
DIPLOMARBEIT

Titel der Diplomarbeit

A non-commutative QFT at the self-dual point

angestrebter akademischer Grad

Magister der Naturwissenschaften (Mag. rer. nat.)

Verfasser: Thomas Kaltenbrunner

Matrikel-Nummer: 0301246

Studienrichtung: 411 Physik

Betreuer: Ao. Univ.-Prof. Dr. Harald Grosse

Wien, am 25. März 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OTHES

https://core.ac.uk/display/11585472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Danksagung

Ich möchte meinem Betreuer, Professor Harald Grosse herzlich für die hilfreichen Diskus-
sionen und Hinweise bei aufgetretenen Fragen während des letzten Jahres danken und
dafür, dass er mich auf dieses interessante Thema hingewiesen hat. Weiters bedanke ich
mich bei meiner Familie die mir erst die Möglichkeit gegeben hat Physik zu studieren.
Ich danke auch Georg und Anas für die vielen interessanten Diskussionen in denen ich
das Thema von verschiedensten Seiten beleuchten konnte.

Ganz besonders bedanke ich mich bei meiner Freundin Irmi für die Unterstützung und
aufmunternden Gespräche die mir geholfen haben meine Begeisterung auch in schwierigen
Zeiten beizubehalten.

i



ii



iii

Abstract

In this tesis the Grosse-Wulkenhaar-model at the self-dual point Ω = 1 is examined. The
relevant 2-point and 4-point Feynman graphs are renormalized up to two loop order to
proof the boundedness of the β-function by showing that the difference between bare
and renormalized coupling constant is finite. This result is then generalized up to all
orders by using Ward-Identites and the Dyson-Schwinger-Equation. Additionally the
relations between (2n-2)- and 2n-point functions, obtained through the Ward-Identities,
are calculated explicitly between 2 and 4-point functions. The last section uses the
techniques of the general proof to show the boundedness of the β-function of the Grosse-
Wulkenhaar-model in a magnetic field, namely the Langmann-Szabo-Zarembo model
with oscillator term, which is an interesting toy model of the Quantum Hall Effect.
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Chapter 1

Introduction

The best studied non-commutative space in QFT is certainly the Moyal space. It is
defined as the algebra RDθ whose elements fulfill the relation

[xi, xj ] = iΘij (1.1)

with Θ being a non-degenerate, skew-symmetric matrix. For the easiest and most com-
mon Moyal space one writes Θ as

Θ =


0 θ1 (0)
−θ1 0

. . .
(0) 0 θD/2

−θD/2 0

 (1.2)

and sets all components θ constant and equal to each other. As a vector space, this
algebra is now given by S(R4) of smooth and rapidly decaying Schwartz-class functions.
Those functions are equipped with the multiplication rule

(f ? g)(x) =
∫

dDk
(2π)D

∫
dDyf(x+

1
2

Θ · k)g(x+ y)eik·y (1.3)

All calculations in this tesis are based on this type of Moyal space.
The model I will study is the Grosse-Wulkenhaar-Model, which is an extension of the

standard, non-commutative φ?4 model

S[φ] =
∫

d4x
{1

2
(∂µφ) ? (∂µφ) +

m2

2
(φ ? φ) +

λ

2
φ ? φ ? φ ? φ)

}
(1.4)

where ”m“ stands for the mass and ”λ“ for the coupling constant. It has the usual,
commutative Lagrangian where the multiplication is replaced by the Moyal star product.
Unfortunately this standard φ?4 model was found not to be renormalizable because of a
new phenomena, the so-called UV-IR mixing discovered by Minwalla, Van Raamsdonk
and Seiberg in [1]. This phenomena exhibits a relation between short and long distances,
and therefore between the UV- and IR-regime. It is not present in commutative theories
and lead to a new type of diverging Feynman graphs which are non-local and therefore
cannot be put into a redefinition of the mass. The old hope of an inherent regularization
of QFT by using noncommutative space-time structure was thus not fulfilled.
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2 Chapter 1. Introduction

A duality of this model was the first step of the solution to the problem. Langman
and Szabo found a symmetry on the Moyal plane between space and momenta in [2]. It
states that the interaction part of the standard φ?,4-model, by substituting

φ̂(p)←→ π2
√
| det θ |φ(x) pµ ←→ x̃µ := 2(θ−1)µνxν (1.5)

φ̂(p) =
∫

d4xe(−1)aipa,µx
µ
a ,

where the index “a” refers to the cyclic order of the ?-product, has the same form in
coordinate and momentum space. This relation was thus not fulfilled for the free part of
the Hamiltonian.

Grosse and Wulkenhaar solved the problem of renormalizability by making the free
part of the Hamiltonian of the φ?4 model invariant under this duality too by adding a
harmonic potential term to it with ”Ω“ being the oscillator frequency.

S[φ] =
∫

d4x
{1

2
(∂µφ) ? (∂µφ) +

Ω2

2
(x̃µφ) ? (x̃µφ) +

m2

2
(φ ? φ) +

λ

2
φ ? φ ? φ ? φ)

}
(1.6)

The duality is especially obvious by taking a look at the parameters of the theory. Under
the above given transformation they change like

S[φ, µ0, λ,Ω] −→ Ω2S[φ,
µ0

Ω
,
λ

Ω
,

1
Ω

] (1.7)

By taking the limit Ω → 1 the dependency of the parameters stays invariant and thus
one cannot distinguish anymore between space and momenta. This special value Ω = 1
is called the self-dual point. With this extra term they were now able to show renor-
malizability of this model in the matrix base first in 2 dimensions and finally in 4D as
well [3–5].

Calculating in the matrix base means that the Moyal ?-product becomes a simple
matrix product, while the fields are then represented as (infinite) matrices. The Feynman
graphs then become so-called Ribbon graphs. The single lines of a standard graph are
extended to double lines and each single line carries one or more (depending on dimension)
indices. If the index values are conserved along a ribbon, i.e. Gmn;kl = G(m,n)δmlδnk,
where “Gmn;kl” is the propagator of the model, one speaks of a local matrix theory, while
otherwise it would be a non-local one. Comparing with the definition of the propagator in
the next section (2.1), it can be seen that the GWmodel at the self-dual point corresponds
to a local theory.

The idea of adding an extra term to the Lagrangian of the model to make it renor-
malizable was used by others to find different renormalizable models, such as the φ?32 -
model [6] or the Gross-Neveu-model [7], but still, the GW-model is unique because of a
special feature, namely the boundedness of the beta function up to all orders.

The β-function was again first calculated by Grosse and Wulkenhaar in [8] up to one
loop order. There they made the amazing discovery that the RG group flow does not show
a Landau ghost and is just bounded in the UV-regime! The running coupling constant
stays finite, contrary to the classical φ4-theory. Additionally the oscillator paramater Ω
tends to one and therefore the self-dual point is a fixed point in the theory. When letting
Ωren tend to zero the oscillator term vanishes and the Landau ghost reappears.

This result was first extended up to three loops by Disertori and Rivasseau in [9] and
finally generalized to all loop orders by Disertori, Rivasseau, Gurau and Magnen in [10].



Chapter 2

Definitions and Theorem

The propagator of the GW-model (1.6) in the matrix base at the self-dual point Ω = 1
is given by:

Cmn;kl =
1

(4π)2θ
Gmnδmlδnk Gmn =

1
A+m+ n

(2.1)

Here, A = 2 + µ2θ/4, where µ is the mass, and the indices m and n are in 4 dimensions
∈ N2. This means they are abbreviations for

m+ n = m1 +m2 + n1 + n2 and δml = δm1l1δm2l2 (2.2)

respectively.
The model can be defined as a complex or a real one.

Sr =
(4π)2θ

2

∑
m,n∈N2

φmnG
−1
mnφmn +

λ

4
(4π2θ2)

∑
m,n,k,l∈N2

φmnφnkφklφlm (2.3)

Sc = (4π)2θ
∑

m,n∈N2

φ̄mnG
−1
mnφmn +

λ

2
(4π2θ2)

∑
m,n,k,l∈N2

φ̄mnφnkφ̄klφlm (2.4)

They differ by the orientation of the propagators but when calculating the amplitudes
of the diverging graphs, the only differences are numerical factors coming from different
orientation of the propagators and the multiplicity of the graphs emerging in the correla-
tion function when contracting the fields. Those differences don’t change the behaviour
of the diverging graphs and thus one can easily transfer the results obtained in one model
to the other. In fact it was shown in [9] that those numerical factors in the two models
finally give the same prefactors of the graphs in both of them. The explicit calculation
of the renormalized graphs will be done using the real model while the general proof will
be based on the complex one.

To show the finiteness of the beta-function one has to compute the evolution equation
for the coupling constant

λr = − 1
4π2θ2

Γ4(0, 0, 0, 0)
Z2

(2.5)

Here “Z” is the wave function normalization given by

Z = 1− 1
(4π)2θ

∂m1Σ(m,n)
∣∣∣
m=n=0

. (2.6)

The self-energy Σ(m,n) is defined as the expectation value of the one-particle-irreducible

3



4 Chapter 2. Definitions and Theorem

Feynman graphs:
Σ(m,n) =< φmnφnm >1PI (2.7)

Furthermore
Γ4(m,n, k, l) =< φmnφnkφklφlm >1PI . (2.8)

is the amputated 4-point, one-particle-irreducible Green’s function.
To do the actual calculation of the evolution equation up to 2-loop-order for λr, it is

being expanded in the bare coupling constant.

λr = − 1
4π2θ2

Γ4(0, 0, 0, 0)
Z2

= 1− γ1λ̃+ γ2(λ̃)2 +O(λ3) (2.9)

where the abbreviation λ̃ = λ/16π2 is defined for convenience.
This proposition has been generalized up to all orders in [10] (see section 6) and states
that the equation

Boundedness of β-function 1

Γ4(0, 0, 0, 0) = λ[1− ∂LΣ(0, 0)]2 (2.10)

holds up to all loop-orders either for

• the bare equation with fixed ultraviolet cut-off or

• the renormalized equation. In that case the coupling constant is still the bare one,
but reexpressed as a series in the renormalized one.



Chapter 3

Renormalization in 2D

To prepare for the more complicated case of Renormalization of the Feynman graphs in
4 dimensions, they are first worked out in 2D.

The only relevant graphs, as shown by Grosse and Wulkenhaar [3], must be planar
and have only one external face, which simplifies the calculation a lot. Throughout the
calculation I will use the BPHZ renormalization scheme with the renormalization point
set to zero, following [9]. The renormalization conditions are

Σ(m,n)
∣∣∣
m=n=0

= 0

∂Σ(m,n)
∂m

∣∣∣
m=n=0

= 0 (3.1)

where Σ(m,n) stands for the self-energy and instead of m any other external index can
be used. Further, the Feynman rules give

• a factor of 1
(4π)2θ for each line

• a contribution of 4π2θ2 λ
4 for each vertex in the real case.

In 2 dimensions, every index is ∈ N and not as in 4 dimensions ∈ N2. This means that
every index in the Feynman diagrams consists of just one term and not two, as well as
the delta functions.

Renormalizing in 2 dimensions one has to deal with less divergences than in four
dimensions as there are just logarithmic ones, which are independent of the external
momentum. Thus only mass counterterms have to be added. This can be easily verified
by checking the degree of divergence:

degree of divergence = dimension of integral− power of denominator (3.2)

If it is positiv, the integral will converge. If the degree of divergence is smaller or equal
zero the term diverges, being logarithmic divergent for zero. Thus, here the only case
where an integral can diverge is of the form

Λ∫
0

dp
1

A+ p
(3.3)

which diverges logarithmically.

