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1 Preface

1.1 Introduction

In gene expression or proteomic studies large numbers of variables are investigated. We

generally can not assume that a few of the investigated variables show noticeable ef-

fects. Instead we often hope that there is at least a combination of several variables

which, e.g., allow a prediction of the response of an individual patient to a particular

therapy. The task of selecting useful variables with rather moderate e�ects from a very

large number of candidates and estimating suitable scores to be used for the prediction of

a clinical outcome (e.g. success of a speci�c therapy) in future patients is a hard exercise.

Moreover, due to limited resources generally small sample sizes per variable are available

which makes the problem even less tractable. For medical research reported in this �eld

there is not always su�cient awareness of the statistical properties of the resulting prog-

nostic scores. For instance, Ntzani and Ioannidis (2003) showed for prediction of cancer

outcome that the constructed scores are poorly performing in external validation samples.

Subset selection procedures (e.g. Shao (1993), Miller (2002)) are widely used for such

type of problem. However, there is a general problem of how to quantify the probability

for falsely selecting variables not related to the clinical outcome. There have been pro-

posals of estimating the positive false discovery rate in case that a nonzero model has

been selected (Li and Hui (2007)). It is known that model selection by multiple testing of

individual model parameters under fairly general conditions asymptotically is a consistent

selection procedure: for increasing sample size the critical boundary for the univariate test

statistics (the parameter estimate divided by its standard error) has to approach in�nity

at a smaller order than the inverse of the standard error (Bauer et al. (1988)). Asymptotic

relationships between model selection procedures and multiple tests controlling the false

1



1 Preface

discovery rate, i.e. the expected proportion of type I errors among all rejected hypotheses

(FDR, see Benjamini and Hochberg (1995)), have been shown (Abramovich et al. (2006)).

However such asymptotic results do not help how to tune the multiple test procedure in

a speci�c sample in order to achieve good prediction of the outcome of a future patient.

1.2 Investigated problem

In this thesis we consider the following scenario: we want to search for predictors of a

binary outcome (e.g. success of a therapy) among a large set of candidate variables (e.g.

genes, proteins). Independent samples of patients responding and non-responding to the

therapy are available (case-control study). Based on the given samples variables have to

be selected and a score has to be constructed which will be used to predict response to

therapy in future patients. The candidate variables are assumed to follow normal distri-

butions.

We consider multiple tests controlling the false discovery rate (FDR) for the selection

of variables. A linear score is estimated from the selected variables and its performance is

assessed in terms of the statistical properties of the resulting receiver operating character-

istic curve (ROC-curve). The area under the ROC-curve (AUC), a widely used measure

how well a score can predict the clinical outcome is calculated varying the FDR level for

selection, the number of candidate variables, per-group sample sizes and the number of

prognostic variables related with the clinical outcome (alternatives).

We demonstrate that the threshold for the FDR which achieves the maximal AUC largely

varies between di�erent parameter constellations. Therefore we propose that cross vali-

dation is used to determine the FDR for the test based selection procedure optimal with

regard to the AUC. It is investigated to what extend this optimization has an impact on

the resulting FDR of the multiple test procedure.

A further typical data analytic approach used for such type of problem is the binary

logistic regression. For comparison to the multiple test procedure we additionally inves-

tigate what can be achieved in terms of the AUC by using a stepwise (forward) binary

2



1.3 Outline of the thesis

logistic regression model for selecting variables and building a linear prediction score.

1.3 Outline of the thesis

This work is a continuation of the second part of my doctoral thesis in Statistics (A084

136) where the described procedures were only investigated under the simple assumptions

of independence across hypotheses and known variance (compare Goll (2008)). In this

diploma thesis, after a repetition of the results assuming the simple assumptions addition-

ally a more sophisticated method to determine the optimal FDR has been used, another

form of the cross validation procedure (using the mean di�erence in the score values)

and extensions to the two-sided test situation as well as to the case of unequal e�ect

sizes are discussed. Furthermore, results with respect to deviations from the underlying

assumptions as unknown variance and correlation between hypotheses are investigated.

Additionally the cross validation procedure is investigated for four real data sets.

First, an introduction to the general methodology is given in Chapter 2. Chapter 3

gives an overview of some results under the simple assumptions of independence across

variables and known variance. Section 3.1 describes the basic assumptions, in Section 3.2

the selection methods (multiple test controlling the FDR and the binary logistic regres-

sion) are introduced and in Section 3.3 we explain the construction of a simple prediction

score based on the selection methods. The results of the simulation studies for the mul-

tiple testing procedure for di�erent parameter constellations can be seen in Section 3.5.

Selection and prediction using a forward logistic regression model is discussed in Section

3.6. The situation under the global null hypothesis is described in Section 3.7. Using

cross validation to determine selection boundaries for the multiple testing procedure by

optimizing the AUC is discussed in Section 4 (compare also Goll (2008)). Chapter 5 gives

some extensions as the two-sided test situation (Section 5.1) and the situation of unequal

e�ect sizes (Section 5.2) among the alternatives again assuming independence across vari-

ables and known variance. Chapter 6 presents the results for the situation of unknown

variances. The di�erences of the selection procedure and the prediction score as compared

to the known variance case are discussed in Sections 6.1 and simulation results are given

in Section 6.2. The cross validation procedure for the unknown variance case is discussed

3



1 Preface

in Section 6.3. The situation of an autoregressive correlation structure between variables

is discussed in Chapter 7. Selection of variables and the corresponding changes in the

prediction score are discussed in Section 7.1. The corresponding simulation studies are

given in Section 7.2. The cross validation procedure under the assumption of correlated

hypotheses is discussed in Section 7.3. In Chapter 8 the investigated cross validation

procedure is applied for four example data sets. A short discussion of the results is given

in Chapter 9.

1.4 Publications

As mentioned above, this work is a continuation of the second part of my doctoral thesis:

Goll (2008): Inference on a large number of hypotheses based on limited samples -

some points to consider.

This thesis is based on the following submitted paper:

Goll and Bauer (2008): Model selection based on the false discovery rate optimizing

the area under the receiver operating characteristic curve.

A few results have been used and cited in

Bauer (2008): Adaptive designs: looking for a needle in the haystack - a new chal-

lenge in medical research, Statistics in Medicine, 27: 1565-1580.

1.5 Availability

An R-program (R (2005)) for the cross validation procedure is available on:

http://statistics.msi.meduniwien.ac.at/index.php?page=page_ag_publications

These R-program can also be seen in the appendix.

4
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2 General Methodology

2.1 Properties of the normal distribution

As mentioned in the preface, in this thesis we assume that the observed candidate variables

(e.g. gene expression data or protein volumes) are normal distributed. In the following

some important properties of the normal distribution, which may be used later in the

thesis, are discussed. The given de�nitions, theorems and the corresponding proofs can

be seen in e.g. Sachs (1999) and Anderson (2003).

De�nition 2.1.0.1 A random variable X is normal distributed with mean value µ and

variance σ2 (standard deviation σ) if the corresponding density is given as:

f(x | µ, σ) =
1

σ
√

2π
exp

−1

2

[
(x− µ)

σ

]2
 .

This distribution is denoted by N [µ, σ2].

Note that the turning points of f(x | µ, σ) are µ − σ and µ + σ. Approximately 2/3 of

all observations are lying within the two turning points. Note also that the mean value µ

and the variance σ2 are estimated by the sample mean

x̄ =
1

n

n∑
i=1

xi

and the empirical variance

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2.

Theorem 2.1.0.1 X̄ and S2 are stochastically independent.

De�nition 2.1.0.2 The normal distribution with mean value µ = 0 and variance σ2 = 1

is denoted as standard normal distribution (N [0, 1]) with density:

f(z) =
1√
2π

exp(
−z2

2
)

5



2 General Methodology

Theorem 2.1.0.2 Let X be a random variable distributed according to N [µ, σ2]. The

random variable

Z =
X − µ
σ

is standard normal distributed (Z ∼ N [0, 1]).

Theorem 2.1.0.3 The cumulative distribution function of the standard normal distribu-

tion can be calculated as:

Φ(z) = P [Z ≤ z] =
1√
2π

∫ z

−∞
exp(
−v2

2
)dv

In the thesis we may refer to the following properties of the standard normal distribution:

Theorem 2.1.0.4 Properties of the standard normal distribution (N [0, 1]):

• Because of the symmetry of the normal distribution:

Φ(−z) = 1− Φ(z)

• P [| Z |≤ z] = 2Φ(z)− 1 and P [| Z |> z] = 2(1− Φ(z))

Typical properties of the normal distribution (N [µ, σ2]) are summarized in the next the-

orem.

Theorem 2.1.0.5 Let Xi ∼ N [µ, σ2] for i = 1, ..., n, then

• ∑n
i=1Xi ∼ N [nµ, nσ2]

• 1
n

∑n
i=1Xi ∼ N [µ, σ2/n]

• Xi−µ
σ
∼ N [0, 1]

• X̄−µ
σ

√
n ∼ N [0, 1]

• ∑n
i=1(Xi−µ

σ
)2 ∼ χ2

v chi-square distributed with v = n degrees of freedom

• S2/σ2(n−1) = 1
σ2

∑n
i=1(Xi−X̄n)2 ∼ χ2

v chi-square distributed with v = n−1 degrees

of freedom

The normal distribution also plays an important role for the approximation of other

distributions.

6



2.2 Measures of accuracy for binary tests

Theorem 2.1.0.6 Central limit theorem: Let Sn =
∑n
i=1Xi be the sum of n indepen-

dent identical distributed random variables with the same expected value µ and the same

variance σ2 and let

S∗n =
Sn − nµ
σ
√
n

be the corresponding standardized random variable, then

lim
n→∞

P [S∗n ≤ z] = Φ(z)

(convergence in distribution).

When moving to more than one candidate variable we need the following de�nition:

De�nition 2.1.0.3 Let X = (X1, ..., Xm) be random variables. The common distribu-

tion is called a m-dimensional multivariate normal distribution with mean vector µ and

covariance matrix Σ if the density is of the form:

f(x) =
1

(2π)m/2det(
∑

)1/2
exp

[
−1

2
(x− µ)T

∑−1
(x− µ)

]

with Σ positive de�nite. We denote this distribution by N [µ,Σ].

One important property of the m-dimensional normal distribution used in the thesis is:

Theorem 2.1.0.7 If the m-dimensional random vector X = (X1, ..., Xm) is distributed

according to N [µ,Σ] then each linear combination with weights cT = (c1, ..., cm)

Y = cTX =
m∑
i=1

ciXi

is distributed according to N [cTµ, cTΣc].

2.2 Measures of accuracy for binary tests

Classi�cation and prediction are fundamental components of clinical practice, e.g. a pa-

tient should be classi�ed as a responder to a speci�c treatment or not. Classi�cation errors

can lead to serious consequences in medicine, e.g. a patient who would in fact response to

the therapy but who was erroneously classi�ed as non-responder may not receive the vital

treatment. A patient who would in fact not response to the therapy but was erroneously

classi�ed as a responder will at a minimum undergo unnecessary medical procedures and

7



2 General Methodology

emotional stress. The accuracy of such a diagnostic test that classi�es a subject as either

responder or non-responder can be de�ned in various ways discussed in the following. The

given de�nitions, theorems and the corresponding proofs can be seen in Pepe (2003).

Let the binary variable R denote the true response status of a patient:

R =

{
1 for response
0 for non-response

. (2.1)

The variable Y denotes the result of a diagnostic test:

Y =

{
1 positive for response
0 negative for response

. (2.2)

If we know the truth, the result of the test can than be classi�ed as true positive, true

negative, false positive or false negative. Hence, the test can have two types of errors,

false positive errors and false negative errors.

De�nition 2.2.0.4 Classi�cation probabilities:

• false positive fraction= FPF = P [Y = 1 | R = 0]

• true negative fraction= TNF = P [Y = 0 | R = 0] = 1− FPF

• true positive fraction= TPF = P [Y = 1 | R = 1]

• false negative fraction= FNF = P [Y = 0 | R = 1] = 1− TPF

TPF and TNF are also known as sensitivity and speci�city.

Because FNF = 1 − TPF the pair (FPF, TPF ) de�nes the probabilities with which

errors occur when using the given test. An ideal test clearly has FPF = 0 and TPF = 1.

For a useless test on the other had, i.e. if response to therapy has no relation to the test

outcome, TPF = FPF . Note that in context of statistical hypothesis testing of a null

hypothesis (R = 0) versus an alternative hypothesis (R = 1) the terms signi�cance level

(α = FPF ) and statistical power (1− β = TPF ) are used (see next Section 2.3).

As an alternative, accuracy can be quanti�ed by how well a test result predicts true

response status.
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2.2 Measures of accuracy for binary tests

De�nition 2.2.0.5 The predictive values are:

• positive predictive value= PPV = P [R = 1 | Y = 1]

• negative predictive value= NPV = P [R = 0 | Y = 0]

Thus a perfect test will predict response perfectly with PPV=1 and NPV=1. On the

other hand a useless test has no information about true response status and thus P [R =

1 | Y = 1] = P [R = 1] and P [R = 0 | Y = 0] = P [R = 0]. We see that the predictive

values depend not only on the performance of the test in responding and non-responding

patients, but also on the prevalence of response. A low PPV may simply be a result

of low prevalence of response or it may be due to a test that does not re�ect the true

response status of the patient very well. The classi�cation probabilities, TPF and FPF,

are considered more relevant to quantify the inherent accuracy of the test because they

quantify how well the test re�ects true response status. There is a direct relationship

between predictive values and the classi�cation probabilities.

Theorem 2.2.0.8 Let ν = P [R = 1] and τ = P [Y = 1] then

• PPV = νTPF/(νTPF + (1− ν)FPF )

• NPV = (1− ν)(1− FPF )/((1− ν)(1− FPF ) + ν(1− TPF ))

• τ = νTPF + (1− ν)FPF

• TPF = τPPV/(τPPV + (1− τ)(1−NPV ))

• FPF = τ(1− PPV )/(τ(1− PPV ) + (1− τ)NPV )

• ν = τPPV + (1− τ)(1−NPV )

Likelihood ratios are a further way of describing the prognostic or diagnostic value of a

test.

De�nition 2.2.0.6 Diagnostic likelihood ratios (DLR) are de�ned as:

• positive DLR=DLR+ = P [Y = 1 | R = 1]/P [Y = 1 | R = 0]

• negative DLR=DLR− = P [Y = 0 | R = 1]/P [Y = 0 | R = 0]

They are the ratios of the likelihood of the observed test result in the responding versus

the non-responding populations. An uninformative test having no relation to response

9



2 General Methodology

status has DLRs of unity. On the other hand, a perfect test, for which Y = R with prob-

ability 1 has DLR parameters DLR+ =∞ and DLR− = 0. A DLR+ > 1 indicates that

a positive test is more likely in a responding subject than in a non-responding subject.

Similarly with DLR− ≤ 1.

Consider now the odds that a subject response to therapy before the test is performed,

i.e. in absence of the test result.

De�nition 2.2.0.7 The pre-test odds are de�ned as:

pre− test odds =
P [R = 1]

1− P [R = 1]
=
P [R = 1]

P [R = 0]

After the test is performed, i.e. with knowledge of the test results, the odds of response

are:

De�nition 2.2.0.8 The post-test odds are de�ned as:

post− test odds(Y = y) =
P [R = 1 | Y = y]

P [R = 0 | Y = y]

where y = 0 or 1.

Some relationships between DLRs, predictive values, classi�cation probabilities and odds

are discussed in the following .

Theorem 2.2.0.9 The following results hold:

• post-test odds (Y=1)= DLR+× (pre-test odds)

• post-test odds (Y=0)= DLR−× (pre-test odds)

Theorem 2.2.0.10 The following results hold:

• post-test odds (Y=1)=PPV /(1-PPV)

• post-test odds (Y=0)=(1-NPV)/ NPV

Theorem 2.2.0.11 The following results hold:

• DLR+ = TPF/FPF

• DLR− = (1− TPF )/(1− FPF )

10



2.3 Multiple tests controlling the false discovery rate

A single index of classi�er performance commonly used in medicine is the odds ratio (ratio

of post-test odds).

Theorem 2.2.0.12 The odds ratio can be written as:

OR =
post− test odds(Y = 1)

post− test odds(Y = 0)
= DLR+ 1

DLR−
=

=
PPV

(1− PPV )

NPV

(1−NPV )
=
TPF

FPF

(1− FPF )

(1− TPF )

A single odds ratio value can result from a wide variety of classi�cation performances

(FPF, TPF ). For example an odds ratio of 36 results from (FPF = 0.1, TPF = 0.8)

which might be considered "good" classi�cation or from (FPF = 0.5, TPF = 0.973)

which is likely considered "poor" classi�cation (see e.g. Pepe and Thompson (2002),

Pepe et al. (2004)).

2.3 Multiple tests controlling the false discovery rate

2.3.1 Error rates for multiple testing

Binary responses are commonly studied in medical and epidemiologic research, e.g. the

response to a particular therapy. To �nd the variables related to the clinical outcome

among a large set of candidate genes one may apply a multiple test procedure.

As mentioned in the last section, when a single null hypotheses H is tested, a type I

error, that is rejecting the hypotheses, when it is in fact true (a false positive decision)

may occur. A standard approach is to specify an acceptable level α for the probability

of a type I error (signi�cance level). Let H = 0 if the null hypotheses is in fact true, and

H = 1 if the alternative holds. The control of a speci�ed type I error probability α can

be achieved by choosing a critical value cα such that P [T ≥ cα | H = 0] ≤ α, where T

is the corresponding test statistic for hypothesisH. The hypothesisH is rejected if T ≥ cα.

If the hypothesis is accepted, although in fact the alternative holds, a type II error occurs

(a false negative decision). The probability of a type II error is: β = P [T < cα | H = 1].

11
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Table 2.1: Possible outcomes after a multiple testing procedure

Number of not rejected rejected Total

True null hypotheses TN FP mπ0 = m−me

False null hypotheses FN TP m(1− π0) = me

Total m-R R m

Multiple testing refers to the testing of more than one hypothesis at the same time.

For example in gene expression or proteomic studies thousands of hypotheses are tested

simultaneously. Since the probability of at least one type I error increases with the num-

ber of hypotheses, in such studies large multiplicity problems occur. Table 2.1 shows

the possible outcome after a multiple testing procedure. Consider the problem of testing

simultaneously m null hypotheses Hi, i = 1, ...,m and denote by R the number of rejected

hypotheses among the m hypotheses. Assume that there are mπ0(= m −me) true null

hypotheses among all m hypotheses. The proportion of true null hypotheses π0 is an

unknown parameter. The number of rejected hypotheses R is an observed random vari-

able and TP (number of true positive decisions), FN (number of false negative decisions),

TN (number of true negative decisions) and FP (number of false positive decisions) are

unobservable random variables.

Two common error rates used to control the type I error are:

De�nition 2.3.1.1 The Family Wise Error Rate (FWER) is de�ned as the proba-

bility of at least one type I error:

FWER = P [FP ≥ 1],

were FP is the number of rejected true null hypotheses (false positives).

De�nition 2.3.1.2 The False Discovery Rate (FDR) is the expected proportion of

type I errors among the rejected hypotheses:

FDR = E
[
FP

R
| R > 0

]
P (R > 0) = E

[
V

max(R, 1)

]

where FP is the again the number of false positives and R denotes the number of rejected

hypotheses. The e�ect max(R, 1) in the denominator is to set FP/R = 0 if R = 0

(compare Benjamini and Hochberg (1995)).
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2.3 Multiple tests controlling the false discovery rate

A multiple testing procedure is said to control a particular type I error rate at level α

if this error rate is less than or equal to α. There is a distinction between strong and

weak control of a type I error rate. Strong control refers to the control of the type I error

rate under any combination of true and false null hypotheses. In contrast, weak control

refers to the control of the type I error rate only under the global null hypothesis, that

is when all null hypotheses are in fact true. Weak control is unsatisfactory, because in

reality, some null hypotheses may be true and others false, but the subset of true null

hypotheses is unknown. Strong control ensures that the type I error rate is controlled

under the unknown combination of true and false null hypotheses.

The following properties of the FDR were shown in Benjamini and Hochberg (1995):

Theorem 2.3.1.1 Properties of the FDR:

• Under the complete null hypotheses (if all null hypotheses are true: me = 0), the

FDR is equivalent to the FWER. Therefore control of the FDR implies control of

the FWER in the weak sense.

• If π0 < 1, the FDR is smaller than or equal to the FWER.

As a result of theorem 2.3.1.1, any procedure that controls the FWER also controls the

FDR. Procedures that control the FWER are more conservative, that is, lead to fewer

rejections than those controlling the FDR. If a procedure only controls the FDR, more

type I errors but less type II errors occur and thus, the power of the procedure may be

increased. In the long run there is always a fraction of at most α true null hypotheses

among the rejected hypotheses.

Within the class of multiple testing procedures that control a given type I error rate

at an acceptable level α, one seeks for test procedures that maximize the power (1− β),

that is, minimize the type II error rate (β). As with type I error rates, the concept of

power can be generalized when moving from single to multiple hypotheses testing.

De�nition 2.3.1.3 Under the assumption of a common alternative (as considered in the

13
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following) the power is the expected fraction of null hypotheses correctly rejected

1− β =
E[TP ]

me

=
E[TP ]

m(1− π0)
.

2.3.2 Procedures controlling the FDR

In the genomic or proteomic setting, where thousands of tests are performed simulta-

neously and only a small number of genes or proteins are expected to be di�erentially

expressed, FDR controlling procedures present a promising alternative to FWER ap-

proaches (as e.g. the Bonferroni correction or the Bonferroni-Holm procedure). In such

situations, controlling the FWER can lead to unduly conservative procedures. One may

tolerate some type I errors, provided their number is small in comparison to the number

of rejected hypotheses. The FDR o�ers a less strict multiple testing criterion than the

FWER.

Two approaches to provide FDR controlling procedures are the following: One is to �x

the acceptable FDR level beforehand, and �nd a data-dependent thresholding rule so that

the FDR of this rule is less than or equal to the pre-chosen level. This is the approach

taken by Benjamini and Hochberg (1995). Another is to �x the thresholding rule and

form an estimate of the FDR whose expectation is greater than or equal to the true FDR

over that signi�cance region. This is the approach taken by Storey (2002). These two

procedures are discussed in the following.

The Benjamini-Hochberg procedure

Benjamini and Hochberg (1995) derived the following step-up procedure for strong control

of the FDR for independent test statistics. In contrast to step-down procedures, step-

up procedures begin with the largest p-value. Benjamini and Hochberg proved that the

following procedure controls the FDR at a pre-chosen level α when the p-values following

the null distribution are independent and uniformly distributed.

