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Abstract

This dissertation describes a computer simulation study of structural trans-
formations in nanocrystals under pressure. The mechanisms of such trans-
formations can be quite different from the bulk, they determine the shape
change during the transformation and influence the accessibility and stabil-
ity of particular crystal structures. Yet the atomistic transformation details
elude direct observation by experiment due to limited time and space reso-
lution. Molecular dynamics computer simulations, on the other hand, can
provide the necessary atomistic perspective but are restricted to the nanosec-
ond timescale which requires the use of significantly higher pressures. Such
deviation from experimental conditions compromises the comparability of
simulation and experiment considerably. Here, we use transition path sam-
pling, a simulation method designed to overcome the timescale problem. We
introduce a new transition path sampling algorithm for nanoparticles under
pressure, which features an efficient barostat of ideal gas particles. We show
that the algorithm satisfies detailed balance and apply it to a structural
transformation in a model of CdSe nanocrystals. Starting from a previously
proposed mechanism, the algorithm quickly finds a more favorable trans-
formation route which is characterized by a consecutive sliding of parallel
crystal planes. We subject the pathways obtained with transition path sam-
pling to a comprehensive transition state analysis based on the committor
function. These calculations reveal the critical nuclei of the high pressure
phase which we quantify by calculating activation enthalpies and volumes.
The dependence of these quantities on crystal size shows the same scaling
observed experimentally and is consistent with the peculiar shape of the
critical nucleus which markedly differs from the bulk. Furthermore, a new
algorithm is introduced to the transition path sampling methodology, which
exploits the linear dynamics of small phase space displacements and greatly
enhances the sampling efficiency of transition pathways in systems involving
long and rough free energy barriers.
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Zusammenfassung

Diese Arbeit beschreibt eine Computersimulationsstudie von druckinduzier-
ten strukturellen Phasenübergängen in Nanokristallen. Die Mechanismen
solcher Übergänge können sich stark von den entsprechenden Mechanis-
men im ausgedehnten Festkörper unterscheiden; sie bestimmen die Form-
änderung des Kristalls während der Transformation und beeinflussen die Er-
reichbarkeit und Stabilität einzelner Kristallstrukturen. Das zeitliche und
örtliche Auflösungsvermögen von Experimenten ist jedoch zu gering, um
die atomaren Details einer solchen Transformation direkt beobachten zu
können. Computersimulationen bieten im Prinzip den notwendige atom-
aren Blickwinkel, sind aber auf eine Zeitskala von ein paar Nanosekunden
eingeschränkt. Um in dieser kurzen Zeit eine Transformation beobachten zu
können, muss ein wesentlich höherer Druck verwendet werden als im Experi-
ment — die Aussagekraft der Simulation wird dadurch erheblich beeinträch-
tigt. In dieser Arbeit wird deshalb die transition path sampling Methode
verwendet, mit der das Zeitskalenproblem umgangen wird und Simulatio-
nen unter experimentellen Bedingungen durchgeführt werden können. Zur
Simulation von Nanokristallen unter Druck entwickeln wir einen neuen Algo-
rithmus, in dem ein Druckbad aus idealen Gasteilchen verwendet wird. Der
Algorithmus erzeugt die korrekte Wahrscheinlichkeitsdichte eines Systems
bei konstantem Druck und konstanter Temperatur und wird auf eine Trans-
formation in CdSe Nanokristallen angewandt. Unsere Simulationen iden-
tifizieren den dominanten Transformationsmechanismus und ermöglichen
darüber hinaus die Bestimmung des kritischen Nukleus der Hochdruck-
phase durch eine umfassende statistische Analyse der simulierten Trans-
formationspfade. Wir bestimmen Aktivierungsenthalpie und -volumen als
Funktion des Drucks und vergleichen diese Größen mit dem Experiment.
Die im Experiment beobachtete, annähernd lineare Abhängigkeit der Ak-
tivierungsenthalpie vom Kristalldurchmesser stimmt gut mit unseren Sim-
ulationen überein und kann durch die spezielle längliche Geometrie des
kritischen Nukleus erklärt werden. Des Weiteren wird ein neuer Algorith-
mus vorgestellt, der die Effizienz von transition path sampling Simulationen
von Systemen mit langen und rauen freien Energiebarrieren entscheidend
verbessert.
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Chapter 1

Introduction

The chief goal of nanoscience is the design of materials with novel properties
tailored to particular technological needs. This is achieved by exploiting the
physical and chemical properties of small building blocks: When a piece of
macroscopic matter is scaled down to the nanometer regime, size dependent
deviations from the properties of the corresponding bulk material emerge due
to the rapidly increasing fraction of surface particles. Most commonly, these
deviations are of quantitative nature. For instance, the melting point of
semiconductor nanocrystals decreases while their band gap and the pressure
that is needed to induce structural transformations increases considerably
with decreasing size [1–3].

From both a scientific and technological point of view, however, the most
interesting size-related phenomena are of qualitative nature. Some of the
most striking examples of such behavior can be found in solid state materi-
als, where the emergence of fullerenes and clusters of icosahedral symmetry
are examples of morphologies that exist only on the nanoscale. To explore
and make technological use of any such structure, both the means of produc-
tion and handling, as well as a sound understanding of its thermodynamic
and kinetic stability must be developed. To this end, sophisticated methods
have recently emerged for the synthesis of semiconductor nanocrystals, most
notably of the material CdSe [4]. Through careful control of chemical cata-
lysts and environmental conditions, ensembles of nanocrystals with narrow
size distribution and distinct shapes and surface configurations are routinely
produced and used in experiments [5–7].

Arguably one of the most in-depth studies of a size-dependent phe-
nomenon was carried out by the group of Paul Alivisatos at UC Berkeley
with their experimental investigation of the wurtzite to rocksalt transforma-
tion in CdSe nanocrystals in the size range of a few nanometers (see Fig. 1.1
for an illustration). Using diamond anvil cell techniques, they measured the
size-dependence of the hysteresis curve [2,8], determined activation energies
and volumes from the pressure and temperature dependence of the rate con-
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2 1. Introduction

Figure 1.1: Crossection of a CdSe nanocrystal in the wurtzite structure,
immersed in a pressure bath of ideal gas particles. The surface of the crystal
is passivated with TOPO molecules.

stant [9, 10], investigated the shape change during transformation [11], and
explored possible routes to metastability of the high pressure structure at
ambient conditions [12]. This experimental evidence paints a complete pic-
ture of the thermodynamics and kinetics of nanocrystal transformations and
highlights the dominant role of surface configuration and shape. Neverthe-
less, the specific atomistic transformation mechanism which lies at the heart
of these phenomena eludes determination owing to the current limits of ex-
perimental time and space resolution. Only through the precise knowledge
of the atomistic pathways, however, can differences in surface free energies
between structures, changes in shape, and the metastability of particular
morphologies be fully understood and, by blocking or facilitating of such
pathways, possibly exploited for applications.

A number of molecular dynamics computer simulation studies have been
conducted in an attempt to fill this gap [13–16]. They all follow a similar
routine: A single nanocrystal is modeled ab initio or with an empirical pair
potential, immersed in a suitable pressure medium and subjected to increas-
ing pressure until the transformation occurs spontaneously in the simulation.
The atomistic transformation mechanism can then be identified by simple
visual inspection of the simulation run. However, this straightforward ap-
proach is plagued by a problem commonly encountered in the computer
simulation of processes involving large kinetic barriers. The time that can
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be spanned within a molecular dynamics simulation is determined by the
timescale of the system’s fastest molecular motion which, in order to be
faithfully reproduced, limits the size of the time step used to integrate the
equations of motion. For typical molecular systems, simulation runs covering
the nanosecond to microsecond regime are state of the art; the relevant ex-
periments, on the other hand, can easily last hours. The consequences of this
gap are severe: To observe a transformation on the simulation timescale, the
pressure has to be increased close to the point where the low pressure struc-
ture becomes mechanically unstable. Transformations occurring under these
extreme conditions need not follow the same mechanistic pathways which
might be observed in an experiment, where strong driving of the process
is replaced by long waiting times. Thus, direct comparability of simulation
and experiment is lost. Furthermore, even if the atomistic pathways were
qualitatively similar in both cases, a meaningful comparison could still be
only achieved through calculation of quantities that are good indicators of
the actual mechanism, like the reaction rate constant, or activation energies
and volumes. Again, these quantities depend sensitively on the conditions
under which the transformation is observed. As a result, simulation studies
of structural transformations in nanocrystals so far were reduced to a mere
description of mechanisms observed using elevated pressure.

The aim of this work is to overcome this unsatisfying situation in a
twofold manner. First, we circumvent the timescale problem with transition
path sampling [17, 18], a set of computational techniques designed for the
simulation of rare events which exploits the fact that, although activated
events are rare on the simulation timescale, they are not necessarily long
in duration. In fact, the transformation of a nanocrystal typically proceeds
within tens of picoseconds and it is merely the time spent waiting for its
spontaneous occurrence that renders it inaccessible to straightforward simu-
lation. By eliminating the waiting times between rare events, transition path
sampling allows the observation of the transformation mechanism under ex-
perimental conditions. Based on the pathways observed with transition path
sampling, we then make direct contact with experiment by calculating the
pressure and size dependence of activation enthalpy and volume. This is
achieved by identifying the central part of transformation, the critical nu-
cleus of the high pressure phase.

This thesis is organized as follows: In Part I we are concerned with the
transition path sampling method itself. Chapter 2 gives a brief introduction
to the main concepts of transition path sampling. In Chapter 3, we intro-
duce a new algorithm which considerably enhances the sampling of transition
pathways in systems that involve free energy barriers that are both long and
rough. This is achieved by making use of the linear short time dynamics of
small perturbations in phase space. In Part II we turn to the application of
transition path sampling to the transformation of CdSe nanocrystals under
pressure. Chapter 4 gives a brief account of the transformation mecha-
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nisms occurring in straightforward molecular dynamics simulation. Despite
involving conditions of elevated pressure, this simulation study highlights
the strong dependence of the transformation mechanism on crystal size and
shape and sets the stage for the transition path sampling simulations dis-
cussed in the following chapters. In Chapter 5 we extend transition path
sampling to include a barostat of ideal gas particles, a method particularly
designed for the simulation of nanoparticles under pressure. The algorithm
is discussed in detail, and a proof of detailed balance is given as a prereq-
uisite for the method’s use in the framework of transition path sampling.
The algorithm is then applied to the transformation of CdSe nanocrystals:
We identify the main mechanistic route and succeed in explicitly exclud-
ing a mechanism previously suggested by an experimental study. Finally, in
Chapter 6, we conduct an extensive transition state analysis of the pathways
observed with transition path sampling. We identify the transition states
which include the critical nuclei and discuss their peculiar dependence on
crystal size and pressure. From the transition states we calculate activation
enthalpies and volumes and compare them to experimental data. Our sim-
ulations explain the size trend observed in experiments and emphasize the
highly anisotropic character of the nucleation event in nanocrystals, which
markedly differs from comparable transformation behavior in bulk materials.



Part I

Transition path sampling
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Chapter 2

Rare events in computer

simulations

“Erst in letzter Zeit scheint einiges Licht aus einer ganz uner-
warteten Ecke zu kommen, nämlich der Spielerei mit Comput-
ern, bei der jeder auch ohne große Vorkenntnisse fundamental
Neues entdecken kann, falls er genügend Spürsinn und Geduld
hat.” Gerthsen Physik (Springer, 1997), edn. 19, p. 129

Many interesting phenomena in nature such as first order phase transforma-
tions, biomolecular isomerizations, or transport processes in solids, are char-
acterized by widely disparate timescales. While the waiting time for a spon-
taneous incidence of such a process can exceed seconds or even hours, the
underlying relevant molecular motions occur on the femtosecond timescale.
This fact poses a serious problem to molecular dynamics computer simula-
tion aimed at revealing the atomistic mechanisms of such phenomena. Here,
we give a review of transition path sampling, a set of computational methods
designed to overcome the timescale problem.

2.1 Introduction

In the past few decades, molecular dynamics simulation has grown into a
very powerful tool that today is used routinely to study the dynamics of
condensed matter systems consisting of up to a few million particles with
atomistic resolution. Many processes occurring in nature and technology
such as the folding of a protein or the transport of a dopant through a semi-
conductor, however, are still beyond the reach of this methodology due to
widely disparate time scales that are present in the problem. Consider, for
instance, the nucleation of a crystal from the undercooled liquid. For mod-
erate undercooling, this process typically proceeds through the formation of
a critical nucleus that then grows, eventually transforming the whole sample

7



8 2. Rare events in computer simulations

into the crystalline state. Since this process involves the creation of an inter-
face between the crystallite and the metastable liquid, which is associated
with a free energetic barrier, the formation of the critical nucleus is rare on
the time scale of basic molecular motions. Indeed, it has been known for a
long time that water, carefully cooled below the freezing point, can remain
in this supercooled state for hours or even days. Thus, the time scale for
nucleation exceeds the picosecond time scale of the formation and cleavage
of hydrogen bonds by many orders of magnitude. Similar rare but impor-
tant events, related to high energy barriers or entropic bottlenecks in phase
space, can dominate the dynamics of folding proteins, chemical reactions or
transport on surfaces.

Naturally, such a wide separation of time scales is a problem for molec-
ular dynamics simulation. In this method, the equations of motion of the
system are solved numerically in small time steps. The size of the time step
must be selected such that even the fastest motions in the system are repro-
duced faithfully. In a molecular system, fast bond and angular vibrations
require a time step of about 1 femtosecond. With such a time step, current
computer technology permits to follow the time evolution of the system for
106–109 time steps, corresponding to total simulation times from nanosec-
onds to microseconds. Of course, the accessible simulation times depend on
the size of the system and on the particular way of calculating the forces
acting on the individual atoms. If forces are determined ab initio from a
solution of the electronic structure problem, typical simulation times do not
exceed tens of picoseconds even for moderate system sizes of 100–200 atoms.
For the case of crystal formation from the supercooled liquid, this limitation
in the accessible time scales means that in a molecular dynamics simulation
the crystallization event simply cannot be observed.

For the computer simulator this situation is frustrating, particularly be-
cause, typically, rare events are not slow. Rather, if they occur, they occur
rapidly. For instance, the formation of a critical crystalline nucleus proceeds
rapidly, while the time spent waiting for this event may be very long. (In
fact, microscopic time reversibility requires that the formation of a critical
nucleus happens as quickly as its decay.) Similarly, an activated chemical re-
action can proceed quickly once it is initiated, but the waiting time between
subsequent reactions may be very long. To circumvent this problem caused
by widely disparate time scales, several computer simulation algorithms have
been devised in recent years. If the reaction mechanism is known in terms
of a reaction coordinate that quantifies the reaction progress, for instance
the size of the crystalline nucleus forming in the supercooled liquid, the rare
event can be studied with umbrella sampling [19] or the blue moon sampling
technique [20]. In these methods, an appropriate bias or constraint forces
the system to visit the configurations associated with rare barrier crossing
events. The detailed mechanism and rate constants of the transition can
then be studied using the Bennett-Chandler approach [21,22], in which dy-
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namical trajectories are initiated from these rare configurations, expanding
on the original idea of transition state theory [23,24]. In complex molecular
systems, however, a priori knowledge of the reaction mechanism is often not
available and the methods mentioned above are not directly applicable. In
such cases, methods that modify the dynamics of the system, such as meta-
dynamics [25], temperature accelerated dynamics [26], or coarse molecular
dynamics [27] can be used to explore possible mechanisms for transitions
between stable states.

If both the initial and the final state are known, the transition path sam-
pling method, an importance sampling scheme acting in trajectory space,
can be used to study the transition. In contrast to other methods, in a
transition path sampling simulation truly dynamical trajectories are consid-
ered whereupon both the mechanism as well as the kinetics of the transition
can be determined. Alternative methods to study rare transitions between
known (meta)stable states are the nudged elastic band method [28] and the
string method [29,30]. For a recent review of these approaches and a discus-
sion of their relation to the transition path sampling methodology we refer
the reader to Ref. [31]. In this chapter, we will concentrate on the transition
path sampling method and its application.

2.2 Transition path sampling

Transition path sampling is a computational methodology developed to
study rare transitions between long-lived metastable states [17, 18]. These
stable states, let us call them A and B, can be different phases of a con-
densed material in the case of phase transitions or different chemical species
in the case of a chemical reaction. Transitions between stable states A and B
are rare (otherwise we could study them with standard molecular dynamics
simulation) and may involve crossings of possibly rough and unspecified free
energy barriers. While transition path sampling does not require any prior
knowledge of the transition mechanism, the stable states A and B between
which the transition occurs must be known in advance. The central idea
of transition path sampling now is to consider only short trajectories, long
enough for the barrier crossing event to complete, but much shorter than the
typical waiting between transitions. These short trajectories have different
probabilities to be observed: trajectories fluctuating in the stable states, for
instance, are more probable than reactive trajectories that cross the barrier.
The statistical distribution of various trajectories is taken into account in
the definition of the transition path ensemble, which assigns the appropri-
ate probability weight to each individual trajectory. Since in transition path
sampling one is interested only in transition pathways, i.e., trajectories that
connect the stable states, the transition path ensemble excludes trajecto-
ries that do not start in A and end in B. The transition path ensemble is
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then sampled with a Monte Carlo procedure that generates trajectories ac-
cording to their statistical weight. If the sampling is ergodic, all important
pathways will be found and can then be analyzed to yield information on
the mechanism but also on the kinetics. In the following sections we will
outline the basic principles and algorithms of transition path sampling. For
further information on various aspects of transition path sampling we refer
the reader to Refs. [18,32–37].

2.2.1 The transition path ensemble

The conceptual starting point of transition path sampling is the definition
of the transition path ensemble, a statistical description of all pathways
connecting stable states A and B as illustrated in Fig. 2.1. Each of these
trajectories has the same temporal length t and consists of an ordered se-
quence of L = t/∆t microscopic states separated by a small time step ∆t,

x(t) ≡ {x0, x∆t, x2∆t, . . . , xt}. (2.1)

Such a sequence of states may, for instance, result from a molecular dynamics
or Brownian dynamics simulation carried out with a time step ∆t. Each
microscopic state xτ , or time slice, along a trajectory is a complete copy
of the system and, depending on the dynamics considered, includes the
positions and possibly also the momenta of all particles. Subsequent time
slices on a trajectory are connected by the dynamics of the system. If we
denote the short time transition probability from state xτ at time τ to state
xτ+∆t one time step later by p(xτ → xτ+∆t), the probability density to
observe a given trajectory is given by

P [x(t)] = ρ(x0)

t/∆t−1
∏

i=0

p(xi∆t → x(i+1)∆t). (2.2)

Here, ρ(x0) is the distribution of the initial conditions from which the tra-
jectories start. Equation (2.2) is valid provided the dynamics of the system
is Markovian, i.e., the future time evolution of the system depends only on
its current state and not on its past. Most of the kinds of dynamics con-
sidered in molecular simulations, including Newtonian dynamics, Langevin
dynamics and Monte Carlo dynamics, obey this condition.

The probability density of Equ. (2.2) describes the likelihood of observing
a trajectory starting end ending at arbitrary microscopic states. In transi-
tion path sampling, however, one is specifically interested only in pathways
that are reactive, i.e., that start in A and end in B. This condition on the
pathways is included into the statistical description of pathways by multi-
plying the unrestricted probability density P [x(t)] with the characteristic
functions of regions A and B acting on the initial and final time slice of the
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Figure 2.1: The transition path ensemble includes all trajectories of a given
length that connect the stables states A and B.

path, respectively:

PAB [x(t)] ≡ hA(x0)P [x(t)]hB(xt)/ZAB(t). (2.3)

The characteristic functions hA(x) and hB(x)are defined such that they are
unity if their argument is in the respective region and they vanish otherwise.
Thus, hA(x) is given by

hA (x) =

{

1 if x ∈ A,
0 if x /∈ A,

(2.4)

and hB(x) is defined analogously. In Equ. (2.3), PAB [x(t)] is normalized by
the factor

ZAB(t) ≡
∫

Dx(t)hA(x0)P [x(t)]hB(xt) (2.5)

where the notation
∫

Dx(t) ≡
∫

· · ·
∫

dx0dx∆tdx2∆t · · · dxt, (2.6)

familiar from path integrals, indicates an integration over all time slices of
the path. The probability density PAB [x(t)], we call it the transition path
ensemble, is a statistical description of all pathways of length t that connect
the stable states A and B. Pathways that are not reactive are assigned a
vanishing weight and thus are not members of the transition path ensemble.

The specific functional form of PAB [x(t)] depends on the distribution
of initial conditions, the underlying dynamics and on the definition of the
initial and final regions. Depending on the particular situation one con-
siders, the distribution of initial conditions may be the microcanonical or
the canonical one. Other distributions are possible as well, including non-
equilibrium distributions [38, 39]. The short-time transition probabilities
p(xτ → xτ+∆t), which enter the expression for the transition path ensemble
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in Equ. (2.3), depend on the kind of dynamics chosen to model the time
evolution of the system. While for a deterministic time evolution such as
Newtonian dynamics the transition probabilities are delta functions leading
to a highly singular transition path ensemble [40], the transition probabilities
are smooth functions for stochastic dynamics, such as the one produced by
the Langevin equation [17]. Finally, care must be exercised in the definition
of the stable states A and B. These regions, usually defined in configuration
space, should be large enough to include all equilibrium fluctuations of the
system in the stable states, but should not overlap with their mutual basins
of attraction [18].

While the formal definition of the transition path ensemble poses no
difficulty, its practical value hinges on ones ability to generate trajectories
according to their weight in this ensemble. An efficient way to accomplish
exactly that is discussed in the next section.

2.2.2 Monte Carlo in trajectory space

In a transition path sampling simulation the transition path ensemble is
sampled following the basic idea of a Monte Carlo simulation. The accord-
ing procedure is carried out in two basic steps. First, a new trajectory,
x(n)(t), is generated from an old one, x(o)(t), for instance using the shooting
algorithm described below and illustrated in Fig. 2.2. Then, the newly gen-
erated trajectory is accepted or rejected according to the relative statistical
weights of the new and old trajectories. If the new trajectory is accepted,
the old trajectory is replaced by the new one. Otherwise, the old one is
kept. Iterating these two basic steps generates a biased random walk in
trajectory space, in which trajectories are visited according to their weight
in the transition path ensemble.

To ensure that the transition path ensemble is sampled correctly, one
requires that detailed balance is obeyed,

PAB [x(o)(t)]π[x(o)(t) → x(n)(t)] = PAB [x(n)(t)]π[x(n)(t) → x(o)(t)]. (2.7)

Here, π[x(o)(t) → x(n)(t)] is the probability to move from the old path x(o)(t)
to the new path x(o)(t) in one Monte Carlo step. This conditions requires
that the flow in trajectory space from x(o)(t) to x(n)(t) is exactly compen-
sated by a flow of equal magnitude in the backward direction. If the transi-
tion probability π satisfies the detailed balance condition of Equ. (2.7), the
Monte Carlo algorithm conserves the transition path distribution PAB [x(t)]
and, if ergodic, results in correct sampling of reactive trajectories. For the
two-step Monte Carlo procedure described above, the transition probability
π[x(o)(t) → x(n)(t)] is given by the product of the probability Pgen[x(o)(t) →
x(n)(t)] to generate the new path from the old one and the probability
Pacc[x

(o)(t) → x(n)(t)] to accept the newly generated path,
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Figure 2.2: In a shooting move, a new trajectory (blue) is generated from
an old one (red) by first randomly choosing a time slice of the old path,
and then “shooting off” new trajectory segments forward and backward
in time, starting from this shooting point. If the underlying dynamics is
deterministic, the shooting point must be modified before the shooting takes
place.

π[x(o)(t) → x(n)(t)] = Pgen[x(o)(t) → x(n)(t)]Pacc[x
(o)(t) → x(n)(t)]. (2.8)

Inserting this particular form of the transition probability into the detailed
balance condition (2.7) on obtains a condition for the acceptance probability,
which can be satisfied using the celebrated Metropolis rule [41], eventually
leading to

Pacc[x
(o)(t) → x(n)(t)] = hA[x

(n)
0 ]hB [x

(n)
t ]

×min

{

1,
P [x(n)(t)]Pgen[x(n)(t) → x(o)(t)]

P [x(o)(t)]Pgen[x(o)(t) → x(n)(t)]

}

. (2.9)

According to this equation, which provides a general prescription for accept-
ing or rejecting new pathways, a pathway that does not start in A and ends
in B is immediately rejected. Pathways that are reactive, on the other hand,
are accepted with a probability that depends both on the relative weight of
the old and the new path in the transition path ensemble as well as on the
ratio of the forward and backward generation probabilities.

The specific form of the acceptance probability resulting from Equ. (2.9)
depends on the particular way new pathways are generated from old ones.
The particular algorithm chosen to do that also controls how rapidly path
space is sampled and thus determines the efficiency of the transition path
sampling simulation. One path generation method that has proven particu-
larly simple, practical, and efficient is the so-called shooting algorithm [40].

In this approach, one first randomly selects a time slice x
(o)
t′ , the shooting

point, from the old path. Then, this shooting point is modified, for instance
by adding a random perturbation to the momenta. Starting from the mod-
ified shooting point, one integrates the equations of motion of the system
forward to time t and backward to time 0 obtaining a complete new tra-
jectory x(n)(t). While for stochastic dynamics the modification step may
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be omitted, it is strictly necessary for deterministic dynamics. In the latter
case, the new trajectory differs from the old one only if the shooting point
is modified before integration. In both cases, the acceptance probability for
the shooting move is given by

Pacc[x
(o)(t) → x(n)(t)] = hA[x

(n)
0 ]hB [x

(n)
t ]min

[

1,
ρ(x

(n)
t′ )

ρ(x
(o)
t′ )

]

. (2.10)

Thus, non-reactive trajectories are rejected and reactive ones are accepted
with a probability that depends only on the equilibrium distribution at the
shooting point before and after the modification. The acceptance proba-
bility is particularly simple, if the dynamics conserves the energy and the
distributions of initial conditions is the microcanonical one:

Pacc[x
(o)(t) → x(n)(t)] = hA[x

(n)
0 ]hB [x

(n)
t ]. (2.11)

In this case, non-reactive trajectories are rejected and all reactive ones ac-
cepted.

