utility

values for an option in an issue have to have the form ISSUEOPTION according to the negotiation

object variable negoobject – e.g. the column where the utility value for delivery time of 60 days

is saved in the database has to be named DEL60. The function expand.grid creates a matrix of

all combinations of options for the issues of the negotiation object. For all rows of this matrix –

i.e. all possible offers – the utility values are calculated and attached to the matrix. The function

preferences returns a list containing the partial utility values queried from the input database,

the negotiation object provided when calling the function, and the matrix with all possible offers

together with their utility values. Note that the agents work with any form of utility elicitation

and representation as long as they receive an input in form of a matrix that contains all possible

settlement alternatives and utility values for them. Accordingly, if other elicitation methods or

utility representations are used only this function preferences has to be adapted.
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1 preferences <-function (negoid ,negoobject ,role)

2 {

3 if(role=="seller "){role <-"ITEX"}

4 if(role=="buyer"){role <-"CYPRESS "}

5 utilrows <-NULL

6

7 for(i in 1: length (names (negoobject )))

8 {

9 for(j in 1: length (negoobject [[i]]))

10 {

11 utilrows <-c(utilrows ,paste(names (negoobject )[i], negoobject [[i]][j],sep =""))

12 }

13 }

14

15 utilquery <-paste(utilrows ,"",sep="",collapse =", ")

16 util <-sqlQuery (db ,paste ("SELECT ",utilquery ," FROM PREFERENCES

17 WHERE NEGOID =",negoid ," AND CASETYPE =’",role ,"’",sep=""))

18

19 all <-as.matrix (expand .grid(negoobject ))

20 U<-NULL

21 for(k in 1: nrow(all ))

22 {

23 dum <-sum(util[paste (names (negoobject ),all[k,], sep="")])

24 U<-c(U,dum )

25 }

26 all <-cbind(all ,U)

27 colnames (all)<-c(names( negoobject ),"U")

28 erg <-list(UTIL=util ,PACKAGES =all ,OBJ=negoobject )

29 erg

30 }

Listing A.3: Preference determination

A.2.4 General interaction mechanism

The general negotiation mechanism is implemented in the function negotiation. This function

starts the negotiation by initiating the agents, performs negotiations in alternately calling the

software agents, and concludes the negotiation if the termination criteria described in Chapter 4

are fulfilled. The initiation of software agents is performed by the function in calling both sides’

software agent functions with the preferences indicated in the database in the mode initiate.

The return of a software agent function called in the mode initiate is a list containing its

private information, which is saved in a variable for later reuse by the software agent during the

negotiation.

After the initiation of agents the general interaction mechanism randomly determines a party

to start the negotiation – with equal probability for each party to be chosen – in calling this

agent in the mode negotiate with a message of type ’call for offer’ CFO. Though the opening

offer of both agents is the offer that affords highest utility to them the procedure of sending a

’call for offer’ determines the sequence of message exchange. In subsequent turns the software

agent that received the ’call for offer’ will send its messages at odd turns, the other software

agent at even turns. The function negotiation saves all messages sent by the software agents

in the negotiation track variable course and changes in the private information of the software

agents in their private storage variables, then it switches the roles and data variables and calls

the other agent with the last message stored in the negotiation track. These operations result

in an alternating turn procedure, where the software agents are called alternately with the last

message of their opponent.
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During the whole negotiation process the function scans the last messages saved for termination

criteria i.e. if these last messages are either of the type agree or quit, or if the last two messages

are of the type reject. Should this be the case the function terminates and returns the variable

course which contains the whole negotiation track. The general interaction mechanism can

be seen as a primitive negotiation protocol as it ensures that agents alternate in sending their

messages, the other components of the protocol, especially the possible messages the protocol

enables the software agents to send, are implemented in the software agents themselves. For

determining which messages the software agents are allowed to send they refer to the protocol

variable determined when parameterizing the simulation. That agents follow this protocol is

ensured by their design for simplicity and not controlled by the general interaction mechanism

of the function negotiation.

1 negotiation <-function (selleragent ,buyeragent ,sellerpref ,buyerpref ,protocol )

2 {

3 sellerdata <<-do.call(selleragent ,

4 list(mode="initiate ",position ="seller ",preferences =sellerpref ))

5 buyerdata <<-do.call(buyeragent ,

6 list(mode="initiate ",position ="buyer",preferences = buyerpref ))

7

8 if(runif (1) <=0.5)

9 {current <<-buyeragent ;position <<-"buyer"}else

10 {current <<-selleragent ;position <<-"seller "}

11

12 if(position =="seller "){ negodata <<-sellerdata }else{negodata <<-buyerdata }

13

14 course <<-do.call(current ,

15 list(mode="negotiate ",position =position ,message .type="CFO"))

16

17 if(position =="seller "){ sellerdata <<-negodata }else{buyerdata <<-negodata }

18 if(position =="seller "){ current <<-buyeragent }else{current <<-selleragent }

19 if(position =="seller "){ negodata <<-buyerdata }else{negodata <<-sellerdata }

20 if(position =="seller "){ position <<-"buyer "}else{position <<-"seller "}

21

22 ende <-FALSE ;

23 while (!ende)

24 {

25 msg <-do.call(current ,list(mode="negotiate ",

26 position =position ,

27 message .type=course [nrow(course ),"MSG"],

28 content =course [nrow(course ),

29 names (negoobject )],

30 protocol =protocol ))

31 course <<-rbind(course , msg)

32

33 if(position =="seller "){ sellerdata <-negodata }else{buyerdata <-negodata }

34

35 if(course [nrow(course ),"MSG"]=="agree"){ ende <-TRUE}

36 if(course [nrow(course ),"MSG"]=="quit"){ ende <-TRUE}

37 if(course [nrow(course ),"MSG"]=="reject "&course [nrow(course )-1,"MSG"]=="reject ")

38 {

39 ende <-TRUE;

40 course [,"MSG "]<-as.vector (course [,"MSG "]);

41 course [nrow(course ),"MSG"]<-"terminated ";

42 }

43

44 if(position =="seller "){ current <<-buyeragent }else{current <<-selleragent }

45 if(position =="seller "){ negodata <<-buyerdata }else{negodata <<-sellerdata }

46 if(position =="seller "){ position <<-"buyer"}else{position <<-"seller "}

47 }

48 course

49 }

Listing A.4: Interaction mechanism
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A.2.5 Main loop

The main loop ensures the tournament-style full factorial – when applied for each interaction

protocol – experimental design for the simulation discussed in Chapter 5, in letting for a given

interaction protocol all possible combinations of software agents negotiate for all negotiation

problems of the vector experiments (see Listing A.5).

1 selleragents<-agents

2 buyeragents <-agents

3

4 for (i in experiments )

5 {

6 for(j in selleragents)

7 {

8 for(k in buyeragents )

9 {

10 sellerpref <-preferences (i,negoobject ,role="seller ")

11 buyerpref <-preferences (i,negoobject , role="buyer")

12 for (l in 1:3)

13 {

14 erg <-negotiation (j,k,sellerpref ,buyerpref ,protocol )

15 outcome <-as.data.frame(c(

16 NEGOID =i,

17 PROTOCOL =pnum ,

18 IT=l,

19 TURN=nrow(erg ),

20 SELLER =j,

21 BUYER=k,

22 erg[nrow(erg ) ,3:(3+ length (negoobject ))],

23 USELLER =0,

24 UBUYER =0,

25 EFF =1,

26 MSELLER =nrow(subset (erg ,CASETYPE =="seller ")),

27 MBUYER =nrow(subset (erg ,CASETYPE =="buyer ")),

28 OSELLER =nrow(subset (erg ,CASETYPE =="seller "&MSG =="offer ")),

29 OBUYER =nrow(subset (erg ,CASETYPE =="buyer "&MSG =="offer")),

30 RSELLER =nrow(subset (erg ,CASETYPE =="seller "&MSG %in% c("reject ","terminated "))),

31 RBUYER =nrow(subset (erg ,CASETYPE =="buyer "&MSG %in% c("reject ","terminated "))),

32 QSELLER =nrow(subset (erg ,CASETYPE =="seller "&MSG =="quit")),

33 QBUYER =nrow(subset (erg ,CASETYPE =="buyer "&MSG =="quit"))))

34 if(outcome [1,"MSG "]!="agree"){ outcome [1,"EFF"]<-0;}

35 if(outcome [1,"MSG "]=="agree")

36 {

37 outcome [1,"USELLER "]<-sum(sellerpref $UTIL

38 [paste (names (negoobject ),outcome [1 ,8:(7+ length ( negoobject ))], sep ="")]);

39 outcome [1,"UBUYER "]<-sum( buyerpref $UTIL

40 [paste (names (negoobject ),outcome [1 ,8:(7+ length ( negoobject ))], sep ="")]);

41 for(m in 1: nrow( sellerpref $PACKAGES ))

42 {

43 if(

44 sellerpref $PACKAGES [m,"U"]>outcome [1,"USELLER "]&

45 buyerpref $PACKAGES [m,"U"]>= outcome [1,"UBUYER "]|

46 sellerpref $PACKAGES [m,"U"]>= outcome [1,"USELLER "]&

47 buyerpref $PACKAGES [m,"U"]>outcome [1,"UBUYER "])

48 {

49 outcomerow [1,"EFF "]<-0;

50 }

51 }

52 }

53 sqlSave (db,outcome ,tablename ="SIMOUTCOME ",append =TRUE ,rownames =FALSE ,)

54 }

55 }

56 }

57 }

Listing A.5: Main loop
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The main loop for the computer experiments first defines the software agents to be used in the

run of the simulation – in our case all nine agents are used for the buyer and the seller side,

therefore the whole registration vector agent is assigned to the vectors representing the set of

seller and buyer agents, selleragents and buyeragents respectively. For all combinations of

one seller and one buyer agent the preferences over the negotiation object for the focal experiment

are queried from the input table of the database using the preferences function and saved in

the variables sellerpref and buyerpref for reuse in all replications.4 For each replication of a

specific simulation the function negotiation is called with the agents to be used for the seller

and buyer party, their preferences, and the protocol to be used as parameters.

As mentioned above the return of this function is the negotiation track. From this variable the

data necessary for analyzing the computer experiments are aggregated, extracted, and saved in

the SIMOUTCOME table of the Firebird database. This data covers the negotiation ID of the

experiment, the ID of the protocol used, the ID of the replication, the number of turns the ne-

gotiation took, the name of the seller and the buyer agent, the final message of the negotiation,

the number of messages sent by the buyer and seller agents in total and divided into offer,

reject, and quit messages. Furthermore in case the software agents reached an agreement

the utility of this agreement to both parties is calculated and it is analyzed whether this agree-

ment is Pareto-optimal, i.e. if there exist no other possible alternatives dominating the reached

agreement.

A.2.6 Software agents

The structure of the software agents is equal for all agents, as are parts of their decisions al-

gorithms, we therefore – to emphasize the equalities, save space, and increase transparency –

provide the code parts that are equal together in a software agent ’template’ and only discuss

the parts in which the agents differ in specific sections. The general structure of the software

agents is represented in Table A.1.5 After a formal definition of the function that implements the

software agent the initiation procedure followed if the function is called in the mode initiate

is discussed. In this mode the agent receives the preferences over the negotiation object queried

from the input table of the database and creates its private data variable. The next section

deals with the actions to be performed if called in mode negotiate. The general reaction to the

CFO, or if no offer was sent yet, is to send the best possible offer as initial or opening offer. In

a next step the opponent’s last message is evaluated and if necessary the private information is

updated – i.e. if the last message of the opponent was an offer, the ’last opponent offer’ variable

is changed accordingly. Then the next offer to propose is generated and it is decided whether

4As described in Chapter 5 and the subsequent chapter of the appendix the number of replications is set to
three.

5Function determination and nomenclature (Listing A.6), reaction to a CFO (Listing A.8), execution of actions
– i.e. sending the messages – in line with the protocol (Listing A.10), and updating of information if an offer
was sent (Listing A.11) are equal for all agents and therefore covered in the software agent template in Section
A.2.6.1. Agent initiation is different for LEX and TFT agents and therefore discussed in Sections A.2.6.5 and A.2.6.6,
respectively. As message evaluation is more complex for the TFT agent it is also handled in the TFT section. Offer
generation and the decision whether or not the strategy should be interrupted (step 5) is the distinguishing feature
of the software agents and therefore discussed for each agent separately and in detail in Sections A.2.6.2 to A.2.6.6.
As not all of the components of the code are equal in length for all software agents, to be consistent with the
code lines indicated in Table A.1, we report the maximal length and, to keep a good overview, added blank lines
to the components of the agents which are shorter than this maximal length.
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Template part Code lines
1. Function determination and nomenclature 1 – 8
2. Agent initiation procedure 9 – 66
3. Reaction to a CFO 67 – 79
4. Message evaluation and standard message generation 80 – 105
5. Offer generation and negobasis decision 106 – 131
6. Execution in line with protocol 132 – 148
7. Information updating 149 – 171

Table A.1: Structure of the software agents

or not to follow the offering procedure on the basis of the current course of the negotiation,

which means determining and evaluating the internal variable negobasis. The decisions made

are executed in form of specific actions according to the restrictions imposed by the interaction

protocol. If this execution means that an offer will be sent the agent’s private information is

updated accordingly and the function terminates returning the message for its current turn to

the function negotiation.

A.2.6.1 Agent template

The function determination and nomenclature is equal for all agent, the functions are only named

differently – AGENT in the code stands for the name of the agent i.e. one of MOCact, MOCpas,

SMCact, SMCpas, MUMact, MUMpas, LEXact, LEXpas, or TFT, respectively.