De�nition 2.3.2.1 The method of Benjamini and Hochberg proceeds as follows:

1. Let p1 ≤ ... ≤ pm denote the observed ordered p-values corresponding to the hypothe-

ses H1, ..., Hm.
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2.3 Multiple tests controlling the false discovery rate

2. For the control of the FDR at level α calculate

k̂ = max{1 ≤ k ≤ m : pk ≤ k
m
α}.

3. If k̂ exists, then reject the null hypotheses Hj for j = 1, ..., k̂ corresponding to

p1 ≤ ... ≤ pk̂. Otherwise, reject nothing.

Theorem 2.3.2.1 For independent test statistics and for any con�guration of false null

hypotheses, the above procedure controls the FDR at level α.

The proof of theorem 2.3.2.1 can be found in Benjamini and Hochberg (1995). It was also

shown by Storey, Taylor and Siegmund (2004) that the Benjamini-Hochberg procedure

controls the FDR in the strong sense. Benjamini and Yekutieli (2001) proved that this

procedure also controls the FDR when the test statistics have positive dependency on

each of the test statistics corresponding to the true null hypothesis. They also proposed,

referring to Hommel (1988), a simple conservative modi�cation of the procedure, replac-

ing αk/m with αk/(m
∑m
j=1

1
j
) in the second step, which provides FDR control under

arbitrary dependence structures (see also Dudoit et al. (2003)).

The Benjamini-Hochberg procedure was originally introduced by Simes (1986) to weakly

control the FWER when all p-values are independent, although it happens to provide

strong control of the FDR.

Storey’s procedure

As mentioned before, instead of �xing α and estimating the rejection region, Storey (2002)

�xed the rejection region and then estimated the FDR. Storey's method uses informa-

tion about π0, which yields a less stringent procedure and more power, while maintaining

strong control. Typically the power of a multiple test procedure decreases with increasing

m. But the larger m, the more information about π0 is obtained.

Again m identical hypothesis tests H1, ..., Hm are performed with independent test statis-

tics T1, ..., Tm. Let Hi = 0 when the null hypothesis i is true and Hi = 1 otherwise. It is

assumed that the test statistics under the true null Ti|(Hi = 0) and under the alternative

hypothesis Ti|(Hi = 1) are identically distributed. It is further assumed that the same
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rejection region is used for each test. Finally it is assumed, that the Hi are independent

Bernoulli random variables with P [Hi = 0] = π0 and P [Hi = 1] = 1− π0 = π1. Let Γ be

the common rejection region for each hypothesis test.

Theorem 2.3.2.2 Under the above assumptions the FDR can be written as:

FDR = P [H = 0 | T ∈ Γ] =
π0P [T ∈ Γ | H = 0]

π0P [T ∈ Γ | H = 0] + π1P [T ∈ Γ | H = 1]

=
π0P [T ∈ Γ | H = 0]

P [T ∈ Γ]
(2.3)

In the following hypotheses are rejected on the basis of independent p-values. For re-

jections based on p-values, all rejection regions are of the form [0, γ] for some γ ≥ 0.

Theorem 2.3.2.3 In terms of p-values the above result can be written as:

FDR(γ) =
π0P [p ≤ γ | H = 0]

P [p ≤ γ]
=

π0γ

P [p ≤ γ]
(2.4)

where p is the random p-value resulting from any test.

Since π0 is an unknown parameter, it has to be estimated. Storey (2002) proposed the

following conservative estimate of π0:

De�nition 2.3.2.2 The proportion of true null hypotheses π0 is estimated by:

π̂0(λ) =
]{pi > λ}
(1− λ)m

=
W (λ)

(1− λ)m
(2.5)

for some well-chosen λ, where p1, ..., pm are the observed p-values, and W (λ) = ]{pi > λ}

is the number of observed p-values exceeding λ. For a small proportion of null hypotheses

this estimator can be larger than 1, thus in this cases it is set to 1.

The argument for the choice of the estimator π̂0(λ) he explained as follows: As long as

each test has reasonable power the large p-values are most likely to come from the true

null hypothesis. Therefore for a well chosen λ, it is expected, that π0(1 − λ) of the p-

values lie in the interval (λ, 1], because the p-values under the true null hypotheses are

uniformly distributed. Therefore W (λ)/m ≈ π0(1 − λ), where E[π̂0(λ)] ≥ π0 when the

p-values corresponding to the true null hypotheses are uniformly distributed.
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2.3 Multiple tests controlling the false discovery rate

There is an inherent bias-variance trade o� in the choice of λ. When λ gets smaller,

the bias of π̂0 gets larger, but the variance gets smaller. Choosing a larger λ reduces the

bias at the cost of higher variance (Storey et al. (2004)). Therefore, λ can be chosen to try

to balance this trade-o�. Storey (2002) optimized the value for λ to minimize the mean

squared error of the estimate with bootstrap methods. However, simulations showed that

when choosing a non-optimal λ the di�erence in their true mean-squared errors is not

very drastic. For his calculations he used λ = 0.5. For our calculations we will also use

λ = 0.5

It is now assumed that λ is �xed.

De�nition 2.3.2.3 An estimate of P [p ≤ γ] is:

P̂ [p ≤ γ] =
]{pi ≤ γ}

m
=
R(γ)

m

where R(γ) = ]{pi ≤ γ}.

Theorem 2.3.2.4 The estimate for the FDR can be calculated as:

̂FDRλ(γ) =
π̂0(λ)γ

P̂ (p ≤ γ)
=

W (λ)γ

(1− λ) max{R(γ), 1}
(2.6)

If ̂FDRλ(γ) > 1 Storey suggest setting ̂FDRλ(γ) = 1.

The following important result was proven by Storey, Taylor and Siegmund (2004).

Theorem 2.3.2.5 Suppose that the p-values corresponding to the true null hypotheses

are independent and uniformly distributed. Then for �xed λ ∈ [0, 1):

E[ ̂FDRλ(γ)] ≥ FDR(γ)

for all γ and π0 < 1.

Note that Storey (2002) �xed a rejection boundary γ and proposed an estimator for the

FDR. To perform a test controlling a pre-chosen FDR α, the largest γ has to be deter-

mined, such that ̂FDRλ(γ) ≤ α. For λ = 0 Storey's procedure for a pre-chosen FDR

is equivalent to the Benjamini-Hochberg procedure. For λ > 0, the rejection boundary

γ is larger compared to the Bejamini-Hochberg method and thus it may be more powerful.

The following theorem may also be used in the thesis:
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Theorem 2.3.2.6 Asymptotically, for m→∞ the FDR can be written as:

α =
π0γ

π0γ + (1− π0)(1− β(γ))

where (1− β(γ)) is the power and β(γ) is the type II error as a function of the rejection

boundary γ.

2.4 Linear methods for classification

2.4.1 Binary logistic regression

In medical research it is often studied how a set of predictor variablesX = (X1, X2, ..., Xm)

is related to a dichotomous response variable R. Note that the true response is de�ned

by R = 0 if a patient does not response or 1 if a patient responds to a speci�c therapy.

The statistical model that is generally preferred for the analysis of binary responses is the

binary logistic regression model (see e.g. Harrel (2001), Hastie et al. (2001)).

De�nition 2.4.1.1 The binary logistic regression model is stated in terms of the proba-

bility that R = 1 given X, the values of the predictors:

P [R = 1 | X = x] = [1 + exp(−xβ)]−1

where xβ = β0 + β1x1 + β2x2 + ...+ βmxm.

De�nition 2.4.1.2 The function q = [1+exp(−x)]−1 is called the logistic function. Note

that this function has an unlimited range for x but q is restricted to range from 0 to 1.

Solving the equation above for x by using

1− q = exp(−x)/[1 + exp(−x)]

yields the inverse of the logistic function

x = log[
q

1− q
] = logit(R = 1 | X = x)

Note that q
1−q is the odds ratio that R = 1 occurs. Since the logistic model is stated in

terms of q = P [R = 1 | X = x] its only assumptions relate to the form of the regression

equation. We transform P [R = 1] to make a model that is linear in xβ:

logit(R = 1 | X = x) = logit(q) = log[
q

1− q
] = xβ
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where q = P [R = 1 | X = x]. Thus the model is a linear regression model in the log odds

that R = 1 since logit(q) is a weighted sum of x.

The parameter βj is then the change in the log odds per unit change in xj if xj rep-

resents a single factor that is linear and does not interact with other factors and if all

other factors are held constant. Instead of writing this relation ship in terms of log odds,

it could just as easily be written in terms of the odds that R = 1.

odds{R = 1 | X = x} = exp(xβ)

The e�ect of increasing xj by d is to increase the odds that R = 1 by a factor of exp(βjd)

or to increase the log odds that R = 1 by an increment βjd. The logistic model quanti�es

the e�ect of a predictor in terms of an odds ratio or log odds ratio.

The parameters in the logistic regression model are estimated using the maximum like-

lihood method. Denoting the response and vector of predictors of response of the ith

subject by Ri and xi, respectively, the model states that qi = P [Ri = 1 | X = xi] =

[1 + exp(−xiβ)]−1. The likelihood of an observed responder Ri given predictors xi and

the unknown parameter vector β is

qRi
i [1− qi]1−Ri .

The joint likelihood of all responses Ri, i = 1, ..., n is the product of theses likelihoods:

L(β) =
n∏
i=1

qRi
i [1− qi]1−Ri

Thus, the log likelihood is:

log(L(β)) =
n∑
i=1

Ri log(qi) + (1−Ri) log(1− qi)

=
n∑
i=1

Ri log(
qi

1− qi
) + log(1− qi)

=
n∑
i=1

Rilogit(qi)− log(1 + exp(logit(qi))).

The likelihood and log likelihood functions are rewritten by using the de�nition of qi above

to allow them to be recognized as a function of the unknown parameters β. Note that

β̂ cannot be written explicitly. The Newton-Raphson method is usually used to salve
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iteratively for the list of values β that maximize the log likelihood.

Since the maximum likelihood estimate of a function of a parameter is the same function

of the maximum likelihood estimate if the parameter:

q̂i = [1 + exp(−xiβ̂)]−1.

To test the null hypotheses H0 : βi = 0 against the alternative H1 : βi 6= 0 the Wald test

statistic is used.

2.4.2 Linear discriminant analysis

Another linear method for classi�cation is the linear discriminant analysis (see e.g. Hastie

et al. (2001)). Again a set of predictor variables X = (X1, X2, ..., Xm) is given. We

assume that the population can be split into l = 1, ..., K sub-populations (e.g. for 2

sub-populations: responder and non-responder). Assume that for a training sample the

corresponding true class R = k is known (e.g. 0 for non-responders and 1 for responders

in the case of 2 sub-populations). We are now searching for decision functions that

discriminates between two classes respectively. Therefore we need the class posteriors

P [R = k | X = x]. Let fk(x) be the class-conditional density of x in class R = k and

qk = P [R = k] the a priori probability of class k, where
∑K
k=1 qk = 1. From Bayes theorem

we get:

P [R = k | X = x] =
fk(x)qk∑K
l=1 fl(x)ql

.

P [R = k | X = x] is the a posteriori probability that an observation (patient) with

predictor vector x belongs to class k. To estimate the a posteriori probability we have to

estimate fk(x) and qk from the sample.

De�nition 2.4.2.1 Bayes decision rule: An observation with predictor vector x will

be allocated to the class which has the largest a posteriori probability P [R = k | X = x]:

k̂ such that P [R = k̂ | X = x] ≥ P [R = l | X = x] for l = 1, ...K

De�nition 2.4.2.2 For a decision function k̂ = e(x) the conditional error rate is the

probability that an observation with true class k and predictors x is allocated to the wrong

class:

ε(e(x)) = P [e(x) 6= k | X = x].
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De�nition 2.4.2.3 For a decision function k̂ = e(x) the total error rate is the probability

that an observation with predictors x is allocated to the wrong class:

ε(e) = P [e(x) 6= k].

Theorem 2.4.2.1 The Bayes rule minimizes the conditional error rate and thus also the

total error rate.

Linear discriminant analysis arises in the special case when we assume that the classes

have a common covariance matrix
∑
k =

∑ ∀k and each class density is multivariate

normal. When comparing 2 classes k and l we have to look at the log-ratio of the two a

posteriori probabilities and we see that:

log(
P [R = k | X = x]

P [R = l | X = x]
) = log(

fk(x)

fl(x)
) + log(

qk
ql

)

= log(
qk
ql

)− 1

2
(µk − µl)T

∑−1
(µk − µl) + xT

∑−1
(µk + µl)

an equation linear in x. The linear log-odds function implies that the decision boundary

between classes k and l, the set were P [R = k | X = x] = P [R = l | X = x], is linear in

x (in m dimensions a hyperplane).

De�nition 2.4.2.4 Linear discriminant function:

LDF (x) = (µk − µl)T
∑−1

x− 1

2
(µk − µl)T

∑−1
(µk + µl)

Thus, one will decide for k if

(µk − µl)T
∑−1

x− 1

2
(µk − µl)T

∑−1
(µk + µl) > log(

qk
ql

)

and class l otherwise. In practice the parameters of the normal distribution are unknown

and we will have to estimate proportions, means and covariance matrices from the given

sample.

For a observed patient with predictor vector x we can now calculate K discriminant

functions. The patient will allocate to that class k̂ which has maximal LDFk̂(x).

21



2 General Methodology

2.5 The receiver operating characteristic curve

Various measures have been proposed to capture discrimination, but the receiver operating

characteristic curve (ROC-curve) has become the standard description of classi�cation

accuracy for scalar-used classi�ers. It is a measure of the predictive ability of a score if the

score is used for di�erent thresholds with varying values of sensitivity and speci�city. The

area under the ROC-curve (AUC) is the widely used measure to summarize the ROC. The

ROC-curve is currently the best-developed statistical tool for describing the performance

of tests with results that are not simply positive or negative but that are measured on

continuous scales. The following de�nitions, theorems and their corresponding proofs can

be found in Pepe (2003).

2.5.1 ROC-curve for continuous tests

Let R denote again the true response status, R = 1 if the patient is responding and R = 0

if he is not responding to a particular therapy.

De�nition 2.5.1.1 Using a threshold c, a binary test from a continuous result from a

diagnostic test Y is de�ned as positive if Y ≥ c and negative if Y < c. Let the the

corresponding true and false positive fractions at the threshold c be

TPF (c) = P [Y ≥ c | R = 1] and FPF (c) = P [Y < c | R = 0].

Note again that TPF and FPF are also known as sensitivity and 1-speci�city.

De�nition 2.5.1.2 The ROC curve is the entire set of possible true and false positive

fractions attainable by dichotomizing Y with di�erent thresholds. Thus the ROC-curve is

ROC(·) = {(FPF (c), TPF (c)), c ∈ (−∞,∞)}.

As the threshold c increases, both FPF (c) and TPF (c) decrease. At one extreme, c =∞,

we have limc→∞ TPF (c) = 0 and limc→∞ FPF (c) = 0. At the other extreme, c = −∞,

we have limc→−∞ TPF (c) = 1 and limc→−∞ FPF (c) = 1. Thus, the ROC-curve is a

monotone increasing function in the positive quadrant.
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2.5 The receiver operating characteristic curve

De�nition 2.5.1.3 Because of the above discussed properties, the ROC-curve can also

be written as

ROC(·) = {(t, ROC(t)), t ∈ (0, 1)},

where the ROC function maps t to TPF (c) and c is the threshold corresponding to

FPF (c) = t.

The ROC-curve is a monotone increasing function mapping (0, 1) onto (0, 1). An uninfor-

mative test is one such that Y is unrelated to the response status R. The probability dis-

tributions for Y are assumed to be the same in the responding and non-responding popula-

tions and therefore for any threshold c we have TPF (c) = FPF (c). The ROC-curve for a

useless test is therefore ROC(t) = t. A perfect test on the other hand completely separates

responding and non-responding subjects. Thus, for some threshold c, we have TPF (c) = 1

and FPF (c) = 0. Note that most tests have ROC-curves that lie between those of the

perfect and useless tests. Better tests have ROC-curves closer to the upper left corner.

If we choose thresholds cA and cB for which TPFA(cA) = TPFB(cB), the corresponding

false positive fractions are ordered in favor of test A, so that FPFA(cA) < FPFB(cB).

An important property of the ROC-curve is the following:

Theorem 2.5.1.1 The ROC-curve is invariant to strictly increasing transformations of

Y .

The ROC-curve for evaluating diagnostic tests provides a complete description of potential

performance, facilitates comparing and combining information across studies of the same

test, guides the choice of threshold in applications and provides a mechanism for relevant

comparisons between di�erent non-binary tests (see Pepe (2003)).

2.5.2 Area under the ROC-curve

The most widely used summary measure for the ROC-curve is the area under the ROC-

curve (AUC).

De�nition 2.5.2.1 The area under the ROC-curve (AUC) is de�ned as:∫ 1

0
ROC(t)dt
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2 General Methodology

A perfect test, one with the perfect ROC-curve, has the value AUC = 1, in contrast, an

uninformative test with ROC(t) = t has AUC = 0.5. Most tests have values falling in

between. Clearly, if two tests are ordered with test A uniformly better than test B, in the

sense that

ROCA(t) ≥ ROCB(t) ∀t ∈ (0, 1),

then their AUC statistics are also ordered

AUCA ≥ AUCB.

However, the converse is not necessarily true.

Let Yr denotes the test result for a (true) responding and Ynr for a (true) non-responding

patient respectively. The area under the ROC-curve can be interpreted as the probability

that in a randomly selected pair for responders and non-responders, the score value of the

non-responder is smaller than the score value of the responder:

Theorem 2.5.2.1 The following result holds:

AUC = P [Yr > Ynr]

where Yr and Ynr correspond to independent and randomly chosen test results from the

responding and non-responding populations, respectively.

This theorem has been shown by Bamber (1975). A proof of this theorem can also be

seen in e.g. Pepe (2003).

2.5.3 Binormal ROC-curve and AUC

To derive the functional form of the binormal ROC-curve, suppose that test results are

normally distributed in the responding and non-responding populations.

Theorem 2.5.3.1 If Yr ∼ N(µr, σ
2
r) and Ynr ∼ N(µnr, σ

2
nr) then

ROC(t) = Φ(a+ bz(t))

where a = (µr − µnr)/σr and b = σnr/σr and z(t) = Φ−1(t) denotes the t-quantile of the

standard normal distribution.
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2.5 The receiver operating characteristic curve

Proof: For any threshold c,

FPF (c) = P [Ynr > c] = Φ(
µnr − c
σnr

),

TPF (c) = P [Yr > c] = Φ(
µr − c
σr

).

For a false positive fraction t, we see that c = µnr−σnrz(t) is the corresponding threshold

for the test positivity criterion. Hence,

ROC(t) = TPF (c) = Φ(
µr − c
σr

) = Φ(
µr − µnr + σnrz(t)

σr
) = Φ(a+ bz(t))

We call a the intercept and b the slope for the binormal ROC curve.

Theorem 2.5.3.2 The AUC for the binormal ROC curve is

AUC = Φ(
a√

1− b2
).

Proof: Recall that AUC = P [Yr > Ynr] = P [Yr − Ynr > 0]. Let W = Yr − Ynr. Then

W ∼ N(µr − µnr, σ2
r + σ2

nr)

and

P [W > 0] = 1− Φ

−µr + µnr√
σ2
r + σ2

nr

 = Φ

−µr + µnr
σ2
r

/

√√√√1 +
σ2
nr

σ2
r

 = Φ

(
a√

1− b2

)

The AUC is an increasing function of a and a decreasing function of b.

2.5.4 Estimating the ROC-curve

We assume that the data can be represented as test results for nr cases and nnr controls:

Yr,i, i = 1, ..., nr and Ynr,i, i = 1, ..., nnr. We assume that Yr,i and Ynr,i are selected ran-

domly from the populations of test results associated with responding and non-responding

states, respectively. The empirical estimator of the ROC-curve simply applies the de�ni-

tion of the ROC-curve to the observed data.

De�nition 2.5.4.1 For each possible cut-point c, the empirical true and false positive

fractions are calculated as follows:

̂TPF (c) =
nr∑
i=1

I[Yr,i ≥ c]/nr,
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2 General Methodology

̂FPF (c) =
nnr∑
i=1

I[Ynr,i ≥ c]/nnr.

The empirical ROC curve, R̂OC(t), is a plot of ̂TPF (c) versus ̂FPF (c) for all c ∈

(−∞,∞).

Clearly the empirical AUC (ÂUC) can be calculated by applying there de�nition to the

empirical ROC. Note that the empirical R̂OC(t) is generally a step function.

A rank-based estimate of the AUC is the Mann-Whitney U Statistic introduced by Mann

and Whitney (1947). The following theorem was proven by Hanley and McNeil (1982).

Theorem 2.5.4.1 The area under the empirical ROC curve is the Mann-Whitney U-

statistic:

ÂUC =
nr∑
j=1

nnr∑
i=1

{
I[Yr,i > Ynr,i] +

1

2
I[Yr,i = Ynr,i]

}
/(nrnnr)

2.5.5 ROC-curve of a linear score

Let X = (X1, ..., Xm) again be a set of predictor variables. We now consider a linear

combination of the test result: S(β, X) =
∑m
i=1 βiXi.

De�nition 2.5.5.1 The ROC-curve for a score S, is then de�ned as the set of points

ROC(·) = {(FPF (c), TPF (c)), c ∈ (−∞,∞)}

where TPF (c) = P [Si > c | Ri = 1] which is interpreted as the true positive rate associated

with the positivity criterion S > c and FPF (c) = P [Si > c | Ri = 0] which is the false

positive rate at threshold c.

We now want to �nd βopt which is the (β1, ..., βm) that maximizes the area under the

ROC-curve associated with S.

Theorem 2.5.5.1 If X1, ..., Xm has a multivariate normal distribution in each of the

responding (N [µr,Σ]) and non-responding populations (N [µnr,Σ]), then the score de�ned

by the linear discriminant function maximizes the area under the ROC-curve:

βopt = (µr − µnr)
TΣ−1
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2.5 The receiver operating characteristic curve

This theorem was proven by Su and Liu (1993) (see also e.g. Pepe and Thompson (2002)).

It is well known that in the multivariate binormal setting the linear discriminant and

logistic scores are equal if the covariance matrices are proportional. The linear discrimi-

nant procedure has been shown to be statistically more e�cient when the model is correct.

Logistic regression, however, can be applied outside of the multivariate binormal setting.