5



6 Chapter 3. Renormalization in 2D

3.1 First-order-renormalization

Figure 3.1: 1-loop-graphs: Tup and Tdown

The only graph at first order contributing to the 2-point Green’s function is the
tadpole graph (see figure 3.1). In matrix theories one usually uses external (or broken)
and internal “faces” to calculate the Feynman diagrams instead of using the internal and
external momenta like in commutative QFT. Taking the example of the Tadpole, we find
one internal face and one external broken face (The number of external faces is bound
by the power counting theorem of Grosse and Wulkenhaar to be equal to 1 for relevant
graphs). The amplitude of this graph is found by looking at the border of the loop,
namely the Ribbon, and adding the corresponding internal and external index plus the
mass term to the denominator. The power of the denominator depends on the number
of vertices, like in commutative QFT. Therefore, the amplitude of the tadpole is found
to be 1

A+p+m .
Its loop can point either to the upper, or the lower index side. As only the external

index is changed, the calculation of the amplitude is the same in both cases.
To find the diverging terms, the following integral for the Tup-graph has to be com-

puted:

GTupmn =

Λ∫
0

dp
1

A+ p+m
= ln[Λ]− ln[A+m] (3.4)

It exhibits a logarithmic divergence which is regularized by the integral where the loop
with index p diverges and thus the external index can be neglected.

Λ∫
0

dp
1

A+ p
= ln[Λ]− ln[A] (3.5)

This gives the renormalized amplitude for the Tup graph:

GTup,Rmn = ln[Λ]− ln[A+m]− ln[Λ] + ln[A] = ln[A]− ln[A+m] (3.6)

Together with the Tdown-contribution this is the first order term of the self-energy which
has to fulfill the renormalization condition (3.1). Obviously, the Tup contribution is equal
to zero for vanishing external momenta and, as the Tdown contribution is equal up to
exchanging the index m for n, the condition is fullfilled. Thus, we can write down the
self-energy up to first order as

1
(4π)2θ

Σ(m,n) = −λ̃Amn =
λ̃

4
(2 ln[A]− ln[A+m]− ln[A+ n]) (3.7)
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The prefactor 1/4 results from taking into account the combinatorial factors of the graph
together with the prefactors coming from the definition of the coupling constant and
propagator. The exact calculation is given in the next chapter when renormalizing in 4
dimensions.

3.2 Two-loop-Renormalization

Figure 3.2: 2-loop-diagrams

At the second order there are three different graphs which need renormalization and
are shown in figure 3.2.

Starting with the easiest of the three, namely “TEXTup”, the amplitude is given by

GTEXTup =

Λ∫
0

Λ∫
0

dpdq
1

(A+ p+m)2(A+ q +m)
=

=

Λ∫
0

dp
ln[Λ]− ln[A+m]

(A+ p+m)2
=

ln[Λ]
A+m

− ln[A+m]
A+m

(3.8)

This graph has a subdivergence which has to be renormalized in addition to the overall
divergence. Since the two loops p and q don’t have any border in common, the overall
counterterm, canceling the divergences in the bare graph, and the graph with diverging
loop q, is zero. This indicates that the only divergence is the one related to the tadpole
graph, which has already been calculated in the last subsection. Together we find the
renormalized amplitude as

GTEXTup,Rmn =

Λ∫
0

Λ∫
0

dpdq
( 1

(A+ p+m)2(A+ q +m)
−

− 1
(A+ p+m)2(A+ q)

− 1
(A+ p)2(A+ q)

+
1

(A+ p)2(A+ q)

)
=

=
ln[A]− ln[A+m]

A+m
(3.9)
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The amplitude for the graph TINTup is the following:

GTINTupmn =

Λ∫
0

Λ∫
0

dpdq
1

(A+ p+m)2(A+ p+ q)
=

=

Λ∫
0

dp
ln[Λ]− ln[A+ p]

(A+ p+m)2
=

ln[Λ]
A+m

− ln[A]
A+m

− ln[A+m]− ln[A]
m

(3.10)

This graph has a subdivergence too but this time, the corresponding overall counterterm
does not cancel. Anyway, the only diverging term is again connected to the tadpole. The
overall counterterm gives just finite contributions to fulfill the renormalization condition.
Thus,

GTINTup,Rmn =

Λ∫
0

Λ∫
0

dpdq
( 1

(A+ p+m)2(A+ p+ q)
− 1

(A+ p+m)2(A+ q)
−

− 1
(A+ p)2(A+ p+ q)

+
1

(A+ p)2(A+ q)

)
=

= − ln[A+m]− ln[A]
m

+
1
A

(3.11)

which goes to zero for m→ 0.

The last graph at two loop order is the sunrise graph with the corresponding amplitude
given by:

GSmn =

Λ∫
0

Λ∫
0

dpdq
1

(A+ p+m)(A+ p+ q)(A+ q + n)
=

=
1

(A+m+ n)

{π2

6
+

ln[A+m]2

2
− ln[A] ln[n] + ln[A] ln[A+ n]−

− ln[A+m] ln[A+ n] + ln[n] ln[A+ n]− ln[A+ n]2

2
+ Li2[

m

A+m
]
}

(3.12)

Already by checking the degree of divergence it can be seen that this graph shows no
divergences in 2 dimensions. By adding the order of the integral over p and q we have a
dimension of 2 and the power of the denominator is 3. Therefore, no overall divergence is
expected. Further the seperated integrals, which have dimension 1, and the power of the
denominator for seperate p and q, which are both 2, show that there is no subdivergence
neither. Nevertheless, to fulfill the renormalization condition of a vanishing self energy
at m = n = 0 we have to renormalize the graphs by a finite counterterm.

GS,Rmn =

Λ∫
0

Λ∫
0

dpdq
{ 1

(A+ p+m)(A+ p+ q)(A+ q + n)
−

− 1
(A+ p)(A+ p+ q)(A+ q)

}
(3.13)

In four dimensions, subdivergences will arise and therefore more counterterms will be
needed but in 2 dimensions, as we only want to cancel finite terms in our bare graph,
just the overall counterterm needs to be subtracted. This gives the final result for the
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amplitude of the graph:

GS,Rmn =
1

A+m+ n

{π2

6
+

ln[A+m]2

2
− ln[A] ln[n] + ln[A] ln[A+ n]−

− ln[A+m] ln[A+ n] + ln[n] ln[A+ n]− ln[A+ n]2

2
+ Li2[

m

A+m
]
}
− π2

6A
(3.14)

Therefore, the self-energy is up to 2-loop-order in 2 dimensions given by

1
(4π)2θ

Σ(m,n) = −λ̃Amn + λ̃2B2
mn =

= λ̃(2 ln[A]− ln[A+m]− ln[A+ n])+

+ λ̃2
( ln[A]− ln[A+m]

A+m
+

ln[A]− ln[A+ n]
A+ n

+

+
ln[A+m]− ln[A]

m
+

ln[A+ n]− ln[A]
n

+
2
A

+

+
π2

6(A+m+ n)
+

ln[A+m]2

2(A+m+ n)
− ln[A] ln[n]
A+m+ n

+

+
ln[A] ln[A+ n]
A+m+ n

− ln[A+m] ln[A+ n]
A+m+ n

+
ln[n] ln[A+ n]
A+m+ n

−

− ln[A+ n]2

2(A+m+ n)
+

Li2[ m
A+m ]

A+m+ n
− π2

6A

)
(3.15)
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Chapter 4

Renormalization in 4 Dimensions

Before we show the boundedness of the beta-function of the GW-model up to all orders
in section 6 on page 25, we want to carry out the calculation explicitly up to two-loop-
order in 4 dimensions. To do this, we first have to renormalize the relevant 2- and
4-point-graphs. The Feynman rules and the Renormalization scheme stay the same as
in 2 dimensions. A detailed introduction to non-commutative Renormalization can be
found in [11].

4.1 Renormalization of 2-point-graphs at 1-loop-level

Figure 4.1: 1-loop-graphs: Tup and Tdown

The only one-loop-graph we have to take into account is the Tadpole (see figure 4.1),
which can have its loop on the upper or lower index side. In commutative QFT it would
be zero but this changes in the noncommutative frame. The amplitude of this graph is
given by:

GTupmn =

Λ∫
0

Λ∫
0

d2p

(A+ p+m)
GTdownmn =

Λ∫
0

Λ∫
0

d2p

(A+ p+ n)
(4.1)

The asymptotic behavior for the diverging loop is:

GTupmn
Λ→∞= 2 ln[2]Λ− (A+m) ln[Λ] (4.2)

This graph is quadratically divergent in 4 dimensions which is interpreted as a mass
divergence, given by the graph with both loops going to infinity, which we have to
subtract. As can be seen in Equation (4.2) this graph has a logarithmic divergence
which depends on the external momentum as well. Therefore, we will need to add a
field-strength renormalization also.

11



12 Chapter 4. Renormalization in 4 Dimensions

4.1.1 Mass-renormalization

The counterterm is given as the amplitude for the graph, where the loop p diverges.
This means the external momentum m can be neglected. Graphically this is depicted in
figure 4.2.

Figure 4.2: Tup - mass CT

The renormalized amplitude can now be written down:

GTup,Rmn =

Λ∫
0

d2p
( 1

(A+ p+m)
− 1

(A+ p)

)
=

=−m ln[Λ] +m ln[2] + (A+m) ln[A+m]−A ln[A] (4.3)

As can be easily seen this fulfills the renormalization condition that the first order con-
tribution to the self-energy has to vanish at the renormalization point 0.

4.1.2 Calculation of the prefactor

To find the complete contribution to the self-energy we need to compute the combinatorial
factors too. The Feynman rules give contributions for each line and vertex. The number
of times a graph appears when calculating all possible contractions of the fields has to
be taken into account as well.

To find this combinatorial factor one has to multiply

• the number of times the graph appears differently when rotating it

• a factor of (# of vertices)! for all possibilities to which vertex the incoming φ̄ or φ
respectively, can contract

• a factor of 2#ofvertices or 4#ofvertices in the complex and real case for the legs the
incoming lines can contract to

Here we have one vertex and one line in our Feynman graph which gives

−λ̃(4π2θ2)(4π)2 1
[(4π)2θ]2

∑
N

KN

4
(G(1)

N )mn = − λ̃
4

∑
N

KN

4
(G(1)

N )mn (4.4)

Here a factor (4π)2θ has been taken out for convenience (see Equation (4.6)) and the sum
over N runs over the different graphs. Now the combinatorial factor has to be calculated.
We find

• a factor 2 for the possible appearences Tup and Tdown

• a factor of 1! for the one existing vertex
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• a factor of 41 for the possible legs the line can contract to at the vertex

As we have the sum over the different graphs in our definition of the prefactor, we leave
the factor of 2 for the appearances out, and then multiplying the other factors we find
that Kr

G = 4 in the real case and therefore the one-loop-contribution to the self-energy
is

Amn =
1
4

∑
N

(G(1)
N )mn (4.5)

where the sum over N stand for the necessary 1-loop-graphs. The self energy can now
be written down

1
(4π)2θ

Σmn = −λ̃Amn =
−λ̃
4

(
−(m+ n) ln[Λ] + (m+ n) ln[2]+

+ (A+m) ln[A+m] + (A+ n) ln[A+ n]− 2A ln[A]
)

(4.6)

4.1.3 Field-strength-renormalization

We find the field-strength renomalization by differentiating the self-energy-contribution
once with respect to the external momentum m or n. At first order we thus get a ln[Λ]
-contribution to our field-strength-renormalization Z.