1 AGENT <-function (mode="",

2 message .type="",

3 position ="",

4 content ="",

5 preferences ="",

6 protocol )

7 {

8 agentname <-"AGENT "

Listing A.6: Function determination and nomenclature

9 if(mode=="initiate ")

10 {

11 RANK <-rank(preferences $PACKAGES [,"U"],ties.method ="random ")

12 SENT <-rep (0, times=nrow(preferences $PACKAGES ))

13 preferences $PACKAGES <-cbind(SENT ,RANK ,preferences $PACKAGES )

14 preferences [[ length (preferences )+1]] <-0

15 preferences [[ length (preferences )+1]] <-100

16 preferences [[ length (preferences )+1]] <-0

17 preferences [[ length (preferences )+1]] <-0

18 names(preferences )<-c(names( preferences )[1:( length ( preferences )-4)],

19 "lastown ",

20 "lastownu ",

21 "lastopp ",

22 "lastoppu ")

23 preferences

24 }

Listing A.7: Agent initiation procedure

The initiation is quite equal for the MOC-, SMC-, and MUM-agents too, but differs slightly from

TFT – as an additional variable and a different setting of lastoppu is necessary to guarantee a
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concession by TFT in its first move and to calculate concessions of the opponent. It furthermore

differs significantly from the initiation of the LEX-agent as the lexicographical ordering is more

complex. The two exceptions therefore will be discussed in their specific sections. When called in

the mode initiate the agents use the preference information provided to them with the call to

rank the offers according to the utility they afford (and randomly in case of ties), include a field

that indicates whether the offer already was sent during the negotiation (a sent-flag), and create

some additional variables that are necessary for decision making and updating of information

during the course of negotiation. These additional variables are lastown and lastownu where

the last offer and its utility are stored, as well as lastopp and lastoppu, which contain the last

offer of the opponent and its utility, respectively. The return of the software agent functions in

mode initiate is a changed and enlarged list of private information for negotiation.

67 else if(mode=="negotiate ")

68 {

69 if(message .type =="CFO"|length (negodata $lastown )==1)

70 {

71 x<-order(negodata $PACKAGES [,"SENT"],- negodata $PACKAGES [,"RANK"])

72 negodata $PACKAGES <<-negodata $PACKAGES [x,]

73 msg <-data.frame (CASETYPE =position ,

74 AGENT =agentname ,

75 MSG=as.character ("offer"),

76 t(negodata $ PACKAGES [1, names(negoobject )]))

77 negodata $PACKAGES [1,"SENT"]<<-1;

78 negodata $lastown <<-as.data.frame (t(negodata $PACKAGES [1, names(negoobject )]))

79 }

Listing A.8: Reaction to a CFO

80 else

81 {

82 if(message .type =="offer")

83 {

84 negodata $lastopp <<-content

85 names (negodata $lastopp )<<-names (negoobject )

86 negodata $lastoppu <<-sum(negodata $UTIL[paste (names (negoobject ),content ,sep="")])

87 }

88

89 nas <-rep(NA,times=length (names (negoobject )))

90 names(nas )<-names( negoobject )

91 reject <-data.frame (CASETYPE =position ,

92 AGENT =agentname ,

93 MSG=as.character ("reject "),

94 t(nas ))

95 quit <-data.frame(CASETYPE =position ,

96 AGENT=agentname ,

97 MSG=as. character ("quit"),

98 t(nas ))

99 agree <-data.frame(CASETYPE =position ,

100 AGENT=agentname ,

101 MSG =as.character ("agree "),

102 negodata $lastopp )

Listing A.9: Message evaluation and standard message generation

If the agent is called not in mode initiate but in mode negotiate it first checks if it is its first

message to send – i.e. whether it received the CFO from the protocol or has not sent any message

yet. In either of these cases the software agent makes the highest ranked – most preferable – offer

and sets the sent flag for this offer to 1 in its private information. This initial offer is forced as

no comparisons of concessions are possible for the first offer, i.e. utility differences between two
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offers cannot be calculated for this first offer but only for subsequent offers. Furthermore as the

offer is the most preferred one with the highest utility to the software agent nothing is lost by

proposing this initial offer. If the message is not the first but any other during the negotiation,

the software agent checks whether the last message of the opponent was an offer and updates

its private information accordingly. After this information updating the software agent creates

different variables indicating different possible messages. Here only the standard messages agree,

reject, and quit are covered as the determination of an offer message is agent specific and

therefore discussed in later sections.

132 if(negobasis )

133 {

134 if(negodata $lastoppu >= unextown ){ msg <-agree;update <-FALSE}

135 else{msg <-offer;update <-TRUE}

136 }

137 if(!negobasis )

138 {

139 if(protocol ["REJECT "]){ msg <-reject ;update <-FALSE}

140 if(!protocol ["REJECT "])

141 {

142 if(protocol ["EXIT"]){ msg <-quit;update <-FALSE}

143 if(!protocol ["EXIT"])

144 {

145 if(nooffers ){msg <-agree;update <-FALSE}else{msg <-offer ;update <-TRUE}

146 }

147 }

148 }

Listing A.10: Execution in line with protocol

149 if(update )

150 {

151 negodata $lastown <<-possible [1, names(negoobject )]

152 negodata $lastownu <<-unextown

153 sentref <-matrix (data=rep(negodata $lastown ,times=nrow(expand .grid(negoobject ))),

154 nrow=nrow(expand .grid(negoobject )),

155 ncol=length (names(negoobject )),

156 byrow=TRUE)

157 origin <-negodata $PACKAGES [,names (negoobject )]

158 SENTSIM <-apply (sentref ==origin ,1, sum)

159 negodata $PACKAGES <<-cbind( negodata $PACKAGES ,SENTSIM )

160 for(z in 1: nrow(negodata $PACKAGES ))

161 {

162 if(negodata $PACKAGES [z,"SENTSIM "]== max(SENTSIM ))

163 {

164 negodata $PACKAGES [z,"SENT"]<<-1

165 }

166 }

167 negodata $PACKAGES <<-negodata $ PACKAGES [,1: ncol(negodata $PACKAGES )-1]

168 }

169 }

170 msg

171 }

172 }

Listing A.11: Information updating

The decision which of the created messages to send, in accordance with the protocol, is made

according to the agent flowchart presented in Figure 4.9 in Chapter 4. If there exists a basis

for further negotiation (which is an agent specific decision and discussed subsequently in Section

A.2.6.7) the agent checks whether to make the offer just generated or to accept the opponents

last offer. This decision is made in favor of accepting the last offer of the opponent if it affords at
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least the same utility as the next offer of the agent would provide, otherwise the offer generated

will be sent. If there exists no negotiation basis the agent sends a reject message if allowed by

the protocol (protocol 3) – to elicit a new offer from the opponent but also risking termination

by the protocol if the opponent also rejects to send an offer. If rejection is not possible the agent

will break off the negotiation by sending a quit message – to avoid exploitation in permanently

interrupting the concession strategy – if the protocol allows this (protocol 2). If neither rejec-

tion nor exit are possible (protocol 1) the agent sends the generated offer if he has still offers

or accepts the last offer if there are no offers left to send. In line with the determination of the

message the variable update is assigned with a Boolean term indicating whether the agent has

to update its private information after sending a message, which is only the case if something

changes i.e. if the next message of the software agent is an offer. This updating of the private

information includes changing the variables lastown, lastownu as well as setting the sent-flag

in the package matrix from 0 to 1 for the offer made. The final part of the agent function’s code

returns the generated message msg to the calling function negotiation which saves it in the

negotiation track.

A.2.6.2 SMC

106 x<-order(negodata $PACKAGES [,"SENT"],- negodata $PACKAGES [,"RANK"])

107 negodata $PACKAGES <<-negodata $PACKAGES [x,]

108 dummy <-as.data.frame(negodata $ PACKAGES )

109 possible <-subset (dummy , U<negodata $lastownu &SENT!=1)

110

111 nooffers <-nrow(possible )==0

112 if(!nooffers )

113 {

114 offer <-data.frame (CASETYPE =position ,

115 AGENT =agentname ,

116 MSG=as.character ("offer"),

117 possible [1, names (negoobject )])

118 unextown <-sum(negodata $UTIL

119 [paste (names (negoobject ),possible [1, names (negoobject )], sep ="")])

120 negobasis <-(negodata $lastoppu >=100 - negodata $lastownu )

121 }

122 if(nooffers &negodata $lastoppu < negodata $lastownu ){ negobasis <-FALSE }

123 if(nooffers &negodata $lastoppu >= negodata $lastownu )

124 {unextown <-negodata $lastownu ;negobasis <-TRUE}

Listing A.12: Offer generation and negobasis decision SMC

SMC orders all packages decreasing in the rank determined in the initiationmode i.e. decreasing

in the packages’ utility and randomly in case of ties. The subset of the packages that were not

sent yet and constitute a real concession i.e. provide strictly lower utility than the last offer sent

is generated and the first row of this matrix is selected as the next offer.

If there exist no such offers the nooffers variable is set to TRUE. In case no further offers to

propose exist and the last offer of the opponent is not acceptable there exists no basis for further

negotiation, otherwise unextown is set to lastownu and negobasis to TRUE so that the agent

accepts the last offer of the opponent. If there exists an offer to be sent, however, the agent

determines whether or not this offer should be sent or rather the concession strategy should be

interrupted – if this is enabled by the protocol. The result of this decision is saved in the variable

negobasis. Note that here and in all following code parts only the active concession strategy
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(act) is presented – i.e. SMCact for this agent – the difference to the passive version is discussed

in Section A.2.6.7.

A.2.6.3 MOC

106 x<-order(negodata $PACKAGES [,"SENT"],- negodata $PACKAGES [,"RANK"])

107 negodata $PACKAGES <<-negodata $PACKAGES [x,]

108 dummy <-as.data.frame(negodata $ PACKAGES )

109 possible <-subset (dummy , U<= negodata $lastownu &SENT!=1)

110

111 nooffers <-nrow(possible )==0

112 if(!nooffers )

113 {

114 offer <-data.frame (CASETYPE =position ,

115 AGENT =agentname ,

116 MSG=as.character ("offer"),

117 possible [1, names (negoobject )])

118 unextown <-sum(negodata $UTIL

119 [paste (names (negoobject ),possible [1, names (negoobject )], sep ="")])

120 negobasis <-(negodata $lastoppu >=100 - negodata $lastownu )

121 }

122 if(nooffers &negodata $lastoppu < negodata $lastownu ){ negobasis <-FALSE }

123 if(nooffers &negodata $lastoppu >= negodata $lastownu )

124 {unextown <-negodata $lastownu ;negobasis <-TRUE}

Listing A.13: Offer generation and negobasis decision MOC

The only difference between MOC and SMC is – as discussed in Chapter 4 – that MOC also sends

offers affording the same level of utility and not only offers with strictly lower utility than the

last offer. This is achieved in changing the criterion for subsetting the possible next offers in

selecting those that afford smaller or equal utility compared to the last offer sent, the remainder

of the code is equal to the code of the SMC-agent.

A.2.6.4 MUM

The MUM-agent also orders the offers in decreasing utility and then queries the subset of packages

where the package configuration differs only in one issue form that of the last offer sent and

affords smaller or equal utility. The first row of this subset of possible offers is taken as the next

offer to be sent. Thereby being the offer that constitutes the smallest concession by a change in

one issue only which implements the least-cost-issue approach discussed in Chapter 4.

A.2.6.5 LEX

The offering procedure and decision whether or not to follow the concession procedure of the

LEX-agent are very similar to those of the other agents discussed above as can be seen from

Listing A.15. The only difference is that the offers are ordered by increasing rank – due to the

form of the lexicographical ordering in the initiation phase. As for the other software agents also

the LEX-agent subsets all not yet send offers that afford lower or equal utility compared to the

last offer sent, but for the LEX-agent this subset is ordered lexicographically. The real difference

and complexity of this software agent results from establishing this lexicographic ordering when

called first in mode initiate as described in Listing A.16.
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106 ref <-matrix (data=rep(negodata $lastown ,times=nrow(expand .grid(negoobject ))),

107 nrow=nrow(expand .grid(negoobject )),

108 ncol=length (names( negoobject )),

109 byrow=TRUE)

110 x<-order(negodata $PACKAGES [,"SENT"],- negodata $PACKAGES [,"RANK"])

111 negodata $PACKAGES <<-negodata $PACKAGES [x,]

112 origin <-negodata $PACKAGES [,names (negoobject )]

113 SIM <-apply(ref ==origin ,1, sum)

114 similarity <-as.data.frame(cbind(negodata $PACKAGES ,SIM ))

115 possible <-subset (similarity ,

116 U<= negodata $lastownu &SIM == length (names( negoobject ))-1&SENT!=1)

117

118 nooffers <-nrow(possible )==0

119 if(!nooffers )

120 {

121 offer <-data.frame (CASETYPE =position ,

122 AGENT =agentname ,

123 MSG=as.character ("offer"),

124 possible [1, names (negoobject )])

125 unextown <-sum(negodata $UTIL

126 [paste (names (negoobject ),possible [1, names (negoobject )], sep ="")])

127 negobasis <-(negodata $lastoppu >=100 - negodata $lastownu )

128 }

129 if(nooffers &negodata $lastoppu < negodata $lastownu ){ negobasis <-FALSE }

130 if(nooffers &negodata $lastoppu >= negodata $lastownu )

131 {unextown <-negodata $lastownu ;negobasis <-TRUE}

Listing A.14: Offer generation and negobasis decision MUM

106 x<-order(negodata $PACKAGES [,"SENT"], negodata $PACKAGES [,"RANK"])

107 negodata $PACKAGES <<-negodata $PACKAGES [x,]

108 dummy <-as.data.frame(negodata $ PACKAGES )

109 possible <-subset (dummy ,U<= negodata $lastownu &SENT!=1)

110

111 nooffers <-nrow(possible )==0

112 if(!nooffers )

113 {

114 offer <-data.frame (CASETYPE =position ,

115 AGENT =agentname ,

116 MSG=as.character ("offer"),

117 possible [1, names (negoobject )])

118 unextown <-sum(negodata $UTIL

119 [paste (names (negoobject ),possible [1, names (negoobject )], sep ="")])

120 negobasis <-(negodata $lastoppu >=100 - negodata $lastownu )

121 }

122 if(nooffers &negodata $lastoppu < negodata $lastownu ){ negobasis <-FALSE }

123 if(nooffers &negodata $lastoppu >= negodata $lastownu )

124 {unextown <-negodata $lastownu ;negobasis <-TRUE}

Listing A.15: Offer generation and negobasis decision LEX

To achieve the lexicographic ordering of alternatives when the software agent is first called in

mode initiate the rather complex procedure provided in Listing A.16 has to be followed. Its

complexity mainly results from the aim of keeping the software agents generic to be applicable

for many different negotiation objects, so that numbers and names of issues and options of the

negotiation object are assumed to be unknown in advance, and the lack of standard functions for

lexicographic ordering in R. In a first step the options are ranked by comparing the average utility

of alternatives that have different options in one issue. The option affording the highest average

utility is ranked highest and the option leading to lowest average utility lowest. Furthermore the

weights of the issues are calculated as the difference between their highest average utility and

lowest average utility option. In a last step a lexicographic ordering is established by ordering

the packages decreasing from the highest (second highest, third highest, . . . ) ranked option in
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the highest (second highest, third highest, . . . ) ranked issue to the (. . . , third lowest, second

lowest) lowest option in the (. . . , third lowest, second lowest) lowest ranked issue.