It relies only on an assumption about the form of the conditional probability for response

given X1, ..., Xm and does not require speci�cation of the much more complex joint dis-

tribution of X1, ..., Xm. However, the logistic regression is not motivated as a procedure

which maximizes the area under the ROC-curve for a linear score. In logistic regression

analysis, the coe�cients are chosen to maximize the logistic likelihood. It is not clear

if the logistic likelihood relates to any natural measure of the discriminatory capacity of

the linear score. Hence, in general, the logistic regression linear score is not easily moti-

vated as an optimal discriminator of responding and non-responding populations except

in the multivariate binormal setting. It has been shown, however, that, if complete dis-

crimination is possible, the logistic regression will estimate the linear combination which

separates the populations (compare Pepe and Thompson (2002), Pepe et al. (2004)).
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3 Model selection for prediction of a
clinical outcome

3.1 Assumptions

We want to search for predictors of a binary outcome (e.g. success of a therapy) among a

large set of m candidate variables (e.g. genes, proteins). Independent samples of patients

responding (nr) and non-responding (nnr) to the therapy are available. Based on these

samples variables have to be selected and a score has to be constructed which will be used

to predict response to therapy in future patients. We will aim at a score which optimizes

the AUC.

To simplify the problem we �rst assume that the variables follow normal distributions

with common known variance σ2 = 1 with means µr,i, i = 1, ...,m, for responders and

means µnr,i, i = 1, ...,m, for non-responders. Furthermore we assume that among the m

candidates there is a set E, me = ]{E}, of prognostic variables related to the clinical

outcome (alternatives). We also assume that these prognostic variables have a common

mean µr,i = µr, i ∈ E in the responding patients and also a common mean µnr,i = µnr,

i ∈ E in the non-responding patients. Hence a common e�ect size µr−µnr = ∆ is assumed

for the prognostic variables. For the non-prognostic variables without loss of generality

the di�erence in means between responders and non-responders is assumed to be zero,

µr,j − µnr,j = 0, j ∈ (1, 2, ..,m) \ E (true null hypotheses).
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3 Model selection for prediction of a clinical outcome

3.2 Selection of variables for future prediction

We investigate two methods for the selection of promising variables to build a prediction

score for a clinical outcome of a future patient.

3.2.1 Selection based on a multiple test controlling the FDR

For the selection of variables for the prediction score we test the following set of one-sided

null hypotheses:

H0i : µr,i − µnr,i = 0 against H1i : µr,i − µnr,i > 0 for i = 1, . . . ,m.

The standardized mean di�erences between responder and non-responder

zi = (x̄r,i − x̄nr,i)
√
n/2, i = 1, . . . ,m

are calculated, where for simplicity we assume equal sample sizes per variable and group

n = nr,i = nnr,i for i = 1, . . . ,m. The test decisions are based on the one-sided p-values

pi = 1− Φ(zi),

where Φ denotes the cumulative distribution function of the standard normal distribution

(see theorem 2.1.0.3). Note that the two-sided case is considered later.

To adjust for multiplicity, i.e. not to include too many nuisance variables without any

predictive ability in the score, we use Storeys approach (Storey (2002)) to control the

FDR (see Section 2.3.2). Due to formula (2.6) the critical boundary is determined from

the sample such that the estimated FDR never exceeds the targeted value α. Note that

this method adapts to the estimated proportion of true null hypotheses.

The variables whose p-values fall below the critical boundary γ (pi < γ) correspond-

ing to the targeted threshold α are selected to build a score in order to predict whether

a future patient will respond or not respond to the treatment.
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3.3 Prediction of the clinical outcome

3.2.2 Selection based on stepwise forward logistic regression

Whereas the �rst approach is only based on individual selection criteria for the variables,

here we use a multiple logistic regression approach (see Section 2.4.1) with stepwise for-

ward selection to assess the contribution of the individual variables to predict response

to therapy in the training sample. We again use a �xed threshold γ for the p-values, this

time calculated from the �nal model evolving in the multivariate logistic regression. The

selection is done in such a way that selected variables can again be removed from the

model when their p-values in the aggregated model fall above the threshold γ. The step-

wise procedure ends with a �nal model when further variables fail to meet the selection

criterion.

3.3 Prediction of the clinical outcome

Based on our assumptions we simply use the linear score of the selected variables. This

would be the optimal solution in the case of no selection for a given set of variables which

follow independent and identical normal distributions with unknown means and known

variance σ2 = 1 (as in the classical linear discriminant analysis, see theorem 2.5.5.1).

Thus in our case we use the following prediction score:

De�nition 3.3.0.1 Let x̄r,i and x̄nr,i denote the sample means of the ith variable of pa-

tients responding and not responding to therapy respectively and x = (x1, ..., xm) the values

of the variables of a future patient. The prediction score is a linear combination of x:

f̂(x; γ) = ĉTx =
m∑
i=1

ĉixi. (3.1)

where

ĉi =

{
x̄r,i − x̄nr,i if pi < γ
0 else

. (3.2)

I.e. k ≤ m variables for which pi < γ are selected to build a linear score and m − k

variables are not selected (their weights in the score are set to 0).

If f̂(x; γ) > b we predict a response, otherwise a non-response. To measure the pre-

dictive ability of such a score we use the ROC-curve resulting from varying threshold
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3 Model selection for prediction of a clinical outcome

values for the score, where sensitivity (TPF), further denoted by v, is plotted against

FPF=(1-speci�city), further denoted by w, as a function of b (see Section 2.5). Since we

are interested in ROC-curves the following results are invariant to any strictly monotonic

transformation of this score (see theorem 2.5.1.1).

In case of forward selection we simply use the estimated linear predictor for the log

odds from the �nal model in the forward logistic regression, which is of the same form as

(3.1) but uses the parameter estimates (βi) from the model instead of the di�erence in

the sample means of the selected variables.

Theorem 3.3.0.1 Given the selection threshold α for the FDR (and thus the correspond-

ing selection boundary γ for the individual p-values) and the estimated weights (3.2) from

the samples the prognostic score (3.1) follows two normal distributions:

f̂(x; γ) ∼ N [µa, σ
2
a] = N [ĉTµa, ĉ

T ĉ]

where µa, a = r or nr is the true mean vector in a future responder or non-responder,

respectively. Note that because of the independence between variables the true covariance

matrix Σ = I.

Proof: This result can be simply calculated using theorem 2.1.0.7 in Section 2.1.

Theorem 3.3.0.2 Fixing the appropriate µa for the populations of responders and non-

responders, respectively, the AUC for future independent populations can be calculated

as:

AUC(α) =
∫ 1

0

{
1− Φ

[
z(1− w)− ĉT (µr − µnr)√

ĉT ĉ

]}
dw (3.3)

where z(q) is the q-quantile of the standard normal distribution.

Proof: This can be calculated from:

Sensitivity = v = 1− ΦĉTµr,ĉ
T ĉ(b) = 1− Φ(

b− ĉTµr√
ĉT ĉ

) (3.4)

and

Specificity = 1− w = ΦĉTµnr,ĉ
T ĉ(b) = Φ(

b− ĉTµnr√
ĉT ĉ

) (3.5)
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where Φµ,σ2 denotes the cumulative distribution function of the normal distribution with

mean value µ and variance σ2. Calculating b from formula (3.5) results in:

b = z(1− w)
√

ĉT ĉ + ĉTµnr.

Inserting this into formula (3.4) results in (3.3).

For the prognostic score based on the logistic regression similar results can be derived.

3.4 Assumptions on the effect size ∆

To get a benchmark let us assume that the optimal linear score built from the me prog-

nostic variables is known. We now will ask, depending on the number me of prognostic

variables, what minimal common e�ect size ∆ is required to achieve a ROC-curve cross-

ing through the point where both sensitivity (v) and speci�city (1 − w) have a certain

pre-speci�ed values?

Theorem 3.4.0.3 Under the assumption of equal e�ect sizes among the alternatives, the

e�ect size required for a ROC-curve crossing through the �xed point (v, 1 − w) can be

calculated as:

∆ =
z(1− w)− z(1− v)

√
me

(3.6)

Proof: Clearly we get the best prognostic score if all me prognostic variables and no

non-prognostic variables are selected, i.e. we know the true score:

f(x) = Σi∈Exi.

Note that for equal e�ect sizes ∆ for the alternatives, the constant true weights (∆) can

be ignored in the score. From theorem 2.1.0.7 we know that this score follows a normal

distribution:

f(x) ∼ N [µf , σ
2
f ] = N [me∆,me]

Hence the sensitivity for the theoretically best score for a future patient can be easily

calculated as follows:

v = 1− Φ(z(1− w)− me∆√
me

) = 1− Φ(z(1− w)−
√
me∆).
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3 Model selection for prediction of a clinical outcome

Figure 3.1: Minimal e�ect size ∆ required to achieve a ROC-curve crossing through the point where

sensitivity and speci�city are equal to 0.9 as a function of the number of prognostic variables

me. (Figure from Goll (2008)).

By solving the equation it turns out that the e�ect size required to cross the point (v, 1−w)

can be calculated as in formula (3.6).

In the following we choose v = 1 − w = 0.9, i.e. a theoretically best achievable AUC of

AUC∗ = 0.965 can be achieved. Figure 3.1 (Figure from Goll (2008)) shows the minimal

e�ect size ∆ depending on the number of prognostic variables related with the clinical

outcome (me) if the best ROC-curve is assumed to cross the point where v = 1−w = 0.9.

Two examples are marked which will be considered more closely in the simulation studies.

For me = 60 an e�ect size of ∆ = 0.331 is required to achieve such an ROC-curve. For

me = 10 an e�ect size of ∆ = 0.811 is needed to get a ROC-curve with such a property.

Note that if there is only a single prognostic variable an e�ect size of ∆ = 2.563 is required.

This demonstrates the crucial problem for gene expression or proteomic studies. If many

prognostic variables work together they may show a large common e�ect even if there are

only marginal individual e�ect sizes. Thus, the process of selection of such variables with

only marginal e�ects among a large number of candidates in relatively small samples will

be a formidable task. However, in case of a single or few prognostic variables the e�ect

size to achieve good prognostic properties has to be pretty large, so that already small

samples may be su�cient to select those very in�uential variables.
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3.5 Variable selection using the FDR approach: simulation studies

3.5 Variable selection using the FDR approach:

simulation studies

Similar results of the simulation studies can also be seen in my doctorial thesis (see Goll

(2008)). However, for this thesis we use a more sophisticated optimization procedure to

determine the optimal selection threshold. Thus, there may be slight di�erences of the

following results as compared to Goll (2008).

We investigate the selection procedure using a multiple test for constructing a linear score

discussed in Section 3.3 by simulation, assuming that two samples of patients responding

to a particular treatment and of patients not responding to the treatment are available.

For a �xed FDR threshold α we can now calculate in a speci�c sample AUC(α) using

formula (3.3). For a grid of α values with interval 0.01 AUC(α) is evaluated by simulation

(10000 simulation runs). The optimal FDR level αopt to achieve the best prediction with

a linear score in terms of the AUC(α) in a speci�c scenario is hard to determine analyt-

ically in �nite samples. It has to be kept in mind that AUC(α) is a random variable.

Thus, optimization of α is based on the averages of the simulated AUC(α) values. For

the simulated mean values of AUC(α) for the grid of α values we interpolate a function

using splines. To determine αopt which optimizes the average AUC(α), we optimize this

interpolated function. Note again that this optimization procedure is a further investi-

gation of the results in Goll (2008) where only a grid with interval 0.05 was investigated

and no interpolation was done.

Di�erent parameter constellations are investigated: we vary the number of prognostic

variables related with the clinical outcome to be me = 10 or 60. We �x the group sample

sizes to nr = nnr = 50, 100 and 500 and the number of candidate variables to m = 1000

and 6000. We also investigate the situation under the global null hypothesis (me = 0). As

discussed in Section 3.4, the e�ect size ∆ is triggered by forcing the optimal ROC-curve

through the benchmark point v = 1 − w = 0.9, thus for me = 10, ∆ = 0.811 and for

me = 60, ∆ = 0.331.
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3 Model selection for prediction of a clinical outcome

3.5.1 Searching among m=1000 hypotheses

Figure 3.2 shows the interpolated functions of mean values of AUC(α) over the simulated

samples (10000 simulation runs) as a function of α chosen a priori for the selection of vari-

ables for future prediction assuming a sample size of n = 50 (dotted line), 100 (dashed

line) and 500 (dotdashed line) per group. me = 10 prognostic variables are searched

within m = 1000 candidate genes. Note that if no score is selected in a speci�c sample

AUC(α) is set to 0.5. The best achievable AUC∗ = 0.965 is shown as solid horizontal line.

The �gure shows that if a larger α is chosen, more non-prognostic variables are toler-

ated in the score but also more prognostic variables are selected so that the score still

performs well. However, if a too large α is chosen for selection, too many non-prognostic

variables are added so that the score gets worse if small sample sizes are applied. When

increasing the sample size per group clearly the mean values of AUC(α) of the selected

scores also increase. It can be seen that the resulting scores perform well for a wide range

of α values for larger sample sizes. This may be due to the better estimate of µr,i and

µnr,i for i = 1, ...,m and thus to a better estimate of the weights in the score function

when the sample size increases. It seems that for n = 500 it does not really mind which

FDR threshold is chosen as selection criteria, the resulting score always performs good.

The weights of selected true null hypotheses are nearly null, although their p-values are

signi�cant for larger FDR levels. See a detailed summary of the results in Table 3.1. For

�xed m from simple consistency arguments it follows:

Theorem 3.5.1.1 Given any positive α for the selection threshold:

lim
n→∞

ĉi = ∆ ∀i ∈ E and

lim
n→∞

ĉj = 0 ∀j ∈ (1, ...,m)\E

if the selected model is too large and contains non-prognostic variables. Therefore

lim
n→∞

AUC(α) = AUC∗ ∀α.

If we assume me = 60 alternatives among the m = 1000 tested candidate variables, the

e�ect size ∆ to achieve the theoretical benchmark ROC-curve now is 0.331. Figure 3.3
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again shows the interpolated functions of the mean values (over the simulated samples) of

AUC(α) varying the FDR threshold α. Again it is better to tolerate more non-prognostic

variables and thus �nd more prognostic ones, however for small sample sizes (see e.g. the

dotted line for n = 50) it would be superior to choose an unrealistically large αopt. Again

increasing the sample size per group clearly also increases the AUC(α) values of the se-

lected scores. A good performance in terms of future AUC values can be seen over all

investigated FDR thresholds α if the sample size is increased to n = 500. See a detailed

summary of the results in Table 3.1.

Over all investigated examples αopt is decreasing and AUC(αopt) is increasing with in-

creasing n. αopt is increasing and AUC(αopt) is decreasing with increasing me .

Figure 3.2: Interpolated functions of mean values of AUC(α) over the simulated samples (10000 sim-

ulation runs) for a varying FDR threshold α for selection assuming me = 10 prognostic

variables among m = 1000 tested variables. The sample size per group is set to n = 50
(dotted line), 100 (dashed line) and 500 (dotdashed line). AUC∗ = 0.965 is given as solid

horizontal line. The e�ect size ∆ = 0.811.
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Figure 3.3: Interpolated functions of mean values of AUC(α) over the simulated samples (10000 sim-

ulation runs) for a varying FDR threshold α for selection assuming me = 60 prognostic

variables among m = 1000 tested variables. The sample size per group is set to n = 50
(dotted line), 100 (dashed line) and 500 (dotdashed line). AUC∗ = 0.965 is given as solid

horizontal line. The e�ect size ∆ = 0.331.

3.5.2 Searching among m=6000 hypotheses

Let us furthermore have a look at the situation assuming me = 10 and me = 60 prog-

nostic variables (alternatives) among m = 6000 tested hypotheses. Because of the larger

number of candidate variables the problem to �nd the alternatives becomes harder. The

e�ect size ∆ remains the same, thus ∆ = 0.811 for me = 10 since it only depends on

the number me of alternatives and not on the number of tested hypotheses. Figure 3.4

shows the situation assuming me = 10 �xing the sample size per group to n = 50 (dotted

line), 100 (dashed line) and 500 (dotdashed line). Clearly the AUC(α) values are smaller

as compared to the scenario with m only equal to 1000. However, for n = 50, due to

the large e�ect size, selection may lead to good prediction scores if the right threshold is

chosen for selection, although selecting out of 6000 hypotheses. Increasing the sample size

to n = 100 per group again increases AUC(αopt) and decreases αopt. A further increase

of the sample size per group to n = 500 results, as in the case of m = 1000, in a good

performance for a wide range of α values. For small values of α, AUC(αopt) for future

prediction is almost equal to AUC∗ = 0.965. For larger α values the performance is only
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slightly smaller.

Assuming me = 60 among m = 6000 hypotheses, the situation gets worse. Because

of the small e�ect size (∆ = 0.331) and the larger number of hypotheses to test no good

prediction score can be selected if the sample size per group is small. Figure 3.5 shows

the results. Applying a sample size of n = 50 the best choice of the selection threshold

would be an unrealistically large αopt, which applied as selection criterion would lead to

prediction scores achieving only an average AUC(αopt) smaller than 0.7. This indicates

a poor performance of the resulting scores as compared to AUC∗ = 0.965. This again

describes the problem of such studies. If only a few prognostic variables with a large e�ect

size exist it may be possible to �nd good prediction scores if the right selection criterium is

used, but if there are many variables with low e�ect sizes working together, searching for

prediction scores with rather small sample sizes becomes a formidable problem. Increas-

ing the sample size to n = 100 per group the situation improves a little as compared to

n = 50. A further increase of the sample size per group to n = 500 changes the situation

completely. Again, for a wide range of α values the future performance remains good (see

Table 3.1).

A detailed summary of the results can be seen in Table 3.1. For m = 6000 the same

tendencies can be seen as for m = 1000. Over all investigated examples αopt is decreas-

ing and AUC(αopt) is increasing with increasing n. αopt is increasing and AUC(αopt) is

decreasing with increasing me. For increasing m, αopt is increasing and AUC(αopt) is

decreasing.
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3 Model selection for prediction of a clinical outcome

Figure 3.4: Interpolated functions of mean values of AUC(α) over the simulated samples (10000 sim-

ulation runs) for a varying FDR threshold α for selection assuming me = 10 prognostic

variables among m = 6000 tested variables. The sample size per group is set to n = 50
(dotted line), 100 (dashed line) and 500 (dotdashed line). AUC∗ = 0.965 is given as solid

horizontal line. The e�ect size ∆ = 0.811.

Figure 3.5: Interpolated functions of mean values of AUC(α) over the simulated samples (10000 sim-

ulation runs) for a varying FDR threshold α for selection assuming me = 60 prognostic

variables among m = 6000 tested variables. The sample size per group is set to n = 50
(dotted line), 100 (dashed line) and 500 (dotdashed line). AUC∗ = 0.965 is given as solid

horizontal line. The e�ect size ∆ = 0.331.
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3.5 Variable selection using the FDR approach: simulation studies

Table 3.1: Simulation results for selection using the FDR approach: The best

choice of the FDR threshold (αopt), the corresponding AUC(αopt) as well as the number

of selected non-prognostic variables (ms
0) and the number of selected prognostic variables

(ms
e) for varying number of prognostic variables (me), tested hypotheses (m) and per group

sample sizes (n). Note that AUC∗ = 0.965.

m me ∆ n αopt AUC(αopt) ms
0 ms

e

1000 10 0.811 50 0.170 0.941 1.92 8.69
0.811 100 0.014 0.963 0.14 9.90
0.811 500 0.001 0.965 0.01 10.00

60 0.331 50 0.824 0.813 254.02 48.98
0.331 100 0.475 0.888 40.86 43.66
0.331 500 0.033 0.961 2.04 59.53

6000 10 0.811 50 0.250 0.917 2.81 7.59
0.811 100 0.034 0.960 0.36 9.70
0.811 500 0.001 0.965 0.11 10.00

60 0.331 50 0.895 0.669 323.04 27.81
0.331 100 0.611 0.792 46.07 27.31
0.331 500 0.034 0.959 0.83 57.50

3.5.3 Variable Selection expecting a small AUC∗

In the last examples we assumed that the optimal linear prediction score of future pa-

tients, if known, would lead to a ROC-curve crossing through the benchmark point where

sensitivity and speci�city are 0.9, which corresponds to a theoretically achievable AUC∗

of 0.965 indicating a (in truth) very good discrimination between responders and non-

responders. However in medical research often there is no such a good discrimination

between two groups. Thus, in the following we will investigate scenarios, where AUC∗ is

assumed to be 0.8, which may be more realistic in medical research. To achieve a future

performance of AUC∗ = 0.8 the benchmark point is at v = 1 − w = 0.724 (assuming

a ROC-curve crossing through a point, where sensitivity and speci�city are the same).

The minimal ∆ required to obtain this ROC is 0.376 assuming me = 10 alternatives and

0.154 for me = 60. Figure 3.6 (Figure from Goll (2008)) shows the minimal required

∆ for di�erent values for AUC∗. Results assuming 10 (dashed line) and 60 (solid line)

prognostic variables are shown. The results for assuming a theoretically achievable AUC∗

of 0.8 and 0.965 (as assumed in the previous sections) are marked.
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3 Model selection for prediction of a clinical outcome

Figure 3.6: Minimal required e�ect size ∆ as a function of the theoretically best possibleAUC∗ assuming

the number of prognostic variables me = 10 (dashed line) and 60 (solid line) (Figure from

Goll (2008)).

We again performed simulations (10000 simulation runs) assuming me = 10 and 60 al-

ternatives among m = 1000 and 6000 hypotheses for a grid of α values with interval

0.01. The optimization of αopt is again based on the interpolated functions from the mean

values of the simulated AUC(α) values for each point of the γ-grid. The sample size per

group is set to n = 50, 100 and 500.

Figure 3.7 shows the resulting mean AUC(α) values assuming me = 10 among 1000

hypotheses. Applying a small sample size per group we will not be able to �nd good pre-

diction scores whatever FDR threshold α is used for selection. The mean AUC(α) values

for future prediction are smaller than 0.6 over the whole range of α values. Larger sample

sizes are needed to detect the alternatives with their only small e�ect sizes required to

achieve AUC∗ = 0.8. However, when doubling the sample size to n = 100 per group only

a small increase in values of AUC(αopt) can be seen. Fixing the sample size to n = 500

leads to good prediction scores for small αopt values.

Increasing the number of prognostic variables to me = 60 hypotheses (Figure 3.8) again

a very large sample size is needed to achieve good prediction scores. However, �xing the

sample size to n = 500 per group on average AUC(αopt) is only 0.720. For n = 50 the
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3.5 Variable selection using the FDR approach: simulation studies

AUC values do not exceed 0.6 over the whole range of investigated α values. The results

of the simulated examples are summarized in Table 3.2.