δZ1 = −∂m1(Amn) =
1
4

(
ln[Λ] + ln[2] + ln[A]

)
(4.7)

4.2 Two-loop-calculation

Figure 4.3: 2-loop-diagrams

At 2-loop-order we have to calculate and renormalize three different Feynman graphs,
found in Figure 4.3. Each depicted graph is supposed to be a ribbon graph. The single
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lines are just used to simplify the diagrams itself. The corresponding amplitudes are

GSmn =

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p+m)(A+ p+ q)(A+ q + n)
(4.8)

GTINTupmn =

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p+m)2(A+ p+ q)
(4.9)

GTEXTupmn =

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p+m)2(A+ q +m)
(4.10)

GTINTdownmn =

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ q + n)2(A+ p+ q)
(4.11)

GTEXTdownmn =

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p+ n)2(A+ q + n)
(4.12)

4.2.1 Asymptotical behaviour of the divergent graphs

Analyzing the degree of divergence of the graphs we will again find quadratic and loga-
rithmic divergences. The ocurring infinities of each diagram are as follows:

GSmn

∣∣∣
m=n=0

Λ→∞=
(
−3(ln[2])2 + 2 ln[2]

)
Λ−A(ln[Λ])2+

+
(

2A ln[2]−A+ 2A ln[A]
)

ln[Λ] (4.13)

GTINTupmn

∣∣∣
m=n=0

Λ→∞= Λ(2 ln[2] ln[Λ]− 2 ln[2] + ln[2]2 − 2 ln[2] ln[A+m])+

+ ln[Λ]2(
A

2
+m) + ln[Λ](A−m−A ln[2]−

− 2m ln[2]−A ln[A+m]− 2m ln[A+m]) (4.14)

GTEXTupmn

∣∣∣
m=n=0

Λ→∞=
(

2 ln[2Λ]− 2(ln[2])2 − 2 ln[2A]
)

Λ−

−A(ln[Λ])2 + 2A ln[2A] ln[Λ] (4.15)

4.2.2 Mass-renormalization

At this order we have to take care about subdivergences which will occur at two-loop and
higher orders. Subtracting the overall divergence will not cure all divergences because
just one of the loops may diverge as well. If you take, for example, the graph “TEXTup”,
loop q may diverge while loop p stays finite. This will produce further infinities called
subdivergences. In this diagram you subtract it by substituting the tadpole q by its
counterterm, which we already computed at one-loop-order (see figure 4.4).

Renormalizing the sunrise diagram (“S”) is a bit more complicated because here we
have to deal with so called “overlapping divergences”. These are loops which have one
propagator in common. Fortunately, by applying the forest-formula found by Zimmer-
mann, this problem becomes easily tractable as well. One just has to cancel each loop
containing a subdivergence by its counterterm seperately and add the necessary overall
counterterms at the end. Graphically, this is shown in figure 4.5 and gives a quite good
intuitive understanding of the forest formula (for details see [12]).
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Figure 4.4: Renormalizing the “TEXTup”-graph

Actually in the “S” diagram, the only mass divergence comes from the overall coun-
terterm. The subdivergences give contributions to the field-strength and the coupling
constant renormalization. Later on, it will be argued that the coupling constant renor-
malization can be ignored because it just gives finite contributions. The reason it has
to be taken into account here is, that the derivation of the subdivergence contributes to
the field-strength as well. The subtraction renormalizing the coupling constant is not
necessary.

Figure 4.5: Renormalizing the Sunrise-graph

The explicit calculations of the graphs can be found in Appendix 1. Here I just state
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the renormalized amplitudes.

GS,Rmn =

Λ∫
0

Λ∫
0

d2pd2q
{ 1

(A+ p+m)(A+ p+ q)(A+ q + n)
−

− 1
(A+ p)2(A+ q + n)

− 1
(A+ p+m)(A+ q)2

−

−
( 1

(A+ p)(A+ p+ q)(A+ q)
− 1

(A+ p)2(A+ q)
−

− 1
(A+ p)(A+ q)2

)}
(4.16)

GTINTup,Rmn =

Λ∫
0

Λ∫
0

d2pd2q
{ 1

(A+ p+m)2(A+ p+ q)
−

− 1
(A+ p+m)2(A+ q)

−
( 1

(A+ p)2(A+ p+ q)
−

− 1
(A+ p)2(A+ q)

)}
(4.17)

GTEXTup,Rmn =

Λ∫
0

Λ∫
0

d2pd2q
{ 1

(A+ p+m)2(A+ q +m)
−

− 1
(A+ p+m)2(A+ q)

−
( 1

(A+ p)2(A+ q)
−

− 1
(A+ p)2(A+ q)

)}
(4.18)

GTINTdown,Rmn =

Λ∫
0

Λ∫
0

d2pd2q
{ 1

(A+ q + n)2(A+ p+ q)
−

− 1
(A+ q + n)2(A+ p)

−
( 1

(A+ q)2(A+ p+ q)
−

− 1
(A+ p)2(A+ q)

)}
(4.19)

GTEXTdown,Rmn =

Λ∫
0

Λ∫
0

d2pd2q
{ 1

(A+ p+ n)2(A+ q + n)
−

− 1
(A+ p+ n)2(A+ q)

−
( 1

(A+ p)2(A+ q)
−

− 1
(A+ p)2(A+ q)

)}
(4.20)

Here again, we have to define the combinatorial factors of the graphs. After taking
out the factor of 1

(4π)2θ we have

1
2!
λ̃2(4π2θ2)2(4π)4 1

[(4π)2θ]4
∑
N

KN

42
(G(2)

N )mn =
λ̃2

42

1
2

∑
N

KN

42
(G(2)

N )mn (4.21)

The combinatorial factor KN is the same for all three graphs as we always have two
vertices and three internal lines:

KN = 2 · 42 (4.22)
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The two-loop-contribution is thus

Bmn =
1
42

∑
N

(GN )(2)
mn (4.23)

and the self-energy up to 2-loop-order is

Σmn = −λ̃Amn + λ̃2Bmn (4.24)

4.2.3 Field-strength-renormalization

By differentiating these graphs once we get the two-loop-contribution to the field strength.

δZ2 = − 1
42

( ∂

∂m1
GS,Rmn +

∂

∂m1
GTEXTup,Rmn +

∂

∂m1
GTINTup,Rmn

)∣∣∣
m=n=0

(4.25)

where

− ∂

∂m1
GS,Rmn

∣∣∣
m=n=0

=
∑
p,q

( 1
(A+ p)2(A+ p+ q)(A+ q)

− 1
(A+ p)2(A+ q)2

)
(4.26)

− ∂

∂m1
GTEXTup,Rmn

∣∣∣
m=n=0

=
∑
p,q

( 1
(A+ p)2(A+ q)2

)
(4.27)

− ∂

∂m1
GTINTup,Rmn

∣∣∣
m=n=0

=
∑
p,q

( 2
(A+ p)3(A+ p+ q)

− 2
(A+ p)3(A+ q)

)
(4.28)

Hence the two-loop-contribution is

δZ2 =
λ̃

42

(
− (ln[Λ])2

2
+ ln[Λ](3 + ln[2] + ln[A])−

− 1− 3 ln[2]− 3(ln[2])2

2
− 3 ln[A]− ln[2] ln[A]− ln[A]2

2

)
(4.29)

and we get a field-strength-renormalization up to two-loop-order that is

Z = 1− λ̃

4

Λ∫
0

Λ∫
0

d2p
1

(A+ p)2
+

λ̃

16

Λ∫
0

Λ∫
0

d2pd2q
( 2

(A+ p)3(A+ p+ q)
−

− 2
(A+ p)3(A+ q)

+
1

(A+ p)2(A+ p+ q)(A+ q)

)
(4.30)

4.3 4-pt-function

Renormalizing the 4-point-graphs you have to take care of the mass subdivergence in the
BINT and BEXT diagram (figure 4.7). There are other subdivergences in the B2 and
the E diagram which do contribute to the coupling constant renormalization as do all
the overall divergencies of the diagrams. Because in the next section it is shown that
the difference between bare and renormalized coupling is finite we are just interested in
renormalizing the mass divergences and neglect the renormalization of the coupling itself.
The amplitudes of the graphs, including mass renormalization, are
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Figure 4.6: 4-pt-graphs at 1- and 2-loop-order

Figure 4.7: Mass-renormalizing the 4-point-graphs

GB1(0, 0, 0, 0) =

Λ∫
0

d2pd2q
1

(A+ p)2
(4.31)

GB2(0, 0, 0, 0) =

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p)2(A+ q)2
(4.32)

GBEXT (0, 0, 0, 0) =

Λ∫
0

Λ∫
0

d2pd2q
{ 1

(A+ p)3(A+ q)
− 1

(A+ p)3(A+ q)

}
(4.33)

GBINT (0, 0, 0, 0) =

Λ∫
0

Λ∫
0

d2pd2q
{ 1

(A+ p)3(A+ p+ q)
− 1

(A+ p)3(A+ q)

}
(4.34)

GE(0, 0, 0, 0) =

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p)2(A+ p+ q)(A+ q)
(4.35)

The graph BEXT is completely canceled by its mass-counterterm and vanishes. The
other graphs have to be calculated.

The one-loop-graph B1 has two vertices and two lines and a factor of 1/2! which
comes from the exponential of the action in perturbation theory. The coefficient of the
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4-pt-function is thus given by

a′ =
1
8
K(B1)

42
GB1 with K(B1) = 43

−→ a′ =
1
2

1
(A+ p)2

=
1
2

(
ln[Λ] + ln[2] + ln[A]

)
(4.36)

In the two-loop-case there are three vertices and four internal lines and so

b′ =
1

3!42

∑
N

K(N)
43

SN (4.37)

The combinatorial factors are

K(E) = K(BEXT ) = K(BINT ) = 3! · 43 · 4, K(B2) = 3! · 43 · 2. (4.38)

Having computed the amplitudes of the Feynman graphs and the combinatorial factors
we have to take a look how many times the diagrams appear. Like in the case of the
2-point-graphs, the loops can “look” in different directions and therefore affect different
external indices. Taking the “BEXT” graph as an example, this graph has a counterpart
where the tadpole lies at the lower border of the loop p. The difference between these
two diagrams obviously vanishes when the external indices are set to zero but this means
the amplitude of this graphs give a factor two in our calculation of the coefficient of the
4-point-function. The graphs “BINTup” and “E” appear twice as well and so finally the
2-loop-coefficient of Γ4 adds up to

b′ =
1
8

(
GB2 + 2(GE +GBEXT +GBINT )

)
=

=
1
8

( 1
(A+ p)2(A+ q)2

+
2

(A+ p)3(A+ p+ q)
+

2
(A+ p)2(A+ p+ q)(A+ q)

− 2
(A+ p)3(A+ q)

)
=

=
1
8

(
ln[Λ]2 + ln[Λ](3− 2 ln[A] + 2 ln[2])−

− 2− 3 ln[2A] + ln[2]2 + 2 ln[2] ln[A] + ln[A]2
)

(4.39)

Thus the complete 4-point-function is given by

Γ4(0, 0, 0, 0) = 1− λ̃

2

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p)2
+

+
λ̃2

8

Λ∫
0

Λ∫
0

d2pd2q
( 1

(A+ p)2(A+ q)2
+

2
(A+ p)3(A+ p+ q)

+

2
(A+ p)2(A+ p+ q)(A+ q)

− 2
(A+ p)3(A+ q)

)
(4.40)
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Chapter 5

Boundedness of β-function

With the results from the last section it can be shown that the difference of the renor-
malized and the bare coupling constant is just finite and thus the beta-function bounded.
Thus we will just worry about the infinite factors of graphs in this section.