9 if(mode=="initiate ")

10 {

11 prefdf <-as.data.frame( preferences $PACKAGES )

12 rankobj <-preferences $OBJ

13 weights <-NULL

14 for(x in names(negoobject ))

15 {

16 dummy <-aggregate (prefdf [,"U"],list(prefdf [,x]), mean)

17 value <-max(dummy [,2])- min(dummy [,2])

18 valuerank <-rank(dummy [,2], ties.method ="random ")

19 weights <-c(weights ,value )

20 rankobj [[x]] <-rbind(rankobj [[x]], valuerank )

21 }

22 names(weights )<-names( negoobject )

23 weights <-sort(weights , decreasing =TRUE)

24

25 RANKUTIL <-NULL

26 NAMES <-NULL

27 for(y in names(negoobject ))

28 {

29 RANKUTIL <-c(RANKUTIL ,rankobj [[y]][2 ,])

30 NAMES <-c(NAMES ,paste(y,rankobj [[y]][1,], sep=""))

31 }

32 names(RANKUTIL )<-NAMES

33 for(i in 1: nrow(prefdf ))

34 {

35 for (j in names( negoobject ))

36 {

37 prefdf [i,j]<-RANKUTIL [paste(j,prefdf [i,j],sep="")]

38 }

39 }

40

41 beginning <-paste ("order(-prefdf [,\"",names (weights )[1],"\"]",sep="")

42 middle <-NULL

43 for(i in 2:( length (names(weights )) -1))

44 {

45 middle <-paste(middle ,",-prefdf [,\"",names (weights )[i],"\"]",sep="")

46 }

47 end <-paste (",-prefdf [,\"",names (weights )[ length (names(weights ))],"\"])",sep="")

48 dummy <-paste(beginning ,middle ,end ,sep="")

49 x<-eval(parse (text=dummy ))

50 preferences $PACKAGES <-preferences $PACKAGES [x,]

51

52 RANK <-seq(nrow(preferences $PACKAGES ):1)

53 SENT <-rep (0, times=nrow(preferences $PACKAGES ))

54 preferences $PACKAGES <-cbind(SENT ,RANK ,preferences $PACKAGES )

55

56 preferences [[ length (preferences )+1]] <-0

57 preferences [[ length (preferences )+1]] <-100

58 preferences [[ length (preferences )+1]] <-0

59 preferences [[ length (preferences )+1]] <-0

60 names(preferences )<-c(names( preferences )[1:( length ( preferences )-4)],

61 "lastown ",

62 "lastownu ",

63 "lastopp ",

64 "lastoppu ")

65 preferences

66 }

Listing A.16: Agent initiation procedure LEX
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A.2.6.6 TFT

The two differences in the initiation phase between TFT and the other agents are first, that TFT re-

quires an additional variable to save the utility of the penultimate opponent’s offer prelastoppu

– to calculate the opponent’s last concession from the difference between the utility of the penul-

timate and last offer. Second, to guarantee that the agent starts with a concession – and not

makes an other offer of same utility or sends reject or quit messages – the value of lastoppu is

set to −1, which leads to the smallest possible concession made by the TFT agent with his second

offer.

9 if(mode=="initiate ")

10 {

11 RANK <-rank(preferences $PACKAGES [,"U"],ties.method ="random ")

12 SENT <-rep (0, times=nrow(preferences $PACKAGES ))

13 preferences $PACKAGES <-cbind(SENT ,RANK ,preferences $PACKAGES )

14 preferences [[ length (preferences )+1]] <-0

15 preferences [[ length (preferences )+1]] <-100

16 preferences [[ length (preferences )+1]] <-0

17 preferences [[ length (preferences )+1]] <-(-1)

18 preferences [[ length (preferences )+1]] <-0

19 names(preferences )<-c(names( preferences )[1:( length ( preferences )-5)],

20 "lastown ",

21 "lastownu ",

22 "lastopp ",

23 "lastoppu "

24 "prelastoppu ")

25 preferences

26 }

Listing A.17: Agent initiation procedure TFT

80 else

81 {

82 if(message .type =="offer")

83 {

84 negodata $prelastoppu <<-negodata $lastoppu

85 negodata $lastopp <<-content

86 names (negodata $lastopp )<<-names (negoobject )

87 negodata $lastoppu <<-sum(negodata $UTIL[paste (names (negoobject ),content ,sep="")])

88 opp.concession <-negodata $lastoppu >negodata $ prelastoppu

89 if(opp.concession ){ negobasis <-TRUE}else{negobasis <-FALSE}

90 }

91

92 nas <-rep(NA,times=length (names (negoobject )))

93 names(nas )<-names( negoobject )

94 reject <-data.frame (CASETYPE =position ,

95 AGENT =agentname ,

96 MSG=as.character ("reject "),

97 t(nas ))

98 quit <-data.frame(CASETYPE =position ,

99 AGENT=agentname ,

100 MSG=as. character ("quit"),

101 t(nas ))

102 agree <-data.frame(CASETYPE =position ,

103 AGENT=agentname ,

104 MSG =as.character ("agree "),

105 negodata $lastopp )

Listing A.18: Message evaluation and standard message generation TFT

TFT is also specific concerning the fourth step, where messages are evaluated, as this additional

variable prelastoppu has to be updated. The remaining opponent’s message evaluation and



192

standard message generation procedure is the same as for the other agents. It updates its

additional variable prelastoppu before updating lastoppu and then calculates whether or not

a concession was made with the offer in a first step. Only in case of a concession TFT has a basis

for further negotiation – and reciprocates this concession – otherwise not. Also reject messages

are reciprocated which indirectly results in a termination of the negotiation.

106 ref <-matrix (data=rep(negodata $lastopp ,times=nrow(expand .grid(negoobject ))),

107 nrow=nrow(expand .grid(negoobject )),

108 ncol=length (names( negoobject )),

109 byrow=TRUE)

110 origin <-negodata $PACKAGES [,names (negoobject )]

111 SIM <-apply(ref ==origin ,1, sum)

112 similarity <-as.data.frame(cbind(negodata $PACKAGES ,SIM ))

113 possible <-subset (similarity ,SENT ==0 &U<=(100 - negodata $lastoppu ))

114

115 nooffers <-nrow(possible )==0

116 if(!nooffers )

117 {

118 y<-order (-possible [,"U"],- possible [,"SIM "])

119 possible <-possible [y,]

120 offer <-data.frame (CASETYPE =position ,

121 AGENT =agentname ,

122 MSG=as.character ("offer"),

123 possible [1, names (negoobject )])

124 unextown <-sum(negodata $UTIL

125 [paste (names (negoobject ),possible [1, names (negoobject )], sep ="")])

126 }

127 if(nooffers &negodata $lastoppu < negodata $lastownu ){ negobasis <-FALSE }

128 if(nooffers &negodata $lastoppu >= negodata $lastownu )

129 {unextown <-negodata $lastownu ;negobasis <-TRUE}

130 if(message .type =="reject "){ negobasis <-FALSE}

Listing A.19: Offer generation and negobasis decision TFT

In the offer generation step TFT subsets all possible offers to find only those that were not sent

already and provide the same or larger overall concession compared to the concessions made by

the opponent up to this point in time. Furthermore the similarity of the offers to the offer of the

opponent is calculated by counting in how many issues the last opponent’s offer and the possible

packages have equal options. This subset of possible packages is then ordered first decreasing by

utility (so that the highest utility offers still being a concession of equal size are ranked first) and

second decreasing by similarity (so that in case of ties in utility the offers more similar to the

last of the opponent are ranked first) and then the first of these offers is taken as next offer to

be sent. Note that the TFT-agent not checks whether the opponents concession magnitude is up

to the own for determining the basis for further negotiation as all the other agents do. This is

implemented in the TFT-agent anyways, as concessions of equal size of the opponent’s concession

are made only if the opponent itself makes a concession.

A.2.6.7 act vs. pas concession strategies

The only difference between software agents following an active act or passive pas concession

strategy for SMC, MOC, MUM, and LEX is the determination of the variable negobasis. This is set

for the active agents to
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120 negobasis <-(negodata $lastoppu >=100 - negodata $lastownu )

Listing A.20: negobasis determination for act concession strategies

as it is done in the agent specific sections A.2.6.2 to A.2.6.5.6 A software agent following a

passive concession strategy can easily be derived in replacing this line by

120 negobasis <-(negodata $lastoppu >=100 - nextownu )

Listing A.21: negobasis determination for pas concession strategies

This code indicates that agents following passive concession strategies will make a concession,

of the magnitude indicated by their next offer to be sent, only if the opponent agent already

made a total concession of this magnitude – measured in terms of the focal negotiators utility.

By contrast the software agents following an active concession strategy make a concession by its

offer already if the opponent with his current offer reciprocated concessions the focal agent made

up to his last offer – ignoring the next offer to be sent.

6Note that, therefore the code provided in the previous listings represents the code of software agents that
follow the active concession strategy: SMCact, MOCact, MUMact, and LEXact.





Appendix B

Replications

As argued in Chapter 5 to obtain reliable results replications of terminating simulations are

necessary if the results are influenced by stochastic effects. However, an arbitrarily determined

number of replications can either lead to high computational efforts, if it is set too high, or

unreliable results, if it is set too low. For the purpose of determining the minimal necessary

number of replication to achieve stable average results we randomly sampled ten out of the

2, 065 negotiation problems and used them in simulations of all system configuration (i.e. all

software agent combinations with all protocols) for several numbers of replications in a pre-test.1

The process and outcome variables considered for determining the minimal necessary number of

replications are the average duration of the negotiation (measured in turns), the proportion of

agreements reached, and the average utility of the outcome to both the buyer and the seller party

(measured on an utility scale ranging from 0 to 100). We determined the number of replications

with x replications of a simulation run – in the first trial reported in this appendix x ranged

from 2 to 5 . For the ten randomly sampled negotiation problems and all system configurations

the two to five replications resulted in to 9 ∗ 9 ∗ 3 ∗x or 486, 729, 972, and 1215, simulation runs,

respectively.

Results were aggregated by calculating proportions – in case of agreement – and averages – in

case of the remaining outcome variables duration, utility to the seller and the buyer – over the

number of replications for each of the 81 agent combinations. These aggregated results over

different numbers of replications then are compared for each of the ten experiments selected and

the three protocols to determine the minimal necessary number of replications to achieve stable

results in our simulation.2 For statistical tests of significant differences in the average outcomes

of x replications and x + 1 replications of a simulation run we could use a parametric t-test for

two paired samples, as the settings (agent combination, protocol, experiment) are identical in

both samples except the number of replications, that leads to the average outcomes. However,

1We employed the R function sample to randomly sample – without replacement – ten negotiation IDs out of
the 2, 065 from vector experiments that contains all IDs of the negotiation experiments used for this study. The
resulting resulting sample was 2381, 3044, 519, 348, 2771, 848, 1941, 1541, 617, and 304.

2Note that we separated analyses between protocols as the protocol was assumed to have major influence on
the final outcome. Given the tournament experimental design is repeated for each protocol – as discussed in the
previous chapter of the appendix – it would be easy to determine different numbers of replications for the different
protocols if the pre-test indicates that for the protocols the minimal numbers of necessary replications differ –
however this was not the case.
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as Shapiro-Wilk normality tests indicate non-normal distribution of the outcome variables (with

p < 0.001 for all samples) we decided to use the non-parametric Wilcoxon signed-rank exact test

for this statistical analysis.3 Only if there exist differences between the samples this test will

result in significant p-values. Aggregated results for the outcome variables for the ten negotiation

problems as well as statistical test are depicted in tables B.1 to B.11. As can be derived from

these tables in none of the outcome dimensions, none of the protocols, and for none of the ten

negotiation problems of our pre-test average outcomes differ significantly after three replications,

this number of replications therefore is used in the simulation study.

B.1 protocol 1

Note that we do not calculate the proportion of agreements for the simulation runs with protocol

1 as by the definition of this protocol all negotiations have to end with an agreement. We therefore

omit a statistical test of differences in the proportions of agreement as they are equal for all agent

combinations.

3We employ the R function wilcox.exact from the package exactRankTests. The ’exact’ test is used to be
able to calculate exact p-values for samples with ties.
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ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
21.79 38.02 34.05 14.17 22.26 37.95 51.81 44.73 33.91 31.58

(14.94) (33.27) (19.64) (6.94) (10.78) (27.34) (27.12) (35.38) (14.52) (25.65)

3
21.52 38.33 33.31 14.14 21.93 37.79 51.17 45.17 34.17 32.17

(14.74) (33.54) (19.16) (7.02) (10.51) (27.39) (26.73) (35.63) (14.12) (27.24)

4
21.85 38.14 33.20 14.16 21.99 37.51 51.35 44.75 34.58 31.77

(15.03) (33.59) (19.37) (7.00) (10.70) (27.10) (26.66) (35.21) (14.62) (26.05)

5
21.88 38.51 32.95 14.01 21.99 37.68 51.10 45.00 33.77 32.26

(14.79) (33.84) (18.85) (6.93) (10.72) (27.35) (26.58) (35.28) (14.33) (26.97)

V V V V V V V V V V

2 vs 3 1091.5 431.5 1013.0* 758.5 496.5** 456.5 663.5* 339.0** 795.0 372.0
3 vs 4 491.0 345.5 963.5 542.0 138.0 263.5 419.5 197.0 486.0 484.5
4 vs 5 600.0 185.5 737.5 537.5 90.0 92.0 274.5 80.0 725.5 204.5

*** p < .001, ** p < .01, * p < .05

Table B.1: Comparison of the average duration in protocol 1 for different numbers of rep.

ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
73.40 46.25 65.52 90.07 70.27 54.71 56.97 68.33 57.22 73.35

(21.35) (23.27) (22.72) (7.10) (16.42) (18.92) (28.41) (16.08) (31.59) (14.32)

3
73.74 46.05 65.35 90.02 69.80 54.51 58.31 68.17 57.98 73.19

(22.16) (23.50) (22.91) (6.77) (17.01) (18.73) (28.10) (16.12) (31.43) (14.57)

4
73.41 46.20 66.03 90.42 70.46 54.80 57.94 68.20 57.53 73.29

(20.49) (23.69) (22.63) (5.88) (16.84) (18.71) (27.80) (16.12) (30.94) (14.55)

5
73.26 46.23 65.52 90.02 70.08 54.69 57.98 68.14 56.94 72.86

(21.32) (23.92) (22.75) (5.74) (16.21) (18.73) (27.79) (16.10) (30.79) (14.30)

V V V V V V V V V V

2 vs 3 119.5 336.5 602.5 1117.5 64.5* 258.0 89.5 143.5 159.5 1030.0
3 vs 4 161.0 286.5 530.5 1037.0 153.0 189.0 146.5 130.5 314.5 822.5
4 vs 5 115.0 313.5 683.5 1304.5 68.0 360.0 148.0 146.5 304.0 1081.0

*** p < .001, ** p < .01, * p < .05

Table B.2: Comparison of the average utility to the seller in protocol 1 for different numbers
of replications

ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
70.81 58.42 57.55 73.95 78.91 63.52 42.08 41.33 47.82 50.59

(18.47) (19.34) (20.59) (13.09) (11.61) (17.36) (28.97) (24.49) (25.89) (26.34)

3
70.39 58.32 57.48 74.28 78.53 63.63 41.25 41.37 46.99 49.81

(18.47) (19.56) (20.29) (13.42) (11.63) (17.19) (29.09) (24.15) (25.14) (27.03)

4
69.53 58.15 57.96 74.94 78.93 63.54 41.23 41.35 47.74 50.00

(19.21) (19.75) (20.47) (13.39) (11.69) (17.11) (28.71) (24.31) (25.05) (26.75)

5
70.13 58.14 57.99 74.64 78.56 63.55 41.32 41.40 47.87 49.68

(18.55) (19.98) (19.98) (13.13) (12.03) (17.13) (28.37) (24.20) (24.73) (26.80)

V V V V V V V V V V

2 vs 3 1047.5* 492.5 552.0 935.0 242.5 220.5 127.5 141.0 641.0 267.0
3 vs 4 878.0 500.5 471.0 1186.0 126.5 338.0 181.0 104.0 638.5 278.0
4 vs 5 666.0 485.0 683.0 1458.0 289.0 291.0 290.5 178.0 668.0 340.0

*** p < .001, ** p < .01, * p < .05

Table B.3: Comparison of the average utility to the buyer in protocol 1 for different numbers
of replications
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B.2 protocol 2

Note that in protocol 2 for the negotiation problems 1941 and 617 none of the agent combina-

tions in none of the replications reached an agreement. Therefore the resulting utility to both the

seller and the buyer party are zero. In negotiation problem 1541 only the combination of MUMact

as buyer agent and TFT as seller agent resulted in exactly the same agreement in all replications.

The equality of both, the proportion of agreements and the parties’ utilities, renders the average

outcomes for these three negotiation experiments and in these three outcome dimensions exactly

equal so we omit the statistical test of differences.

ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
11.11 6.85 6.30 13.89 14.57 6.73 5.44 5.38 4.11 5.77
(6.72) (3.84) (2.47) (6.90) (8.29) (3.09) (1.32) (3.28) (1.17) (1.73)

3
10.48 6.53 6.01 13.91 14.31 7.17 5.38 5.25 4.02 5.31
(6.13) (3.60) (2.26) (7.04) (8.40) (3.71) (1.19) (3.34) (1.23) (1.45)

4
10.42 6.58 6.22 14.07 14.79 7.04 5.25 5.37 3.90 5.52
(5.59) (3.42) (2.16) (7.18) (7.99) (3.62) (1.26) (3.80) (1.03) (1.45)

5
10.98 6.31 6.14 13.83 14.14 7.04 5.12 5.27 3.83 5.38
(5.83) (3.26) (2.32) (7.11) (7.98) (4.07) (1.26) (3.50) (1.07) (1.46)

V V V V V V V V V V

2 vs 3 1004.5 794.5 722.0 791.0 662.0 462.0* 384.0 179.5 434.0 898.0**
3 vs 4 855.5 428.0 364.0 490.0 639.0 479.5 327.0 38.5 177.0 485.0
4 vs 5 395.0 752.0 429.0 726.0 594.0 600.5 314.0 41.0 114.0 670.5

*** p < .001, ** p < .01, * p < .05

Table B.4: Comparison of the average duration in protocol 2 for different numbers of replica-
tions

NegoID 2381 3044 519 348 2771 848 1941 1541 617 304

Replications
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
0.17 0.09 0.04 0.93 0.44 0.09 0.00 0.01 0.00 0.02

(0.35) (0.27) (0.18) (0.24) (0.46) (0.29) (0.00) (0.11) (0.00) (0.16)

3
0.20 0.07 0.03 0.96 0.40 0.08 0.00 0.01 0.00 0.02

(0.34) (0.24) (0.15) (0.13) (0.45) (0.25) (0.00) (0.11) (0.00) (0.12)

4
0.20 0.07 0.02 0.95 0.42 0.10 0.00 0.01 0.00 0.03

(0.33) (0.23) (0.13) (0.12) (0.44) (0.28) (0.00) (0.11) (0.00) (0.13)

5
0.20 0.07 0.04 0.95 0.42 0.10 0.00 0.01 0.00 0.02

(0.34) (0.24) (0.13) (0.12) (0.43) (0.27) (0.00) (0.11) (0.00) (0.13)

V V V V V V V V V V

2 vs 3 57.5 9.0 14.0 24.0 165.5 14.0 n.a. n.a. n.a. 3.0
3 vs 4 128.0 8.0 16.0 72.0 113.0 4.0 n.a. n.a. n.a. 5.0
4 vs 5 177.0 6.0 8.0 140.0 137.0 11.0 n.a. n.a. n.a. 10.0

*** p < .001, ** p < .01, * p < .05

Table B.5: Comparison of the proportion of agreements in protocol 2 for different numbers of
replications
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ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
12.72 4.72 3.33 82.98 32.33 5.50 0.00 0.85 0.00 1.46

(26.32) (14.88) (14.33) (22.23) (34.26) (16.99) (0.00) (7.67) (0.00) (9.25)

3
15.00 4.01 2.15 86.88 29.54 5.00 0.00 0.85 0.00 1.23

(26.77) (13.11) (9.83) (12.27) (34.01) (15.21) (0.00) (7.67) (0.00) (7.29)

4
14.95 3.84 1.80 86.02 30.66 6.01 0.00 0.85 0.00 1.66

(26.61) (12.73) (9.66) (11.28) (32.85) (16.62) (0.00) (7.67) (0.00) (7.83)

5
15.32 3.89 2.61 85.05 30.96 6.00 0.00 0.85 0.00 1.47

(24.97) (13.09) (9.79) (11.19) (32.45) (16.25) (0.00) (7.67) (0.00) (7.87)

V V V V V V V V V V

2 vs 3 62.0 12.0 14.0 812.5 261.0 23.0 n.a. n.a. n.a. 3.0
3 vs 4 180.0 9.0 18.0 1222.0 254.0 13.0 n.a. n.a. n.a. 8.0
4 vs 5 229.5 6.0 10.0 1548.0 246.0 23.5 n.a. n.a. n.a. 13.0

*** p < .001, ** p < .01, * p < .05

Table B.6: Comparison of the average utility to the seller in protocol 2 for different numbers
of replications

ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
12.22 5.10 2.66 69.54 34.85 6.01 0.00 0.62 0.00 1.85

(24.54) (15.99) (11.09) (22.38) (36.93) (18.90) (0.00) (5.56) (0.00) (11.71)

3
14.34 4.41 1.98 72.00 30.82 5.23 0.00 0.62 0.00 1.54

(25.44) (14.32) (8.65) (16.88) (35.62) (16.20) (0.00) (5.56) (0.00) (9.14)

4
14.00 4.22 1.46 71.30 32.01 6.66 0.00 0.62 0.00 2.08

(23.88) (13.90) (7.67) (16.80) (34.40) (18.68) (0.00) (5.56) (0.00) (9.83)

5
14.14 4.26 2.20 71.25 32.57 6.64 0.00 0.62 0.00 1.85

(24.33) (14.35) (8.01) (17.11) (34.01) (18.08) (0.00) (5.56) (0.00) (9.89)

V V V V V V V V V V

2 vs 3 73.0 12.0 13.0 826.0 300.0 21.0 n.a. n.a. n.a. 3.0
3 vs 4 220.0 8.5 21.0 1370.0 246.5 9.0 n.a. n.a. n.a. 5.0
4 vs 5 270.0 6.0 9.0 1427.0 247.0 20.0 n.a. n.a. n.a. 10.0

*** p < .001, ** p < .01, * p < .05

Table B.7: Comparison of the average utility to the buyer in protocol 2 for different numbers
of replications
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B.3 protocol 3

In protocol 3 all agent combinations in all replications failed to reach an agreement for negoti-

ation problem 1941. Therefore statistical tests of the proportion of agreements and the parties’

utilities are omitted for this negotiation problem. Moreover virtually all agent combinations

reached an agreement in negotiation 348, only in one of the replications in the four replications

setting were MUMact represented the buyer agent and SMCact was the seller agent no agree-

ment could be reached. In the settings with two, three, and five replications the proportion of

agreements therefore was exactly the same and the statistical test of differences was omitted.

ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
24.98 36.09 42.48 14.02 21.01 34.80 18.33 29.21 10.20 37.69

(17.23) (35.94) (28.53) (6.97) (11.48) (30.39) (15.22) (43.06) (9.64) (37.84)

3
25.30 38.48 41.93 14.30 20.46 36.32 19.48 29.85 10.19 38.23

(16.73) (39.62) (27.15) (7.03) (11.66) (30.56) (15.04) (44.40) (7.72) (36.90)

4
25.11 35.57 40.64 14.07 20.53 35.86 18.32 28.43 11.10 38.58

(16.90) (36.40) (26.21) (6.93) (12.73) (29.67) (14.97) (41.96) (10.27) (36.50)

5
25.02 37.60 40.79 14.21 20.57 34.91 18.33 29.27 11.40 36.70

(16.94) (39.69) (25.63) (6.92) (11.59) (29.37) (14.33) (44.11) (9.16) (35.90)

V V V V V V V V V V

2 vs 3 872.5 619.0* 1422.5* 608.0 607.0 512.5 819.5 527.5 574.5 772.0
3 vs 4 778.0 451.5 1186.0 961.0 438.5 439.0 883.5 607.0 475.0 1088.5
4 vs 5 692.0 574.0 1019.5 616.5 241.0 434.0 570.0 387.5 365.0 1357.5

*** p < .001, ** p < .01, * p < .05

Table B.8: Comparison of the average duration in protocol 3 for different numbers of replica-
tions

ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
0.95 0.43 0.78 1.00 0.91 0.59 0.00 0.19 0.01 0.67

(0.19) (0.48) (0.36) (0.00) (0.23) (0.48) (0.00) (0.37) (0.08) (0.34)

3
0.95 0.44 0.77 1.00 0.87 0.60 0.00 0.19 0.02 0.74

(0.16) (0.47) (0.36) (0.00) (0.26) (0.45) (0.00) (0.38) (0.07) (0.31)

4
0.96 0.44 0.76 1.00 0.86 0.60 0.00 0.18 0.02 0.71

(0.14) (0.47) (0.37) (0.03) (0.30) (0.44) (0.00) (0.36) (0.08) (0.27)

5
0.97 0.43 0.76 1.00 0.89 0.59 0.00 0.19 0.03 0.68

(0.12) (0.46) (0.36) (0.00) (0.23) (0.44) (0.00) (0.38) (0.09) (0.30)

V V V V V V V V V V

2 vs 3 18.0 47.0 204.5 n.a. 143.0 84.0 n.a. 11.5 6.0 547.0
3 vs 4 22.0 51.0 183.0 1.0 109.5 103.5 n.a. 21.0 22.0 976.5
4 vs 5 19.5 112.5 182.5 0.0 62.5 197.5 n.a. 10.5 49.0 1094.5

*** p < .001, ** p < .01, * p < .05

Table B.9: Comparison of the proportion of agreements in protocol 3 for different numbers of
replications
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ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
70.37 23.12 56.48 90.54 66.52 34.99 0.00 12.12 0.74 43.54

(21.99) (25.90) (27.96) (6.34) (19.69) (28.75) (0.00) (24.57) (4.68) (23.71)

3
71.26 23.72 54.78 90.17 63.28 35.84 0.00 12.65 0.99 48.93

(21.45) (25.35) (27.62) (6.39) (20.89) (27.03) (0.00) (24.83) (4.36) (22.20)

4
71.23 23.98 53.47 89.85 62.82 35.14 0.00 11.50 1.36 46.85

(20.19) (25.34) (28.77) (6.37) (23.70) (26.27) (0.00) (23.65) (5.24) (19.46)

5
71.27 23.30 54.50 90.37 65.10 34.64 0.00 12.28 2.07 44.55

(19.67) (24.73) (27.28) (5.74) (19.29) (26.73) (0.00) (24.87) (5.30) (21.25)

V V V V V V V V V V

2 vs 3 167.0 73.0 847.5 957.5 311.0 141.0 n.a. 11.5 6.0 775.0
3 vs 4 267.5 100.0 823.5 1384.5 251.5 174.5 n.a. 21.0 22.0 1420.0
4 vs 5 285.0 180.0 617.0 1082.5 228.0 255.0 n.a. 9.5 49.0 1495.0

*** p < .001, ** p < .01, * p < .05

Table B.10: Comparison of the average utility to the seller in protocol 3 for different numbers
of replications

ID 2381 3044 519 348 2771 848 1941 1541 617 304

Rep.
⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

(±) (±) (±) (±) (±) (±) (±) (±) (±) (±)

2
69.47 24.94 50.40 75.12 71.87 38.11 0.00 10.14 0.76 44.57

(18.08) (28.17) (24.55) (13.28) (21.49) (31.09) (0.00) (20.68) (4.83) (24.50)

3
69.83 26.05 49.93 75.10 68.68 38.71 0.00 10.56 1.02 49.38

(15.42) (28.03) (24.34) (13.11) (22.96) (29.49) (0.00) (21.03) (4.50) (21.82)

4
70.54 26.13 48.37 74.18 67.68 39.08 0.00 9.66 1.23 47.21

(15.65) (27.89) (25.01) (13.32) (25.47) (29.56) (0.00) (20.02) (4.61) (19.29)

5
71.42 25.52 49.29 74.41 69.74 37.75 0.00 10.24 1.98 44.74

(13.89) (27.17) (23.92) (12.90) (21.02) (29.57) (0.00) (20.82) (5.24) (21.61)

V V V V V V V V V V

2 vs 3 752.0 62.5 733.0 1258.5 329.5 205.0 n.a. 17.5 6.0 549.5
3 vs 4 731.0 108.0 821.5 1841.0 309.0 198.5 n.a. 31.0 22.0 1155.5
4 vs 5 752.5 177.5 760.0 1520.5 278.0 394.0 n.a. 21.0 49.0 1287.0

*** p < .001, ** p < .01, * p < .05

Table B.11: Comparison of the average utility to the buyer in protocol 3 for different numbers
of replications





Appendix C

Summary Tables

This appendix provides result tables with additional results for Chapter 6 that do not fit there.