If the prognostic variables are searched among 6000 hypotheses the situation gets ex-

tremely worse if smaller sample sizes are considered (Figures 3.9 and 3.10). Increasing

the sample size to n = 500 per group helps if only a small number of alternatives with

large e�ect sizes is assumed. Whereas for me = 10 (Figure 3.9) large AUC(αopt) values

can be obtained for small αopt values, for me = 60 (Figure 3.10), the average AUC(αopt)

does not exceed 0.7. Thus the conclusion is that if there is only a moderate true discrimi-

nation between responders and non-responders very large sample sizes are required to get

good prediction scores. Studies with small sizes will mostly produce useless prediction

scores (see the summary in Table 3.2).

The following result can be determined:

Theorem 3.5.3.1 Let ∆1 be the required e�ect size to achieve AUC∗,1 and ∆2 the required

e�ect size to achieve AUC∗,2. The per-group sample size n2 to achieve the same selection

procedure as from the other sample (with per-group sample size n1) can be calculated by:

n2 =
(

∆1

∆2

)2

n1.

Proof: Given m and me, scenarios with the same value of ∆
√
n lead to identical selection

procedures, i.e. to the same test-statistics and thus to the same selected prognostic and

non-prognostic variables. Thus to get the same test statistic:

∆1

√
n1/2 = ∆2

√
n2/2.

By solving the equation it can easily be calculated that n2 =
(

∆1

∆2

)2
n1.

For example, to get the same selection procedure in the situation of AUC∗ = 0.8, we need a

(0.81/0.38)2 ≈ 4.6 times larger sample size as compared to the situation of AUC∗ = 0.965.

However, because of the smaller e�ect sizes the AUC achieved in this case may be rela-

tively smaller. E.g. for α = 0.17 and applying a sample size of n = 232 we get an average

AUC(α) of 0.767 (95.9% of AUC∗ = 0.8) as compared to 0.941 (97.5% of AUC∗ = 0.965)
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3 Model selection for prediction of a clinical outcome

for n = 50. For α = 0.6 the numbers are 0.741 (92.6% of AUC∗ = 0.8) versus 0.916

(94.9% of AUC∗ = 0.965).

Figure 3.7: Interpolated functions of mean values of AUC(α) over the simulated samples (10000 sim-

ulation runs) for a varying FDR threshold α for selection assuming me = 10 prognostic

variables among m = 1000 tested variables. The sample size per group is set to n = 50
(dotted line), 100 (dashed line) and 500 (dotdashed line). AUC∗ = 0.8 is given as solid

horizontal line. The e�ect size ∆ = 0.376.
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Figure 3.8: Interpolated functions of mean values of AUC(α) over the simulated samples (10000 sim-

ulation runs) for a varying FDR threshold α for selection assuming me = 60 prognostic

variables among m = 1000 tested variables. The sample size per group is set to n = 50
(dotted line), 100 (dashed line) and 500 (dotdashed line). AUC∗ = 0.8 is given as solid

horizontal line. The e�ect size ∆ = 0.154.

Figure 3.9: Interpolated functions of mean values of AUC(α) over the simulated samples (10000 sim-

ulation runs) for a varying FDR threshold α for selection assuming me = 10 prognostic

variables among m = 6000 tested variables. The sample size per group is set to n = 50
(dotted line), 100 (dashed line) and 500 (dotdashed line). AUC∗ = 0.8 is given as solid

horizontal line. The e�ect size ∆ = 0.376.
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3 Model selection for prediction of a clinical outcome

Figure 3.10: Interpolated functions of mean values of AUC(α) over the simulated samples (10000 sim-

ulation runs) for a varying FDR threshold α for selection assuming me = 60 prognostic

variables among m = 6000 tested variables. The sample size per group is set to n = 50
(dotted line), 100 (dashed line) and 500 (dotdashed line). AUC∗ = 0.8 is given as solid

horizontal line. The e�ect size ∆ = 0.154.

Table 3.2: Simulation results for selection using the FDR approach assuming

a smaller AUC∗: The best choice of the FDR threshold (αopt), the corresponding

AUC(αopt) as well as the number of the selected non-prognostic variables (ms
0) and the

number of selected prognostic variables (ms
e) for varying number of prognostic variables

(me), tested hypotheses (m) and per group sample sizes (n). AUC∗ = 0.8.

m me ∆ n αopt AUC(αopt) ms
0 ms

e

1000 10 0.376 50 0.794 0.595 36.47 4.61
0.376 100 0.493 0.675 7.03 5.50
0.376 500 0.014 0.796 0.15 9.97

60 0.154 50 0.919 0.582 405.62 37.75
0.154 100 0.893 0.613 373.63 42.99
0.154 500 0.442 0.720 36.13 44.27

6000 10 0.376 50 0.875 0.544 69.29 2.86
0.376 100 0.594 0.612 8.25 3.45
0.376 500 0.034 0.793 0.35 9.82

60 0.154 50 0.981 0.532 2522.14 34.09
0.154 100 0.972 0.547 2055.65 36.87
0.154 500 0.561 0.657 37.68 27.87
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3.6 Variable selection using forward logistic regression

3.6 Variable selection using forward logistic regression

For a comparison also forward logistic regression has been investigated as a method of

variable selection. Again ∆ was set to 0.811 in the case of me = 10 and to 0.331 for

me = 60. Because of run-time problems and problems with memory capacity when test-

ing a very large number of hypotheses m, simulations (1000 simulation steps) were only

performed for m = 1000. Di�erent thresholds γ are applied for the individual p-values in

the stepwise selection based on the multiple logistic regression. The simulations for the

logistic regression were done using the SAS 9.1. system.

The simulation results of the forward logistic regression show that this selection method

for the investigated scenarios performs poor in terms of AUC values for prediction of

the outcome of future patients as compared to the selection procedure using the FDR

approach. The poor result may be due to the following reason: in a small training sample

the forward logistic regression generally leads to a complete separation of data points, i.e.

responders and non-responders of the validation data set can be fully separated with the

found regression model. Only a few prognostic variables are selected for future prediction

using the forward logistic regression which leads to the worse performances of the predic-

tion scores.

For the independent case, the best performance for the situation of me = 10 occurs

for γopt = 0.0005 with AUC(γopt) = 0.812 for n = 50 and again at γopt = 0.0005 with

AUC(γopt) = 0.900 for n = 100. The forward logistic regression applying a larger sample

size clearly performs better. However, AUC(γopt) for the selection procedure using the

FDR was 0.941 for n = 50 and 0.961 for n = 100. Note that for n = 50 in average only

2.881 and for n = 100 only 5.644 out of the 10 alternatives are selected using the logistic

regression.

In the case of me = 60 for γ = 0.0073 up to 0.05 the mean AUC(γ) on average is 0.613

for n = 50. Because of complete separation almost the same performance is achieved for

γ ≥ 0.0073. Setting n = 100 per group a similar result can be seen. Again choosing

γ ≥ 0.0073 lead to the same performance achieving an average AUC(γ) = 0.696. Note
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3 Model selection for prediction of a clinical outcome

that AUC(αopt) for selection using the FDR was 0.813 for n = 50 and 0.888 for n = 100

per group. However, the theoretically achievable AUC∗ is 0.965, which is not achieved

with both selection methods.

Note that if we assume correlation between hypotheses, the forward logistic regression

model also results in complete separation after selecting a few variables. Furthermore

considering a large positive autoregressive correlation structure between alternatives and

the neighboring true null hypotheses (as considered later) leads to numerical problems

and the model results in implausible estimates for the selected variables. This may also

be due to the fact that the underlying data is not generated based on a logistic regres-

sion model. Due to the mentioned reasons the logistic regression is no good procedure to

determine a prediction score for the given data structure and will not be considered in

further applications.

3.7 Situation under the global null hypothesis

Under the global null hypothesis of no existing prognostic variable at all (me = 0) the

ROC curve is always the diagonal (AUC= 0.5). Whatever selection procedure is used,

if variables are selected, they are always non-prognostic variables (true null hypotheses)

and thus the prediction score is useless. For selection using a multiple test controlling the

FDR, by de�nition, the probability to end with a selection of variables and building a

score is targeted at the pre-chosen FDR threshold α. Hence in the case of the global null

hypothesis it would have been better to choose a small FDR. However, if a large number

of alternatives are expected with rather small e�ect sizes a very large FDR should be

chosen as selection criterion.

If we select variables using the forward logistic regression, we may have problems to

evaluate the level of false discoveries. However, as for the FDR selection method, the

results depend on the boundary γ chosen a priori. E.g. if we decided for Bonferroni

corrected boundaries (γ = 0.00005) in only 2.9% of the 1000 simulated cases at least one

variable was identi�ed for future prediction but when increasing γ to 0.0025 in 98.3%
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3.7 Situation under the global null hypothesis

useless prediction scores are produced.

This again demonstrates the dilemma of the task we are faced with. It may be pos-

sible to improve the selection and estimation procedures but a contradiction will remain:

being cautious may help not to produce too many nuisance results if the postulated re-

lationships do not exist. Being more optimistic and liberal may improve the results if in

fact variables related with the clinical outcome exist, but under the global null useless

scores may be produced.
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4 A cross validation method to

estimate an appropriate selection

criterion

We have seen from the previous sections that under the given assumptions the forward

logistic regression may not be a good selection procedure if small sample sizes are given.

There are problems to quantify the number of false positives in a score built with the

logistic regression model. Furthermore, there may be numerical problems in the calcula-

tions of the estimates. The simple method using a multiple test controlling the FDR and

just building a weighted sum of the selected hypotheses (as in the classical discriminant

analysis) leads, if the right selection threshold is chosen, to a better performance in terms

of AUC values for prediction of the outcome of a future patient. However, it remains

the question, how to choose the "optimal" selection boundary, because depending on

the parameter constellation (varying number of tested hypotheses, varying proportion of

prognostic variables and varying sample size), di�erent boundaries are required in order

to achieve a large AUC for future independent patients.

4.1 The cross validation procedure

To estimate an appropriate selection threshold α̂opt for selection using a multiple test

controlling the FDR, we investigated in Goll (2008) and Goll and Bauer (2008) a cross

validation procedure. Note that therefore we again �rst assume that the variable levels

follow independent normal distributions with mean vector µr for responder and µnr for
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4 A cross validation method to estimate an appropriate selection criterion

non-responder and known variance σ2 = 1. Deviations from these simple assumptions are

considered later.

For this cross validation procedure we decided to search for the optimal γ̂opt for the

individual p-values instead of α̂opt because of the extremely longer runtime needed to

search for the corresponding γ values in each training set. For the �nal selection bound-

ary γ̂opt the corresponding FDR threshold α̂opt can be estimated with Storey's estimator

(see Section 2.3.2) in the total sample. Storey et al. (2004) showed that searching for the

optimal FDR and γ asymptotically leads to the same. However, despite the long runtime,

for some scenarios we performed simulations of the procedure searching for α̂opt. The

results were very similar (data not shown).

The cross validation procedure works as follows:

From a given data set with nr responders and nnr non-responders, a pair of a single

responder and a single non-responder respectively is left out. Note that there are nrnnr

possibilities (= n2 if nr = nnr = n as assumed in the previous sections) for leaving out

a pair of one responder and one non-responder. The remaining (nr + nnr − 2) patients

(nr − 1 responder and nnr − 1 non-responder) in each of the nrnnr "training" samples

respectively are used to estimate prediction scores applying a grid of values γ for the

selection boundary. As discussed in Section 3.2, the variables, whose one sided p-values

lie below the selection boundary γ are selected to build a score for future prediction. For

the left out responder and non-responder respectively we now calculate for each γ, the

value of the corresponding prediction score:

f̂(ij)(xr,i; γ) = ĉ(ij)(γ)Txr,i and f̂(ij)(xnr,j; γ) = ĉ(ij)(γ)Txnr,j

where ĉ(ij)(γ) is the vector of the weights of the score calculated from the training sample

leaving out the ith responder and the jth non-responder, using γ as selection boundary.

xr,i and xnr,j denote the corresponding values of the (selected) variables of the single

responder and non-responder respectively left out in the construction of the score. Now

for each investigated γ the following cross validation function CFij is calculated.
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4.1 The cross validation procedure

De�nition 4.1.0.1 For a given selection threshold γ, the cross validation function is

calculated by:

CFij(xr,i,xnr,j; γ) =


0 if f̂(ij)(xr,i; γ) < f̂(ij)(xnr,j; γ)

1 if f̂(ij)(xr,i; γ) > f̂(ij)(xnr,j; γ)

0.5 if f̂(ij)(xr,i; γ) = f̂(ij)(xnr,j; γ)

. (4.1)

If no prediction score is selected from the data using the given γ, CFij(xr,i,xnr,j; γ) = 0.5.

The values of CFij(xr,i,xnr,j; γ) for each γ are now calculated for all nrnnr training sam-

ples. Note that in our balanced scenario overall we use nrnnr pairs of a single responder

and non-responder as validation sample. For each γ we can calculate a "cross validation

based" area under the ROC-curve.

De�nition 4.1.0.2 For a given γ, the cross validation based ÂUC(γ) is calculated by:

ÂUC(γ) =
1

nrnnr

nr∑
i=1

nnr∑
j=1

CFij(xr,i,xnr,j; γ). (4.2)

It can be shown that the Mann-Whitney-U statistic (4.2) is the AUC of the empirical

ROC-curve in the independent sample case (see theorem 2.5.4.1 and e.g. Hanley and

McNeil (1982), Pepe (2003), Pepe et al. (2006)). Finally we choose the selection boundary

γ̂opt such that it maximizes ÂUC(γ).

De�nition 4.1.0.3 The best choice of the selection boundary, γ̂opt, is calculated by:

γ̂opt = arg max
γ

 nr∑
i=1

nnr∑
j=1

CFij(xr,i,xnr,j; γ)

 (4.3)

This is a special case of the maximum rank correlation estimator known to be consis-

tent and asymptotically normal when used for the parameters of a the generalized linear

model with a given set of predictors (see Han (1987), Sherman (1993), Pepe et al. (2006)).

As already mentioned before the corresponding FDR threshold α̂opt is calculated as fol-

lows:

De�nition 4.1.0.4 The best choice of the threshold α for the FDR, α̂opt, can be calculated

as function of γ̂opt using Storey's estimator:

α̂opt(γ̂opt) =

]{pi>λ}
(1−λ)

γ̂opt

max(]{pi < γ̂opt}, 1)
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where pi, i = 1, ...,m are the p-values from the individual z-tests calculated from the

total sample of nr responder and nnr non-responder and λ is a constant chosen a priori

(compare Section 2.3.2). α̂opt(γ̂opt) is further on only denoted by α̂opt.

Note that in the following λ is set to 0.5 as in Storey (2002) (compare Section 2.3.2).

Below we will investigate by simulation how this estimator of the best FDR threshold

α behaves for increasing sample sizes when the set of predictors is chosen from model

selection. Generally a large number of weights in the score is set to zero by selection

based on an α which is chosen in a data driven way by optimizing ÂUC(γ).

Note also that if more than one γ ful�lls the cross validation criterion (4.3), the min-

imum of these γ values is chosen as �nal selection boundary.

Since we are working with simulations we can also calculate the asymptotic FDR:

De�nition 4.1.0.5 Assuming that π0 and ∆ are known the best choice of the FDR thresh-

old can be calculated directly from γ̂opt by:

α̂opt,∞(γ̂opt,∆, π0) =
π0γ̂opt

π0γ̂opt + (1− π0)(1− β(γ̂opt))

where (1 − β(γ̂opt)) = 1 − Φ√n
2

∆,1
(c1−γ̂opt) is the power of the performed one-sided two-

sample z-tests (compare Section 2.3.2). α̂opt,∞(γ̂opt,∆, π0) is further on only denoted by

α̂opt,∞.

It may be also interesting to look at the FWER, which is calculated numerically in the

simulations below which turns out to be close to the value (1− (1− γ̂opt)mπ0) ignoring the

random nature of γ̂opt.

4.2 Cross validation under the alternative

To investigate the cross validation method discussed above we performed simulations

for the scenarios assuming me = 10 and 60 prognostic variables (alternatives) among

m = 1000 and 6000 tested variables (hypotheses) setting the sample size to n = 50 per
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4.2 Cross validation under the alternative

group. For the scenarios testing m = 1000 hypotheses we also investigate the cross vali-

dation procedure �xing the per-group sample size to n = 100.

Table 4.1 shows the results of the cross validation procedure for the investigated examples

(mean values (standard deviations) and medians over 500 simulation runs) assuming that

the best achievable AUC∗ = 0.965. The αopt and AUC(αopt) values evaluated in the last

chapter are also given. If we compare the estimated α̂opt determined by the cross vali-

dation procedure to the true αopt we see that there may on average be large di�erences.

Therefore it has to be considered that the optima of the interpolated functions in the

di�erent scenarios are generally �at, i.e. we get similar performances among a wide range

of α values. Furthermore, because of the skew distribution of α̂opt the medians over the

simulations are always closer to the αopt values (see Table 4.1).

The crucial �nding is that the true FDR (determined from the simulations) in the se-

lection procedure is always close to the threshold α̂opt determined by cross validation

from the data. This behavior is related to theoretical results on the convergence of the

FDR simultaneously for di�erent thresholds (Genovese and Wasserman (2004)).

Despite the di�erences between α̂opt and αopt, the determined γ̂opt and accordingly calcu-

lated α̂opt values are on average leading to true AUC(γ̂opt) values for independent future

patients which are only slightly smaller than the evaluated AUC(αopt) over the whole

investigated examples. Note that the true AUC(γ̂opt) is calculated using formula (3.3)

given γ̂opt for selection. Increasing the samples size generally leads to smaller di�erences

between α̂opt and αopt and between AUC(γ̂opt) and AUC(αopt). Thus, this cross validation

method seems to work under the alternative producing prognostic scores with a true AUC

in future patients close to the (for the di�erent scenarios) best possible AUC(αopt) when

using a multiple testing procedure controlling the FDR for selection.

From the cross validation procedure we also get a positively biased estimate ÂUC(γ̂opt)

(compare formula (4.2)) of the true AUC(αopt) which is closer to the truth the larger the

e�ect and sample sizes (Table 4.1). However, e.g. in the situation assuming me = 60

alternatives among m = 6000 tested hypotheses ÂUC(γ̂opt) = 0.802 largely overestimates
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the true AUC(γ̂opt) = 0.669.

A further important fact can be seen from the simulation results: the family wise type I

error rate (FWER) determined from the simulations is generally very large in selections

achieving a good prediction score (Table 4.1). This re�ects the fact that allowing at least

one non-prognostic variable in the prediction score in order to detect more prognostic

variables leads to better performances in terms of the AUC.

In the situation of a small AUC∗ close to 0.8 (see results of the cross validation procedure

in Table 4.2) the cross validation procedure leads to smaller cross validated ÂUC(γ̂opt)

values indicating a poorer prediction as compared to the situation of AUC∗ = 0.965. For

the resulting prediction scores, the same tendencies of the procedure are found as for

AUC∗ = 0.965. The procedure is again resulting in γ̂opt and corresponding α̂opt values

Table 4.1: Results using the cross validation procedure: The true best choice of the

FDR (αopt) and the corresponding AUC(αopt) as well as results determined from the cross

validation procedure (means (standard deviations) and medians over 500 simulation runs):

the selection boundary γ̂opt and the corresponding α̂opt, the true FDR and α̂opt,∞, the true

future AUC(γ̂opt), the cross validated ÂUC(γ̂opt) and the FWER for a varying number

of prognostic variables me, per-group sample sizes n and number of tested hypotheses m

assuming AUC∗ = 0.965.

m 1000 6000
me 10 60 10 60
n 50 100 50 100 50 50

αopt 0.170 0.014 0.824 0.475 0.250 0.896
AUC(αopt) 0.941 0.963 0.813 0.888 0.917 0.669

γ̂opt 0.005 (0.01) 0.003 (0.01) 0.097 (0.09) 0.053 (0.05) 0.001 (0.001) 0.034 (0.05)

0.002 0.001 0.060 0.039 0.0005 0.013

α̂opt 0.243 (0.19) 0.149 (0.19) 0.615 (0.18) 0.451 (0.17) 0.286 (0.19) 0.812 (0.13)

0.190 0.061 0.643 0.459 0.250 0.835

FDR 0.254 (0.23) 0.165 (0.21) 0.604 (0.20) 0.444 (0.19) 0.297 (0.27) 0.783 (0.18)

0.200 0.091 0.645 0.462 0.226 0.817

α̂opt,∞ 0.256 (0.20) 0.154 (0.19) 0.613 (0.18) 0.452 (0.17) 0.311 (0.22) 0.801 (0.12)

0.191 0.065 0.636 0.460 0.260 0.820

AUC(γ̂opt) 0.934 (0.02) 0.957 (0.01) 0.796 (0.04) 0.881 (0.02) 0.910 (0.03) 0.667 (0.03)

0.938 0.960 0.803 0.883 0.918 0.669

ÂUC(γ̂opt) 0.956 (0.02) 0.966 (0.01) 0.868 (0.05) 0.916 (0.03) 0.945 (0.03) 0.802 (0.07)

0.959 0.967 0.873 0.918 0.948 0.810

FWER 0.760 0.586 0.984 0.998 0.720 0.980
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4.3 Cross validation under the global null hypothesis

Table 4.2: Results using the cross validation procedure assuming a smaller

AUC∗: The true best choice of the FDR, αopt and the corresponding AUC(αopt) as

well as results determined from the cross validation procedure (means (standard deviations)

and medians over 500 simulation runs): the selection boundary γ̂opt and the corresponding

α̂opt, the true FDR and α̂opt,∞, the true future AUC(γ̂opt), the cross validated ÂUC(γ̂opt)
and the FWER for a varying number of prognostic variables me, per-group sample sizes n

�xing the number of tested hypotheses m = 1000 assuming AUC∗ = 0.80.

m 1000
me 10 60
n 50 100 50 100

αopt 0.794 0.493 0.919 0.893
AUC(αopt) 0.595 0.675 0.582 0.613

γ̂opt 0.042 (0.06) 0.020 (0.03) 0.136 (0.23) 0.146 (0.23)

0.013 0.008 0.039 0.042

α̂opt 0.713 (0.22) 0.546 (0.24) 0.815 (0.16) 0.734 (0.17)

0.763 0.560 0.852 0.757

FDR 0.711 (0.28) 0.521 (0.29) 0.779 (0.20) 0.700 (0.20)

0.813 0.556 0.833 0.752

α̂opt,∞) 0.735 (0.18) 0.552 (0.23) 0.781 (0.09) 0.712 (0.14)

0.772 0.553 0.797 0.723

AUC(γ̂opt) 0.598 (0.08) 0.676 (0.04) 0.551 (0.10) 0.587 (0.03)

0.600 0.678 0.559 0.593

ÂUC(γ̂opt) 0.741 (0.07) 0.765 (0.05) 0.701 (0.07) 0.700 (0.05)

0.745 0.767 0.702 0.700

FWER 0.920 0.890 0.962 0.980 (0.07)

leading to prediction scores with AUC(γ̂opt) values close to AUC(αopt).

