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ABSTRACT 

 
Tyrosine kinase 2 (Tyk2) is a member of the Janus kinase (Jak) family and was originally 

identified by its essential role in type I interferon (IFN) signalling. Tyk2 is involved in signal 

transduction via various cytokines and some growth factors. Tyk2-deficient mice show 

increased sensitivity to infection with a number of different pathogens (e.g. Murine 

Cytomegalovirus, Listeria monocytogenes). In contrast, they show high resistance to 

lipopolysaccharide- (LPS) and ischemia/reperfusion-induced shock. Macrophages play a 

crucial role in the recognition of and response to LPS, and consequently, in the 

pathogenesis of endotoxin shock. In the absence of Tyk2, macrophages show a decreased 

activation of the IFN signalling cascade upon LPS treatment and, accordingly, reduced 

induction of at least some IFN target genes. Aim of this study was to investigate the 

molecular role of Tyk2 in macrophages in more detail with the main focus on the 

identification of novel Tyk2-dependent host cell responses. 

A proteomic approach was chosen for the comparative analysis of protein patterns in lysates 

from wild-type (WT) versus Tyk2-deficient primary macrophages. The key method was two-

dimensional fluorescence difference gel electrophoresis (2D-DIGE) using minimal labelling 

with cyanine dyes. Experimental conditions for the specific sample type were optimised and 

reproducibility and the minimal detectable differences (effect size) were determined by 

statistical analyses. The method was applied to select candidates, which were then 

subjected to identification by mass spectrometry.   

We could show that protein patterns in whole cell lysates and nuclear extracts are 

significantly different between WT and Tyk2-deficient bone marrow-derived macrophages 

(BMM) both in the LPS-treated and the untreated state. Twenty-three different proteins 

derived from 27 differentially expressed spots were identified by mass spectrometry. The 

identified proteins belong to distinct functional categories (e.g. immune response, oxidative 

stress response, apoptosis, metabolism, and transcription/translation) and their expression is 

either positively or negatively regulated by Tyk2. More detailed analysis of selected proteins 

revealed that Tyk2 influences protein expression at the mRNA and/or at the protein level. 

We show that Tyk2 influences LPS-dependent changes in the peroxiredoxin 1 (PRDX1) spot 

pattern but not the total PRDX1 expression level, as displayed by 1D and 2D western blot 

analysis. Subcellular distribution of elongation factor 2 (EF2) appeared dependent on Tyk2, 

since genotype specific differences were only detected in nuclear but not in whole cell 

extracts. We could furthermore show that Tyk2 negatively regulates plasminogen activator 

inhibitor 2 (PAI2) and pro-interleukin-1β (pro-IL-1β) protein but not mRNA expression. In 
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contrast, N-myc interactor (NMI), a protein known to be transcriptionally regulated by IFN, 

was dependent on the presence of Tyk2 for efficient mRNA and protein expression.  

Since IL-1β plays an important role in immunity and Tyk2 has not yet been linked to IL-1β 

expression, we further analysed the mechanistic basis of enhanced pro-ILβ protein 

expression in Tyk2-deficient macrophages. We could show that enhanced levels of 

intracellular pro-IL-1β are not due to defective processing and/or secretion and that also 

extracellular IL-1β is enhanced in the absence of Tyk2. Similar protein stability in both 

genotypes could be demonstrated by using the translational inhibitor cycloheximide and 

monitoring pro-IL-1β degradation and pulse/chase labelling experiments. Interestingly, we 

found increased association of IL-1β mRNA with polysomes in the absence of Tyk2, arguing 

for differences in translational efficiency and suggesting a novel role of Tyk2 in translational 

control. 

In summary, we show that high reproducibility can be achieved with 2D-DIGE technology 

with the developed experimental set-up. Detection of differences in protein expression in cell 

lysates derived from primary macrophage cultures of as low as 30% (on average) could be 

demonstrated. With respect to Tyk2, our results imply regulatory roles of Tyk2 at multiple 

levels of protein expression and establish novel connections between Tyk2 and several 

cellular proteins. 
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ZUSAMMENFASSUNG 

 
Tyrosinkinase 2 (Tyk2) gehört zur Familie der Janus Kinasen (Jak). Tyk2 wurde ursprünglich 

als essentielle Komponente in der Typ-I Interferon (IFN) Signaltransduktions-Kaskade 

identifiziert und ist in die Signaltransduktion vieler weiterer Zytokine und einiger 

Wachstumsfaktoren involviert. Tyk2-defiziente Mäuse zeigen erhöhte Sensitivität bei 

Infektion mit vielen unterschiedlichen Pathogenen (z.B. Maus Cytomegalovirus, Listeria 

monocytogenes). Im Gegensatz dazu sind sie resistent gegen Lipopolysaccharid (LPS)- und 

Ischämie/Reperfusion-induzierten septischen Schock. Makrophagen spielen eine zentrale 

Rolle bei der Erkennung von und der Antwort auf LPS und somit in der Pathogenese des 

septischen Schocks. Makrophagen zeigen in Abwesenheit von Tyk2 eine reduzierte 

Aktivierung der IFN-Signaltransduktion nach Behandlung mit LPS und folglich eine 

erniedrigte Expression zumindest mancher IFN-induzierbarer Gene.  

Ziel dieser Arbeit war es, die molekulare Rolle von Tyk2 in Makrophagen detaillierter zu 

untersuchen, wobei der Fokus auf die Ermittlung von neuen, Tyk2-abhängigen Antworten 

der Wirtszellen gelegt wurde. Ein Proteomics-Ansatz zur vergleichenden Analyse von 

Proteinmustern in Zelllysaten von Wildtyp- versus Tyk2-defizienter primärer Makrophagen 

wurde ausgewählt. Als zentrale Technik hierfür wurde zweidimensionale „Fluorescence 

Difference Gel Electrophoresis“ (2D-DIGE) verwendet. Experimentelle Bedingungen für die 

spezifischen Probentypen wurden optimiert und die Reproduzierbarkeit sowie die minimal 

detektierbaren Unterschiede statistisch ermittelt. Diese optimierte Methode wurde dann 

eingesetzt, um Kandidaten für die massenspektrometrische Identifizierung zu ermitteln.  

Wir konnten zeigen, dass die Proteinmuster in Gesamtzell- und Kern-Lysaten zwischen 

Wildtyp- und Tyk2-defizienten Knochenmark-Makrophagen, sowohl vor als auch nach der 

Behandlung mit LPS, signifikant unterschiedlich sind. In 27 differentiell exprimierten Spots 

wurden mittels Massenspektrometrie 23 verschiedene Proteine identifiziert. Diese Proteine 

gehören zu diversen funktionellen Klassen (z.B. Immunantwort, oxidative Stressantwort, 

Apoptose, Metabolismus und Transkription/Translation) und ihre Expression ist durch Tyk2 

entweder positiv oder negativ reguliert. Weitere detaillierte Untersuchungen an 

ausgewählten Proteinen ergaben, dass Tyk2 die Proteinexpression auf mRNA- und/oder 

Proteinebene beeinflusst. Mittels 1D und 2D Westernblot Analysen fanden wir, dass Tyk2 

die LPS-abhängigen Veränderungen im Proteinmuster von Peroxiredoxin 1 (PRDX1), nicht 

aber dessen Gesamtproteinmenge, beeinflusst. Die subzelluläre Verteilung von 

Elongationsfaktor 2 (EF2) scheint abhängig von Tyk2 zu sein, da Genotyp-spezifische 

Unterschiede nur in Kern- und nicht in Gesamtlysaten detektierbar sind. Wir konnten weiters 

zeigen, dass Tyk2 die Expression von Plasminogen Activator Inhibitor 2 (PAI2) und pro-
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Interleukin-1β (pro-IL-1β) Protein, nicht aber deren mRNAs, negativ reguliert. Im Gegensatz 

dazu ist die Anwesenheit von Tyk2 für eine effiziente mRNA Expression von N-myc 

Interactor (NMI) erforderlich, dessen transkriptionelle Regulation durch IFNs bekannt ist. 

Die Tatsache dass IL-1β eine wichtige Rolle in der Immunität spielt und seine Expression 

bisher nicht in direkten Zusammenhang mit Tyk2 gebracht wurde, hat uns veranlasst den 

molekularen Mechanismus der erhöhten pro-IL-1β Proteinexpression näher zu analysieren. 

Wir konnten zeigen, dass die erhöhte intrazelluläre Menge von pro-IL-1β nicht durch defekte 

Prozessierung und/oder Sekretion verursacht wird und dass in Abwesenheit von Tyk2 auch 

die extrazelluläre Menge von IL-1β erhöht ist. Die Analyse des Proteinabbaus nach der 

Applikation des translationellen Inhibitors Cycloheximid oder einer radioaktiven Protein-

Markierung ergab, dass die Stabilität von pro-IL-1β in beiden Genotypen ähnlich ist. 

Interessanterweise beobachteten wir eine erhöhte Assoziation der IL-1β mRNA mit 

Polysomen in Abwesenheit von Tyk2. Dies lässt Differenzen in der translationellen Effizienz 

und eine neue Rolle von Tyk2 in der translationellen Kontrolle annehmen.  

Zusammenfassend zeigen wir, dass mittels 2D-DIGE mit unserem experimentellen Aufbau 

eine hohe Reproduzierbarkeit erzielt wird. Durchschnittlich können signifikante Unterschiede 

in der Proteinexpression schon ab 30% Differenz in Zelllysaten primärer Makrophagen 

festgestellt werden. In Bezug auf Tyk2 weisen unsere Ergebnisse auf einen regulativen 

Einfluss auf mehrere Ebenen der Proteinexpression und auf neue Zusammenhänge 

zwischen Tyk2 und diversen zellulären Proteinen hin. 
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INTRODUCTION 

 

I. Immunity  

1. Immune system 

Vertebrates have developed a potent defence mechanism, the immune system, against 

various infectious microorganisms. The immune system in jawed vertebrates consists 

basically of two components, the innate and the adaptive immunity. The main features of this 

system include recognition and elimination of dangerous agents, tolerance of self antigens 

and development of an immunological memory. Additionally, termination of responses and 

return to a basal state (homeostasis) is also an important function. The immune system 

comprises cellular and biochemical defence mechanisms distributed widely through the 

body. The classification into innate and adaptive immunity is mainly based on the receptor 

types which are used to recognise pathogens or components thereof. Innate immunity is the 

instantaneous, first line defence against infections and is evolutionary older. It initiates host 

defence responses and also stimulates and influences the character of adaptive immunity. 

Adaptive immunity is more specific and the development of its maximal efficiency takes 

several days or weeks. Both are linked and act in concert and coordinated in responses to 

immune stimuli. Important cells of the innate immunity are phagocytes such as 

macrophages, neutrophils, dendritic cells, and natural killer cells. The receptors of innate 

immunity are germline encoded and have broad specifities for conserved and invariant 

features of microorganisms. Adaptive immunity engages lymphocytes (T and B cells) and 

their secreted mediators (e.g. cytokines, antibodies). The receptors are generated by 

random somatic gene rearrangements that result in the generation of a broad diversity. 

These receptors are expressed clonally and recognise antigens, i.e. specific components of 

macromolecules. The recognition of antigens leads to proliferation and differentiation of the 

individual lymphocytes into effector and memory cells. The production of memory cells 

enables more effective responses to subsequent contact with the same antigens [1,2].  

 

2. Macrophages  

Cells of the mononuclear phagocyte system originate from pluripotent haematopoietic stem 

cells in bone marrow and develop into circulating monocytes. Monocytes migrate 

permanently and upon stimulus into tissues and maturate into macrophages. Macrophages 

are very dynamic and heterogeneous cells with the ability to adapt to the microenvironment 

[3,4]. The diverse phenotypes and specific functions of macrophages arise from their 
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anatomical tissue location and from their activation state, which is fully reversible. Activated 

macrophages are involved in the initiation, progress and the resolution of inflammation [3,4]. 

They play important regulatory and effector roles in innate and adaptive immunity. They 

secrete and respond to various cytokines and chemokines, and are able to direct cell-cell 

contact. These auto/paracrine interactions and cell contacts modulate responses and 

functions of other cells as well as of macrophages themselves [5]. Macrophages recognise, 

phagocytose and destroy pathogens, apoptotic cells and some tumor cells. As antigen 

presenting cells, macrophages process the phagocytosed particles for presentation to T cells 

on the major histocompatibility complex (MHC) molecules. Recognition and phagocytosis of 

microbial products activate macrophages to kill the pathogens by proteases, antimicrobial 

peptides, reactive oxygen species (ROS) and nitric oxide (NO). Their microbicidal activity is 

further enhanced after antigen presentation [2]. Tissue-resident macrophages play important 

roles in tissue homeostasis by removing senescent cells and remodelling and repair of 

tissues after injury or infection [4].  

 

3. Pattern-recognition receptors in innate immunity (PRRs) 

PRRs are receptors of innate immunity and recognise pathogen-associated molecular 

patterns (PAMPs) and molecules released from stressed or injured cells, called danger-

associated molecular patterns (DAMPs) [6-9]. PPRs are present in three different 

compartments: body fluids, cell membranes and inside the cells. PRRs in body fluids are 

important for opsonisation of PAMPs, complement activation or for delivery of PAMPs to 

other PRRs (e.g. lipopolysaccharide (LPS)-binding protein (LBP)). PRRs on cell membranes 

initiate phagocytosis, present PAMPs to other PRRs or trigger signalling pathways. 

Intracellular PRRs recognise and initiate responses to intracellular pathogens and DAMPs 

[6-9]. PRRs and their ligands (or activators) are listed in Table 1. PRRs initiate inflammatory 

responses through activation of multiple signalling pathways and effector functions of the 

immune cells. The signalling pathways activate several transcription factors, which 

collaborate to induce expression of a large number of downstream genes important for host 

defence. These coordinate the local and systemic inflammation and also initiate adaptive 

immune responses. The genes include mainly proinflammatory cytokines, such as 

interleukin (IL)-1β, IL-6, tumour necrosis factor α (TNFα), and type I interferons (IFNs). The 

induced response is important for an effective host defence; however, prolonged or 

hyperactivation may also be detrimental for host cells and tissues. Thus, expression of anti-

inflammatory factors (e.g. IL-10, transforming growth factor-β (TGF-β), IL-1 receptor 

antagonist (IL-1ra) and glucocorticoids) and inhibitors of signalling cascades is of equal 

importance for the host defence. The balance between positive and negative regulation of 
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responses is crucial to successfully overcome pathogen invasion and to return to 

homeostasis [7-10]. 

 

3.1 Toll-like receptor (TLR) family 

TLRs are widely expressed among immune and certain non-immune cells, respond to 

different PAMPs, and act as homo- or heterodimers and with other PRRs. Up until recently, 

10 human and 13 murine TLRs have been identified (see Table 1). TLRs are evolutionary 

conserved type I integral membrane glycoproteins. The ligand sensing part of TLRs contains 

leucine-rich repeats (LRRs) and is localised extracellularly (TLRs 1, 2, 3, 4, 5, 6, 10 and 11) 

or inside endosomes (TLRs 3, 7, 8 and 9) [7-9]. The cytoplasmic part, toll-interleukin-1 

receptor (TIR) domain, is involved in the initiation of signalling. TLRs trigger signalling 

pathways through different combinations of the five TIR-domain containing adaptor 

molecules: myeloid differentiation primary response gene 88 (MyD88), MyD88 adaptor-like 

(Mal, also known as TIRAP), TIR domain-containing adaptor protein inducing IFN-β (TRIF), 

TRIF-related adaptor molecule (TRAM) and sterile α and armadillo-motif-containing protein 

(SARM), although SARM is a negative regulator. All TLRs (except TLR3) use the MyD88 

adaptor, Mal is used by TLR2 and 4, TRIF by TLR3 and 4 and TRAM only by TLR4 [11]. All 

TLRs activate nuclear factor-κB (NFκB) and activating protein-1 (AP-1) transcription factors, 

which induce expression of mainly proinflammatory cytokines and chemokines. TLRs 3, 4, 7, 

8 and 9 additionally activate IFN regulatory factor 3 (IRF3) and/or IRF7 transcription factors 

that induce the transcription of type I IFNs. Depending on the cell type other transcription 

factors may also be activated [7-9]. 

 

3.2 Nucleotide-binding domain, leucine-rich repeat containing family (NLR) 

NLRs are intracellular sensors of pathogens and other stress signals. This family comprises 

about 20 known members, but the ligands and functions of many of these receptors are 

unknown at present [6,12].  

 

3.2.1 Nucleotide-binding oligomerisation domain containing (NOD) proteins  

NOD1 and NOD2 are cytoplasmic bacterial sensors (see Table 1), which have as effector 

domains the caspase-recruitment domains (CARDs). After ligand recognition NODs undergo 

oligomerisation, recruit and activate receptor-interacting protein 2 (RIP2) kinase. RIP2 is 

essential for activation of NFκB and mitogen-activated protein kinases (MAPKs). NOD 

signalling induces the expression of proinflammatory cytokines and chemokines [12,13]. 
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3.2.2 NLRs and inflammasomes  

Several NLR proteins, NLR family, pyrin domain containing 1-3 (NLRP1-3), NLR family, 

CARD domain containing 4 (NLRC4) and NLR family, apoptosis inhibitory protein 5 (NAIP5), 

are involved in inflammasome formation [6,14-16]. Inflammasomes are multiprotein 

complexes forming a molecular scaffold for caspase-1 (casp-1) activation, which is the 

central effector molecule of the inflammasome [14,16]. The activation of casp-1 is important 

for the processing of the precursors of the proinflammatory cytokines IL-1β and IL-18 into 

their biologically active (mature) forms. IL-33, which is involved in T helper cell type 2 (TH2) 

responses [14] and Mal are also substrates for casp-1 [17]. Additionally, activation of 

inflammasomes may induce apoptosis of host cells [14].  

 

3.3 RIG-like helicases (RLHs) 

Retinoic-acid-inducible gene 1 protein (RIG-I, also known as Ddx58) and melanoma 

differentiation associated gene 5 (MDA5) are two cytoplasmic CARD helicases, and sensors 

of viral infections in most cell types. Both activate through interaction with IFN-β promoter 

stimulator-1 (IPS-1, also known as MAVS, VISA, and Cardif) the transcription factors IRF3/7 

and NFκB. These induce the production of type I IFNs and proinflammatory cytokines, 

respectively [18,19]. 

 

3.4 Other PRRs 

C-type lectin receptors (CLRs) are transmembrane receptors that recognise mainly 

carbohydrate structures. The best known CLR is dectin-1, which recognises beta-glucan 

from fungal cell walls [7,20,21]. Dectin-1 induces production of proinflammatory cytokines, 

phagocytosis and respiratory burst.  