To compute the evolution equation of the effective coupling we need the 4-pt-function
with the external indices set to zero and the corresponding wave-function renormalization.
It is given up to 2-loops by

Z = 1− aλ̃+ bλ̃2 =

= 1− λ̃

4
ln[Λ] +

λ̃2

42

(
−1

2
ln[Λ]2 − ln[Λ](3 + ln[A] + ln[2])

)
(5.1)

The 4-point-function is

Γ4(0, 0, 0, 0) = −λ(4π2θ2)(1− a′λ̃+ b′λ̃2) (5.2)

The evolution equation of the coupling constant is, as already stated earlier,

λr = − 1
4π2θ2

Γ4(0, 0, 0, 0)
Z2

(5.3)

Now the functions calculated above are expanded up to two-loop-order

1− a′λ̃+ b′λ̃2

(1− aλ̃+ bλ̃2)2
= 1− γ1λ̃+ γ2λ̃

2 (5.4)

Now this equation is multiplied by Z2 and expanded

−→ 1− a′λ̃+ b′λ̃2 = (1− γ1λ̃+ γ2λ̃
2)(1− aλ̃+ bλ̃2)

= (1− γ1λ̃+ γ2λ̃
2)(1 + a2λ̃2 + b2λ̃4 − 2aλ̃+ 2bλ̃2 − 2abλ̃3) (5.5)

= 1− γ1λ̃− 2aλ̃+ 2aγ1λ̃+ a2λ̃2 + 2bλ̃2 + γ2λ̃
2 + 2aγ1λ̃

2 +O(λ̃3)

21
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5.1 First-order-contribution

Comparing the first order terms in λ we find

a′ = γ1 + 2a
1
2

ln[Λ] = γ1 +
1
2

ln[Λ] −→ γ1 = 0 (5.6)

“a′” being the coefficient of the 4-point-function and “a” the 2-point-coefficient. Hence,
the first-order-contribution to the coupling constant vanishes.

5.2 Second-order-contribution

For clearness the independent integrals are renamed as follows

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p)2
= S

(1)
1

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p)2(A+ q)2
= S

(2)
1 = (S(1)

1 )2

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p)2(A+ p+ q)(A+ q)
= S

(2)
2

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p)3(A+ q)
= S

(2)
3

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p)3(A+ p+ q)
= S

(2)
4 (5.7)

The second-order-contribution to the 4-point-function and the wave function are written
with this shortcuts

b =
1
16

(S(2)
2 + 2S(2)

3 + 2S(2)
4 )

b′ =
1
8

(S(2)
1 + 2S(2)

2 + 2S(2)
3 + 2S(2)

4 ) (5.8)

Now putting the coefficients into the second-order-contribution of the evolution equation
it is found that

b′ = a2 + 2b+ γ2

1
8

(S(2)
1 + 2S(2)

2 + 2S(2)
3 + 2S(2)

4 ) = (
1
4
S

(1)
1 )2 +

1
8

(2S(2)
4 − 2S(2)

3 + S
(2)
2 ) + γ2 (5.9)
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and

γ2 =
1
16

(2S(2)
2 + S

(2)
1 ) =

=

Λ∫
0

Λ∫
0

d2pd2q
( 1

(A+ p)2(A+ p+ q)(A+ q)
− 1

(A+ p)2(A+ q)2

)
=

=

Λ∫
0

Λ∫
0

d2pd2q
A+ p− q

(A+ p)2(A+ p+ q)(A+ q)2
=

= A

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p)2(A+ p+ q)(A+ q)2
(5.10)

which is finite as can be seen by taking a look at the order of divergence. “p” has
dimension 2 and order 3, therefore it is finite. Exactly the same happens with “q”. It is
thus proven that, up to two loop order, the evolution of the coupling constant is bounded.
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Chapter 6

Vanishing Of Beta-Function Up
To All Orders

The proof of a vanishing beta-function up to all order was done by Rivasseau et. al. in
[10] at the self dual point Ω = 1. It relies on Ward-Identities and the Dyson-Schwinger-
Equation which are combined to give a proof of the theorem stated in section 2 (see
Equation (2.10)). The detailed steps will be followed below. Here the complex Grosse-
Wulkenhaar-model will be used.

First the generating functional is defined:

Z(η, η̄) =
∫

dφdφ̄e−S(φ,φ̄)+F (η,η̄,φ,φ̄)

F (η, η̄, φ, φ̄) = φ̄η + η̄φ

S(φ, φ̄) = φ̄Xφ+ φXφ̄+Aφ̄φ+
λ

2
φφ̄φφ̄ (6.1)

Here X stands for mδmn, S for the action and F is the external source. First, the Ward
Identities will be worked out.

6.1 The Ward Identities

As the complex model is used, the propagators are oriented. This means that the in-
coming line is given by a φ̄ and the outgoing lines by a φ. For a field φ̄ab the index a
is called a left index and b a right one. The first index of a field φ̄ contracts with the
second index of a φ.

Starting to variate the action we define U = eiB where B is the infinitesimal generator,
here a hermitian matrix. It can act from the “left” and from the “right” side, which means
acting on the left, or respectively on the right, index. Here just the left action will be
considered.

φU = φU φ̄U = U†φ̄ (6.2)

Expanding up to first order and variating the action gives

δS = φUXU†φ̄− φXφ̄ ≈ φ(1 + iB)X(1− iB)φ̄− φXφ̄ =

= φXφ̄+ iφBXφ̄− iφXBφ̄− φXφ̄ = i(φBXφ̄− φXBφ̄) =

= iB(Xφ̄φ− φ̄φX) (6.3)

25
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The external source has to be variated as well.

δF =U†φ̄η − φ̄+ η̄φU − η̄φ ≈ −iBφ̄η + iη̄φB =

=iB(−φ̄η + η̄φ) (6.4)

Minimizing the generating functional leads to:

δ lnZ
δAab

= 0 =
1

Z(η̄, η)

∫
dφ̄dφ

(
− δS

δAab
+

δF

δAab

)
e−S+F =

=
1

Z(η̄, η)

∫
dφ̄dφ

(
−[Xφ̄φ− φ̄φX]ab + [−φ̄η + η̄φ]ab

)
(6.5)

Now we derivate with respect to the external source ∂η∂η̄|η=η̄=0 and therefore get the
2-point Green’s function which we want to minimize. Here the external source is set to
zero for convenience.

0 =< ∂η∂η̄(−[Xφ̄φ− φ̄φX]ab + [−φ̄η + η̄φ]abeF (η,η̄))|0 >c=

=<
∂(η̄φ)ab
∂η̄

∂(φ̄η)
∂η

− ∂(φ̄η)ab
∂η

∂(η̄φ)
∂η̄

− [Xφ̄φ− φ̄φX]ab
∂(η̄φ)
∂η̄

∂(φ̄η)
∂η

>c (6.6)

Because X = mδmn, we can write the correlation function as

(a− b) < [φ̄φ]ab
∂(η̄φ)
∂η̄

∂(φ̄η)
∂η

>c=<
∂(η̄φ)ab
∂η̄

∂(φ̄η)
∂η

>c − <
∂(φ̄η)ab
∂η

∂(η̄φ)
∂η̄

>c (6.7)

If we set η = ηνµ and η̄ = η̄βα we receive

(a− b) < [φ̄φ]abφαβφ̄µν >c=< δαβφαbφ̄µν >c − < δbµφ̄aνφαβ >c (6.8)

Because the power-counting shows that the only relevant graphs have one external face
and genus 0 (see [3]) we can set

α = ν a = β b = µ

and hence, get the Ward Identity for the 2-point-function:

(a− b) < [φ̄φ]abφνaφ̄bν >c=< φνbφ̄bν >c − < φ̄aνφνa >c (6.9)

To find the Ward Identities for the 4-point-function we have to derivate once more after
η and η̄ and repeat the procedure.

(a− b) < [φ̄φ]ab∂η̄1(η̄φ)∂η̄1(φ̄η)∂η̄2(η̄φ)∂η̄2(φ̄η) >c=

=< ∂η̄1(η̄φ)∂η̄1(φ̄η)[∂η̄2(η̄φ)∂η̄2(φ̄η)− ∂η̄2(φ̄η)∂η̄2(η̄φ)] >c +(1↔ 2) (6.10)

With η̄1,βα, η1,νµ, η̄2,δγ , η2,σρ we get

(a− b) < [φ̄φ]abφαβφ̄µνφγδφ̄ρσ >c=

=< φαβφ̄µνδaδφγbφ̄ρσ >c − < φαβφ̄µνφγδφ̄aσδbρ >c +

+ < φγδφ̄ρσδaβφαbφ̄µν >c − < φγδφ̄ρσφαβφ̄aνδbµ >c (6.11)
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Figure 6.1: Ward Identity for 2p-point-functions with a left insertion

Again, by just taking care of the planar graphs with one external face

α = σ β = a b = µ ν = γ δ = ρ

and we get the Ward Identity:

(a− b) < φαa[φ̄φ]abφ̄bνφνδφ̄δα >c=< φαbφ̄bνφνδφ̄δα >c − < φαaφ̄aνφνδφ̄δα >c (6.12)

Obviously this procedure could be continued to get Ward Identities for higher 2n-point-
functions. Further, these identities give connections between 2n- and (2n − 2)-point
functions which permit to express a 2n-point-function as the difference of two (2n− 2)-
point-functions. Explicitly, this is done in section 7.

There can be obtained similar identities by using the “right” unitary transformation
and therefore receive an insertion on the “right” face.

6.2 Proof of the Theorem

Figure 6.2: The dressed propagator G2(m,n) = 1
C−1
mn−Σ(m,n)

and the bare one Cmn =
1

A+m+n

Before the actual proof is started, some notations are explained. We use the same
notation for the 4-point-function as before, namely G4(m,n, k, l) but differentiate be-
tween the bare and the dressed 2-point-function as indicated in figure 6.2. Further, a
single-border function with one insertion will be needed and marked by Gins(a, b; ..).

The break of the left-right symmetry is introduced as we are working with a “right”
insertion. For a “left” one, the indices “m” and “0” would have to be exchanged. The
proof can be done either in the bare, or in the mass-renormalized case. Here, the mass-
renormalized theory will be used which means that Aren = Abare − Σ(0, 0).

This proof makes extensive use of the Dyson-Schwinger-Equation, which is the QF-
theoretical generalization of the Euler-Lagrange-Equations. It expresses the classical
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Figure 6.3: The left Dyson-Schwinger-Equation

equations of motion together with contact terms, where two fields are given at the same
space-time point.

Here only the graphical illustration is needed to classify the Feynman diagrams into
“generalized” ones, which represent groups of similar diagrams which can be treated
together on a general level. Let’s start by taking the most general 4-point-function (see
left hand side of Figure 6.3) and move along the incoming line φ̄ on the left until the
first vertex. Now move to the “right” internal line and cut this propagator. There are
two possibilities what can happen now:

• the diagram can fall into two pieces or

• the diagram stays as one which means that this line was part of a loop.