For deterministic dynamics, the modification of the shooting point offers
the possibility to tune the acceptance probability and, hence, to optimize
the efficiency of the simulation. For very small perturbations of the shoot-
ing point, the new trajectory retraces the old trajectory to a large degree.
Consequently, the new trajectory has a high probability to be reactive and
to be accepted. In this regime, most trajectories are accepted, but since
subsequent trajectories are very similar, sampling progress is slow. In con-
trast, very large perturbations of the shooting point lead to new trajectories
that markedly differ from the old ones. Nevertheless, the sampling can be
inefficient, if most of the new trajectories are non-reactive and are therefore
rejected. Optimum sampling efficiency is obtained for shooting point pertur-
bations with a magnitude somewhere between these two extreme cases. This
optimum regime is often characterized by an average acceptance probability
of 20-60% [42].

2.2.3 Analyzing trajectories

As a result of a transition path sampling simulation, one obtains a collection
of reactive pathways that are typical representatives of the transition path
ensemble. Extracting information on the transition mechanism from these
pathways is, however, often non-trivial. In this section we will review several
computational tools that can be used for this purpose.

A recurrent problem in molecular simulation is to identify those degrees
of freedom that capture the essential physics of the process under study
and to separate them from the unessential ones that merely act as random
noise. For the freezing transition, for instance, it is often unclear whether
the size of the crystalline nucleus is sufficient to describe the progress of the



2.2. Transition path sampling 15

transition or if its shape also plays an important role. While for processes
occurring in low-dimensional systems with a handful of degrees of freedom,
such as a chemical reaction in the gas phase, locating the saddle points on
the potential energy surface often yields valuable mechanistic information,
the situation is much more involved in high-dimensional systems. Consider,
for instance, a chemical reaction in solution. In this case, solvent degrees
of freedom may play an important role that is not easily determined with
a saddle point analysis. One difficulty is that the number of saddle points
grows exponentially with the number of degrees of freedom such that a
complete enumeration of the saddle points becomes impractical beyond a
certain system size. Perhaps more importantly, the transition of interest is
typically not associated with single saddle points that the system must cross
on its way from the initial to the final state. In our crystallization example,
the critical nucleus does not necessarily coincide with any saddle point in
the potential energy surface.

By watching the atomic motions during the transitions with a molecular
viewing program on a computer, one may gain some information about
the process of interest. While it is often useful and stimulating to do so,
important details of the mechanism, which can be best captured in form of
a reaction coordinate, may remain hidden to the eye. A reaction coordinate
q(r) is a function of the configuration r of the system, which quantifies
the progress of the reaction. In the case of chemical reactions, for instance,
bond angles or bond lengths may serve as a reaction coordinate; for a folding
protein, the number of native contacts may provide a measure for the folding
progress. A good reaction coordinate should tell us how far the reaction has
proceeded and what is likely to happen next. The concept of the quality
of a reaction coordinate can be made more precise by considering the so
called committor [43,44], introduced by Onsager as splitting probability [45]
and known as pfold in the context of protein folding [46]. The committor
pB(r), which can be defined in configuration space or in phase space [30],
is the probability that a trajectory starting from r reaches B rather than
A first. As indicated in Fig. 2.3, the committor can be calculated for a
particular configuration r by initiating a number of short trajectories from
that configuration and determining the fraction of trajectories that end up
in B rather than A. A committor value close to 1 indicates that trajectories
started from r are very likely to relax into B. While they do not necessarily
lie in B itself, such configurations are strongly committed to B and can be
viewed to be part of the basin of attraction of region B. Committor values
close to 0, on the other hand, characterize configurations that will most
likely relax into region A.

Configurations with pB(r) = pA(r) = 1/2 play a special role because
they can be identified as transition states, from which both stable states
are accessible with equal probability [47–51]. This statistical concept of a
transition state, which generalizes the conventional definition of a transition
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Figure 2.3: To estimate the committor pB for a particular configuration r
(red point), one starts n trajectories from r with random initial momenta
and determines the number nB of trajectories that reach B rather then A.
The committor is then given by the fraction pB = nB/n.

state as saddle point on the potential energy surface, is applicable also to
the complex high-dimensional systems of interest here. By determining all
configurations with pB = 1/2 on transition pathways one obtains the so-
called transition state ensemble. Comparison of configurations belonging to
the transition states ensemble with those from the stable states can yield
important information on the transition mechanism.

As asserted above, a good reaction coordinate should provide a measure
for the progress of a particular reaction. In this sense, the committor is
the perfect reaction coordinate as it exactly specifies how far the reaction
has proceeded and what is likely to happen next [52]. Unfortunately, the
committor is very unspecific and does not automatically lead to insight into
the mechanism in terms of physical variables. Furthermore, the committor
is not easy to evaluate numerically such that it is impractical to use the
committor, for instance, as reaction coordinate in a transition state theory
calculation. However, the committor can be used as a criterion for distin-
guishing between good and poor reaction coordinates. If q(r) is a good
reaction coordinate, its value determines the progress of the reaction and
the committor is completely determined by q(r):

pB(r) = pB [q(r)]. (2.12)

For a poor reaction coordinate, on the other hand, the value of the reaction
coordinate does not predict the committor and the above relation does not
hold.

The fact that a good reaction coordinate determines the committor can
be used to test a proposed reaction coordinate q(r). One may, for instance,
expect that for the freezing transition of a particular material the size of the



2.2. Transition path sampling 17

crystalline nucleus is a good reaction coordinate. To examine the quality of
this coordinate, one first computes the free energy F as a function of q. If
q(r) has any relation to the rare event of interest, F (q) is expected to be
bimodal with a barrier at q = q∗ separating the free energy minima corre-
sponding to the stable states A and B. Since the value of a good reaction
coordinate completely specifies the committor, all configurations with the
same reaction coordinate should also have the same committor. So if one
generates configurations for a fixed value of q(r), for instance with a con-
strained molecular dynamics simulation, and computes the committor value
for each of this configurations, the resulting distribution of committor val-
ues, P (pB), should be delta peaked at pB(q). In particular, configurations
with a value of the reaction coordinate of q(r) = q∗ corresponding to the
barrier top should all have the committor pB(q∗) and hence the correspond-
ing committor distribution has a sharp peak at pB(q∗). For a good reaction
coordinate, the barrier top coincides with the transition state ensemble and
the peak is located at pB = 1/2. In contrast, a poor reaction coordinate
does not determine the value of the committor and hence does not lead to
sharply peaked committor distributions. Rather, the committor distribu-
tion calculated for configurations constrained to the barrier top typically is
bimodal with peaks at 0 and 1. Thus, any committor distribution without a
single sharp peak is an indication of an inadequate reaction coordinate. An
analysis based on committor distributions has been used to reveal the re-
action coordinate of ionic dissociation [43], biomolecular isomerization [44],
and the freezing transition [53].

2.2.4 Calculating rate constants

Reaction rate constants, describing the kinetics of processes involving rare
events, are often measured empirically and thus provide an important way
to establish close contact between molecular simulation and experiment.
Since pathways harvested in a transition path sampling simulation are truly
dynamical trajectories, they can be used to compute such reaction rate con-
stants. The transition path ensemble, however, is restricted only to short
trajectory segments during which the transition of interest occurs such that
reaction rates cannot be directly extracted from these pathways. While the
relative probabilities of different reactive trajectories are correctly described
by the transition path ensemble, the information on the probability of ob-
serving a reactive event at all (as opposed to no event) is not contained
in this path ensemble. Therefore, the fundamental problem in calculating
reaction rate constants with transition path sampling consists in estimating
the relative weight of the reactive trajectories with respect to all possible
trajectories. Several approaches to do so have been suggested in the past
and we will briefly survey them in this section. A more detailed review of
these methods is provided in Ref. [31].
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The link between the microscopic dynamics of the system and its phe-
nomenological description in terms of reaction rate constants is provided by
the time correlation function

C(t) ≡ 〈hA(x0)hB(xt)〉
〈hA〉

. (2.13)

Here, the angular brackets 〈· · · 〉 denote an equilibrium average. This time
correlation function equals the conditional probability to observe the system
in region B at time t provided it was in A at time 0. In the case of two-state
kinetics, C(t) approaches its asymptotic value exponentially,

C(t) = 〈hB〉(1 − exp(−t/τrxn)). (2.14)

where the relaxation time τrxn is related to the forward and backward reac-
tion rate constants kAB and kBA by

τ−1
rxn = kAB + kBA. (2.15)

The exponential behavior of Equ. (2.14) cannot be valid for very short times.
If regions A and B are not adjacent and there is a gap between them, the
system will need a minimum time τmol to cross this gap. Only for times larger
than τmol can exponential behavior set in as expected from the solution of
the phenomenological rate equations. If there is a separation of time scales,
i.e., if there is a time regime such that τmol < t ≪ τrxn, the exponential
growth can be approximated by a linear behavior such that

C(t) ≈ kABt. (2.16)

Equivalently, the time derivative k(t) = dC(t)/dt reaches a plateau for times
τmol < t≪ τrxn [22]. Thus, knowledge of the time correlation function C(t)
is sufficient for a calculation of the forward reaction rate constant kAB .

One transition path sampling approach for the computation of reaction
rate constants consists in determining the time correlation function C(t)
using free energy calculation techniques [36,42]. In this method, one rewrites
C(t) as

C(t) =

∫

Dx(t)P [x(t)]hA(x0)hB(xt)
∫

Dx(t)P [x(t)]hA(x0)
, (2.17)

and observes that C(t) can be viewed as a ratio of two partition functions.
In Equ. (2.17), the numerator is the partition function of all pathways start-
ing in A at time 0 and ending in B at time t. The denominator, on the
other hand, is the partition function of all pathways starting in A without
and restriction on where they end. Hence, the ratio of these partition func-
tion is related to the “reversible work” WAB(t) required to transform the
ensemble of trajectories with free endpoints into that with endpoints in B,
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C(t) = exp[−WAB(t)]. The reversible work WAB(t), a free energy in tra-
jectory space, can be calculated with standard free energy methods such as
umbrella sampling [42], thermodynamic integration [54], or even Jarzynski
fast switching [55]. In these calculations, one starts with a final region that
encompasses the entire configuration space and then successively shrinks it
to the desired size. Since the calculation of the reaction rate constant re-
quires the calculation of the time derivative of C(t), in principle several of
these path free energy calculations have to be carried out for different path
lengths t. This costly operation can be avoided, by calculating C(t) in two
steps. First, the time correlation function is calculated with a free energy
procedure for one particular time t′. In the second step, the path free energy
required to change the path length from t′ to t is calculated. This can be
done for all values of t up to a maximum time tmax in one single regular
transition path sampling simulation [42]. Combining the results of these
two calculations one obtains the correlation function C(t) from 0 to tmax

and the reaction rate constant can then be extracted from it.

An alternative transition path sampling algorithm for the calculation
of reaction rate constants was proposed by Bolhuis and collaborators and
named transition interface sampling (TIS) [56, 57]. In this method, path-
ways of variable length are used which leads to a reduced numerical effort
with respect to the method described above. Transition interface sampling,
however, is based on an additional assumption about correlated transitions
between the stable states. The method rests on the concept of the “overall
states” A and B. Overall state A consists of points in A plus all points that
originate from A in the sense that a trajectory going through such points
reaches A before B if followed backwards in time. (This definition is valid
only for deterministic trajectories.) Overall state B is defined analogously.
The two overall states A and B cover the entire phase space with a possibly
very complicated boundary separating them. If one now considers the time
correlation function

C(t) ≡ 〈hA(x0)hB(xt)〉
〈hA〉

(2.18)

and evaluates the corresponding time derivative in the transition state theory
approximation (recrossings are excluded [32]), one obtains the expression

kAB =
〈φAB〉
〈hA〉

(2.19)

for the rate constant. Here, 〈φAB〉 is the effective positive flux into region
B, i.e., the average flux into B due to trajectories coming directly from
A. Thus, for a trajectory connecting A with B only the first entry of the
trajectory into B contributes to the effective positive flux. Since the above
expression of the rate constant was obtained from an approximation based
on transition state theory for the overall states A and B, the underlying
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approximation is that there are no correlated transitions from A to B and
back, a condition that is not always satisfied. For stables states A and B
defined in configuration space as is customary, chemical reactions occurring
in the energy diffusion regime, for instance, may violate this assumption.

In principle, the effective positive flux 〈φAB〉 could be calculated from
a long molecular dynamics trajectory by counting the number of first en-
tries into B occurring per time unit. Of course, rare events make this direct
approach impractical. To calculate the effective positive flux, Bolhuis and
collaborator have therefore developed a technique based on a sequence of
non-intersecting interfaces that span the region between A and B [56, 57].
The spacing between these interfaces is selected such that a trajectory cross-
ing interface i coming from A has a non-vanishing probability of also crossing
the interface i+ 1. The effective positive flux can then be expressed as the
product of the average positive flux through the surface of A with the prod-
uct of all these crossing probabilities. The effective positive flux is thus
given by the average flux out of A multiplied with the probability of these
exit trajectories to eventually reach B. This probability can be calculated
from transition path sampling simulations carried out separately for each in-
terface. The ensemble sampled in these simulations consists of trajectories
with varying length starting in A, reaching interface i, and then going back
to A or on to cross interface i + 1. To date, transition interface sampling
has been used to calculate reaction rate constants for the freezing transition
in simple liquids [53] and several biomolecular isomerizations [58,59].

For very long and diffusive barrier crossing processes the efficiency of
transition interface sampling simulations can be considerably increased by
exploiting the loss of correlations along individual pathways. This idea is
used in the partial path transition interface sampling method [60]. Another
method similar in spirit to the transition interface sampling algorithm is the
so-called forward flux method, which can be applied also to non-equilibrium
systems in which the stationary phase space distribution is unknown [61–63].

2.3 Concluding remarks

Conducting a computer simulation under near-experimental conditions (for
example, using transition path sampling) is a prerequisite but not a guaran-
tee for observing transformation pathways relevant in the real system. For
structural transformations in nanocrystals, for instance, the role of differ-
ent surface passivation agents, defects in the crystal lattice, or the dynamics
and composition of the pressure bath is difficult to assess experimentally and
even harder to model realistically in a simulation. The relevance of mecha-
nisms observed in a computer simulation can therefore only be established
by comparison with experimental data. Transition path sampling offers var-
ious techniques to do so. First, calculation of the rate constant allows direct
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contact with experiments. Though computationally rather expensive, the
calculation of rate constants in the framework of transition path sampling
(as discussed in Section 2.2.4) does not need a priori knowledge of the re-
action coordinate and thus is free of any bias. One drawback that makes a
direct comparison with experiments via the rate constant difficult is the fact
that rate constants often strongly depend on the quality of empirical poten-
tials. With the development of ever more sophisticated pair potentials and
the increasing range of problems that can be tackled ab initio, we neverthe-
less expect this approach to become fruitful for many systems of interest. A
second way to establish contact with empirical data is offered by committor
analysis and the determination of the transition state ensemble (as discussed
in Section 2.2.3). As the central part of a rare event, the transition state
not only offers direct insight into the relevant degrees of freedom governing
the transformation, but can also be quantified in terms of activation energy
and activation volume, quantities that are readily accessible in experiments.

In summary, transition path sampling is a versatile and efficient set of
computational techniques for the study of rare events in complex systems. It
has has been successfully applied to a broad range of problems from material
science to molecular biology; it can be adapted to clarify the transformation
details of a simple chemical reactions as well as solid-solid phase transitions,
occurring in bulk and nanoscale materials. As computers advance, the range
and complexity of systems to which transition path sampling can be fruit-
fully applied increases and a more realistic modeling of the experimental
situation becomes possible in many cases.





Chapter 3

Precision shooting: Sampling

long transition pathways

The kinetics of collective rearrangements in solution, such as protein folding
and nanocrystal phase transitions, often involve free energy barriers that
are both long and rough. Applying methods of transition path sampling
to harvest simulated trajectories that exemplify such processes is typically
made difficult by a very low acceptance rate for newly generated trajectories.
We address this problem by introducing a new generation algorithm based on
the linear short-time behavior of small disturbances in phase space. Using
this “precision shooting” technique, arbitrarily small disturbances can be
propagated in time, and any desired acceptance ratio of shooting moves can
be obtained. We demonstrate the method for a simple but computationally
problematic isomerization process in a dense liquid of soft spheres. We
also discuss its applicability to barrier crossing events involving metastable
intermediate states.

3.1 Introduction

Transition path sampling (TPS) is a versatile and efficient set of compu-
tational techniques for the study of rare events [17, 18, 31, 32]. It has been
successfully used to reveal the microscopic mechanisms of processes as di-
verse as autoionization in liquid water [64], structural transformations in
nanocrystalline solids [65], and folding of small proteins [66]. The purpose
of this chapter is to propose a new shooting algorithm which can greatly
increase the efficiency of TPS when transit times of activated trajectories
greatly exceed the picosecond time scale of phase space stability.

At its core TPS is a Monte Carlo procedure enabling a random walk
in the ensemble of pathways that cross a free energy barrier between two
metastable states (denoted A and B). While this sampling is strongly biased
towards reactive trajectories, it leaves the underlying dynamics of the sys-
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tem unchanged. Thus, the result of a TPS simulation is a representative set
of true dynamical pathways, weighted as if they were excerpted from an ex-
tremely long, unbiased simulation of equilibrium dynamics. Many analytical
tools have been developed to extract from such a collection of trajectories
useful molecular information about the process of interest [31].

The algorithm typically used to construct such a random walk is called
shooting [18]. Here, a point along a given reactive trajectory is randomly
selected and slightly changed; for instance, one might change the velocities
of all particles by a small random number drawn from a symmetric distri-
bution. Using the dynamical rules of the system, this shooting point is then
propagated forward and backward in time to obtain a complete new trajec-
tory. If this new trajectory still connects A with B it is accepted and used
as a basis for the next shooting move; otherwise it is rejected.

The efficiency of this algorithm in exploring the transition path ensemble
is based on a balance between the intrinsic instability of complex dynamical
systems and the local character of the shooting move: Small disturbances
grow exponentially quickly in time, leading to separation of trajectories typ-
ically within a few picoseconds. Nonetheless, if the disturbance is small, the
new trajectory will be locally similar to the old one and is therefore likely to
surmount the barrier between A and B; such shooting moves will be accepted
frequently. Just as with conventional Monte Carlo moves in configuration
space, maximum efficiency can often be obtained by adjusting the size of
the disturbance to achieve an acceptance probability of roughly 40% [18].

Shooting moves are best suited for the study of systems that relax quickly
(within the picosecond time scale of trajectory separation) into their prod-
uct state after reaching the top of the barrier. Many interesting processes,
like the nucleation of first order phase transitions or conformational change
in complex molecules, proceed much more slowly from the transition state.
In TPS simulations of such systems, shooting moves must be made extraor-
dinarily subtle in order to stand a reasonable chance of connecting reactant
and product states. As a matter of practice, however, disturbances cannot be
made arbitrarily small due to the limited machine precision of floating point
numbers. Lacking an ability to control the degree of global separation be-
tween trajectories, TPS methods are severely compromised in efficacy. The
demonstrated computational advantages of importance sampling in trajec-
tory space lose appeal when offset by the wasted effort of generating a vast
excess of non-reactive paths.

In a recent paper [67], Bolhuis addressed this problem by modifying
slightly the rules that propagate a system in time. Specifically, a weak
stochastic component was added to the dynamics, removing the unique cor-
respondence between a trajectory’s past and its future. It thus became pos-
sible to resample only parts of an existing pathway, leading to much higher
acceptance probabilities for shooting moves and, Bolhuis reports, significant
improvement in sampling efficiency [67].
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In this chapter, we show that it is possible to perform productive shoot-
ing moves for arbitrarily long transition paths without modifying a system’s
natural dynamics. Our technique for introducing and propagating extraor-
dinarily small disturbances is based on the simple dynamics of small pertur-
bations in phase space. We explain the method and offer a straightforward
algorithm for implementation in Sec. 3.2. Use of the technique is demon-
strated in Sec. 3.3 for a simple isomerization process in a dense liquid that,
by construction, involves diffusive dynamics on a rugged barrier. In Sec. 3.4
we examine limitations of the method by considering reactive dynamics that
pass through highly metastable, obligatory intermediate states.

3.2 Linearized dynamics of small perturbations

3.2.1 Exponential divergence of trajectories

In a TPS simulation of a system evolving with deterministic dynamics, a
trajectory X of length τ consists of a number of “snapshots” xi∆t, which
are separated by a time step ∆t,

X = {x0, x∆t, x2∆t, . . . , xτ} . (3.1)

Here, the time slices xi∆t are full phase space vectors, detailing the positions
and velocities of all particles. Subsequent time slices are related by

x(i+1)∆t = Φ(xi∆t) , (3.2)

where the function Φ propagates the system for one time step.

Consider now a shooting move, in which a small disturbance δx0 is added
to the shooting point x0 to obtain state y0 = x0 + δx0 of the shooting
trajectory Y . (To simplify notation, we will assume the shooting point
to be x0, the initial state of the trajectory, throughout this section. The
algorithm we will describe applies transparently to shooting points at any
chosen time along the trajectory.) Usually the perturbation δx0 affects only
momentum space, but changing the positions of the particles can be useful
in some cases [18]. The perturbed point y0 is then propagated for a number
of n time steps to obtain yt = Φt(y0), where t = n∆t and Φt refers to
the n-fold application of the time step propagator. We define the time-
evolved disturbance δxt by subtracting the old trajectory from the new one,
δxt = yt − xt. Due to the dynamic instability of the system, perturbations
grow exponentially in time,

|δxt| ≈ |δx0| eλt . (3.3)

Here, λ is the largest Lyapunov exponent of the system [68]. For typical
fluid systems, 1/λ ≈ 1 ps.
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We wish to control precisely the time it takes for a small perturbation
to reach a size of order 1, at which point the new trajectory will be es-
sentially separated from the old one. This time determines the probability
that the new trajectory will be reactive and therefore acceptable. Because
of subsequent exponential growth, |δx0| must be decreased by many orders
of magnitude to increase the separation time of trajectories by even a few
picoseconds (see Figs. 3.1 and 3.2). With the standard double precision
format for representing floating point numbers on a computer, however, the
smallest number that can be added to 1.0 to give a result distinguishable
from 1.0 is of the order of 10−15, and numerical results become unreliable
at values of |δx0| well above this limit. (We assume throughout this chapter
that a system of units has been chosen such that typical numerical values of
coordinates and momenta are of order 1.) Especially when the total length
of the transition path is significantly longer than a few picoseconds, the
limited range of practical displacement sizes constitutes a severe sampling
problem: Shooting moves will only be accepted from points in the vicinity of
the barrier top; otherwise, new trajectories will simply return to the stable
state they came from and be rejected. As the system may stay near the a
priori unknown barrier top only for a small fraction of the total transition
time, sampling can break down completely. In these cases, implementing
shooting displacements of arbitrarily small size would be very helpful.

3.2.2 Dynamics in the linear regime

We propose to solve this problem by using perturbation theory to follow the
time evolution of the displacement vector δx0 itself, up to the point where
it grows large enough to allow accurate evaluation of the sum xt + δxt.
Expanding yt around x0, we obtain

δxt = yt − xt = Φt(x0 + δx0) − Φt(x0) =
∂Φt(x0)

∂x0
δx0 + O

[

(δx0)
2
]

. (3.4)

For small displacements |δx0| < 10−15, the linear approximation is for all
practical purposes exact on the scale of a single time step,

δxt = S δx0 , (3.5)

where the matrix S is given by

S =
∂Φt(x0)

∂x0
. (3.6)

To integrate δx0 forward in time according to equation (3.5), the equations of
motion for the matrix S could in principle be solved numerically [71]. Doing
so in practice would be cumbersome, requiring calculation of all second
derivatives of the interaction potential with respect to particle positions. We
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Figure 3.1: Distance r, in reduced units, between two particles in a liquid
of soft spheres as a function of time along a reference trajectory and four
shooting trajectories. (Here and throughout the chapter, if not explicitly
mentioned, the model system consists of 108 WCA [69] particles in their
liquid state. The total energy per particle is 1.0 and the density is 0.75,
in reduced units. The equations of motion are integrated with the velocity
Verlet algorithm [70] with a time step of ∆t = 0.002.) At time zero, dis-
placements of various size are added to particle velocities in the reference
trajectory. Because phase space disturbances grow exponentially in time, de-
creasing the shooting displacement by successive orders of magnitude results
in only linear increase in the time that elapses before trajectories separate.
Shooting displacements smaller than 10−15 can not be resolved in double
precision; the resulting shooting trajectories will exactly retrace the initial
one.
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Figure 3.2: Time evolution of small displacements δxt in a liquid of 108 soft
spheres for disturbances of various sizes, |δx0| = 10−α (legend values indi-
cate values of α). All displacements grow exponentially with the same rate,
up to the time where trajectories separate. The maximum possible value of
|δxt| is determined by the dimensions of the simulation box. Note that adja-
cent lines are equidistant in the linear regime, except for displacement sizes
smaller than 10−12. Although these smallest displacements yield trajecto-
ries that can in practice be distinguished from the base trajectory, limited
numerical precision introduces rounding errors that degrade computational
estimates of linear divergence.

Figure 3.3: Time evolution of shooting moves from a point x0 on the refer-

ence trajectory X. The two shooting displacements δx0 and δx̂
(1)
0 , as vectors

in high-dimensional phase space, point in the same direction but have dif-

ferent magnitudes, δx̂
(1)
0 = c0 δx0. At a later time t short enough that

first-order perturbation theory remains valid, these displacements remain

proportional, δx
(1)
t = c0 δxt. The displacement of interest δxt, no matter

how small, can thus be constructed in the linear regime simply by dividing

δx̂
(1)
t by the original scaling factor c0.
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propose a much simpler approach for advancing δxt, inspired by methods
for computing Lyapunov exponents in systems whose interaction potentials
lack well-defined second derivatives. Our implementation is illustrated in
Fig. 3.3.