Recent studies have indicated a TLR-independent recognition system for DNA in the cytosol 

that results in the expression of type I IFNs and activation of other immune responses. Z-

DNA binding protein 1 (ZBP1) was identified as a candidate and renamed as DNA-

dependent activator of IRFs (DAI) [22]. However, studies with knockout mice have shown 

that production of type I IFNs after stimulation with DNA occurs also independently of DAI 

[9]. Very recently, HIN-200 protein family members (haematopoietic IFN-inducible nuclear 

proteins with characteristic 200 amino acid domains) were found to act as PRRs that 

mediate responses to cytoplasmic dsDNA [23]. 
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Table 1. PRRs and their ligands/activators 
 

Proteins 
 

 

Location 
 

 

Major ligands 
 

 

Toll-like receptors (TLRs) 
 

TLR1 Cell surface 
 

triacyl lipopeptides [7,24] 
 

TLR2 Cell surface 

 

peptidoglycan, lipoteichoic acid, lipoarabinomannan, 

lipopeptides (di- and tri-acyl lipopeptides, macrophage-

activating lipopeptide 2), zymosan [7,24] 
 

TLR3 Endosome 

 

viral double-stranded RNA (dsRNA), polyinosine-polycytidylic 

acid (poly(I:C)) [7,24], siRNA, endogenous mRNA [24] 
 

TLR4 Cell surface 

 

LPS, viral envelope proteins from RSV and MMTV [7,24]; 

mannan, glycoinositolphospholipid [7];  heat-shock proteins 

60 and 70, fusion protein of RSV, fibronectin, hyaluronan [24] 
 

TLR5 Cell surface 
 

bacterial flagellin [7,24] 
 

TLR6 Cell surface 
 

diacyl lipopeptides, lipoteichoic acid, zymosan [7,24] 
 

TLR7 Endosome 

 

imiquimod, resiquimod (R848), viral single-stranded RNA 

(ssRNA), certain siRNAs [7,24]; synthetic polyU RNA [7] 
 

TLR8 Endosome 
 

R848* and viral ssRNA [7,24] 
 

TLR9 Endosome 
 

unmethylated CpGs [7,24], sugar backbone of DNA [25] 
 

TLR10** Cell surface 
 

unknown [7,24] 
 

TLR11*** Cell surface 

 

profilin, not yet identified ligand from uropathogenic bacteria 

[7,24] 
 

 

TLR12*** 

TLR13*** 
 

Unknown 
 

unknown [24] 
 

 
 MMTV - mouse mammary tumour virus, RSV - respiratory syncytial virus  

* recognised by human TLR8, ** identified only in humans, *** identified only in mice 
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Table 1. PRRs and their ligands/activators (continued) 

 

Proteins 
 

Location Major activators 

 

Nucleotide-binding domain, leucine-rich repeat containing family (NLRs) 
 

NOD1 
 

Cytoplasm 
 

γ-D-glutamyl-meso-diaminopimelic acid [12] 

NOD2 
 

Cytoplasm 
 

muramyl dipeptide (MDP) [12] 

NLRP1 (Nalp1) 

 

Cytoplasm / 

nucleus 
 

MDP, anthrax lethal toxin [14] 

NLRP3 (Nalp3) Cytoplasm 

 

PAMPs (e.g. MDP, bacterial RNA), microbial toxins (e.g. 

Nigericin), live bacteria (Listeria monocytogenes, 

Staphylococcus aureus,  Escherichia coli), viruses (Sendai 

and Influenza virus), DAMPs (e.g. adenosine triphosphate 

(ATP), monosodium urate crystals, ROS, UVB) [6] 
 

 

NLRC4 (IPAF) 
 

 

Cytoplasm 
 

 

functional type III or IV secretion system from Shigella, 

Salmonella, Legionella, Pseudomonas species and flagellin 

from Salmonella, Legionella, Pseudomonas species [15] 
 

 

NAIP5 
 

Cytoplasm Legionella pneumophila (by interaction with NLRC4) [14] 

 

NLRX1 
 

Mitochondria unknown [12] 

 

RIG-like helicases (RLHs) 
 

 

RIG-I 
 

 

Cytoplasm 
 

 

RNA viruses, ssRNA with 5’-triphosphate, short dsRNA, short 

poly(I:C) [19] 
 

 

MDA5 
 

 

Cytoplasm 
 

 

picornaviruses, long dsRNA, long poly(I:C) [19] 
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4. Lipopolysaccharide (LPS) 

LPS, also called endotoxin, is a major structural component of the outer membrane of gram-

negative bacteria. It is a potent activator of immune responses. LPS consists of four major 

components: the O-specific chain, the outer core, the inner core and lipid A. Lipid A is the 

region, which is recognised by the innate immune system. The recognition of and response 

to LPS is the critical point in its toxicity and macrophages are key players in this process 

[26,27]. The important role of macrophages has been shown, for example, using an LPS 

non-responsive mouse strain (C3H/HeJ), which becomes sensitive to LPS after injection of 

macrophages from an LPS responsive mouse strain (C3H/HeN) [26].   

LPS activates macrophages to produce a variety of cytokines, reactive oxygen and nitrogen 

species and other inflammatory mediators. These cytokines and mediators activate other 

immune and non-immune cells, and induce a local inflammatory response. High 

concentrations of LPS can lead to excessive and/or prolonged production of these cytokines. 

These combined with the actions of activated cells can culminate in a systemic disorder with 

septic shock, multiple organ dysfunction, and death [2,26]. Exogenous administration of LPS 

is one of the experimental models to study biological mechanisms and pathophysiology of 

sepsis [28]. 

 

5. LPS-induced TLR4 signalling pathways in macrophages 

The TLR4 complex consists of cluster of differentiation 14 receptor (CD14) and myeloid 

differentiation factor-2 (MD-2), which are associated with TLR4. LBP binds to LPS and 

delivers it to the CD14 receptor, which transfers it to the TLR4/MD-2 receptor complex. 

Docking of LPS to this complex leads to homodimerisation and recruitment of adaptor 

proteins via interactions with TIR domains. This induces at least two distinct signalling 

pathways that modulate transcription, mRNA stability and/or translation of a number of 

proinflammatory cytokine genes such as IL-1β, IL-6, IL-12, TNFα, and type I IFNs [7,29]. A 

simplified overview of LPS-induced signalling pathways is illustrated in Fig. 1. LPS 

stimulation results in the recruitment of Mal and MyD88 to the TLR receptor complex. This 

complex recruits and activates the IL-1 receptor associated kinases (IRAKs) IRAK1, 2 and 4. 

IRAKs dissociate then from the complex, associate with and activate TNF-receptor 

associated factor 6 (TRAF6). Activated TRAF6 associates with a complex consisting of 

transforming growth factor-β-activated kinase 1 (TAK1) and TAK-binding proteins (TAB) 

TAB-1, 2 and 3. Activated TAK1 activates inhibitor of κB (IκB) kinases (IKKs), which 

phosphorylate IκBs. The phosphorylated IκBs are then ubiquitinated and degraded. This 

leads to release and translocation of NFκB to the nucleus. TAK1 activates also MAPKs such 
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as p38 and c-jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). 

These kinases mediate the activation of AP-1. Another transcription factor, IRF5, associates 

with MyD88 and TRAF6, becomes activated and translocates into the nucleus. Activation of 

these transcription factors results mainly in the synthesis of proinflammatory cytokines 

[7,9,24].   

TRIF interacts with TLR4 through TRAM. Association of TRAM and TRIF with TLR4 is 

followed by endocytosis of the TLR4 complex and the TRIF-dependent signalling pathway is 

successively induced from the endosomal compartment [30,31]. TRIF recruits TRAF3 and 

activates TRAF-family-member-associated NFκB activator (TANK) binding kinase (TBK1) 

and IKKí, which phosphorylate IRF3. Phosphorylated IRF3 form homo- and heterodimers 

with the p65 subunit of NFκB [32,33], translocate to the nucleus and induce the expression 

of responsive genes, most prominently IFN-β. TRIF interacts also directly with receptor-

interacting protein 1 (RIP1) and this interaction is responsible for NFκB activation and 

expression of proinflammatory cytokines [7,9,24].   
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Figure 1. LPS-induced signalling pathways 
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6. Cross talk in PRR signalling 

Different PRRs recognise pathogens simultaneously or sequentially and activate distinct 

and/or shared signalling pathways that determine the intensity and quality of responses. The 

interactions may be synergistic or antagonistic and result in high complexity of processes 

occurring after pathogen recognition. The collaboration of TLRs and NLRs inflammasomes 

to produce mature IL-1β is the best known crosstalk amongst the PRRs. TLRs induce 

expression of  IL-1β precursor but its processing into the mature form depends on the 

activation of casp-1 by inflammasomes. PRRs form heterodimers with other PRRs to 

recognise distinct ligands and/or modulate the immune response. Moreover, stimulation of 

certain PRRs can influence expression levels of other PRRs and/or signalling molecules, 

and may enhance or attenuate responses. However, the interplay between signalling 

pathways and their integrated outcomes are still poorly defined [7,10,29,34]. 
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II. Jak-Stat signalling pathway  

1. Jak-Stat signalling pathway overview 

The Janus kinase (Jak) and signal transducer and activator of transcription (Stat) signalling 

pathway is one of the best studied signalling pathways and transmits signals from the cell 

surface to the nucleus (see Fig. 2). A large number of cytokine and several non-cytokine 

receptors utilise this signalling pathway [35,36]. The Jak-Stat signalling pathway is activated 

by ligand binding to the corresponding receptors. This event induces oligomerisation of the 

receptor chains and their subsequent transition into an active conformation. The associated 

Jaks come to close proximity, auto- and/or cross-phosphorylate and phosphorylate the 

receptor. The phosphorylated tyrosine residues on the receptor chains allow recruitment of 

Stats which are then phosphorylated and activated. Activated homo- and/or heterodimerised 

Stats translocate to the nucleus where they modulate the transcription of several genes. 

Different receptors use different combinations of one or more Jaks and activate different Stat 

homo- and/or heterodimers. In addition to Jaks and Stats other signalling cascades can be 

activated. Activation of distinct Stats and other transcription factors as well as their 

synergistic/antagonistic actions mediate the differential and complex biological responses to 

a given cytokine or growth factor [36,37].  
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Figure 2. Jak-Stat signalling pathway
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The cytokine superfamily of receptors (type I and II) comprises about 50 members including 

receptors for interleukins, IFNs and some hormones. These receptors are single membrane-

spanning proteins that lack enzymatic activity in the cytosolic domains, and signal through 

associated kinases. The extracellular part is responsible for ligand binding [38,39].  

In mammals, the Janus kinase family consists of the four known members Jak1-3 and 

tyrosine kinase 2 (Tyk2). Jaks are non-receptor tyrosine kinases which associate non-

covalently with receptors. Jak1, Jak2 and Tyk2 are ubiquitously expressed, Jak3 

predominantly in cells of haematopoietic origin, such as NK cells and lymphocytes. Jaks 

range in size from 120 to 140 kDa and feature seven Janus homology (JH) domains. JH1 is 

the catalytically active kinase domain containing tyrosine residues and a conserved aspartic 

acid residue involved in phosphotransfer reactions. JH2, the pseudokinase domain, is highly 

homologous to JH1 but is catalytically inactive and important for regulation of Jak activity. 

The presence of a pseudokinase domain in addition to the functional kinase domain was 

actually the basis to name this kinase family after the two-faced Roman god Janus. JH3 and 

half of JH4 form a Src-homology-2 (SH2) related domain of unknown function. Half of JH4 

and JH5-JH7 domains contain a so-called Four-point-one, Ezrin, Radixin, Moesin (FERM) 

domain responsible for interactions of Jaks with receptors [40]. 

The Stat protein family comprises the seven members Stat1, 2, 3, 4, 5a, 5b and 6. These 

transcription factors consist of 7 conserved domains. The amino-terminal domain is 

responsible for protein-protein interaction and homodimerisation of unphosphorylated Stats. 

The coiled-coil domain mediates the interaction with other transcription factors and 

regulatory proteins. The DNA binding domain (DBD) allows binding to DNA, the linker 

domain is responsible for appropriate conformation between DBD and SH2. The SH2 

domain enables binding of Stats to the specific phosphorylated receptor subunits and 

formation of active Stat dimers. The Stats are activated by phosphorylation on the tyrosine 

activation motif. The transcription activation domain (TAD) contributes to Stats specificity 

and is involved in interactions with transcriptional regulators. The transcriptional activity of 

Stats is further regulated by phosphorylation on the serine residue located within TAD in all 

Stats, except Stat2. Inactive Stats are predominantly localised in the cytoplasm and are 

translocated into the nucleus after activation [36,41,42].  

 

2. Type I interferons 

IFNs were the first cytokines discovered and studies of the mechanism by which IFNs induce 

the expression of various genes led to discovery of the Jak-Stat signalling pathway [43,44]. 

IFNs play important roles in the host defence by mediating the early immune responses to 

viral and to bacterial infections [45]. Moreover, IFNs exhibit anti-tumoural effects, inhibit cell 
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growth and angiogenesis, and regulate apoptosis [46]. The IFNs are classified into three 

types based on the utilisation of distinct cytokine receptors on the cell surface: type I (see 

below), type II (IFN-γ) and type III (IFN-λ, divided into three subtypes IFN-λ1, 2 and 3, also 

known as IL-29, IL-28A and IL-28B, respectively) [45,47,48]. 

Type I IFNs include IFN-α (13 subtypes in humans, 14 in mice), β, κ, ε, ω, and ζ. All type I 

IFNs signal through the IFN-α/β receptor (IFNAR) consisting of two subunits IFNAR1 and 

IFNAR2. Type I IFNs are expressed in almost all cells. IFNAR1 is constitutively associated 

with Tyk2 and IFNAR2 with Jak1. The major transcriptional complex activated by type I IFNs 

is the IFN-stimulated gene factor 3 (ISGF3). This complex consists of activated Stat1 and 2 

heterodimer and IRF9. ISGF3 activates gene expression of IFN-stimulated genes (ISGs) 

containing IFN-stimulated response elements (ISRE) in their promoter regions [45,49]. 

Depending on the cell type, type I IFNs can also activate all other Stats, although their 

contributions to the overall response are less well-defined [50]. Moreover, type I IFNs 

activate several additional signalling pathways, e.g. MAPKs, and phosphoinositide-3 kinase 

(PI3K) [49]. These signalling cascades modify gene expression of ISGs either independent 

or cooperative with Stat homo/heterodimers [50] and can influence protein expression post-

transcriptionally [51]. Type I IFN signalling leads to the expression of several hundreds of 

ISGs [52]. These participate in host defence against virus, bacteria and intracellular 

protozoa. ISGs are implicated in cell cycle regulation and differentiation, regulation of 

transcription, translation, apoptosis and angiogenesis. Moreover, type I IFNs induce also 

expression of genes that inhibit the Jak-Stat signalling pathway and hence act as negative 

feedback regulators [43,53,54]. Although there are large overlaps, the biological effects 

mediated by type I IFNs depend on cell type and the IFN subtype [50].  

 

3. Tyk2 

3.1 Tyk2 in cytokine signalling  

Tyk2 was originally identified as essential in type I IFNs signalling [55]. Subsequent genetic 

and biochemical studies indicated involvement of Tyk2 in the response to IL-10, IL-12, IL-23, 

and several members of IL-6 receptor family [43]. Tyk2-deficient mice were generated by 

three independent groups [56-58] and are viable and fertile. Additionally, the B10.Q/J mouse 

strain exhibits Tyk2 deficiency because of a mutation in the Tyk2 gene [59]. 

The most unexpected finding by studies with Tyk2-deficient mice was the modest effect of 

Tyk2 deficiency on type I IFN responses. Cells derived from Tyk2-deficient mice show 

defects in IFN-α signalling although, in contrast to human Tyk2-deficient cell lines, the 

response was not completely abrogated [56,58]. The response to IFN-γ was also affected in 
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Tyk2-deficient cells, which is most likely not a direct effect but due to the reduced Stat1 

protein level reported in these cells [58]. 

Stimulation of Tyk2-deficient cells with IL-12 results in impaired Stat3 and Stat4 activation 

and consequently, in reduced production of IFN-γ by NK and T cells [56,58-60]. Recently, it 

has been reported that murine Tyk2 is also critical for IL-23 signalling [59,61] and 

subsequent IL-17 production in peritoneal γδT cells [61].  

Murine Tyk2 is not essential for the responses to several IL-6 family members and IL-10 

[56,58]. However, a recent study showed partial impairment of IL-10 signalling in Tyk2-

deficient peritoneal macrophages [62].  

 

3.2 Tyk2 in host defence and diseases 

According to the importance of Tyk2 in multiple signalling pathways, Tyk2 has critical 

functions in the host defence against various viral, bacterial and parasitic pathogens. Tyk2-

deficient mice exhibit inefficient cytotoxic T cell (CTL) responses against lymphocytic 

choriomeningitis virus (LCMV) and elevated replication of vaccinia virus (VV) in spleen [58]. 

Infection of Tyk2-deficient mice with murine cytomegalovirus (MCMV) leads to increased 

load of virus in organs and reduced survival [63]. In contrast, Tyk2 is not essential for the 

survival upon vesicular stomatitis virus (VSV) infection [58]. Mice lacking Tyk2 show 

increased susceptibility to infection with the intracellular bacteria Listeria monocytogenes 

[64] and the protozoan parasite Toxoplasma gondii [59,65]. Tyk2 is not essential for the 

ultimate control of an infection with Leishmania major, another protozoan parasite, but Tyk2-

deficient mice develop more severe and prolonged skin lesions [66].   

In addition to the important role of Tyk2 in the defence against infectious diseases, 

involvement of Tyk2 in several other disease models has been shown. Among those, 

resistance of Tyk2-deficient mice against high-dose LPS-induced shock was the first one 

described [67,68]. High resistance of Tyk2-/- mice was subsequently also shown in 

ischemia/reperfusion-induced shock [69] and collagen-induced arthritis [59]. Tyk2-deficient 

mice are more sensitive to leukaemias/lymphomas [70,71]. However, the invasiveness of 

cancer cells is reduced in Eµ-Myc mice, a model system for human Burkitt’s lymphoma [72]. 

Mice lacking Tyk2 exhibit a tendency to develop allergic TH2 responses and show enhanced 

TH2 cell-mediated antibody production [60].  

 

3.3 Tyk2 deficiency in humans 

To date, only one human patient with Tyk2 deficiency has been reported [73]. The patient 

with a diagnosed primary immunodeficiency shows homozygous mutations in the Tyk2 gene 
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resulting in a premature stop codon. This patient exhibits a severe allergic phenotype and 

highly elevated IgE levels. In contrast to Tyk2-deficient mice, cells from this patient showed 

dramatically impaired responses to type I IFNs, IL-6 and IL-10, indicating that human Tyk2 

has an obligatory role in responses to these cytokines. Furthermore, this patient shows high 

susceptibility to viral, mycobacterial and fungal infections. Levels of IFNAR1 receptor were 

reduced in the patient’s T cells, which is consistent with previous observations in human cell 

lines, that Tyk2 is important for maintaining cell surface levels of IFNAR1 [74-76]. A recent 

study indicates that the association of Tyk2 with IFNAR1 masks a tyrosine-based linear 

endocytic motif in IFNAR1 and therefore prevents its internalisation [77]. However, this 

function of Tyk2 is absent in mice [56-58], presumably because murine IFNAR1 lacks this 

endocytic motif [77]. 
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III. Proteomics 

1. Proteomics overview  

The set of all expressed proteins in a cell, tissue or an organism is called “proteome” and the 

study of the proteome became known as proteomics. The diversity of expressed proteins 

results from the regulation of their transcription and translation. In addition, several isoforms 

may exist due to alternative splicing and post-translational modifications, e.g. 

phosphorylation, glycosylation and ubiquitination. Moreover, protein expression changes 

dynamically in response to developmental and environmental stimuli. Basically, there are 

two classical proteomics approaches, namely gel-based and mass spectrometry (MS)-

based; an overview of the experimental workflows is given in Fig. 3 (the approach used in 

this work is indicated in blue). A typical gel-based proteomics study includes separation of 

proteins by two-dimensional gel electrophoresis (2DE) and their visualisation, followed by 

evaluation of the obtained gel images and statistical analyses. The spots of interest are then 

excised from the gel and subjected to MS for identification. The methods used in this 

approach are described in more detail in the following sections. 