4.3 Cross validation under the global null hypothesis

Under the global null hypothesis the cross validation procedure searching for decision

boundaries resulting in the "best" cross validated ROC-curve will generally produce a

score which is always useless for prediction of future outcomes. Note that only in a few

cases the FDR threshold determined by cross validation will not lead to selection of any

variable in the total sample. In this cases the AUC is set to 0.5 in the following. Note

that the true FDR is then 0.

Figures 4.1 show the distributions of the cross validated ÂUC(γ̂opt) of the simulated

samples for the examples assuming me = 10 (�rst row), 60 (second row) prognostic vari-
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4 A cross validation method to estimate an appropriate selection criterion

ables as well as under the global null hypotheses (me = 0, third row) searching among

m = 1000 tested hypotheses (Figure from Goll (2008)). A sample size of n = 50 (�rst

column) and n = 100 (second column) per group is applied. The histograms show that

in case of me = 10, ÂUC(γ̂opt) is generally larger than 0.8 whereas under the global

null ÂUC(γ̂opt) is generally below 0.8. Thus, one criterion could be the following: if the

ÂUC(γ̂opt) resulting from the cross validation procedure is smaller than a value relevant

for practicable purposes then it seems to be preferable not to construct any score at all.

Note that applying a sample size of n = 100 per group (second column) there is no overlap

between the distributions under the alternative and under the global null hypothesis in

the simulated samples. Assuming me = 60 prognostic variables and �xing n = 50 per

group only a small overlap can be seen if we are searching among 1000 hypotheses.

A further observation may be used for the decision to construct a score or not: un-

der the global null hypothesis generally α̂opt takes very large values exceeding 0.9. The

histograms of α̂opt under the alternative (�rst row: me = 10, second row: me = 60) and

under the global null hypotheses (third row) are shown in Figure 4.2 for n = 50 (�rst

column) and n = 100 (second column). Under the alternative α̂opt is varying largely,

although the average generally being much smaller than under the global null. Therefore,

a large α̂opt found in a real data set may be a good reason to decide against the score

because this may signal that we are under the global null hypotheses or that the sample

size is to small to detect the given e�ects. Moreover in such a situation we have to expect

that most of the selected variables will not contribute to prediction anyway.

It also has to be mentioned that under the global null the mean estimate α̂opt calculated

from γ̂opt may be much smaller than the true FDR. Table 4.3 summarizes the results of the

cross validation procedure under the global null hypothesis. Note that α̂opt,∞ is always 1

and the true AUC(γ̂opt) is always 0.5. For comparison to the results under the alternative

see Table 4.1.

Looking at both criteria may help to decide for or against the prediction scores. The

Scatterplots for ÂUC(γ̂opt) versus α̂opt in Figure 4.3 give an overview over the combina-

tion of both criteria. It can be seen that the cross validation based ÂUC(γ̂opt) is varying
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4.3 Cross validation under the global null hypothesis

less than the estimated α̂opt. If both criteria are large this may be a reason to decide

against the sore despite the large area under the curve because one may be con�dent that

a large number of non-prognostic variables are included in the score.

Increasing the number of tested hypotheses to m = 6000 in the situation of me = 10

(Figure 4.4: left plot) again ÂUC(γ̂opt) is generally larger than 0.8. However, when ex-

pecting a larger number of prognostic variables with rather small e�ect sizes (me = 60:

Figure 4.4 central plot) the distribution of ÂUC(γ̂opt) largely overlaps the distribution

under the global null hypothesis (right plot). E.g., deciding to construct a score only if

the ÂUC(γ̂opt) is larger than 0.8 would lead to a false negative decision in more than one

half of the cases. Constructing scores only if ÂUC(γ̂opt) exceeds 0.7 would reduce the false

negative decisions, however increase the false positive decisions to 30% under the global

null hypotheses. Again, if the estimated ÂUC(γ̂opt) is small this may be an indication

that in a speci�c sample we are close to the global null hypotheses or the sample size is

too small to detect the prognostic variables with their rather small e�ects. α̂opt is again

varying largely under the alternative and under the global null (see histograms in Figure

4.5).

Summing up the results for m = 6000 it can be seen that if a small number of prog-

nostic variables with large e�ect sizes is assumed (Figure 4.6, left plot), ÂUC(γ̂opt) tends

to be large and α̂opt (despite the larger variation) tends to be small suggesting that there

may be a good prediction of the response of future patient to a speci�c therapy. For

me = 60 (see Figure 4.6, central plot) and under the global null (Figure 4.6, right plot)

ÂUC(γ̂opt) tends to be small and α̂opt tends to be large which indicates that no good pre-

diction score for future patients can be determined from the given data. See also Table

4.3 for the results under the global null and Table 4.1 for the results under the alternative.

The histograms of ÂUC(γ̂opt) in Figure 4.7, of α̂opt in Figure 4.8 and the scatterplots

in Figure 4.9 show the situation assuming a smaller AUC∗ of 0.8. In all three Figures

the situations of me = 10 (�rst row), me = 60 (second row) and me = 0 (third row) are

considered for n = 50 (�rst column) and n = 100 (second column). In the situation of a

small AUC∗ it may become di�cult to distinguish between the situations under the alter-
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4 A cross validation method to estimate an appropriate selection criterion

native and under the global null if only small samples are used to search for a prediction

score. Under the alternative α̂opt varies largely and ÂUC(γ̂opt) tends to be small. Thus,

larger sample sizes are needed to detect good prognostic scores. However, increasing the

sample size to n = 100 only slightly increases the performances of the determined predic-

tion scores. However again, the results of the cross validation procedure are re�ecting the

poor performance of the detected prediction scores under the alternative and under the

global null (see Table 4.3). For comparison to the results of the cross validation procedure

under the alternative see Table 4.2.

Table 4.3: Results using the cross validation procedure under the global null hy-

potheses: means (standard deviations) and medians over 500 simulation runs of the selec-

tion boundary γ̂opt and the corresponding α̂opt, the true FDR, the cross validated ÂUC(γ̂opt)
and the FWER for a varying number of per-group sample sizes n and tested hypotheses m.

Note that α̂opt,∞ is always 1 and AUC(γ̂opt) is always 0.5.

m 1000 6000
n 50 100 50

γ̂opt 0.023 (0.03) 0.020 (0.03) 0.003 (0.003)

0.010 0.009 0.004

α̂opt 0.855 (0.18) 0.857 (0.18) 0.818 (0.21)

0.919 0.924 1.000

FDR 0.950 (0.22) 0.986 (0.18) 0.920 (0.27)

1.000 1.000 1.000

α̂opt,∞ 1.000 1.000 1.000
AUC(γ̂opt) 0.500 0.500 0.500

ÂUC(γ̂opt) 0.657 (0.08) 0.642 (0.06) 0.657 (0.08)

0.662 0.644 0.725

FWER 0.950 0.986 0.920
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4.3 Cross validation under the global null hypothesis

Figure 4.1: Distribution of the cross validation based ÂUC(γ̂opt) (500 simulation runs): me = 10 (�rst

row), 60 (second row) or 0 (third row) among m = 1000 hypotheses. The sample size was

set to n = 50 per group (�rst column) and n = 100 (second column). AUC∗ = 0.965 (Figure

from Goll (2008)).

61



4 A cross validation method to estimate an appropriate selection criterion

Figure 4.2: Distribution of the cross validation based α̂opt (500 simulation runs): me = 10 (�rst row),

60 (second row) or 0 (third row) among m = 1000 hypotheses. The sample size was set to

n = 50 per group (�rst column) and n = 100 (second column). AUC∗ = 0.965.
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4.3 Cross validation under the global null hypothesis

Figure 4.3: Scatterplots of ÂUC(γ) vs. α̂opt (500 simulation runs): me = 10 (�rst row), 60 (second

row) or 0 (third row) among m = 1000 hypotheses. The sample size was set to n = 50 per

group (�rst column) and n = 100 (second column). AUC∗ = 0.965.
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4 A cross validation method to estimate an appropriate selection criterion

Figure 4.4: Distribution of the cross validation based ÂUC(γ̂opt) for selection using (100 simulated

steps): me = 10 (left plot), 60 (central plot) or 0 among m = 6000 (right plot)hypotheses.

The sample size was set to n = 50 per group. AUC∗ = 0.965.

Figure 4.5: Distribution of the cross validation based α̂opt (100 simulation runs): me = 10 (left plot),

60 (central plot) or 0 (right plot) among m = 6000 hypotheses. The sample size was set to

n = 50 per group. AUC∗ = 0.965.

Figure 4.6: Scatterplots of ÂUC(γ̂opt) vs. α̂opt (100 simulation runs): me = 10 (left plot), 60 (central

plot) or 0 (right plot) among m = 6000 hypotheses. The sample size was set to n = 50 per

group. AUC∗ = 0.965.
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4.3 Cross validation under the global null hypothesis

Figure 4.7: Cross validation assuming a smaller AUC∗: Distribution of the cross validation based

ÂUC(γ̂opt) (500 simulation runs): me = 10 (�rst row), 60 (second row) or 0 (third row)

among m = 1000 hypotheses. The sample size was set to n = 50 per group (�rst column)

and n = 100 (second column). AUC∗ = 0.8
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4 A cross validation method to estimate an appropriate selection criterion

Figure 4.8: Cross validation assuming a smaller AUC∗: Distribution of the cross validation based

α̂opt (500 simulation runs): me = 10 (�rst row), 60 (second row) or 0 (third row) among

m = 1000 hypotheses. The sample size was set to n = 50 per group (�rst column) and

n = 100 (second column). AUC∗ = 0.8.
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4.3 Cross validation under the global null hypothesis

Figure 4.9: Cross validation assuming a smaller AUC∗: Scatterplots of ÂUC(γ̂opt) vs. α̂opt (500
simulation runs): me = 10 (�rst row), 60 (second row) or 0 (third row) among m = 1000
hypotheses. The sample size was set to n = 50 per group (�rst column) and n = 100
(second column). AUC∗ = 0.8.
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4 A cross validation method to estimate an appropriate selection criterion

4.4 Cross validation using the mean difference in score

values

In the following we will investigate another type of the cross validation method, where

the di�erence between the score values of the leaved out responder and the non-responder

is used instead of the cross validation function CFij. The �nal selection boundary γ̂opt is

than chosen such that it maximizes the mean value of the score di�erences over all nrnnr

possibilities of leaving out one responder and non-responder respectively.

De�nition 4.4.0.6 Let f̂(ij)(xr,i; γ) and f̂(ij)(xnr,j; γ) be the score values of the left out

responder and non-responder respectively. f̂(ij) was determined from the training sample

where the ith responder and the jth non-responder was left out and γ was used as selection

boundary. The mean di�erence between the score values is calculated as function of γ by:

M̂D(γ) =
1

nrnnr

nr∑
i=1

nnr∑
j=1

(f̂(ij)(xr,i; γ)− f̂(ij)(xnr,j; γ)) (4.4)

De�nition 4.4.0.7 The best choice of the �nal selection boundary, γ̂opt, is then calculated

by:

γ̂opt = arg max
γ

 1

nrnnr

nr∑
i=1

nr∑
j=1

(f̂(ij)(xr,i; γ)− f̂(ij)(xnr,j; γ))

 (4.5)

Table 4.4 shows the results applying the cross validation procedure using the di�erence in

score values for a varying number of prognostic variables me = 10, 60 or 0 and per-group

sample sizes n = 50 or 100, �xing m = 1000 and assuming AUC∗ = 0.965. The mean

di�erence M̂D(γ̂opt) tends to be small under the global null hypotheses and to be large

under the alternative. The histograms of M̂D(γ̂opt) of the di�erent scenarios can be seen

in Figure 4.10. The �gure shows a large overlap of the distributions under the alternatives

of me = 10 and 60 (�rst and second row).

It can also be seen from Table 4.4 that the di�erences between α̂opt and αopt are much

larger than when using the Mann-Whitney U statistic. Thus, a smaller true AUC(γ̂opt)

is achieved. α̂opt varies largely under the alternative, however, it also tends to be rather

large for me = 10 unlike applying the Mann-Whitney U statistic where small values of
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4.4 Cross validation using the mean di�erence in score values

α̂opt were found. Figure 4.11 shows the distributions of α̂opt for the di�erent scenarios.

Under the global null α̂opt is generally larger than 0.9, similar to using the Mann-Whitney

U statistic. Figure 4.12 shows scatterplots of M̂D(γ̂opt) versus α̂opt for the combination

of both criteria when using the mean di�erence in score values in the cross validation

procedure. For comparison to the cross validation procedure using the Mann-Whitney U

Statistic see Table 4.1 and Figure 4.3.

According to the given results one may conclude that using the Mann-Whitney U statistic

seems to work better than using the mean di�erence between the score values and we fur-

thermore get an estimate of the true AUC for future prediction (despite positively biased)

which seems to be a good criteria for the basic decision whether a prognostic score should

be constructed from the data or not. M̂D(γ̂opt) has been found to be no good criterion

to re�ect the performance of the determined prediction scores.

Table 4.4: Results using the cross validation procedure using the mean di�er-

ence in score values: The true best choice of the FDR, αopt and the corresponding

AUC(αopt) as well as results determined from the cross validation procedure (means (stan-

dard deviations) and medians over 500 simulation runs): the selection boundary γ̂opt and

the corresponding α̂opt, the true FDR and α̂opt,∞, the true future AUC(γ̂opt), the cross

validated M̂D(γ̂opt) and the FWER for a varying number of prognostic variables me and

varying per-group sample sizes n, �xing m = 1000 and assuming AUC∗ = 0.965.

m 1000
me 10 60 0
n 50 100 50 100 50 100

αopt 0.170 0.014 0.824 0.475
AUC(αopt) 0.941 0.963 0.813 0.888 0.500 0.500

γ̂opt 0.044 (0.03) 0.041 (0.03) 0.241 (0.11) 0.130 (0.05) 0.040 (0.04) 0.041 (0.03)

0.036 0.032 0.241 0.131 0.030 0.033

α̂opt 0.702 (0.21) 0.668 (0.23) 0.811 (0.08) 0.682 (0.10) 0.910 (0.14) 0.925 (0.11)

0.762 0.731 0.818 0.690 0.974 0.977

FDR 0.684 (0.25) 0.667 (0.25) 0.794 (0.09) 0.669 (0.01) 0.940 (0.24) 0.978 (0.15)

0.778 0.762 0.818 0.696 1.000 1.000

α̂opt,∞ 0.699 (0.22) 0.674 (0.24) 0.798 (0.08) 0.675 (0.09) 1.000 1.000
0.783 0.762 0.820 0.697

AUC(γ̂opt) 0.892 (0.04) 0.927 (0.02) 0.812 (0.02) 0.881 (0.01) 0.500 0.500
0.890 0.929 0.814 0.880

M̂D(γ̂opt) 7.591 (1.44) 7.323 (0.89) 7.124 (1.60) 6.934 (0.97) 1.169 (0.84) 0.743 (0.47)

7.529 7.301 7.026 6.953 1.028 0.678

FWER 0.974 0.980 0.998 0.998 0.940 0.978
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4 A cross validation method to estimate an appropriate selection criterion

Figure 4.10: Cross validation using the mean di�erence in score values: Distribution of the

cross validation based M̂D(γ̂opt) (500 simulation runs): me = 10 (�rst row), 60 (second

row) or 0 (third row) among m = 1000 hypotheses. The sample size was set to n = 50 per

group (�rst column) and n = 100 (second column).
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Figure 4.11: Cross validation using the mean di�erence in score values: Distribution of the

cross validation based α̂opt (500 simulation runs): me = 10 (�rst row), 60 (second row) or

0 (third row) among m = 1000 hypotheses. The sample size was set to n = 50 per group

(�rst column) and n = 100 (second column).
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Figure 4.12: Cross validation using the mean di�erence in score values: Scatterplots of M̂D(γ)
vs. α̂opt (500 simulation runs): me = 10 (�rst row), 60 (second row) or 0 (third row) among

m = 1000 hypotheses. The sample size was set to n = 50 per group (�rst column) and

n = 100 (second column).
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5 Extensions

5.1 Applying two-sided tests for selection

Up to now we performed one-sided two-sample z-tests for the selection of variables.

However, in practice generally two-sided tests are performed. The two-sided p-values

pi = 2(1 − Φ(|zi|)) are compared to the critical boundary γ which is equivalent to com-

pare the p-values pi = 1− Φ(|zi|) to the the critical boundary γ/2.

Theorem 5.1.0.2 In the two-sided case, for the p-values pi = 1 − Φ(|zi|) the procedure

applying the critical boundary γ/2 leads to the same results as the one-sided test under

the global null hypotheses. If under the alternative we assume constant e�ect size among

the prognostic variables the two-sided tests lead to the same results if the e�ect size (∆2)

is calculated by

∆2 =
z(1− γ

2
)− z(1− γ)√

n
2

+ ∆1.

(ignoring directional errors under the alternative). z(1−γ) denotes the (1−γ)-quantile of

the standard normal distribution and ∆1 is the corresponding e�ect size in the one-sided

case.

Proof: Applying the same selection procedure the same power is achieved in the one and

two-sided test situation. Ignoring directional errors under the alternative:

1− β(γ) = 1− Φ√n
2

∆1,1
(z(1− γ)) = 1− Φ√n

2
∆2,1

(z(1− γ

2
)) = 1− β(γ/2)

Thus, the e�ect size ∆2 can be easily calculated by solving the above equation.
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5 Extensions

5.1.1 Simulation studies

Figure 5.1 shows the interpolated functions of the mean values of AUC(α) as a function

of α assuming me = 10 (dashed line) and 60 (dotted line) among m = 1000 hypotheses.

The sample size per group is set to n = 50. Note that ∆ = 0.811 for me = 10 and

∆ = 0.331 for me = 60. The grey curves show the results using one-sided tests and the

black curves applying two-sided tests for selection. The best choice expecting me = 10

among m = 1000 tested hypotheses in the two-sided test situation would be a slightly

larger αopt = 0.174 as compared to 0.170 in the one-sided test situation achieving on aver-

age a slightly smaller AUC(αopt) of 0.933 as compared to 0.941 in the one-sided situation.

If a larger number of prognostic variables with small e�ects is assumed, the di�erence in

AUC(αopt) between the one and two-sided test situation is larger. Assuming 60 alterna-

tives among the m = 1000 tested hypotheses the values are αopt = 0.850 achieving an

average AUC(αopt) = 0.756 for applying two-sided tests as compared to αopt = 0.824 and

AUC(αopt) = 0.813 for the one-sided test situation.

The same tendencies can also be seen for the situation where the prognostic variables

are searched within m = 6000 variables (see Figure 5.2). Trough the whole examples

considered, in the two-sided case a slightly larger αopt is determined from the cross valida-

tion procedure achieving a slightly smaller AUC(αopt). A summary of the results for the

two-sided case can be seen in Table 5.1. For comparison to the one-sided case see Table

3.1.

Table 5.1: Two-sided test situation: Best choice of the FDR threshold αopt, the corresponding

true AUC(αopt) as well as the number of non-prognostic variables (ms
0) and the number of

prognostic variables (ms
e) included in the prediction score.

m me ∆ n αopt AUC(αopt) ms
0 ms

e

1000 10 0.811 50 0.174 0.933 1.87 8.56
60 0.331 50 0.850 0.756 242.88 39.39

6000 10 0.811 50 0.252 0.904 2.64 6.89
60 0.331 50 0.936 0.625 631.37 26.34
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5.1 Applying two-sided tests for selection

Figure 5.1: Two-sided test situation: Interpolated functions of mean values of AUC(α) over the

simulated samples (10000 simulation run) as a function of the FDR threshold α for selection

using a two-sided test assuming me = 10 (black dashed curve) and 60 (black dotted curve)

alternatives among m = 1000 tested variables. The corresponding one-sided results are

given as grey curves. The sample size per group was set to n = 50. AUC∗ = 0.965 is given

as solid horizontal line.

Figure 5.2: Two-sided test situation: Interpolated functions of mean values of AUC(α) over the

simulated samples (10000 simulation run) as a function of the FDR threshold α for selection

using a two-sided test assuming me = 10 (black dashed curve) and 60 (black dotted curve)

alternatives among m = 6000 tested variables. The corresponding one-sided results are

given as grey curves. The sample size per group was set to n = 50. AUC∗ = 0.965 is given

as solid horizontal line.
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5.1.2 Cross validation using two-sided tests

The cross validation procedure applying two-sided tests was investigated by simulation

only for the situations testing m = 1000 hypotheses. The sample size per group is �xed

to n = 50. Simulations were performed for me = 10, 60 and under the global null.

The results of the cross validation procedure are shown in Table 5.2. Similar tendencies

for the determined prediction scores as compared to applying one-sided tests are found.

The cross validation procedure results in γ̂opt and corresponding α̂opt values achieving a

future performance with mean AUC(γ̂opt) values close to the true AUC(αopt). However,

in the two-sided case the di�erence between AUC(γ̂opt) and AUC(αopt) is slightly larger

as when using one-sided tests. For the di�erence between α̂opt and αopt no such tendency

can be seen. For comparison to the one-sided case see Table 4.1.

Generally, as in the one-sided situation, values of the estimated ÂUC(γ̂opt) are large

under the alternative and small under the global null. Figure 5.3 shows the histograms

of ÂUC(γ̂opt) assuming me = 10 (left plot), me = 60 (central plot) and under the global

null (right plot). As compared to the one-sided situation a only slightly larger variation

of ÂUC(γ̂opt) can be seen from the histograms (compare Figure 4.1).

Values of the determined α̂opt are as in the one-sided case largely varying under the alter-

native and are generally larger than 0.9 under the global null (see histograms in Figure 5.4

and Figure 4.2 for the one-sided case). Figures 5.5 show scatterplots for the combination

of both arguments for the investigated examples. Thus again we can conclude that both

criteria, ÂUC(γ̂opt) and α̂opt, should be used for the basic decision for or against building

a prediction score from a given sample.

The results can be summarized similar to the one-sided case. The results of the cross

validation procedure are re�ecting the performance of the determined scores leading to

larger ÂUC(α̂opt) and smaller α̂opt values under the alternative and to small ÂUC(α̂opt)

and large α̂opt values under the global null. Therefore, applying two-sided tests only

slightly reduces the performance of the determined scores.
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Figure 5.3: Cross validation using two-sided tests: Distribution of the cross validation based

ÂUC(γ̂opt) (500 simulation runs) using a two-sided test: me = 10 (left plot), 60 (central

plot) or 0 (right plot) are assumed among m = 1000 hypotheses. The sample size is set to

n = 50.