This “groups of diagrams” take into account all the combinatorical factors as all graphs
of one group have the same one. Moreover, setting one index to m and the other to 0
distinguishes between the graphs G4

(1) and G
4
(2) and their counterparts which are included

in G4
(3).
The first case can be identified with the first two graphs of the left side in figure 6.3.

Here again two cases have to be distinguished. The graph may fall apart into a 4- and a
2-point-function or vice versa. As there can’t be a one-point-function, these are the only
possibilites.

If we take a closer look at G4
(2) we find that there is a tadpole on the upper bor-

der where the external index is set to zero. Because we are calculating in the mass-
renormalized case, we immediately see that this diagram is zero after renormalization.
The bare tadpole with external index set to zero gives exactly the same contribution as
it’s counterterm and thus, they add up to zero. The only two generalized graphs left are
therefore G4

(1) and G4
(3).

6.2.1 Graph G4
(1)

First G4
(1) will be analyzed. It has the form

G4
(1) = λC0mG

2(0,m)G2
ins(0, 0;m) (6.13)

Here, the upper 4-point-function will be interpreted as a 2-point-function with an inser-
tion (see Figure 6.4). To be able to define the Ward Identity the index on the right side
of the insertion will be set to a non-zero value ξ and the limit taken to zero afterwards.
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Figure 6.4: Structure of G4
(1) graph

Now the Identity for this graph can be given by

G2
ins(0, 0;m) = lim

ξ→0
G2
ins(ξ, 0;m) = lim

ξ→0

G2(0,m)−G2(ξ,m)
ξ

=

= −∂LG2(0,m) (6.14)

where ∂L stands for differentiation with respect to the left index. In the case that there
is no difference between the derivation with respect to the left and right index, it will be
written without any index. Further, for the bare propagator differentiated by the left or
the right index gives 1,

∂LC
−1
ab = ∂RC

−1
ab = ∂C−1

ab = 1,

and G2(0,m) = [C−1
0m − Σ(0,m)]−1. So we can write

−∂LG2(0,m) = (C−1
0,m − Σ(0,m))−2(1− ∂LΣ(0,m)) (6.15)

and thus, G4
(1) as

G4
(1)(0,m, 0,m) = λC0m

C0mC
2
0m(1− ∂LΣ(0,m))

(1− C0mΣ(0,m))(1− C0mΣ(0,m))2
=

= λ(G2(0,m))4 C0m

G2(0,m)
(1− ∂LΣ(0,m)) (6.16)

We can express the self-energy up to irrelevant terms as

Σ(m,n) = Σ(0, 0) + (m+ n)∂LΣ(0, 0) (6.17)

This is correct because the self-energy has diverging terms independent of the external
indices, which are included in the Σ(0, 0) term and divergences which depend on m or n,
included in the derivation-term and no others. Of course, ∂LΣ(0, 0) should be understood
as ∂LΣ(m,n)|m=n=0.
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With this expression for the self-energy G2(0,m) can be written as

G2(0,m) =
1

m+Abare − Σ(0,m)
=

1
m[1− ∂Σ(0, 0)] +Aren

(6.18)

and

C0m

G2(0,m)
=
m(1− ∂Σ(0, 0)) +AR

m+AR
=

=
(m+AR)(1− ∂Σ(0, 0) +AR −AR +AR∂Σ(0, 0)

m+AR
=

= 1− ∂Σ(0, 0) +
AR∂Σ(0, 0)
m+AR

(6.19)

Here C−1
0m = m+AR. The substituion of AR for Abare is allowed because C0m symbolises

the incoming, free propagator in G4
(1) which has no divergence anyway and therefore the

values are equivalent.
So finally, the result for G4

(1) can be written down:

G4
(1)(0,m, 0,m) = λ(G2(0,m))4(1− ∂Σ(0, 0) +

AR

m+AR
∂Σ(0, 0))

(1− ∂LΣ(0,m)) (6.20)

6.2.2 Graph G4
(3)

Figure 6.5: Structure of G4
(3) graph

Graph G4
(3) is not split by cutting the line so it has to be part of a loop. The Green’s

function for the bare values would be

G4,bare
(3) = C0m

∑
p

G4,bare
ins (p, 0;m, 0,m) (6.21)

Going to the renormalized equation we have to take some more care about opening
the loop. This loop would of course have a corresponding counterterm to cancel the
divergence induced by p going to infinity. This counterterm vanishes if we open the loop.
So we have to add this missing counterterm to receive a correct representation of graph
G4

(3). In figure 6.6 a 1PI contribution has been pulled out of the general interaction but
this does not change the calculation. We receive

G4
(3) = C0m

∑
p

G4
ins(0, p;m, 0,m)− C0m(CTlost)G4(0,m, 0,m) (6.22)

for graph G4
(3) with one loop interpreted as an insertion.



Graph G4
(3) 31

Figure 6.6: Structure of G4
(3) graph with missing counterterm

Not all loops which correspond to a 1PI 2 point insertion are lost when opening the
loop. Obviously all loops which have just a contribution to the left index side are not
affected. This is represented by a generalized left tadpole. Thus, we split the self-energy
into the left tadpole contribution and the lost 2-point 1PI insertions which shall be called
ΣR(m,n).

Σ(m,n) = TL(m,n) + ΣR(m,n) (6.23)

As the generalized left tadpole has no contribution to the right index side, the derivation

Figure 6.7: Self-energy split into generalized left tadpole and a part including contribu-
tions to right index side

with respect to the right index will vanish. Therefore

∂RΣR(m,n) = ∂RΣ(m,n) = ∂Σ(m,n) (6.24)

The missing mass counterterm can be written as

CTlost = ΣR(0, 0) = Σ(0, 0)− TL (6.25)

When evaluating the lost part of the self-energy ΣR we cut the propagator between the
1PI part and the general 4-point-function in figure 6.6 and use the Ward Identity to find:

ΣR(0, 0) =
1

G2(0, 0)

∑
p

G2
ins(0, p; 0) =

1
G2(0, 0)

∑
p

1
p

(G2(0, 0)−G2(p, 0)) =

=
∑
p

1
p

(
1− G2(p, 0)

G2(0, 0)

)
(6.26)

So graph G4
(3) can be expressed as

G4
(3)(0,m, 0,m) = C0m

∑
p

G4
ins(0, p;m, 0,m)−

− C0mG
4(0,m, 0,m)

∑
p

1
p

(
1− G2(p, 0)

G2(0, 0)

)
(6.27)
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Now the 4-point-function with the insertion can be reexpressed as well with the aid of
the Ward Identity to find

C0m

∑
p

G4
ins(0, p;m, 0,m) = C0m

∑
p

1
p

(G4(0,m, 0,m)−G4(p,m, 0,m)) (6.28)

The second term in this equation is proportional to 1
p3 and thus finite. So we can ignore

it and substituting the rest of equation (6.28) into equation (6.27) we receive

G4
(3) = C0m

G4(0,m, 0,m)
G2(0, 0)

∑
p

G2(p, 0)
p

(6.29)

Evaluating the sum over p we use

G2(0,m) =
1

m(1− ∂Σ(0, 0) +AR

to rewrite it as ∑
p

G2(p, 0)
p

=
∑
p

G2(p, 0)
p

(
1 · (1− ∂Σ(0, 0)) +AR−

− 0 · (1− ∂Σ(0, 0))−AR
) 1

1− ∂Σ(0, 0)
=

=
∑
p

G2(p, 0)
p

( 1
G2(0, 1)

− 1
G2(0, 0)

)
(6.30)

Repeating the steps in equation (6.26) for ΣR(0, 1) and neglecting the irrelevant index
jump from (p, 1)→ (p, 0), for it just leaves out finite terms, we have:

ΣR(0, 1) =
∑
p

1
p

(
1− G2(p, 1)

G2(0, 1)

)
=
∑
p

1
p

(
1− G2(p, 0)

G2(0, 1)

)
(6.31)

Now the sum over p can be written as

∑
p

G2(p, 0)
p

= (−ΣR(0, 1) +
1
p

+ ΣR(0, 0)− 1
p

)
1

1− ∂Σ(0, 0)
=

=
ΣR(0, 0)− ΣR(0, 1)

1− ∂Σ(0, 0)
=
−∂RΣR(0, 0)
1− ∂Σ(0, 0)

=

=
−∂Σ(0, 0)

1− ∂Σ(0, 0)
(6.32)

So, finally

G4
(3)(0,m, 0,m) = −C0mG

4(0,m, 0,m)
1

G2(0, 0)
∂Σ(0, 0)

1− ∂Σ(0, 0)
=

= −G4(0,m, 0,m)
AR∂Σ(0, 0)

(m+AR)(1− ∂Σ(0, 0))
(6.33)

with C−1
0m = m+AR and (G2(0, 0))−1 = AR.
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6.2.3 Result

Now, that the different generalized graphs are computed, we can write down the complete
4-point-function:

G4(0,m, 0,m) = G4
(1) +G4

(3)

⇒ G4(0,m, 0,m)
(

1 +
AR

(m+AR)(1− ∂Σ(0, 0))
∂Σ(0, 0)

)
= (6.34)

λbare(G2(0,m))4
(

1− ∂Σ(0, 0) +
AR

m+AR
∂Σ(0, 0)

)
(1− ∂LΣ(0,m))

G4
(3) has been put on the left hand side of the equation. Now the equation is multiplied

by (1− ∂Σ(0, 0) and it is easily seen that the terms in the big brackets cancel to give

G4(0,m, 0,m) = λbare(G2(0,m))4(1− ∂LΣ(0,m))(1− ∂Σ(0, 0)) (6.35)

Finally we need to amputate four times to proof the theorem. As all divergences are
included in ∂Σ(0, 0) we can ignore the difference between this term and ∂Σ(0,m). Fur-
thermore the difference Γ4(0,m, 0,m)−Γ4(0, 0, 0, 0) is irrelevant as well and the equation
that had to be proven is received:

Γ4(0, 0, 0, 0) = λ(1− ∂Σ(0, 0))2 (6.36)



34 Chapter 6. Vanishing Of Beta-Function Up To All Orders



Chapter 7

Explicit Calculation of Ward
Identities

The Ward Identities used in the general proof of the boundedness of the beta-function
give relations between 2n- and (2n-2)-point functions which are of course valid in the
bare and the renormalized case. Here, these relations will be calculated explicitly for the
relations between 4- and 2-point functions in the mass-renormalized case up to two-loop-
level. This will give us another possiblity to show the boundedness of the beta-function
as the equivalence of the renormalized 4- and 2-point functions will be obvious.

These identities are not valid for each seperate 4-point-diagram but, of course, just for
those groups of graphs which are linked to the same 2-point-function when interpreting
one incoming together with one outgoing line as an insertion.