The MS-based proteomics approach involves separation of peptides resulting from 

proteolytic digestion of proteins using liquid chromatography-tandem mass spectrometry 

(LC-MS-MS). In this case, the peptide mixtures are usually pre-fractionated by different 

electrophoretic and/or chromatographic separation techniques. In addition, the peptide 

mixtures may be obtained from proteins previously separated by one-dimensional 

electrophoresis (immobilised pH gradients (IPG) or sodium dodecyl sulphate polyacrylamide 

gel electrophoresis (SDS-PAGE)). Quantification is facilitated by stable isotope labelling of 

proteins or chemical modification of peptides with isobaric tags [78-81].   
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Figure 3. Classical proteomics approaches 

2D-DIGE: two-dimensional fluorescence difference gel electrophoresis; ICAT - isotope-coded affinity 

tags; iTRAQ - isobaric tags for relative and absolute quantification SILAC - stable isotope labelling 

with amino acids in cell culture 

 

2. Two-dimensional gel electrophoresis (2DE) 

2DE is a powerful technique in proteomic studies enabling simultaneous separation and 

analysis of about thousands of proteins [82,83]. 2DE provides information about 

physicochemical properties and subunit structure of the separated proteins, allows detection 

of changes in protein expression levels, protein isoforms, post-translational modifications 

and of incomplete proteolysis. Protein separation by 2DE uses two independent parameters. 

In the first dimension proteins are separated in a pH gradient according to their isoelectric 

points (pIs) by isoelectric focusing (IEF), and the second dimension uses the principle of 

SDS-PAGE to separate the proteins according to their molecular mass (Mr). 2DE was first 
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described in 1975 [84,85], and many improvements have been made since this time, the 

most important being the introduction of IPG. Other modifications in the technology improved 

features like experimental variation, detection of low abundant proteins and resolution of 

highly hydrophobic proteins which had been regarded as weak points of 2DE [82,83].  

 

2.1 2DE - sample preparation/separation  

As in many other analytical methods sample preparation is a critical point in 2DE analyses 

and reproducibility is a prerequisite for a good proteomics study. Therefore, sample 

collection has to be done under well-defined conditions and its preparation should be as 

simple as possible. There is no single protocol for protein extraction suitable for all 

sample/protein types. However, many standard protocols have been published that can be 

adapted and optimised for an individual sample type or for a subset of proteins of interest 

[82,83].  

The separation of proteins by 2DE is only possible if they are completely soluble under 

electrophoretic conditions. Protein solubilisation is usually performed in a buffer containing 

high concentrations of chaotropes, e.g. urea combined with thiourea, and other additives. 

Chaotropes unfold proteins and prevent protein-protein interactions. Zwitterionic or non-ionic 

detergents, e.g. CHAPS, Triton X-100 or NP-40 increase the solubility of hydrophobic 

proteins. To reduce and prevent re-oxidation of disulfide bonds, reducing agents like DTT or 

DTE are used. Additionally, the solubility of proteins is improved by carrier ampholytes or 

IPG buffers of the appropriate pH range. Degradation of proteins by proteolysis complicates 

the subsequent analysis [82,83,86] and addition of protease inhibitors during protein 

extraction is recommended [83,86]. Of importance is also a low content of interfering 

substances such as salt, charged molecules, nucleic acids, ionic molecules and insoluble 

material. Higher amounts may disturb the protein patterns by interfering either with the first 

or the second dimension of 2DE and should be removed (e.g. by precipitation, desalting). 

Similarly, application of standardised protein amounts assures quality of protein separation, 

especially in quantitative studies [82,83]. The first dimension of 2DE is performed in 

individual IPG gel strips, in different pH ranges from 2.5 to 12, length up to 24 cm, with a 

linear or non-linear pH gradient. The sample can be applied either by in-gel rehydration or by 

cup loading after the rehydration step. IEF conditions have to be optimised for each sample 

type empirically, according to existing guidelines. Insufficient focusing leads to horizontal 

streaks in the second dimension, overfocusing results in protein losses and distorted spot 

patterns. To improve the protein transfer into the second dimension the strips are 

equilibrated in urea/glycerol containing buffer, which reduces the electroendosmotic effects. 

The second dimension is usually performed with the discontinuous buffer system of Laemmli 
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in homogenous or gradient gels and a polyacrylamide concentration optimised for the 

specific Mr range [82,83].  

It is usually not possible to display and analyse all proteins from one sample in a single gel. 

Due to the wide range in protein abundance levels (e.g. 6-8 orders of magnitude in human 

cells) low abundant proteins are usually not detected. Therefore, application of additional 

techniques to deplete highly abundant or enrich low copy number proteins is suggested to 

obtain better resolution and sensitivity. However, this may reduce the reproducibility 

[82,83,87,88].  

Subcellular fractionation is very frequently used to enrich proteins from organelles and/or to 

obtain information about cellular localisation of proteins. Stretching of the protein patterns in 

the first dimension using narrow pH gradients (zoom-gels), particularly in combination with 

electrophoretic pre-fractionation of proteins according to their pIs, may greatly improve the 

detection of low abundant proteins. Chromatographic pre-fractionation enables selective 

retention of proteins with specific chemical or antigenic properties, and can be used for 

enrichment or depletion of specific protein classes [82,83,88]. Resolution of very basic 

proteins may be improved by enrichment with TCA/acetone precipitation and optimised 

conditions during the first dimension [82]. The poor solubility of very hydrophobic proteins 

can be increased by use of new detergents such as sulfabetaines [83]; sequential protein 

extraction with buffers of increasing solubilising power has also been propagated [82,83].  

 

2.2 Spot detection/visualisation  

After 2DE separation, several techniques are used for protein detection; the most common 

are briefly characterised below. 

Two different varieties of Coomassie brilliant blue (CBB), R-250 and G-250, can be used in 

solutions with solvents or as colloidal CBB (cCBB) dyes. They interact with proteins through 

electrostatic and hydrophobic interactions. The main advantage of CBB stains is the 

compatibility with MS. The limitations are the low sensitivity, which lies in the range of 

approximately 30-100 ng for CBB and 8-10 ng for cCBB, and a low linear range of about 1-

1.3 orders of magnitude [82,89,90].  

By silver staining, Ag+ ions bind to proteins and are starting points for silver crystallisation in 

the subsequent reduction process. Silver staining has no endpoint, the spot intensity 

depends on the duration of the development process. This reduces the reproducibility and 

makes it less suitable for quantitative analysis. Silver stain has a high sensitivity and, 

depending on the protocol used, can detect as little as 0.1-2 ng protein [82] and the dynamic 

range is approximately one order of magnitude. Classical silver stain is not compatible with 
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MS, however the omission of aldehydes in the fixative and impregnating buffers allows MS 

analysis, but makes it less sensitive [82,89,90].  

Radiolabelling is commonly accomplished by the incorporation of radioactive amino acids 

such as 35S methionine/cysteine or 14C leucine into proteins during cell growth. This makes it 

possible to analyse newly synthesised proteins. Labelling after cell lysis with 131I or 125I is 

also possible but less accurate. The separated proteins can then be detected by X-ray films 

(dynamic range 103) or by more sensitive storage-phosphor screens (dynamic range 105) 

[82,90].  

Non-covalent fluorescent stains can detect proteins with a wide dynamic range, which is 

over three orders of magnitude, and their sensitivity is in the range of 1-10 ng. The dyes 

interact with proteins either directly by electrostatic interactions with basic amino acid 

residues e.g. SYPRO Ruby or indirectly through intercalation into SDS micelles, e.g. SYPRO 

Red. Fluorescent stains allow more reproducible quantitative analysis and are compatible 

with MS, but need special equipment for detection/visualisation [82,89,90].  
 
2.2.1 Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) 
For 2D-DIGE, proteins are labelled before electrophoretic separation through covalent 

binding of the dyes to specific amino acid residues in the molecules. 2D-DIGE is based on 

the specific properties of the fluorescent dyes, which are matched for charge and molecular 

weight but are spectrally distinct [91-93]. Currently there are two matched sets of CyDye 

DIGE fluors, CyDye fluor minimal and CyDye fluor saturation dyes [91,92].  

CyDye fluor minimal dyes are available as Cy2, Cy3, and Cy5. These dyes have an N-

hydroxysuccinimide (NHS) ester reactive group, which forms a covalent bond with an ε 

amino group of lysine in proteins via an amide linkage. The ratio of dye to protein is kept 

very low, as lysine is a very frequent amino acid. The dyes label approximately 1-2% of 

lysine residues so that, on average, each protein carries only one dye per molecule. 

Sensitivity of these CyDyes is 0.1-0.2 ng and the linear dynamic range up to five orders of 

magnitude (105) [89,91,92].  

CyDye DIGE fluor saturation dyes Cy3 and Cy5 have a maleimide reactive group which 

forms a covalent bond with the thiol group of cysteine residues on a protein via thioether 

linkage. Usually, proteins have a low cysteine content and by maintaining a high dye to 

protein ratio the dyes label all available cysteine groups on each protein. Saturation labelling 

allows analyses in minute sample amounts, as little as 5 µg protein can be used for labelling 

reaction (“scarce sample labelling”, e.g. from laser microdissection microscopy). Detection 

limit of these dyes is 5-10 pg and the dynamic range is 105. However, depending on the 

cysteine distribution in the analysed samples, this technique needs optimisation and may 

result in patterns different to other stains [89,91,92].  
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The experimental workflow of 2D-DIGE using CyDye fluor minimal dyes is illustrated in Fig. 

4. The labelled protein samples are mixed and separated simultaneously on the same gel. 

The corresponding protein spot patterns are scanned individually with the excitation 

wavelengths specific for the respective dyes. This multiplexing enables to separate two to 

three different protein samples on one 2D gel, one sample can serve as a reference sample 

known as internal standard (usually labelled with Cy2 in minimal labelling experiments) [91-

94]. The internal standard is a pool of equal amounts of proteins from each sample in an 

experiment, and is the same on each gel within the experiment. It contains, theoretically, 

each protein from all samples and is used for matching of protein patterns across gels and 

for normalisation. Volumes of protein spots are normalised against the internal standard and 

are given as volume ratios (sample spot volume divided by the corresponding internal 

standard spot volume) [91,92,94].  

The 2D-DIGE approach reduces the gel to gel variation and the number of gels required in 

one experiment. The incorporation of the internal standard greatly improves the accuracy of 

protein spot quantification. This combined with the high sensitivity and linearity of the dyes 

allows highly reproducible, quantitative proteome studies. The reduced experimental 

variation considerably improves detection of small differences in the protein expression 

levels [91,92,94].  

However, this technique has also some limitations. Preferential labelling of some proteins by 

the dyes has been observed and may lead to misinterpretation of the results. This may be 

overcome through reverse labelling of the samples [89]. The slight increase in Mr of the 

labelled proteins (approximately 500 Da), noticeable especially for low Mr proteins, could be 

problematic in spot excision for MS analysis. Therefore additional post-staining is 

recommended and, moreover, necessary if spots are picked manually. This may lead to 

difficulties, because some protein spots may not be detected due to the different properties 

and sensitivity of the applied stains [89,92].  
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Figure 4. Principle of 2D-DIGE technology 

 

2.3 Quantification 

The separated proteins are visualised with one of the methods described and the obtained 

spot pattern images are converted into digital images. Ideally, the resulting 2DE protein 

image is free of streaks and background staining, the spots are well-distributed throughout 

the gel, do not overlap and have well-defined borders. Subsequent analysis is usually 

performed with the help of special 2DE software. The analysis involves background 

correction, spot detection, filtering and editing, gel matching and normalisation. The 

quantification is based on relative changes in protein amount between two or more samples 

[82,83]. The protein expression data obtained are complex, have many variables, and 

therefore need appropriate statistical methods of analysis [95,96].  

 

2.4 Identification and verification  

Protein spots of interest are excised from 2D gels, cleaved into peptides with a protease of 

known cleavage specificity (usually trypsin), extracted and subjected to MS. The peptides 

are separated according to their masses (mass to charge ratio). Most commonly used 

ionisation techniques by MS analyses are electrospray ionisation (ESI) and matrix-assisted 

laser desorption/ionisation (MALDI). They usually are combined with tandem mass 

spectrometry, which provides information about the primary sequence of a selected 

precursor ion and therefore increases the confidence for the protein identification. 

Appropriate software enables protein identification on the basis of the obtained peptide 

masses by searching the existing protein databases [79,87]. The expression profiles of the 

identified proteins are usually further analysed by other techniques e.g. 1D and/or 2D 

western blot.  
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3. Analyses of macrophage proteomes using 2DE  

The proteomes of macrophages and their precursors, monocytes, have been studied in 

human and murine cell lines as well as in primary cells of different sources. Several studies 

were performed with the focus on the generation of protein reference maps, i.e. identification 

of a number of proteins expressed under basal conditions (e.g. expression profiling of 

intracellular and secreted proteins in human macrophages [97], protein spot map of human 

monocytes including determination of their phosphorylation states [98], protein spot map of 

the phagosome [99]). Some spot maps are available in the gel-based proteomics databases 

(World-2DPAGE portal; http://www.expasy.ch/world-2dpage). Other studies aimed to 

analyse proteomic alterations in macrophages under different conditions. A large number of 

comparative proteomics analyses in macrophages involving various immunological stimuli 

(e.g. infection with bacteria, viruses, fungi or protozoa, challenge with bacterial toxins or IFN-

γ activation) were performed in order to better understand the host immune responses to 

pathogens.  

The macrophage responses to LPS using primary murine macrophages have been 

investigated in a few older proteomics studies, but at that time the 2DE protein patterns were 

characterised solely by physicochemical properties of the spots (pI, Mr) [100-102]. More 

recent studies that include MS identification of LPS responsive proteins employed cell lines 

rather than primary cells [103-105]. To date only one study in primary murine macrophages 

using 2D-DIGE technology (without internal standard) was published, however this study 

was applied to investigate responses to ionising radiation in macrophages from two different 

mouse strains [106]. 
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Tyk2 plays an important role in host defence against different pathogens. It has been shown 

that Tyk2-deficient mice are highly resistant to high-dose LPS-induced endotoxin shock and 

Tyk2-deficient macrophages show impaired responses to LPS. The importance of 

macrophages in the pathogenesis of endotoxic shock is well-documented in the literature. 

Based on these findings, this work was directed to investigate the role of Tyk2 in 

macrophages with the main focus on the identification of novel Tyk2-dependent host cell 

responses. For this purpose we chose 2D-DIGE as key technique. The first objective was to 

establish reproducible experimental conditions for the proteomics study of protein extracts 

from primary murine macrophages. With this optimised approach, protein expression 

patterns between wild-type (WT) and Tyk2-deficient cells before and after LPS treatment 

were compared in order to find proteins that show genotype specific differences in 

expression patterns. Dependent on the above results, protein expression, as determined by 

2D-DIGE technology, should be validated for a subset of differentially expressed proteins 

and analysed in more detail using other techniques (e.g. 1D and 2D western blot). Further 

aims were to subsequently investigate the regulatory mechanisms responsible for the 

positive or negative impact of Tyk2 on the expression of selected proteins (e.g. 

transcriptional and translational analysis).  
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I. Published results  

1. Contribution of cell culture additives to the two-dimensional protein patterns of 
mouse macrophages. 
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Short Communication

Contribution of cell culture additives to the
two-dimensional protein patterns of mouse
macrophages

Low levels of fetal calf serum (FCS), used as protein supplement in cell culture medium,
were traced in preparations of primary murine macrophages (bone-marrow-derived
macrophages (BMM) and peritoneal macrophages (PM)). Main components of this
common additive were mapped in 2-DE by means of differential image gel electro-
phoresis and immunoblotting. Additional washing steps in cell preparation helped to
decrease the levels of the four highest abundance foetal serum proteins (serum albu-
min (SA), a1-fetoprotein (AFP), a1-antitrypsin (a1AT) and transferrin (Tf)) to less than 1%
of total protein. Macrophage spot pattern was recorded in parallel and showed little
variation. Results presented are supposed to be of general interest for cell preparations
with similar background.

Keywords: Fetal calf serum / Immunoblotting / Macrophage / Mouse / Two-dimen-
sional electrophoresis DOI 10.1002/elps.200500744

Analysis of cellular proteomes (primary cells as well as
established cell lines) is an important field of proteomics
and 2-DE as reflected, e.g., by the considerable number of
2-DE maps and databases compiled in WORLD-2DPAGE
(http://www.expasy.org/ch2d/2d-index.html) and SWISS-
2DPAGE (http://www.expasy.org/ch2d/publi/inside1995.
html). Primary cells from organs and tissues are often kept
in cell culture for propagation, differentiation or ex vivo
experiments. Culture media are usually supplemented with
up to 20% fetal calf serum (FCS), horse serum or homolo-
gous serum. Although serum-free media formulations have
been developed for certain cell types and applications,
they often also contain protein supplements (e.g., serum
albumin (SA), transferrin (Tf). During our proteomics analy-
ses of primary murine macrophages the question arose
whether those protein supplements are detected in protein
patterns of cell lysates, to what extent and how and
whether these contaminations can be avoided.

Mice (strain C57BL/6) were housed under specific
pathogen-free conditions. Bone-marrow-derived macro-
phages (BMM) and peritoneal macrophages (PM) were
obtained as described [1, 2]. Both protocols include an
incubation step of the isolated cells for several hours/
days in cell culture medium with FCS as a supplement.
Cells were washed three times with ice-cold PBS and
lysed in 10 mM Tris-HCl (pH 8), 150 mM NaCl, 0.5% Non-
idet-P40 v/v, 10% glycerol v/v, 1 mM DTT, 0.1 mM EDTA,
1 mM sodium orthovanadate, 25 mM sodium fluoride,
1 mM PMSF, 1 mg/mL aprotinin and 1 mg/mL leupeptin.
Cell debris were removed by centrifugation at 10006g.
Protein content was determined by Coomassie G-250
protein binding assay [3] and was in the range of 4–6 mg/
mL. Samples were lyophilized and dissolved in labelling
buffer (30 mM Tris-HCl, 9 M urea, 4% CHAPS w/v, pH 8.5)
to a concentration of 5 mg protein/mL. Labelling with
CyDyes (GE Health Care, formerly Amersham Bio-
sciences; Uppsala, Sweden) was performed according to
the manufacturer, except for lower coupling rates (4 nmol
dye/mg protein). Two labelled samples (Cy3, Cy5) and a
sample pool (internal standard, Cy2) were mixed and run
on one gel. The internal standard contained all samples
present in one sample set.

Classical 2-DE was performed in accordance to existing
protocols (http://www.expasy.ch/ch2d). Twenty-five
micrograms per labelled-sample was applied to labora-
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tory-made nonlinear IPGs pH 4–10 [4] of 10 cm length by
in-gel rehydration for 7 h. Strips were run on a Multiphor
system (GE Health Care) until 15 kVh was reached. After
equilibration, strips were transferred to an SDS-PAGE gel
(T = 10–15% linear gradient, C = 2.7%) according to
Laemmli [5] for the second dimension in a Hoefer SE 600
vertical electrophoresis chamber (GE Health Care). For
fluorescence detection, 2-D differential gel electrophore-
sis (DIGE) gels were scanned on a Typhoon 9400 imager
and evaluated with DeCyder Software V5.02. Quantifica-
tion was based on standard ratios, i.e., ratio between the
spot volume of a particular single spot and the respective
spot of the internal standard.

Figure 1A shows the 2-DE pattern of a typical macro-
phage sample, prepared as described above. Comparing
different preparations, a faint, but distinct spot chain of
about 67 kDa was noticed which varied between speci-
mens. The concentration differed in samples, but was in-
dependent of investigated cell type (BMM, PM). Closer
inspection and comparison with the FCS pattern (Fig. 1B)
revealed that this was SA. In an overlay of Cy3-labelled
FCS (shown in green) with a macrophage lysate pattern
(Cy2-labelled, coded in red), overlapping spots appear
yellow. There is complete overlap not only for SA but also
for other major FCS proteins.