Instead of integrating the small perturbation δx0, we follow the time

evolution of a related perturbation δx̂
(1)
0 , which is large enough to be added

at the shooting point and propagated in the usual way, i.e., by integrating

Newton’s equation of motion for ŷ
(1)
0 = x0 + δx̂

(1)
0 . We use a superscript for

ŷ(i) and δx̂(i) because in the following we will consider a family of different

perturbed trajectories Ŷ (i) = {ŷ(i)
0 , . . . , ŷ

(i)
τ }, with ŷ

(i)
t = xt + δx̂

(i)
t . Exploit-

ing the linearity described by Eq. (3.5), we choose δx̂
(1)
0 to be in the same

direction (in the high-dimensional phase space) as δx0,

δx̂
(1)
0 = c0 δx0 , (3.7)

where c0 is a scalar constant. If δx̂
(1)
0 is also small enough to justify the

linear approximation of Eq. (3.5),

δx̂
(1)
t = S δx̂

(1)
0 , (3.8)

then the initial relationship between δx0 and δx̂
(1)
0 holds also at a later time

t,

δxt = S δx0 =
1

c0
S δx̂

(1)
0 =

1

c0
δx̂

(1)
t . (3.9)

In the linear regime it is thus possible to follow the time evolution of arbi-
trarily small displacements δx0 by monitoring larger, proportional displace-
ments.

The linear approximation for the “helper” displacement δx̂
(1)
t in Eq. (3.8)

will of course remain valid for only a short time t
(1)
lin , typically less than 1

ps. Our interest in the trajectory Ŷ (1), however, is only as a proxy for
the evolution of smaller displacements that cannot be represented explicitly.

As δx̂
(1)
t approaches the boundary of the linear regime, t <∼ t

(1)
lin , we may

therefore switch our attention to a different helper trajectory Ŷ (2), one whose
displacement is initially too small to be of practical use but by the time

t
(1)
lin grows large enough to be represented explicitly. The new displacement

δx̂
(2)
t = ŷ

(2)
t −xt can be obtained at any time t < t

(1)
lin simply by scaling δx̂

(1)
t

appropriately, δx̂
(2)
t = δx̂

(1)
t /c1. Because it is initially smaller than δx̂

(1)
t ,

it will remain in the linear regime for a longer time, t
(2)
lin > t

(1)
lin . For times

t > t
(1)
lin we therefore proceed by integrating standard equations of motion

for Ŷ (2) until it approaches the boundary of the linear approximation. At
that point we repeat the procedure, scaling back the displacement to switch
attention to yet another helper trajectory.
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Figure 3.4: Precision shooting algorithm for generating a trial trajectory Y
(thick curve) whose initial displacement from the base trajectory X (thin
straight line) is extraordinarily small. Points in the dark field (whose ex-
tent is ≈ 10−15) cannot be numerically distinguished from the reference
trajectory. Until the trial trajectory exits this region, its time evolution
is calculated by proxy using “helper” trajectories Ŷ (i) (thin curves). Dis-
placements of trial (vertical arrows) and helper trajectories from the base
trajectory are related by proportionality as long as they remain within the
linear regime, represented by the light field. To preserve this simple rela-
tionship, the displacement of the helper trajectory Ŷ (i) from the reference
trajectory is scaled back when it threatens to leave the region of linear dy-
namics, effectively switching the system to the next helper trajectory Ŷ (i+1).
By following the systems dynamics along many sections of helper trajecto-
ries (dashed curve) and by keeping track of the rescaling factors, one can
accurately construct the state of the trial trajectory once it becomes distin-
guishable from the reference trajectory. The result of this shooting move is
a trial trajectory Y that is numerically identical to the base trajectory X
over a certain length of time and then emerges from it in the correct way.

In effect we monitor a single displacement from the reference trajectory
whose magnitude is periodically scaled down such that the linear approxi-
mation is always valid. In this way we can monitor the time evolution of
an arbitrarily small disturbance. The corresponding trajectory will be nu-
merically indistinguishable from the reference trajectory as long as the dis-
placement’s magnitude is smaller than ∼ 10−15. At later times the displaced
trajectory can be distinguished, and its dynamics can be safely computed
by integrating equations of motion in the usual way.

3.2.3 Algorithm

This insight suggests the following algorithm, which implements a shoot-
ing trajectory Y , whose initial deviation δx0 from the base-trajectory X is
smaller than the precision limit. This is done by monitoring “helper” tra-
jectories Ŷ (j), which are obtained by repeated rescaling. For an illustration
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of this algorithm see Fig. 3.4.

1. At the shooting point x0, add a displacement δx̂
(1)
0 of fixed size |δx̂(1)

0 | =

σ. The displacement δx̂
(1)
0 is parallel to δx0 and larger by a factor of

c0.

2. Propagate the point ŷ
(1)
0 = x0 + δx̂

(1)
0 forward in time for n time steps,

corresponding to a time interval t = n∆t.

3. Compute the factor c1 = |δx̂(1)
t |/|δx̂(1)

0 | = |ŷ(1)
t −xt|/|δx̂(1)

0 | quantifying
the divergence from the reference trajectory. Switch to a new helper

trajectory by setting ŷ
(2)
t = xt + δx̂

(1)
t /c1 = xt + δx̂

(2)
t . Store the factor

c1.

4. Propagate the new displacement forward in time by integrating the

equations of motion for n steps beginning from ŷ
(2)
t . Calculate and

store the factor c2 = |δx̂(2)
2t |/|δx̂

(2)
t |.

5. Iterate step 4, each time beginning from ŷ
(j)
(j−1)t and rescaling by the

factor cj = |δx̂(j)
jt |/|δx̂

(j)
(j−1)t|. At every iteration compute the displace-

ment of interest, δxjt = C−1
j δx̂

(j)
jt , where Cj = Πj−1

k=0ck is the product
of all factors used for rescaling so far. To store the current point along
the actual shooting trajectory, compute yjt = xjt + δxjt. As long as

|δxjt|<∼ 10−15, yjt will be numerically identical to xjt.

6. If |δxjt| > σ, the actual shooting displacement is large enough to be
treated in the usual way: Set yjt = xjt + δxjt and integrate equations
of motion from this point without further rescalings (ceasing iteration
of step 4).

Note that for shooting moves conducted at points other than x0, the pro-
cedure must be repeated backward in time to obtain a complete shooting
trajectory. In the following we discuss the accuracy of this scheme and give
recommendations for choosing values of σ and n.

3.2.4 Validity of the linear approximation

The above algorithm is exact only if the linear approximation of Eq. (3.5)
holds, and if calculations are carried out with infinite numerical precision.
For perturbations of finite size, and given practical computational limita-
tions, deviations from this approximation occur. The question thus arises,
how accurate an approximation is this approach for propagating small dis-
turbances? More specifically, to what extent do helper displacements remain
proportional to the actual shooting displacements of interest? One could cer-
tainly imagine that the fast growth of small non-linearities rapidly erodes



32 3. Precision shooting: Sampling long transition pathways

0 2×10
6

4×10
6

6×10
6

8×10
6

1×10
7

timestep

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Figure 3.5: Time evolution of the magnitude of two shooting displacements

for a fluid of WCA particles. Displacements of size |δx̂(1)
0 | = 10−7 (bottom

curve) and |δx̂(2)
0 | = 10−6 (middle curve) are initially proportional (pointing

in the same direction in phase space). Both are rescaled to their initial size
every 100 time steps (see inset for a magnified view) to preserve this linear
relationship. Deviation from proportionality is quantified by the relative
error ǫ(t) (top curve) defined in Eq. (3.10).

the linear relationship on which we depend. Here we present evidence from
computer simulations that proportionality of small displacements can hold
in practice over very long time scales.

Figure 3.5 shows the time evolution of two proportional disturbances.
The initial displacement vectors point in the same direction of phase space

but have different magnitudes, |δx̂(1)
0 | = 10−7 and |δx̂(2)

0 | = 10−6. The re-
spective shooting trajectories were propagated independently, and the dis-
placements from the base trajectory were rescaled to their initial length
every 100 time steps. For a perfectly linear time evolution, these displace-

ments remain proportional at all later times. In practice the vectors δx̂
(1)
t

and δx̂
(2)
t will develop a nonzero angle due to non-linearities. To quantify

this deviation from parallel alignment, we define

ǫ(t) =
|δx̂(1)

t − δx̂
(2)
t /10|

|δx̂(1)
t |

. (3.10)

As shown in Fig. 3.5, the relative error ǫ(t) does not grow above a low level
even for very long simulation runs.

This long time stability of aligned disturbances holds over a broad range
of displacement sizes between 10−10 and 10−3. Values of ǫ(t) can be some-
what larger than for the specific case plotted in Fig. 3.5 but on average do
not grow larger than 10−3 for any case. The error is insensitive to the choice
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Figure 3.6: Relative orientations of three phase space displacement vec-

tors (δx̂
(1)
t , δx̂

(2)
t , and δx̂

(3)
t ) for a WCA fluid. We plot the angle γi,j =

cos−1(δx̂
(i)
t ·δx̂(j)

t /|δx̂(i)
t ||δx̂(j)

t |) between each pair of displacements as a func-

tion of time. Displacements differ in initial direction and size (|δx̂(1)
0 | = 10−8,

|δx̂(2)
0 | = 10−8, |δx̂(3)

0 | = 10−7) and are rescaled to their original sizes at dif-
ferent intervals (n(1) = 100, n(2) = 200, n(3) = 500).

of the rescaling interval n∆t, as long as the displacements stay smaller than
approximately 10−2, where the linear regime breaks down. For displace-
ments smaller than 10−10, rounding errors become problematic, and phase
space displacements do not remain parallel to a good approximation. One
might expect the region of long time stability to extend to even lower levels,
closer to the precision limit of 10−15. However, the total achievable accuracy
in a computer simulation depends, among other factors, on the details of the
integrator Φ, the size of the time step, and the dimensionality of the system,
and can lie well above the precision limit of 10−15. We find that for the par-
ticular system used here, the effective precision level is about 10−12. The
interplay of non-linear terms in the time evolution and numerical precision
is further discussed in Appendix A.

In the light of these observations, a value of σ = 10−6 as initial magnitude
for helper displacements seems appropriate. This choice lies midway between
the upper limit of the linear regime (approximately 10−2), and the point
where rounding errors become dominant (approximately 10−10). As the
accuracy of the rescaling scheme is quite insensitive to the frequency of
rescalings, many equally good choices of n are possible. As a starting point,
a value of n which leads to rescalings every time the displacements have
doubled their size is advisable.

The fact that ǫ(t) does not show any systematic long-time growth in
Fig. 3.5 seems surprising. After all, no constraint is imposed on the direc-



34 3. Precision shooting: Sampling long transition pathways

tion of the displacement vectors. Why does an accumulation of errors not
eventually lead to decoupling and ǫ(t) ≈ 1? Stability of the precision shoot-
ing algorithm is in fact a simple and direct consequence of the collective
dynamics of displacements in the linear regime. In Figure 3.6 we plot the
angles between three periodically rescaled shooting displacement vectors of
different size and random initial direction. Eventually, they all rotate into
the same direction, which is associated with the largest Lyapunov exponent
λ of the system. The time scale on which the directions of different displace-
ment vectors converge is on the order of 1/∆λ, where ∆λ is the difference
between the first and second largest Lyapunov exponents [72]. It is because

of this convergence, that the difference vector δx̂
(1)
t − δx̂

(2)
t /c between two

proportional displacements with initially identical direction will stay small.

We point out that this property constitutes a main difference of our
method over the stochastic scheme introduced by Bolhuis [67] and similar
algorithms. Consider, for instance, the following simple algorithm that can
be viewed as a smooth version of the stochastic scheme by Bolhuis:

• Choose a shooting point xs∆t.

• A fixed number of timesteps n earlier and later, at the points x(s+n)∆t

and x(s−n)∆t, add a displacement of 10−15 to one velocity component
of one particle.

• Integrate the points x(s+n)∆t and x(s−n)∆t forward and backward in
time, respectively, to get a complete new trajectory.

Just like the precision shooting algorithm, this simple scheme results in a
shooting trajectory that is numerically identical to its base trajectory for
a certain period of time. However, the emerging separation between base
and shooting trajectories will not be consistent with a shooting move con-
ducted at x0, but rather with two uncorrelated shooting moves at x(s+n)∆t

and x(s−n)∆t. Our algorithm, on the other hand, correctly reproduces the
correlated forward and backward dynamics of a displacement introduced at
xs∆t.

3.3 A simple test system

We demonstrate the precision shooting algorithm on a simple isomerization
process of a solvated diatomic molecule in three dimensions.

Our test system consists of 389 particles interacting via the WCA [69]
potential. We use conventional reduced units, with particle mass and po-
tential parameters σ and ǫ all set to unity. Particles #1 and #2 do not
interact via the WCA potential, but are bonded through a one-dimensional
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Figure 3.7: Potential energy v(x) of interaction between particles #1 and
#2, comprising the diatomic molecule in our model isomerization pro-
cess, plotted as a function of the difference x = x2 − x1 between their
x-coordinates. The dashed lines mark the boundaries of the minima A and
B.

potential with two deep minima separated by a rough barrier (see Fig. 3.7):

v(x) =















h1

[

1 − q(x)2/w2
]2

if q(x) < 0 ,

h1

[

1 − (q(x) − b)2/w2
]2

if q(x) > b ,

h1 + h2
cos2[a(q(x)−b/2)]√
1+ga2(q(x)−b/2)2

else .

(3.11)

Here, q(x) = x − (rc + w), x = x2 − x1 is the difference between the x-
component of the position of the bonded particles, rc = 21/6 is the cutoff of
the WCA potential, w = 1 determines the width of the minima, b = 10 and
h1 = 10 are the length and height of the barrier in between, respectively,
and the constants h2 = 3, a = 7π/b, and g = 2 determine the shape of the
barrier. The potential and its derivative are continuous by construction.

To speed computation, we borrow a trick from Bolhuis’ work [67]: Par-
ticle #2 is considered to lie always to the right of particle #1, hence x > 0.
This choice, together with the one-dimensionality of v(x), allows us to choose
a simulation box with dimensions 14.4×6×6. The resulting particle density
is 0.75, the total energy per particle is 1.0, and the temperature is 0.45, as
gauged by average kinetic energy. We use the velocity Verlet algorithm [70]
to integrate the equations of motion with a time step of 0.002.

We are interested in sampling the transition of the dimer from the
“contracted” minimum A at xA = rc to the “extended” minimum B at
xB = rc + b+ 2w. The dimer is defined to be in state A for x < xA + 0.75w
and in state B for x > xB−0.75w (see Fig. 3.7). Because the system is dense,
and the barrier is both long and rough, relaxation from the transition state
into either stable minimum is quite protracted.
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Figure 3.8: Distribution of transition times T for our model isomerization
process, as gauged from 2500 trajectories initiated at the barrier top. Inset:
Difference x = x2 −x1 between the x-coordinates of particles #1 and #2 as
a function of time for a typical trajectory.

In conducting TPS simulations it is important that sampled trajectories
are not shorter than typical spontaneous barrier-crossing events [18]. We
determine this typical duration for our simple model system by initiating
many straightforward molecular dynamics simulations with the dimer bond
length set at x = rc + w + b/2, corresponding to the middle of the barrier.
Integrating the equations of motion forward and backward in time yields
a representative sample of the transition path ensemble. For a particular
trajectory, the transition time T is the time the system spends between
regions A and B. The resulting distribution of transition times is plotted
in Fig. 3.8. For TPS simulations, we choose a total trajectory length of
3 × 105 time steps, long enough to include 98% of the natural transition
path ensemble. The bias of our sampling to short transitions is therefore
minor.

Although the artificial potential energy landscape studied here does not
directly represent any physical system of interest, it nevertheless shares with
many real systems features that lead to long transition pathways and make
straightforward application of TPS methods ineffective. In our view rough-
ness of the barrier region is an important ingredient. Models featuring long
but flat barriers, such as that of Ref. [67], should not in fact pose any severe
problems for path sampling via the standard shooting move. Assuming that
motion atop such a flat barrier is diffusive in nature, and that time evolution
from the edge of the barrier proceeds into the adjacent minimum with near
certainty, then a trajectory initiated on the barrier will relax into stable
state A with probability pA = 1−y/b, where y is the initial distance from A
and b is the width of the barrier. Similarly, the probability of relaxing first
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Figure 3.9: Fraction of shooting moves for our model isomerization process
that are accepted in long TPS simulations. Acceptance ratios are shown for
shooting displacements of various sizes, ∆p = 10−α, implemented using the
standard shooting algorithm for values of α of 1, 5, and 10, and the precision
shooting algorithm for α ≥ 10. For α = 10, the result obtained from the
precision shooting algorithm (red) is effectively indistinguishable from the
one obtained with standard shooting.

into state B is pB = y/b. A standard shooting move from the barrier region
then yields a reactive trajectory with probability

Pacc =
1

b

∫ b

0
dy pApB =

1

6
. (3.12)

This value of the acceptance rate should correspond to near optimal sam-
pling of the transition path ensemble [18]. A problematically low acceptance
rate would only arise if one were to sample trajectories of insufficient length,
i.e., paths shorter than typical spontaneous transitions.

In our TPS simulations, only momenta (and not particle positions) are
disturbed in the shooting moves, with each particle’s momentum changed
in each direction by an amount drawn from a Gaussian distribution of stan-
dard deviation ∆p (followed by rescaling of all momenta to enforce energy
conservation [17]). We conduct standard shooting moves with values of ∆p
of 10−1, 10−5, and 10−10, as well as precision shooting moves with ∆p rang-
ing in size from 10−10 to 10−300. The latter are implemented using helper
displacements with ∆p = 10−7 and are rescaled every time they reach twice
their original size. For the system size studied here, the initial magnitudes
of the resulting displacement vectors are larger than the corresponding value
of ∆p by a factor of roughly 34 on average. For instance, ∆p = 10−7 results
in displacement vectors with an initial size of about |δx0| = 3.4× 10−6. For
each set of sampling parameters, we attempt 50,000 Monte Carlo moves in
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Figure 3.10: Variation in isomerization transition time T over the course
of long TPS runs. The bold black line shows results for a simulation using
shooting displacements with ∆p = 10−1, while the thin green line corre-
sponds to ∆p = 10−100.

trajectory space. Roughly half of these trial moves are generated by shoot-
ing. The other half are generated by a procedure called “shifting” [18], in
which short trajectory segments are added to and subtracted from the ends
of an existing path.

Figure 3.9 shows the fraction of attempted shooting moves that are ac-
cepted in TPS simulations of the diatomic isomerization with a rough bar-
rier. While standard shooting moves are accepted with low frequency, any
desired acceptance ratio can be obtained by using the precision shooting
technique. Figure 3.10 shows changes in transition time T over the course of
two TPS runs with shooting displacements of ∆p = 10−1 and ∆p = 10−100.
A dramatic difference in the efficiency of generating qualitatively different
trajectories for the two cases is evident.

To assess the improvement in sampling efficiency achieved with precision
shooting, we quantify the computational effort necessary to generate statis-
tically independent transition pathways. More specifically, we calculate the
autocorrelation function

c(n) =
〈δT (0)δT (n)〉

〈δT 2〉 , (3.13)

where δT (n) = T (n) − 〈T 〉 is the deviation of the transition time after the
n-th shooting move from its average 〈T 〉, as calculated from all collected
trajectories [18, 67]. Rapid decay of c(n) indicates an efficient sampling of
trajectories. Figure 3.11 shows the logarithm of c(n) for different shooting
displacement magnitudes along with the “decorrelation time” ν, defined as
the number of successive shooting moves after which the correlation function
decays to a value less than 1/2. The maximal sampling efficiency is achieved
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Figure 3.11: Number of shooting moves required to generate a statistically
independent isomerization trajectory using shooting displacements of var-
ious sizes, with ∆p = 10−α. Inset shows decay of correlation c(n) in the
transition time T following n attempted shooting moves. The “decorrela-
tion time” ν is defined as the value of n beyond which c(n) < 1/2.

for shooting displacements with ∆p ≈ 10−100. Improvement over the largest
displacement we considered (∆p = 10−1) is more than ten-fold. Following
Bolhuis [67], we also investigate as a measure of decorrelation changes in the
bond length x midway in time through the crossing event. Decay of corre-
lations in this quantity, and the implied dependence of sampling efficiency
on shooting displacement size, mirror those reported for the transition time
T .

As Fig. 3.11 illustrates, sampling is comparably efficient for a broad
range of displacement sizes between ∆p = 10−60 and ∆p = 10−260. In
this regime, the efficiency gain due to increased acceptance rates for smaller
shooting moves is compensated almost exactly by the efficiency loss due to
increased similarity between the shooting trajectory and its base trajectory.
Using equation (3.3), the time Tid over which a shooting trajectory with
displacement size 10−α cannot be resolved from its base trajectory can be
approximated by the time required for the displacement size to reach 10−15,

Tid ≈ 1

λ1
ln

10−15

10−α
= (α− 15)

ln 10

λ1
. (3.14)

For our system, 1/λ1 ≈ 150∆t and therefore Tid ≈ 105 time steps for the
smallest displacement with ∆p = 10−300. Even for this small displacement
size, Tid is only 30% of the total trajectory length L and efficient sampling
is still possible. If δx0 is decreased further, Tid will become comparable to
L and sampling efficiency will decrease accordingly. (To extend the preci-
sion shooting algorithm to shooting displacements smaller than 10−308, the
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Figure 3.12: TPS simulation of isomerization dynamics which must proceed
through a deep intermediate energy minimum. Top left: Interaction poten-
tial between particles #1 and #2. Top right: Acceptance ratio of shooting
moves as a function of displacement size, ∆p = 10−α. Bottom: Bond length
x as a function of time for the starting trajectory and for a pathway ob-
tained after many shooting and shifting moves. The two trajectories have
been shifted in time to highlight their similarity in the vicinity of the inter-
mediate state.

smallest representable number in double precision, exponents can be con-
veniently stored separately as integer numbers.) For a displacement with
∆p = 10−60, the largest size that leads to optimum efficiency, Tid amounts
to only 5% of the total trajectory length.

3.4 Metastable intermediate states

By extending the time span over which a shooting trajectory tracks its base
trajectory, the algorithm proposed in this work can substantially increase
the efficiency of TPS simulations that suffer from poor acceptance of shoot-
ing moves. The method is fully consistent with deterministic dynamics and
faithfully reproduces the divergent behavior of arbitrarily small displace-
ments in phase space. We emphasize, however, that the method does not
solve all problems whose primary symptom is a low shooting acceptance
rate. Most importantly, it does not overcome challenges associated with
metastable intermediate states. In this section we explore this difficulty in
the context of diatomic isomerization.

In order to explore the consequences of metastable intermediates, we
have modified the diatomic potential v(x) to include a deep minimum mid-
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way between contracted and extended states (see Fig. 3.12),

v(x) =











h1

[

1 − q(x)2/w2
1

]2
if q(x) < 0 ,

h1

[

1 − (q(x) − 2w2)
2/w2

1

]2
if q(x) > 2w2 ,

h1 − h2

[

1 − (q(x) − w2)
2/w2

2

]2
else .

(3.15)

Here, q(x) = x− (rc +w1), w1 = 0.5, w2 = 3, h1 = 15, and h2 = 10. Limited
by machine precision, standard shooting moves fail completely in this case:
Even shooting moves initiated near the intermediate minimum C rapidly
separate from their base trajectories and with high probability do not escape
to stable state A or B. Only with the precision shooting technique, using
a displacement size smaller than 10−20, are we able to conduct successful
shooting moves. This success does not indicate, however, that trajectory
space is sampled efficiently: A comparison of the first trajectory1 with a
pathway obtained after many thousands of shooting moves shows that those
parts of the trajectory spent within the intermediate are not resampled at
all (see Fig. 3.12); they are numerically identical.

Transitions involving strongly metastable intermediates are in fact fun-
damentally problematic for TPS methods, unless the dynamics of interme-
diates’ appearance and disappearance can be identified as distinct kinetic
substeps. If the typical time spent in C is manageable in a computer simu-
lation, then the intermediate does not pose a problem even to the standard
shooting move. If, on the other hand, the free energy barriers delimiting the
intermediate state are large compared to typical thermal excitations, then
escaping C will itself be a rare event. In such cases, typical transitions from
A to B require at least two unlikely fluctuations (activating entry and exit
of each intermediate state), well separated in time. Any shooting move that
perceptibly modifies dynamics between these rare fluctuations will be re-
jected with high probability. Precision shooting can readily generate subtly
modified pathways that remain reactive but cannot be expected to effectu-
ally switch between reactive trajectories that follow substantially different
courses through the intermediate state. As TPS leaves a system’s natural
dynamics unchanged, it can eliminate only the largest time scale associated
with a rare event. Without resorting to methods that prescribe in some sense
the detailed route between stable states, one can overcome the challenge of
metastable intermediates with TPS only by subdividing transition dynamics
into several steps, each of which involves a single dynamical bottleneck.

1A first trajectory is constructed in the following way: From the border of state A,
trajectories are shot into the intermediate state, which is divided into small windows along
the direction of the coordinate x. Starting with the first of these windows, trajectories are
accepted if they cross the border to the next one. After accepting a few such trajectories,
the simulation moves on to the next window, eventually leading to a trajectory that
crosses the intermediate from A to B. Note that a similar procedure is used in forward
flux sampling [61].
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Chapter 4

Mechanisms of the wurtzite

to rocksalt transformation in

CdSe nanocrystals

We study the pressure-driven phase transition from the four-coordinate
wurtzite to the six-coordinate rocksalt structure in CdSe nanocrystals with
molecular dynamics computer simulations. With an ideal gas as pressure
medium, we apply hydrostatic pressure to spherical and faceted nanocrys-
tals ranging in diameter from 25 Å to 62 Å. In spherical crystals, the main
mechanism of the transformation involves the sliding of (100) planes, but
depending on the specific surface structure we also observe a second mecha-
nism proceeding through the flattening of (100) planes. In faceted crystals,
the transition proceeds via a five-coordinated hexagonal structure, which is
stabilized at intermediate pressures due to dominant surface energetics.

4.1 Introduction

The thermodynamic properties of nanosized particles can differ significantly
from those of the corresponding bulk materials due to the large surface to
volume ratio. In particular, the kinetics and the mechanism of first or-
der phase transitions are strongly affected by the surface free energetics
of such systems. In a series of recent experiments, Alivisatos and cowork-
ers [9–11, 73–75] have demonstrated that the pressure-induced transition
from the four-coordinate wurtzite structure to the six-coordinate rocksalt
structure in CdSe is strongly influenced by crystal size. The transition
pressure increases by about a factor of two as the size of the sample is de-
creased from macroscopic dimensions to the nanometer scale [73], and also
the kinetics of this highly activated process change markedly as function of
size [9, 10].