The Ward Identity in the case treated here was already written down in Chapter 6,
but for convenience will be stated here again:

(a− b) < [φ̄φ]abφνaφ̄bν >c=< φνbφ̄bν >c − < φ̄aνφνa >c (7.1)

7.1 One-loop-calculation

In the one-loop-case there is just one diagram that has to be taken care of at the 4-point-
level, as well as in the 2-point one. To apply the Ward Identity we will interpret the in-
and outgoing line at one vertex as an insertion. The index “b” in the 4-point-graph which
is not there anymore plays no role in the calculation of the amplitude as it propagates
without “feeling” the loop. Thus we don’t loose any information when ignoring it in this
calculation. The Identity can be seen in Figure 7.1. It is given by:

Figure 7.1: 1-loop Ward Identity

35
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(c− a)
∑
p

1
(A+ p+ a)(A+ p+ c)

=
∑
p

{
(

1
A+ p+ a

− 1
A+ p

)− (a↔ c)
}

=

=
∑
p

{ −a
(A+ p+ a)(A+ p)

− −c
(A+ p+ c)(A+ p)

}
=

=
∑
p

c− a
(A+ p+ a)(A+ p+ c)

→
∑
p

1
(A+ p+ a)(A+ p+ c)

=
∑
p

1
(A+ p+ a)(A+ p+ c)

(7.2)

So the 1-loop-identity is even exactly valid. Setting the external indices to zero gives the
1-loop-coefficient a′ of the 4-point-function Γ4(0, 0, 0, 0) which is needed to compute the
boundedness of the β-function.

a = c = 0 → a′ =
∑
p

1
(A+ p)2

(7.3)

7.2 Two-loop-calculation

At 2-loop-order we have to treat three different groups of graphs. One corresponding to
the TEXTup, one to the TINTup and one to the “Sunshine” graph.

7.2.1 Ward Identity corresponding to the TEXTup graph

Starting with the TEXTup 2-point-diagram we find that there are two corresponding
4-point-graphs depicted in figure 7.2. Therefore

(c− a)
∑
p,q

{ 1
(A+ p+ a)(A+ p+ c)(A+ q + a)(A+ q + c)

+

+ (
1

(A+ p+ a)2(A+ p+ c)(A+ q + a)
− 1

(A+ p+ a)2(A+ p+ c)(A+ q)
)+

+ (
1

(A+ p+ c)2(A+ p+ a)(A+ q + c)
− 1

(A+ p+ c)2(A+ p+ a)(A+ q)
)
}

=

=
∑
p,q

{
(

1
(A+ p+ a)2(A+ q + a)

− 1
(A+ p+ a)2(A+ q)

) + (a↔ c)
}

Figure 7.2: 2-Loop Ward Identity for the TEXTup graph
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Figure 7.3: 2-Loop Ward Identity for the TINTup graph

Writing all terms of each side on one fraction, one recognizes that the factor (c− a) can
be canceled.

(c− a)
∑
p,q

{ (A+ p+ a)(A+ p+ c)(A+ q)− a(A+ p+ c)(A+ q + c)
(A+ p+ a)2(A+ p+ c)2(A+ q + a)(A+ q + c)(A+ q)

−

− c(A+ p+ a)(A+ q + a)
(A+ p+ a)2(A+ p+ c)2(A+ q + a)(A+ q + c)(A+ q)

= −(c− a)
∑
p,q

{ −A3 + a2c− p2q −A2(2p+ q)
(A+ p+ a)2(A+ p+ c)2(A+ q + a)(A+ q + c)(A+ q)

+

+
ac(c+ 2p+ q) +A(3ac− p(p+ 2q))

(A+ p+ a)2(A+ p+ c)2(A+ q + a)(A+ q + c)(A+ q)

}
(7.4)

The terms on both side cancel exactly, without leaving finite terms, as in the 1-loop case.
Setting the external indices to zero one finds that both sides give

∑
p,q

(A+ p)2(A+ q)
(A+ p)4(A+ q)3

=
∑
p,q

1
(A+ p)2(A+ q)2

(7.5)

which is the contribution of these diagrams to the second order co-efficient “b′” of
Γ4(0, 0, 0, 0).

7.2.2 Ward Identity corresponding to the TINTup graph

The next Ward Identity being calculated is the one proportional to the TINTup graph,
illustrated in figure 7.3.
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Figure 7.4: 2-Loop Ward Identity for the S graph

(c− a)
∑
p,q

{
(

1
(A+ p+ a)2(A+ p+ c)(A+ p+ q)

−

− 1
(A+ p+ a)2(A+ p+ c)(A+ q)

)+

+ (
1

(A+ p+ a)(A+ p+ c)2(A+ p+ q)
−

− 1
(A+ p+ a)(A+ p+ c)2(A+ q)

)
}

=

=
∑
p,q

{ 1
(A+ p+ a)2(A+ p+ q)

− 1
(A+ p+ a)2(A+ q)

−

− 1
(A+ p)2(A+ p+ q)

+
1

(A+ p)2(A+ q)

}

→ (c− a)
∑
p,q

−p(A+ p+ c)− p(A+ p+ a)
(A+ p+ a)2(A+ p+ c)2(A+ p+ q)(A+ q)

=

= (c− a)
∑
p,q

−p(A+ p)2(2A+ 2p+ a+ c)
(A+ p+ a)2(A+ p+ c)2(A+ p)2(A+ p+ q)(A+ q)

(7.6)

The two sides of this identity cancel to zero too. Again, setting the external indices to
zero the contribution to Γ4(0, 0, 0, 0) is received.

∑
p,q

−2p(A+ p)
(A+ p)4(A+ p+ q)(A+ q)

=
∑
p,q

−2p
(A+ p)3(A+ p+ q)(A+ q)

=

=
∑
p,q

( 2
(A+ p)3(A+ p+ q)

− 2
(A+ p)3(A+ q)

)
(7.7)

7.2.3 Ward Identity corresponding to the S graph

The last Identity which has to be taken into account is seen in Figure 7.4.

(c− a)
∑
p,q

1
(A+ p+ a)(A+ p+ c)(A+ p+ q)(A+ q + d)

=

=
∑
p,q

{
(

1
(A+ p+ a)(A+ p+ q)(A+ q + d)

− 1
(A+ p)(A+ p+ q)(A+ q)

)−

− (a↔ c)
}
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→ (c− a)
∑
p,q

1
(A+ p+ a)(A+ p+ c)(A+ p+ q)(A+ q + d)

=

= (c− a)
∑
p,q

(A+ p)(A+ q)
(A+ p+ a)(A+ p+ c)(A+ p)(A+ p+ q)(A+ q + d)(A+ q)

(7.8)

The difference of these terms is zero as well and therefore the Ward Identity is, at least
up to 2-loop-order, not just correct up to irrelevant terms but an exact identity. Like the
tadpole graph, the diagram “E” has two different orientations, the one shown in figure 7.4,
and the one where the “Eye” looks in the opposite direction. This gives a Ward Identity
where the index “b” and “d” are exchanged. Putting the external indices to zero, there is
no difference between them anymore and we find that their contribution to the coefficient
of Γ4 is

a = c = d = 0 →
∑
p,q

2
(A+ p)2(A+ p+ q)(A+ q)

(7.9)

Now the 4-point-function obtained by the Ward Identities can be written down:

Γ4(0, 0, 0, 0) = 1− a′λ̃+ b′λ̃2 = 1− λ̃

2

∑
p

1
(A+ p)2

+

+
λ̃2

8

∑
p,q

{ 2
(A+ p)3(A+ p+ q)

− 2
(A+ p)3(A+ q)

+

+
2

(A+ p)2(A+ p+ q)(A+ q)
+

1
(A+ p)2(A+ q)2

}
(7.10)

Comparing with the result of section 4, we see that it is identical and hence gives the
correct result for the boundedness of the β-function.
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Chapter 8

Grosse-Wulkenhaar-model in a
magnetic field

The methods of the general proof of the Grosse-Wulkenhaar-model up to all orders by
Rivasseau et al. were later used to proof the vanishing of the β-function up to all orders
of the GW model in a magnetic field (see [13]). In this proof they use the complex model
and add an extra term with an external magnetic field. This is a generalization of the
Langmann-Szabo-Zarembo model which is the general noncommutative φ?44 -model in a
magnetic field without the harmonic potential term. This model is especially interesting
for being a toy model of the quantum Hall effect.

The proof again constructs the Ward Identities and uses the result the calculate the
Dyson-Schwinger-equation.

The GW-model in an external magnetic field is given by

S[φ] =
∫

d4x
{
∂µφ̄) ? (∂µφ) + Ω(x̃µφ̄) ? (x̃µφ)− 2iBφ̄(x̃µ∂µ)φ+

+ µ(φ̄ ? φ) +
λ

2
φ̄ ? φ ? φ̄ ? φ)

}
(8.1)

where B is the magnetic field, µ stands for the mass, x̃µ = 2(θ−1
µν )xν and (Ω − B2) is a

harmonic potential. The standard GW-model is recovered in the limit B → 0.
The proof starts again by constructing the generating functional of the model

Z(η, η̄) =
∫

dφdφ̄e−S(φ,φ̄)+F (η,η̄,φ,φ̄)

F (η, η̄, φ, φ̄) = φ̄η + η̄φ

S(φ, φ̄) = φ̄XLφ+ φXRφ̄+Aφ̄φ+
λ

2
φφ̄φφ̄

φ = (φmn) XL = qmδmn XR = pmδmn q = 1 +B p = 1−B (8.2)

with some modifications with respect to the general model to include the external field
into the definitions. Here, the mass parameter µ is rescaled and now given as A = 2+ µ2θ

4

and the kinetic part together with the harmonic potential including the magnetic field
is included in the matrix operators XL and XR with unequal weights q and p. As
the harmonic potential should be bounded, because of the Langmann-Szabo-symmetry,
between 0 and 1 we need 0 < B ≤ Ω to have a stable model. It can be seen as a deformed
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matrix theory with dual parameters q and p. In the limit q → 1 and p→ 1 which means
B → 0 the GW-model is recovered.

The propagator of the GW-model and its variables have to adjusted to include the
deformation parameters p and q:

Cmn;kl = Cmnδmlδnk Cmn =
1

A+ qm+ pn

(8.3)

where m,n ∈ N2. As the complex model is used the propagators are again oriented
and it is distinguished between acting on the “left” or on the “right” index (for a more
detailed description see section 6). To proof the boundedness of the beta-function we need
the amputated, 1PI 4-point-function Γ4(m,n, k, l), and the corresponding wave-function-
renormalization, which is given as the derivation of the self energy Σ(m,n), which is the
amputated, 1PI 2-point-function, with respect to on of the external indices. Further the
wave-function-renormalization needs to take the parameters p and q into account, and
therefore has to distinguish between the left and the right side of the ribbon graph:

ZL = 1− 1
q
∂LΣ(0, 0) ZR = 1− 1

p
∂RΣ(0, 0) (8.4)

The complete wave-function-renormalization is then given by Z =
√
ZLZR and the renor-

malization of the general GW-model is recovered when q and p are taken to 1 and the
“left” and the “right” wave-function-renormalization become equal. Thus we find

λeff =
Γ4(0, 0, 0, 0)√

ZLZR
(8.5)

and can write down the reformulated theorem valid for the modified model:

Boundedness of β-function in a magnetic field 1

Γ4(0, 0, 0, 0) = λ(1− 1
q
∂LΣ(0, 0))(1− 1

p
∂RΣ(0, 0)) (8.6)

where λ is the bare coupling constant. Like above it can be understood as a bare coupling,
reexpressed as a series in the renormalized one as well to be valid for the renormalized
equation.