As a further proof for the presence of FCS traces, immu-
noblotting experiments were performed using unlabelled
samples, either 50 mg of macrophage lysates or 0.05 mL of
FCS. The 2-DE run was followed by semidry blotting onto

NC (Hybond ECL, GE Health Care) according to [6]. The
membrane was stained for total protein pattern with
ruthenium(II)tris(bathophenanthroline disulfonate), using
the same method as described for SYPRO Ruby (product
information from Sigma; St. Louis, MO). The fluorophore
was synthesized according to [7]. After scanning on the
Typhoon 9400 (excitation 488 nm, emission filter 610 nm),
the blots were probed with the following antibodies: anti-
FCS (DakoCytomation, Glostrup, Denmark), antibovine
AFP (DakoCytomation), anti-BSA (Cappel Laboratories,
Cochranville, PA) and a cross-reactive human anti-a1-anti-
trypsin (anti-a1AT) (DakoCytomation). The cross-reactivity
of the latter had already been tested in a previous study [8].
Anti-rabbit IgG HRPO conjugate and ECL Western blot-
ting detection reagents (both, GE Health Care) were used
for detection of immunoreactive spots. With those anti-
bodies, the most abundant proteins in FCS were identified
(Fig. 1C) and detected in the macrophage lysates.

On the basis of these findings, experiments were under-
taken to improve harvesting and washing of macro-
phages. Different numbers of washing steps with PBS
were performed and will be called A1, A3 and A6 in
accordance with the number of washing steps included.
Volumes for washing were increased and special care
was taken to quantitatively remove the washing solution.
Protein patterns of cell lysates obtained by these proce-
dures are shown in Fig. 2. In A1 samples, FCS proteins
were clearly visible (Fig. 2A); upon further washing, levels
dropped markedly. This can also be seen when evaluating
the concentration of these spot groups: Fig. 3 depicts

Figure 1. 2-DE using a PM preparation according to [2]. 2-DE as described (10–15% T, 2.7% C). (A) 25 mg PM, silver stain
[6]. (B) DIGE-gel. Sample 1: 25 mg PM, labelled with Cy2 (4 nmol dye/mg protein); colour coding: red. Sample 2: corre-
sponding to 0.1 mL undiluted FCS, labelled with Cy3 (4 nmol dye/mg protein); colour coding: green; yellow: overlap of
samples 1 and 2. Color coding has been selected to give colors with best contrast. (C) Identification of main FCS compo-
nents. (B) was split into single channels, and the image of sample 2 was inverted and turned into grey levels; only the part
with the major FCS components is shown. AFP, a1AT and SA were identified by immunoblotting, Tf by mass spectrometric
methods [8].
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Figure 2. Varying the washing procedure for primary macrophages, primary PM were washed: (a) once (A1), (b) three times
(A3) and (c) six times (A6) with cold PBS as described in the text. Twenty-five micrograms was labelled with CyDyes and
subjected to 2-DE. Positions of AFP, a1AT, SA and Tf are circled (identifications in Fig. 1C). Single channels were separated
and are shown in grey levels. In Fig. 2C, six protein spots are marked with boxes; for their evaluation see Fig. 4B.

Figure 3. Detection of FCS components. Concentrations
of the four main FCS components were monitored in dif-
ferently washed cells (A1, A3 and A6) and expressed as
standard ratios (std ratio).

standard ratios for one spot out of the respective spot
trains of BSA, Tf, a1AT and AFP (for each chain, the most
intense spot is shown, but trends of the other spots of
the same chain are similar). Standard ratios drop from
3.5–8 to less than 0.5, with only two additional washing
steps (A1 vs. A3), and improve slightly further in A6. One
additional preparation was produced by washing cells
via centrifugation (three times) instead of in the culture
dish. A first try yielded lower protein concentration and
recovery, suggesting possible harm of the cells with this
treatment. As our specific aim is to preserve macro-

phage functions during isolation in order to perform
studies on specific pathways, we did not further follow
this line.

For evaluation of sample preparation procedures, quanti-
tation of residual FCS components was performed with
DeCyder. Figure 4A compares BMM preparations
obtained with protocols according to [1] and A6, focusing
on the main FCS proteins BSA, a1AT, AFP and Tf. The
graph is based on relative percentages of those proteins
in the sample (based on spot volumes, as described in the
Figure caption). Average values are shown, and SDs are
indicated as error bars. As data illustrate, more extensive
washing considerably lowers FCS levels, but there are still
traces of these essential medium components. When
comparing DIGE patterns of once and three times
washed cell lysates, 4–5% of overall spots were
decreased to half or less of their volumes. Most of them
belong to the main BSA, a1AT, AFP and Tf spot chains, but
there are also traces of some other spots known from the
FCS pattern, e.g., apolipoprotein A-I. The four main pro-
teins we have focused on are by far the most intense. By
adding up their spot volumes we estimated that those
four proteins comprise less than 1% of total protein of the
A6 and 1–2% for A3 lysates. Values were similar for BMM
and PM preparations.

In contrast to the differences in FCS content displayed in
Fig. 4A, in the same samples the overall distribution of
macrophage protein spots is rather stable. Figure 4B
shows this for six spots of different intensity, selected
from different regions of the gel. Values were calculated in
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Figure 4. Comparison of BMM preparations with differ-
ent protocols. (A) Evaluation of residual FCS components;
samples: BMM, according to [1] (white bars; n = 4) vs. A6
(grey bars, n = 8). (B) Evaluation of some selected mac-
rophage spots; spot positions are indicated in Fig. 2C;
samples: BMM, according to [1] (white bars) vs. A6 (grey
bars). Average values are given; error bars show SD.
Samples were run within one set, with the same internal
standard (a pool of all samples).

the same way as for Fig. 4A and give similar levels or var-
iations for corresponding spots of the two preparations.
Careful, but extensive washing does not seem to have a
major effect on those spots and the majority of the other
macrophage proteins detected by the present method.

In our opinion, residual FCS may be a general problem for
samples derived from cell culture. This concerns all
methods using detection based on total protein staining,
and therefore also most proteomics applications. In 1-D
methods like SDS-PAGE, contaminations may not be
noticed, but – if variable – they contribute to the variation
of the system. Due to its high resolution, 2-DE is likely to
detect those traces as single spots or spot rows, provided

that they do not overlap with other proteins in the sample.
Residual medium supplements may be regarded as dif-
ferentially regulated spots and potential new biomarkers,
till they are positively identified by MS methods. The aim
of our study was to prevent such pitfalls by detecting/
locating spot positions of the main FCS components and
to evaluate the actual contamination levels in cell lysates.
Our experiments showed that even with extensive wash-
ing not all traces of FCS could be removed. We avoided
more stringent washing or centrifugation steps on pur-
pose, in order not to stress the cells and risk changes in
protein expression patterns. Nevertheless, those could
be appropriate alternatives for more robust cells or cell
lines, but all steps would require proper evaluation. Even
with the mild conditions chosen, we could show that
careful washing reduces FCS contamination from about
3–5% to 1% or less of total protein content, for both
macrophage populations described. At the same time,
overall protein pattern and distribution stayed constant
within the normal range of variaton. In addition, we learnt
about the exact positions of the main spots in 2-DE. If
necessary, they can now be excluded from evaluation (so
far no overlap with macrophage proteins has been
noticed).

We thank Wolfgang Winkler, Surgical Research Labora-
tories, Medical University of Vienna, for sharing his syn-
thesized ruthenium(II)tris(bathophenanthroline disulfon-
ate) with us. Ingrid Miller gratefully acknowledges funding
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Tyrosine kinase 2 (Tyk2) belongs to the Janus kinase (Jak) family and is involved in signalling via a
number of cytokines. Tyk2-deficient mice are highly resistant to lipopolysaccharide (LPS)-induced
endotoxin shock. Macrophages are key players in the pathogenesis of endotoxin shock and, accord-
ingly, defects in the LPS responses of Tyk22/2 macrophages have been reported. In the present study,
the molecular role of Tyk2 is investigated in more detail using a proteomics approach. 2-D DIGE was
applied to compare protein patterns from wild-type and Tyk22/2 macrophages and revealed signifi-
cant differences in protein expression patterns between the genotypes before and after LPS treat-
ment. Twenty-one proteins deriving from 25 differentially expressed spots were identified by
MALDI/ESI MS. Among them, we show for N-myc interactor that its mRNA transcription/stability
is positively influenced by Tyk2. In contrast, LPS-induced expression of plasminogen activator 2
protein but not mRNA is strongly enhanced in the absence of Tyk2. Our data furthermore suggest an
influence of Tyk2 on the subcellular distribution of elongation factor 2 and on LPS-mediated changes
in the peroxiredoxin 1 spot pattern. Thus, our results imply regulatory roles of Tyk2 at multiple levels
and establish novel connections between Tyk2 and several cellular proteins.
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1 Introduction

Tyrosine kinase 2 (Tyk2) belongs to the Janus kinase (Jak)
family of nonreceptor tyrosine kinases. Jaks associate with
the intracellular domains of cytokine receptors and are acti-
vated upon ligand binding by auto- and/or transphos-
phorylation. Activated Jaks phosphorylate signal transdu-
cers and activators of transcription (STATs), which then
translocate to the nucleus as activated homo- or hetero-
dimers where they affect the expression of responsive genes
[1, 2]. Type I interferons (IFNs) were the first cytokines
described to utilise Tyk2 for signal transduction and subse-
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quently activation of Tyk2 has been shown for a number of
other cytokines and some growth factors [3–5]. Cells derived
from mice lacking Tyk2 revealed a partial requirement for
Tyk2 for IFNa/b and interleukin 12 (IL-12) signalling [6, 7].
In vivo, Tyk2 plays an important role in the host defence
against microbial pathogens. Tyk2 deficient mice show
increased susceptibility to murine cytomegalovirus [8],
Leishmania major [9] and Listeria monocytogenes [10]. In con-
trast, a negative role of Tyk2 was shown for disease progres-
sion in lipopolysaccharide (LPS) and ischemia/reperfusion-
induced shock models [11–13]. LPS is the major structural
component of the outer membrane of Gram-negative bac-
teria and a potent activator of immune cells. Macrophages
and monocytes are of primary importance for the recogni-
tion of and the response to LPS. Activated macrophages pro-
duce a variety of cytokines, ROS and other inflammatory
mediators that contribute to the effective eradication of
invading pathogens. Excessive or deregulated production of
these cytokines and mediators, however, can be harmful for
the host and lead to the endotoxic shock syndrome [14, 15].
The high resistance of Tyk22/2 mice to LPS prompted us to
further investigate the molecular role of Tyk2 for macro-
phage functions. LPS signalling in macrophages is induced
through the Toll-like receptor 4 (TLR4) complex. Basically,
LPS treatment leads to the activation of two independent
signalling cascades via distinct adaptor proteins bound to the
cytoplasmic moiety of the receptor chains: one resulting
mainly in the activation of nuclear factor-kB (NF-kB) and in
the production of pro-inflammatory cytokines and media-
tors. The second cascade induces gene expression, most
prominently IFNb, via activation of members of the inter-
feron regulatory factor (IRF) family. Subsequently, IFNb
activates Tyk2 and Jak1 in an autocrine or paracrine manner
and triggers the expression of IFN responsive genes. The
successive and concerted action of signalling cascades and
their cross-influence determines the complex cellular
responses initiated by LPS recognition [16–18].

Proteomics studies on human and murine macrophages
have been performed since early days of 2-DE, using cell
lines and primary cells of different sources. MS later on
allowed the identification of differentially expressed spots
when comparing 2-DE patterns under different conditions,
and to attribute protein regulations to various stimuli. In a
few studies primary murine macrophages (peritoneal or
bone marrow-derived) were analysed, e.g. under ionising
radiation [19], infection with bacteria or protozoa [20], IFNg
activation [21] or LPS stimulation [22, 23].

In our study, we focused on the influence of Tyk2 on the
macrophage proteome both in the untreated and the LPS
treated state. Using 2-D DIGE technology we show complex
consequences of the lack of a single protein on the overall
protein expression pattern. We identified by MALDI and ESI
MS 21 different proteins from 25 spots, which are either up-
or downregulated in the absence of Tyk2. Proteins from var-
ious functional categories were identified, thereby suggest-
ing an influence of Tyk2 on various cellular processes. More

detailed analyses on selected proteins showed that this is
exerted at mRNA and/or protein level further underscoring
the importance of proteomics studies.

2 Materials and methods

2.1 Animals and cells

Tyk2 knockout mice have been described previously [6] and
were on C57BL/6 background. Animals were housed under
specific pathogen-free conditions and were sex- and age-
matched (8–12 wk) for each experiment. Bone marrow-
derived macrophages were isolated and grown in the pres-
ence of macrophage colony-stimulating factor 1 (CSF-1)
derived from L929 cells as described previously [24]. After
cultivation for 6 days cells were treated with 100 ng/mL LPS
(Escherichia coli serotype 055:B5, Sigma, St. Louis, MO, USA).

2.2 Sample preparation

2.2.1 Whole cell lysates

Cells (56106) were lysed in 100 mL lysis buffer (50 mM Tris-
HCl pH 8.0; 10% glycerol v/v; 0.5% NP-40 v/v; 0.1 mM
EDTA; 150 mM NaCl; 2 mM DTT; phosphatase inhibitors:
2 mM sodium orthovanadate; 25 mM sodium fluoride and
protease inhibitors: 2 mM PMSF; 2 mg/mL aprotinin; 2 mg/
mL leupeptin; 2 mg/mL pepstatin). Cell debris was removed
by centrifugation at 14 0006g. For 2-D DIGE samples were
lyophilised and dissolved in DIGE lysis buffer (7 M urea; 2 M
thiourea; 4% CHAPS w/v; 30 mM Tris-HCl pH 8.5).

2.2.2 Nuclear extracts

Nuclear extracts were produced as previously described [25]
with a few modifications. Cells (1.56107) were collected in
1 mL PBS and pelleted by centrifugation at 15006g for
5 min. The pellets were resuspended in 1.5 mL cold buffer
A (10 mM HEPES pH 7.9; 10 mM KCl; 0.1 mM EDTA;
0.1 mM EGTA; 2 mM DTT and phosphatase/protease in-
hibitors as described above). They were allowed to swell on
ice for 15 min, NP-40 was added to a final concentration of
0.6% v/v. The mixtures were vortexed vigorously for 10 s
followed by spinning at 13 0006g for 1 min at 47C. The
nuclear pellets were washed with cold PBS and then incu-
bated with benzonase (1000 units; Sigma, purity .90%) in
15 mL H2O per sample for 15 min at room temperature.
Pellets were resuspended in 1 mL cold buffer B (20 mM
HEPES pH 7.9; 400 mM NaCl; 1 mM EDTA; 1 mM EGTA;
2 mM DTT and protease inhibitors) and incubated for
45 min at 47C with vigorous shaking. Insoluble material
was removed by centrifugation at 13 0006g for 5 min at
47C, and the supernatants were kept for further analysis
(‘nuclear extracts’).
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2.2.3 TCA precipitation

Nuclear extracts (whole sample from 1.56107 cells) were
mixed with 0.25 volumes of ice-cold 6.1 M TCA solution.
DTT was added to a final concentration of 20 mM. The
extracts were incubated for 2 h on ice to allow complete pre-
cipitation. The samples were centrifuged at 10 0006g for
10 min at 47C. The supernatant was discarded and the pellet
was washed three times with 1 mL ice-cold acetone contain-
ing 20 mM DTT. The pellet was air-dried and dissolved in
DIGE lysis buffer (7 M urea; 2 M thiourea; 4% CHAPS w/v;
30 mM Tris) by shaking overnight at 47C. The pH of the
samples was adjusted to pH 8.5 with 100 mM Tris. Prior to
separation on 2-DE, nuclear extracts were tested for repro-
ducibility and quality with western blot analyses, using tran-
scription factor Sp1 (SP1) as a nuclear and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) as a cytosolic marker
protein. Protein concentration in both, whole cell and
nuclear extracts was determined by the Coomassie G-250
protein binding assay [26].

2.3 DIGE labelling

Twenty-five micrograms of protein per sample were labelled
with CyDye Fluor minimal dyes (GE Healthcare Life Sci-
ences, Munich, Germany) according to the manufacturer’s
instructions, except for a lower coupling rate. For whole cell
lysates 4 nmol dye/mg protein were used (as described pre-
viously [27]), for nuclear extracts 2 nmol dye/mg protein
were found optimal to avoid artefacts due to multiple label-
ling of lysine residues. Three biological replicates were used
per experiment. Untreated samples from wild-type and
Tyk22/2 macrophages were labelled with Cy3, corresponding
treated samples with Cy5. The internal standard, prepared by
pooling 25 mg of protein from each sample included in an
experimental set, was labelled with Cy2. Two samples (Cy3,
Cy5) and the internal standard (Cy2) were separated on each
gel.

2.4 2-DE separation

The first dimension was carried out on an IPGphor III sys-
tem using 24 cm IPG Dry strips with linear pH gradients (all
GE Healthcare). The IPG strips pH 4–7 were loaded with the
samples through passive in-gel rehydration for 10 h at room
temperature. The three labelled samples were mixed and the
volume was adjusted to 450 mL with rehydration buffer (7 M
urea; 2 M thiourea; 4% CHAPS w/v; 70 mM DTT; 1% IPG
buffer 4–7 v/v). For IPG strips pH 6–9 samples were applied
by anodic cup loading. The strips were rehydrated overnight
in 450 mL rehydration buffer (7 M urea; 2 M thiourea; 4%
CHAPS w/v; 150 mM DTT; 2% IPG buffer 6–11 v/v). The
mixed samples were adjusted to 50 mL in rehydration buffer
and loaded onto the strips via loading cups. The proteins
were focused for 30 kV?h in a step gradient with a maximum
of 3500 V. The focused IPG strips were reduced 10 min

(1.25% DTT w/v) and alkylated 10 min (2.5% w/v iodoacet-
amide) in equilibration buffer (6 M urea; 30% glycerol v/v;
75 mM Tris-HCl pH 8.8; 2% SDS w/v). The equilibrated
strips were placed onto 10%T or 11.5%T polyacrylamide gels
and sealed with 0.5% agarose in SDS running buffer. SDS-
PAGE was performed according to Laemmli [28]. Gels were
run overnight at 13 mA per gel in an Ettan Dalt Six electro-
phoresis chamber (GE Healthcare).

2.5 2-DE evaluation

All gels were scanned at 100 mm resolution on a Typhoon
9400 imager and analysed with DeCyder software V5.02 (all
GE Healthcare). Evaluation was based on volume ratios
(sample spot volume divided by the corresponding internal
standard spot volume). Protein spots differentially expressed
between groups were extracted, using volume ratios and
Student’s t-test as selection criteria. Based on reverse label-
ling experiments spots showing dye labelling bias were
excluded from the candidate list. For figures and tables,
expression levels were calculated relative to unstimulated
wild-type cells 6SD.

2.6 Statistical analysis

For statistical analyses the volume ratios were used. A lin-
ear model was fitted with genotype (gt), LPS-treatment (tr),
and the interaction between these two (gt6tr) as fixed
effects. The influence of the individuals was considered as
a random effect. Significance of the effects was tested
using a moderated t-test [29]. The residual variances of all
spots from one experiment were assumed to be prior F-
distributed. In an empirical Bayes fashion, the parameters
for these F-distributions were estimated from the data
using maximum likelihood. The moderated variance of
each gene was set to the posterior maximum. With this
variance, a moderated t-value was calculated for the two
relevant fixed effects gt and gt6tr. The moderated t-test
method strikes a balance between using a t-test, where the
interference of the variance is compromised by the low
sample size for each gene, and using a fold-change
approach, where differences among spots in variance are
ignored entirely.