Table C.1 provides results for the outcome variables proportion of agreements (prop. agr.),

proportion of Pareto-optimal agreements (prop. eff.), minimal distance to the Pareto frontier

(distance), the utility of the agreement to the seller (u. seller) and buyer (u. buyer) and the

contract imbalance as a measure of fairness (imbalance) for the system configurations indicated

in the first three columns which specify the interaction protocol (protocol) as well as the software

agents used for representing the seller (seller) and buyer (buyer) party. While for the first two

outcome variables proportions of reached agreements and reached Pareto-optimal agreements

proportions of the total number of simulation runs with this system configuration are reported, for

the remaining four outcome variables average values for the subset of simulation runs that reached

an agreement are provided as central tendency. The sample sizes therefore are 2, 065 ∗ 3 = 6, 195

for the proportions and 6, 195 ∗ prop.agr. for all other outcome variables.

At the bottom of each part of the table we also provide the results of the negotiation experiments

between humans, used as benchmark for the evaluation of the different systems for automated

negotiation – here the sample size is 2,065. Indicators for the significance values for one-sided

tests that automated negotiation systems reach better results than human negotiators in the

experiments – i.e. that they reach more agreements and more Pareto-efficient agreements, agree-

ments of lower distance to the Pareto frontier, lower contract imbalance and higher utility to

the parties – are reported with the results. However, we omit the test statistics of the tests –

χ2 for Pearson’s χ2 test of independence to test hypotheses concerning proportions and W for

the Wilcoxon rank sum test employed to test the remaining of the above mentioned hypotheses

– due to space restrictions, the interested reader is provided with this information upon request.

Furthermore note that ∗ indicates significance at p < 0.05, ∗∗ at p < 0.01, and ∗ ∗ ∗ at p < 0.001,

all referring to p-values adjusted by the Bonferroni-Holm method to control for the family wise

error rate in the multiple comparisons.
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protocol seller buyer prop. agr. prop. eff. distance u. seller u. buyer imbalance

1 MOCact MOCact 100.00*** 81.97*** 0.92*** 73.12*** 68.40 11.61***

1 MOCact MOCpas 100.00*** 82.28*** 0.94*** 73.06*** 68.40 11.57***

1 MOCact SMCact 100.00*** 52.36*** 3.41 83.47*** 49.56 35.07

1 MOCact SMCpas 100.00*** 52.03*** 3.51 83.59*** 49.16 35.46

1 MOCact MUMact 100.00*** 42.31*** 5.80 90.03*** 34.06 56.36

1 MOCact MUMpas 100.00*** 39.79*** 6.31 90.04*** 32.89 57.51

1 MOCact LEXact 100.00*** 43.42*** 5.03 84.95*** 44.44 40.97

1 MOCact LEXpas 100.00*** 42.44*** 5.38 84.94*** 43.74 41.63

1 MOCact TFT 100.00*** 84.37*** 1.07*** 83.46*** 54.42 29.22

1 MOCpas MOCact 100.00*** 81.82*** 0.98*** 73.06*** 68.37 11.56***

1 MOCpas MOCpas 100.00*** 82.18*** 0.94*** 73.10*** 68.38 11.63***

1 MOCpas SMCact 100.00*** 52.62*** 3.42 83.56*** 49.51 35.13

1 MOCpas SMCpas 100.00*** 52.96*** 3.44 83.58*** 49.30 35.34

1 MOCpas MUMact 100.00*** 42.08*** 5.74 90.02*** 34.16 56.22

1 MOCpas MUMpas 100.00*** 40.02*** 6.31 90.00*** 33.00 57.40

1 MOCpas LEXact 100.00*** 43.91*** 5.03 84.99*** 44.43 40.98

1 MOCpas LEXpas 100.00*** 42.65*** 5.29 84.99*** 43.85 41.60

1 MOCpas TFT 100.00*** 84.63*** 1.05*** 83.48*** 54.38 29.30

1 SMCact MOCact 100.00*** 57.40*** 3.05 55.62 79.75*** 26.81

1 SMCact MOCpas 100.00*** 56.97*** 3.03 55.53 79.82*** 26.95

1 SMCact SMCact 100.00*** 43.42*** 4.61 69.33*** 63.97 25.59

1 SMCact SMCpas 100.00*** 43.41*** 4.53 69.56*** 63.78 25.97

1 SMCact MUMact 100.00*** 37.11 6.31 79.74*** 48.19 37.65

1 SMCact MUMpas 100.00*** 36.50 6.75 79.99*** 46.83 39.09

1 SMCact LEXact 100.00*** 35.04 6.09 71.23*** 59.87 24.43

1 SMCact LEXpas 100.00*** 33.72 6.39 71.17*** 59.30 24.94

1 SMCact TFT 100.00*** 54.74*** 3.30 78.68*** 57.14 23.92

1 SMCpas MOCact 100.00*** 57.14*** 3.05 55.33 79.86*** 27.28

1 SMCpas MOCpas 100.00*** 57.40*** 3.11 55.39 79.80*** 27.12

1 SMCpas SMCact 100.00*** 43.26*** 4.58 69.19*** 64.12 25.65

1 SMCpas SMCpas 100.00*** 43.87*** 4.60 69.35*** 63.85 26.06

1 SMCpas MUMact 100.00*** 36.87 6.33 79.71*** 48.15 37.89

1 SMCpas MUMpas 100.00*** 35.72 6.78 79.83*** 46.98 39.22

1 SMCpas LEXact 100.00*** 35.74 6.08 71.12*** 59.99 24.63

1 SMCpas LEXpas 100.00*** 34.16 6.41 71.02*** 59.42 25.27

1 SMCpas TFT 100.00*** 54.74*** 3.31 78.68*** 57.08 24.03

1 MUMact MOCact 100.00*** 52.45*** 4.55 40.50 87.58*** 48.01

1 MUMact MOCpas 100.00*** 51.91*** 4.57 40.48 87.61*** 48.06

1 MUMact SMCact 100.00*** 43.52*** 5.40 55.55 75.39*** 31.99

1 MUMact SMCpas 100.00*** 42.84*** 5.52 55.46 75.30*** 32.13

1 MUMact MUMact 100.00*** 38.24 7.55 69.35 61.11 24.07

Control (human negotiation exp.) 69.78 34.24 5.24 67.93 67.42 20.40

continued on next page
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protocol seller buyer prop. agr. prop. eff. distance u. seller u. buyer imbalance

1 MUMact MUMpas 100.00*** 37.05 7.93 69.35 60.18 25.25

1 MUMact LEXact 100.00*** 36.34 7.37 58.55 71.43*** 25.18

1 MUMact LEXpas 100.00*** 35.72 7.47 58.48 71.30*** 25.27

1 MUMact TFT 100.00*** 46.57*** 5.17 75.16*** 58.17 23.88

1 MUMpas MOCact 100.00*** 51.38*** 5.06 39.22 87.64*** 49.35

1 MUMpas MOCpas 100.00*** 51.36*** 4.93 39.50 87.64*** 49.13

1 MUMpas SMCact 100.00*** 42.23*** 5.90 54.24 75.76*** 33.32

1 MUMpas SMCpas 100.00*** 42.03*** 5.98 54.26 75.54*** 33.55

1 MUMpas MUMact 100.00*** 37.47 7.85 68.73 61.09 24.99

1 MUMpas MUMpas 100.00*** 35.90 8.25 68.62 60.30 26.67

1 MUMpas LEXact 100.00*** 35.79 7.67 57.49 71.75*** 26.54

1 MUMpas LEXpas 100.00*** 35.87 7.80 57.34 71.62*** 26.78

1 MUMpas TFT 100.00*** 46.52*** 5.30 74.93*** 58.22 24.08

1 LEXact MOCact 100.00*** 48.05*** 4.54 50.04 82.13*** 33.03

1 LEXact MOCpas 100.00*** 49.22*** 4.47 50.14 82.14*** 32.97

1 LEXact SMCact 100.00*** 38.89* 5.47 64.77 68.26 21.16

1 LEXact SMCpas 100.00*** 37.84 5.67 64.67 67.99 21.43

1 LEXact MUMact 100.00*** 33.85 7.91 75.38*** 53.20 28.24

1 LEXact MUMpas 100.00*** 33.32 8.41 75.49*** 52.04 29.62

1 LEXact LEXact 100.00*** 27.09 9.00 65.49 62.81 16.94***

1 LEXact LEXpas 100.00*** 27.15 9.16 65.65 62.33 17.49***

1 LEXact TFT 100.00*** 39.69*** 6.06 74.72*** 57.57 21.18

1 LEXpas MOCact 100.00*** 46.47*** 4.89 49.34 82.12*** 33.73

1 LEXpas MOCpas 100.00*** 46.41*** 4.87 49.34 82.15*** 33.77

1 LEXpas SMCact 100.00*** 38.29 5.67 64.48 68.18 21.53

1 LEXpas SMCpas 100.00*** 37.61 5.76 64.44 68.04 21.83

1 LEXpas MUMact 100.00*** 33.82 7.78 75.31*** 53.37 28.22

1 LEXpas MUMpas 100.00*** 32.64 8.32 75.38*** 52.31 29.37

1 LEXpas LEXact 100.00*** 26.99 9.10 65.15 62.95 17.26***

1 LEXpas LEXpas 100.00*** 26.96 9.34 65.13 62.44 17.84***

1 LEXpas TFT 100.00*** 39.56*** 6.32 74.47*** 57.48 21.36

1 TFT MOCact 100.00*** 85.88*** 0.96*** 54.96 83.05*** 28.37

1 TFT MOCpas 100.00*** 85.49*** 0.97*** 54.96 83.02*** 28.34

1 TFT SMCact 100.00*** 57.56*** 3.25 57.38 78.28*** 23.75

1 TFT SMCpas 100.00*** 58.13*** 3.19 57.40 78.39*** 23.83

1 TFT MUMact 100.00*** 47.46*** 5.36 58.28 74.58*** 23.24

1 TFT MUMpas 100.00*** 47.34*** 5.61 58.32 74.10*** 23.67

1 TFT LEXact 100.00*** 38.76* 6.33 58.07 73.75*** 20.19

1 TFT LEXpas 100.00*** 38.26 6.53 57.96 73.61*** 20.30

1 TFT TFT 100.00*** 37.21 6.97 66.04 66.04 15.80***

2 MOCact MOCact 10.33 9.14 0.56*** 87.97*** 86.21*** 7.49***

2 MOCact MOCpas 10.12 8.81 0.64*** 88.15*** 86.29*** 7.36***

Control (human negotiation exp.) 69.78 34.24 5.24 67.93 67.42 20.40

continued on next page
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protocol seller buyer prop. agr. prop. eff. distance u. seller u. buyer imbalance

2 MOCact SMCact 12.40 9.06 1.54*** 90.36*** 77.00*** 15.18***

2 MOCact SMCpas 11.25 7.99 1.59*** 90.74*** 78.18*** 14.30***

2 MOCact MUMact 16.50 9.69 2.60* 91.10*** 67.44 24.31

2 MOCact MUMpas 12.09 7.52 2.24*** 91.37*** 72.98*** 19.61

2 MOCact LEXact 11.72 8.22 1.90*** 91.21*** 75.29*** 16.79*

2 MOCact LEXpas 10.48 7.44 1.85*** 91.39*** 76.46*** 15.98**

2 MOCact TFT 15.98 12.03 2.27*** 96.47*** 61.26 35.22

2 MOCpas MOCact 10.04 8.59 0.69*** 88.15*** 86.26*** 7.30***

2 MOCpas MOCpas 9.88 8.52 0.70*** 88.28*** 86.36*** 7.18***

2 MOCpas SMCact 12.19 8.93 1.37*** 90.83*** 77.01*** 15.56***

2 MOCpas SMCpas 10.83 7.81 1.56*** 90.73*** 78.68*** 13.91***

2 MOCpas MUMact 14.19 8.17 2.78 91.59*** 68.58 23.70

2 MOCpas MUMpas 11.20 6.65 2.49 91.83*** 73.17*** 19.65

2 MOCpas LEXact 10.90 7.64 1.75*** 91.40*** 75.50*** 16.89*

2 MOCpas LEXpas 9.91 6.86 1.81*** 91.60*** 77.24*** 15.39***

2 MOCpas TFT 15.08 11.44 2.26*** 96.78*** 60.90 35.90

2 SMCact MOCact 13.67 10.07 1.35*** 78.50*** 87.87*** 12.12***

2 SMCact MOCpas 12.64 9.27 1.35*** 78.94*** 88.12*** 11.89***

2 SMCact SMCact 19.61 11.25 2.64 79.58*** 77.44*** 12.86***

2 SMCact SMCpas 16.08 9.10 2.50 80.86*** 79.08*** 11.69***

2 SMCact MUMact 26.30 12.72 3.56 80.43*** 69.35 16.76**

2 SMCact MUMpas 18.51 9.35 3.33 81.12*** 74.27*** 14.34***

2 SMCact LEXact 18.39 9.64 3.71 79.89*** 74.93*** 13.05***

2 SMCact LEXpas 14.77 7.65 3.71 80.99*** 76.94*** 12.40***

2 SMCact TFT 21.84 14.32 2.88*** 92.21*** 60.09 32.29

2 SMCpas MOCact 12.19 8.86 1.37*** 79.75*** 87.95*** 11.03***

2 SMCpas MOCpas 11.69 8.43 1.35*** 79.94*** 88.14*** 10.93***

2 SMCpas SMCact 16.80 9.70 2.64 82.11*** 77.94*** 12.85***

2 SMCpas SMCpas 14.29 8.80 2.22* 83.55*** 80.40*** 11.26***

2 SMCpas MUMact 20.44 10.27 3.53 82.53*** 70.43 17.10**

2 SMCpas MUMpas 14.74 7.52 3.43 84.19*** 75.64*** 14.56***

2 SMCpas LEXact 14.95 8.09 3.61 82.27*** 76.19*** 12.75***

2 SMCpas LEXpas 12.51 6.76 3.22 83.60*** 78.38*** 12.26***

2 SMCpas TFT 18.48 12.57 2.74*** 93.66*** 60.44 33.27

2 MUMact MOCact 18.19 10.80 2.54* 69.87 88.73*** 20.51

2 MUMact MOCpas 16.55 9.91 2.78 70.46 89.33*** 20.27

2 MUMact SMCact 29.65 15.11 3.26 71.65** 78.16*** 15.38***

2 MUMact SMCpas 22.28 11.27 3.49 73.53*** 80.22*** 14.95***

2 MUMact MUMact 50.96 27.31 3.62 72.35*** 68.80 14.06***

2 MUMact MUMpas 32.72 17.40 3.53 72.66*** 72.28*** 12.95***

2 MUMact LEXact 33.03 15.69 4.28 71.37 73.76*** 13.40***

2 MUMact LEXpas 22.57 10.83 4.26 73.23*** 76.30*** 13.42***

Control (human negotiation exp.) 69.78 34.24 5.24 67.93 67.42 20.40

continued on next page
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protocol seller buyer prop. agr. prop. eff. distance u. seller u. buyer imbalance