A considerable amount of work has been concerned with the wurtzite

45



46 4. Mechanisms of the wurtzite to rocksalt transformation in CdSe nanocrystals

to rocksalt transition and possible intermediate structures in the bulk [15,
76–83], where, for CdSe, the transformation occurs at approximately 2.5
GPa [84, 85]. In a recent molecular dynamics study of bulk CdSe, Shimojo
et al. identified two main mechanisms [15]. The first mechanism was pre-
viously proposed by Tolbert and Alivisatos and involves the flattening-out
of parallel (100) planes [73], the second mechanism is realized through slid-
ing of parallel (100) planes along the [010] direction. Using transition path
sampling methods [17], Zahn, Grin and Leoni recently showed that the sec-
ond mechanism is highly preferred and the transition does not involve a
concerted motion of atoms, but occurs via nucleation and growth [83].

In the nanocrystal, surface effects may significantly alter the transition
mechanism. In this Letter, we use molecular dynamics simulation to study
the structural transformation of CdSe nanocrystals of various shapes and
sizes. Our simulations reveal that transition mechanisms are strongly shape-
dependent: Most spherical nanocrystals transform through the bulk mech-
anism of sliding (100) planes [83], but the other mechanism, unfavored in
the bulk, also occurs. For faceted nanocrystals the transformation proceeds
through an intermediate five-coordinate structure, that is unstable in the
bulk but is stabilized by surface effects in the nanoparticle.

4.2 Simulation details

In all our simulations we use the empirical pair potential for CdSe developed
by Rabani [85], designed to reproduce the lattice and elastic constants of
bulk CdSe as well as the bulk wurtzite to rocksalt transition pressure of 2.5
GPa [83,85].

A crucial point in the simulation of nanoparticles under pressure is the
choice of pressure medium. As such we use an ideal gas of non-interacting
particles that interact with the crystal atoms through the soft-sphere pair
potential u(r) = ǫ (σ/r)12. As the equation of state of the ideal gas is known
analytically, the pressure can be easily tuned by controlling the density of
the pressure bath. We set ǫ = 1 kJ/mol and σ = 3.0 Å, large enough
to prevent infiltration of gas particles into the nanocrystal. For an efficient
calculation of the forces needed in the molecular dynamics simulation we use
cell lists [86] and a cutoff of 2σ for the interactions between ideal gas particles
and the crystal atoms. To reduce the number of ideal gas particles required
to exert a given pressure, these particles fill only a thin layer around the
crystal. The volume that is occupied by the gas consists of all cells, already
defined for the cell lists, that can hold possible interaction partners of the
crystal atoms. This minimal volume of cells is updated every time step
and particles leaving the volume are no longer considered. The loss of gas
particles is compensated by randomly introducing new gas particles on the
cell walls confining the volume with statistics appropriate for an ideal gas at
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Figure 4.1: Relative coordination Ni/N as a function of pressure for a faceted
Cd847Se847 crystal (left) and a spherical Cd1456Se1457 crystal (right). The
wurtzite to rocksalt transition can be easily identified through the change
from predominant four-coordination to six-coordination. In faceted crystals
(left), the stable five-coordinated h-MgO structure is observed at intermedi-
ate pressures. For spherical crystal shapes (right), the transformation from
four-coordination to six-coordination occurs directly and the intermediate
h-MgO structure is never observed.

temperature T and pressure P . When, by movement of crystal atoms, a new
cell is added to the gas atmosphere, it is filled with a number of particles
drawn from an appropriate Poisson distribution; when a cell is removed from
the gas atmosphere, the particles in this cell are no longer considered. In this
method, the gas serves as a barostat as well as a thermostat. The exerted
pressure is hydrostatic (we have numerically verified that in our simulations
the forces tangential to the crystal surfaces vanish on average) and can be
simply controlled by adjusting the number of ideal gas particles.

To study the effect of surface structure and crystal size on the transition
mechanism, we use nanocrystals of two different shapes, ranging in radius
from 12.6 Å to 31.5 Å, consisting of 300 to 4500 atoms. Spherical nanocrys-
tals are cut from a large wurtzite lattice with centers randomly distributed
over the wurtzite unit cell. The resulting nanocrystals have disordered sur-
faces and, due to the randomly chosen positions of the center, slightly differ
in atom number even for equal sizes. Faceted nanocrystals with well defined
surface structure were obtained by cleaving the bulk lattice along equivalent
(100) wurtzite planes and at (001) and (001̄) planes perpendicular to the
[001] direction of the c-axis. Similar to crystals used in experiments [87],
the aspect ratio c/a was chosen to vary around a value of 1.25, slightly elon-
gated along the c-axis. The resulting nanocrystals have stable low-index
surfaces and can be seen as a short version of the nanorods studied in recent
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experiments [75].
All of our simulations are carried out at T = 300 K and follow the same

scheme: A single crystal is initially equilibrated for 15 ps at zero pressure.
Then the pressure is increased every 10 ps in steps of 0.25 GPa until a
maximum pressure of 8–11 GPa is reached, depending on crystal size and
shape. The equations of motion are integrated using the velocity Verlet
algorithm [70] with a time step of 2 fs. The mass of the ideal gas particles is
10 amu. The longest of a total of 75 simulation runs have a length of 450 ps,
and about 350.000 gas particles are required to apply a maximum pressure
of 11 GPa.

4.3 Shape-dependent transformation mechanism

Apart from analyzing the simulation runs by visual inspection, we calculate
the number of atoms Ni with i nearest neighbours. Here, atoms are defined
to be nearest neighbors if they are closer than 3.3 Å, the location of the
first minimum of the radial distribution function. The transition is moni-
tored by plotting the fractions Ni/N of i-coordinated atoms as a function of
pressure (see Fig. 4.1). Whereas spherical crystals directly transform from
the wurtzite to the rocksalt structure, as indicated by the sudden change
from four- to six-coordination (Fig. 4.1, right), faceted crystals take a five-
coordinated structure at intermediate pressures (Fig. 4.1, left). The latter
transition is depicted in Fig. 4.2 A. Starting on one side of the crystal, the
puckered wurtzite (001) layers are leveled out, leading to a compression of
the whole crystal along the wurtzite c-axis. The resulting structure is simi-
lar to hexagonal BN and was named h-MgO, as it was first discovered as a
metastable phase of MgO [77]. Recently, it was considered as a metastable
intermediate in the wurtzite to rocksalt transition in bulk CdSe [15]. Its high
energy, however, rules it out as a possible stable intermediate structure for
the bulk transformation [15]. To confirm this, we calculate the enthalpy of
bulk CdSe in constant-pressure Monte Carlo simulations (see Fig. 4.3) [85].
The enthalpy of h-MgO is never the lowest, rendering this structure unacces-
sible in the bulk. During the transition, the (001) planes of the crystal are
flattened out and the surface atoms are shifted from a three-coordinate to
a four-coordinate environment. This favorable reorganization of the surface
stabilizes the five-coordinate h-MgO structure in the nanocrystal sufficiently
with respect to the bulk to make this structure accessible during the tran-
sition. As expected, we observe a strong decrease in the wurtzite to h-MgO
transition pressure with decreasing crystal size 1: Whereas in the largest

1While the transition pressure to the intermediate h-MgO structure decreases with
decreasing crystal size, the phase transition pressure for the overall wurtzite to rocksalt
transition, obtained by averaging the up- and downstroke transition pressures, shows the
opposite trend, as observed in the experiments.
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Figure 4.2: (A) Wurtzite to h-MgO transition mechanism in a faceted
Cd847Se847 crystal. The transition occurs through a compression of the
crystal in the direction of the wurtzite c-axis, the puckered (001) layers,
indicated in the figure, are flattened out. (B) h-MgO to rocksalt tran-
sition mechanism in a faceted Cd847Se847 crystal, seen down the wurtzite
c-axis. The transition starts on the surface with the displacement of the
outer atoms of a (100) plane into the crystal (red arrow), forming the rock-
salt nucleus. Next-nearest neighbour planes preferably slide in alternate
directions (black arrows). (C) Wurtzite to rocksalt transition mechanism in
a spherical Cd366Se359 crystal, seen down the wurtzite c-axis. Starting on
the surface, atoms across six-membered hexagonal rings come together to
form the rocksalt structure, flattening out the wurtzite (100) planes.

crystals the h-MgO structure is stable over a small pressure range only, we
observe an immediate wurtzite to h-MgO transition at zero pressure for a
Cd72Se72 crystal. The critical size, at which the h-MgO structure becomes
unstable with respect to the wurtzite structure, increases with increasing
pressure.

The h-MgO to rocksalt transition is shown in Fig. 4.2 B. The mechanism
involves the sliding of parallel (100) planes and is equal to the mechanism
observed in the bulk [83], except for the compression along the wurtzite
c-axis, which has already occurred during the wurtzite to h-MgO transi-
tion. The transition nucleates at the surface where the outer atoms of a
(100) plane move along the [010] direction into the crystal, transforming
the hexagonal 120◦ bond angle along the (100) plane into the cubic 90◦ an-
gle. Cadmium and selenium atoms along the plane form cubic bonds with



50 4. Mechanisms of the wurtzite to rocksalt transformation in CdSe nanocrystals

Figure 4.3: Enthalpy as a function of pressure for bulk CdSe in the wurtzite,
h-MgO and rocksalt structure obtained from Monte Carlo simulations at
constant pressure and temperature. Inset: Atomic configuration for the
three structures.

the next selenium and cadmium atoms along the two neighbouring (100)
planes, initiating the rocksalt nucleus. This displacement and change of
angle quickly propagates along the (100) plane, at the same time starting
the transition in the adjacent (100) planes. This sliding plane motion then
moves through the whole crystal. The shearing directions of the planes,
parallel or antiparallel, vary and determine the overall shape change of the
crystal during the transformation. In some of the larger faceted crystals,
we observe the formation of grain boundaries during the h-MgO to rocksalt
phase transition. If the crystal is sufficiently large, the transition can occur
in different parts of the crystal simultaneously. Grain boundaries then form
where two rocksalt structures with different orientation meet.

The majority of spherical crystals transforms through the sliding of (100)
planes mechanism observed in the h-MgO to rocksalt transition of faceted
crystals. However, the transition occurs directly from the wurtzite to the
rocksalt structure and the h-MgO structure is not observed. The compres-
sion of the wurtzite lattice in the direction of the c-axis takes place at the
same time as the shearing motion of (100) planes. In faceted crystals with
flat (001) surfaces terminating the crystal in the c-direction, there is no tran-
sition motion in the [001] direction during the h-MgO to rocksalt transition,
leading to a flat, low-index (001) rocksalt surface. The situation is different
in spherical crystals. As the spherical shape is not suitable to accommodate
low-index rocksalt faces, the transition motion is more complicated. In an
effort to produce low-energy rocksalt surfaces, wurtzite (100) planes can,
in addition to the shearing motion, move in the [001] direction during the
transition. Moreover, the formation of lattice defects is found in spherical
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crystals of all sizes. These include grain boundaries between rocksalt do-
mains of different orientation, as well as dislocations. Whereas only one
14 Å crystal displays a grain boundary after the transition, over 80% of the
largest sized crystals transform with lattice defects.

In a single, spherical Cd366Se359 nanocrystal we observed a second transi-
tion mechanism (Fig. 4.2 C). Here, the transition does not involve a shearing
motion but a flattening-out of (100) planes. Starting on one side of the crys-
tal, atoms across six-membered hexagonal rings come together to form the
rocksalt structure and at the same time level differences in the c-direction
are flattened out. A transition through this mechanism requires a significant
overall shape change of the crystal, transforming a sphere into an oblate el-
lipsoid. This mechanism was previously proposed and later discarded by
Alivisatos et al. [11,73], because the significant shape change accompanying
the transition through this mechanism could not be confirmed by experi-
mental data [11]. The exact prerequisites for the two different mechanisms
to happen are unclear, but seem to be strongly dependent on the specific
surface structure. Although we observe the alternative mechanism in this
pureness only in one case, many 14.0 Å radius crystals and even a few larger
crystals, spherical and faceted, display a mixture of both mechanisms.

Although our simulations show many similarities with actual experi-
ments on CdSe nanocrystals, there are also important differences. The h-
MgO structure is not observed in experiments and the transition mechanism
proposed in agreement with experimental data involves the sliding of (001)
planes [11], not (100) planes as in our simulations. However, a possibly
metastable h-MgO structure might have a lifetime too short to be resolved
in the experiments. Also, crystals used in experiments are covered with
surfactants, which strongly influence surface energies [88]. The presence
of such a surface passivation layer may block the transition path to the
h-MgO structure and render it unaccesible in the experiments, favoring a
different transition mechanism. Computationally quite a challenge, a de-
tailed description of surface passivation nevertheless has to be included in
future simulations. Recently, progress has been made towards a description
of surfactants through simple force fields [89].

Another difference between simulation and experiment lies in the acces-
sible time scales. Although our rate of pressurization is lower than in com-
parable simulation studies [13,14,90–92], it is still many orders of magnitude
larger than in experiments, where observation times of several minutes up
to hours are common [11]. This has two effects: First, sudden changes in
pressure can lead to structural instabilities, possibly changing the statistical
weight of different transition mechanisms. Second, on the short timescale
available in simulations, the use of significantly higher pressures is neces-
sary to observe the transition. This again may lead to different transition
mechanisms. Despite of the large difference in timescale, the transitions
in our simulations happen at pressures comparable to those found in ex-
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periments. This indicates that transition barriers are quite different in the
two cases, again pointing to the important role of surface passivation. To
study the transition at the thermodynamic transition pressure, transition
path sampling methods will be applied in future work [17,83].

The observation of grain boundaries in our simulations is another striking
difference to the experiments, where nanocrystals transform free of defects
over many pressure cycles [10, 73]. The main mechanism in the formation
of these defects is surface-related: When the simple sliding-planes motion
would introduce too many surface defects in the final rocksalt structure, as
in the case of the spherical crystals, different domains of rocksalt are formed
to minimize the surface free energy by the formation of low-index rocksalt
surfaces. In faceted crystals, the sliding-planes motion alone leads to well
defined rocksalt surfaces. The formation of lattice defects in this case would
destroy these surfaces, introducing high-energy steps and edges. Neverthe-
less, grain boundaries can form in faceted crystals if, due to the high degree
of over-pressurization, the transformation is triggered in different parts of
the crystal simultaneously. Recently, a simulation study of GaAs nanocrys-
tals showed results similar to our work [90,91]: Larger spherical crystals are
found to transform with grain boundaries, whereas faceted crystals, more
often display single-domain behaviour.

4.4 Summary

In conclusion, we show that the structural transformation in CdSe nanocrys-
tals is dominated by surface effects. The transformation nucleates at the
surface and proceeds via the bulk mechanism of sliding (100) planes, but
depending on the details of the surface structure, other mechanisms in-
volving the flattening of (100) planes or the formation of a five-coordinate
intermediate structure are possible. Moreover, our simulations show that
in nanocrystals it is possible to stabilize structures that are unstable in the
bulk by controlling the overall shape and surface structure of the particles.



Chapter 5

An efficient transition path

sampling algorithm for

nanoparticles under pressure

We apply transition path sampling to the simulation of nanoparticles under
pressure. As a barostat we use a bath of ideal gas particles that form a
stochastically updated atmosphere around the nanoparticle. We justify this
algorithm by showing that it preserves the distribution of an ideal gas at
constant temperature and pressure by satisfying detailed balance. Based on
this result, we present a simple and efficient transition path sampling scheme
for the study of activated processes in nanoparticles under pressure. As a
first application, we investigate the h-MgO to rocksalt transformation in
faceted CdSe nanocrystals. Starting from an artificial mechanism involving
a uniform motion of all atoms, trajectories quickly converge towards the
dominant mechanism of nucleation and growth along parallel (100) planes.

5.1 Introduction

The physical and chemical properties of nanoscale matter are dominated
by surface effects and can deviate from the properties of the bulk material
in both quantitative and qualitative ways. For instance, pressure induced
structural phase transformations show strong dependence on particle size:
nanocrystals transform at higher pressures and show much stronger hystere-
sis than the corresponding bulk materials [10, 73, 93–96]. Furthermore, the
enhanced role of surface free energy can generate unique structural trans-
formation mechanisms and stabilize crystal structures that are unstable in
the bulk [97] .

Molecular dynamics computer simulations can play a key role in identi-
fying the atomistic details of pressure-induced structural transformations in
nanocrystals [14,16,90–92,97–99] as well as in the bulk [15,80,83]. An impor-
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tant issue in the simulation of nanoparticles under pressure is the method
through which hydrostatic pressure is applied. While methods exist that
allow pressurization of a nanoparticle in vacuum [100], an explicit pressure
medium must be included to model the experimental situation more closely.
Two main methods have been proposed so far: In the first, the medium con-
sists of Lennard-Jones particles and the pressure is controlled by a variant of
the extended Lagrangian approach [14, 16, 90, 91, 98, 100], changing the dy-
namics of the particles. In the second method, the pressure medium is made
up of soft sphere particles, for which the equation of state is known [92,100].
Here, the pressure is controlled by a single parameter of the interaction po-
tential, although the volume accessible to the pressure medium, a necessary
parameter for exactly tuning the pressure, can only be estimated. In both
methods, special care must be taken in choosing the parameters of the pres-
sure medium: for the exerted pressure to be hydrostatic, the dynamics of
the pressure medium must not slow down significantly even at pressures of
tens of GPa.

In our simulations we use a recently developed ideal gas barostat [97,
101], where the nanoparticle is surrounded by a thin atmosphere of non-
interacting particles that are stochastically introduced on the surface of the
atmosphere, with appropriate statistics for an ideal gas at the desired tem-
perature and pressure. In this approach, the pressure is easily controlled
by adjusting the number of gas particles in the simulation. Furthermore,
there is no need for an additional thermostat because the temperature of
the system is set by the gas particles’ velocity distribution. As there are
no interactions in the gas, the exerted pressure is ideally hydrostatic at all
times.

The ideal gas barostat seems intuitively correct and can be implemented
efficiently in a simulation. Yet, its usefulness can only be established by
showing that it indeed preserves the distribution of a system at constant
pressure and temperature. While such a demonstration is straightforward
for simple algorithms, complications arise in our case due to the stochastic
nature of the pressure bath. As the number of gas particles in the simulation
is not constant and particles may be added or removed from the simulation
in different ways, a careful analysis of the different steps of the algorithm is
necessary.

In this chapter, we show that the ideal gas barostat, appropriately imple-
mented, satisfies detailed balance and therefore preserves the correct equi-
librium distribution of a nanocrystal immersed in an ideal gas at constant
temperature and pressure. This result allows us to implement a simple tran-
sition path sampling scheme [17,18] for the simulation of activated processes
in nanoparticles under pressure. We apply the algorithm to study the re-
cently observed mechanism of the h-MgO to rocksalt transformation [97]
in a model of faceted CdSe nanocrystals at the bulk transition pressure of
2.5 GPa. Starting from a trajectory displaying a transformation mechanism
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previously suggested by Tolbert and Alivisatos [73], the simulation quickly
finds its way to the primary mechanism, which involves the sliding of parallel
(100) planes.

The chapter is organized in the following way. In section 5.2 we review
the details of the ideal gas pressure bath and rewrite the algorithm in a way
suitable for further analytical treatment. Section 5.3 contains the proof of
detailed balance for this algorithm. Based on this result, we present an effi-
cient transition path sampling algorithm for nanoparticle and pressure bath
in section 5.4. A discussion of our simulation results on CdSe nanocrystals
is given in section 5.5.

5.2 Ideal gas pressure bath

Our pressure bath consists of particles that do not interact with each other,
but interact with atoms in the nanoparticle by a repulsive soft sphere po-
tential of the form

u(r) =

{

ǫ
[

(r/σ)−12 − (rcut/σ)−12
]

if r < rcut ,

0 if r ≥ rcut .
(5.1)

We set ǫ = 1kJ/mol and choose σ large enough to prevent gas particles
from penetrating the nanoparticle (for CdSe nanocrystals a value of 3 Å is
sufficient); we cut the potential at a value of rcut = 2σ. To compute the
forces between gas and crystal, we use the cell list method [70] with cells of
sidelength lcell = rcut + 0.1 Å.

The gas particles fill a thin atmosphere around the nanocrystal. Using
the cell list method, it is convenient to define this atmosphere as consisting
of all cells that can hold possible interaction partners of crystal atoms. Thus,
the outer boundary of the ideal gas atmosphere consists of flat rectangular
parts, as illustrated in Fig. 5.1. Gas particles that leave this atmosphere are
no longer considered while new particles are introduced on the surface of
the atmosphere with the correct statistics for an ideal gas at pressure P and
temperature T . The equations of motion of all particles are integrated using
the Velocity Verlet algorithm [70]. Note that the stochastic treatment of the
pressure bath bears some resemblance to an existing method for modeling
solvent dynamics [102].

The following algorithm differs in some details from the one presented
in an earlier paper [101], which for subtle reasons does not precisely satisfy
detailed balance (for a discussion of this issue see section 5.3.4). However,
we have verified that results obtained using the old version [97,101] remain
unchanged when using the correctly balanced algorithm enumerated below
and depicted in Fig. 5.2:

1. Propagate the positions of the crystal atoms for one time step (first
step of the Velocity Verlet algorithm).



56 5. An efficient transition path sampling algorithm for nanoparticles under pressure

Figure 5.1: Cross section of a CdSe nanocrystal (cyan and yellow) immersed
in the pressure bath of ideal gas particles (gray). The gas occupies only a
thin layer, or atmosphere, around the nanocrystal. Built from rectangular
cells (blue grid), this atmosphere adapts to the shape of the crystal and thus
always provides the amount of gas particles necessary to exert the desired
pressure.
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2. Check if the boundaries of the atmosphere must change due to move-
ment of crystal atoms. Remove cells and gas particles therein that are
no longer needed.

3. Propagate the positions of the gas atoms for one time step (first step of
the Velocity Verlet algorithm). Note that for this step forces obtained
with the crystal atoms in their original position, i.e., before step 1, are
used. Remove all gas particles that have left the atmosphere.

Place nin gas particles on the surface of the atmosphere, with positions
drawn from a uniform distribution. nin (“in” for “inject”) is a number
drawn from a Poisson distribution with an average of

nin = (2πmkBT )−1/2AP∆t , (5.2)

wherem is the mass of the gas particles, kB is the Boltzmann constant,
T and P are the desired temperature and pressure, A is the total
surface area of the atmosphere, and ∆t is the time step. Let nx denote
the local unit normal to the surface pointing into the system. The
velocity distribution in that direction is given by

p(vx) =
m

kBT
vx exp

(

− mv2
x

2kBT

)

. (5.3)

The velocity distribution in directions perpendicular to nx is Maxwell-
Boltzmann. To take into account that the gas particles will not enter
the atmosphere all at the same time but instead at a variety of times
equally distributed over the period of one time step, propagate them
for a random time step between zero and ∆t, drawn from a uniform
distribution. Keep only those particles that stay within the boundary
of the atmosphere.

4. If necessary, add new cells and fill them with Napp gas particles. Napp

(“app” for “appear”) is a number drawn from a Poisson distribution
with an average of

Napp =
PVapp

kBT
, (5.4)

where Vapp is the total volume of all added cells. The positions of
the particles are uniformly distributed over the cell volume and their
velocity distribution is Maxwell-Boltzmann.

5. Compute forces and propagate all velocities of crystal and gas atoms
(second step of the Velocity Verlet algorithm).

This algorithm propagates the system, nanocrystal and pressure bath,
for one time step.
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Figure 5.2: Illustration of the ideal gas algorithm. (1) Propagate crystal
atoms (blue). (2) If necessary, remove cells and gas particles therein that
are no longer needed (red). (3) Propagate gas atoms and remove those (red)
that leave the atmosphere. Put new gas particles (green) on the surface and
propagate them into the atmosphere; remove those (red) that end up outside.
(4) If necessary, add new cells and fill them with gas particles (green).
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5.3 Detailed balance for the ideal gas barostat

In the following we show that the algorithm presented in section 5.2 con-
serves the correct equilibrium distribution of a nanocrystal immersed in an
ideal gas at constant pressure and temperature by satisfying a detailed bal-
ance condition.

The stationary distribution that the algorithm should conserve is that of
a system at constant chemical potential µ, pressure P , and temperature T ,
where µ is given by an equation of state µ(P, T ). Fixing only these intensive
parameters, no constraint is put on extensive parameters like the number
of particles N , the volume V , and the energy U . However, the volume of
the system is determined by the external condition that the atmosphere of
ideal gas particles around the nanoparticle be as small as possible. Thus, a
constant µPT -ensemble is realized, and the desired stationary distribution
is given by

ρ(x) ∝ 1

h3N
e−β(U+PV −µN) , (5.5)

where x denotes the microscopic physical state of the system consisting
of the positions and momenta of all particles, h is Planck’s constant, and
β = 1/kBT .

A sufficient condition for the conservation of ρ(x) is the detailed balance
condition [103]

p(x→ x′)

p(x̄′ → x̄)
=
ρ(x′)

ρ(x)
, (5.6)

where p(x → x′) is the probability to go from physical state x to state x′

by the rules of the underlying dynamics and states x̄ and x̄′ are obtained
by inverting the momenta in states x and x′, respectively. In the following
we explicitly calculate p(x → x′) for the ideal gas barostat and show that
equation (5.6) holds.

5.3.1 Combinatorics

As a first step, we cast equation (5.6) into a form that takes into account
the fact that a single physical state x can have different representations in
a computer simulation.