2.7 MS

Protein spots were detected by acidic silver nitrate staining
as previously described [30], making it MS-compatible by
omitting glutaraldehyde from the sensitiser and form-
aldehyde from the silver nitrate solution. Spots of interest
were manually excised and pooled for MS analyses. Semi-
preparative 2-DE gels with a protein load of 150–200 mg
were used to recover enough material for MS-analysis of
faint spots. All spots were destained as previously described
[31].
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2.7.1 Protein identification by MALDI-MS

In-gel digestion was performed according to [32] with slight
modifications. Gel pieces were equilibrated with 25 mM
ammonium bicarbonate, washed with ACN, dried in a
vacuum centrifuge and rehydrated in 25 mM ammonium
bicarbonate containing 12.5 ng/mL sequencing grade trypsin
(Roche, Mannheim, Germany) at 47C for 30 min. Excess of
trypsin working solution was removed, samples were covered
with 25 mM ammonium bicarbonate and incubated overnight
at 377C. Supernatant was collected and the elution of the pep-
tides was performed twice with 66% ACN/33% 0.1% TFA. The
combined aliquots were dried in a vacuum centrifuge and dis-
solved in 0.1% TFA. Samples were purified and concentrated
with ZipTipm!c18 pipette tips (Millipore, Billerica, MA, USA)
and analysed on a MALDI-TOF/reflectron TOF-instrument
(TOF2; Shimadzu Biotech Kratos Analytical, Manchester, UK)
in the positive ion mode with delayed extraction applying a
thin layer preparation technique as described earlier [33].
External calibration was performed using monoisotopic values
of the singly charged ions of an aqueous solution of standard
peptides (bradykinin fragment 1–7, human angiotensin II,
P14R, ACTH fragment 18–39). Autolytic tryptic products,
matrix clusters [34], keratin and gel blank artefacts [35] were
removed from the mass spectra and the resulting mono-
isotopic list of m/z values was submitted to search engines
MASCOT (Revision 2.1.0 to 2.2.0) [36] and ProFound [37]
searching the databases Swiss-Prot (Version 50.6 of 05-Sep-
2006 to 54.5 of 04-Nov-2007) and NCBI (Sequence Release 19
of 10-Sep-2006 to 26 of 13-Nov-2007). Search criteria were:
taxonomy, Mus musculus; mass accuracy, 200 ppm; fixed mod-
ifications, carbamidomethylation; variable modifications,
methionine oxidation and acetylation at the protein N-termi-
nus, maximum one missed cleavage site. PSD experiments
were performed on selected peptides from the measured
PMFs. MS/MS database searches have been performed using
the same restrictions as for PMF, additionally a product ion
tolerance of 6 1 Da was defined. A hit was considered signif-
icant, if the scores of at least two database searches, obtained
for PMF data and/or PSD data, independently exceeded the
algorithm’s significance threshold (p,0.05).

2.7.2 Protein identification by ESI-MS

Spot plugs were digested with trypsin as previously described
[31]. All samples were run on an LTQ linear ion mass spec-
trometer (Thermo Scientific, San Jose, CA, USA) connected to
a Surveyor chromatography system incorporating an auto-
sampler as previously described [38]. Tryptic peptides were
resuspended in 0.1% formic acid and were separated by
means of a SurveyorLC system (Thermo Scientific) connected
directly to the source of the LTQ. Each sample was loaded onto
a Biobasic C18 Picofrit column (100 mm length, 75 mm id) at
a flow rate of 30 nL/min. The samples were then eluted from
the C18 Picofrit column by an increasing ACN gradient. The
mass spectrometer was operated in positive ion mode with a

capillary temperature of 2007C, a capillary voltage of 46 V, a
tube lens voltage of 140 V and with a potential of 1800 V
applied to the frit. All data were acquired with the mass spec-
trometer operating in automatic data-dependent switching
mode. A zoom scan was performed on the five most intense
ions to determine charge state prior to MS/MS analysis. All
MS/MS spectra were analysed using BioworksBrowser (Ver-
sion 3.2; Thermo) using the TurboSEQUEST algorithm
under default settings. The MS/MS spectra were searched
against the Swiss-Prot database (Uniprot_sprot; Release
10.0). The following search parameters were used: precursor-
ion mass tolerance of 1.5 Da, fragment ion tolerance of 1.0 Da
with methionine oxidation and cysteine carboxy-
amidomethylation specified as differential modifications and
a maximum of two missed cleavage sites allowed.

2.8 Western blot analysis

1-D Western blots were performed on small-size SDS-PAGE
gels as previously described [8].

2-D Western blot: 2-DE was performed as above except
that we used 10 cm laboratory-made pH 6–10 IPG strips [39]
with 50 mg protein applied by anodic cup loading. Focusing
was carried out without oil for a total of 13 kV?h on a Multi-
phor II system (GE Healthcare). The second dimension on
1461460.15 cm3 gels and semidry blotting were performed
as previously described [27].

The following antibodies were used: goat anti-NMI, rab-
bit anti-PAI2, rabbit anti-SP1, donkey anti-goat IgG-HRP (all
Santa Cruz Biotechnology, Santa Cruz, CA, USA); rabbit anti-
EF2 (Cell Signalling, Danvers, MA, USA); goat anti-PRDX1
(R&D Systems, Wiesbaden-Nordenstadt, Germany); mouse
anti-extracellular signal regulated kinase (ERK) (BD Bio-
sciences Transduction Laboratories, Lexington, KY, USA);
rabbit anti-GAPDH (Biotrend, Cologne, Germany); donkey
anti-rabbit IgG-HRP F abð Þ

0

2 fragment; sheep anti-mouse
IgG-HRP F abð Þ

0

2 fragment (all GE Healthcare).

2.9 Reverse transcription–quantitative PCR
(RT-qPCR)

Total RNA was isolated from 106 cells using TRIzol (Invitro-
gen Life Technologies, Lofer, Austria) according to the man-
ufacturer’s instructions. RNA was treated with DNase I
(Promega Corporation, Mannheim, Germany) to eliminate
genomic DNA. Total RNA (1.5 mg) was used for cDNA syn-
thesis using iScript (BioRad Laboratories, Vienna, Austria).
Primers and probes were designed using Primer Express
(Applied Biosystems, Vienna, Austria) software. Probes
(Genexpress, Wiener-Neudorf, Austria) were labelled with 6-
carboxyfluorescein (FAM) and Blackhole Quencher 1
(BHQ1) at the 50 and 30 ends, respectively. The following
primers (Invitrogen Life Technologies) and probes were
used, all 50 to 30 direction: PAI2 fwd: ACTCAGATCCTA-
GAACTTCCGCAT; rev: AAAGTTTATTTCACTTTCCAG-
CAATTC; probe: CATGCTCCTGTTGCTTCCCGATGAGA;
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NMI fwd: GCCAAGCGCTCATCACCTT; rev: CCTTCCATC
TGCACGACATG; probe: AGAAGTCGCACAAAATGTGA-
TATCGATGGG; PRDX1 fwd: CTAGTCCAGGCCTTC-
CAGTTCA; rev: TCAGGCTTGATGGTATCACTGC; probe:
AACATGGTGAAGTGTGTCCAGCTGGCTG. RT-qPCR was
performed in duplicate on Eppendorf realplex4 (Eppendorf,
Vienna, Austria). Gene expression was calculated as pre-
viously described [11] except that ubiquitin-conjugating en-
zyme E2 D2 (UBE2D2) was used as endogenous control [8].
Expression levels were calculated relative to unstimulated
wild-type cells 6 standard error (SE).

3 Results

3.1 2-D DIGE protein patterns of primary murine
macrophages are highly reproducible

We compared protein patterns of wild-type and Tyk22/2 bone
marrow-derived macrophages before and after LPS treat-

ment in whole cell lysates and in nuclear extracts, respec-
tively. Both types of cell extracts were analysed in two differ-
ent pH gradients (pH 4–7 and 6–9, respectively), thus yield-
ing four 2-D DIGE experiments. Each experiment comprised
three biological replicates per genotype and treatment
resulting in six analytical gels. Representative 2-DE protein
patterns are shown in Fig. 1. Depending on the specific
experiment, we detected 478–792 spots that were present in
all images (Table 1) and only those spots were included in the
further examinations. Spot volume ratios of biological repli-
cates showed low variability with mean SDs between 60.073
and 60.085 (Table 1 and Fig. S1 of Supporting Information).
For a given statistical power of 0.9, a p-value of $0.05 (two-
sided), the sample size of three, and the respective mean SD,
the resulting minimal detectable differences (effect size) in
expression levels were between 26.2 and 30.5%. Thus, on
average, differences in expression values of around 30% can
be detected with our experimental set-up.

Nuclear extracts comprised about 10% of total proteins
found in whole cell lysates and protein patterns were clearly

Figure 1. Representative 2-DE protein patterns of Tyk22/2 macrophages. Analytical gels (75 mg protein each) visualised by MS-compatible
silver stain after 2-D DIGE. Identified proteins are indicated by the spot numbers used in Table 3. Whole cell lysates: (A) pH gradient 4–7,
11.5%T SDS-PAGE; (B) pH 6–9, 10%T SDS-PAGE. Nuclear extracts: (C) pH 4–7; (D) pH 6–9; both: 10%T SDS-PAGE.
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Table 1. Experiments performed and their statistical properties

Whole cell
lysates

618 h LPS

Nuclear
extracts
68 h LPS

pH 4–7 6–9 4–7 6–9
Number of spots in all

18 images
579 478 731 792

Mean SD 0.073 0.078 0.085 0.085
Minimal detectable

difference
26.2% 28.0% 30.5% 30.5%

different, although with some overlaps (Fig. 1). This stand-
ard protocol for the preparation of nuclear extracts does not
result in the complete extraction of nuclear proteins and can
also lead to copurification of proteins from other compart-
ments, e.g. plasma membrane, ER, cytoskeletal fragments
and large cytoplasmic protein complexes. Nevertheless,
extracts showed good reproducibility and enrichment of a
subset of cellular proteins, which might not be detected in
whole cell extracts. Western blot analysis with specific mark-
er proteins showed hardly detectable levels of GAPDH, a
cytosolic marker protein, and high amounts of SP1, a
nucleus specific protein (see Fig. S2 of Supporting Informa-
tion).

3.2 Absence of Tyk2 significantly alters the protein
expression pattern in macrophages

The analyses with respect to the impact of Tyk2 deficiency
on the macrophage proteome were performed with an
emphasis on the effects on basal protein expression
(genotype effects) and on LPS mediated changes in
expression levels (genotype6treatment effects). Statisti-
cally significant differences were found for a large number
of spots in both cases (see Fig. S3 of Supporting Informa-
tion). We filtered these spots for differences between wild-

type and Tyk22/2 cell extracts of at least 40% before and/
or after LPS treatment. Forty-six spots in whole cell lysates
and seventy-three in nuclear extracts met these criteria
(Table 2), this corresponds to 3–6% of spots examined,
depending on the specific experiment. Positive as well as
negative effects of Tyk2 deficiency on expression levels
were found with similar distribution in all cases. Among
the 119 differentially expressed spots, 75 spots displayed
genotype effects, 13 spots genotype6treatment effects and
31 spots showed both effects. A similar predominant
genotype effect was found if data were analysed without
filtering for the minimal difference of 40% (see Fig. S3 of
Supporting Information).

3.3 Differentially expressed proteins exert various
functions

From among the 119 differentially expressed spots, 34 spots
were selected for protein identification. The selection was
based on a combination of the following criteria: expression
pattern in the 2-D DIGE analysis (extent of difference be-
tween the genotypes before and after treatment), stainability
of spots with silver (for colorimetric visualisation on the gels
enabling manual spot cutting), spot quantity (spot density in
silverstained patterns supplying sufficient amounts for MS
analysis) and spot quality (shape and compactness of spots,
nonoverlap with others). Usually selection criteria were used
with equal emphasis, where impossible, the most common
denominator of selectable criteria was used for decision
making.

Using LC-ESI- and MALDI-MS/MS, 25 of the 34 selected
spots gave interpretable MS spectra, which equates to a suc-
cess rate of 73.5%. In these spots, 21 different proteins were
identified (see Fig. 2 for 2-D DIGE spot images and Table S1
of Supporting Information for details of MS analysis). The
differentially expressed proteins (listed in Table 3) were clas-
sified according to their gene ontology annotation. Identified
proteins belong to various functional categories including

Table 2. Numbers of differentially expressed and identified spotsa)

Experiment Total gtb) gt6trc) gt 1 gt6trd) IDe)

Upf) Downf) Up Down Up Down

Whole cell lysates (pH 4–7) 17 2 2 3 2 7 5 5
Whole cell lysates (pH 6–9) 29 4 5 5 4 6 5 8
Nuclear extracts (pH 4–7) 33 22 14 2 1 1 2 5
Nuclear extracts (pH 6–9) 40 11 17 2 2 2 3 7
Total 119 39 36 8 5 16 15 25 (21 proteins)

a) At least 40% difference in expression 6 LPS treatment between genotypes, p $ 0.05.
b) Genotype effect (significant differences between genotypes under basal conditions).
c) Genotype6treatment effect (significant differences between genotypes in response to LPS treatment).
d) Genotype and genotype6treatment effect.
e) Identified spots.
f) Up/downregulated in the absence of Tyk2.
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Figure 2. Comparison of proteome pattern in wild-type versus Tyk22/2 macrophages with or without LPS treatment. Selected regions from
2-D DIGE images are shown (compare Fig. 1 for exact spot location on the whole gel images). Cy3/Cy5 images converted to grey scale for all
25 spots identified (indicated by arrows and the spot numbers used in Fig. 1 and Table 3) are depicted. See legend to Fig. 1 and Table 3 for
details on protein extracts and electrophoretic conditions.
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oxidative stress and immune responses, metabolism and
cytoskeleton architecture. In several cases we identified the
same protein in different spots on one gel or in both pro-
tein extracts. For instance, interferon-induced protein with
tetratripeptide repeats 1 (IFIT1) was identified in whole cell
lysates and nuclear extracts located at pI 7.2 and Mr of
60 kDa (spots 4 and 5 in Table 3, Figs. 1B, D and 2). Both
spots showed upregulation by LPS treatment in wild-type
cells, whereas the effect of Tyk2 deficiency on basal expres-
sion and LPS induction was different for the two spots.
Interferon-activable protein 204 or 205 (IFI4/5) was found
in two neighbouring spots showing identical expression
patterns (spots 7 and 8 in Table 3, Figs. 1D and 2). We
could not distinguish between IFI4 and IFI5 since they
display high sequence homology and only peptides in
common were found in MS. Six known IFN-inducible pro-
teins (proteasome activator complex subunit 2 (PSME2),
IFIT1, IFIT3, IFI4/5, interferon-induced protein 35 kD ho-
mologue (IN35), N-myc-interactor (NMI)) were identified.
All of them showed upregulation upon LPS treatment in
wild-type cells. Interestingly, all of them displayed reduced
basal expression levels and, except for PSME2, reduced or
even absent LPS-mediated upregulation in Tyk2-deficient
cells in at least one of the corresponding spots (spots 1–8 in
Table 3 and Fig. 2).

From the list of differentially regulated proteins (Table 3
and Fig. 2) we selected several candidates based on their
regulation patterns or their molecular functions for further
investigations. We performed time course studies of protein
and mRNA expression using 1-D Western blotting and RT-
qPCR, respectively. When a complex spot pattern was
assumed for a particular protein 2-D Western blots were
performed in addition.

3.3.1 Tyk2 is required for efficient expression of NMI
protein and mRNA

According to the 2-D DIGE analysis, NMI showed approxi-
mately 0.6-fold expression levels before and after LPS treat-
ment in Tyk22/2 as compared to wild-type cells (spot 3 in
Table 3 and Figs. 2 and 3A). We subsequently used 1-D
Western blot analysis for validation of expression patterns.
The amount of NMI protein was clearly reduced in Tyk22/2

cells upon 0 and 18 h LPS treatment (Fig. 3B). The relatively
modest upregulation of NMI protein upon LPS treatment in
wild-type cells found with 2-D DIGE technology (1.3-fold)
was only just about detectable with Western blot analysis.
Similar results were obtained in a more extensive time
course experiment (data not shown). We next examined by
RT-qPCR whether the reduced protein level in Tyk22/2 cells

Figure 3. Effect of Tyk2 deficiency on the
expression of NMI protein (A, B) and mRNA (C).
Macrophages were treated with LPS for the indi-
cated times and whole cell lysates or total RNA
were subjected to 2-D DIGE analysis (A), Western
blotting (B) or RT-qPCR (C). (A) 2-D DIGE:
expression levels are given as fold ratios relative
to unstimulated wild-type (WT) cells. Mean
values 6SD of three biological replicates are
shown. (B) Western blot analysis: 20 mg protein
per lane were separated by 10%T SDS-PAGE.
Protein loading was controlled by reprobing
with an anti-panERK antibody. Data are repre-
sentative of at least three independent experi-
ments. Nos. 1 and 2 indicate that the cells were
derived from independent mice. (C) mRNA
expression was analysed by RT-qPCR. UBE2D2
was used as endogenous control, expression
levels were calculated relative to untreated WT
cells. Mean values 6SE from at least three inde-
pendent experiments are depicted. * p $0.05,
** p $0.01.
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is due to lower mRNA expression. A modest and transient
upregulation of mRNA was detectable upon 6 h of LPS
treatment in both wild-type and Tyk22/2 macrophages
(Fig. 3C). However, mRNA levels were consistently lower in
the absence of Tyk2 throughout the time course investigated.

3.3.2 Tyk2 negatively regulates plasminogen
activator inhibitor 2 (PAI2) protein but not
mRNA expression

Expression levels of PAI2 were particularly interesting since
Tyk22/2 macrophages displayed elevated basal expression as
well as a strongly enhanced LPS mediated upregulation (spot
13 in Table 3 and Figs. 2 and 4A). Strong induction of PAI2
protein by LPS treatment was detectable in both genotypes
and enhanced expression in the absence of Tyk2 could be
clearly confirmed by 1-D Western blot analysis (Fig. 4B).
PAI2 protein expression could be detected from 8 h LPS
stimulation onwards (data not shown) with stable maximal
expression from about 18–24 h of treatment (Fig. 4B).
Increased PAI2 protein level in Tyk22/2 cells was observed
throughout all time points with detectable PAI2 expression
(Fig. 4B and data not shown). In both 2-D DIGE and 1-D
Western blot analysis we detected PAI2 with the Mr of ap-
proximately 42 kDa, which resembles the nonglycosylated
form of PAI2 reported in the literature [40]. PAI2 mRNA

expression was not affected by the absence of Tyk2 (Fig. 4C).
Expression was rapidly induced in wild-type as well as
Tyk22/2 macrophages, reached maximal expression levels at
around 6–12 h LPS treatment and modestly declined there-
after (Fig. 4C).