Figure 5.4: Cross validation using two-sided tests: Distribution of the cross validation based α̂opt

(500 simulation runs) using a two-sided test: me = 10 (left plot), 60 (central plot) or 0
(right plot) are assumed among m = 1000 hypotheses. The sample size is set to n = 50.

Figure 5.5: Cross validation using two-sided tests: Scatterplot of ÂUC(γ̂opt) vs. α̂opt (500 simu-

lation runs) using a two-sided test: me = 10 (left plot), 60 (central plot) or 0 (right plot)

are assumed among m = 1000 hypotheses. The sample size is set to n = 50.
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Table 5.2: Cross validation using two-sided tests: The true best choice of the FDR, αopt

and the corresponding AUC(αopt) as well as results determined from the cross validation

procedure: the selection boundary γ̂opt and the corresponding α̂opt, the true FDR and α̂opt,∞,

the true AUC(γ̂opt), the cross validated ÂUC(γ̂opt) and the FWER for a varying number

of prognostic variables me. The per-group sample sizes is �xed to n = 50 and m = 1000.
Under the alternative AUC∗ = 0.965.

me 10 60 0

αopt 0.174 0.850
AUC(αopt) 0.933 0.756 0.500

γ̂opt 0.007 (0.01) 0.103 (0.11) 0.071 (0.11)

0.002 0.050 0.018

α̂opt 0.260 (0.21) 0.656 (0.19) 0.878 (0.17)

0.208 0.696 0.958

FDR 0.266 (0.25) 0.644 (0.21) 0.984 (0.13)

0.200 0.682 1.000

α̂opt,∞ 0.266 (0.22) 0.600 (0.19) 1.000
0.201 0.609

AUC(γ̂opt) 0.924 (0.03) 0.743 (0.04) 0.500
0.931 0.747

ÂUC(γ̂opt) 0.953 (0.02) 0.848 (0.05) 0.673 (0.08)

0.957 0.853 0.677

FWER 0.730 0.980 0.984
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5.2 Unequal e�ect sizes

5.2 Unequal effect sizes

Up to this point we assumed that all prognostic variables have the same e�ect size. To

investigate situation under unequal e�ect sizes, we now assume that, if the alternatives

holds, the e�ects follow a uniform distribution (∆ ∈ (0, ∆̃]). The parameter ∆̃ for the

uniform distribution is searched such that the optimal linear prediction score, if known,

would lead to the benchmark AUC∗ (0.965). Thus, ∆̃ = 1.306 for me = 10 and ∆̃ = 0.566

for me = 60.

Secondly we assume that the e�ects follow an exponential distribution. Again the pa-

rameter of the exponential distribution (λe) is searched such that the optimal linear

prediction score would lead to the benchmark AUC∗. Thus, λe = 1.374 for me = 10

and λe = 3.468 for me = 60. In the situation of exponential distributed e�ect sizes and

uniform distributed e�ect sizes, similar performances in terms of the true AUC(α) can be

seen (see Figure 5.6 and Table 5.3), since the e�ect sizes to achieve AUC∗ do not di�er

largely between the two distributions.

Detecting the rather large e�ects among the distributed variables results in a slightly

better performance of the determined scores as compared to the situation of equal e�ect

sizes. Thus, αopt values are smaller and AUC(αopt) values are slightly larger as compared

to the case where equal e�ect sizes are assumed.

However, because of the similarities to the situation of equal e�ect sizes, we expect similar

tendencies for the cross validation procedure to determine γ̂opt values leading on average to

AUC(γ̂opt) values close to AUC(αopt) as well as giving a good re�ection of the performance

of the determined scores by the estimates ÂUC(γ̂opt) and α̂opt.
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Table 5.3: Unequal e�ect sizes: Best choice of the FDR threshold αopt, the corresponding

true AUC(αopt) as well as the number of non-prognostic variables (ms
0) and the number

of prognostic variables (ms
e) included in the prediction score assuming unequal e�ect sizes

among the prognostic variables. The parameters of the distributions to achieve AUC∗ are

given. m = 1000, n = 50, AUC∗ = 0.965.

Distribution m me n ∆̃ or λe αopt AUC(αopt) ms
0 ms

e

uniform 1000 10 50 1.306 0.117 0.948 0.83 5.67
1000 60 50 0.566 0.588 0.834 34.42 22.98

exponential 1000 10 50 1.374 0.117 0.946 0.81 5.62
1000 60 50 3.468 0.575 0.834 32.04 22.48

Figure 5.6: Unequal e�ect sizes: Interpolated functions of mean values of AUC(α) over the simulated
samples (10000 simulation run) as a function of the FDR threshold α for me = 10 (dashed

curves) and 60 (dotted curves) alternatives among m = 1000 tested variables. The e�ect

sizes are assumed to follow uniform distributions (grey curves) or exponential distributions

(black curves). The sample size per group is set to n = 50. AUC∗ = 0.965 is given as solid

horizontal line.
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6 Situation of unknown variances

6.1 Selection and prediction

Up to now we assumed that the variance (σ2 = 1) is known. However, in practice,

the variance is unknown and has to be estimated from the given data set. We now

will investigate the impact of estimating variances on the performance of the resulting

prediction scores by simulation. The selection method applying a multiple test with

threshold α for the FDR is now based on a one-sided two-sample t-test. Thus, the test

statistics, assuming that the unknown within-group variances are equal (σ2
r,i = σ2

nr,i =

σ2
i = 1 for i = 1, ...,m) is:

ti = (x̄r,i − x̄nr,i)/(
√

(s2
r,i + s2

nr,i)/n), i = 1, . . . ,m (6.1)

where we again assume equal sample sizes per variable and group. s2
r,i and s

2
nr,i are the

estimated variances from the samples of responders and non-responders respectively. The

decision is then based on the one-sided p-values

pi = 1− F2n−2(ti)

where F2n−2 is the central t-distribution with 2n− 2 degrees of freedom.

To calculate the score to predict a clinical outcome we now have to consider the esti-

mated variances in the prediction score (as in the classical discriminant function). The

weights of the selected variables in the prediction score have to be divided by the common

within groups variance estimate applied in the t-test:

s2
i =

(nr,i − 1)s2
r,i + (nnr,i − 1)s2

nr,i

nr,i + nnr,i − 2
.
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6 Situation of unknown variances

Thus in our case of nr,i = nnr,i = n for i = 1, ...,m, s2
i can be calculated as the simple

mean value of the within group variances of the group of responder and non-responder.

De�nition 6.1.0.1 Assume that k ≤ m variables are selected to build a prediction score

(pj ≤ γ for j = 1, .., k). Let x̄r,j and x̄nr,j denote the sample means of the jth selected vari-

able of patients responding and not responding to therapy, respectively, and x = (x1, ..., xk)

the corresponding values of the selected variables in a future patient. The prediction score

is calculated as follows:

f̂(x; γ) = ĉTx =
k∑
j=1

ĉjxj. (6.2)

where

ĉj =
x̄r,j − x̄nr,j

s2
j

(6.3)

for the k selected variables with pj ≤ γ. All other variables are not included in the

prediction score (the weights in the score are set to 0).

If f̂(x; γ) > b we predict a response, otherwise a non-response. Let the diagonal matrix

of the estimated variances of the k ≤ m selected variables be denoted by

Σ̂k =


s2

1 0 . . . 0

0 s2
2

. . .
...

...
. . . . . . 0

0 . . . 0 s2
k

 (6.4)

Note that we do not estimate the covariances (they are set to 0). Note also that the true

covariance matrix Σk of the k selected variables under our assumptions of independence

and (unknown) variance σ2 = 1 is equal to I.

Theorem 6.1.0.1 Let µa, a = r or nr denote the true mean vector of the k selected vari-

ables in a future responder or non-responder, respectively. Given the selection threshold

α and the estimated weights from the samples, the prognostic score follows two normal

distributions:

f̂(x; γ) ∼ N [µa, σ
2
a] = N [ĉTµa, ĉ

T ĉ]

= N [(x̄r − x̄nr)
T Σ̂−1

k µa, (x̄r − x̄nr)
T Σ̂−1

k Σk(Σ̂
−1
k )T (x̄r − x̄nr)]

= N [(x̄r − x̄nr)
T Σ̂−1

k µa, (x̄r − x̄nr)
T Σ̂−1

k Σ̂−1
k (x̄r − x̄nr)]
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6.2 Simulation studies

Proof: The results can be derived by using theorem 2.1.0.7.

Theorem 6.1.0.2 Fixing the appropriate µa, a = r or nr, for the populations of re-

sponders and non-responders, respectively, the AUC for future independent populations is

calculated by:

AUC(α) =
∫ 1

0

{
1− Φ

[
z(1− w)− ĉT (µr − µnr)√

ĉT ĉ

]}
dw

=
∫ 1

0

1− Φ

z(1− w)− (x̄r − x̄nr)
T Σ̂−1

k (µr − µnr)√
(x̄r − x̄nr)T Σ̂−1

k Σ̂−1
k (x̄r − x̄nr)

 dw.
Proof: The results can be derived as in theorem 3.3.0.2.

6.2 Simulation studies

The situation of unknown variance is investigated by simulations for the scenarios search-

ing forme = 10 and 60 alternatives amongm = 1000 and 6000 hypotheses. The per-group

sample size in all investigated scenarios is set to n = 50. The e�ect size is again triggered

by forcing the optimal ROC-curve through the benchmark point v = 1− w = 0.9. Thus

∆ remains the same as in the known variance case, for me = 10, ∆ = 0.811 and for

me = 60, ∆ = 0.331 to achieve AUC∗ = 0.965 of the ROC-curve crossing through the

benchmark point (v, 1 − w) = (0.9, 0.9). Again simulated mean values of AUC(α) for a

grid of α values with interval 0.01 are interpolated using splines. αopt is again determined

by optimizing the interpolated function.

Figure 6.1 shows the interpolated functions of the mean values of AUC(α) (10000 simu-

lation runs) for the unknown variance case expecting me = 10 (black dotted line) and 60

(black dashed line) among m = 1000 tested hypotheses. The corresponding results of the

known variance case are shown as grey lines. AUC∗ = 0.965 is shown as solid horizontal

line. The �gure shows that the score using the estimated variances achieves only slightly

smaller performances in terms of AUC(α) as compared to the known variance case. For

me = 10, αopt = 0.174 on average achieves a performance of AUC(αopt) = 0.936. For

me = 60 the optimal threshold αopt = 0.832 achieves on average AUC(αopt) = 0.810.

Note that in the known variance case the values were AUC(αopt) = 0.941 and αopt = 0.17
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6 Situation of unknown variances

for me = 10 and AUC(αopt) = 0.813 and αopt = 0.824 for me = 60 (see results in Table

6.1 for the unknown variance case and Table 3.1 for comparison to the known variance

case). Thus, estimating the variances in the unknown case does only slightly decrease the

performance of the resulting scores. The selection threshold αopt slightly increases when

moving from the known to the unknown variance case.

Figure 6.2 shows the results for m = 6000 tested hypotheses. Again, estimating the vari-

ances only slightly decreases the performance of the resulting score as compared to the

known variance case. Testing m = 6000 hypotheses an optimal threshold of αopt = 0.226

leads on average to prediction scores with a mean performance of AUC(αopt) = 0.906 if

me = 10 prognostic variables are assumed. For me = 60 the values are αopt = 0.918 and

AUC(αopt) = 0.664. For the known variance case the values were AUC(αopt) = 0.917 and

αopt = 0.25 for me = 10 and AUC(αopt) = 0.669 and αopt = 0.895 for me = 60 (see also

Table 6.1 and 3.1 for more details).

Table 6.1: Unknown variance case: The best choice of the FDR threshold αopt, the corre-

sponding true AUC(αopt) as well as the number of non-prognostic variables (ms
0) and the

number of prognostic variables (ms
e) included in the prediction score for a varying number

of and tested hypotheses m and prognostic variables me. n = 50 and AUC∗ = 0.965.

m me ∆ n αopt AUC(αopt) ms
0 ms

e

1000 10 0.811 50 0.174 0.936 1.93 8.49
60 0.331 50 0.832 0.810 274.60 49.71

6000 10 0.811 50 0.253 0.912 2.86 7.60
60 0.331 50 0.918 0.664 516.28 32.30
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6.2 Simulation studies

Figure 6.1: Unknown variance case: Interpolated functions of mean values of AUC(α) (over 10000
simulation runs) for a varying FDR selection threshold α assuming me = 10 (black dashed

line) alternatives or 60 (black dotted line) among m = 1000 tested variables. The sample

size per group is set to n = 50. The corresponding known case is shown in grey lines.

AUC∗ = 0.965 is given as solid horizontal line.

Figure 6.2: Unknown variance case: Interpolated functions of mean values of AUC(α) (over 10000
simulation runs) for a varying FDR selection threshold α assuming me = 10 (black dashed

line) alternatives or 60 (black dotted line) among m = 6000 tested variables. The sample

size per group is set to n = 50. The corresponding known case is shown in grey lines.

AUC∗ = 0.965 is given as solid horizontal line.
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6 Situation of unknown variances

6.3 Cross validation

We investigated the cross validation procedure applying t-tests for the examples assuming

me = 10 and 60 among m = 1000 and 6000 candidate variables. The sample size per

group in the four examples is set to n = 50.

The general tendencies of the prognostic scores determined from the cross validation

procedure in the unknown variance case (results see Table 6.2) are similar as compared

to applying z-tests in the known variance case. The cross validation procedure deter-

mines γ̂opt and corresponding α̂opt values leading to scores with an average performance

of AUC(γ̂opt) values close to AUC(αopt).

Figure 6.3 shows the histograms of the estimated ÂUC(γ̂opt) for the simulated samples as-

sumingme = 10 (left plot), 60 (central plot) and under the global null hypothesis (me = 0:

right plot) form = 1000. As in the situation of known variances the cross validation based

ÂUC(γ̂opt) is small under the global null and large under the alternative indicating that

good scores can be constructed from the data if we are only searching within m = 1000

hypotheses. Again because of the skew distribution of α̂opt (see histograms in Figure

6.4) and the generally �at optimum of the interpolated functions di�erences between α̂opt

and αopt can be seen. The medians are again closer to the true optimum. However, the

di�erences between α̂opt and αopt are slightly larger then in the known variance case. No

such tendency can be seen for the di�erences between ÂUC(γ̂opt) and AUC(αopt). As

in the known variance case, α̂opt is varying largely under the alternative and under the

global null it is generally larger than 0.9 (see Figure 6.4 for histograms of α̂opt). However,

estimated α̂opt values are again close to the true FDR (refer Table 6.2).

Summing up the results under the unknown variance case it may again be useful to look

at the both criteria, the cross validation based ÂUC(γ̂opt) and α̂opt, to decide, whether a

score should be constructed from a given sample sample or not. Figures 6.5 show scat-

terplots of ÂUC(γ̂opt) versus α̂opt for m = 1000. Thus, if a selected score has a small

ÂUC(γ̂opt) and a large α̂opt one should decide against the determined score. If a selected

score has a small ÂUC(γ̂opt) and a small α̂opt one may conclude that the e�ect sizes of the
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6.3 Cross validation

selected prognostic variables are too small for a good prediction of response of a patient

to a particular therapy. If ÂUC(γ̂opt) is large and α̂opt is small the determined score may

have good prognostic abilities to predict the clinical outcome of a future patient. How-

ever, if ÂUC(γ̂opt) is large and α̂opt is large too one may be careful because despite the

good prognostic ability an unrealistic large number of non-prognostic variables may be

included in the score. Thus, one may conclude that the sample size is to small to detect

the prognostic variables.

Figure 6.6 shows the histograms of ÂUC(γ̂opt), Figure 6.7 the histograms of α̂opt and

Figure 6.8 scatterplots for ÂUC(γ̂opt) versus α̂opt for the investigated scenarios searching

the prognostic variables among m = 6000 tested genes. The scores that can be deter-

mined from given samples by using a FDR-based selection procedures are performing good

if me = 10 prognostic variables are assumed and worse when me = 60 prognostic variables

are searched within the 6000 tested variables (see previous Section 6.2). The cross vali-

dation again mirrors this performances by leading to small ÂUC(γ̂opt) values and to large

α̂opt values under the global null hypotheses and under the alternative of me = 60. In the

situation of me = 10, where rather good scores can be determined from the underlying

samples, the cross validation procedure ends in large ÂUC(γ̂opt) values and in small α̂opt

values. For example, an average ÂUC(γ̂opt) = 0.793 and α̂opt = 0.803 for me = 60 is

indicating a poor performance of the evaluated scores. An average ÂUC(γ̂opt) = 0.993

and α̂opt = 0.375 for me = 10 is indicating a rather good performance of the evaluated

scores if we tolerate the fact that approximately 38% true null hypotheses are included in

the prediction score.

A summary of the results of the cross validation procedure under the alternative can

be seen in Table 6.2. A summary of the results of the cross validation procedure under

the global null hypothesis can be seen in Table 6.3. Note again that under the global null

AUC(γ̂opt) is always equal to 0.5 and α̂opt,∞ is always equal to 1. Note also that again

under the global null larger di�erences between α̂opt and the true FDR can be seen as

under the alternative. Looking at the results from the simulations one may conclude that

estimating the variances only slightly decreases the quality of the determined prediction

scores as compared to the known variance case.
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6 Situation of unknown variances

Table 6.2: Cross Validation in the unknown variance case: The true best choice of

the FDR, αopt and the corresponding AUC(αopt) as well as results determined from the

cross validation procedure (means (standard deviations) and medians over 500 simulation

runs): the selection boundary γ̂opt and the corresponding α̂opt, the true FDR and α̂opt,∞,

the true AUC(γ̂opt), the cross validated ÂUC(γ̂opt) and the FWER for a varying number

of prognostic variables me and tested variables m. The per-group sample sizes is �xed to

n = 50. AUC∗ = 0.965.

m 1000 6000
me 10 60 10 60
n 50 50 50 50

αopt 0.174 0.832 0.253 0.918
AUC(αopt) 0.936 0.810 0.912 0.664

γ̂opt 0.005 (0.01) 0.113 (0.12) 0.002 (0.004) 0.055 (0.07)

0.003 0.065 0.0007 0.025

α̂opt 0.258 (0.18) 0.632 (0.18) 0.375 (0.25) 0.803 (0.15)

0.213 0.663 0.313 0.858

FDR 0.249 (0.23) 0.615 (0.20) 0.383 (0.29) 0.811 (0.18)

0.182 0.649 0.348 0.868

α̂opt,∞ 0.264 (0.19) 0.626 (0.18) 0.388 (0.26) 0.820 (0.14)

0.220 0.648 0.344 0.869

AUC(γ̂opt) 0.931 (0.02) 0.792 (0.04) 0.883 (0.05) 0.658 (0.03)

0.936 0.798 0.894 0.661

ÂUC(γ̂opt) 0.952 (0.02) 0.864 (0.05) 0.933 (0.04) 0.793 (0.07)

0.955 0.867 0.938 0.797

FWER 0.744 0.988 0.820 0.980

Table 6.3: Cross Validation in the unknown variance case under the global null:

Results determined from the cross validation procedure (means (standard deviations) and

medians over 500 simulation runs): the selection boundary γ̂opt and the corresponding α̂opt,

the true FDR and α̂opt,∞ (always 1) using the determined selection threshold, the true

AUC(γ̂opt) (always 0.5), the cross validated ÂUC(γ̂opt) and the FWER for a varying number

of prognostic variables me and tested variables m. The per-group sample sizes was �xed to

n = 50. AUC∗ = 0.965.

m 1000 6000

γ̂opt 0.046 (0.08) 0.049 (0.07)

0.012 0.014

α̂opt 0.909 (0.14) 0.961 (0.07)

0.978 0.994

FDR 0.980 (0.14) 1.000 (0.00)

1.000 1.000

α̂opt,∞ 1.000 1.000
AUC(γ̂opt) 0.500 0.500

ÂUC(γ̂opt) 0.659 (0.07) 0.667 (0.08)

0.663 0.675

FWER 0.980 0.998

88



6.3 Cross validation

Figure 6.3: Unknown variance case: Distribution of the cross validation based ÂUC(γ̂opt) (500
simulation runs) assuming unknown variance: me = 10 (left plot), 60 (central plot) or 0
(right plot) among m = 1000 hypotheses. The sample size is set to n = 50.

Figure 6.4: Unknown variance case: Distribution of the cross validation based α̂opt (500 simulation

runs) assuming unknown variance: me = 10 (left plot), 60 (central plot) or 0 (right plot)

among m = 1000 hypotheses. The sample size is set to n = 50.

Figure 6.5: Unknown variance case: Scatterplots of ÂUC(γ̂opt) vs. α̂opt (500 simulation runs)

assuming unknown variance: me = 10 (left plot), 60 (central plot) or 0 (right plot) among

m = 1000 hypotheses. The sample size is set to n = 50.
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6 Situation of unknown variances

Figure 6.6: Unknown variance case: Distribution of the cross validation based ÂUC(γ̂opt) (500
simulation runs) assuming unknown variance: me = 10 (left plot), 60 (central plot) or 0
(right plot) among m = 6000 hypotheses. The sample size is set to n = 50.

Figure 6.7: Unknown variance case: Distribution of the cross validation based α̂opt (500 simulation

runs) assuming unknown variance: me = 10 (left plot), 60 (central plot) or 0 (right plot)

among m = 6000 hypotheses. The sample size is set to n = 50.

Figure 6.8: Unknown variance case: Scatterplots of ÂUC(γ̂opt) vs. α̂opt (500 simulation runs)

assuming unknown variance: me = 10 (left plot), 60 (central plot) or 0 (right plot) among

m = 6000 hypotheses. The sample size is set to n = 50.
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7 Situation of correlation between

variables

7.1 Selection and prediction

Up to now we assumed independence across the candidate variables. In practice, one may

not always be con�dent that the tested variables are independent. However, assuming

correlation between variables (hypotheses) we use the same test statistics (6.1) for the in-

dividual variables as in the unknown variance case for selection using the FDR approach.

Thus, the decision is again based on the one-sided p-values pi = 1− F2n−2(ti) (one-sided

two-sample t-test) where ti is calculated using formula (6.1).

The e�ect size ∆ of the prognostic variables is now depending on the correlation structure

in order to achieve the benchmark AUC∗ = 0.965.