Let x denote the physical state of a classical system of N indistinguish-
able particles, which of course makes no reference to which particle is which.
In a computer simulation we cannot avoid keeping a list of particle positions
in some order. As a result, one physical state is represented by N ! “com-
puter” states xP , each corresponding to a distinct permutation of the stored
list of positions, i.e.,

x ≡ {x1, x2, . . . , xN !} . (5.7)
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Taking this degeneracy of the physical state x into account, the stationary
distribution of computer states is given by

ρ(xP ) =
ρ(x)

N !
. (5.8)

To determine the total rate of transitions W (x→ x′) from one physical state
x to another x′, we must consider all moves xP → x′P ′ that are allowed by
a given sampling algorithm:

W (x→ x′) =
∑

P

∑

P ′

w(xP → x′P ′) . (5.9)

Here w(xP → x′P ′) is the transition rate for a specific pair of computer
states, depending on the time step ∆t, the distribution of computer states
ρ(xP ), and the conditional probability p(xP → x′P ′) that a simulation at xP

will move to x′P ′ in a single step:

w(xP → x′P ′) =
1

∆t
ρ(xP )p(xP → x′P ′) . (5.10)

It seems that in any reasonable algorithm the way a physical state x is
treated should not depend on the order in which particle positions are stored,
so ρ(xP ) and

∑

P ′ w(xP → x′P ′) do not depend on P . We can therefore write

W (x→ x′) =
1

∆t
N ! ρ(x1)

∑

P ′

p(x1 → x′P ′)

=
1

∆t
ρ(x)

∑

P ′

p(x1 → x′P ′) , (5.11)

where we have used equation (5.8) in the second step. The sum in this
equation accounts for the fact that the number of permutations P ′ accessible
from any one permutation P may be different than in the reverse direction.
Let’s define this number as

N (x→ x′) ≡
∑

P ′

H(xP , x
′
P ′) , (5.12)

where

H(xP , x
′
P ′) ≡

{

1, if x′P ′ is accessible from xP

0, otherwise.
(5.13)

Since H(xP , x
′
P ′) need not be a symmetric function, N (x → x′) may differ

from N (x′ → x). We then have

W (x→ x′) =
1

∆t
N (x→ x′)ρ(x)p(x1 → x′1) , (5.14)
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if permutations are assigned such that x′1 is accessible from x1 in a single
step. Here we have assumed that p(x1 → x′P ′) is the same for all acces-
sible x′P ′ , which is true for any algorithm that handles particle lists in a
deterministic way.

To illustrate this point, consider a Monte Carlo move x → x′ that at-
tempts to insert a single particle, N ′ = N + 1. If a particle is added to xP ,
we need some convention for labeling the new particle position. For con-
creteness, we choose to place the new position at the end of the original list
of positions, but all that is really required is that there is some deterministic
scheme for introducing a new label. Thus there is a one-to-one relationship
between P and P ′, and N (x → x′) = 1. If, in the reverse move x′ → x, a
particle is removed from x′P ′ , and the remaining particles retain their origi-
nal label ordering, then the label ordering in the resulting state xP is again
completely determined, and N (x′ → x) = 1.

If two particles are added in a single Monte Carlo move, two different
resulting computer states x′P ′ are possible, depending on the order in which
the particles are added. Both states are reached with equal probability,
and N (x → x′) = 2. In the reverse move, however, with the deterministic
removal scheme described above, the resulting state xP is again completely
determined, and N (x′ → x) = 1.

In the ideal gas barostat, more than one particle may be inserted in a
single step and particles may be added to the simulation in two distinct
ways: They may be injected through the boundary of the atmosphere or
they may appear in a lattice cell that has just been added to the simulation.
Since multiple orderings of these particles are possible, one computer state
xP could generate many different permutations of the added particles in xP ′ .

The number of distinct computer states xP ′ accessible from xP is

N (x→ x′) = Nin!Napp! . (5.15)

Similarly,
N (x̄′ → x̄) = Nin′ !Napp′ ! , (5.16)

where “in′” and “app′” refer to particles added in the reverse step x̄′ → x̄.
Particles that are removed from the simulation, either because they leave
the atmosphere or because they are located in a cell that is no longer needed,
need not be considered, as long as there is a deterministic removal scheme
as discussed above.

Detailed balance requires that the net transition rates between two phys-
ical states are identical at equilibrium,

W (x→ x′) = W (x̄′ → x̄) . (5.17)

Using equation (5.14), we can now write down the corresponding require-
ment for the permutation-specific transition probabilities:

p(x1 → x′1)

p(x̄′1 → x̄1)
=
ρ(x′)N (x̄′ → x̄)

ρ(x)N (x→ x′)
. (5.18)
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Here we have used the fact that the stationary distribution of states is
symmetric with respect to inversion of momenta, ρ(x̄′) = ρ(x′).

Inserting equations (5.5), (5.15), and (5.16) into equation (5.18), we
arrive at the final expression of the detailed balance condition,

p(x1 → x′1)

p(x̄′1 → x̄1)
=

1

h3∆N

Nin′ !Napp′ !

Nin!Napp!
e−β(∆U+P∆V −µ∆N) , (5.19)

where ∆N = N ′ −N , ∆U = U ′ − U , and ∆V = V ′ − V are the differences
in particle number, energy, and volume, respectively, between the states x
and x′.

5.3.2 Transition probabilities

We proceed by explicitly calculating the transition probabilities for the ideal
gas barostat.

The transition probability from computer state x1 to computer state x′1
can be written

p(x1 → x′1) =

Pin(Nin)Papp(Napp)
∏

i∈in

fin(q
′
i,p

′
i)
∏

j∈app

fapp(q′
j ,p

′
j) . (5.20)

Here, Pin(Nin) and Papp(Napp) are Poisson distributions governing the num-
ber of added particles. The positions q′ and momenta p′ of added particles
are distributed according to fin(q

′,p′) for injected particles and fapp(q
′,p′)

for appearing particles. Note that we omit delta-function singularities, as-
sociated with deterministic time evolution, that appear symmetrically in
p(x1 → x′1) and p(x′1 → x1). In particular, this concerns the deterministic
motion of nanocrystal atoms. A detailed sketch illustrating the algorithm’s
treatment of the ideal gas is shown in Fig. 5.3. The following discussion
separately treats the cases of particle injection and particle appearance.

Particle injection

Nin denotes the number of particles that are added to the system through
the injection algorithm, where nin particles are put on the boundary of the
ideal gas atmosphere and then propagated into the system. The average
number of those particles nin is given by equation (5.2). However, in general
Nin 6= nin because there is chance that when propagated a particle will fly
through a corner and leave the system (see Fig. 5.3), in which case it is
no longer considered. We denote the probability for a successful injection,
averaged over all possible injection points on the boundary R, by ΠR.
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Figure 5.3: Illustration of a transition between two states x and x′ of the
ideal gas system, nanocrystal not shown. The system starts in state x,
with thin arrows indicating particle velocities. In the first step, unnecessary
cells and particles therein (red) are removed. In the next step, particles
are propagated according to their velocities; if they leave the atmosphere,
they are no longer shown. New particles (green) are injected through the
surface, with trailing velocity arrows indicating their imaginary positions
one time step in the past. In the final step, new cells and particles (green)
are added to the atmosphere. In the reverse move the same sequence of
steps is passed. Note that in both directions particles are injected through
the same boundary, and not all injected particles remain inside.
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Dropping the subscript “in” for the moment, the probability to try an
insertion for a number of n particles is given by the Poisson distribution

P̂in(n) =
nne−n

n!
. (5.21)

To obtain the probability that a total of N particles survive the insertion
process, we must sum over all possible realizations,

Pin(N) =

∞
∑

n=N

P̂in(n)

(

n

N

)

(ΠR)N (1 − ΠR)n−N . (5.22)

Resumming,

Pin(N) =
(ΠR)Ne−n

N !

∞
∑

n=N

nn

(n−N)!
(1 − ΠR)n−N

=
(ΠR)Ne−n

N !

∞
∑

a=0

nN+a

a!
(1 − ΠR)a

=
(nΠR)Ne−n

N !

∞
∑

a=0

na

a!
(1 − ΠR)a

=
(nΠR)Ne−n

N !
en(1−ΠR) , (5.23)

we end up with another Poisson distribution

Pin(Nin) =
N

Nin

in e−N in

Nin!
, (5.24)

with an average number of surviving particles

N in = ninΠR . (5.25)

For the evaluation of fin(q,p) we adopt a coordinate system with re-
spect to the local boundary of the ideal gas system, with nx denoting the
local unit normal to the boundary, pointing into the system. In our injec-
tion algorithm, a particle’s position q̂ with components (x̂, ŷ, ẑ) is assigned
randomly, with ŷ and ẑ equidistributed on an area A with fixed coordinate
x̂ = x0. A momentum p̂ is drawn from a distribution ϕ(p̂), along with a
timestep τ , equidistributed within (0,∆t). Then the particle is propagated
to a new position q = q̂ + τ p̂/m. The distribution of the set of random
variates (τ, ŷ, ẑ, p̂) is given by

f̂in(τ, ŷ, ẑ, p̂) =
Θ(τ)Θ(∆t− τ)

∆t
× hR(ŷ, ẑ)

A
× ϕ(p̂) , (5.26)
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Figure 5.4: Illustration of the variable transformation (5.30), z-direction
not shown. The arrows indicate particle velocities, with arrows starting at
particle positions one time step in the past. The blue gas atom was injected
from the point (x0, ŷ) on the surface, and propagated for a time τ to its
final position (x, y). The other particle could not have reached its position
through an injection event.

where Θ(τ) is the step function,

Θ(τ) =

{

1, if τ ≥ 0,
0, if τ < 0,

(5.27)

hR(ŷ, ẑ) is the characteristic function of the boundary R,

hR(ŷ, ẑ) =

{

1, if (ŷ, ẑ) lies on R,
0, else,

(5.28)

and ϕ(p̂) is the momentum distribution

ϕ(p̂) =
β2

2πm2
Θ(p̂x) p̂x e−βp̂

2/2m . (5.29)

We want to calculate the distribution of the position q = (x, y, z) and mo-
mentum p = (px, py, pz) of an inserted particle. Thus we have to transform
variables according to

τ = (x− x0)m/px ,

ŷ = y − pyτ/m = y − (x− x0)py/px ,

ẑ = z − (x− x0)pz/px ,

p̂x = px ,

p̂y = py ,

p̂z = pz . (5.30)

An illustration of this transformation is shown in Fig. 5.4. With ∆x ≡
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x− x0, the determinant of the Jacobian for this transformation reads
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m/px 0 0 −∆xm/p2
x 0 0

−py/px 1 0 ∆x py/p
2
x −∆x/px 0

−pz/px 0 1 ∆x py/p
2
x 0 −∆x/px

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= m/px. (5.31)

Transforming the distribution f̂in(τ, ŷ, ẑ, p̂) we arrive at

f̃in(q,p) =
ϕ(p)

A∆tpx/m
ψR(q,p)

=
β2

2πmA∆t
e−βp

2/2m ψR(q,p) , (5.32)

where

ψR(q,p) = Θ
[

τ(q,p)
]

Θ
[

∆t− τ(q,p)
]

Θ(px)hR

[

ŷ(q,p), ẑ(q,p)
]

(5.33)

decides, whether the set (q,p) could have been produced by the insertion
algorithm.

We are interested in the distribution fin(q,p) of particles that survive
the insertion process only, yet f̃in(q,p) is nonzero for particles that end up
out of bounds after the insertion process. To correct for these particles, we
write

fin(q,p) =
1

ΠR
f̃in(q,p)HR(q) , (5.34)

where

HR(q) =

{

1, if q lies inside the boundary R,
0, else,

(5.35)

is the characteristic function of the considered ideal gas volume. The nor-
malizing constant ΠR, giving the probability that an insertion process will
be successful, is obtained by integrating over phase space,

ΠR =

∫

dqdp f̃in(q,p)HR(q) . (5.36)

The final expression for the probability distribution of positions and mo-
menta of inserted particles then reads

fin(q,p) =
β2

2πmA∆tΠR
e−βp

2/2m × φR(q,p) , (5.37)

where
φR(q,p) = ψR(q,p)HR(q) (5.38)

decides, whether the set (q,p) could have been produced by a successful
insertion move.
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Volume change

The average number of particles Napp added to newly considered ideal gas
regions is given by equation (5.4). This average fully specifies the Poisson
distribution

Papp(Napp) =
N

Napp

app e−Napp

Napp!
. (5.39)

The appearing particles are distributed uniformly throughout the added
volume, and their momenta are Maxwell-Boltzmann distributed,

fapp(q,p) =
1

Vapp

(

2πm

β

)−3/2

e−βp
2/2m . (5.40)

5.3.3 Detailed balance

Assembling equations (5.24), (5.37), (5.39), and (5.40), we can now write
the transition probability (5.20) in detail,

p(x1 → x′1) =

(

β2

2πmA∆tΠR

)Nin
[

1

Vapp

(

2πm

β

)−3/2
]Napp

e−βKadd

×

(

PA∆tΠR

√

β/2πm
)Nin

e−PA∆tΠR

√
β/2πm

Nin!

× (βPVapp)Nappe−βPVapp

Napp!

∏

j∈in

φR(q′
j ,p

′
j) , (5.41)

where Kadd is the total kinetic energy of incoming particles. The last term
simply decides, whether a transition between states x and x′ is possible
within our injection algorithm. Note that we can omit this factor in com-
paring transition probabilities because it is symmetric with respect to x
and x′ in the sense that only particles for which an injection is possible are
carried back through the boundary in one time step, if their momenta are
inverted. Simplifying,

p(x1 → x′1) = e−βKadd

[

βP

(

β

2πm

)3/2
]Napp+Nin

× e−βPVapp−PA∆tΠR

√
β/2πm

Nin!Napp!
. (5.42)

Considering the fact that in the reverse move particles are injected through
the same boundary R (see Fig. 5.3), the ratio of forward and backward rates
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Figure 5.5: Violation of detailed balance by a naive implementation of the
ideal gas barostat, as described in the text. Starting in state x, the particle
is propagated over the boundary and removed. A new cell is added and
filled with a new gas particle (green) to form state x′. The reverse move,
in which the added cell (red) is removed again, does not lead back to the
original state x.

then takes the form

p(x1 → x′1)

p(x̄′1 → x̄1)
= e−β∆U

[

βP

(

β

2πm

)3/2
]∆N

e−βP∆V Nin′ !Napp′ !

Nin!Napp!
. (5.43)

With the fugacity of the ideal gas,

eβµ = h3βP

(

β

2πm

)3/2

, (5.44)

we arrive at

p(x1 → x′1)

p(x̄′1 → x̄1)
=

e−β(∆U+P∆V −µ∆N)

h3∆N

Nin′ !Napp′ !

Nin!Napp!
. (5.45)

A comparison with equation (5.19) shows that our algorithm indeed satisfies
detailed balance.

5.3.4 Other implementations of the barostat

We briefly discuss possible pitfalls that have to be avoided in the implemen-
tation of the ideal gas barostat.

As an essential and seemingly complicated feature of the algorithm pre-
sented in section 5.2, the boundary of the ideal gas atmosphere is updated
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in two different steps. Consequently, particles leave the atmosphere and are
injected through the same boundary in forward and backward moves. To
illustrate how detailed balance can be violated if this is not the case, con-
sider the following simple algorithm, which is similar to the one used in an
earlier paper [101]:

1. Propagate all particles for one time step, remove particles that leave
the atmosphere.

2. Inject particles through the surface.

3. Update the atmosphere: remove cells that are no longer needed and
add new cells, filled with gas particles.

Clearly, in this algorithm particles are exchanged through a possibly different
boundary in the backward move. Consider now a particle A that leaves the
atmosphere and is removed from the simulation in step (1). If in step (3)
a new cell is added adjacent to the place where A left in step (1), particle
A must be restored in the new cell with its proper position and velocity,
otherwise the reverse move is not possible and detailed balance is violated.
For an illustration of this situation see Fig. 5.5.

As a possible solution, gas atoms leaving the atmosphere into cells that
will be added during the same time step should not be removed from the sim-
ulation. Furthermore, particle insertions in newly added cells should only be
accepted if inversion of momentum will not carry the particle back into the
original atmosphere in one time step. However, the algorithm presented in
section 5.2 can be implemented more efficiently than this alternative scheme.

5.4 Transition path sampling

In this section we show how the ideal gas barostat can be used within the
framework of transition path sampling to study rare events like structural
transformations in nanoparticles under pressure.

5.4.1 Transition path ensemble

Many interesting physical and chemical processes require the crossing of high
free energy barriers. First order phase transitions near the thermodynamic
transition point and chemical reactions are examples of such processes. In
particular, structural transformations in nanocrystals display large hystere-
sis even on experimental time scales [10, 73]. On time scales accessible in
a straightforward molecular dynamics simulation, significantly higher pres-
sures and pressurization rates must be applied to observe the transforma-
tion. At elevated pressures, however, the transformation mechanism can
be different and the formation of grain boundaries is observed [91, 97], in
contradiction with experiments [10,73].
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One generally applicable approach to spanning disparate timescales is
transition path sampling [17,18]. Starting from an arbitrary trajectory dis-
playing the transformation, a Monte Carlo procedure is used to generate
an ensemble of reactive trajectories which can be analyzed to obtain the
most probable transition path, the transition state, and even activation en-
ergies [54]. Because in a transition path simulation only reactive trajectories
are considered, there is no need to artificially drive the system over the bar-
rier and external parameters like temperature and pressure need not be
adjusted from experimental values.

The central object of transition path sampling is the ensemble of reactive
trajectories that lead from region A to region B in phase space, perhaps
crossing a large free energy barrier. We consider trajectories X of fixed
length t, consisting of a sequence of L points in phase space separated by a
time step ∆t,

X = {x1, x2, x3, . . . , xL} , t = (L− 1)∆t . (5.46)

Note that xi in this context denotes different physical states of the system
along a trajectory, not different computer representations of a single physical
state. The probability to observe a particular transition path is given by

P(X) ∝ hA(x1)hB(xL)ρ(x1)
L−1
∏

i=1

p(xi → xi+1) . (5.47)

Here, the characteristic functions hA(x1) and hB(xL) return unity only if
the start and end points x1 and xL of the trajectory lie in regions A and B,
respectively, and zero otherwise; ρ(x1) is the probability density to observe
the starting point, and the product gives the probability to move from one
point along the trajectory to the next according to the dynamics of the sys-
tem. In the case of the ideal gas barostat, the functions ρ and p correspond
to equations (5.5) and (5.42), respectively.

To sample the ensemble of trajectories defined by equation (5.47), a
Monte Carlo procedure is used in close analogy to conventional Monte Carlo
sampling in configuration space. Starting from an existing reactive trajec-
tory a new trajectory is created, which is then accepted or rejected according
to its probability relative to the old path. However, while trajectory space is
sampled with a strong bias, the underlying dynamics of the system remain
unaltered. As a result, trajectories obtained from a transition path sampling
simulation are true dynamical trajectories, each evolving in time free of any
bias.

5.4.2 Shooting and shifting

Two kinds of Monte Carlo moves are typically used to create new dynamical
trajectories from old ones [18]. For a nanoparticle in the ideal gas pressure
bath they take the following form.
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In the first move, called shooting, a random point along a given trajec-
tory is selected, dividing the trajectory in two parts. Then, applying the
algorithm described in section 5.2, a new trajectory is obtained by propa-
gating the shooting point forward and backward in time. Because of the
stochastic nature of the pressure bath, new gas particles are introduced on
the surface of the atmosphere every time step and the new trajectory will
eventually diverge from the old one. To increase the probability of generat-
ing a new trajectory that still leads from A to B, it is advisable to regrow
only one part of the old trajectory, either forward or backward in time.

In the second move, the shifting move, the trajectory is extended forward
or backward for a random period of time, and a segment of equal length is
removed from the other end of the trajectory.

In one of the review papers on transition path sampling [18] it has been
shown that for stochastic dynamics, under fairly general conditions, the
above procedures results in correct sampling of equation (5.47) with a very
simple acceptance rule: new trajectories are accepted if they still connect
regions A and B, and rejected otherwise. The corresponding acceptance
probability takes the form

acc(X → X ′) = hA(x′1)hB(x′L) . (5.48)

While systems like the ideal gas barostat, where the total number of par-
ticles is not constant, were not explicitly considered in Ref. [18], the above
acceptance probability is correct provided the underlying dynamics of the
system satisfy the condition of microscopic reversibility,

p(x→ x′)

p(x̄′ → x̄)
=
ρ(x′)

ρ(x)
. (5.49)

Again, the state x̄ is obtained by inverting the momenta of all particles in
state x. As we have shown in section 5.3, the ideal gas barostat fullfills this
condition. Therefore the described shooting and shifting moves together
with the simple acceptance criterion (5.48) result in correct sampling of
trajectories.

5.5 Simulation results

In this section we apply the transition path sampling algorithm presented
above to identify the primary mechanism of the h-MgO to rocksalt trans-
formation in faceted CdSe nanocrystals.

Bulk CdSe transforms from the four-coordinate wurtzite to the six-
coordinate rocksalt structure at a pressure of about 2.5 GPa [84]. In a
recent paper, Shimojo et al. [15] studied this transformation in molecular
dynamics computer simulation of a bulk crystal and identified two main
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Figure 5.6: Evolution of the transformation mechanism during a transition
path sampling simulation of a Cd528Se528 crystal. Rows (A), (B), and (C)
show three selected trajectories, each evolving in time from left to right,
showing the crystal along the hexagonal c-axis. In all three trajectories the
crystal has the h-MgO structure at 0 ps; 20 ps later it is found in the rocksalt
structure. (A) The simulation starts from an artificial trajectory, where
the crystal is transformed through a uniform compression in the direction
orthogonal to one set of parallel (100) surfaces, as indicated by the black
arrows. Atoms at opposite vertices of hexagonal six-membered rings come
together to form an additional bond. (B) After approximately 100 shooting
moves, the mechanism changes: The first part of the transformation still
follows a similar route, rearranging the mid-section of the crystal through
the compression mechanism (black arrows). But then a different process
begins, indicated by red arrows, which involves the sliding of parallel (100)
planes. Note the different orientations of the final rocksalt lattice relative to
the initial hexagonal lattice. (C) Yet a few hundred shooting moves later,
the first mechanism has completely vanished and the crystal is transformed
via the pure sliding planes mechanism. Starting on the surface, parallel
(100) planes sequentially slide to transform the crystal, with adjacent planes
preferably sliding in alternate directions.
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mechanisms. In the first one the crystal is compressed in one of the equiv-
alent [100] directions: the corresponding parallel (100) planes are flattened
out and additional bonds are formed between atoms across six-membered
hexagonal rings. This particular transformation route was first proposed by
Tolbert and Alivisatos [73] for CdSe nanocrystals and will be called com-
pression mechanism in the following. The second mechanism involves the
sequential sliding of parallel (100) planes, where the 120◦ hexagonal bond
angle along the planes is transformed into the 90◦ cubic angle. As a precursor
to both mechanisms, the puckered (001) wurtzite layers are flattened out and
the hexagonal five-coordinated h-MgO structure is formed as a metastable
intermediate. Using transition path sampling, Zahn, Grin, and Leoni [83]
recently showed that in the bulk crystal near the thermodynamic transition
pressure of 2.5 GPa the sliding planes mechanism is highly favored over
the compression mechanism and the transition occurs via nucleation and
growth.

In CdSe nanocrystals, the analogous transformation is strongly influ-
enced by surface structure and size of the crystals [16, 97, 98, 104]. Recent
molecular dynamics simulations revealed that while spherical crystals trans-
form much as observed in the bulk, the five-coordinated h-MgO structure can
be stabilized in faceted crystals due to favorable surface energetics [97,101].
However, in both faceted and spherical crystals the transformation from the
hexagonal to the cubic structure can proceed through either the compression
or the sliding planes mechanism, or a mixture of both [16,97,98].

To clarify the role of the two different mechanisms near the thermody-
namic transition pressure, we apply the transition path sampling algorithm
presented in the preceding section to the h-MgO to rocksalt transforma-
tion in faceted CdSe nanocrystals. While this transformation is observed at
pressures of about 5.5 GPa in conventional molecular dynamics simulations,
we here set the pressure to the bulk value of 2.5 GPa. We use the empiri-
cal pair potential for CdSe developed by Rabani [85]. Faceted Cd216Se216,
Cd528Se528, and Cd1050Se1050 crystals with aspect ratios of about 1.0 are
prepared by cleaving a bulk h-MgO lattice along equivalent (100) planes,
with (001) and (001̄) planes terminating the crystals along the hexagonal
[001] c-axis. We use trajectories of 20 ps length and a time step of 2 fs. At
a temperature of 300 K, 44000 gas particles are needed on average to apply
a pressure of 2.5 GPa on a Cd528Se528 crystal.

The transformation is monitored by calculating the percentage of crystal
atoms with six nearest neighbors. Atoms are defined to be nearest neigh-
bors if they are closer than 3.3 Å, the location of the first minimum of the
radial distribution function. We accept trajectories if the crystal has no six-
coordinated atoms initially and 20 ps later has more than 28%, 45%, and
54% six-coordinated atoms for Cd216Se216, Cd528Se528, and Cd1050Se1050

crystals, respectively. These values were determined from straightforward
simulations in the rocksalt structure.



74 5. An efficient transition path sampling algorithm for nanoparticles under pressure

A first trajectory, necessary for starting a transition path sampling sim-
ulation, is obtained in the following way: Positions q0 of crystal atoms are
initialized according to q0 = (qmgo +qrs)/2, where qmgo represents the per-
fect h-MgO crystal and qrs are the positions of atoms in a rocksalt crystal
obtained from a transformation via the compression mechanism. Particle
velocities p0 are set to p0 = (qrs − qmgo)/∆t and then scaled to a tem-
perature of 300 K. Keeping crystal atoms fixed, the atmosphere of ideal gas
particles around the crystal is allowed to equilibrate for 10 ps. Starting from
this point, a first trajectory is obtained by propagating the system forward
and backward in time, resulting in a transformation of the crystal via the
compression mechanism.

Crystals of all three sizes qualitatively show the same behavior. A typ-
ical transition path sampling run for a Cd528Se528 is illustrated in Fig. 5.6.
Starting with the pure compression mechanism involving a uniform motion
of all crystal atoms, within a few hundred trajectories the transformation
evolves towards the sliding planes mechanism, nucleating on the surface of
the crystal and growing along parallel (100) planes. In the thousands of
subsequent trajectories we harvested this mechanism persists: While the
relative directions of sliding planes can vary, resulting in different shapes of
the final rocksalt crystal, the mechanism does not change qualitatively. This
result strongly suggests that near the thermodynamic transition pressure the
sliding planes mechanism is the most favorable transition route.



Chapter 6

Transition state analysis of

solid-solid transformations in

nanocrystals

“It is nice to know that the computer understands the problem.
But I would like to understand it too.” Eugene Wigner

A systematic simulation methodology is introduced which allows the accu-
rate determination of experimentally measurable quantities characterizing
solid-solid phase transformations under pressure. The atomistic mechanisms
of nucleation and growth in a structural transformation of pressurized CdSe
nanocrystals are identified using transition path sampling computer simu-
lation. A committor-based transition state analysis is applied to extract
activation enthalpies and volumes from transformation pathways at exper-
imental conditions. The qualitative dependence of activation enthalpies on
nanocrystal size is in good agreement with experimental data and supports
the observed nucleation mechanism, which is characterized by a critical nu-
cleus of remarkable shape located on the crystal surface. Based on commit-
tor distributions along typical transformation pathways, the coordination
number is identified as a suitable reaction coordinate for the process.