3.3.3 Absence of Tyk2 affects peroxiredoxin 1
(PRDX1) spot patterns

PRDX1 was identified in three spots with similar molecular
weight (23 kDa) but distinct pIs of about 6.5, 7.2 and 8 (Table
3, spots 9–11). Two spots were identified from whole cell
lysates (spots 9 and 10 in Table 3, Figs. 1B and 2) and one
from nuclear extracts (spot 11 in Table 3, Figs. 1D and 2). For
validation experiments, we concentrated on whole cell
lysates in order to define the total spot composition rather
than to address possible differences in subcellular distribu-
tions. According to the 2-D DIGE data, spot 9 was upregu-
lated and spot 10 was downregulated by LPS treatment in
wild-type cells (Table 3 and Fig. 5A). In the absence of Tyk2,
spot 9 showed slightly elevated basal expression and reduced
upregulation upon LPS treatment. In contrast, spot 10 was
only modestly but conversely regulated by LPS in wild-type
and Tyk22/2 cells resulting in a 1.9-fold higher level in
Tyk22/2 cells as compared to stimulated wild-type cells
(Table 3 and Fig. 5A). Surprisingly, we could not find an

Figure 4. Effect of Tyk2 deficiency on the
expression of PAI2 protein (A, B) and mRNA (C).
Macrophages were treated with LPS for the indi-
cated times and whole cell lysates or total RNA
were subjected to 2-D DIGE analysis (A), Western
blotting (B) or RT-qPCR (C). (A) 2-D DIGE: expres-
sion levels are given as fold ratios relative to
unstimulated WTcells. Mean values6SD of three
biological replicates are shown. (B) Western blot
analysis: 5 mg protein per lane were separated by
10%T SDS-PAGE. Protein loading was controlled
by reprobing with an anti-panERK antibody. Data
are representative of at least three independent
experiments. (C) mRNA expression was ana-
lysed by RT-qPCR. UBE2D2 was used as endo-
genous control, expression levels were calcu-
lated relative to untreated WT cells. Mean values
6SE from at least three independent experi-
ments are depicted. * p $0.05, ** p $0.01.
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Figure 5. Effect of Tyk2 deficiency on the
expression of PRDX1 protein (A–C) and mRNA
(D). Macrophages were treated with LPS for the
indicated times and whole cell lysates or total
RNA were subjected to (A) 2-D DIGE analysis, (B,
C) Western blotting or (D) RT-qPCR. (A) 2-D
DIGE: expression levels are given as fold ratios
relative to unstimulated WT cells. Mean values
6SD of three biological replicates are shown.
(B) 1-D Western blot: 5 mg protein per lane were
separated by 12%T SDS-PAGE. Protein loading
was controlled by reprobing with an anti-
panERK antibody. Data are representative of at
least three experiments. (C) 2-D Western blot:
50 mg protein were separated by 2-DE using a
pH 6–10 gradient for the first dimension, fol-
lowed by the second dimension on a 12%T
SDS-PAGE. Spots identified by MS are indicated
in circles. Data are representative of three
experiments. (D) mRNA expression was ana-
lysed by RT-qPCR. UBE2D2 was used as endo-
genous control, expression levels were calcu-
lated relative to untreated WT cells. Mean values
6SE from three independent experiments are
depicted. * p $0.05, ** p $0.01.

increase in total PRDX1 protein expression upon LPS treat-
ment using 1-D Western blot analysis (Fig. 5B). Similarly, no
difference in PRDX1 expression between wild-type and
Tyk22/2 cells was detectable.

Figure 1B illustrates that PRDX1 is a multiple spot pro-
tein in 2-DE (spots 9 and 10), which all have a similar Mr,
thus resulting in the detection of one single band on 1-D
Western blots. To get more insight into the protein hetero-
geneity, we performed 2-D Western blot analysis to deter-
mine the number of detectable PRDX1 spots and their rela-
tive abundances. As shown in Fig. 5C, three spots were
present before and five after LPS treatment in whole cell
lysates from both genotypes. Consistent with the 2-D DIGE

data, spot 9 increased clearly after LPS treatment and this
was considerably lower in Tyk22/2 than in wild-type cells. In
contrast, differences in spot 10 intensities were not apparent.
Apart from spots 9 and 10, one additional spot was detected
in 2-D Western blot analysis in untreated cells (probably the
counterpart of spot 11 identified in nuclear extracts, see
Figs. 1B and D). Two further spots appeared upon LPS treat-
ment (Fig. 5C), both with a more acidic pI than spot 10. As
spot 9, both showed reduced increase in the absence of Tyk2.
They were also calculated from 2-D DIGE data (Table 3 and
data not shown) and results confirmed the partially Tyk2-de-
pendent acidic spot shift. Although we could not see
increased total PRDX1 protein (Fig. 5B) upon LPS treatment,
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PRDX1 mRNA expression increased around four-fold with
no differences between wild-type and Tyk22/2 cells (Fig. 5D).
Thus, Tyk2 deficiency does neither influence total PRDX1
protein nor PRDX1 mRNA expression. Instead, our results
indicate that Tyk2 influences the LPS-mediated changes in
the PRDX1 spot pattern.

3.3.4 Tyk2 affects elongation factor 2 (EF2)
subcellular levels

EF2 was found in nuclear extracts as differentially regulated
spot with elevated amounts in Tyk22/2 macrophages inde-
pendent of LPS treatment (spot 17 in Table 3, Figs. 1D, 2 and
6A). Enhanced expression of EF2 protein in the absence of
Tyk2 was also readily detectable by Western blot analysis
(Fig. 6B) and, also consistent with the 2-D DIGE data, LPS
treatment did not result in any change of protein expression.
Interestingly, differential EF2 protein expression between
wild-type and Tyk22/2 cells was only found in nuclear
extracts and not in whole cell lysates (Figs. 6B and C).

4 Discussion

In this report, we have used a proteomics approach in order to
find novel functions of Tyk2 in the response to LPS in primary
murine macrophages. Using 2-D DIGE technology for the
comparative analysis of whole cell lysates as well as nuclear
extracts from wild-type and Tyk22/2 cells, we achieved high
reproducibility between biological replicates allowing us to
detect differences in protein expression as low as 30%.

Proteomics studies on the LPS response of murine mac-
rophages have been performed in a few older studies [22, 23,
41], but at that time 2-DE patterns were characterised solely
by physicochemical properties of the obtained spots (pI, Mr).
More recent studies including identification of intracellular
LPS responsive proteins employed cell lines rather than pri-
mary cells and, in addition, used different comparative 2-DE
approaches [42–44]. Accordingly, the sets of proteins identi-
fied show generally little overlap with ours. Interestingly, five
of the proteins identified in our study (IFIT3, PRDX1, IRG1,
vimentin and EF2) have also been described as LPS regulated
in microglia cells, a macrophage-like cell type of the CNS
[45].

Our results show that absence of Tyk2 significantly alters
the overall protein expression pattern at basal conditions and
affects changes in expression levels in response to LPS
treatment, whereby the former effect predominates. We
found 119 spots (corresponding to 3–6% of spots analysed)
that showed at least 40% difference in expression values
either before or after LPS treatment. We identified 21 differ-
ent proteins in 25 of these spots which were either up- or
downregulated in the absence of Tyk2. The proteins belong
to several different functional categories suggesting that the
absence of Tyk2 affects many distinct cellular processes.
These include oxidative stress and immune response, me-
tabolism, transcription, translation and cytoskeleton archi-
tecture.

All proteins involved in immune responses identified
herein are known IFN regulated proteins. Consistent with
the role of Tyk2 in IFN signalling, they showed reduced
expression in the absence of Tyk2. Importantly, basal

Figure 6. Effect of Tyk2 deficiency on the
expression of EF2 protein. Macrophages were
treated with LPS for the indicated times and
nuclear extracts (A, B) or whole cell lysates (C)
were subjected to DIGE analysis (A) or Western
blotting (B, C). (A) 2-D DIGE: expression levels
are given as fold ratios relative to unstimulated
WT cells. Mean values 6SD of three biological
replicates are shown. (B) Western blot analysis:
10 mg protein of nuclear extracts were separated
by 6.5%T SDS-PAGE. Protein loading was con-
trolled by reprobing with an anti-SP1 antibody.
Nos. 1 and 2 indicate that the cells were derived
from independent mice. (C) Western blot analy-
sis: 5 mg protein of whole cell lysates were
separated by 10%T SDS-PAGE. Protein loading
was controlled by reprobing with an anti-
panERK antibody. Data are representative of at
least three independent experiments. * p $0.05,
** p $0.01.
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expression was already reduced in the absence of Tyk2 in at
least one of the spots identified, a phenomenon that has been
described previously for two IFN-inducible proteins and
some mRNAs [6, 8, 11]. Hence our data support the notion of
Tyk2 as an essential component for the maintenance of low-
level expression of at least a subset of IFN target proteins.
Reduced basal expression of NMI in Tyk22/2 cells (approxi-
mately 0.6-fold according to the 2-D DIGE data) was con-
firmed by Western blot analysis and was also found at the
mRNA level. NMI was originally found as a protein that
interacts with members of the Myc family of proto-onco-
genes [46] and subsequently interaction with several other
transcription factors was reported. For example, NMI can
interact with all STAT proteins (e.g. upon IL-2, IFNg), except
STAT2, and enhance their transcriptional activity by increas-
ing their association with CREB-binding protein (CBP) and
p300 co-activators [47]. NMI is homologous to IN35 and both
proteins can stabilise each other through their interaction
[48], thus crossinfluence might contribute to their similarly
reduced expression levels in the absence of Tyk2.

We found several proteins differentially expressed in
wild-type versus Tyk22/2 macrophages which have not yet
been linked to either IFN or Tyk2 (Table 3). Three of them
(EF2, PAI2 and PRDX1) were analysed in more detail. We
found increased protein expression of EF2 in the absence of
Tyk2 specifically in nuclear extracts but not in total lysates,
suggesting a difference in subcellular localisation. Due to
our relatively crude nuclear extract preparation, the exact
localisation cannot be determined and further studies
including highly purified organelle preparations will be
required. EF2 is critically involved in protein translation
where it catalyses elongation of polypeptide chains via pro-
motion of ribosomal translocation. EF2 activity is inhibited
by PTMs, e.g. via phosphorylation by the EF2 kinase [49],
which itself is activated by phosphorylation via a number of
different stimuli, e.g. cellular stress. However, we show by
1-D Western blot analysis differences in total EF2 protein levels
in Tyk22/2 cells, thereby excluding a potential shift of spots
in pI caused by phosphorylation as the sole cause of differ-
ential expression patterns found with 2-D DIGE technology.

Catalase and PRDX1 were identified as differentially
expressed between wild-type and Tyk22/2 cells. Both
enzymes are involved in the detoxification of hydrogen per-
oxide, which is produced as a result of normal cellular pro-
cesses that involve oxygen and, importantly, in response to
inflammatory stimuli including LPS [50, 51]. We show that
although PRDX1 mRNA is modestly upregulated by LPS
treatment an increase in PRDX1 protein is detectable neither
by 1-D Western blot analysis nor by 2-D DIGE (by adding up
spot volumes of all immunoreactive spots shown in Fig. 5C,
data not shown). 2-DE reveals a noticeable change in the
distribution of different PRDX1 spots, mainly a shift towards
more acidic pI in response to LPS. Interestingly, the appear-
ance of the spot with the lowest pI value was less prominent
in the absence of Tyk2. Like the other members of the per-
oxiredoxin family, PRDX1 has a cysteine in its active site

which is reversibly oxidised to a disulfide in the normal cat-
alytic cycle. It can also be hyperoxidised to sulphinic or sul-
phonic acid, which leads to inactivation of the enzyme [52].
Conway et al. [53] described three PRDX1 spots for the
mouse macrophage cell line J774. In Western blots the
authors proved that these spots correspond to the sulphonic,
the sulphenic and the nonoxidised form of PRDX1 (from left
to right in 2-DE pattern), and all were increased by chemical
oxidation or by challenge with oxidised low density lipopro-
tein, without additional pattern changes. For human PRDX1,
only doublet spots have been shown on 2-DE gels, a native
form (basic spot) that shifts nearly completely to the over-
oxidised form (acidic spot) upon strong oxidative stress [54,
55]. Although under basal conditions our PRDX1 patterns
look similar to those reported for the murine cell line [53],
the noticed shift towards lower pI values upon LPS treatment
would suggest oxidation of the protein as shown for the hu-
man homologue. Our data would then further suggest that
lack of Tyk2 results in the suppression of LPS induced
(hyper)-oxidation of PRDX1. However, a shift in pI might
also be caused by other modifications (e.g. phosphorylation).
In that context, it is interesting to note that interaction of
PRDX1 with the tyrosine kinase c-Abl has been reported [56].
In order to define the exact nature of the modification(s),
further and more detailed MS analysis of all five spots seen in
our PRDX1 pattern would be required (e.g. digest with a dif-
ferent enzyme, high energy CID or multistage CID experi-
ments).

The most dramatic effect on protein expression with
respect to differences between genotypes was found for
PAI2. Consistent with previous reports [57], PAI2 protein
was strongly upregulated by LPS treatment in wild-type cells.
Expression of PAI2 was dramatically increased in the
absence of Tyk2 as determined by 2-D DIGE and 1-D West-
ern blots analysis. Interestingly, PAI2 mRNA was similarly
induced in Tyk22/2 and wild-type cells. This points to the
existence of a Tyk2 dependent negative regulatory pathway
that limits LPS-induced PAI2 expression at a post-transcrip-
tional level. PAI1 and PAI2 belong to the serpin gene family
of protease inhibitors and are the physiological inhibitors of
tissue- and urokinase-type plasminogen activator (tPA, uPA)
[40]. Although the main proportion of newly synthesised
PAI2 remains in the cell, the intracellular function of PAI2 is
poorly characterised. There is evidence that PAI2 is involved
in multiple cellular processes like proliferation, differentia-
tion, and most consistently, apoptosis [40, 58]. Another
important function of PAI2 is the inhibition of cancer
metastasis and high PAI2 expression is associated with good
prognosis in human cancers [40]. Recently, involvement of
Tyk2 in tumour cell invasiveness has been reported [59, 60]
and reduced uPA signalling was proposed as the underlying
mechanism [59]. The fact that we find increased PAI2
expression in Tyk22/2 cells under inflammatory conditions
(i.e. LPS treatment) poses the question of whether Tyk2 lim-
its PAI2 expression also during tumour metastasis and
whether this contributes to the reduced uPA signalling
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described above. Also of relevance in this context is that acti-
vation of Tyk2 by uPA has been reported [61–63].

In summary, our data are in line with and further sup-
port the role of Tyk2 in the basal and LPS-induced, auto-
crine/paracrine actions of IFNa/b. We furthermore describe
novel positive as well as negative regulatory roles of Tyk2 on
protein expression in macrophages and demonstrate that
this occurs both at the level of mRNA transcription and post-
transcriptionally. As yet unrecognised connections between
Tyk2 and diverse cellular proteins reported in this study raise
interesting new topics for future research on Tyk2 biology.
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Supplements 
 

Figure S1. 2D-DIGE data are highly reproducible. Histograms show the frequency distribution of 

SD values over the experiments performed. The SD of spot volume ratios from three biological 

replicates was calculated for each spot and was plotted against frequencies. (A) whole cell 

lysates pH 4-7 (n=579 spots), (B) whole cell lysates pH 6-9 (n=478 spots), (C) nuclear extracts 

pH 4-7 (n=731 spots), (D) nuclear extracts pH 6-9 (n=792 spots). 

 

Figure S2. (A) Nuclear extracts show reproducible enrichment of nuclear proteins. Macrophages 

were treated with LPS for 30 minutes. 3 µg of nuclear or cytosolic extracts per lane were 

separated by 8%T SDS-PAGE. GAPDH was used as a cytosolic and SP1 as a nuclear marker. 

Data are representative of at least three experiments. (B) Translocation of NF-κB is unperturbed 

in Tyk2-/- macrophages. Macrophages were treated with LPS for 30 minutes. 3 µg of nuclear 

extract per lane were separated by 8%T SDS-PAGE. Protein loading was controlled by re-

probing with an anti-SP1 antibody. #1 and #2 indicate that the cells were derived from 

independent mice. 

 

Figure S3. Tyk2 deficiency significantly alters the proteome pattern of macrophages. The t-

values of the genotype effect (gt) are plotted against the t-values of the genotype x treatment 

effect (gt x tr). Data include all spots (found in all images) without filtering for minimal differences 

in the expression values. Values above and below the critical t-values ± 2.306 (indicated by lines) 

are considered to be significant. Positive t-values indicate decreased and negative t-values 

increased expression / induction levels in the absence of Tyk2. (A) whole cell lysates pH 4-7 

(n=579 spots), (B) whole cell lysates pH 6-9 (n=478 spots), (C) nuclear extracts pH 4-7 (n=731 

spots), (D) nuclear extracts pH 6-9 (n=792 spots).  
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II. Unpublished results  

1. Evidence for translational regulation of IL-1β by Tyk2-dependent mechanisms 

1.1 Introduction  

Within our 2D-DIGE experiments, designed to identify proteins that are differentially 

expressed between WT and Tyk2-/- bone marrow-derived macrophages (BMM), we have 

identified IL-1β as a protein that is strongly enhanced in the absence of Tyk2 upon LPS 

treatment. Since this is a novel phenotype with a potential impact on host defence 

mechanisms, we investigated the underlying mechanisms in more detail.  

According to current knowledge, IL-1β expression is regulated mainly at the level of 

transcription and by its processing and release [107,108]. In addition, regulation of IL-1β 

mRNA stability via AU-rich elements (ARE) has been reported [109]. Pro-IL-1β synthesis is 

induced by LPS through activation of NFκB and MAPK pathways [110,111], although NFκB 

can also negatively regulate IL-1β processing [112]. Pro-IL-1β can be cleaved into the 

biologically active cytokine by several proteases in the extracellular space, but intracellularly, 

casp-1 is the main protease responsible for cleavage in macrophages [113-115]. Very 

recently, casp-8-dependent and casp-1-independent, IL-1β maturation was reported in 

TLR2-primed, LPS-stimulated peritoneal macrophages [116]. Casp-1 itself requires 

proteolytic processing to get activated and this occurs within an activated inflammasome. 

LPS is a strong inducer for pro-IL-1β production, but a poor activator of the inflammasome 

and, accordingly, weakly induces the release of mature IL-1β, unless a second stimulus 

triggers inflammasome activation [117-119].  

In this part of the work, we provide evidence that Tyk2 negatively regulates IL-1β expression 

at the level of translation. Our data furthermore suggest that this occurs via auto/paracrine 

canonical IFN-α/β signalling. 

1.2 Results  

Intracellular pro-IL-1β is increased in the absence of Tyk2 

IL-1β was identified in a spot with a Mr of approximately 30 kDa and a pI around the 

theoretical pI 4.6 (see appendix, Fig. 2). The identified peptides are common to both mature 

and immature IL-1β, but based on the Mr the spot could be assigned to the immature IL-1β 

(pro-IL-1β). Spot volume ratios as determined by 2D-DIGE increased in WT cells upon 18 h 

LPS treatment approximately 3-fold, whereas a significantly stronger increase 

(approximately 14-fold) was found in the absence of Tyk2 (Fig. 1A and B). Enhanced 

expression of pro-IL-1β in Tyk2-/- macrophages was confirmed by western blot time course 
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experiments (Fig. 1C) and was detected from very early upon LPS stimulation onwards. IL-

1β is synthesised as biologically inactive procytokine (Mr of 31 kDa), that remains 

intracellular until a second stimulus induces its processing into the active cytokine (Mr of 17 

kDa) and its release.  As reported in the literature, mature IL-1β was hardly detectable 

intracellularly in WT cells [120-122]. 

 
 

 

 

Figure 1. Effect of Tyk2 deficiency on pro-IL-1β protein expression. Macrophages were treated with 

LPS for the indicated times and whole cell lysates were subjected to 2D-DIGE (A, B) or western blot 

analysis (C). (A) Protein expression levels are given as fold ratios relative to unstimulated WT cells. 