Theorem 7.1.0.3 Let the prognostic variables be distributed according to N [∆,Σme ]. We

assume equal e�ect sizes ∆ for the me prognostic variables. The required ∆ to achieve

a ROC-curve crossing through a benchmark point with �xed values v for sensitivity and

1− w for speci�city can be calculated by:

∆ =
z(w)− z(1− v)√

1TΣ−1
me

1
(7.1)

Proof: Under the assumption of equal e�ect sizes among the prognostic variables, the

optimal score in this situation is again a linear score of all prognostic variables considering
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7 Situation of correlation between variables

the covariance matrix (as in the discriminant analysis):

f̂(x; γ) = 1TΣ−1
me

x.

Thus, the sensitivity can be calculated by

v = 1− Φ

z(1− w)−
1TΣ−1

me
∆√

1TΣ−1
me

1

 = 1− Φ(z(1− w)−∆
√

1TΣ−1
me

1) (7.2)

Solving equation (7.2) results in (7.1). Note again that Σme here denotes the true covari-

ance matrix of the me prognostic variables.

To investigate the impact of correlation between variables (hypotheses) on the perfor-

mance of the resulting linear prognostic scores we assume an autoregressive correlation

structure to exist among the variables, i.e. the correlation between hypothesis i and j is

given by

ρ|i−j| for some ρ ∈ (0, 1).

Thus, the m tested variables are distributed according to a m-dimensional normal distri-

bution where the covariance matrix Σ has an autoregressive correlation structure:

Σ =



1 ρ ρ2 ρ3 . . . ρm−1

ρ 1 ρ ρ2 . . . ρm−2

ρ2 ρ 1 ρ . . . ρm−3

...
. . . . . . . . . . . .

...
ρm−1 . . . . . . . . . . . . 1

 . (7.3)

We furthermore assume that the �rst me variables are alternatives, i.e. the prognostic

variables are lying close to each other and thus are high correlated. The correlations

between the alternatives and the true null hypotheses, depending on the distance, may

be rather small. However, there is a large correlation between alternatives and true null

hypothesis lying close to the alternatives.

Note that we also assumed random distributed alternatives among the m tested vari-

ables. In this scenario the selected variables are nearly independent and thus results are

close to them determined for the independent case (data not shown).

As mentioned before the e�ect size is depending on the correlation structure. Figure
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7.1 Selection and prediction

Figure 7.1: Correlated hypotheses: Minimal e�ect size ∆ required to achieve a ROC-curve

crossing through the point where sensitivity and speci�city are equal to 0.9 as a function of

the number of prognostic variables me.

7.1 shows the required ∆ to achieve the benchmark AUC∗ = 0.965 as a function of the

parameter ρ for the situation of an autoregressive correlation structure. For a negative

parameter ρ we get positive and negative correlations between the variables and thus also

between the alternatives. Therefore, only small e�ect sizes are required to achieve AUC∗.

For a large positive ρ large e�ect sizes are needed to achieve the benchmark AUC∗. In

the following simulation studies the parameter ρ is set to 0.6, −0.6 and 0.9. To achieve

a ROC-curve for future prediction that crosses the benchmark point (0.9, 0.9), a minimal

∆ of 1.422, 0.421 and 2.111 is required expecting 0.6, −0.6 and 0.9 if me = 10 prognostic

variables are assumed. For me = 60 a minimal ∆ of 0.646, 0.166 and 1.265 respectively

is required.

De�nition 7.1.0.2 Assume that k ≤ m variables are selected for the construction of the

prognostic score whose p-values from the one-sided two-sample t-test were smaller than γ

(pj < γ). Let x̄r and x̄nr denote the sample means of the j = 1, ..., k selected variables

of patients responding and not responding to therapy respectively and x = (x1, ..., xk) are

the values of the corresponding variables of a future patient. To calculate the predictive

outcome, the estimated covariance matrix Σ̂k of the k selected variables is considered in
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7 Situation of correlation between variables

the the prediction score (as in the classical discriminant analysis). The score value than

is calculated by:

f̂(x; γ) = (x̄r − x̄nr)
T Σ̂−1

k x (7.4)

Note that if the true covariance matrix would be known, the weight of one selected vari-

able in the score also depends on the e�ect sizes of the two neighboring selected variables

and the distance to the two neighbors. The secondary diagonals of the inverse of the true

covariance matrix of the selected variables can be calculated by ρ|i−j|/(ρ2|i−j| − 1) where

| i− j | is the distance between the ith and jth variable. If | i− j | is large, this term is

close to zero.

According to the unknown variance case, the following results hold:

Theorem 7.1.0.4 Given a FDR selection threshold α (corresponding to the selection

boundary γ) and the estimated weights from the samples, the prognostic score follows two

normal distributions:

f̂(x; γ) ∼ N [µa, σ
2
a] =

N [(x̄r − x̄nr)
T Σ̂−1

k µa, (x̄r − x̄nr)
T Σ̂−1

k Σk(Σ̂
−1
k )T (x̄r − x̄nr)]

where µT
a , a = r or nr is the true mean vector of the k selected variables in a future

responder or non-responder, respectively, Σ̂k is the estimated covariance matrix and Σk is

the true covariance matrix of the k selected hypotheses.

Proof: The results can be again derived by using theorem 2.1.0.7.

Theorem 7.1.0.5 Fixing the appropriate µa for the populations of responders and non-

responders, respectively, it is easy to get the AUC for future independent populations:

AUC(α) =
∫ 1

0

1− Φ

z(1− w)− (x̄r − x̄nr)
T Σ̂−1

k (µr − µnr)√
(x̄r − x̄nr)T Σ̂−1

k ΣkΣ̂
−1
k (x̄r − x̄nr)

 dw. (7.5)

Proof: The results can again be derived as in theorem 3.3.0.2.

Note that because of the equal sample sizes in both groups Σ̂k = (Σ̂r + Σ̂nr)/2 can
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7.2 Simulation studies

again be calculated as the mean value over the two within group covariance matrices of

the selected k hypotheses. Note also that in the correlated case the whole covariance

matrix of the k selected variables is used whereas in the unknown variance case assuming

independence across hypotheses, only the estimated variances are included in the score.

However, for the prediction score we need the inverse of Σ̂k. If too many hypotheses

are selected to build a prediction score, there may be situations where Σ̂k can not be in-

verted. Thus, our second approach is to ignore the underlying correlation structure in the

construction of the prediction score estimating only the variances and setting the covari-

ances to 0. Σ̂k is than estimated as in the unknown variance case assuming independence

across variables.

7.2 Simulation studies

The mean values of AUC(α) are evaluated within a grid of α values with interval 0.05

by simulation (5000 simulation runs). As in the previous sections, these mean values are

interpolated using splines. αopt is then again determined by maximizing the interpolated

function.

Over all investigated examples the sample size is set to n = 50 and m is set to 1000.

Figure 7.2 shows the example where me = 10 prognostic variables are searched within

m = 1000 candidate variables. The black curves show the interpolated functions for the

score applying only variance estimates in the weights whereas the grey curves show the

interpolated functions for the score for using the whole estimated covariance matrices for

the weights. The parameter ρ for the autoregressive correlation structure is assumed to

be 0.6 (dashed lines), −0.6 (dotdashed lines) and 0.9 (dotted lines). One can see from

the �gure that for large α and large positive ρ no good estimate of the covariance matrix

can be achieved. The grey curves are falling below the black curves. For ρ = −0.6 (pos-

itive and negative correlations between the hypotheses) the covariance matrix may also

be invertible for larger values of α. The scores are achieving a slightly larger performance

for large α as compared to scores only estimating the variance. However, because of the
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7 Situation of correlation between variables

small e�ect size, both scores result in generally small performances as compared to AUC∗.

Note that the given grey curves can be only calculated from the simulated samples where

the estimated covariance matrix Σ̂k is regular. For large positive ρ this is the case only in

a few simulated samples. Figure 7.4 shows the proportion of singular covariance matrices

among the simulated samples (5000 runs) applying ρ = 0.6 (dashed curves), −0.6 (dot-

dashed curves) and 0.9 (dotted curves) assuming me = 10 (Figure (A)) and 60 (Figure

(B)) alternatives among m = 1000 hypotheses. It can be seen that the larger the α values

the larger the probability that Σ̂k is singular. Clearly the larger α the larger the number

of selected variables and the worse the estimation of the covariance matrix. For more than

100 selected variables (more variables than samples), no regular estimate of the covariance

matrix can be applied.

Assuming me = 60 among m = 1000 hypotheses (Figure 7.3, Figure 7.4 (B)) already

for smaller α, large numbers of variables are selected to construct a prediction score and

thus worse estimates of the covariance matrix are determined from the samples. The

grey curves in Figure 7.3 show a much smaller performance for the scores applying the

whole estimated covariance matrix as compared to the score only applying the variance

estimates (black curves). For negative ρ the di�erence between the performances of both

scores is smaller. However, over the whole investigated α values no good prediction score

can be constructed from the data. The average performance is always smaller than 0.6.

It seems that the second approach only applying variance estimates works better. Table

7.1 shows the results for the best choice of the threshold α if we construct a score based

on the unknown variance assumption despite the underlying correlation between the hy-

potheses. As discussed before if the correlations between prognostic variables are large

and positive, the e�ect size ∆ has to be very large. As a consequence of the large e�ect

sizes required to achieve AUC∗, a good prediction score can also be constructed from the

data in this case if only small sample sizes are available. If the correlation between prog-

nostic variables is either positive or negative the e�ect sizes of each prognostic variable to

achieve AUC∗ can be very small. In such cases no good prediction scores can be achieved

over the whole range of investigated FDR thresholds (see also Figures 7.2, 7.3).
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7.2 Simulation studies

Table 7.1: Correlated hypotheses: The best choice of the FDR threshold αopt, the correspond-

ing true AUC(αopt) as well as the number of non-prognostic variables (ms
0) and the number

of prognostic variables (ms
e) included in the prediction score assuming a number of me = 10

and 60 prognostic variables among m = 1000 tested hypotheses. The parameter for the au-

toregressive correlation between hypotheses was set to ρ = 0.6, −0.6 and 0.9. The per group
sample size is set to n = 50 and the e�ect size ∆ is calculated to achieve AUC∗ = 0.965.

m me ∆ n ρ αopt AUC(αopt) ms
0 ms

e

1000 10 1.422 50 0.6 0.024 0.961 0.27 10.00
0.421 50 -0.6 0.793 0.621 34.43 5.31
2.111 50 0.9 0.001 0.960 0.02 10.00

1000 60 0.646 50 0.6 0.225 0.950 15.52 50.94
0.166 50 -0.6 0.908 0.588 340.22 37.07
1.265 50 0.9 0.025 0.958 1.66 60.00

Figure 7.2: Correlated hypotheses: Interpolated functions of mean values of AUC(α) (over 5000
simulation runs) for a varying FDR selection threshold α assuming me = 10 prognostic

variables among m = 1000 tested variables. The parameter ρ for the autoregressive corre-

lation structure was set to 0.6 (dashed lines), −0.6 (dotdashed lines) and 0.9 (dotted lines).

Functions for scores using the whole covariance matrix (grey curves) or only variance esti-

mates (black curves) are given. The sample size is set to n = 50. AUC∗ = 0.965 is given as

solid horizontal line.
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7 Situation of correlation between variables

Figure 7.3: Correlated hypotheses: Interpolated functions of mean values of AUC(α) (over 5000
simulation runs) for a varying FDR selection threshold α assuming me = 60 prognostic

variables among m = 1000 tested variables. The parameter ρ for the autoregressive corre-

lation structure was set to 0.6 (dashed lines), −0.6 (dotdashed lines) and 0.9 (dotted lines).

Functions for scores using the whole covariance matrix (grey curves) or only variance esti-

mates (black curves) are given. The sample size is set to n = 50. AUC∗ = 0.965 is given as

solid horizontal line.

Figure 7.4: Proportion of singular covariance matrices among the simulation runs for a varying FDR

threshold α. The parameter ρ for the autoregressive correlation structure was set to 0.6
(dashed line), −0.6 (dotdashed line) and 0.9 (dotted line). me = 10 (Figure (A)) and 60
(Figure (B)) prognostic variables were assumed among m = 1000 tested hypotheses
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7.3 Cross Validation

7.3 Cross Validation

Note again that in the case of correlation between hypotheses we propose the unknown

variance assumption standardizing the weights in the score by respective variance esti-

mates. If a large number of variables are included in the score and a small sample size

is applied, Σ̂k can not always be inverted. Choosing the simple additive score with stan-

dardized weights leads to only slightly poorer performances in terms of the AUC than

considering the whole estimated covariance matrix (if possible). This is a reason why the

simple additive score has attracted a lot of attention in applications.

In the situation of correlated variables, generally the same tendencies for the prognos-

tic scores determined by the cross validation procedure can be found as in the situation

of independence between hypotheses. Because of the �at optimum of the interpolated

functions for large positive ρ (see Figures 7.2, 7.3) again there may be large di�erences

between α̂opt determined from the cross validation procedure and αopt. However, again the

determined γ̂opt and corresponding α̂opt values are leading to a mean future performance

in terms of AUC(γ̂opt) which is close to AUC(αopt) (see Table 7.2 for the cross validation

results of the investigated examples).

Despite the underlying correlation structure the cross validation procedure (only con-

sidering the estimated variances in the score) seem to work well ending in larger cross

validation based ÂUC(γ̂opt) values and small α̂opt values if the alternative holds and in

small cross validation based ÂUC(γ̂opt) values and large α̂opt values if the global null hy-

pothesis is true (see histograms of ÂUC(γ̂opt) in Figure 7.5 and of α̂opt in Figure 7.6).

Assuming ρ = 0.6 and 0.9 the e�ect sizes have to be very large to achieve the benchmark

AUC∗. Thus the cross validation procedure ends in ÂUC(γ̂opt) values larger than 0.9

(Figure 7.5 �rst and third row). For ρ = −0.6 the e�ect size ∆ is very small in order

to achieve AUC∗. Fortunately, values of ÂUC(γ̂opt) are also small under the alternative

indicating that no good prediction score can be determined with the given e�ect and

sample sizes (Figure 7.5 second row).

α̂opt is varying large, however, being on average small for ρ = 0.6 and 0.9 due to the
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7 Situation of correlation between variables

large e�ect sizes. For example, for ρ = 0.9, α̂opt on average is 0.003 assuming me = 10

prognostic variables. For ρ = −0.6 and assuming me = 10 an average α̂opt = 0.588 is

indicating that the resulting score includes more than 50% non-prognostic variables. For

me = 60 more than 80% non-prognostic variables can be expected in the prediction score.

Table 7.2 summarizes the results under the alternative.

Table 7.3 shows the results of the cross validation procedure under the global null hypoth-

esis. Under the global null, ÂUC(γ̂opt) is generally smaller than 0.7 and α̂opt is generally

larger than 0.9 (see medians in table Table 7.3). This indicates that we can expect that

more than 90% variables without prognostic ability are included in the score and that the

performance of the selected score is very poor. In this situation one may conclude that

no prediction score should be selected from the given data.

The cross validation procedure seems to work also in the situation of correlated hypotheses

ending at ÂUC(γ̂opt) and α̂opt values giving a good evaluation of the underlying prediction

score. Again the conclusion is that both criteria, ÂUC(γ̂opt) and α̂opt should be consid-

ered to decide whether a score should be constructed from a given data set or not. Figure

7.7 shows scatterplots of ÂUC(γ̂opt) vs. α̂opt for all investigated examples. However, one

contradiction remains, the di�erences between the estimated α̂opt and the true FDR are

slightly larger under the correlated case than under the independent case (see Tables 7.2

and 7.3).
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Table 7.2: Cross Validation in the correlated case: The true best choice of the FDR,

αopt, and the correspondingAUC(αopt) as well as results determined from the cross validation

procedure: the selection boundary γ̂opt and the corresponding α̂opt, the true FDR and α̂opt,∞,

the true AUC(γ̂opt), the cross validated M̂D(γ̂opt) and the FWER for a varying number of

prognostic variables me. The number of tested variables is set to m = 1000. The per-group
sample size is �xed to n = 50. ρ = 0.6, −0.6 and 0.9. AUC∗ = 0.965.

me 10 60
ρ 0.6 -0.6 0.9 0.6 -0.6 0.9
∆ 1.422 0.421 2.111 0.646 0.166 1.265

αopt 0.024 0.793 0.001 0.225 0.908 0.025
AUC(αopt) 0.961 0.621 0.960 0.950 0.588 0.958

γ̂opt 0.007 (0.01) 0.013 (0.01) 0.00004 (0.0001) 0.030 (0.03) 0.292 (0.27) 0.0096 (0.01)

0.002 0.007 0.0000005 0.019 0.167 0.0018

α̂opt 0.220 (0.26) 0.588 (0.25) 0.003 (0.009) 0.281 (0.17) 0.888 (0.07) 0.103 (0.14)

0.128 0.634 0.0000505 0.254 0.891 0.024

FDR 0.243 (0.26) 0.579 (0.31) 0.021 (0.07) 0.278 (0.19) 0.857 (0.06) 0.110 (0.16)

0.167 0.692 0.000 0.250 0.861 0.016

α̂opt,∞ 0.226 (0.26) 0.607 (0.21) 0.004 (0.01) 0.283 (0.17) 0.858 (0.05) 0.105 (0.14)

0.131 0.658 0.0000495 0.255 0.854 0.027

AUC(γ̂opt) 0.957 (0.01) 0.618 (0.11) 0.960 (0.001) 0.947 (0.01) 0.584 (0.01) 0.957 (0.002)

0.959 0.624 0.960 0.948 0.586 0.957

ÂUC(γ̂opt) 0.964 (0.02) 0.744 (0.07) 0.960 (0.01) 0.957 (0.02) 0.661 (0.07) 0.960 (0.02)

0.966 0.751 0.960 0.959 0.667 0.960

FWER 0.648 0.826 0.110 0.986 0.998 0.542

Table 7.3: Cross Validation in the correlated case under the global null: Results

determined from the cross validation procedure: the selection boundary γ̂opt and the corre-

sponding α̂opt, the true FDR using the determined selection threshold, α̂opt,∞ (always 1) the

true AUC(γ̂opt) (always 0.5), the cross validated ÂUC(γ̂opt) and the FWER for a varying

number of parameters for the autoregressive correlation ρ. The number of tested variables

is set to m = 1000. The per-group sample size is �xed to n = 50. AUC∗ = 0.965.

ρ 0.6 -0.6 0.6

γ̂opt 0.034 (0.06) 0.044 (0.08) 0.040 (0.08)

0.006 0.009 0.007

α̂opt 0.812 (0.22) 0.841 (0.20) 0.770 (0.27)

0.916 0.935 0.904

FDR 0.972 (0.17) 0.964 (0.19) 0.886 (0.32)

1.000 1.000 1.000

α̂opt,∞ 1.000 1.000 1.000
AUC(γ̂opt) 0.500 0.500 0.500

ÂUC(γ̂opt) 0.650 (0.07) 0.662 (0.07) 0.604 (0.07)

0.659 0.670 0.607

FWER 0.972 0.964 0.886
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7 Situation of correlation between variables

Figure 7.5: Correlated hypotheses: Distribution of the cross validation based ÂUC(γ̂opt) (500 sim-

ulation runs) assuming correlation between variables: me = 10 (�rst column), 60 (second

column) or 0 (third column) are assumed among m = 1000 hypotheses. ρ = 0.6 (�rst row)

−0.6 (second row) and 0.9 (third row) is assumed. The sample size is set to n = 50.
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7.3 Cross Validation

Figure 7.6: Correlated hypotheses: Distribution of the cross validation based α̂opt (500 simulation

runs) assuming correlation between variables: me = 10 (�rst column), 60 (second column)

or 0 (third column) are assumed among m = 1000 hypotheses. ρ = 0.6 (�rst row) −0.6
(second row) and 0.9 (third row) is assumed. The sample size is set to n = 50.
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7 Situation of correlation between variables

Figure 7.7: Correlated hypotheses: Scatterplots of ÂUC(γ̂opt) vs. α̂opt (500 simulation runs) as-

suming correlation between variables: me = 10 (�rst column), 60 (second column) or 0
(third column) are assumed among m = 1000 hypotheses. ρ = 0.6 (�rst row) −0.6 (second

row) and 0.9 (third row) is assumed. The sample size is set to n = 50.
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8 Real data applications

To evaluate the cross validation procedure we used three data sets summarized and pre-

processed by Pavlidis et al. (2003) and a data set investigated in Tian et al. (2003). Note

that because of the large number of investigated genes in the four investigated data sets

(> 6000) it was not possible to apply the forward logistic regression in SAS 9.1. due to

lack of memory space.

8.1 Data set: Tian et al. (2003)

First we investigate the data set taken from Tian et al. (2003) and pre-processed by Je�ery

et al. (2006). In this study, patients with multiple myeloma were investigated. 36 patients

in whom focal lesions of bone could not be detected were compared to 137 patients with

such lesions. They subjected puri�ed plasma cells from the bone marrow of patients with

newly diagnosed multiple myeloma to oligonucleotide microarray pro�ling. The data was

generated using A�ymetrix human U95A. 12625 probe sets were investigated. In order to

construct a prediction score we compare the two independent groups using the p-values

of the two-sided t-tests.

The cross validation procedure determines an α̂opt of 0.0124 leading to a score includ-

ing 101 probe sets. Figure 8.1 (A) shows ÂUC(γ) determined from cross validation as

a function of the selection boundary γ for the individual p-values. Figure (B) shows a

histogram of the 12625 two-sided p-values. ÂUC(α̂opt) = 0.786 is indicating a rather

limited performance for a future independent patient. However, the result indicates that

in the example one may be con�dent that the selected score will not contain a noticeable
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Figure 8.1: Results of the cross validation procedure for the data set investigated in Tian et al. (2003).

ÂUC(γ) determined from cross validation as a function of the threshold γ for the individual

p-values is shown in Figure (A). Figure (B) shows a histogram of the individual p-values.

fraction of non-prognostic genes. A summary of the results can be seen in Table 8.1.

8.2 Data set: Golub et al. (1999)

In the study by Golub et al. (1999) gene expression pro�les of two types of leukaemia were

compared. Samples were derived from 47 patients with acute lymphoblastic leucemia

(ALL) and 25 patients with acute myeloblastic leucemia (MLL). RNA prepared from

bone marrow mononuclear cells was hybridized to high-density oligonucleotide microar-

rays, produced by A�ymetrix. 7129 probe sets were investigated.

To construct a prediction score we again compare the two independent groups (ALL

vs. MLL) using the p-values of the two-sided t-tests. A summary of the results of the

cross validation procedure can be seen in Table 8.1. Figure 8.2 (A) shows ÂUC(γ) deter-

mined from cross validation as a function of the threshold γ for the individual p-values.