6.1 Introduction

Identifying the atomistic mechanisms of structural phase transformations
of solids on the nanoscale is an important step both for a deeper under-
standing of the physical process itself, as well as for the synthesis of new
materials with tailored physical and chemical properties. Size-dependent
behavior, typical for the nanoscale, can often be successfully described by
simple thermodynamic considerations. For instance, the strong size depen-
dence of the transition pressure that characterizes pressure-induced transfor-

75
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Figure 6.1: A rugged energy barrier separating two metastable conforma-
tions A and B of a solid. From the knowledge of the barrier ∆Huc on the level
of the unit cell alone it is not straightforward to reconstruct the activation
energy ∆H of the entire transformation.

mations can be rationalized by models based on surface free energies [1, 8].
However, the specific surface structure and shape of a transformed parti-
cle and thus its surface free energy strongly depend on available atomistic
transition routes [5]. In materials design, in turn, the facilitation or inhibi-
tion of such routes by precise control of surface configuration and shape of
the nanoparticle can be a practicable way of stabilizing structures that are
unstable otherwise [12,105–107].

The thermodynamic and kinetic aspects of nanocrystal transformations
have been studied in detail in pressure-experiments [2, 11, 12, 75, 88, 108].
Most significantly, Alivisatos and coworkers have demonstrated that it is
possible to measure activation enthalpies and activation volumes for such
processes [9,10]. Based on this experimental evidence it is possible to spec-
ulate about the underlying transformation routes; for an unambiguous iden-
tification of the mechanism on the atomistic level, however, experimental
time and space resolution currently remains insufficient.

The necessary atomistic perspective is conveniently provided by molec-
ular dynamics computer simulation [13–16, 80, 83, 90–92, 98, 104, 109–114].
Nevertheless, the significance of a transformation mechanism observed with
a computer simulation often remains unclear for two reasons. First, at
experimental conditions of temperature and pressure, solid-solid transfor-
mations typically involve high kinetic barriers associated with nucleation
events. The resulting waiting times often exceed seconds or even hours—
timescales vastly out of range for atomistic computer simulations. The usual
solution to this problem is to simulate at elevated pressure and temperature,
whereupon transformations will readily occur on the accessible picosecond
timescale. Under such conditions, however, observed mechanisms will in
general not be comparable to mechanisms observed experimentally.

Second, a direct comparison between quantities that are observable both
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in experiments and simulation is not easily achieved. Activation enthalpies
and volumes, as measured in experiments [9, 10], in principle provide an
excellent indicator of mechanism because the height of the kinetic barrier
is a direct consequence of the specific atomistic pathways. Calculation of
such quantities, however, require the identification of the central part of the
transformation, the transition state containing the critical nucleus of the
high pressure phase. Moreover, a full modeling of the experimental situa-
tion is necessary. In particular, it is not sufficient to identify the transfor-
mation pattern with the lowest energy barrier on the level of the unit cell, as
illustrated in Fig. 6.1, because the activation enthalpy for the entire transfor-
mation sensitively depends on the precise sequence of such steps. Moreover,
in a nanocrystal, certain transformation routes might not be accessible at
all because they lead to particularly unfavorable surface configurations.

Here, we present a systematic methodology that overcomes these prob-
lems and establishes direct contact with experiments through the calculation
of activation enthalpies and volumes at conditions close to experiments. We
demonstrate its usefulness by identifying the nucleation mechanism of a
structural transformation in CdSe nanocrystals. The timescale problem is
avoided by means of transition path sampling [17,18,32,65,115], a simulation
method for the study of rare events in complex systems. Using the com-
mittor function, a statistical measure for the progress of the transformation,
we identify the critical nuclei of the high pressure phase and calculate the
corresponding activation enthalpies and volumes. A comparison with ex-
perimental values yields good qualitative agreement and supports observed
mechanism observed in the simulation, which involves a nucleation event on
the surface of the crystal and subsequent growth by sliding of parallel crystal
planes. We also show how committor calculations can be used to assess the
quality of putative reaction coordinates, which capture the essentials of the
transformations.

Briefly, the application of our methodology to CdSe nanocrystals consists
of the following steps:

1. We perform transition path sampling simulations of the h-MgO to
rocksalt transformation at pressures of 2.0, 2.5, 3.0, 3.5, and 4.0 GPa
for crystals with diameters of 2, 3, 4, and 5 nm at a temperature of
300 K. For every crystal size and value of the pressure, at least 10 000
trajectories are collected (Fig. 6.2).

2. For 5 different trajectories chosen randomly from the ensemble of re-
active trajectories for given pressure and crystal size, we calculate the
committor as a function of time (Fig. 6.3) and identify all transition
states along the trajectory (Fig. 6.4).

3. Along the same trajectories, using static Monte Carlo simulations,
we calculate the enthalpy and volume of the crystal as a function of
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time (Fig. 6.10). The average enthalpy and volume of the crystal in
the h-MgO structure at the beginning of the trajectory, as well as in
the final rocksalt configuration at the end are also calculated in long
Monte Carlo runs. This allows us to estimate the dependence of the
thermodynamic transition pressure on crystal size (Fig. 6.9).

4. For every transition state along a given trajectory, the activation en-
thalpy and volume are determined by comparing enthalpy and volume
at the transition state with the respective values of the h-MgO struc-
ture (Fig. 6.10). These values are then averaged over all transition
states along the trajectory and over all trajectories for given crystal
size and pressure. The size and pressure dependence of the activation
enthalpy and volume are compared to experimental values in Fig. 6.11.

5. An analysis of committor distributions along typical transformation
pathways allows us to identify a suitable reaction coordinate (Fig. 6.12).

The individual steps outlined above are discussed in depth in the following
sections.

6.2 Transition path sampling

In a recent paper [97], we have used molecular dynamics simulations to study
the atomistic mechanisms of the wurtzite to rocksalt transformation in CdSe
nanocrystals, modeled with the empirical pair potential by Rabani [85, 89].
As pressure-transmitting medium, we introduced a barostat of ideal gas par-
ticles that occupy a stochastically updated atmosphere around the nanocrys-
tal [101]. Depending on crystal size and surface structure, qualitatively dif-
ferent transformation mechanisms are possible. In perfectly spherical crys-
tals with unordered surfaces, the transformation proceeds mainly through
shuffling of (100) planes and a simultaneous unbuckling of (001) layers. In
crystals that have the shape of hexagonal prisms with well-defined and stable
low-energy facets, the mechanism decomposes into two steps: The unbuck-
ling part happens at lower pressures, taking the crystal to the 5-coordinated
h-MgO structure which in the second step is transformed to rocksalt at
higher pressures through the shuffling of (100) planes. Apart from this main
route, a third mechanism was observed in some cases which was previously
proposed by Alivisatos and coworkers [8] and involves the flattening-out of
(100) planes and corresponds to a pathway

The pressures needed to induce the transformations to rocksalt discussed
above lie between 5.5 and 10 GPa, depending on crystal size and shape.
While these pressures are only moderately higher than those used experi-
mentally, the timescales differ by orders of magnitude. To observe the trans-
formation in simulation, the pressure has to be increased close to the point
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where the low-pressure phase becomes unstable. The resulting transfor-
mations proceed rather violently, with simultaneous nucleation events from
different sites on the crystal and the formation of grain boundaries [90,91,97].

Simulations under experimental conditions can be conducted with tran-
sition path sampling, a method that uses a Monte Carlo procedure to sample
the ensemble of trajectories that connect two well-defined regions A and B
in phase space [18]. This restriction of the space of observable pathways is
particularly useful when A and B are separated by a barrier that is large com-
pared to typical thermal fluctuations and the simulation of barrier-crossing
trajectories becomes increasingly time-consuming with conventional meth-
ods. In a transition path sampling simulation, a Markov chain of paths is
constructed by means of a trajectory displacement move called shooting [18],
and individual trajectories are accepted or rejected as members of the chain
according to a detailed balance condition that ensures correct sampling.
While a strong bias is thus applied in trajectory space, the underlying dy-
namics along individual trajectories remain untouched and true dynamical
pathways are observed. In particular, the frequency of occurrence of dif-
ferent mechanisms reflects the one observable in a hypothetical, extremely
long conventional simulation run.

Recently, we have combined the ideal gas barostat used in our regular
molecular dynamics simulations with transition path sampling to study the
h-MgO to rocksalt transformation in faceted CdSe nanocrystals at a pres-
sure of 2.5 GPa [65]. Sampling was started from artificially created first
trajectories featuring a transformation through the mechanism proposed by
Alivisatos and coworkers [8]. Within a few hundred iterations of the algo-
rithm, the trajectories converged to the sliding-planes mechanism mentioned
above, clearly identifying this route as the most favored one at lower pres-
sures. Here, as the first step towards the identification of transition states in
CdSe nanocrystals, we use the same simulation setup to study the transfor-
mations of crystals with different sizes (2, 3, 4, and 5 nm diameter—120, 432,
1056, and 2100 atoms) at pressures ranging from 2 to 4 GPa. The length of
trajectories varies between 20 and 60 ps, depending on crystal size and pres-
sure. Other simulation details, in particular regarding the implementation
of the ideal gas barostat, can be found in Ref. [65].

6.2.1 Models of CdSe nanocrystals

The shape of CdSe nanocrystals used in pressure experiments has been de-
termined with electron microscopy, revealing that the crystals have well-
defined facets dominated by (001) and (100) surfaces [87] and an aspect
ratio of about 1.2 in the wurtzite structure. While the hexagonal prismatic
crystals used in our simulations are built according to these specifications,
in real crystals this perfect geometry will be degraded by steps and other
surface defects. Also, the role of faults in the perfect wurtzite stacking of
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(001) planes observed experimentally is neglected in our model. Indeed, if
the nanocrystal has surface defects or stacking faults, the h-MgO structure
is not observed as a stable intermediate [97]. Nevertheless, we use the h-
MgO to rocksalt transformation in these crystals as a model for the full
wurtzite to rocksalt transformation. We do this because in the presence
of surface defects transformations can get stuck in metastable intermediate
states, resulting in significantly longer trajectories and therewith increased
computational effort. Still, the simplified model used here is justified be-
cause of two reasons. First, the h-MgO to rocksalt transformation is the
rate-limiting step, clearly occurring at higher pressures than the step from
wurtzite to h-MgO. Second, also in simulations using other models [16,98],
a significant compression along the c-axis of the hexagonal wurtzite lattice
was observed with increasing pressure; at the time of the transformation, the
crystal is essentially in the h-MgO structure. An a posteriori justification
of our approach is provided by the good agreement with experimental data,
as discussed in section 6.5.

6.2.2 Defining the initial and final states

In a transition path sampling simulation, the initial and final states A and
B, here the h-MgO and rocksalt structures, need to be well-defined regions
in configuration space (or, more generally, phase space). These definitions
should be chosen with care, as they must provide both a clear distinction be-
tween A and B and incorporate most of the equilibrium fluctuations within
the states as well as all possible isomorphs. Often, this can be achieved with
a suitable order parameter. In our case, a natural choice for such a parame-
ter is the number of atoms with six nearest neighbors. Atoms are assumed to
be nearest neighbors if their distance is smaller than 3.4 Å, a value roughly
equal to the location of the first minimum of the radial distribution function.
For crystals with diameters of 2, 3, 4, and 5 nm we use increasing thresholds
of 8%, 20%, 30%, and 40% six-coordinated atoms, reflecting the decreasing
surface-to-volume ratio, to define the rocksalt structure. These values, as
will be confirmed later by committor analysis, lie safely beyond the values at
the transition state but still allow the formation of all relevant isomorphs in
the rocksalt structure. Preliminary simulations showed, however, that the
use of the same order parameter for the definition of the h-MgO structure is
problematic: Values that are too low do not include all equilibrium fluctua-
tions within A, while with larger values at higher pressures critical rocksalt
nuclei are frequently assumed to lie in A—correct sampling of trajectories is
corrupted. We therefore use a bond angle criterion to define A: The angles
between nearest neighbors atoms that have a value of 120◦ in the perfect
h-MgO structure are monitored and the crystal is assumed to be in state A
only when none of these angles exceeds the ideal value by more than 35◦.
While this definition excludes all other possible isomorphs of the crystal in
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Figure 6.2: Snapshots along a typical transformation pathway of a 5 nm
nanocrystal at a pressure of 3 GPa, viewed along the hexagonal c-axis. Gray
atoms are in the hexagonal structure, blue atoms in the rocksalt structure.
At 13 ps the crystal has reached the transition state (compare this configu-
ration to the one in Fig. 6.4). Depending on the nucleation site and on the
direction in which particular planes slide, different morphologies of the final
rocksalt crystal are obtained.

the h-MgO structure, we confirmed that no trajectories are rejected because
they lead to such incompatible morphologies. This indicates that the hexag-
onal prismatic shape, which is also observed experimentally [87], provides
a strong basin of attraction for the sampled trajectories due to particularly
favorable surface free energies.

6.3 Identifying the transition states

After convergence of the mechanism has been achieved in the transition path
sampling simulations, we collect at least 10 000 trajectories; from these, we
randomly select five for further analysis. A typical converged transforma-
tion pathway, displaying the mechanism of sliding (100) planes, is shown in
Fig. 6.2. To identify the transition states, we calculate the committor pB

for all of the 1000 stored configurations along the paths. The committor is
a statistical measure for the progress of the transformation and is defined
as the probability of a particular configuration of the crystal to relax into
state B, the rocksalt structure, rather than into the hexagonal structure.
Thus, as the transformation proceeds, the committor changes its value from
0 to 1 and a configuration for which pB = 1/2 is identified as a transition
state [18].

We estimate pB using the computational scheme described in detail in
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Figure 6.3: Committor pB (black) and pA = 1 − pB (red) along a transition
path of a 5 nm nanocrystal, calculated with the scheme described in the
text. The point around 13.9 ps where pB = pA = 0.5 marks the transition
state.

Ref. [18], which ensures a consistent level of statistical error. From ev-
ery configuration of the crystal, short molecular dynamics trajectories are
started, each with particle velocities drawn from the appropriate Maxwell–
Boltzmann distribution and a freshly created ideal gas atmosphere. When a
trajectory reaches either stable state, it is terminated; the fraction of those
that reach the rocksalt structure is an estimate for pB with an Gaussian
uncertainty of

σ =
√

pB(1 − pB)/M , (6.1)

where M is the number of initiated trajectories. To ensure good statistics,
a minimum of 10 trajectories are performed. Further trajectories are initi-
ated until the configuration at hand can be excluded from the ensemble of
transition states with an certainty of 95%, i. e. , when the estimate for pB

falls short of the interval [1/2−2σ; 1/2+2σ]. Configurations that live to see
a maximum of 100 trajectories are assumed to be transition states. Figure
6.3 shows the time evolution of the committor for a barrier-crossing event in
a typical trajectory. As the crystal crosses the barrier top, repeated recross-
ings of the pB = 1/2 line are frequently observed and up to 25 transition
states are identified along a single trajectory.

A compilation of transition states, identified through the committor cri-
terion, are shown in Fig. 6.4. The shape of the critical rocksalt nuclei is sur-
prising: Regardless of pressure or crystal size, the nuclei always appear on
the surface, extending along the hexagonal c-axis over the full side length of
the crystal. The transformations begin with the indentation of an (100) side
facet, preferably in the facet’s center. The resulting quasi-one-dimensional
linear arrangement of atoms, each forming an additional bond with an op-
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Figure 6.4: Critical rocksalt nuclei for a series of pressures and crystal sizes.
Transparent gray atoms are in the hexagonal structure, blue ones in the
rocksalt structure. Crystals have been rotated such that the nuclei appear
on the same crystal facet. Mind that separate transition path sampling
simulations were conducted for every crystal size and pressure; there is no
dynamical connection of configurations at different pressures for fixed crystal
size.
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posite atom of the next (001) plane, forms the critical rocksalt nucleus at
high pressures. At lower pressures, the transition state is reached after
the rocksalt slab has grown in one of two equivalent [100] directions and
along the lateral surface. This increased size of the critical nucleus at lower
pressures is consistent with classical nucleation theory: Close to the thermo-
dynamic transition pressure, the rocksalt structure is favored only slightly
over the hexagonal structure. As a consequence, a larger amount of rocksalt
is needed to pay the price of the interface than at higher pressures, at which
the rocksalt structure is clearly more stable.

The differences of the observed nucleation mechanism to equivalent trans-
formations in the bulk material are evident. In the bulk, nucleation will
preferably happen at lattice defects like grain boundaries that locally facil-
itate the accommodation of an interface between the low and high pressure
structures [9, 116]. In nanocrystals in the size range considered here lattice
defects are easily annealed out during synthesis; nucleation from such sites
thus is not a possibility. As a consequence, the surface serves as a low energy
nucleation site. We speculate that the free energy penalty due to the large
surface of the elongated nucleus is compensated by favorable strain energet-
ics compared to a nucleus of more spherical shape located on the crystal’s
inside.

6.4 Measuring enthalpy and volume

To link our results to experiments, we quantify the observed rocksalt nuclei
by calculating their activation enthalpy and activation volume, as discussed
in Sects. 6.4.4 and 6.4.3. We do this using an efficient Monte Carlo version
of the ideal gas pressure bath, which is discussed in Sec. 6.4.1. Experimen-
tally, these quantities can be determined by evaluating the temperature and
pressure dependence of the rate constant [9, 10]; in Sec. 6.4.2 we discuss
thermodynamically meaningful definitions of enthalpy and volume that can
be consistently compared to experiment.

6.4.1 A Monte Carlo algorithm for the ideal gas barostat

For the study of atomistic transformation mechanisms with computer simu-
lation, molecular dynamics is the natural choice. In previous work we have
shown how a barostat of ideal gas particles can be implemented efficiently
within a molecular dynamics simulation such that it conserves the probabil-
ity distribution of a system at constant pressure and temperature [65,101].
However, for the calculation of static quantities like the average energy a
Monte Carlo version of the barostat might be advantageous. In this section
we present such a Monte Carlo algorithm and show that it obeys detailed
balance.
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The system we consider consists of a nanocrystal of Nc atoms immersed
in a pressure bath that adapts to the shape and size of the crystal and
consists of N non-interacting gas particles. These gas particles interact
with crystal atoms via a purely repulsive potential that depends only on the
particle distance r,

u(r) =

{

ǫ
[

(r/σ)−12 − (rcut/σ)−12
]

if r < rcut ,

0 if r ≥ rcut .
(6.2)

In our simulations, we use the parameters ǫ = 1kJ/mol, σ = 3.0 Å, and
rcut = 6.0 Å, choices that prevent gas particles from entering the crystal. The
simulation box is divided into cubic cells with side length l = rcut + 0.1 Å.
Thus, all gas particles that could possibly interact with crystal atoms in
a given cell will be found in the cell itself and its nearest neighbor cells.
(The reason for not simply setting l = rcut will become evident later in the
discussion.) That given, we define the system volume to be a function of
the coordinates of the crystal atoms: At any time, the accessible volume
V of the system consists of all cells that contain crystal atoms and all cells
adjacent to those. The probability distribution of this system is given by

ρ(x) ∝ e−β(U+PV −µN) , (6.3)

where x denotes the state of the system, specified by the positions of all
particles, U = U (cc) + U (cg) is the total energy of the system with con-
tributions U (cc) and U (cg) from crystal-crystal and crystal-gas interactions,
respectively, P is the pressure, µ is the chemical potential of the ideal gas,
and β = 1/kBT is the reciprocal temperature. To ensure that this probabil-
ity distribution is conserved in our simulation, it is sufficient that the Monte
Carlo moves used to evolve the system from an “old” state o to a “new”
state n obey the detailed balance condition [65]

p(o→ n)

p(n→ o)
=
No!

Nn!
e−β[Un−Uo+P (Vn−Vo)−µ(Nn−No)] . (6.4)

Here, p(o→ n) is the transition probability to go from state o to state n and
the subscripts indicate respective quantities in these states. As discussed in
Ref. [65], the prefactor accounts for all possible computer representations of
a given physical state.

To sample the distribution given by Eq. (6.3), we consider two different
Monte Carlo moves. The first one is a standard displacement move of a single
crystal atom, with all other particles fixed. A crystal particle is chosen at
random and displaced by a small vector, whose components are drawn from
a symmetric distribution. For such a move, p(o → n) is the product of
the probability π(o → n) to try the move and the probability α(o → n) to
accept it,

p(o→ n) = π(o→ n)α(o → n) . (6.5)
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As the system volume and number of gas particles are left unchanged, de-
tailed balance is satisfied by the standard Metropolis acceptance probabil-
ity [41], which takes into account the total change in energy,

α(o→ n) = min
(

1, e−β(Un−Uo)
)

. (6.6)

The second move affects the ideal gas atmosphere. Instead of displacing
single gas particles, we want to resample the whole atmosphere in one step.
Such a global move greatly enhances the efficiency of the calculation of
static averages, because successive realizations of the ideal gas atmosphere
are uncorrelated; in a molecular dynamics simulation, decorrelation will be
typically reached after a few picoseconds. To resample the gas atmosphere,
we proceed in the following way:

1. Remove all gas particles from the simulation.

2. Determine the system volume Vn, that is, the total volume of all cells
that contain crystal atoms and their next-neighbor cells.

3. Fill the accessible volume with new gas particles. To this end, perform
k trial insertion moves, where k is a number drawn from a Poisson
distribution

P(k) =
k̄ke−k̄

k!
, (6.7)

with an average of

k̄ = βPVn . (6.8)

One such insertion move consists of the following steps: Choose the
position r of the gas particle uniformly distributed over the total avail-
able volume; compute the interaction energy E(r) of the inserted gas
particle with all crystal atoms; accept the insertion move with proba-
bility e−βE(r).

This procedure is on average performed every Nc crystal particle displace-
ment moves.

We now show that the above algorithm satisfies detailed balance. Be-
cause of a possibly large interaction energy with crystal atoms, in general
not all of the k inserted particles will “survive” the acceptance criterion. As
a result, there are many possible realizations of the move o → n leading
to a final number of Nn accepted gas particles at positions corresponding
to state n [65]. Thus, p(o → n) is the sum of the probabilities of all such
realizations,

p(o→ n) =
∞
∑

k=Nn

P(k)

(

k

Nn

)

e−βU
(cg)
n (1 − Πn)k−Nn

V Nn
n

, (6.9)
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where 1/V Nn
n is the probability to put Nn particles in the right places and

e−βU
(cg)
n is the probability to accept them there. The factor Πn denotes the

probability that any one insertion move will be accepted, which depends on
the positions of the crystal atoms and on the available volume Vn,

Πn =
1

Vn

∫

Vn

dr e−βE(r) . (6.10)

The factor (1 − Πn)k−Nn therefore gives the probability that k −Nn of the
total k insertion moves will be rejected. Inserting Eqs. (6.7) and (6.8) into
Eq. (6.9) we have, after some manipulation,

p(o→ n) =
(βPVn)Nn

Nn!V Nn
n

e−β(U
(cg)
n +PVnΠn)

=
1

Nn!
e−β(U

(cg)
n +PVnΠn−µNn) ,

(6.11)

where in the last step we have identified the fugacity of the ideal gas, eβµ =
βP . The ratio of transition probabilities of the forward and backward moves
now becomes

p(o→ n)

p(n→ o)
=
No!

Nn!
e−β[U

(cg)
n −U

(cg)
o +P (VnΠn−VoΠo)−µ(Nn−No)] . (6.12)

As the move affects only gas particles, U
(cg)
n − U

(cg)
o = Un − Uo, and this

expression is identical to the detailed balance condition of Eq. (6.4), except
for the volume terms. However, if no new cells have been added to or
removed from the simulation in step 2 of the algorithm, Vn = Vo and Πn =
Πo, and detailed balance is obeyed. In case the system volume has to be
changed because since the last update of the gas atmosphere crystal atoms
have been moved into or out of cells that do not hold any other crystal
atoms, the respective volume terms do not cancel out. In this case, we can
make use of the fact that gas particles in the cells that are removed or added
do not interact with crystal atoms. (This is true only if the side length of
the cells is larger than the cutoff distance of the gas-crystal interaction, and
the number of crystal atom displacements between successive updates of the
gas atmosphere as well as the maximum size of the particle displacement are
not too large.) Then,

Πn =
1

Vn

(

∫

Vo

dr e−βE(r) −
∫

Vo\Vn

dr +

∫

Vn\Vo

dr

)

=
1

Vn
(VoΠo − V − + V +) ,

(6.13)

where we have introduced the symbols V − and V + for volume that is re-
moved and added, respectively. Using this relation, it follows that

VnΠn − VoΠo = V + − V − = Vn − Vo , (6.14)
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Also in this case, detailed balance is thus obeyed. The last two equations
reflect the fact that although the volume of the total system may change,
the volume of the crystal is constant during the move. Thus, a possible
change of the total volume is equaled by the change of the volume available
to gas particles. In the next section we will indeed argue that V (1−Π) and
VΠ are correct measures for the crystal and gas volume, respectively.

6.4.2 Definitions of crystal volume and enthalpy

For the compound system consisting of pressure bath and nanocrystal, all
thermodynamic properties are well defined. For instance, the total volume
is determined by the positions of crystal atoms (see Section 6.4.1) and the
total potential energy U is simply the sum of all pair-interaction energies.
When we are interested in a specific property of the nanocrystal alone, for
instance its volume Vc, energy Uc, or entropy Sc, a subdivision of the respec-
tive quantity of the total system between crystal and gas has to be made.
To allow for comparison with experimentally determined quantities, it is
essential that the introduced definitions are consistent with the quantities
that enter the fundamental thermodynamic function, the Gibbs free energy
of the nanocrystal

Gc = Uc + PVc − TSc . (6.15)

In computer simulations of nanoparticles, several different methods are in
use in which the volume is a function of the coordinates of the cluster atoms
alone [100]; examples include volume definitions based on the volume of over-
lapping spheres [117] and convex hull constructions [118]. For a nanocrystal
in explicit solvent, these definitions are inappropriate because they neglect
possibly complicated effects of the solvent-crystal interaction. The correct
thermodynamics of small systems in solution (and its connection to statis-
tical mechanics) has been worked out long ago by Hill in the context of
constant-pressure solution theory [119, 120]. The correct expression for the
Gibbs free energy of a single small system in a solvent is

Gc = −β−1 ln
∆(N1, 1, P, T )

N1∆(N1, 0, P, T )
, (6.16)

where

∆(N1, N2, P, T ) =
∑

V

Q(N1,N2, V, T )e−βPV . (6.17)

Here, ∆ and Q are the isobaric-isothermal and canonical partition functions,
respectively, of an infinitely dilute system of N1 solvent molecules and N2

solute particles (nanocrystals, in our case). The thermodynamic properties
of interest can be obtained by taking derivatives of Eq. (6.16). For the
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volume we have

Vc =
∂Gc

∂P
=

∂

∂P

{

−β−1 ln ∆(N1, 1, P, T )
}

− ∂

∂P

{

−β−1 ln ∆(N1, 0, P, T )
}

=
∂G(N2 = 1)

∂P
− ∂G(N2 = 0)

∂P
= V (N2 = 1) − V (N2 = 0) .