8.1 Ward Identities

First the Ward-Identities related to the U(N)-symmetry have to be constructed. This is
done in exactly the same way as in the proof of the general GW-model done in the last
section. Of course, one now has to differentiate between the “left” and “right” variation
because of the unequal weights p and q. But in the actual calculation the only difference
comes from using the explicit form of the matrix operators XL and XR and putting their
constants in front of the correlation functions (see (6.7)). Here, the factor (a−b) changes
because of the deformation parameters and becomes q(a− b) for the “left” variation and
−p(a − b) for the “right” one. The negative sign cancels with the sign coming from the
“right” variation itself. Thus, finally we find the following expressions for the 2-pt, and
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4-pt-Ward-Identities:

q(a− b) < [φ̄φ]abφνaφ̄bν >c=< φνbφ̄bν >c − < φ̄aνφνa >c

p(a− b) < [φ̄φ]abφνaφ̄bν >c=< φνbφ̄bν >c − < φ̄aνφνa >c (8.7)

q(a− b) < φαa[φ̄φ]abφ̄bνφνδφ̄δα >c=< φαbφ̄bνφνδφ̄δα >c − < φαaφ̄aνφνδφ̄δα >c

p(a− b) < φαa[φ̄φ]abφ̄bνφνδφ̄δα >c=< φαbφ̄bνφνδφ̄δα >c − < φαaφ̄aνφνδφ̄δα >c (8.8)

8.2 Proofing the theorem

Figure 8.1: The left Dyson-Schwinger-Equation

Analogous to the proof for the general model, we start by constructing the Dyson-
Schwinger-equations for the left and the right variation respectively which makes a dif-
ference now because of the wave-function-renormalization. The steps are equal however
and the proof will be just given for the left variation. The “right” results will be written
down at the end of this section.

The proof can be done in the bare and the mass-renormalized theory respectively
with the differences already explained in the section 6. The proof here will be done in
the mass-renormalized case.

The G4
2-graph is zero after mass renormalization and therefore the relevant “general-

ized” Feynman graphs are G4
1 and G4

3.

Let the function G2(m,n) be the connected, planar, one broken face 2-point-function
given by

G2(m,n) =
1

C−1
mn − Σ(m,n)

=
1

A+ qm− Σ(m,n)
(8.9)

and the 2-point-function with one left insertion, according to the Ward Identities

q(a− b)G2,L
ins(a, b, ν) = G2(b, ν)−G2(a, ν). (8.10)

So the first graph in the left Dyson-Schwinger-equation can be written as:

G4
(1)(0,m, 0,m) = −λC0mG

2(0,m)G2,L
ins(0, 0;m) (8.11)



44 Chapter 8. Grosse-Wulkenhaar-model in a magnetic field

Using the Ward Identity in Equation (8.10), we can write

G2,L
ins(0, 0;m) = lim

ξ→0
G2,L
ins(ξ, 0;m) =

1
q

lim
ξ→0

G2(0,m)−G2(ξ,m)
ξ

=

= −1
q
∂LG

2(0,m) (8.12)

Applying the derivation on the definition of G2(0,m) in (8.9) we get

−1
q
∂LG

2(0,m) =
1
q

1
(C−1

0m − Σ(0,m))2
(q − ∂LΣ(0,m)) (8.13)

Inserting all definitions into (8.11) we can rewrite it as

G4
(1)(0,m, 0,m) =

λ

q
C0m

C0mC
2
0m(q − ∂LΣ(0,m))

(1− C0mΣ(0,m))(1− C0mΣ(0,m))2
=

= λ(G2(0,m))4 C0m

G2(0,m)
(1− ∂LΣ(0,m)) (8.14)

Taylor expanding the self-energy up to first order, and therefore up to irrelevant terms
we find

Σ(n,m) = Σ(0, 0) + n∂LΣ(n,m)|m=n=0 +m∂RΣ(n,m)|m=n=0 (8.15)

and G2(0,m) can be expressed as

G2(0,m) =
1

pm+Abare − Σ0,m
=

1
m(p− ∂RΣ(0, 0)) +Aren

. (8.16)

Hence,

C0m

G2(0,m)
=
m(p− ∂RΣ(0, 0)) +AR

pm+AR
=

=
(m+AR/p)(1− ∂RΣ(0, 0) +AR −AR +AR/p∂RΣ(0, 0)

pm+AR
=

=
1
p

(p− ∂RΣ(0, 0)) +
AR

p(pm+AR)
∂RΣ(0, 0) (8.17)

and finally

G4
(1)(0,m, 0,m) = −λ(G2(0,m))4

(1
p

(p− ∂RΣ(0, 0)) +
AR

p(pm+AR)
∂RΣ(0, 0)

)
1
q

(q − ∂LΣ(0,m)). (8.18)

Now we have to care about diagram G4
(3) to put it in a useful form. When cutting the

line “to the right” at the first vertex, namely the one belonging to the face p, one can
decompose the bare graph into

G4,bare
(3) = −λC0m

∑
p

G4,bare,L
ins (0, p;m, 0,m) (8.19)

As already argued in the last section, the face which was opened to be able to define the
insertion, could have belonged to a diverging loop and thus have a counterterm. Calcu-
lating in the renormalized theory, this fact has to be taken care of and this, otherwise
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lost, counterterm added to the equation.

G4
(3) = −λC0m

∑
p

G4,L
ins(0, p;m, 0,m)− C0m(CTLlost)G

4(0,m, 0,m) (8.20)

As the counterterms which have just a face on the “left” side of the propagator do not get
lost when cutting the line, the self-energy can be seperated into a part with a contribution
to the “right” face and the generalized “left” tadpole for the rest:

Σ(m,n) = TL(m,n) + ΣR(m,n) (8.21)

With this identity we can rewrite the lost counterterm as

CTlost = ΣR(0, 0) = Σ(0, 0)− TL (8.22)

Now we want to compute the “right” contribution to the self-energy.

ΣR(0, 0) = − λ

G2(0, 0)

∑
p

G2
ins(0, p; 0) = −λ

q

1
G2(0, 0)

∑
p

1
p

(G2(0, 0)−G2(p, 0)) =

= −λ
q

∑
p

1
p

(
1− G2(p, 0)

G2(0, 0)

)
(8.23)

Then, equation (8.20) togehter with (8.23) is

G4
(3)(0,m, 0,m) = −λC0m

∑
p

G4,L
ins(0, p;m, 0,m)−

− (−λ)
q

C0mG
4(0,m, 0,m)

∑
p

1
p

(
1− G2(p, 0)

G2(0, 0)

)
(8.24)

Again we rewrite the insertion using the Ward Identity:

−λC0m

∑
p

G4,L
ins(0, p;m, 0,m) = −λ

q
C0m

∑
p

1
p

(G4(0,m, 0,m)−G4(p,m, 0,m)) (8.25)

The second term can be neglected because its denominator is at least of power 3 and
therefore irrelevant. Now we can rewrite G4

(3) as

G4
(3) = −λ

q
C0m

G4(0,m, 0,m)
G2(0, 0)

∑
p

G2(p, 0)
p

(8.26)

The last step to obtain a useful expression for this graph we have to reformulate the sum
over p in the last equation.

∑
p

G2(p, 0)
p

=
∑
p

G2(p, 0)
p

( 1
G2(0, 1)

− 1
G2(0, 0)

) 1
p− ∂RΣ(0, 0)

(8.27)

Repeating the steps from equation (8.23) we find that

ΣR(0, 1) = −λ
q

∑
p

1
p

(
1− G2(p, 1)

G2(0, 1)

)
= −λ

q

∑
p

1
p

(
1− G2(p, 0)

G2(0, 1)

)
(8.28)
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Substituting the expressions for Σ(0, 0)R and ΣR(0, 1) into the identity for the sum over
p we find

−λ
∑
p

G2(p, 0)
p

=
q(ΣR(0, 0)− ΣR(0, 1))

p− ∂RΣ(0, 0)
= − q∂RΣR(0, 0)

p− ∂RΣ(0, 0)
(8.29)

and G4
(3) adds up to

G4
(3)(0,m, 0,m) = −C0mG

4(0,m, 0,m)
1

G2(0, 0)
q∂RΣR(0, 0)
p− ∂RΣ(0, 0)

=

= −G4(0,m, 0,m)
AR∂RΣR(0, 0)

(pm+AR)(q∂RΣR(0, 0))
(8.30)

Writing down the resulting Dyson-Schwinger-equation we have

G4(0,m, 0,m)
(

1 +
AR∂RΣR(0, 0)

(pm+AR)(q∂RΣR(0, 0))

)
= (8.31)

λbare(G2(0,m))4
(1
p

(p− ∂RΣ(0, 0)) +
AR

p(pm+AR
∂RΣ(0, 0)

)1
q

(q − ∂LΣ(0,m))

Multiplying the equation by (p − ∂RΣR(0, 0))/p, and amputating four times one finally
finds the theorem to proof:

Γ4(0, 0, 0, 0) = λ(1− 1
q
∂LΣ(0, 0))(1− 1

p
∂RΣ(0, 0)) (8.32)



Chapter 9

Final Remarks

The reason to search for a Quantum Field theory which maybe could one day include
gravity, on non-commutative spaces, was the observation that gravity changes the geom-
etry of the space in which the Field theory is defined. Alain Connes, Ali Chamseddine
and others found out that the classical standard model emerges very natural out of a
non-commutative space. The hope to be able to define a more general theory on such a
space is therefore quite natural.

Showing the renormalizablity of the Grosse-Wulkenhaar-model was the first step in
this direction as renormalizable theories play a central part in describing real physics,
as can be argued by using the renormalization group approach. There, renormalizable
theories are those which survive the RG flow which means that those theories really have
affects on physics at the corresponding scales.

The proof of the boundendness of the β-function showed that there is no more Landau
ghost in this non-commutative model and that it is not asymptotically free but just
bounded. This is furthermore a step to describe the model in a non-perturbative setting
without using cut-offs. The boundedness makes it the only yet known just-renormalizable
model with quadratic divergences which has this property and an interesting starting
point for the search of a non-commutative standard model.

Besides this application to high energy physics, related models as the Langmann-
Szabo-Zarembo model indicate the possible usefullness of non-commutative models in
describing for instance the Quantum Hall effect.

The achivements made with the Grosse-Wulkenhaar model are very encouraging but
still there is a lot of work to be done. A first possible proof of the renormalizability of
a non-commutative U(1)-gauge theory [14] may already be the next step and definitely
shows that the fascination of the possiblities found on non-commutative spaces is growing
rapidly.
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Chapter 10

Appendix

10.1 Two-Loop-Calculation

To solve some of the integrals the following dilogarithm identities are needed to map the
dilogarithm into its convergent interval between 0 and 1:

Li2[z] = −Li2[
1
z

]− 1
2

(ln[−z])2 − π2

6
for z /∈ (0, 1) (10.1)

Li2[z] = −Li2[1− z]− ln[z] ln[1− z] +
π2

6
Euler identity (10.2)

Before the actual two-loop-diagrams are calculated, some useful integrals are calculated
below.