Figure (B) shows a histogram of the two-sided p-values. From the histogram one can see

that for approximately 1500 probe sets the corresponding p-values are smaller than 0.02.

The cross validation procedure determines a very small α̂opt = 0.0001 achieving a cross

validation based ÂUC(γ̂opt) = 0.988. This result may be an indication that with the se-
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Figure 8.2: Results of the cross validation procedure for the data set investigated in Golub et al. (1999).

ÂUC(γ) determined from cross validation as a function of the threshold γ for the individual

p-values is shown in Figure (A). Figure (B) shows a histogram of the individual p-values.

lected genes we may get a very good determination between the two investigated groups.

The determined prediction score includes 103 genes and the small α̂opt indicates that the

selected score may not contain a large fraction of non-prognostic genes.

8.3 Data set: Eaves et al. (2002)

In the study of Eaves et al. (2002) they used high-density oligonucleotide arrays to measure

the relative expression levels of 39114 genes of mouse spleen and thymus. We investigated

a distinction (spleen vs. thymus) that was not examined in the original publication but

have been already discussed by Pavlidis et al. (2003). We used the data set preprocessed

by Pavlidis et al. (2003).

Again we performe a two-sided t-test to determine candidate variables for the construction

of a prognostic score that distinguishes between genes corresponding to spleen or thymus

of mice. Figure 8.3 (B) shows a histogram of the two-sided p-values. The distribution of

the p-values shows that only a few p-values are very small and that a large number p-

values is larger than 0.8. There is no explanation for the strange distribution of p-values.

Despite the strange distribution of the p-values we investigated the cross validation struc-

ture for this data set. Looking at the results of the cross validation procedure (see Figure

107



8 Real data applications

Figure 8.3: Results of the cross validation procedure for the data set investigated in Eaves et al. (2002).

ÂUC(γ) determined from cross validation as a function of the threshold γ for the individual

p-values is shown in Figure (A). Figure (B) shows a histogram of the individual p-values.

8.3 (A) and Table 8.1) one may get an indication that there is no good discrimination

between the two groups. α̂opt is estimated with 1 leading to ÂUC(γ̂opt) = 0.562. However,

the sample size in both groups is 12 such that the bad result may also be an indication

that the sample size is too small to detect the prognostic variables. Note also that only 5

genes were included in the resulting prediction score.

8.4 Data set: Callow et al. (2000)

Callow et al. (2000) tried to identify genes with altered expression levels in knockout

mice compared to control mice. Based on the assumption that severe alterations in the

expression of genes known to be involved in high-density lipoprotein (HDL) metabolism

may a�ect the expression of other genes, they screened an array of 6384 mouse expressed

sequence tags for altered gene expression in the livers of one line of mice with dramatic

decreases in HDL plasma concentrations. Labeled cDNA from livers of apoAI-knockout

mice and control mice were cohybridized to microarrays. A very small sample of 8 knock-

out and 8 control mice was used.

Again two-sided two-sample t-tests are used to determine candidates to construct a pre-

diction score (see histogram of the two-sided p-values in Figure 8.4 (B)). The results of
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8.4 Data set: Callow et al. (2000)

the cross validation procedure (see Figure 8.4 (A) and Table 8.1) give an indication that

a very good discrimination between the two groups can be achieved with a few genes.

The prognostic score determined by using the cross validation procedure includes only 3

genes in the determined score. The cross validation based ÂUC(γ̂opt) is set to 1 indicat-

ing complete discrimination of the two groups. α̂opt = 0.0011 also indicates a vary small

proportion of non-prognostic genes.

Figure 8.4: Results of the cross validation procedure for the data set investigated in Callow et al. (2000).

ÂUC(γ) determined from cross validation as a function of the threshold γ for the individual

p-values is shown in Figure (A). Figure (B) shows a histogram of the individual p-values.

Table 8.1: Real data applications: Results of the cross validation procedure determined for

real data sets are shown. The reference of the corresponding paper, the group sample sizes

(n1/n2), the number of investigated genes and the type of array which was used for the

study, either cDNA for data that was collected using two-color "cDNA" microarrays or

"oligo" for A�ymetrix-type oligonucleodtide arrays. The best selection boundary γ̂opt, the

corresponding estimated FDR α̂opt and π̂0 as well as the cross validated ÂUC(γ̂opt) and

the number of genes included in the prediction score (]) determined by the cross validation

procedure are given.

Data Description Cross validation

Reference (n1/n2) Genes Type γ̂opt α̂opt π̂0 ÂUC(γ̂opt) ]

Tian et.al. (2003) 137/36 12625 oligo 0.00034 0.0125 0.294 0.786 101
Golub et.al. (1999) 47/25 7129 oligo 0.000002 0.0001 0.213 0.988 103
Eveas et.al. (2002) 12/12 39114 oligo 0.00150 1.0000 0.545 0.562 5
Callow et.al. (2000) 8/8 6384 cDNA 0.000005 0.0015 0.143 1.000 3
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9 Conclusions

To get a good prediction (in terms of the ROC-Curve) of a clinical outcome with a single

prognostic variable the e�ect size has to be very large. Therefore only small samples

are su�cient to identify this single variable among a large number of candidates by a

statistical comparison between responder and non-responder. However, this is not the

typical situation we are faced with. Generally we are confronted with large numbers of

candidates, few of them being related with a clinical outcome having rather small e�ect

sizes. Selection and estimation are often based on samples dramatically smaller than the

number of candidates so that the asymptotic of model selection procedures does not apply.

The estimates of the selected weights (and the ROC-curves) are biased and highly variable.

We performed simulations using multiple tests controlling the FDR for selection of vari-

ables for future prediction. We additionally performed simulations using the binary logis-

tic regression model for the investigated problem. In the situation where the sample sizes

are much smaller than the number of tested variables the simple method of additive scores

following a selection of variables by multiple testing based on a FDR threshold general

outperforms selection by forward stepwise logistic regression. The appearing problem of

complete separation of data points results in selecting only a few alternatives for future

prediction and thus to a poor performance. If the number of prognostic variables is rather

small and they have su�ciently large e�ects, which, if all would be known, would lead to

a large AUC, then the selected scores may have good properties over a range of di�erent

FDR values used for selection. Under the alternative in general it seems to be preferable

to use rather liberal selection criteria accepting that a certain number of non-prognostic

variables is contained in a score to get the advantage of catching more e�ective ones. For

large samples the predictive ability of the estimated score does not depend strongly on
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the number of selected variables. For large sample sizes the weights for non-prognostic

variables contained in the score are estimated more precisely and, despite of the selection

procedure, will tend to be the ones closed to zero with a small contribution overall. Hence

the performance of the score will not vary much for di�erent numbers of non-prognostic

variables contained in the score: More liberal selection criteria will lead to scores contain-

ing more nuisance variables (with low weights) but also more variables related with the

clinical outcome (with large weights). This mirrors the fact that asymptotically for large

sample sizes, multiple test based selection procedures may be consistent procedures for

model selection. It also has to be mentioned, that if a very large number of prognostic

variables is expected working together with rather small individual e�ect sizes and only

small sample sizes are available, the selection methods based on univariate tests also per-

form worse, although leading to a larger AUC for future prediction as using the forward

logistic regression.

The cruical scenario in the small sample case is the global null hypothesis: There are

no prognostic variables at all and hence any selection will lead to completely uninfor-

mative prediction scores. To protect against erroneous selection in this situation the

FDR applied for selection should be rather small. Under the global null hypothesis con-

trol of the FDR also controls the probability of the selection of any variables. Under the

alternative, however, we found that rather larger FDR values should be used for selection.

One way to determine the FDR-value to be applied for selection in a concrete sample

in order to achieve good prediction by a prognostic score in terms of the AUC is to esti-

mate the selection boundaries by cross validation. The discussed method seems to work

if we really are in a situation that we deal with variables with a high prognostic potential

which leads to rather large cross validation estimates of the AUC, whereas under the

global null hypothesis these estimates are rather small.

However the situation gets much worse if we look at situation when the prognostic vari-

ables are not su�ciently large that the optimal score (if known) would lead to a ROC-curve

crossing the point with sensitivity and speci�city of 0.9 (with a theoretically best achiev-

able AUC∗ = 0.965 which was the benchmark in most of our investigations). For AUC∗
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close to values of 0.8, which are values, e.g., achievable in predicting hospital mortality

from scores based on a set of variable measured in patients at admission to an intensive

care unit (and constructed in large training samples), the selection procedure will lead to

poor scores. However, the cross validation procedure still seem to work well by identifying

scores with an estimated AUC close to the best AUC achievable by a FDR-based selection

procedure in the sample.

With this cross validation method we may achieve several goals:

1. We determine an optimal selection threshold for selection of variables to be used

in a prediction score for future sample units which provides a good performance in

terms of the ROC-curve.

2. We get a positively biased estimate of the AUC which is closer to the true AUC for

prediction the larger the e�ect and sample sizes.

3. If the estimate of the AUC is small this may be an indication that in a speci�c

sample we are close to the global null hypotheses or the e�ect sizes are to small for

the given sample size.

4. We also get an estimate of the FDR among the selected variables which is close to

the true FDR (with a direction depending on the magnitude of the FDR).

The speci�c contribution of this diploma thesis was to investigate the properties of the

proposed procedure in case deviations from the simple assumptions of one-sided tests for

independent normally distributed variables with common known variance: two-sided tests,

unknown variance, distributed alternatives and correlation between variables. The gen-

eral tendencies found for the simple one-sided known variance case still apply under more

general model assumptions. The performances of the determined prognostic scores only

slightly decrease as compared to the known variance case. Assuming an autoregressive

correlation structure between the candidate variables, the e�ect size of the alternatives

and thus also the performance of the determined scores depend on the parameter ρ. As-

suming a large positive ρ the e�ect size has to be very large in order to achieve AUC∗.

Thus, a good prediction score can be constructed from the data in this case if only small

sample sizes are available. If the correlation is either positive or negative (negative ρ),
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9 Conclusions

the e�ect size to achieve AUC∗ can be very small. Thus, no good prediction scores can

be achieved if small sample sizes are applied. However, also in the correlated case the

cross validation procedure is re�ecting the performance of the prediction scores with the

estimated ÂUC(γ̂opt) and α̂opt values.

Our �ndings show that simple method can lead to well performing prediction scores even

in rather small samples, given that we deal with a problem where prognostic variables

with noticeable e�ects are involved. However, they also tell us that there is no such thing

as a free lunch in a statistically odd problem of dealing with large numbers of variables

considerably exceeding sample sizes.
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A Abstract

Multiple testing has been applied for selecting prognostic variables related with a clinical

outcome (response to therapy) from a large number of candidates in small samples of

"responding" or "non-responding" patients which are then used to estimate a score for

prediction in future patients. We evaluated selection based on control of the false dis-

covery rate (FDR) to build a linear score by considering the resulting receiver operating

characteristic (ROC) for independent prediction of future patients. We simulated di�er-

ent scenarios with varying number of tested candidates, proportion of prognostic variables

and sample sizes. Underlying e�ect sizes were determined such that optimal prediction,

if known, would lead to a ROC-curve crossing through a benchmark point with pre-�xed

values of sensitivity and speci�city. We show that the "best" FDR-threshold which pro-

vides the ROC-curve with the largest area under the curve (AUC) varies largely over the

di�erent parameter constellation not known in advance.

Hence, cross validation is proposed to determine the optimal selection threshold in a

speci�c sample. This procedure (i) allows to choose an appropriate selection criterion,

(ii) results in an estimate of the AUC for future prediction (though positively biased) and

(iii) provides an estimate of the FDR close to the true FDR. Moreover, low estimates of

the cross validated AUC and large estimates of the cross validated FDR may indicate a

lack of su�ciently prognostic variables and/or too small sample sizes.

Keywords: Variable Selection; False Discovery Rate; Receiver Operating Characteristic

Curve; Cross Validation
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B Kurzfassung

In dieser Arbeit wird die Selektion von Variablen die (in Wahrheit) einen Ein�uss auf

einen klinischen Endpunkt (z.B. den Ausgang einer bestimmten Therapie) haben aus

einer groÿen Menge von Kandidatenvariablen mit Hilfe von nur kleinen Stichproben von

Patienten, die auf die Therapie reagieren bzw. nicht reagieren, behandelt. Die Selektion

basiert auf einer multiplen Testprozedur die die False Discovery Rate (FDR) einhält. Mit

jenen, mit Hilfe der multiplen Testprozedur selektierten, Variablen soll ein prognostis-

cher Score konstruiert werden, mit dem man den klinischen Endpunkt eines zukünftigen

Patienten vorhersagen kann. Dieser lineare Score wird aufgrund der resultierenden Re-

ceiver Operating Characteristic Curve (ROC) bewertet. Die Selektionsgrenze für die FDR,

welche die beste Fläche unter der ROC-Kurve (AUC) liefert ist allerdings von unbekan-

nten Parametern wie z.B. der E�ektgröÿe oder der Anzahl der Variablen, die tatsächlich

einen Ein�uss auf den klinischen Endpunkt haben stark abhängig.

Um in einem spezi�schen Datensatz nach der optimalen Selektionsschranke zu suchen

wird die Verwendung einer Prozedur zur Kreuzvalidierung vorgeschlagen. Diese Prozedur

(i) ermittelt ein adäquates Selektionskriterium für die multiple Testprozedur, (ii) berech-

net einen (positiv verzerrten) Schätzer für die AUC für zukünftige Prognosen und (iii)

liefert einen Schätzer für die FDR, der nahe der wahren FDR ist. Darüber hinaus geben

niedrige Werte der ermittelten kreuzvalidierten AUC und groÿe Werte der kreuzvalidierten

FDR einen Hinweis darauf, dass der Ein�uss der Variablen auf den klinischen Endpunkt

zu gering ist und/oder dass die gegebene Stichprobengröÿe zu gering ist um die gegebenen

E�ekte zu �nden.

Sichwörter: Variablenselektion; False Discovery Rate; Receiver Operating Characteris-

tic Curve; Kreuzvalidierung
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D R-Code

This is a R-program for the cross validation procedure to construct a score for future prediction.
The program calculates the optimal choice of the FDR (α̂opt), the corresponding selection bound-

ary (γ̂opt), the estimated number of true null hypotheses (π̂0), the cross validated ÂUC(α̂opt)
as well as the weights of the determined prediction score and the corresponding identi�cation
number of the variables included in the prediction score.

Note that with this R-program we search for the optimal estimate of the selection boundary
γ instead of the optimal FDR because of the extremely longer runtime needed to search for the
corresponding γ values in each training set. For the �nally chosen selection boundary the FDR
can be estimated with Storey's estimator in the total sample. Note that searching for the optimal
FDR and γ asymptotically leads to the same (see Storey et al. (2004)), the similarity of outcome
being a�rmed by simulations also in our �nite case.

Functions:

crossvalsub ... subroutine of crossvalfun: calculation of function CFij (see Section 4.1.)
fdrestt ... Function to compute the estimate of FDR and the estimate of the number

of true null hypotheses π0

crossvalfun ... Function to compute cross validated results for a given data set

Parameters:

daten ... data set: one column for each patient, one row for each gene/protein
group ... vector containing 0 or 1 identifying each patient either as responder or

non-responder
gamma1 ... grid of γ values in which the optimal γ̂opt should be searched.

Defalt= seq(0.005, 0.5, 0.005)
sided ... if sided=1 a one-sided test is performed, if sided=2, a two-sided test will

be performed for selection of variables for the prediction score. Defalt=1
known ... if known=0 the variance will be assumed as unknown. If the variance is

known, the input is a vector containing the within-group variances for each
gene. Defalt=0

lambda ... Parameter λ for Storeys estimate (see Storey (2002)). Defalt=0.5
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D R-Code

Output:

A list of 3 Items:

CrossValAUC ... includes the cross validated ÂUC(γ) for each of the investigated γ values
in the grid

SelectedHyp ... gives the identi�cation numbers of variables included in the score and the
corresponding weights

CrossValResult ... gives the estimate of the optimal choice of the selection boundary, γ̂opt, the
corresponding FDR, α̂opt, and the estimated proportion of true null

hypotheses (π0) as well as the cross validated ÂUC(γ̂opt) of the estimated
selection boundary and the number of variables selected for the score.

R-Code:

crossvalsub<-function(parms,daten,rimat,nrimat,tcrit,resp,nresp,n1,n2,known,m,sided)
{
i<-parms[1]
j<-parms[2]
meanr<-rimat[1:m,i]
meannr<-nrimat[1:m,j]
meandi�<-meanr-meannr

if(length(known)==1)
{
varr<-rimat[(m+1):(2*m),i]
varnr<-nrimat[(m+1):(2*m),j]
ssq<-((n1-2)*varr+(n2-2)*varnr)/(n1+n2-4) }

else
{
ssq<-known
}

tstat<-meandi�/sqrt(ssq*(1/(n1-1)+1/(n2-1)))
if(sided==2)tstat<-abs(tstat)

rloi<-daten[,resp[i]]
nrloi<-daten[,nresp[j]]
weight<-outer(tstat,tcrit,">")*(meandi�/ssq)
scorer<-rloi%*%weight
scorenr<-nrloi%*%weight
(scorer>scorenr)+(scorer==scorenr)*0.5
}
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fdrestt<-function(tst,tcrit,gamma1,lambda,ilambda,n1,n2)
{
pi0estim<-min(sum(tst<ilambda)/((1-lambda)*length(tst)),1)
c(min(pi0estim*gamma1*length(tst)/(max(sum(tst>tcrit),1)),1),pi0estim)
}

crossvalfun<-function(daten,group,gamma1=seq(0.005,0.5,0.005),sided=1,known=0,lambda=0.5)

m<-nrow(daten)
fact<-ifelse(sided==1,1,1/2)
resp<-c(1:length(group))[group==0]
nresp<-c(1:length(group))[group==1]
n1<-length(resp)
n2<-length(nresp)
allcomb<-cbind(rep(c(1:n1),n2),sort(rep(c(1:n2),n1)))
tsumr<-apply(daten[,resp],1,sum)
tsumnr<-apply(daten[,nresp],1,sum)
rimat<-(tsumr-daten[,resp])/(n1-1)
nrimat<-(tsumnr-daten[,nresp])/(n2-1)

if(sum(known)==0)
{
tcrit<-qt(1-gamma1*fact,df=(n1+n2-2))
ilambda<-qt(lambda,df=(n1+n2-2))
tqsumr<-apply(daten[,resp]*daten[,resp],1,sum)
tqsumnr<-apply(daten[,nresp]*daten[,nresp],1,sum)
rimat<-rbind(rimat,(tqsumr-daten[,resp]*daten[,resp]-rimat*(n1-1)*rimat)/(n1-2))
nrimat<-rbind(nrimat,(tqsumnr-daten[,nresp]*daten[,nresp]-nrimat*(n2-1)*nrimat)/(n2-2))
}

else
{
tcrit<-qnorm(1-gamma1*fact)
ilambda<-qnorm(lambda)
}

}

crossvalresult<-apply(allcomb,1,crossvalsub,daten,rimat,nrimat,tcrit,resp,nresp,n1,n2,known,m,sided)
{
resultj<-apply(crossvalresult,1,sum)
tmax<-tcrit[resultj==max(resultj)]
tmax<-max(tmax)
gammamax<-gamma1[tcrit==tmax]
resultj<-resultj/(n1*n2)
resultj<-rbind(gamma1,resultj)
rownames(resultj)<-c("gamma","jackknife AUC")
meanr<-tsumr/n1
meannr<-tsumnr/n2

if(sum(known)==0)
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D R-Code

{
varrt<-(tqsumr-tsumr2/n1)/(n1-1)
varnrt<-(tqsumnr-tsumnr2/n2)/(n2-1)
ssqt<-((n1-1)*varrt+(n2-1)*varnrt)/(n1+n2-2)
}

else
{
ssqt<-known
}

meandi�t<-meanr-meannr
tstatt<-meandi�t/sqrt(ssqt*(1/n1+1/n2))
if(sided==2){tstatt<-abs(tstatt)}
weight<-meandi�t/ssqt
sel<-c(1:m)[tstatt>tmax]
weightr<-weight[sel]
result1<-rbind(sel,weightr)
rownames(result1)<-c("Nr. sel. Hyp.","weight")

result2<-c(gammamax,fdrestt(tstatt,tmax,gammamax,ilambda,lambda),max(resultj),length(sel))
names(result2)<-c("opt choice gamma","opt choice FDR","opt choice pi0","cross validated AUC(opt
gamma)","Number of selected Hyp")

erg<-list(CrossValAUC=resultj,SelectedHyp=result1,CrossValResult=result2)
erg
}

Examples:

Construction of a random data set:
n1<-10
n2<-20
m<-1000
delta<-0.4
fhyp<-10
daten<-matrix(rnorm((n1+n2)*m),ncol=(n1+n2),nrow=m)
daten[1:fhyp,1:n1]<-daten[1:fhyp,1:n1]+delta

Identi�cation of groups of responders and non-responders:
group<-c(rep(0,n1),rep(1,n2))

Example 1: sided=1, known=0: Selection using one-sided tests assuming unknown

variance:
ex1<-crossvalfun(daten,group,gamma1=seq(0.005,0.6,0.005))
plot(ex1[[1]][1,],ex1[[1]][2,],ylim=c(0,1),xlab=expression(hat(gamma)),

ylab=expression(widehat(AUC)(hat(gamma))))
ex1
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Example 2: sided=1, known=0: Selection using one-sided tests assuming unknown

variance:
ex2<-crossvalfun(daten,group,sided=2,gamma1=seq(0.005,0.6,0.005))
plot(ex2[[1]][1,],ex2[[1]][2,],ylim=c(0,1),xlab=expression(hat(gamma)),

ylab=expression(widehat(AUC)(hat(gamma))))
ex2

Example 3: sided=1, known=rep(1,1000): Selection using one-sided tests assum-

ing known variance 1 for each variable:
ex3<-crossvalfun(daten,group,sided=1,known=rep(1,1000),gamma1=seq(0.005,0.6,0.005))
plot(ex3[[1]][1,],ex3[[1]][2,],ylim=c(0,1),xlab=expression(hat(gamma)),

ylab=expression(widehat(AUC)(hat(gamma))))
ex3

Example 4: sided=2, known=rep(1,1000): Selection using two-sided tests assum-

ing known variance 1 for each variable:
ex4<-crossvalfun(daten,group,sided=2,known=rep(1,1000),gamma1=seq(0.005,0.6,0.005))
plot(ex4[[1]][1,],ex4[[1]][2,],ylim=c(0,1),xlab=expression(hat(gamma)),

ylab=expression(widehat(AUC)(hat(gamma))))
ex4
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