Mean values ±SD of three biological replicates are shown. (B) Selected regions from Cy3 and Cy5 

images converted to grey scale showing pro-IL-1β spot positions (indicated by arrows). (C) 5 µg 

protein per lane were separated by 14%T SDS-PAGE. Protein loading was controlled by reprobing 

with an anti-panERK antibody. W - WT, T - Tyk2-/-, ** p≤ 0.01. 
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Tyk2 is not required for IL-1β mRNA induction 

Induction of the IL-1β gene upon LPS treatment occurs via the MyD88-dependent pathway 

[123,124], which, according to current knowledge, does not depend on the presence of Tyk2 

[67,125]. Consistently, we did not find any significant differences in IL-1β mRNA expression 

between WT and Tyk2-/- macrophages (Fig. 2). We have also included IFNAR1-deficient 

cells in the analysis in order to determine potential contributions of auto/paracrine type I IFN 

signalling. IL-1β mRNA was induced rapidly and to a similar extent for up to 24 h after LPS 

treatment in WT, Tyk2-/- and IFNAR1-/- cells (Fig. 2).  

 

Figure 2. Effect of Tyk2 and IFNAR1 deficiency on IL-1β mRNA expression. Macrophages were 

treated with LPS for the indicated times and total RNA was subjected to RT-qPCR. mRNA expression 

levels were calculated relative to untreated WT cells, UBE2D2 was used as endogenous control. 

Mean values ±SE from at least three independent experiments are shown.  

 

Tyk2 deficiency does not affect IL-1β processing and release 

IL-1β processing and release is tightly regulated and increased intracellular pro-IL-1β might 

be caused by reduced processing/release. LPS stimulation alone massively induces IL-1β 

production, but IL-1β processing and externalisation occurs very inefficiently [117-119]. 

Thus, IL-1β mainly remains intracellularly as unprocessed pro-IL-1β and only low levels can 

be detected in the extracellular space. We nevertheless determined extracellular IL-1β with 

ELISA. As shown in Fig. 3A, IL-1β protein levels detected in the supernatants were 

expectedly low in WT cells with approximately 50-100 pg/mL at 24 h of LPS stimulation. 

However, IL-1β was approximately 4-5-fold increased in supernatants from Tyk2-/- 

macrophages. Again, consistent with previous studies [67], data show that secreted levels of 

TNFα were similar in WT and Tyk2-/- cells (Fig. 3B).  
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We next wanted to address whether increased IL-1β production in Tyk2-/- cells is also 

observed under conditions that promote maturation of IL-1β. Macrophages were treated 4 h 

or 18 h with LPS followed by 30 min stimulation with the P2X7 receptor agonist ATP. As to 

be expected, extracellular levels of IL-1β in WT cells were dramatically higher under these 

conditions than upon stimulation with LPS alone (Fig. 4A and Fig. 3A). Importantly, 

enhanced IL-1β levels were still detected in Tyk2-/- macrophages at 4 h and at 18 h of 

LPS/ATP (Fig. 4A) or treatment with LPS alone (Fig. 3A). In order to exclude the possibility 

that ELISA also detects unprocessed IL-1β, we confirmed results with western blot analysis. 

Under the conditions used, IL-1β was not detectable in supernatants of cells treated with 

LPS alone (data not shown), whereas pro-IL-1β and mature IL-1β could be detected in 

supernatants of WT cells upon treatment with 5 mM ATP (Fig. 4B). Again, strongly enhanced 

IL-1β levels were detected in the absence of Tyk2. Importantly, also mature 17kDa IL-1β 

was increased in Tyk2-deficient cells. High concentrations of ATP can be toxic for the cells 

and thus pro-IL-1β might appear extracellularly via apoptosis. However, maturation of IL-1β 

can not be induced by this process [126]. Intracellularly, mature IL-1β was hardly detectable 

in WT cells treated with LPS alone (Fig. 4C and Fig. 1C) or with LPS + ATP (Fig. 4C). In 

contrast, mature IL-1β was detectable even intracellularly in Tyk2-/- cells upon LPS + 5 mM 

ATP (Fig. 4C).  

In summary, these data show that IL-1β levels are increased in the absence of Tyk2 as 

compared to WT cells intra- and extracellularly, and independent of the presence of a trigger 

that promotes IL-1β processing. 
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Figure 3. Effect of Tyk2 deficiency on extracellular protein levels of IL-1β and TNFα. Macrophages 

were treated with LPS for the indicated times and cell culture supernatants were collected. 

Exracellular protein concentrations of IL-1β (A) and TNFα (B) were measured by ELISA. Mean values 

±SD from three independent experiments are shown. * p≤ 0.05. 
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Figure 4. Effect of Tyk2 deficiency on IL-1β intra- and extracellular protein levels and processing after 

ATP treatment. Macrophages were treated with LPS for the indicated times with or without ATP at the 

concentrations indicated. (A) Extracellular protein concentrations in cell culture supernatants were 

measured by ELISA. Preliminary data (±SD of duplicates) from one experiment are shown. (B) 

Proteins were precipitated from supernatants and 10 µg per lane were subjected to western blot 

analysis by 15%T SDS-PAGE. (C) 5 µg protein from whole cell lysates per lane were separated by 

15%T SDS-PAGE. W - WT, T - Tyk2-/-. 
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Limitation of IL-1β expression depends on the presence of Tyk2, IFNAR1 and Stat1 

In the context of macrophage LPS responses, Tyk2 is mainly associated with IFN-α/β 

signalling. Basal and/or induced expression of some genes that depend on functional IFN-

α/β responses have been shown to require Tyk2 for full expression [58,63,67]. Against this 

background, we tested whether the negative impact of Tyk2 on IL-1β expression is also 

observed in cells lacking IFNAR1 or Stat1. Cells were treated with LPS for 4 h (Fig. 5A) or 

18 h (Fig. 5B), ATP or medium was added for 30 min, and IL-1β expression analysed in 

supernatants. IL-1β levels were enhanced to a similar extent in IFNAR1-/-, Tyk2-/- and Stat1-/- 

cells at both times of treatment and, additionally, levels of processed IL-1β were also clearly 

higher than in WT cells. Similarly, enhanced pro-IL-1β and mature IL-1β were also observed 

intracellularly in the absence of IFNAR1, Tyk2 or Stat1 upon LPS treatment, irrespective of 

the presence of ATP (Fig. 5C).  

 

Figure 5. Effect of Tyk2, IFNAR1 and STAT1 deficiency on IL-1β protein levels and processing. 

Macrophages were treated with LPS for the indicated times with or without ATP at the concentrations 

indicated. Whole cell lysates and cell culture supernatants were collected and subjected to western 

blot analysis. (A, B) Proteins were precipitated from supernatants and 15 µL per lane were separated 

by 15%T SDS-PAGE. (C) 5 µg protein from whole cell lysates per lane were separated by 15%T 

SDS-PAGE. Protein loading was controlled by reprobing with an anti-panERK antibody. W - WT, T - 

Tyk2-/-, I - IFNAR1-/-, S - Stat1-/-. 
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Enhanced IL-1β in Tyk2-/- cells is not due to changes in protein stability 

We next wanted to determine whether IL-1β protein stability is influenced by the absence of 

Tyk2. Macrophages were stimulated with LPS for 4 h, cycloheximide was added and IL-1β 

protein expression monitored over time. As shown in Fig. 6A, IL-1β protein levels were 

increased in Tyk2-/- cells at 4 h of LPS stimulation, but declined with similar kinetics as in WT 

macrophages upon the translational block. Similar results were obtained using pulse-chase 

experiments (Fig. 6B). Cells were treated with LPS for 4 h, metabolically labelled with 35S-

methionine/cysteine, washed and further incubated in the presence of excess cold 

methionine/cysteine for various times. The observed half-life of IL-1β in WT cells was similar 

to what has been previously described [127] and not grossly different to what was seen in 

Tyk2-deficient cells. In contrast, clear differences were observed in IL-1β production during 

three different labelling periods. Thus, data suggest that IL-1β translation rather than stability 

is affected by the absence of Tyk2. 

 

 

Figure 6. Effect of Tyk2 deficiency on pro-IL-1β protein stability and synthesis. (A) Macrophages were 

treated with LPS for 4 h, 20 µg/mL of CHX were added and cells were further cultivated for the times 

indicated. 5 µg proteins from whole cell lysates per lane were separated by 15%T SDS-PAGE. 

Protein loading was controlled by reprobing with an anti-panERK antibody. (B) Macrophages were 

pulse labelled with 35S methionine/cysteine and chased for the indicated times. IL-1β was precipitated 

from 400 µg whole cell extracts and detected by autoradiography. W - WT, T - Tyk2-/-. 
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Enhanced association of IL-1β mRNA with polysomes in the absence of Tyk2 

In order to more directly test whether Tyk2 influences the translation of IL-1β mRNA, we 

fractionated cytoplasmic RNA from LPS-treated WT and Tyk2-/- macrophages via sucrose 

gradients (Fig. 7A and B) and compared mRNA distribution among the different polysomal 

fractions (Fig. 7C and D). Upon 4 h LPS stimulation, IL-1β mRNA was found in the 

ribosome-free fractions as well as associated with polysomes in WT cells (Fig. 7C). In 

contrast, IL-1β mRNA was nearly exclusively found in the polysome fractions in Tyk2-/- cells. 

In accordance with the unchanged expression of TNFα protein, TNFα mRNA showed similar 

polysome profiles in WT and Tyk2-deficient cells (Fig. 7D). Differences in the IL-1β polysome 

profiles were also found at 14 h upon LPS treatment, although IL-1β mRNAs were generally 

shifted towards the ribosome-free mRNA fractions.  
 

 

 

Figure 7. See next page for legend. 
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Figure 7. Effect of Tyk2 deficiency on polysome profiles of IL-1β and TNFα. Macrophages were 

treated with LPS for 4 h and cytoplasmatic extracts were separated in a continuous 15-40% sucrose 

gradient by ultracentrifugation. Fractions were manually collected from top to bottom, deproteinised 

and RNA extracted.  (A, B) Polysomal fractions were separated on 0.8% agarose gel. (C, D) Two 

fractions each were pooled and mRNA levels were determined by RT-qPCR. TATA binding protein 

(TBP) was used as endogenous control. Amounts of the target mRNA of IL-1β (C) and TNFα (D) were 

calculated relative to the amount of TBP in each pooled fraction and are given as percentage of target 

mRNA present in all fractions. Representative results of three independent experiments are shown.  
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1.3 Discussion 

Within this report we show that Tyk2 is critical for the limitation of IL-1β expression in 

macrophages in response to LPS. Our data suggest that this occurs via translational 

regulation, thus adding another level of complexity to the control of IL-1β expression.  

We show herein that IL-1β protein expression in response to LPS is greatly increased in the 

absence of Tyk2, whereas its mRNA induction is unaltered. Unimpaired IL-1β mRNA 

induction is in accordance with the previously reported normal activation of NFκB and MAPK 

pathways in Tyk2-deficient macrophages [67,125]. We exclude defects in processing/release 

of IL-1β as potential reason for enhanced intracellular pro-IL-1β levels, since enhanced 

levels are also observed in the cell supernatants. We furthermore show that enhanced 

amounts of intra- and extracellular IL-1β (pro-IL-1β and mature IL-1β) are also observed 

under conditions that efficiently activate the inflammasome and pro-IL-1β conversion (i.e. 

ATP treatment). We show with pulse-chase experiments and by using the translational 

inhibitor cycloheximide, that IL-1β protein stability is unchanged in the absence of Tyk2. In 

contrast, IL-1β protein synthesis within a given pulse-period is enhanced in Tyk2-/- cells, 

arguing for an increased translational rate. In line with this finding, IL-1β mRNA association 

with polysomes is enhanced in the absence of Tyk2. Importantly, TNFα mRNA showed 

similar polysome profiles in WT and Tyk2-/- cells and, correspondingly, similar levels of TNFα 

protein were detectable in cell supernatants. Hence, the translational inhibition mediated by 

Tyk2 is not global but shows at least some degree of specificity.  
With respect to the signalling pathways involved, a similar increase in IL-1β protein 

expression is observed in IFNAR1-/- and Stat1-/- macrophages (intra-/extracellular and 

with/without additional ATP treatment). Further, but preliminary data, suggest a similar effect 

of IFN-β but not IFN-γ deficiency. These data argue for auto/paracrine canonical IFN-α/β 

signalling as the signalling cascade involved, although direct evidence for an impact of 

IFNAR1, Stat1 and IFN-β on translational regulation of IL-1β in macrophages remains to be 

provided. We have to note, that these data are in contradiction to a previous report showing 

reduced intracellular IL-1β protein upon LPS treatment in the absence of Stat1 or IFN-β in 

thioglycollate-elicited peritoneal macrophages (PM) [128]. A potential reason for this 

discrepancy could be the different source of macrophages used in this study, but a direct 

comparison of the two different populations would be required to clarify this issue. 

IFN-mediated translational inhibition is a long known phenomenon [129-131] and underlying 

mechanisms have been studied extensively. Activated IFN-inducible RNA-dependent protein 

kinase (PKR) phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 

(eIF2α), which results in the inhibition of viral protein synthesis [132,133]. Two other IFN-
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inducible and closely related proteins, ISG54 (IFIT2) and ISG56 (IFIT1), can negatively 

regulate translation [134-137]. Both proteins inhibit the formation of the translation initiation 

complex, although they target different steps [138]. Interestingly, IFIT1 and IFIT3, another 

member of the IFIT protein family, both show decreased LPS-induced expression in the 

absence of Tyk2 [125]. Furthermore, the pathways described above globally inhibit 

translation and thus, specificity for IL-1β but not TNFα is difficult to explain. Recently, the Akt 

pathway has been implicated in translation control upon IFNs, but in that case the influence 

is positive [139]. 

Post-transcriptional regulation has been shown for a large number of cytokines [140]. Most 

prominently, regulation occurs via AREs in the 3’-UTRs of the respective mRNAs. Several 

different ARE binding proteins (ARE-BPs) positively or negatively regulate mRNA stability, 

but can also affect translational efficiency. Although early studies show that IL-1β can be 

regulated at the translational level under certain conditions [141-143], mechanism and 

stimuli involved in regulating IL-1β translation are largely unknown. Within a more recent 

report [144], steroid receptor coactivator-3 (SRC-3) is shown to be required for translational 

repression of TNFα and IL-1β in response to LPS in peritoneal macrophages. For TNFα 

mRNA, this function was shown to be dependent on an ARE element and the ARE-BPs, T 

cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). The ARE binding protein 

tristetroprolin (TTP) is synergistically induced by IFN-α/β and p38 MAPK [145]. TTP 

destabilises several cytokine and chemokine mRNAs [145-147] and can also influence 

translation [148]. Surprisingly, TTP expression was even increased in response to LPS in the 

absence of Tyk2 (P. Kovarik, unpublished). TTP activity is also regulated by phosphorylation 

[149] and a potential impact of Tyk2 on the phosphorylation status of TTP remains to be 

determined. 

Another interesting option is the involvement of Tyk2-dependent microRNAs in the observed 

translational regulation. A number of IFN and LPS-inducible microRNAs have been 

described during the last years [150], but to our knowledge none of these has so far been 

shown to target IL-1β.  

IL-1β is critically involved in wide range of inflammatory and autoimmune diseases and is an 

attractive target for therapeutic interventions [151-153]. Many systemic inflammatory 

diseases are coupled to IL-1β expression [152], but its role in endotoxin shock is less clear. 

IL-1β-deficient mice do not show differences in survival in an LPS-induced endotoxin shock 

model [154], application of an IL-1ra reduced lethality upon LPS injection in rabbits [155], but 

clinical studies with IL-1ra on human septic patients did not show beneficial effects [156-

158]. Tyk2-/- mice are highly resistant to high-dose LPS-mediated endotoxin shock. Serum 

TNFα and IL-1β are normal in these mice, at least early after LPS injection [67]. A potential 
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influence of Tyk2 on IL-1β expression at later time points and/or locally remains to be 

evaluated.  

The potential anti-inflammatory role of Tyk2 described herein, raises the question whether 

Tyk2 has protective functions during IL-1β driven inflammatory diseases. Although the role of 

Tyk2 in diverse infection and tumour models has been extensively studied, its contribution to 

autoimmunity and acute/chronic inflammatory diseases is still poorly characterised. 
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1.4 Material and Methods 

 
Animals and Cells 
All mice were on C57BL/6 background, Tyk2, IFNAR1 and Stat1 knockout mice have been 

described previously [58,159,160]. BMM were isolated and grown in the presence of CSF-1 

derived from L929 cells as described previously [161]. After cultivation for 6 days, cells were 

treated with 100 ng/mL LPS (E.coli serotype 055:B5, Sigma) for the times indicated. All 

animal experiments were discussed and approved by the institutional ethics committee and 

were carried out in accordance with protocols approved by the Austrian Laws (GZ 

68.205/67-BrGT/2003; GZ 68.205/0204-C/GT/2007) and European Directives.  

Preparation of whole cell lysates 
Whole cell lysates were prepared as described previously [125]. 

Western blot analysis 
Western blots were performed as described previously [125]. The following antibodies were 

used: goat anti-IL-1β (R&D Systems); mouse anti-panERK (BD Biosciences); donkey anti-

goat IgG-HRP (Santa Cruz Biotechnology); donkey anti-rabbit IgG-HRP F(ab)’2 fragment; 

sheep anti-mouse IgG-HRP F(ab)’2 fragment (all GE Healthcare).  

ATP-treatment  

Cells (2 × 106) were stimulated with LPS in 1.5 mL complete medium (DMEM, 10% fetal calf 

serum (FCS), 15% conditioned medium (CM), 2 mM L-glutamine, 100 U/mL penicillin, 100 

µg/mL streptomycin, 50 µM β-mercaptoethanol) for 4 h followed by washing once with PBS 

and addition of 1.5 mL DMEM containing 1 mM, 3 mM or 5 mM ATP (Sigma) and incubated 

for 30 min.  

ELISA 

Cell culture supernatants were collected and centrifuged at 14000 × g for 3 min and 

concentrations of IL-1β and TNFα were determined using ELISA (R&D systems) according 

to manufacturer’s instructions. 

TCA precipitation of supernatants 
Supernatants (900 µL) were mixed with 13.5 µL of 10% (w/v) sodium deoxycholate 

monohydrat (Sigma) (final conc. 0.15%) and 300 µL of ice-cold 6.1 M TCA solution were 

added. Extracts were incubated 1 h on ice to allow complete protein precipitation. Samples 

were centrifuged at 10000 × g for 10 min at 4ºC.  Supernatants were discarded and pellets 

were washed three times with 1 mL ice-cold acetone and dissolved in 10 µL 0.2 M NaOH, 

diluted in 15 µL H2O and mixed with 25 µL 2 × SDS-PAGE Laemmli sample buffer followed 
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by boiling for 5 min. For western blotting, 15-20 µL of sample were separated on a 15%T 

SDS-PAGE and probed with anti-IL-1β antibody.  

Cycloheximide (CHX) treatment 

Cells (1 × 106) were stimulated with LPS for 4 h and 20, 10 or 5 µg/mL of CHX (Sigma) were 

added. Cells were incubated in the presence of CHX and LPS for the indicated times.  

Pulse/chase experiments and immunoprecipitation  

Cells (3 × 106) were stimulated with LPS in complete medium (see above) for 2.5 h, followed 

by washing once with PBS and incubation in LPS containing starving medium (DMEM 

methionine/cysteine-free, 1% BSA, 200 mM L-glutamine, 15% CM, 100 U/mL penicillin, 100 

µg/mL streptomycin) for 30 min. Medium was replaced by 1.5-2 mL pulse medium (starving 

medium supplemented with 70-100 µCi/mL 35S-methionine/cysteine (Met-[35S]-label, 

Hartmann Analytic GmbH) and cells were incubated in the presence of LPS for the indicated 

pulse times. Cells were washed once with PBS and incubated in chase medium (complete 

medium supplemented with 15 mg/mL L-methionine and L-cysteine (Sigma)). IL-1β was 

immunoprecipitated from 400 µg proteins with hamster anti-IL-1β antibody (BD Biosciences) 

using protein A-coupled sepharose beads.  