2 MUMact TFT 46.83 28.86 2.67*** 82.82*** 57.34 26.14

2 MUMpas MOCact 14.29 8.94 2.44* 73.66*** 88.88*** 16.97*

2 MUMpas MOCpas 13.54 8.35 2.35* 74.39*** 89.25*** 16.72*

2 MUMpas SMCact 21.42 10.67 3.17 76.06*** 78.57*** 13.57***

2 MUMpas SMCpas 16.63 8.23 3.40 78.18*** 80.80*** 13.68***

2 MUMpas MUMact 33.51 17.34 3.69 75.65*** 69.10 14.01***

2 MUMpas MUMpas 19.82 9.18 4.31 78.46*** 75.03*** 13.29***

2 MUMpas LEXact 22.50 10.49 4.34 76.18*** 74.49*** 12.71***

2 MUMpas LEXpas 15.85 7.36 4.70 78.51*** 77.99*** 12.73***

2 MUMpas TFT 31.36 21.23 2.44*** 85.91*** 57.69 28.42

2 LEXact MOCact 14.24 9.36 2.04*** 75.51*** 88.95*** 14.98***

2 LEXact MOCpas 13.16 9.01 1.92*** 75.40*** 89.39*** 15.45***

2 LEXact SMCact 21.08 10.90 3.70 76.21*** 77.19*** 11.97***

2 LEXact SMCpas 17.16 8.88 3.72 77.81*** 79.59*** 11.92***

2 LEXact MUMact 33.03 15.09 4.44 76.75*** 69.18 14.45***

2 LEXact MUMpas 22.39 10.72 4.06 77.44*** 73.22*** 12.60***

2 LEXact LEXact 21.99 9.28 5.50 74.80*** 72.72*** 10.77***

2 LEXact LEXpas 16.38 7.38 5.13 77.01*** 75.63*** 10.60***

2 LEXact TFT 30.33 17.59 3.62 88.73*** 58.70 30.20

2 LEXpas MOCact 12.38 8.35 2.03*** 76.36*** 89.11*** 14.54***

2 LEXpas MOCpas 11.83 8.17 1.95*** 76.54*** 89.35*** 14.35***

2 LEXpas SMCact 17.01 9.06 3.34 78.81*** 78.78*** 11.84***

2 LEXpas SMCpas 14.50 7.94 3.32 79.41*** 81.86*** 11.68***

2 LEXpas MUMact 23.36 10.72 4.48 78.74*** 70.66 14.33***

2 LEXpas MUMpas 16.30 7.89 4.17 80.63*** 76.17*** 12.39***

2 LEXpas LEXact 16.51 7.23 5.10 78.14*** 74.80*** 10.62***

2 LEXpas LEXpas 13.20 6.20 5.05 79.68*** 77.16*** 10.14***

2 LEXpas TFT 23.83 14.14 3.47 90.70*** 59.23 31.62

2 TFT MOCact 17.27 14.19 1.65*** 58.93 95.81*** 36.92

2 TFT MOCpas 15.61 12.74 1.84*** 58.81 96.11*** 37.32

2 TFT SMCact 23.91 16.71 2.47*** 58.13 90.73*** 32.90

2 TFT SMCpas 20.50 14.83 2.33*** 58.57 92.68*** 34.31

2 TFT MUMact 52.66 33.69 2.64*** 56.89 81.93*** 25.82

2 TFT MUMpas 36.35 25.38 2.28*** 57.22 85.38*** 28.44

2 TFT LEXact 29.57 16.61 3.94 58.01 87.66*** 30.05

2 TFT LEXpas 22.97 13.58 3.76 58.35 89.13*** 30.94

2 TFT TFT 75.93*** 26.02 7.55 66.90 66.54 16.41***

3 MOCact MOCact 79.82*** 66.44*** 0.86*** 73.71*** 70.86* 8.12***

3 MOCact MOCpas 74.04* 61.50*** 0.86*** 74.17*** 71.61*** 8.07***

3 MOCact SMCact 82.57*** 60.69*** 1.45*** 79.63*** 62.26 18.26

3 MOCact SMCpas 75.32*** 53.45*** 1.51*** 79.87*** 63.46 17.43

3 MOCact MUMact 91.85*** 64.47*** 1.81*** 82.65*** 55.68 27.43

Control (human negotiation exp.) 69.78 34.24 5.24 67.93 67.42 20.40

continued on next page
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protocol seller buyer prop. agr. prop. eff. distance u. seller u. buyer imbalance

3 MOCact MUMpas 81.24*** 60.19*** 1.51*** 81.39*** 60.47 21.71

3 MOCact LEXact 86.36*** 60.27*** 1.68*** 80.74*** 60.11 21.26

3 MOCact LEXpas 75.06*** 52.49*** 1.69*** 81.41*** 61.70 20.20

3 MOCact TFT 73.20 62.31*** 1.06*** 86.75*** 55.34 31.47

3 MOCpas MOCact 75.24*** 62.79*** 0.89*** 74.22*** 71.14*** 8.06***

3 MOCpas MOCpas 50.93 42.44*** 0.93*** 76.89*** 73.73*** 8.48***

3 MOCpas SMCact 79.24*** 59.00*** 1.34*** 80.02*** 62.35 18.46

3 MOCpas SMCpas 49.28 34.33 1.59*** 82.70*** 65.72 18.03

3 MOCpas MUMact 88.59*** 62.62*** 1.79*** 83.02*** 55.70 27.72

3 MOCpas MUMpas 52.69 37.09 1.77*** 84.23*** 62.40 22.67

3 MOCpas LEXact 83.47*** 56.98*** 1.79*** 81.16*** 59.91 21.75

3 MOCpas LEXpas 49.86 33.74 1.83*** 83.89*** 63.79 20.66

3 MOCpas TFT 58.42 49.06*** 1.14*** 87.79*** 55.57 32.25

3 SMCact MOCact 80.27*** 58.29*** 1.46*** 65.19 77.63*** 14.73***

3 SMCact MOCpas 76.00*** 54.96*** 1.46*** 65.22 78.10*** 14.92***

3 SMCact SMCact 79.55*** 40.65*** 3.19 71.51*** 68.92 13.94***

3 SMCact SMCpas 71.69 36.17 3.32 71.49*** 70.16 13.32***

3 SMCact MUMact 89.02*** 41.28*** 3.95 75.85*** 61.38 19.00

3 SMCact MUMpas 76.51*** 37.69 3.62 75.08*** 65.44 15.65***

3 SMCact LEXact 80.32*** 36.24 4.26 72.56*** 65.95 14.14***

3 SMCact LEXpas 68.25 30.80 4.30 72.87*** 67.65 13.54***

3 SMCact TFT 75.58*** 44.00*** 2.99 82.52*** 57.01 26.12

3 SMCpas MOCact 76.21*** 53.77*** 1.52*** 66.09 77.57*** 13.97***

3 SMCpas MOCpas 47.25 32.83 1.62*** 68.85 80.34*** 14.13***

3 SMCpas SMCact 74.25*** 38.43 3.15 72.69*** 68.86 13.32***

3 SMCpas SMCpas 44.10 22.07 3.35 75.08*** 72.24*** 12.90***

3 SMCpas MUMact 83.42*** 39.48*** 3.92 76.86*** 61.26 19.19

3 SMCpas MUMpas 46.94 21.73 3.99 77.77*** 67.77 15.86***

3 SMCpas LEXact 75.17*** 32.87 4.40 73.62*** 65.55 14.05***

3 SMCpas LEXpas 42.44 19.24 4.57 76.18*** 69.37 13.47***

3 SMCpas TFT 56.43 33.48 2.97 84.17*** 57.45 27.24

3 MUMact MOCact 91.35*** 64.07*** 1.89*** 57.84 81.22*** 24.36

3 MUMact MOCpas 85.71*** 60.21*** 1.93*** 57.97 81.80*** 24.73

3 MUMact SMCact 88.05*** 44.47*** 3.88 64.17 73.86*** 16.88**

3 MUMact SMCpas 80.69*** 40.69*** 3.71 64.29 75.11*** 17.15**

3 MUMact MUMact 89.48*** 40.32*** 4.98 70.41 66.30 15.16***

3 MUMact MUMpas 78.85*** 37.09 4.69 69.97 69.34 13.91***

3 MUMact LEXact 87.12*** 36.46 5.59 65.96 69.89 14.31***

3 MUMact LEXpas 76.56*** 31.11 5.61 66.06 71.36*** 14.47***

3 MUMact TFT 81.44*** 42.73*** 3.76 79.81*** 57.81 23.88

3 MUMpas MOCact 82.47*** 61.92*** 1.53*** 62.34 79.89*** 18.99

3 MUMpas MOCpas 52.32 36.19 1.81*** 64.90 82.48*** 19.25

Control (human negotiation exp.) 69.78 34.24 5.24 67.93 67.42 20.40

continued on next page
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protocol seller buyer prop. agr. prop. eff. distance u. seller u. buyer imbalance

3 MUMpas SMCact 78.47*** 40.71*** 3.43 67.87 72.90*** 14.24***

3 MUMpas SMCpas 47.39 23.23 3.88 70.94 75.48*** 14.46***

3 MUMpas MUMact 81.50*** 38.82* 4.62 72.97*** 65.66 15.37***

3 MUMpas MUMpas 47.30 19.73 5.29 74.52*** 70.56 14.58***

3 MUMpas LEXact 76.01*** 32.66 5.25 69.58 68.93 12.42***

3 MUMpas LEXpas 45.00 16.82 6.20 72.13*** 71.67*** 13.03***

3 MUMpas TFT 58.55 31.93 3.55 82.75*** 57.90 25.73

3 LEXact MOCact 85.15*** 58.00*** 1.72*** 62.17 79.15*** 17.96

3 LEXact MOCpas 80.26*** 54.79*** 1.71*** 62.40 79.80*** 18.31

3 LEXact SMCact 81.39*** 36.84 4.32 68.05 70.58* 12.60***

3 LEXact SMCpas 73.25 33.93 4.22 68.02 71.95*** 12.38***

3 LEXact MUMact 87.57*** 34.83 5.73 72.15*** 63.22 15.09***

3 LEXact MUMpas 74.71*** 31.28 5.25 71.30*** 67.73 12.51***

3 LEXact LEXact 78.63*** 24.94 7.16 67.90 66.65 11.27***

3 LEXact LEXpas 65.68 20.76 7.19 68.46 68.40 10.84***

3 LEXact TFT 71.49 31.75 5.13 80.12*** 57.52 23.53

3 LEXpas MOCact 75.58*** 52.15*** 1.66*** 63.88 79.61*** 16.95*

3 LEXpas MOCpas 48.14 31.95 1.86*** 66.02 82.05*** 17.31

3 LEXpas SMCact 70.99 32.15 4.27 69.75 70.82*** 12.42***

3 LEXpas SMCpas 43.23 20.39 4.52 71.77*** 73.95*** 12.15***

3 LEXpas MUMact 79.27*** 31.91 5.73 73.37*** 63.41 15.30***

3 LEXpas MUMpas 43.87 16.13 6.18 73.95*** 69.86 12.50***

3 LEXpas LEXact 67.99 22.13 7.08 69.69 66.81 11.16***

3 LEXpas LEXpas 39.73 13.46 7.14 71.87*** 70.57 10.66***

3 LEXpas TFT 51.62 23.37 5.13 82.24*** 57.90 25.08

3 TFT MOCact 75.27*** 64.58*** 1.17*** 55.33 85.69*** 30.92

3 TFT MOCpas 60.13 51.32*** 1.07*** 55.93 86.82*** 31.62

3 TFT SMCact 77.37*** 47.68*** 2.94 57.16 81.41*** 25.62

3 TFT SMCpas 56.22 35.80 2.85*** 57.57 83.45*** 27.02

3 TFT MUMact 80.82*** 43.10*** 4.01 58.06 78.86*** 23.35

3 TFT MUMpas 57.26 32.20 3.79 58.04 81.94*** 25.56

3 TFT LEXact 70.25 30.15 5.54 58.29 78.47*** 22.61

3 TFT LEXpas 49.85 22.50 5.43 58.80 81.16*** 24.59

3 TFT TFT 76.90*** 26.84 7.34 66.83 66.63 16.46***

Control (human nego.) 69.78 34.24 5.24 67.93 67.42 20.40

Table C.1: Comparison of automated negotiation systems vs. human negotiation experiments
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Tables C.2 to C.19 also provide the results of multiple comparisons, but not for system configu-

rations versus control but, between different system configurations for the outcome dimensions

considered in this study. Note that each of the tables with the lower triangles of the multiple

comparisons for the outcome dimensions spreads over three tables on three pages: proportion of

agreements in Tables C.2 to C.4, proportion of Pareto-optimal agreements in Tables C.5 to C.7,

minimal distance to the Pareto frontier in Tables C.8 to C.10, the utility of the agreement to

the seller in Tables C.11 to C.13 and buyer in Tables C.14 to C.16 and the contract imbalance

in Tables C.17 to C.19.