(6.18)

Here, G(N2) and V (N2) denote the Gibbs free energy and volume, respec-
tively, of a system with N2 solute particles at constant N1, P , and T . In
the context of our simulations, V (N2 = 1) is simply the total volume of
the compound system, and, given that the solvent species is an ideal gas,
V (N2 = 0) is obtained from the ideal gas law,

Vc = 〈V 〉 − 〈N〉(βP )−1 . (6.19)

As a macroscopic analogy, consider a swimming pool completely filled with
water. It follows from the above definition that the amount of water that is
displaced by a dog jumping into the pool is a measure for the dog’s volume.
Similarly, we get for the enthalpy and energy of the crystal.

Hc =
∂(βGc)

∂β
= Uc + PVc (6.20)

Uc = U (cc) + U (cg) = U ,

as might have been anticipated.
To calculate the average volume of the crystal in one of the stable struc-

tures, it is necessary to average V and N over many realizations of the
pressure bath, as indicated by the angular brackets in Eq. (6.19). As we are
also interested in the time evolution of the crystal volume during a trans-
formation, we measure the instantaneous volume by averaging over pressure
bath realizations with fixed positions of crystal atoms,

V inst
c = V − 〈N〉

V
(βP )−1 . (6.21)

Here, V is the (fixed) total volume of the system and 〈N〉
V

is the average
number of gas particles in the available volume. Using the algorithm dis-
cussed in Sec. 6.4.1, 〈N〉

V
is equal to the average number of trial insertions,

Eq. (6.8), times the acceptance probability of a single insertion Π, 〈N〉
V

=
βPVΠ. Inserting this relation into Eq. (6.21) yields V inst

c = V (1 − Π), or
alternatively for the volume of the gas, V inst

g := V − V inst
c = V Π, which

provides the connection with the detailed balance condition of Eq. (6.12).
As a consequence of the definitions discussed above, thermodynamic

properties like the volume and enthalpy of a nanocrystal explicitely depend
on the details of the interaction with the pressure medium, a fact that can
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Figure 6.5: Volume per atom as a function of temperature for four different
crystal sizes in the h-MgO structure at a pressure of 2 GPa. Lines represent
fits to a model explaining the volume of the crystal in terms of bulk and
surface contributions, as discussed in the text. With increasing tempera-
ture, the average distance between gas particles and crystal atoms on the
surface decreases. For the nanocrystal sizes considered here, this surface
effect dominates the bulk thermal expansion.

give rise to unexpected behavior that is not accounted for by volume defini-
tions based on positions of crystal atoms alone. For instance, a convex hull
approximation to the volume can be expected to underestimate the ther-
modynamic volume of the crystal because it neglects the “surface volume”
associated with the space between the crystal surface and the first layer of
gas particles. The thickness of this void depends on the crystal-gas inter-
action and will decrease with increasing temperature, as gas particle more
closely approach the crystal surface. This effect can obscure the bulk be-
havior of thermal expansion and lead to an overall decrease of the volume
with increasing temperature, as illustrated in Fig. 6.5.

As a simple model for the surface volume is illustrated in Fig. 6.6. Let
us assume that, on average, gas particles can approach the crystal surface
only till their potential energy is of order kBT . Using Eq. (6.2), the average
distance to the surface is then approximately given by

d(T ) = σ(kBT )−1/12 . (6.22)

Assuming spherical shape of the nanoparticle, the volume can be written as

Vc =
4π

3

(

r0 eαT + γ d(T )
)3
, (6.23)

where r0 is the radius of the crystal, α is the bulk coefficient of thermal ex-
pansion and the factor γ represents deviations from perfect spherical shape.
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Figure 6.6: A simple model for the volume of a spherical nanocrystal in a
pressure bath. Surface volume (blue) is added to the volume of the bulk
core (red) as the repulsive interaction u(r) between crystal and pressure
bath particles produces a void shell of thickness d(T ).

In Fig. 6.5, this function is used for fitting to the volume data with common
values of α = 2.2 × 10−5 K−1 and γ = 1.35 for all crystal sizes.

We would like to emphasize that the particular definitions of volume and
enthalpy, Eqs. (6.19) and (6.20), are not subject to choice but need to be
applied for the standard relations of thermodynamcis to stay valid [120]. To
illustrate this point, we implement an alternative measure of the volume,
based on hard sphere radii of crystal and gas particles. To determine this
alternative volume V̂c of the crystal, only insertion moves of pas particles
within distances larger than d0 of any crystal atom are counted as successful.
While this definition effects the volume and enthalpy of the crystal, the
energetics of the pressure bath still correspond to Eq. (6.2). We therefore
have easy access to a measure of the volume which does not depend on
temperature and is purely geometric, comparable, for instance, to a convex
hull approximation. Using both definitions, we calculate the equations of
state Vc(P, T ), Hc(P, T ), V̂c(P, T ), and Ĥc(P, T ) = Uc(P, T ) + PV̂c(P, T ) of
a 2 nm crystal in the rocksalt structure for a broad range of pressures and
temperatures; the particular value of d0 = 3.32 Å is chosen to give agreement
of both volume definitions at T = 100 K and P = 2.5 GPa. Polynomial fits
to the resulting volume data are compared in Fig. 6.7.

In standard thermodynamics, useful interrelations between the deriva-
tives of these equations can be derived [121]. For instance, using dH =
TdS + V dP and the Maxwell relation

(

∂S
∂P

)

T
= −

(

∂V
∂T

)

P
, we see that

(

∂H

∂P

)

T

= T

(

∂S

∂P

)

T

+ V = −T
(

∂V

∂T

)

P

+ V . (6.24)
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Figure 6.7: Volume per atom as a function of temperature and pressure for
the thermodynamically correct definition of the volume Vc (lower surface)
and the alternative V̂c (upper surface), which neglects volume effects of the
crystal-bath interaction. The surfaces are fits to data from Monte Carlo
simulations of a 2 nm crystal in the rocksalt structure. While Vc decreases
with increasing temperature (compare Fig. 6.6), V̂c shows bulk-like behavior.
Note that V̂c is parametrized to give agreement with Vc at T = 100 K.
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Figure 6.8: Relative difference ∆ of the left and right hand sides of Eq. (6.24)
for data calculated with the correct definition of the crystal volume Vc (top)
and the alternative V̂c (bottom). While deviations for the first definition
are small and consistent with the error in the fitted functions and their
derivatives, a large systematic error is observed for the latter definition.
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Figure 6.9: Left: Thermodynamic transition pressures of the h-MgO to
rocksalt transformation as a function of crystal size, estimated from points
of equal enthalpy. The dashed line indicates the bulk transition pressure of
about 1.0 GPa [97]. Right: Enthalpy-pressure curves for a 5 nm crystal in
the h-MgO structure (solid line) and in 4 different rocksalt configurations
(dashed lines) obtained with transition path sampling.

This equation is equivalent to the well-known relation

cV = cP − TV α2/κT (6.25)

between the heat capacities at constant volume and pressure cV and cP , re-
spectively, the coefficient of thermal expansion α, and the isothermal com-
pressibility κT . In Fig. 6.8, we check the validity of this relation for our
nanocrystal system by comparing the right and left hand sides of Eq. (6.24)
for both definitions of the crystal volume; good agreement is only achieved
for Vc.

6.4.3 Size dependent transition pressure

A typical phenomenon in phase transformations of small systems is the
size dependence of the thermodynamic transition point [1, 122]. For CdSe
nanocrystals, a significant increase of transition pressure has been observed
with decreasing crystal size [2, 8]. This behavior can be rationalized with
simple thermodynamic models, in which different surface free energies are
assigned to the two structures [8]. A higher surface free energy in the high-
pressure phase, resulting from unfavorable configurations introduced during
the transformation, stabilizes the low-pressure phase and pushes the tran-
sition pressure to higher values. In both experiment and simulation this
behavior is not easily observed because transformations happen far from
equilibrium and large kinetic effects obscure comparatively subtle changes
in thermodynamics.
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Here, we estimate the size dependence of the thermodynamic transition
pressure by determining the pressures at which the two structures have equal
enthalpy. Using the algorithm discussed above, we calculate the enthalpy-
pressure curves of the crystals in the two stable structures in long Monte
Carlo runs of 105 cycles each and determine their intersection. As the mor-
phology of the rocksalt crystal is not unique, we calculate enthalpy-pressure
curves for all different rocksalt crystals observed with transition path sam-
pling and obtain different transition pressures for different isomorphs 1.
However, typical variations are small (≈ 0.05 GPa) and we define the average
of the obtained values as the transition pressure for the given crystal size;
the resulting data is shown in Fig. 6.9. Although our simulations reproduce
the trend with crystal size observed in experiments, the experimental tran-
sition pressures are larger by a factor of about two. This difference might be
partly due to deficiencies of the model used in our simulations. However, the
experimental method of assigning the thermodynamic transition pressure to
the midpoint of the hysteresis curve presumes that activation energies for
the forward and backward transformations show a similar dependence on
pressure, an assumption that is not necessarily true. Indeed, an extrapo-
lation of the pressure dependence of the rate constants for both directions
of the transformation yields a coexistence pressure of 2.3 GPa for a 2.5 nm
nanocrystal [10].

6.4.4 Activation enthalpy and volume

Using the Monte Carlo algorithm discussed in Sec. 6.4.1, we calculate the en-
thalpy and volume as a function of time for all selected transition pathways:
For every configuration of the crystal, we average over 1000 realizations of
the pressure bath with crystal atoms held fixed. The resulting curves are
exemplarily shown in Fig. 6.10 for the transformation of a 3 nm crystal at
2.5 GPa. To dispose of short-lived fluctuations, we perform the following
smoothing operations. First, we average enthalpy and volume over time
intervals of 0.5 ps. We then correct for fluctuations of the crystal kinetic
temperature Tkin around the bath temperature T = 300 K. In a harmonic
approximation, these fluctuations offset the potential energy U (cc) of the
crystal by factors of 3/2NckB(Tkin − T ), which we subtract from U (cc). Re-
cent work strongly indicates that such a harmonic approximation is valid
even in regimes of high pressure and temperature [123]. We note, however,
that the applied smoothing is not essential to the calculation and merely
reduces the spread of activation enthalpies and volumes determined from
different pathways.

1For 6 nm crystals no transition path sampling simulations were performed; for this
size, the calculations were carried out using rocksalt configurations obtained in high-
pressure molecular dynamics runs.
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Figure 6.10: Enthalpy (top) and volume (bottom) as a function of time for
a sample transformation pathway of a 3 nm crystal at 2.5 GPa. The gray
field marks the interval in which the committor pB changes from 0 to 1,
the dotted line indicates the transition state at pB = 0.5, which coincides
with the top of the enthalpic barrier. Red and blue lines indicate the values
of enthalpy and volume in the metastable h-MgO and rocksalt structures,
respectively. By comparing values of enthalpy and volume at the transition
state with those in the hexagonal structure, the activation enthalpy ∆H and
volume ∆V can be easily determined.
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Figure 6.11: Size and pressure dependence of activation enthalpy (top) and
volume (bottom). Black dots with errorbars indicate experimental data [10].

Finally, the activation enthalpy (and similarly, activation volume) is ob-
tained as the difference of the enthalpy at the transition state and the average
enthalpy in the h-MgO structure, as shown in Fig. 6.10. Values for different
transition states along a given trajectory are averaged to give single-pathway
activation enthalpies, which in turn are averaged over all 5 analyzed path-
ways to obtain the activation enthalpy for a given crystal size and pressure.

6.5 Comparison with experiment

In Fig. 6.11, activation enthalpies and volumes are compared with experi-
ment. The size dependence of the experimental activation enthalpies, which
were obtained from the temperature dependence of the rate constant at a
pressure of 4.9 GPa [9,10], is in good agreement with data we obtained at 3
GPa. The discrepancy with regard to absolute values is not surprising and
most likely due to deficiencies of the simple pair potential used in our sim-
ulations [85], which was designed to reproduce selected properties of bulk
CdSe. On the other hand, the almost linear dependence of the enthalpic
barrier on the crystal diameter is found in both experiment and simulation
and is consistent with the particular shape of the critical nuclei shown in
Fig. 6.4: With increasing crystal size, the critical rocksalt nuclei expand pri-
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marily in one direction. Previously it was speculated that nanocrystals in
the size range considered here would transform not through local nucleation
and growth but in a single step, through a concerted motion of all crystal
atoms [8, 9]. Such a mechanism, however, would result in an activation en-
thalpy that scales with the volume of the crystal, a behavior not observed
in this work.

The comparison of activation volumes is complicated by the fact that,
experimentally, activation volumes were determined at slightly different con-
ditions than activation enthalpies, namely from changes in the rate constant
as pressure was varied between 5 and 7 GPa, assuming a constant value
of the activation volume in this pressure range [10]. Our simulations, how-
ever, indicate that the activation volume depends sensitively on the applied
pressure. Thus, agreement between experiment and simulation might be
expected to occur at higher pressures compared to activation enthalpies;
indeed, we find fair agreement at 4 GPa.

Clearly, the observed trends with crystal size of activation enthalpy and
volume can not continue to the bulk limit, where transformations are char-
acterized by a critical nucleus of finite size that preferentially forms at defect
sites of the crystal lattice. The transition to this different regime can be ex-
pected to occur at crystal sizes at which the concentration of such defects
is no longer negligible.

6.6 Reaction coordinate

To substantiate the nucleation and growth scenario emerging from the vi-
sual inspection of the transition states, we identify the reaction coordinate,
a dynamically relevant measure for the progress of the transformation. In
principle, the committor function pB is the ideal reaction coordinate in the
sense that it tells what is likely to happen next. However, due to its unspe-
cific nature, the committor does not provide direct insight into the transition
mechanism nor can it be controlled in an experiment. Thus, it is desirable
to express the committor in terms of variables with a transparent physical
significance. As such a coordinate we propose to use the number of six-
coordinated atoms, N6, which can be viewed as a measure for the size of the
rocksalt nucleus forming in the hexagonal matrix.

In contrast to the simple discrete criterion discussed in Sec. 6.2.2, N6

is calculated using a continuous distance criterion. Every pair of atoms is
assigned a “bond length” dij according to

dij =







1 if rij < a
b−rij

b−a if a < rij < b

0 if rij > b .

(6.26)

Here, rij is the particle distance, a = 3.0 Å, and b = 4.8 Å. (These values



98 6. Transition state analysis of solid-solid transformations in nanocrystals

0.08 0.1 0.12 0.14
n6

0

0.2

0.4

0.6

0.8

1

p B

Figure 6.12: A good reaction coordinate: Committor pB as a function of the
fraction of 6-coordinated atoms, n6 = N6/Nc, for configurations collected
from transition pathways of a 3 nm nanocrystal at a pressure of 2.5 GPa.
The solid curve is a fit to the data and the dashed curves indicate the 3σ-
confidence interval around the fit. Only 14.8% of the data points fall outside
of this interval, which is consistent with the statistical uncertainty of our
committor calculation.

delimit the broad first minimum of the radial distribution function of unlike
atom species.) The coordination number of particle i is defined by sum-
mation over all atoms of the other species, ci =

∑

j dij . Correspondingly,
we define the number of z-coordinated atoms as Nz =

∑

i fz(ci), with the
function

fz(c) =

{

1 − |c− z| if z − 1 < c < z + 1
0 else .

(6.27)

Figure 6.12 shows the committor vs. the fraction of six-coordinated
atoms, n6 = N6/Nc, for 330 configurations taken from four different tran-
sition trajectories of a 3 nm nanocrystal at a pressure of 2.5 GPa. As
can be inferred from the figure, a particular value of N6 specifies the cor-
responding value of the committor with good accuracy, indicating that
N6 is a satisfactory representation of the nucleation mechanism. The re-
maining spread of the data points is consistent with the statistical uncer-
tainty of the committor calculation. To support this argument, the function
p(n6) = 1

2{1 + tanh[a(n6 − b)]} is used for fitting as a possible parameter-
ization of the committor in Fig. 6.12. If this parameterization is perfectly
valid, all deviations of the data points from p(n6) must be due to statistical
errors because of the finite number of trajectories, M = 100 in this case,
that are used to determine the committor of each configuration. Assuming
Gaussian statistics, the standard deviation of pB is given by Eq. (6.1); the
corresponding 3σ confidence-interval is indicated in Fig. 6.12 and includes
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Figure 6.13: A poor reaction coordinate: Committor pB as a function of the
crystal volume for configurations collected from transition pathways of a 3
nm nanocrystal at a pressure of 2.5 GPa.

most of the data points.

As an example of a rather poor reaction coordinate, Fig. 6.13 displays
an analogous analysis for the crystal volume. Although the volume changes
considerably during the transformation, it is not a satisfactory indicator
of the progress of the transition because of large fluctuations in configu-
rational degrees of freedom that are not relevant for the nucleation event.
Only slightly better results are achieved for the simple discrete coordination
criterion discussed in Sec. 6.2.2, which is insensitive to small changes in bond
angles and distances which play an important role during nucleation.

The success of N6 as a reaction coordinate is a direct consequence of the
small size of the crystals and the uniformity of the rocksalt nuclei. When
crystal size is increased toward the bulk limit, nucleation from different
sites becomes important and N6 ceases to be a good reaction coordinate be-
cause many uncorrelated rocksalt nuclei of subcritical sizes may lead to N6-
values that are characteristic for the critical nucleus in the nano-scale crystal.
Then, a cluster criterion identifying contiguous regions of 6-coordination is
required for the definition of a good reaction coordinate.

6.7 Summary

In the study of phase transitions, a direct comparison between experiment
and molecular dynamics computer simulation is often difficult to achieve
due to long experimental time scales and a lack of properties that are easily
determined with both methods. For the case of structural transformations,
we introduce a systematic simulation methodology which allows to make di-
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rect contact with experiments through the calculation of activation volumes
and enthalpies. Simulations under experimental conditions are performed
with transition path sampling, a technique based on a statistical description
of pathways which is able to identify the most important mechanistic route
of the transformation. Pathways generated with this technique are subject
to a committor analysis which yields transition states containing the criti-
cal nuclei of the product phase and gives access to the desired quantitative
properties.

As a case of special interest, we apply this methodology to the pressure-
induced transformation in a model of CdSe nanocrystals suspended in an
explicit pressure bath. Our results explain the size trend of activation en-
thalpies observed experimentally in terms of a critical nucleus of elongated
shape located on the crystal surface and highlight the different nucleation
mechanisms in bulk and nanocrystalline systems. Although applied here to
the latter, the methodology is applicable also to the bulk case and also to
other transformations of condensed matter systems frequently studied with
computer simulations.



Appendix A

Dynamics of small phase

space displacements

In Chapter 3 we discussed, in the context of the transition path sampling
method, how extraordinarily small perturbations in phase space can be
traced in time by exploiting their linear short-time dynamics and showed
that the algorithm is stable for arbitrarily long times. To develop a better
understanding of the errors associated with this method, in this chapter
we investigate the time evolution of small phase space displacements be-
yond the linear regime. For a one dimensional mapping we show that under
mild assumptions the terms of order n grow in time as enλt, where λ is
the largest Lyapunov exponent of the system. We present evidence from
computer simulations that the same behavior can also be expected in many
particle systems. The interplay with numerical rounding errors which are
ubiquitous in computer simulations are exemplified in detail for a liquid of
soft spheres. The results are relevant in the context of numerical methods
for the determination of a system’s Lyapunov spectrum and in general for
the stability of dynamical systems in the linear approximation.

A.1 Time evolution of small perturbations

We consider a one-dimensional system whose initial state is specified by the
coordinate x0 and which evolves in discrete time steps denumbered by n
according to the propagator map Φ,

xn+1 = Φ(xn) . (A.1)

Applying the propagator n times, we define a family of maps by

xn = (Φ ◦ Φ ◦ · · · ◦ Φ)(x0) ≡ Φn(x0) , (A.2)
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where Φ1 ≡ Φ. We now follow two trajectories xn and yn, which are initially
separated by a small displacement

δ0 = y0 − x0 . (A.3)

We expand δn in terms of δ0,

δn = yn − xn = Φn(x0 + δ0) − Φn(x0) (A.4)

= Φ′
n(x0)δ0 +

1

2
Φ′′

n(x0)δ
2
0 +

1

6
Φ′′′

n (x0)δ
3
0 + · · · ,

where the primes indicate derivatives. Dynamical instability of the system
implies that, in the linear approximation,

|δn| ∼ |δ0|eλn , (A.5)

where λ is the largest Lyapunov exponent of the system [124]. Thus, for the
one-dimensional map,

|Φ′
n(x0)| ∼ eλn . (A.6)

Next, we want to estimate the time dependence of the second order term.
Taking the derivative of equation (A.2) with respect to the initial condition
x0 gives

Φ′
n(x0) = Φ′(xn−1)Φ

′(xn−2) · · ·Φ′(x0) (A.7)

and for the second derivative one obtains

Φ′′
n(x0) = Φ′′(xn−1) Φ′2(xn−2) Φ′2(xn−3) · · · Φ′2(x0)

+ Φ′(xn−1) Φ′′(xn−2) Φ′2(xn−3) · · · Φ′2(x0)
...

+ Φ′(xn−1) Φ′(xn−2) · · · Φ′′(x1) Φ′2(x0)
+ Φ′(xn−1) Φ′(xn−2) · · · Φ′(x1) Φ′′(x0) .

(A.8)

Let us suppose that in this expression, as suggested by equation (A.6), the
first derivatives give a contribution of eλ each. Let us further assume that the
second derivatives are all of the same order of magnitude, denoted by a. As
Φ′′ appears only once in every summand of equation (A.8), its contribution
does not grow as we go to large times n. Thus,

|Φ′′
n(x0)| ∼ a

(

eλ(2n−2) + eλ(2n−4+1) + eλ(2n−6+2) + · · · + eλ(n−1)
)

(A.9)

= a e2nλ
(

e−2λ + e−3λ + e−4λ + · · · + e−λ(n+1)
)

= a e2nλ e−2λ
(

1 + e−λ + e−2λ + · · · + e−λ(n−1)
)

= a e2nλ e−2λ 1 − e−nλ

1 − e−λ

n→∞−−−→ a e2nλ e−λ

eλ − 1
.

It follows that for large enough times n the logarithmic growth rate of the
second order term is twice that of the linear term.
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Of course, the same result can be obtained in more compact notation,
which also allows an easy evaluation of higher order terms. We have

∂xn

∂x0
≡ Φ′

n(x0) =

n−1
∏

i=0

Φ′(xi) , (A.10)

and for the second derivative

Φ′′
n(x0) =

n−1
∑

i=0

Φ′′(xi)

i−1
∏

j=0

Φ′2(xj)

n−1
∏

k=i+1

Φ′(xk) = (A.11)

=
n−1
∑

i=0

Φ′′(xi)Φ′
i
2
(x0)Φ′

n−i−1(xi+1) ,

where we have used equation (A.10) in the second step. Then,

|Φ′′
n(x0)| ∼ a

n−1
∑

i=0

e2λieλ(n−i−1) = a

n−1
∑

i=0

eλ(n+i−1) (A.12)

= a

n−1
∑

i=0

eλ(2n+2−i) = a e2λ(n−1)
n−1
∑

i=0

e−λi

= a e2λ(n−1) 1 − e−nλ

1 − e−λ

n→∞−−−→ e2nλ × const.

Along the same lines we can also calculate the third order terms by
taking the derivative of equation (A.11) with respect to x0,

Φ′′′
n (x0) =

n−1
∑

i=0

Φ′′′(xi)Φ
′
i(x0)Φ

′
i
2
(x0)Φ

′
n−i−1(xi+1) (A.13)

+

n−1
∑

i=0

Φ′′(xi)2Φ
′
i(x0)Φ

′′
i (x0)Φ

′
n−i−1(xi+1)

+

n−1
∑

i=0

Φ′′(xi)Φ
′
i
2
(x0)Φ

′′
n−i−1(xi+1)Φ

′
i+1(x0) .

We again assume that the first two derivatives give contributions |Φ′
n(xi)| ∼

enλ and |Φ′′
n(xi)| ∼ e2nλ, and that the third derivative Φ′′′ is roughly a
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constant denoted by b. Then,

|Φ′′′
n (x0)| ∼

n−1
∑

i=0

b eλ(n+2i−1) + 2eλ(n+2i+1) + eλ(2n+i+1) (A.14)

=
n−1
∑

i=0

b eλ(3n−2i−3) + 2eλ(3n−2i−1) + eλ(3n−i)

= e3nλ
n−1
∑

i=0

b e−λ(2i+3) + 2e−λ(2i+1) + e−λi

n→∞−−−→ e3nλ × const.

Similarly, yet higher derivatives can be evaluated and we expect the terms
of order k to grow in time according to

|Φ(k)
n (x0)| ∼ eknλ . (A.15)

A.2 Unconstrained growth

In this section, we investigate the applicability of equation (A.15) to the
case of higher dimensional systems, of which many-particle systems evolv-
ing according to Newton’s equations of motion are of particular interest. In
a simple model system of soft spheres the time evolution of two small phase
space displacements is monitored which initially differ only in their magni-
tude. This particular trick lets us directly observe terms in the time evolu-
tion beyond the linear approximation. As the calculations are performed on
a computer using floating point numbers in double precision representation,
rounding errors may have significant influence on the time evolution of very
small displacements. These effects are also accounted for in the following
discussion. Except where explicitly mentioned, the model system consists of
108 WCA particles [69] in their liquid state. The total energy per particle
is 1.0 and the density is 0.75, in reduced units. The equations of motion
are integrated with the velocity Verlet algorithm [70] with a time step of
∆t = 0.002.