Λ∫
0

Λ∫
0

dp1dp2

A+ p1 + p2
=

Λ∫
0

dp2

(
ln[A+ Λ + p2]− ln[A+ p2]

)
=

= (A+ 2Λ)
(

ln[A+ 2Λ]− 1
)
− 2(A+ Λ)

(
ln[A+ Λ]− 1

)
+A

(
ln[A]− 1

)
=

= (A+ 2Λ) ln[2Λ] + (A+ 2Λ) ln[1 +
A

2Λ
]− 2(A+ Λ) ln[Λ]−

− 2(A+ Λ) ln[1 +
A

Λ
] +A ln[A] =

Λ→∞= 2 ln[2]Λ−A ln[Λ] +A ln[2A]

Λ∫
0

Λ∫
0

dp1dp2

(A+ p1 + p2)2
=

Λ∫
0

dp2

( −1
(A+ Λ + p2)

+
1

(A+ p2)

)
=

= − ln[A+ 2Λ] + 2 ln[A+ Λ]− ln[A] =

= − ln[2Λ]− ln[1 +
A

2Λ
] + 2 ln[Λ] + 2 ln[1 +

A

Λ
]− ln[A] =

Λ→∞= ln[Λ]− ln[2A]
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Λ∫
0

Λ∫
0

dp1dp2

(A+ p1 + p2)3
=

Λ∫
0

dp2

(
− 1

2(A+ Λ + p2)2
+

1
2(A+ p2)

)
=

=
1

2(A+ 2Λ)
− 1
A+ Λ

+
1

2A
=

Λ→∞=
1

2A

10.1.1 TEXTup

Figure 10.1: Renormalizing the “TEXTup”-graph

The renormalized amplitude for the TEXTup graph is given by

GTEXTup,Rmn =

Λ∫
0

Λ∫
0

d2pd2q
{ 1

(A+ p+m)2(A+ q +m)
−

− 1
(A+ p+m)2(A+ q)

−
( 1

(A+ p)2(A+ q)
−

− 1
(A+ p)2(A+ q)

)}
(10.3)

and represented as Feynman graphs which can be seen in figure 10.1. First the diverging
part will be calculated:

Λ∫
0

Λ∫
0

d2pd2q
1

(A+ p+m)2(A+ q +m)
=

Λ→∞=
(

2 ln[2]Λ− (A+m) ln[Λ] + (A+m) ln[2(A+m)]
)

(
ln[Λ]− ln[2(A+m)]

)
=

= Λ
(

2 ln[2] ln[Λ]− 2 ln[2] ln[m+A]− 2(ln[2])2
)
− (A+m) ln[Λ]2+

+ ln[Λ]
(

2(A+m) ln[2] + 2(A+m) ln[m+A]
)
−

− (A+m) ln[2]2 − 2(A+m) ln[2] ln[m+A]− (A+m) ln[m+A]2

The only relevant counterterm is the subdivergence because the overall divergent terms
cancel each other. The subdivergence corresponds to the divergence of the tadpole and
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this just means to exchange 1
A+q+a with 1

A+q . The renormalized amplitude is now

GTEXTup,Rmn =−m ln[Λ]2 + ln[Λ]
(
−A ln[A] +A ln[m+A] + 2m ln[2]+

+ 2m ln[m+A]
)
−m ln[2]2 +A ln[2] ln[A]− 2m ln[2] ln[m+A]−

−A ln[2] ln[m+A] +A ln[A] ln[m+A]−
−m ln[m+A]2 −A ln[m+A]2 (10.4)

The contribution to the field-strength renormalization is obtained by differentiating once
wth respect to the external momentum:

−∂m1G
TEXTup,R
mn

∣∣∣
m=n=0

=
∑
p,q

1
(A+ p)2(A+ q)2

=

= (ln[Λ]− ln[2]− ln[A])2 (10.5)

10.1.2 TINTup

Figure 10.2: Renormalizing the “TINTup”-graph

Next the TINTup graph will be renormalized. Here again, we have to subtract the
subdivergence before we add the overall counterterm (see Figure 10.2). The amplitude
for the graph is given by

GTINTup,Rmn =

Λ∫
0

Λ∫
0

d2pd2q
{ 1

(A+ p+m)2(A+ p+ q)
−

− 1
(A+ p+m)2(A+ q)

−
( 1

(A+ p)2(A+ p+ q)
−

− 1
(A+ p)2(A+ q)

)}
(10.6)

The divergent integral is best solved by evaluating first the integration by d2q:

Λ∫
0

Λ∫
0

dq2

A+ q + p

Λ→∞= 2 ln[2]Λ− (A+ p) ln[Λ] + (A+ p) ln[2] + (A+ p) ln[A+ p]

Now, the various parts are integrated, together with the 1
(A+p+m)2 -factor, separately.

Λ∫
0

Λ∫
0

d2p
2 ln[2]Λ

(A+ p+m)2
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(ln[2]− ln[Λ])

Λ∫
0

Λ∫
0

d2p
A+ p

(A+ p+m)2
= add and subtract m =

= (ln[2]− ln[Λ])

Λ∫
0

Λ∫
0

d2p
( 1

(A+ p+m)
− m

(A+ p+m)2

)

Λ∫
0

Λ∫
0

d2p
(A+ p+m−m) ln[A+ p]

(A+ p+m)2
=

Λ∫
0

Λ∫
0

d2p
( ln[A+ p]

(A+ p+m)
− m ln[A+ p]

(A+ p+m)2

)
Finally, the divergent graph TINTup is given by:

GTINTupmn = Λ(2 ln[2] ln[Λ]− 2 ln[2] + ln[2]2 − 2 ln[2] ln[A+m]) + ln[Λ]2(
A

2
+m)+

+ ln[Λ](A−m−A ln[2]− 2m ln[2]−A ln[A+m]− 2m ln[A+m])−

−m−A ln[2] +m ln[2] +
3A
2

ln[2]2 + 3m ln[2]2 − 2A ln[A]

+A ln[A+m] +m ln[A+m] +A ln[2] ln[A+m]

+ 2m ln[2] ln[A+m] +
A

2
(ln[A+m])2+

+m ln[A+m]2 +ALi2(
m

A+m
) + 2mLi2(

m

A+m
)

The subdivergence is again given by substituting the tadpole graph for the 1
A+p+q -term.

In this case, where the tadpole points into the other loop, the overall divergence is not
zero and needs to be subtracted as well. These are the last two terms in the renormalized
amplitude. They consist of the first two terms, with the external index m set to zero.
Thus the renormalized amplitude is received by adding/subracting the terms from each
other.

GTINTup,Rmn =m(ln[Λ])2 + ln[Λ](−m− 2m ln[2] + 2A ln[A]− 2A ln[A+m]−
− 2m ln[A+m])−m+m ln[2] + 3m(ln[2])2 −A ln[A]−

− 2A ln[2] ln[A]− 3A
2

(ln[A])2 +A ln[A+m] +m ln[A+m]+

+ 2A ln[2] ln[A+m] + 2m ln[2] ln[A+m] +A ln[A] ln[A+m]+

+
A

2
(ln[A+m])2 +m(ln[A+m])2 +ALi2(− m

A+m
)+

+ 2mLi2(
m

A+m
) (10.7)
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The field-strength contribution is

−∂m1G
TINTup,R
mn

∣∣∣
m=n=0

=
∑
p,q

( 2
(A+ p)3(A+ p+ q)

− 2
(A+ p)3(A+ q)

)
=

= − ln[Λ]2 + ln[Λ](3 + 2 ln[2] + 2 ln[A])−
− 3 ln[2]− 3 ln[2]2 − 3 ln[A]− 2 ln[2] ln[A]− ln[A]2 (10.8)

10.1.3 TINTdown and TEXTdown

These two graphs are exactly the same as the TINTup and TEXTup graphs with the
external index “m” exchanged for “n”.

10.1.4 S

Figure 10.3: Renormalizing the sunrise-graph

The result of the bare graph is already stated in section 4 and the counterterms are
easily calculated with the integrals at the beginning of the Appendix. Thus, we find that
the final result for the graph “S” is:

GS,Rmn =− m+ n

2
ln[Λ]2 + ln[Λ]

(
(m+ n) ln[A] + (m+ n) ln[2]

)
+

+ finite terms (10.9)

Finally, the contribution to the field-strenght-renormalization is the following

−∂m1G
S,R
mn

∣∣∣
m=n=0

=
∑
p,q

( 1
(A+ p)2(A+ p+ q)(A+ q)

− 1
(A+ p)2(A+ q)2

)
=

=
(ln[Λ])2

2
− ln[Λ](ln[2] + ln[A])−

− 1 +
3(ln[2])2

2
+ ln[2] ln[A] +

(ln[A])2

2
(10.10)
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Chapter 11

Zusammenfassung

In dieser Arbeit habe ich das Grosse-Wulkenhaar-Modell(GW-Modell) am selbstdualen
Punkt studiert. Hierbei handelt es sich um ein nichtkommutatives, skalares Modell, für
das als erstes nichtkommutatives Modell die Renormalisierbarkeit gezeigt werden konnte.

S[φ] =
∫

d4x
{1

2
(∂µφ) ? (∂µφ) +

Ω2

2
(x̃µφ) ? (x̃µφ) +

m2

2
(φ ? φ) +

λ

2
φ ? φ ? φ ? φ)

}
Hier steht ”m“ für die Masse, ”λ“ für die Kopplungskonstante und ”Ω“ für die Oszillator-
frequenz. Es erweitert das standard nichtkommutative φ?,4-Modell um einen Oszillator-
Term der das Modell am ausgezeichneten Punkt Ω = 1 invariant unter der Langmann-
Szabo-Dualität macht. Dadurch ist eine Unterscheidung zwischen dem Orts- und Im-
pulsraum nicht mehr möglich. Außerdem lässt sich an diesem Punkt das GW-Modell
als lokales Matrixmodell darstellen. Das bedeutet dass das Feld φ als diagonale Ma-
trix geschrieben werden kann wodurch sich die durchzuführenden Rechnungen wesentlich
vereinfachen.

Ich habe in dieser Arbeit die Renormalisierung dieses Modells in zwei und vier Dimen-
sionen jeweils bis zur zweiten Loop-Ordnung für die, nach der Renormalisierungsgruppe,
relevanten Feynmangraphen explizit durchgeführt um danach eine weitere faszinierende
Eigenschaft dieses Modells, nämlich die Beschränktheit der Beta-Funktion, nach dem Ar-
tikel von Rivasseau et al. zu berechnen. Dieser zeigt, dass der Unterschied zwischen der
nackten und der renormalisierten Kopplungskonstante des Modells endlich ist und daher
die Betafunktion beschränkt. Diese Eigenschaft ist bisweilen für kein anderes Modell
bekannt und eröffnet erstmals die Möglichkeit ein quantenfeldtheoretisches Modell kon-
struktiv, also ohne Divergenzen, darzustellen.

Ich verwende meine aus der Renormalisierung erhaltenen Resultate um diese Eigen-
schaft für die Kopplungskonstante des Modells bis zur zweiten Ordnung zu zeigen. Danach
werden die einzelnen Schritte des Beweises der Beschränktheit in alle Ordnungen de-
tailliert nachvollzogen. Dieser Beweis baut auf den Ward-Identitäten und der Dyson-
Schwinger-Gleichung auf, die das GW-Modell erfüllt. Daraus folgen weiters interessante
Zusammenhänge zwischen (2n-2) und 2n-Punkt- Korrelationsfunktionen die in einem
späteren Abschnitt für den speziellen Fall des Zusammenhangs von 2- und 4-Punkt-
Funktion wiederum explizit berechnet werden. Im letzten Teil dieser Arbeit werden
die Techniken des allgemeinen Beweises auf das Langmann-Szabo-Zarembo-Modell ange-
wandt. Dies ist ein GW-Modell im äußeren Magnetfeld und stellt damit auch ein inter-
essantes Testmodell für ein besseres Verständnis des Quanten-Hall-Effektes dar.
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