In the comparisons we grouped all simulations where a specific software agents representing the

seller party negotiated in a specific interaction protocol with all other software agents represent-

ing the buyer party. Therefore we have 27 groups resulting from the combination of the nine

software agents for the seller party and the three possible interaction protocols. For the outcome

dimensions that are proportions the sample size for each group therefore is 2, 065∗9∗3 = 55, 755

resulting from the three replications of negotiations with each software agent as opponent for all

negotiation problems. For all other dimensions again sample sizes can be derived by multiplying

these 55, 755 simulation runs with the proportions of negotiations that reached an agreement –

provided in Tables C.2 to C.4 – as they can be calculated only for agreements.

The provided significance values for two-sided tests comparing the performance of different sys-

tem configurations are p-values adjusted by the Bonferroni-Holm method to control for the

family wise error rate in the multiple comparisons. Due to the limited space we again omit

the test statistics of the tests – χ2 for Pearson’s χ2 independence test for proportions and W

for the Wilcoxon rank sum test for the remaining outcome dimensions – but gladly provide the

interested reader with this information upon request.
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% LEXact | 1 LEXact | 2 LEXact | 3 LEXpas | 1 LEXpas | 2 LEXpas | 3 MOCact | 1 MOCact | 2 MOCact | 3

LEXact | 1 100.00
LEXact | 2 21.08 0.0000
LEXact | 3 77.57 0.0000 0.0000
LEXpas | 1 100.00 0.0000 0.0000
LEXpas | 2 16.55 0.0000 0.0000 0.0000 0.0000
LEXpas | 3 57.82 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 1 100.00 0.0000 0.0000 0.0000 0.0000
MOCact | 2 12.32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 3 79.94 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCpas | 1 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCpas | 2 11.58 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000
MOCpas | 3 65.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 1 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 2 30.31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 3 84.36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 1 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 2 20.99 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 3 63.22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 1 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 17.98 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 3 77.47 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 1 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 15.12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 60.69 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 32.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 67.12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.2: System component interactions for the proportion of agreements 1/3
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% MOCpas | 1 MOCpas | 2 MOCpas | 3 MUMact | 1 MUMact | 2 MUMact | 3 MUMpas | 1 MUMpas | 2 MUMpas | 3

LEXact | 1 100.00
LEXact | 2 21.08
LEXact | 3 77.57
LEXpas | 1 100.00
LEXpas | 2 16.55
LEXpas | 3 57.82
MOCact | 1 100.00
MOCact | 2 12.32
MOCact | 3 79.94
MOCpas | 1 100.00
MOCpas | 2 11.58 0.0000
MOCpas | 3 65.30 0.0000 0.0000
MUMact | 1 100.00 0.0000 0.0000
MUMact | 2 30.31 0.0000 0.0000 0.0000 0.0000
MUMact | 3 84.36 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 1 100.00 0.0000 0.0000 0.0000 0.0000
MUMpas | 2 20.99 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 3 63.22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 1 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 17.98 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 3 77.47 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 1 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 15.12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 60.69 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 100.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 32.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 67.12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.3: System component interactions for the proportion of agreements 2/3
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% SMCact | 1 SMCact | 2 SMCact | 3 SMCpas | 1 SMCpas | 2 SMCpas | 3 TFT | 1 TFT | 2

LEXact | 1 100.00
LEXact | 2 21.08
LEXact | 3 77.57
LEXpas | 1 100.00
LEXpas | 2 16.55
LEXpas | 3 57.82
MOCact | 1 100.00
MOCact | 2 12.32
MOCact | 3 79.94
MOCpas | 1 100.00
MOCpas | 2 11.58
MOCpas | 3 65.30
MUMact | 1 100.00
MUMact | 2 30.31
MUMact | 3 84.36
MUMpas | 1 100.00
MUMpas | 2 20.99
MUMpas | 3 63.22
SMCact | 1 100.00
SMCact | 2 17.98 0.0000
SMCact | 3 77.47 0.0000 0.0000
SMCpas | 1 100.00 0.0000 0.0000
SMCpas | 2 15.12 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 60.69 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 100.00 0.0000 0.0000 0.0000 0.0000
TFT | 2 32.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 67.12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.4: System component interactions for the proportion of agreements 3/3
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% LEXact | 1 LEXact | 2 LEXact | 3 LEXpas | 1 LEXpas | 2 LEXpas | 3 MOCact | 1 MOCact | 2 MOCact | 3

LEXact | 1 37.23
LEXact | 2 10.91 0.0000
LEXact | 3 36.35 0.0324 0.0000
LEXpas | 1 36.53 0.1947 0.0000 1.0000
LEXpas | 2 8.85 0.0000 0.0000 0.0000 0.0000
LEXpas | 3 27.07 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 1 57.89 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 2 8.88 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
MOCact | 3 60.20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCpas | 1 58.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
MOCpas | 2 8.29 0.0000 0.0000 0.0000 0.0000 0.0133 0.0000 0.0000 0.0089 0.0000
MOCpas | 3 48.67 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 1 42.74 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 2 16.35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 3 44.13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 1 42.06 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 2 11.31 0.0000 0.3874 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 3 33.56 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 1 44.26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 10.37 0.0000 0.0517 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 3 42.23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 1 44.32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 9.00 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
SMCpas | 3 32.66 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 55.12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 19.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 39.35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.5: System component interactions for the proportion of Pareto-optimal agreements 1/3
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% MOCpas | 1 MOCpas | 2 MOCpas | 3 MUMact | 1 MUMact | 2 MUMact | 3 MUMpas | 1 MUMpas | 2 MUMpas | 3

LEXact | 1 37.23
LEXact | 2 10.91
LEXact | 3 36.35
LEXpas | 1 36.53
LEXpas | 2 8.85
LEXpas | 3 27.07
MOCact | 1 57.89
MOCact | 2 8.88
MOCact | 3 60.20
MOCpas | 1 58.10
MOCpas | 2 8.29 0.0000
MOCpas | 3 48.67 0.0000 0.0000
MUMact | 1 42.74 0.0000 0.0000 0.0000
MUMact | 2 16.35 0.0000 0.0000 0.0000 0.0000
MUMact | 3 44.13 0.0000 0.0000 0.0000 0.0001 0.0000
MUMpas | 1 42.06 0.0000 0.0000 0.0000 0.2681 0.0000 0.0000
MUMpas | 2 11.31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 3 33.56 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 1 44.26 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
SMCact | 2 10.37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 3 42.23 0.0000 0.0000 0.0000 0.8870 0.0000 0.0000 1.0000 0.0000 0.0000
SMCpas | 1 44.32 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
SMCpas | 2 9.00 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 32.66 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0234
TFT | 1 55.12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 19.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 39.35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.6: System component interactions for the proportion of Pareto-optimal agreements 2/3
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% SMCact | 1 SMCact | 2 SMCact | 3 SMCpas | 1 SMCpas | 2 SMCpas | 3 TFT | 1 TFT | 2

LEXact | 1 37.23
LEXact | 2 10.91
LEXact | 3 36.35
LEXpas | 1 36.53
LEXpas | 2 8.85
LEXpas | 3 27.07
MOCact | 1 57.89
MOCact | 2 8.88
MOCact | 3 60.20
MOCpas | 1 58.10
MOCpas | 2 8.29
MOCpas | 3 48.67
MUMact | 1 42.74
MUMact | 2 16.35
MUMact | 3 44.13
MUMpas | 1 42.06
MUMpas | 2 11.31
MUMpas | 3 33.56
SMCact | 1 44.26
SMCact | 2 10.37 0.0000
SMCact | 3 42.23 0.0000 0.0000
SMCpas | 1 44.32 1.0000 0.0000 0.0000
SMCpas | 2 9.00 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 32.66 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 55.12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 19.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 39.35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.7: System component interactions for the proportion of Pareto-optimal agreements 3/3
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⊘ LEXact | 1 LEXact | 2 LEXact | 3 LEXpas | 1 LEXpas | 2 LEXpas | 3 MOCact | 1 MOCact | 2 MOCact | 3

LEXact | 1 6.74
LEXact | 2 3.96 0.0000
LEXact | 3 4.64 0.0000 0.0000
LEXpas | 1 6.89 1.0000 0.0000 0.0000
LEXpas | 2 3.77 0.0000 0.9355 0.0000 0.0000
LEXpas | 3 4.74 0.0000 0.0000 1.0000 0.0000 0.0000
MOCact | 1 3.60 0.0000 0.0000 0.0000 0.0000 0.0610 0.0000
MOCact | 2 1.81 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 3 1.39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
MOCpas | 1 3.58 0.0000 0.0000 0.0000 0.0000 0.0324 0.0000 1.0000 0.0000 0.0000
MOCpas | 2 1.82 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
MOCpas | 3 1.45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 1.0000
MUMact | 1 6.17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 2 3.42 0.0000 0.0001 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000
MUMact | 3 3.98 0.0000 1.0000 0.0000 0.0000 0.0361 0.0000 0.0000 0.0000 0.0000
MUMpas | 1 6.53 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 2 3.43 0.0000 0.0000 0.0000 0.0000 0.3344 0.0000 1.0000 0.0000 0.0000
MUMpas | 3 3.86 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 1 4.89 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 2.92 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.2718 0.0000 0.0000
SMCact | 3 3.16 0.0000 0.1012 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 1 4.92 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 2.79 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 3.26 0.0000 0.3538 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 4.35 0.0000 1.0000 0.0000 0.0000 0.0274 0.0000 0.0000 0.0000 0.0000
TFT | 2 3.85 0.0000 0.0000 0.0000 0.0000 0.1569 0.0000 1.0000 0.0000 0.0000
TFT | 3 3.81 0.0000 0.0000 0.0000 0.0000 0.5464 0.0000 1.0000 0.0000 0.0000

Table C.8: System component interactions for the minimal distance to the Pareto frontier 1/3
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⊘ MOCpas | 1 MOCpas | 2 MOCpas | 3 MUMact | 1 MUMact | 2 MUMact | 3 MUMpas | 1 MUMpas | 2 MUMpas | 3

LEXact | 1 6.74
LEXact | 2 3.96
LEXact | 3 4.64
LEXpas | 1 6.89
LEXpas | 2 3.77
LEXpas | 3 4.74
MOCact | 1 3.60
MOCact | 2 1.81
MOCact | 3 1.39
MOCpas | 1 3.58
MOCpas | 2 1.82 0.0000
MOCpas | 3 1.45 0.0000 0.0000
MUMact | 1 6.17 0.0000 0.0000 0.0000
MUMact | 2 3.42 1.0000 0.0000 0.0000 0.0000
MUMact | 3 3.98 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 1 6.53 0.0000 0.0000 0.0000 0.2536 0.0000 0.0000
MUMpas | 2 3.43 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
MUMpas | 3 3.86 0.0000 0.0000 0.0000 0.0000 0.0001 0.2336 0.0000 0.0000
SMCact | 1 4.89 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 2.92 0.4843 0.0000 0.0000 0.0000 0.0258 0.0000 0.0000 0.4321 0.0000
SMCact | 3 3.16 0.0000 0.0000 0.0000 0.0000 0.0589 0.0000 0.0000 0.0088 0.6158
SMCpas | 1 4.92 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 2.79 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
SMCpas | 3 3.26 0.0000 0.0000 0.0000 0.0000 0.0209 0.0001 0.0000 0.0029 1.0000
TFT | 1 4.35 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.1351
TFT | 2 3.85 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
TFT | 3 3.81 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000

Table C.9: System component interactions for the minimal distance to the Pareto frontier 2/3
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⊘ SMCact | 1 SMCact | 2 SMCact | 3 SMCpas | 1 SMCpas | 2 SMCpas | 3 TFT | 1 TFT | 2

LEXact | 1 6.74
LEXact | 2 3.96
LEXact | 3 4.64
LEXpas | 1 6.89
LEXpas | 2 3.77
LEXpas | 3 4.74
MOCact | 1 3.60
MOCact | 2 1.81
MOCact | 3 1.39
MOCpas | 1 3.58
MOCpas | 2 1.82
MOCpas | 3 1.45
MUMact | 1 6.17
MUMact | 2 3.42
MUMact | 3 3.98
MUMpas | 1 6.53
MUMpas | 2 3.43
MUMpas | 3 3.86
SMCact | 1 4.89
SMCact | 2 2.92 0.0000
SMCact | 3 3.16 0.0000 0.0000
SMCpas | 1 4.92 1.0000 0.0000 0.0000
SMCpas | 2 2.79 0.0000 0.5078 0.0000 0.0000
SMCpas | 3 3.26 0.0000 0.0000 1.0000 0.0000 0.0000
TFT | 1 4.35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
TFT | 2 3.85 0.0000 1.0000 0.0000 0.0000 0.0009 0.0000 0.0000
TFT | 3 3.81 0.0000 0.0388 0.0002 0.0000 0.0000 0.0001 0.0000 1.0000

Table C.10: System component interactions for the minimal distance to the Pareto frontier 3/3
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⊘ LEXact | 1 LEXact | 2 LEXact | 3 LEXpas | 1 LEXpas | 2 LEXpas | 3 MOCact | 1 MOCact | 2 MOCact | 3

LEXact | 1 65.15
LEXact | 2 78.26 0.0000
LEXact | 3 68.80 0.0000 0.0000
LEXpas | 1 64.78 1.0000 0.0000 0.0000
LEXpas | 2 80.54 0.0000 0.0000 0.0000 0.0000
LEXpas | 3 71.15 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 1 82.96 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 2 91.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 3 80.00 0.0000 0.0000 0.0000 0.0000 0.0700 0.0000 0.0000 0.0000
MOCpas | 1 82.98 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
MOCpas | 2 91.61 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7173 0.0000
MOCpas | 3 81.35 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000
MUMact | 1 58.10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 2 73.72 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 3 66.17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 1 57.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 2 78.03 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 3 70.65 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 1 70.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 81.78 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 3 72.44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 1 69.96 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 83.94 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000
SMCpas | 3 74.40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 58.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 60.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 58.55 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.11: System component interactions for the focal party’s (seller) utility 1/3
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⊘ MOCpas | 1 MOCpas | 2 MOCpas | 3 MUMact | 1 MUMact | 2 MUMact | 3 MUMpas | 1 MUMpas | 2 MUMpas | 3