We follow the time evolution of three trajectories x
(0)
t , x

(1)
t , and x

(2)
t , as

well as the displacements δ
(1)
t = x

(1)
t − x

(0)
t and δ

(2)
t = x

(2)
t − x

(0)
t , where

the time t is continuous in contrast to the preceding section. Note that we
are now dealing with vectors in phase space, consisting of the positions and
velocities of all particles. For a system of N particles in three dimensional

space, the dimension is d = 6N . We expand the displacements δ
(1)
t and δ

(2)
t

up to second order,

δ
(1)
t = S δ

(1)
0 +

1

2
δ
(1)
0 Aδ

(1)
0 , (A.16)

δ
(2)
t = S δ

(2)
0 +

1

2
δ
(2)
0 Aδ

(2)
0 .
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Figure A.1: The magnitude of ξt measures deviations from perfect alignment

of the displacement vectors δ
(1)
t and δ

(2)
t .

The terms involving S are first order, the terms involving A representations
of second order terms in the Taylor expansion. For a system of more than one
dimension, S and A are actually second and third order tensors, respectively.

We now consider two initially parallel displacements, δ
(2)
0 = c δ

(1)
0 , with

|δ(1)0 | ≡ σ. In the linear approximation, the initial proportionality holds for

all times, δ
(2)
t = c δ

(1)
t . We want to evaluate deviations from this perfectly

linear behavior by calculating the difference vector (see Fig. A.1)

ξt ≡ c−1δ
(2)
t − δ

(1)
t =

1

2
(c− 1) δ

(1)
0 Aδ

(1)
0 . (A.17)

Note that first order terms have canceled out. Now, let us assume that,
in accordance with equation (A.15), the second order term, which involves
second derivatives of the phase space point with respect to initial conditions,
grows exponentially in time according to |A| ∼ e2λt, where a is a constant.
Thus, for c≫ 1,

|ξt| ≈
∣

∣

∣

∣

1

2
c δ

(1)
0 Aδ

(1)
0

∣

∣

∣

∣

≈ c σ2a e2λt , (A.18)

where a is a constant.

On a computer, rounding errors of the order of the machine precision
have to be taken into account. We represent them by small phase space
vectors of magnitude

√
dF , where F = 10−15 is the size of the typical error

of a double precision computer number of order 1. (We assume that this is
the typical size of the components of phase space vectors.) These errors are
added to the “correct” trajectories at every time step ∆t and subsequently
grow in time according to

√
dFeλt. Higher order terms are neglected here.

We estimate the total accumulated error after a time interval t, which is
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large compared to a single time step, by

F tot
t =

√
dF

(

eλt + eλ(t−∆t) + · · · + eλ∆t
)

(A.19)

≈
√
dF
∆t

∫ t

0
eλ(t−τ) dτ =

√
dF
λ∆t

(

eλt − 1
)

≡ F̂
(

eλt − 1
)

.

To measure the relative deviation from linear behavior, we use the quan-
tity ǫ(t) defined as |ξt| divided by the magnitude of the smaller displacement,

ǫ(t) =
|ξt|
|δ(1)t |

≈ |ξt|
σeλt

. (A.20)

The magnitude of the actual difference vector |ξt| observed in a simulation
will be determined by competition of second order terms from Eqn. (A.18)
and rounding errors from Eqn. (A.19). Depending on the magnitudes of the
initial displacements, we will therefore see two different regimes as we follow
the time evolution of two initially parallel displacements,

ǫ(t) ≈
{

F̂/σ
(

1 − e−λt
)

if c σ2a e2λt ≪ F̂
(

eλt − 1
)

,

c σa eλt if c σ2a e2λt ≫ F̂
(

eλt − 1
)

.
(A.21)

For small values of σ and short times t, we can initially ignore second order
terms. Thus, ǫ(t) will be dominated by rounding errors and show a plateau
value of F̂/σ. For the model system we are considering (d = 648, λ ≈ 3.1 and
∆t = 0.002), F̂ =

√
dF/λ∆t ≈ 4×10−12, a number which can be considered

as the “effective precision level”. For larger values of σ or longer times t,
deviations from linearity are dominated by second order terms and we expect
exponential growth of ǫ(t). The time tx at which the crossover between the
two regimes occurs can be estimated by solving c σ2a e2λtx = F̂

(

eλtx − 1
)

for tx, resulting in

tx ≈ 1

λ
ln

F̂
c σ2a

, (A.22)

where we have assumed eλtx ≫ 1. In Figure A.2 this situation is examined
in our model system. The crossover occurs at the expected point in time and
the slope of |ǫ(t)| in the regime of dominating second order terms indicates
that these indeed grow with an exponent equal to 2λ. Figures A.3 and A.4
further illustrate the significance of Eqn. (A.21).

A.3 Periodic rescaling

Inspired by the precision shooting algorithm discussed in Chapter 3, we now
consider periodically rescaled displacements: After time intervals of length τ

(at times t = τ, 2τ, . . . ) we reset the magnitudes of δ
(1)
t and δ

(2)
t to |δ(1)0 | and

|δ(2)0 |, respectively. Because of this rescaling, the dynamics is not continuous
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Figure A.2: Time evolution of the magnitude of two shooting displacements

|δ(1)t | (black) and |δ(2)t | (red) with σ = 10−7 and c = 10. The magnitude
of the difference vector ξt is shown in green, the blue curve corresponds to
ǫ(t). For t . 1000∆t, rounding errors dominate, |ξt| grows with an exponent
equal to λ, and ǫ(t) has a plateau value of about 2× 10−5. Multiplying this
value by σ we get F̂ = ǫ(t) × σ ≈ 2 × 10−12 which compares well with the
estimate given in the text. For t > 1000∆t, second order terms take over and
|ξt| grows with an exponent larger than λ, resulting in exponential growth of

ǫ(t). The fact that ǫ(t) closely follows |δ(1)t | ≈ σeλt in that regime indicates
that, as we derived for the one-dimensional case in Section A.1, second order
terms grow with an exponent equal to 2λ. Noting that a ≈ 0.1 we can obtain
a rough estimate for the crossover time tx from Eqn. (A.22); this calculation
indeed gives tx ≈ 1000∆t in good agreement with the simulation.

and we have to consider the time evolution of the displacement vectors sep-
arately for each time interval between individual rescaling points. Initially,
the time evolution of the displacements follows the same rules discussed in
Section A.2. But starting from t = τ , the point of the first rescaling, things
work differently. Because of deviations from perfect linearity (dominated
either by rounding errors or second order terms), the two displacements are
not aligned anymore. After rescaling,

δ(2)τ = c
(

δ(1)τ + ητ

)

. (A.23)

Here,

ητ ≈ ξ̂τ
eλτ

(A.24)

is the difference vector ξ̂τ (before rescaling) divided by the rescaling factor
which is roughly eλτ . The time evolution of the displacements from the first
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Figure A.3: Time evolution of ǫ(t) for 10 different pairs of displacements
with σ = 10−n and c = 10. (Legend values indicate values of n.) Starting
from σ = 10−12, the plateau value of ǫ(t) decreases by a factor of 10 as σ
is decreased by the same factor. The plateaus vanish for σ & 10−6, where
second order terms are larger than rounding errors even for small times.
Using the model developed in the text, an estimate for this critical size of σ
can be obtained from c σ2a = F̂ , which gives σ ≈ 2×10−6 in good agreement
with the simulation.
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d = 1536 ∆t = 0.002
d = 192   ∆t = 0.002

Figure A.4: Time evolution of ǫ(t) for three pairs of displacements with σ =
10−9 and c = 10, integrated using two different values of the time step ∆t
and two different system sizes. The plateau value F̂/σ =

√
dF/λ∆tσ shows

the expected dependence on ∆t, the dependence on phase space dimension
d is qualitatively correct.
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Figure A.5: Time evolution of |δ(1)t | (black), |δ(1)t | (red), |ξt| = |c−1δ
(2)
t −δ(1)t |

(green), and ǫ(t) (blue) for σ = 10−9, c = 10, and τ = 500∆t. Note the slow
increase of |ξt| and ǫ(t).
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Figure A.6: Dependence of the plateau value on the rescaling interval τ .
Two data sets are shown, both for pairs of displacements (not shown) with
σ = 10−4 and c = 10, but for different values of τ : |ξt| (green) and ǫ(t)
(blue) for τ = 500∆t; |ξt| (black) and ǫ(t) (red) for τ = 1000∆t. In this
regime, second order terms dominate and ǫ(t) grows proportional to eλt up
to the first rescaling point, where first order terms take over.
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to the second rescaling point (0 6 t̂ 6 τ) then reads

δ
(1)

τ+t̂
= S δ(1)τ +

1

2
δ(1)τ Aδ(1)τ , (A.25)

δ
(2)

τ+t̂
= c S

(

δ(1)τ + ητ

)

+
c2

2

(

δ(1)τ + ητ

)

A
(

δ(1)τ + ητ

)

.

Thus we get for the time evolution of the difference vector

ξτ+t̂ ≈ S ητ +
1

2
(c− 1) δ(1)τ Aδ(1)τ . (A.26)

Here we assume |ητ | ≪ |δ(1)τ | and keep only the leading second order term.
Along the lines of section A.2, we again introduce rounding errors. Depend-
ing on which regime we are in, the deviation from perfect alignment, after
the first rescaling, will have a magnitude of

|ητ | ≈
{

F̂(eλτ − 1)/eλτ = F̂(1 − e−λτ ) ≈ F̂ if c σ2a e2λt ≪ F̂
(

eλt − 1
)

,

c σ2a e2λτ/eλτ = c σ2a eλτ if c σ2a e2λt ≫ F̂
(

eλt − 1
)

.
(A.27)

ητ grows exponentially in time,

|ητ+t̂| ∼ |ητ |eλt̂ . (A.28)

If we now add this term to the leading contribution in the respective regime,
we obtain for the time evolution of ǫ(τ + t̂) from the first to the second
rescaling point

ǫ(τ + t̂) ≈
{

F̂/σ + F̂/σ
(

1 − e−λt̂
)

= F̂/σ
(

2 − e−λt̂
)

,

c σa eλτ + c σa eλt̂ = c σa eλτ
(

1 + eλ(t̂−τ)
)

.
(A.29)

As a consequence, at the second rescaling point

|η2τ | ≈
{

2 F̂ ,
2 c σ2a eλτ ,

(A.30)

and for the time evolution from the second to the third rescaling point,

ǫ(2τ + t̂) ≈
{

F̂/σ
(

3 − e−λt̂
)

,

c σa eλτ
(

2 + eλ(t̂−τ)
)

.
(A.31)

Thus, starting from the first rescaling point, ǫ(t) has a plateau (albeit a
slowly growing one) in both regimes. In the regime where second order
terms are larger than rounding errors, the plateau value will depend on the
time τ that passes before the first rescaling event; in the regime of rounding
errors, this will not be the case. For fixed τ and c, in the regime σ . 10−6



A.3. Periodic rescaling 111

0 2e+05 4e+05 6e+05 8e+05 1e+06
time step

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

9
8
7
6
5
4
3

Figure A.7: Long-time behavior of ǫ(t) for different pairs of shooting dis-
placements, with σ = 10−n and c = 10 (legend values indicate values of
n). For σ ≥ 10−2 and σ ≤ 10−10 fluctuations, though arising for differ-
ent reasons in the two regimes, eventually lead to complete separation of
trajectories and ǫ(t) ≈ 1.

we expect the plateau value to decrease with increasing σ and then decrease
again for σ & 10−6, as the system crosses over to a different regime.

As illustrated in Figures A.5 and A.6, the above argument correctly de-
scribes the behavior of our model system, at least for short times. However,
for very long times the equations suggest a slow increase in ǫ(t) that will
eventually lead to complete separation of trajectories. As discussed in Chap-
ter 3, this does not happen, even for simulation times of order 107 time steps.
We observe fluctuations in ǫ(t) over one or two orders of magnitude, but no
long-time trend (see Fig. A.7). It is here that the slow alignment of phase
space vectors in the direction of largest growth plays an important role [72],
which is not captured in the simplified formalism used above, where we are
only concerned with magnitudes of vectors and disregard their direction.





Appendix B

Nucleation and growth in

structural transformations of

nanocrystals

This chapter contains a short manuscript based on Chapter 6
which has been recently accepted for publication in the journal
Nano Letters.

Using transition path sampling computer simulations, we reveal the nucle-
ation mechanism of a pressure-induced structural transformation in a model
of CdSe nanocrystals. Consistent with experiments, the thermodynamic
transition pressure of the transformation increases with decreasing crystal
size. Through transition state analysis, we identify the critical nuclei and
characterize them by calculating activation enthalpies and volumes. Our
simulations reproduce the trends with crystal size observed in experiments.
This result supports the observed transformation mechanism, which consists
of nucleation on the crystal surface and growth by sliding of parallel crystal
planes.

B.1 Introduction

In nanocrystals, mechanisms of structural phase transformations are often
strongly influenced by the surface free energetics related to particular mor-
phologies. For instance, in ZnS qualitatively different transformation path-
ways are observed for spherical and belt-like geometries [105, 106]. Control
over such pathways promises new routes for creating materials by kinetically
stabilizing structures that are unstable otherwise [12,105,106], but requires
detailed understanding of the transformation mechanism on the atomistic
level. While experiments provide detailed insights into the thermodynamics
and kinetics of structural transitions, their time and space resolution is not

113
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sufficient to identify transition mechanisms. Computer simulation methods
can, in principle, yield such information but are complicated by long time
scales. Here, we use transition path sampling (TPS) [17, 18] to overcome
these difficulties and identify the nucleation pathway for a pressure induced
structural transformation in CdSe nanocrystals. For the first time, close
contact between simulation and experiment is established through compu-
tation of activation volumes and enthalpies from transition state analysis.
Our simulations explain the trends with crystal size observed in experiments
and shed light on the underlying nucleation mechanism, which is markedly
different from mechanisms occurring in bulk materials.

The paradigmatic example of pressure-induced transformations in nano-
crystals is the transition from the four-coordinated wurtzite to the six-
coordinated rocksalt structure in CdSe nanocrystals. In an extensive series
of experiments, Alivisatos and coworkers have studied the size-dependence
of the hysteresis curve and of the transformation pressure, and have mea-
sured activation volumes and enthalpies [8–12]. While these experiments
elucidate the thermodynamics and kinetics of the transformation, only lim-
ited information about the atomistic details of the transformation process
can be extracted from them [10,11].

Using molecular dynamics (MD) computer simulation, various transfor-
mation mechanisms have been identified for bulk [15,83] and nanocrystalline
CdSe [16, 97], as well as for other semiconducting materials [14, 92, 98, 104,
110,113]. However, the significance of the observed mechanisms with respect
to the experiments remains unclear for two reasons. First, a straightforward
MD approach is plagued by the wide gap in timescales between experiment
and simulation. To overcome the high free energy barrier, associated with
the formation of a critical nucleus of the high-pressure phase, within the
typical simulation timescale of a nanosecond, pressure must be increased
close to the point where the low-pressure phase becomes mechanically un-
stable. Under these conditions, mechanisms may be quite different from
those favored in a less violent regime [14, 65, 91, 97]. Second, for lack of a
quantitative measure of the “right” mechanism, simulation studies so far
had to be content with a mere description of observed mechanisms and no
prediction of experimental observables could be made.

In this work, the time scale problem is avoided by using TPS, a com-
putational technique for the simulation of rare events [17, 18]. In contrast
to straightforward MD, TPS makes possible the study of phase transfor-
mations at experimental conditions. However, the significance of a trans-
formation mechanism observed in simulations can only be assessed through
the computation of experimentally observable quantities. To this end, we
subject the trajectories harvested with TPS to a statistical analysis based
on the committor [18], a statistical measure for the transition progress. This
analysis yields transition states, which are familiar from chemical reaction
dynamics and are instrumental for a detailed understanding of the transition
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Figure B.1: Transition pressures as a function of crystal size for the h-MgO
to rocksalt transformation (lines are guides to the eye). The dashed line
indicates the bulk transition pressure [97]. A 30 Å crystal, viewed along the
hexagonal c-axis, is shown in the hexagonal (lower left) and cubic (upper
right) structure.

mechanism. From the transition states we compute activation volumes and
activation enthalpies, making direct contact with experiments.

B.2 Simulation results

The basis of this work are extensive TPS simulations of faceted CdSe nano-
crystals. The crystals have diameters of 20, 30, 40, and 50 Å (corresponding
to N = 120, 432, 1056, and 2100 atoms) and are modeled with the empirical
potential of Rabani [85]. The crystals, designed to resemble the particles
studied experimentally, are hexagonal prisms, with (100) and (001) surfaces
and an aspect ratio of about unity [87]. The wurtzite to rocksalt transfor-
mation for this crystal shape proceeds via the consecutive sliding of (100)
planes [65] and passes through the five-coordinated intermediate structure
h-MgO [16,98,125], which is stabilized by a favorable surface free energy [97].
The h-MgO structure, which is obtained from the wurtzite structure by a
compression along the hexagonal c-axis, is not observed in experiments and
disappears in the simulation of crystals with disordered surfaces or stack-
ing faults [97]. Nevertheless, also these CdSe crystals show a compression
along the wurtzite c-axis prior to the transformation, and, at the time of the
transition, are essentially in the h-MgO structure. As indicated by straight-
forward MD simulations, the h-MgO to rocksalt transformation is the rate
limiting step of the whole transition [97]. We therefore concentrate on this
transformation in the following.

We perform TPS runs at a temperature of 300 K for pressures rang-
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ing from 2 to 4 GPa, using a recently developed TPS algorithm for nano-
crystals [65], which employs an ideal gas as pressure-medium [101]. (Simula-
tion details can be found in Ref. [65].) Figure B.1 shows the size dependence
of the thermodynamic transition pressure, which we identify with the pres-
sure at which the hexagonal and rocksalt structures have equal enthalpy1.
The transition pressure decreases with increasing crystal size approaching
the bulk value of about 1 GPa [97]. This behavior is observed here for the
first time in a computer simulation; it is consistent with experimental obser-
vations and can be rationalized in terms of the different surface free energies
in the two structures [8]. In previous straightforward MD simulations with
rapid pressurization, this size dependence was obscured by kinetic effects,
preventing an accurate determination of the thermodynamic transition pres-
sure [98].

To identify the transition mechanism, we determine transition states by
calculating the committor pB, a statistical measure for the progress of the
transformation, along typical trajectories of the transition path ensemble
[18]. The committor pB is the probability of a particular configuration of the
crystal to relax into the rocksalt structure rather than into the hexagonal
structure. Thus, as the transformation proceeds, the committor changes
its value from 0 to 1. A configuration of a nanocrystal is identified as a
transition state if its committor equals one half.

Typical transition states of a 50 Å nanocrystal are shown in Fig. B.2a.
It was speculated earlier [8, 9, 126] that in nanocrystals below a certain size
a collective transformation mechanism, involving concerted motion of all
crystal atoms, could be energetically favored over step-by-step growth of a
solid-solid interface. Our simulations, however, support a directionally de-
pendent nucleation and growth mechanism. Indeed, our TPS simulations
start from a collective mechanism but rapidly converge toward the mecha-
nism described in Ref. [65] and illustrated in Fig. B.2b. Transition states,
defined through the committor criterion, are invariably characterized by
a localized and connected region of rocksalt structure, a critical rocksalt
nucleus. A conspicuous feature of the transformation process is that the
rocksalt nuclei always appear on the surface of the crystal. At high pres-
sures (3.5 GPa in Fig. B.2), the critical nucleus consists of a one-dimensional
arrangement of atoms. At lower pressures (2 GPa in Fig. B.2), the transi-
tion state is reached after growth in one of two equivalent [100] directions.
Consistent with classical nucleation theory, the critical nucleus shrinks as

1The enthalpy of a nanocrystal is defined as H = Uc + Ug + PV , where Uc is the
interaction energy between crystal atoms, Ug is the interaction energy of crystal atoms
with gas particles in the pressure bath, P is the pressure, and V is the volume of the
crystal. The volume is defined as the difference of the total system volume Vtot and the
volume occupied by the Ng gas particles according to the equation of state of the ideal
gas, V = Vtot − NgkBT/P . This definition is free of any geometrical parameters and is
consistent with a thermodynamic theory for small systems in a solvent [120].
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Figure B.2: Nucleation of the rocksalt structure. (a) The critical rocksalt
nucleus in a 50 Å nanocrystal at four different pressures. Transparent gray
atoms are in the hexagonal structure, blue atoms are in the rocksalt struc-
ture. Crystals have been rotated to facilitate comparison of the nuclei. As
expected from classical nucleation theory, the size of the critical nucleus in-
creases with decreasing pressure (for this size, the thermodynamic transition
pressure is 1.6 GPa, see Fig. B.1). (b) Snapshots along a typical reactive
trajectory at 3 GPa. The crystal is shown along the hexagonal c-axis to
highlight the mechanism of sliding (100) planes. After 13 ps the crystal has
reached the transition state.
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Figure B.3: Enthalpy and volume as a function of time along a typical
transition path of a 30 Å nanocrystal, at a pressure of 2.5 GPa. The red
and blue lines indicate the average of the enthalpy and volume, calculated
from long Monte Carlo simulations, in the h-MgO and rocksalt structure,
respectively. As the trajectory passes through the light gray field, the value
of the committor changes from essentially zero to one; the dashed line around
7.5 ps indicates the point where the system is in the transition state (pB

= 0.5). We obtain the activation enthalpy ∆H and volume ∆V from the
difference of the respective value in the metastable h-MgO structure and
the transition state, as indicated by the arrows.

pressure is increased, but even at a pressure of 4 GPa, close to the point
where the transformation becomes observable with straightforward MD, the
critical nucleus is strongly elongated and extends along the full length of the
crystal. This unexpected feature holds for all crystal sizes considered here.
Most likely, this particular morphology of the interface between the high
pressure structure and the pressure bath is favored energetically over other
solid-solid interfaces that cause large strain throughout large parts of the
crystal. In the bulk, solid-solid transformations are believed to nucleate at
lattice defects like grain boundaries for similar reasons [116]; in nanocrystals,
the surface plays the analogous role of a low energy nucleation site.

To link our simulation results to experiments, we next calculate acti-
vation enthalpies ∆H and activation volumes ∆V for various nanocrystal
sizes and pressures. Figure B.3 shows the time evolution of the enthalpy
and volume of a 30 Å crystal during the transformation process. The en-
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Figure B.4: Activation enthalpies and volumes as a function of crystal size,
determined as averages over single trajectories like the one in Fig. B.3 (lines
are guides to the eye). Black dots with errorbars mark experimental data:
enthalpies were determined from the temperature dependence of the rate
constant at 4.9 GPa, volumes from the change of the rate constant as pres-
sure was varied between 5 and 7 GPa (experimental data are from the main
text and from footnote (24) of Ref. [10]; no errors of measurement were
provided for activation volumes).
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thalpic barrier to the transformation is evident, and the transition state co-
incides with the barrier top, consistent with nucleation theory. We calculate
∆H and ∆V as the difference of the enthalpy and volume at the transition
state and in the hexagonal structure. These quantities are then averaged
over all transition states along a particular trajectory and over typically
five randomly selected TPS trajectories (each having up to 25 transition
states). The size- and pressure-dependence of ∆H and ∆V are shown in
Fig. B.4, along with experimental data. Although our simulations do not
entirely reproduce the true transition pressures, the agreement of the size-
dependence of the enthalpic barrier at a pressure of 3 GPa with experimental
data collected at 4.9 GPa [9, 10] is remarkable, giving evidence for the cor-
rectness of the observed sliding-planes mechanism. One might expect an
analogous agreement of experimental activation volumes with our volume
data at 3 GPa. However, a comparison of the size-dependence of activation
volumes with experiment is complicated by the particular way the activa-
tion volumes have been determined from experimental data: assuming the
activation volume is constant over a pressure range of a few GPa, Alivisatos
and coworkers obtained activation volumes from the pressure-dependence of
the rate constant between 5 and 7 GPa [10]. Our simulations clearly show
that the activation volume decreases significantly as pressure is increased,
consistent with nucleation theory. One should therefore consider the exper-
imental volume data to be associated with higher values of pressure. The
fair agreement of experimental activation volumes with our calculations at
4 GPa indeed supports this argument.

B.3 Concluding remarks

The size-dependence of the the activation enthalpy and volume sensitively
depends on the particular transformation pathway and discriminates be-
tween alternative mechanisms. In particular, a mechanism involving a con-
certed rearrangement of all atoms in a single step would lead to an activation
enthalpy that scales with the crystal volume. A transformation proceeding
through planes sliding coherently with respect to each other would lead to
a scaling with the surface area. In contrast, the linear behavior observed
here and in experiments is a signature of a quasi-one dimensional critical
nucleus that spans the entire crystal and grows only in one direction as the
size of the nanocrystal is increased. This particular behavior of activation
enthalpy and volume cannot extend to the bulk system in which the critical
nucleus is finite and independent of system size. In the bulk, nucleation will
occur preferentially at lattice defects rather than on the surface leading to
a markedly lower kinetic barrier. Nevertheless, the computational approach
proposed here is applicable also to this case, as well as to other structural
and morphological transformations in nanocrystalline and bulk materials.



Bibliography

[1] A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Science 256, 1425 (1992)

[2] S.H. Tolbert, A.P. Alivisatos, Science 265, 373 (1994)

[3] A.P. Alivisatos, Science 271, 933 (1996)

[4] C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115,
8706 (1993)

[5] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich,
A.P. Alivisatos, Nature 404, 59 (2000)

[6] L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 122, 12700
(2000)

[7] J.R. McBride, T.C. Kippeny, S.J. Pennycook, S.J. Rosenthal, Nano
Letters 4, 1279 (2004)

[8] S.H. Tolbert, A.P. Alivisatos, J. Chem. Phys. 102, 4642 (1995)

[9] C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Science 276,
398 (1997)

[10] K. Jacobs, D. Zaziski, E.C. Scher, A.B. Herhold, A.P. Alivisatos, Sci-
ence 293, 1803 (2001)

[11] J.N. Wickham, A.B. Herhold, A.P. Alivisatos, Phys. Rev. Lett. 84,
923 (2000)

[12] K. Jacobs, J. Wickham, A.P. Alivisatos, J. Phys. Chem. B 106, 3759
(2002)
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