LEXact | 1 65.15
LEXact | 2 78.26
LEXact | 3 68.80
LEXpas | 1 64.78
LEXpas | 2 80.54
LEXpas | 3 71.15
MOCact | 1 82.96
MOCact | 2 91.30
MOCact | 3 80.00
MOCpas | 1 82.98
MOCpas | 2 91.61 0.0000
MOCpas | 3 81.35 0.0000 0.0000
MUMact | 1 58.10 0.0000 0.0000 0.0000
MUMact | 2 73.72 0.0000 0.0000 0.0000 0.0000
MUMact | 3 66.17 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 1 57.15 0.0000 0.0000 0.0000 0.0715 0.0000 0.0000
MUMpas | 2 78.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 3 70.65 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 1 70.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 81.78 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 3 72.44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 1 69.96 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 83.94 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 74.40 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000
TFT | 1 58.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 60.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018 0.0000 0.0000
TFT | 3 58.55 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.12: System component interactions for the focal party’s (seller) utility 2/3



2
2
2

⊘ SMCact | 1 SMCact | 2 SMCact | 3 SMCpas | 1 SMCpas | 2 SMCpas | 3 TFT | 1 TFT | 2

LEXact | 1 65.15
LEXact | 2 78.26
LEXact | 3 68.80
LEXpas | 1 64.78
LEXpas | 2 80.54
LEXpas | 3 71.15
MOCact | 1 82.96
MOCact | 2 91.30
MOCact | 3 80.00
MOCpas | 1 82.98
MOCpas | 2 91.61
MOCpas | 3 81.35
MUMact | 1 58.10
MUMact | 2 73.72
MUMact | 3 66.17
MUMpas | 1 57.15
MUMpas | 2 78.03
MUMpas | 3 70.65
SMCact | 1 70.09
SMCact | 2 81.78 0.0000
SMCact | 3 72.44 1.0000 0.0000
SMCpas | 1 69.96 1.0000 0.0000 1.0000
SMCpas | 2 83.94 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 74.40 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 58.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 60.04 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 58.55 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0616 0.0000

Table C.13: System component interactions for the focal party’s (seller) utility 3/3
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⊘ LEXact | 1 LEXact | 2 LEXact | 3 LEXpas | 1 LEXpas | 2 LEXpas | 3 MOCact | 1 MOCact | 2 MOCact | 3

LEXact | 1 65.38
LEXact | 2 73.82 0.0000
LEXact | 3 69.63 0.0000 0.0000
LEXpas | 1 65.45 1.0000 0.0000 0.0000
LEXpas | 2 75.46 0.0000 0.0000 0.0000 0.0000
LEXpas | 3 70.38 0.0000 0.0000 0.0002 0.0000 0.0000
MOCact | 1 49.45 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 2 74.22 0.0000 1.0000 0.0000 0.0000 0.0028 0.0000 0.0000
MOCact | 3 62.36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCpas | 1 49.49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
MOCpas | 2 74.60 0.0000 0.7152 0.0000 0.0000 0.1135 0.0000 0.0000 1.0000 0.0000
MOCpas | 3 62.98 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0047
MUMact | 1 72.01 0.0000 0.4872 0.0000 0.0000 0.0000 0.0000 0.0000 0.2439 0.0000
MUMact | 2 73.38 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2303 0.0000
MUMact | 3 71.95 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 1 72.17 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6682 0.0000
MUMpas | 2 73.99 0.0000 1.0000 0.0000 0.0000 0.0001 0.0000 0.0000 1.0000 0.0000
MUMpas | 3 71.49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 1 62.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 74.79 0.0000 0.0408 0.0000 0.0000 0.2763 0.0000 0.0000 0.9003 0.0000
SMCact | 3 68.03 0.0016 0.0000 0.0000 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 1 62.14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 75.81 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 68.55 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 76.09 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000
TFT | 2 83.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 80.22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.14: System component interactions for the opponent’s (buyer) utility 1/3
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⊘ MOCpas | 1 MOCpas | 2 MOCpas | 3 MUMact | 1 MUMact | 2 MUMact | 3 MUMpas | 1 MUMpas | 2 MUMpas | 3

LEXact | 1 65.38
LEXact | 2 73.82
LEXact | 3 69.63
LEXpas | 1 65.45
LEXpas | 2 75.46
LEXpas | 3 70.38
MOCact | 1 49.45
MOCact | 2 74.22
MOCact | 3 62.36
MOCpas | 1 49.49
MOCpas | 2 74.60 0.0000
MOCpas | 3 62.98 0.0000 0.0000
MUMact | 1 72.01 0.0000 0.0081 0.0000
MUMact | 2 73.38 0.0000 0.0072 0.0000 1.0000
MUMact | 3 71.95 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 1 72.17 0.0000 0.0384 0.0000 1.0000 1.0000 0.0000
MUMpas | 2 73.99 0.0000 1.0000 0.0000 0.0715 0.2805 0.0000 0.3969
MUMpas | 3 71.49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0379 0.0000 0.0000
SMCact | 1 62.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 74.79 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2303 0.0000
SMCact | 3 68.03 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 1 62.14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 75.81 0.0000 0.0081 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 3 68.55 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 76.09 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 83.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 80.22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.15: System component interactions for the opponent’s (buyer) utility 2/3
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⊘ SMCact | 1 SMCact | 2 SMCact | 3 SMCpas | 1 SMCpas | 2 SMCpas | 3 TFT | 1 TFT | 2

LEXact | 1 65.38
LEXact | 2 73.82
LEXact | 3 69.63
LEXpas | 1 65.45
LEXpas | 2 75.46
LEXpas | 3 70.38
MOCact | 1 49.45
MOCact | 2 74.22
MOCact | 3 62.36
MOCpas | 1 49.49
MOCpas | 2 74.60
MOCpas | 3 62.98
MUMact | 1 72.01
MUMact | 2 73.38
MUMact | 3 71.95
MUMpas | 1 72.17
MUMpas | 2 73.99
MUMpas | 3 71.49
SMCact | 1 62.07
SMCact | 2 74.79 0.0000
SMCact | 3 68.03 0.0000 0.0000
SMCpas | 1 62.14 1.0000 0.0000 0.0000
SMCpas | 2 75.81 0.0000 0.0204 0.0000 0.0000
SMCpas | 3 68.55 0.0000 0.0000 0.0444 0.0000 0.0000
TFT | 1 76.09 0.0000 0.0000 0.0000 0.0000 0.0220 0.0000
TFT | 2 83.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 80.22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.16: System component interactions for the opponent’s (buyer) utility 3/3
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⊘ LEXact | 1 LEXact | 2 LEXact | 3 LEXpas | 1 LEXpas | 2 LEXpas | 3 MOCact | 1 MOCact | 2 MOCact | 3

LEXact | 1 24.67
LEXact | 2 15.33 0.0000
LEXact | 3 14.97 0.0000 1.0000
LEXpas | 1 24.99 1.0000 0.0000 0.0000
LEXpas | 2 15.48 0.0000 1.0000 1.0000 0.0000
LEXpas | 3 14.95 0.0000 1.0000 1.0000 0.0000 1.0000
MOCact | 1 35.49 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 2 18.84 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MOCact | 3 19.31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0120
MOCpas | 1 35.46 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
MOCpas | 2 18.74 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0017
MOCpas | 3 19.95 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009
MUMact | 1 31.54 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 2 16.69 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMact | 3 18.38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
MUMpas | 1 32.71 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MUMpas | 2 16.45 0.0000 0.0001 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
MUMpas | 3 16.54 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 1 28.37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 16.04 0.0000 0.9188 1.0000 0.0000 1.0000 0.7803 0.0000 0.0000 0.0000
SMCact | 3 16.17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 1 28.57 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 15.99 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000
SMCpas | 3 16.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 1 23.05 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 27.28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 25.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.17: System component interactions for the contract imbalance 1/3
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⊘ MOCpas | 1 MOCpas | 2 MOCpas | 3 MUMact | 1 MUMact | 2 MUMact | 3 MUMpas | 1 MUMpas | 2 MUMpas | 3

LEXact | 1 24.67
LEXact | 2 15.33
LEXact | 3 14.97
LEXpas | 1 24.99
LEXpas | 2 15.48
LEXpas | 3 14.95
MOCact | 1 35.49
MOCact | 2 18.84
MOCact | 3 19.31
MOCpas | 1 35.46
MOCpas | 2 18.74 0.0000
MOCpas | 3 19.95 0.0000 0.0000
MUMact | 1 31.54 0.0000 0.0000 0.0000
MUMact | 2 16.69 0.0000 0.0000 0.0000 0.0000
MUMact | 3 18.38 0.0000 1.0000 0.0000 0.0000 0.0000
MUMpas | 1 32.71 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
MUMpas | 2 16.45 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
MUMpas | 3 16.54 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.2672
SMCact | 1 28.37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCact | 2 16.04 0.0000 0.0000 0.0000 0.0000 0.0040 0.0000 0.0000 0.4403 0.0000
SMCact | 3 16.17 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.3963
SMCpas | 1 28.57 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMCpas | 2 15.99 0.0000 0.0000 0.0000 0.0000 0.0015 0.0000 0.0000 0.1939 0.0000
SMCpas | 3 16.15 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0803
TFT | 1 23.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 27.28 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0012 0.0000 0.0000
TFT | 3 25.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.18: System component interactions for the contract imbalance 2/3
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⊘ SMCact | 1 SMCact | 2 SMCact | 3 SMCpas | 1 SMCpas | 2 SMCpas | 3 TFT | 1 TFT | 2

LEXact | 1 24.67
LEXact | 2 15.33
LEXact | 3 14.97
LEXpas | 1 24.99
LEXpas | 2 15.48
LEXpas | 3 14.95
MOCact | 1 35.49
MOCact | 2 18.84
MOCact | 3 19.31
MOCpas | 1 35.46
MOCpas | 2 18.74
MOCpas | 3 19.95
MUMact | 1 31.54
MUMact | 2 16.69
MUMact | 3 18.38
MUMpas | 1 32.71
MUMpas | 2 16.45
MUMpas | 3 16.54
SMCact | 1 28.37
SMCact | 2 16.04 0.0000
SMCact | 3 16.17 0.0000 0.0016
SMCpas | 1 28.57 1.0000 0.0000 0.0000
SMCpas | 2 15.99 0.0000 1.0000 0.0005 0.0000
SMCpas | 3 16.15 0.0000 0.0178 1.0000 0.0000 0.0053
TFT | 1 23.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 2 27.28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TFT | 3 25.15 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

Table C.19: System component interactions for the contract imbalance 3/3



Simulation of Automated Negotiation

Mag. Michael Filzmoser

Abstract

Automated negotiation is argued to improve negotiation outcomes by replacing humans and

to enable coordination in autonomous systems. As operative systems do not yet exist scholars

rely on simulations to evaluate potential systems for automated negotiation. This dissertation

reviews the state of the art literature on simulation of automated negotiation along its main

components – negotiation problem, interaction protocol, and software agents. Deficiencies of

existing approaches concerning the practical application in an open environment as the Internet –

where automated negotiation proceeds fast, with changing opponents, and for various negotiation

problems – are identified.

To address these deficiencies we develop and simulate automated negotiation systems, consisting

of software agents that follow generic offer generation and concession strategies and protocols that

allow these agents to interrupt their strategy to avoid exploitation and unfavorable agreements.

Outcomes of simulation runs are compared across systems and to human negotiation along various

outcome dimensions – proportion of agreements, dyadic and individual performance, and fairness

– for various negotiation problems derived from negotiation experiments with human subjects.

Though there exist trade-offs between the different outcome dimensions, systems consisting of

software agents, that systematically propose offers of monotonically decreasing utility and make

first concession steps if the opponent reciprocated previous concessions, and an interaction pro-

tocol that enables to reject unfavorable offers – without immediately aborting negotiations – in

order to elicit new offers from the opponent, performed best. These systems performed very well

in all outcome dimensions when compared with other systems and were the only that outper-

formed negotiation between humans in all dimensions.





Simulation automatisierter Verhandlungen

Mag. Michael Filzmoser

Abstract

Durch die Automatisierung von Verhandlungen sollen bessere Verhandlungsergebnisse erzielt

werden können als bei Verhandlungen zwischen Menschen und neue Koordinationsformen für

autonome Agentensysteme ermöglicht werden. Diese Arbeit beschäftigt sich mit der Simulation

solcher Systeme füur automatisierte Verhandlungen, da operative Systeme zur Zeit noch nicht

verfügbar sind. Die Arbeit basiert auf einer Erhebung und Diskussion der aktuellen Literatur

im Bereich der Simulation automatisierter Verhandlungen. Existierende Ansätze weisen einige

Unzulänglichkeiten bezüglich deren praktischer Umsetzbarkeit in einer offenen Umgebung wie

dem Internet auf, wo automatisierte Verhandlungen nicht nur sehr schnell durchgeführt werden

sondern sich auch Software-Agenten und Verhandlungsprobleme ändern können.

Diese Defizite thematisierend werden Verhandlungssysteme für automatisierte Verhandlungen

vorgeschlagen. Diese bestehen zum einen aus Software-Agenten, die generische Angebots- und

Konzessionsstratgien verfolgen, zum anderen aus Interaktionsprotokollen, die es Agenten er-

lauben ihre Strategien vorübergehend oder permanent auszusetzen. Ergebnisse der Simulation

dieser Systeme, mit Verhandlungsproblemen aus Verhandlungsexperimenten mit menschlichen

Probanden als Input, werden für unterschiedliche Ergebnisdimensionen – Übereinkunftshäufigkeit,

Fairness, individuelle und kollektive Effizienz – zwischen Systemen und auch mit den Ergebnissen

der Experimente verglichen.

Trotz fundamentaler Zielkonflikte zwischen den einzelnen Ergebnisdimensionen erzielen einige

Systeme konsistent bessere Ergebnisse sowohl im Systemvergleich als auch verglichen mit den

Ergebnissen der Experimente. Diese Systeme bestehen aus Software-Agenten die systematisch

Angebote mit monoton abnehmendem Nutzen unterbreiten und erste Konzessionensschritte

tätigen solange der Opponent bisherige Konzessionen erwidert hat. Das verwendete Interak-

tionsprotokoll zeichnet sich dadurch aus, dass es den Agenten erlaubt ungünstige Angebote

zurückzuweisen und damit neue Angebote des Opponenten einzufordern, durch diese Unter-

brechung der eigenen Angebotsstrategie können ungünstige Verhandlungsergebnisse vermieden

werden.
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