Polysome gradients 
Sucrose gradient fractionation was performed as previously described [162] with minor 

modifications. Cells (1.5 × 107) were lysed in 1 mL ice-cold buffer (10 mM Tris-HCl pH 8, 150 

mM NaCl, 1.5 mM MgCl2, 0.5% (v/v) NP-40, 500 U RiboLock) and nuclei were removed by 

centrifugation at 3000 × g, 4 °C for 2 min. The supernatant was supplemented with 20 mM 

DTT, 150 µg/mL CHX and 1 mM PMSF and centrifuged at 15000 × g, 4 °C for 5 min. 

Supernatants were layered onto 10 mL continuous 15-40% (w/v) sucrose gradients 

(containing 10 mM Tris-HCl pH 7.5, 140 mM NaCl, 1.5 mM MgCl2, 10 mM DTT, 100 µg/mL 

CHX) and centrifuged at 38000 rpm, 4 °C, for 2 h (Sorvall SW41 rotor). Fractions (0.5 mL) 

were collected manually from top to bottom. Proteins were digested with 100 µg proteinase 

K in the presence of 1% (w/v) SDS and 10 mM EDTA pH 8. RNA was extracted with 25:24:1 

phenol-chloroform-isoamyl alcohol (Invitrogen), supplemented with 1 µL glycogen (Sigma, 

approx. 20 mg/mL), 225 mM sodium acetate pH 5.2 and precipitated overnight with ethanol.  

Reverse transcription-quantitative PCR (RT-qPCR) 
RT-qPCR of total cellular mRNA was performed as described previously [125]. RT-qPCR of 

sucrose gradient-fractionated mRNA: Two fractions each were pooled and 4 µL RNA were 

used for cDNA synthesis with iScript (Bio-Rad Laboratories). RT-qPCR was performed in 

duplicate on Eppendorf realplex4 (Eppendorf). mRNA levels were determined by RT-qPCR 

using TBP as endogenous control. Expression levels of the target genes (TNFα and IL-1β) 
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were calculated relative to the amount of TBP in each pooled fraction and are given as 

percentage of the target mRNA present in all fractions. 

Primers and probes: The primers and probes for TNFα were described previously [67]. IL-1β 

was detected with TaqMan Gene Expression Assay (assay ID Mm00434228_m1; Applied 

Biosystems). TBP was detected with EVAGreen using following primers (5’ to 3’ direction): 

fwd: GAATATAATCCCAAGCGATTTGC (23 nts, Tm=58 °C);   

rev: CTGGATTGTTCTTCACTCTTGGCT (24 nts, Tm=60 °C); Amplicon length: 122 nts. 
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CONCLUDING DISCUSSION  

 

In our study we aimed to find novel functions of Tyk2 in macrophages and to analyse their 

responses to LPS on the protein level using 2D-DIGE. In the literature, 2DE was mostly 

applied for established cell lines, and only in a few reports primary cells were used. 

However, none of these used 2D-DIGE with included internal standard. Therefore, the first 

goal of the study was the establishment of reproducible experimental conditions for our 

approach (see appendix, section 1, and [163]). We analysed protein patterns in two different 

primary macrophage populations (BMM and PM) from WT and Tyk2-deficient mice with or 

without LPS treatment. During the optimisation we identified components of FCS in the 

protein patterns from macrophage cell lysates. These additives of standard cell culture 

media consistently appeared in 2DE analyses of protein lysates and could not be removed 

completely even with extensive washing steps. Spot positions of its main components 

(serum albumin, transferrin, α1-fetoprotein, α1-antitrypsin) were determined, which enabled 

us to eliminate spots derived from FCS from the list of candidates for identification by mass 

spectrometry [163].  

Preliminary results showed that spot volume ratios obtained from protein extracts from PM 

exhibited higher variability than those from BMM. This may be explained by the fact that PM 

represent a more heterogeneous cell population than BMM [164]. Therefore, we performed 

our analyses in BMM [125]. We analysed whole cell lysates and nuclear extracts from WT 

and Tyk2-deficient cells before and after LPS treatment in two different pH gradients using a 

sample size of three. We detected between 478 and 792 spots present in all images per pH 

gradient and only those were subsequently analysed. We achieved highly reproducible 

expression patterns between the biological replicates in both types of protein extracts. 

Statistical analyses revealed that differences in protein expression as low as 30% (1.3-fold) 

can be detected with our experimental set-up.  

We could show that absence of Tyk2 significantly alters the protein expression patterns 

before and after LPS treatment. However, genotype specific differences were more 

prevalent than differences in response to LPS. Using a cut-off of at least 40% difference in 

expression, we found 3-6% of the spots analysed with significant differences between the 

genotypes. In total, 119 spots were found to be differentially expressed before and after LPS 

treatment in the four experiments (whole cell lysates and nuclear extracts in two pH 

gradients, 4-7 and 6-9). Using MS we identified 27 spots, representing 23 different proteins, 

which were either positively or negatively regulated by Tyk2.  

One important aspect of our study in relation to the identified proteins is that they belong to a 

wide spectrum of functional categories, e.g. oxidative stress and immune response, 
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metabolism, transcription/translation and cytoskeleton architecture. We identified seven 

proteins which are known to be regulated by IFNs and several proteins that, based on our 

present knowledge, have not been previously connected to Tyk2 and/or IFN signalling.  

All of the IFN-inducible proteins (see also appendix, section 4) showed the expected up-

regulation in response to LPS in WT cells. In the absence of Tyk2, for at least one of the 

corresponding spots expression levels were reduced after LPS treatment, and some showed 

already reduced basal expression levels. The requirement of Tyk2 for maintaining basal 

expression levels has been previously shown for two IFN-inducible proteins, Stat1 and Stat2, 

and some IFN-inducible mRNAs [58,63,67]. Thus, data are consistent with the reported 

amplifying role of Tyk2 for IFN signalling [56,58] and provide additional examples for proteins 

that require Tyk2 for the maintenance of their basal expression levels.  

Two proteins involved in oxidative stress response were identified as differentially regulated, 

CATA (see also appendix, section 3) and PRDX1. Both are antioxidant enzymes and 

detoxify hydrogen peroxide (H2O2) [165]. H2O2 is produced during normal physiological 

processes under aerobic conditions. High amounts of H2O2 are produced in phagocytic cells 

during the “respiratory burst” in response to several stimuli including LPS [166]. H2O2 

together with other ROS influences the pathogenesis of sepsis through modulation of 

signalling cascades and cellular injury/damage [167]. Therefore, maintenance of an 

oxidant/antioxidant balance is important for the appropriate function of immune cells. 

Changes in expression patterns of these proteins suggest an influence of Tyk2 on the redox 

balance in macrophages.  

We identified three proteins involved in cellular metabolism, e.g. lipid metabolism (THIKA/B), 

arginine metabolism (ASSY) and purine metabolism (PNPH). Alteration of lipid metabolism 

during infection and inflammation is a known phenomenon [168] and macrophages are 

known modulators of immune responses as well as of lipid metabolism [169]. The implication 

of Tyk2 in the regulation of lipid metabolism in macrophages is further supported by a 

parallel proteomics study in our laboratory directed to test poly(I:C) responses in Tyk2-

deficient macrophages (Grunert et al., unpublished). Two of these proteins are also 

interesting to mention with respect to their contribution to the immune response. ASSY has 

been shown to be a critical enzyme for NO-production [170], an important inflammatory 

mediator. PNPH deficiency leads to cellular immunodeficiency resulting from impaired T cell 

differentiation and reduced numbers of T cells [171]. Moreover, lower levels of PNPH were 

found in various types of leukemias and lymphomas [171]. 

In addition, several differentially expressed proteins play a role in transcription and 

translation. Although we did not find a direct connection between these and other 

differentially expressed proteins in our study, this provides further evidence for an impact of 

Tyk2 on the regulation of protein expression at multiple levels in macrophages.  
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Among the proteins that were not previously linked to Tyk2 expression, PAI2 showed the 

strongest difference in expression levels after LPS treatment, which was approximately 15-

fold higher in Tyk2-/- as compared to WT cells. PAI2 belongs to the serpin gene family of 

protease inhibitors and is the physiological inhibitor of tissue- and urokinase-type 

plasminogen activator (tPA, uPA) [172,173]. The most interesting interconnection between 

both molecules is their involvement in metastasis progression. Inhibition of metastasis 

progression via inhibition and clearance of extracellular or cell surface bound uPA is the best 

known function of PAI2 [172,173]. The good prognosis in human cancers associated with 

elevated level of PAI2 is presumably due to the fact that PAI2 inhibits and clears uPA without 

initiating downstream signalling events [173]. The involvement of Tyk2 in tumour cell 

invasiveness has been reported recently [72,174], and it has been shown that either genetic 

deletion or knock down of Tyk2 by siRNA, as well as inhibition of its activity, reduces 

metastatic progression. In addition, in the case of prostate cancer cells, the suggested 

underlying mechanism was reduced uPA signalling [174], by which Tyk2 activation has been 

reported [175-177]. Intracellular functions of PAI2 are less well-characterised, however, 

there is evidence that PAI2 is involved in multiple cellular processes including apoptosis 

[173]. Moreover, interactions of PAI2 with several cytosolic proteins (e.g. IRF3, 

retinoblastoma protein, proteasome subunit β type I) have also been reported [173]. In our 

work we demonstrate for the first time a link between Tyk2 and PAI2 expression and this 

offers an attractive topic for future research in regard to tumour biology as well as to other 

functions of PAI2. 

A well-known property of 2DE is the detection of protein isoforms and/or spot shifts across 

pH gradients usually resulting from post-translational modifications. Accordingly, in some 

cases we identified the same protein in different spots on one gel or in both protein extracts 

at different pIs (e.g. PRDX1, IFI4/5). Among these proteins, we analysed PRDX1 spot 

patterns in more detail and could demonstrate a Tyk2-dependent acidic shift upon LPS 

treatment. PRDX1 catalyses the reduction of H2O2 and during this reaction a cysteine in the 

active site is oxidised to cysteine sulfenic acid that leads to formation of an intermolecular 

disulfide [165,178]. However, this reaction occurs slowly and PRDX1 can be further oxidised 

to sulfinic or sulfonic acid, which results in an inactivation of PRDX1. It has been reported 

that the (hyper)oxidation of PRDX1 results in a shift towards lower pI values in 2DE 

[179,180]. By comparison with the published findings (discussed in Radwan et al. [125]) we 

proposed that Tyk2 deficiency suppresses the (hyper)oxidation of PRDX1. However, an 

acidic shift may be also caused by other modifications, e.g. phosphorylation, which is also 

known for PRDX1 [165]. Therefore, further investigations should be performed in order to 

determine the exact nature of the modifications. 



Concluding Discussion 

 - 53 -

The most interesting protein identified within this work with respect to potential 

consequences for immunity, was IL-1β. We found strongly enhanced levels of pro-IL-1β in 

Tyk2-deficient as compared to WT macrophages after LPS treatment. IL-1β is an important 

proinflammatory cytokine produced mainly by monocytes and macrophages in response to 

inflammatory stimuli and is a key mediator of inflammatory and autoimmune diseases 

[151,181]. A connection between Tyk2 and IL-1β has not been previously described and we 

therefore analysed the underlying mechanisms in more detail. We found that Tyk2 is not 

necessary for IL-1β mRNA expression. In addition, protein stability, processing and secretion 

of IL-1β were not affected in the absence of Tyk2. In this context we should mention that a 

recent study showed a limiting effect of PAI2 expression on the secretion of IL-1β in 

macrophages [112]. However, we did not observe this cross-dependence and the secretion 

of IL-1β was unimpaired in Tyk2-deficient macrophages despite enhanced expression levels 

of PAI2. We could show that the translational efficiency of IL-1β mRNA is enhanced in Tyk2-

deficient macrophages. This suggests a novel Tyk2 derived signal regulating mRNA 

translation and studies on the mechanism involved are still ongoing in our laboratory. 

Interestingly, PAI2 mRNA expression was also similar in Tyk2-/- and WT cells, arguing for an 

effect of Tyk2 also on the translation or protein stability of PAI2. In contrast, NMI, a protein 

known to be transcriptionally regulated by IFNs, was also transcriptionally regulated by Tyk2. 

In addition to transcriptional and translational regulation, our results suggest that Tyk2 has 

an impact on the subcellular localisation of EF2. EF2 catalyses the translocation of tRNA 

and mRNA during the elongation step of protein synthesis. EF2 can be inactivated in 

response to several stimuli by post-translational modifications (e.g. phosphorylation) that 

result in a temporary inhibition of overall protein synthesis [182]. However, the observed 

higher amounts of total EF2 in nuclear extracts argue against a spot shift due to post-

translational modifications. The consequence of the different subcellular localisation of EF2 

on protein expression is not known at present. Moreover, owing to the facts discussed below 

further examinations to determine the exact localisation of EF2 should be performed. 

Protein patterns of nuclear extracts were clearly different from those of whole cell lysates, 

although there were some overlaps. More importantly, nuclear extracts showed slightly 

reduced but still high reproducibility. The protocol used results in relatively crude nuclear 

extracts and may also lead to co-purification of proteins from other compartments. This was 

reflected to some extent in the identified proteins, which included, for instance, several 

cytoskeleton associated proteins. Nevertheless, this enrichment allowed us to detect 

proteins, which might not be detected by analysis of whole cell lysates. In order to more 

effectively analyse low abundant and/or compartment-specific proteins, pre-fractionated 

samples or highly purified organelles could be used. Taking our reproducible results into 
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account, we can assume that such analyses would be feasible, despite potentially higher 

technical variations caused by additional preparation procedures. 

In summary, our results indicate new interconnections between Tyk2 and several cellular 

proteins as well as suggest an involvement of Tyk2 in a wide spectrum of cellular processes. 

The findings that Tyk2 influences multiple levels of protein expression highlight the relevance 

of proteomics approaches.  
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APPENDIX 

 

1. Comparison of two different macrophage populations and optimisation of 
experimental conditions. 

The initial work included the establishment of the experimental conditions for the proteomics 

study on primary murine macrophages using 2D-DIGE. We analysed the protein expression 

patterns derived from two different primary macrophage populations PM and BMM. For each 

2D-DIGE experiment macrophages were isolated from three mice per genotype (WT, Tyk2-/-) 

and were either treated with LPS or left untreated. The proteins from whole cell extracts of 

both populations were analysed in a 10 cm non-linear gradient pH 4-10 in the presence of 

urea followed by SDS-PAGE in 14 × 14 cm gels. Altogether, we obtained two 2D-DIGE 

experiments with six analytical gels per experiment. We detected 291 spots in PM and 365 

spots in BMM, which were present in all images and these were submitted to statistical 

analysis. The average volume ratios of the three biological replicates and the standard 

deviation (SD) values were calculated for each spot. Mean SD values were ±0.183 in PM 

and ±0.122 in BMM. The frequency distribution of the SD values from both macrophage 

populations are shown in Fig. 1. The minimal detectable differences (calculated as described 

previously [125]) were 66% for PM and 44% for BMM. These results demonstrated that the 

spot volume ratios detected in samples from PM exhibit higher variability than those from 

BMM. Therefore, we decided to perform further analyses on BMM. We modified the 

composition of the 2DE buffers, used narrower pH gradients (4-7 and 6-9) and extended the 

separation distance in both dimensions. This resulted in mean SD values of ±0.073 (pH 4-7) 

and ±0.078 (pH 6-9) and minimal detectable differences of 26% and 28%, respectively. 
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Figure 1. Frequency distribution of SD values in PM and BMM. SDs of spot volume ratios from three 

biological replicates were calculated for each spot and plotted against frequencies.  

 

2. Other identified spots  

Table 1 contains spots which were identified but were not included in the initial publication 

[125]. Positions of the spots on the corresponding gels are shown in Fig. 2. Most of the spots 

were identified as control spots for MS and accordingly, intensities in silver stained gels are 

high and, mostly  low (<30%) or no genotype specific differences were determined. In 

addition, two differentially expressed spots (pro-IL-1β and T-cell specific GTPase (TGTP)) 

were identified in the course of further MS-analyses.  
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Table 1. Other identified spots  

Spot 
# 

Protein Name 
Accession# 

Swissprot 
WT 

WT 
+LPS 

Tyk2-/- 
Tyk2-/-
+LPS 

p 
gt a 

p 
gt x tr b 

Mr 
(kDa) 

theoret. 

pI    
theoret. 

MS 
Method 

Protein 
extract c 

Proteins identified as control spots 

1  

Proteasome activator 

complex subunit 1 

(PSME1) 

P97371 1 1.18 0.81 0.68 n.s. d n.s. 28.7 5.7 ESI A 

2  
D-3-phosphoglycerate 

dehydrogenase (SERA) 
Q61753 1 0.91 0.68 0.60 0.0006 n.s 56.4 6.1 ESI A 

3  

Aldehyde dehydrogenase 

mitochondrial, precursor 

(ALDH2) 

P47738 1 0.73 1.31 0.98 0.0032 n.s. 56.5 7.5 ESI A 

4  Glutaredoxin-3 (GLRX3) Q9CQM9 1 0.45 0.97 0.68 n.s. 0.0126 37.8 5.4 MALDI A 

5  Galectin-3 (LEG3) P16110 1 0.90 0.70 0.56 0.0129 n.s. 27.5 8.5 MALDI C 

6 Plastin-2 (PLSL) Q61233 1 1.27 1.06 1.54 n.s n.s. 70.1 5.2 MALDI B 
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Table 1. Other identified spots (continued) 

Proteins identified in the course of further MS-analyses 

7 
T-cell specific GTPase 

(TGTP) 
Q62293 1 1.94 0.53 0.51 0.0003 0.0005 47.1 5.5 MALDI A 

8 
Interleukin-1 beta, 

precursor (IL1B) 
P10749 1 3.27 1.56 14.35 0.0083 0.0024 30.9 4.6 MALDI A 

 

 
a) p-values for the differences between genotypes under basal conditions 
b) p-values for the differences between genotypes in response to LPS treatment 
c) Protein extracts: A: whole cell lysates pH 4-7; B: nuclear extracts pH 4-7; C: nuclear extracts pH 6-9 
d) Not significant (p-value >0.05) 
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Figure 2. Representative 2DE protein patterns of Tyk2-/- macrophages. Analytical gels (75 µg protein 

each) visualised by MS-compatible silver stain after 2D-DIGE. Identified proteins are indicated by the 

spot numbers used in Table 1. Whole cell lysates: (A) pH gradient 4-7, 11.5%T SDS-PAGE. Nuclear 

extracts: (B) pH 4-7; (C) pH 6-9; both: 10%T SDS-PAGE.  
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3. Catalase (CATA) expression patterns  

As determined by 2D-DIGE, CATA showed enhanced expression levels in Tyk2-deficient 

macrophages both before and after LPS treatment (spot 12 in Table 3 [125], and Fig. 3A). 

The expression level of CATA was increased in the absence of Tyk2 to similar degrees both 

before and after LPS treatment. By 1D western blot analyses we could not detect any 

differences in total CATA protein expression after LPS treatment and between the genotypes 

(Fig. 3B). Using 2D western blot we found four CATA spots (Fig. 3C), but could not explicitly 

determine which of the spots corresponds to the spot identified within the 2D-DIGE 

experiments. All of the detected spots displayed similar Mr but different pIs. However, there 

were no clear differences between genotypes and after LPS treatment for any of the spots. 

 

 

Figure 3. Effect of Tyk2 deficiency on the expression of CATA protein. Macrophages were treated with 

LPS for the indicated times and whole cell lysates were subjected to 2D-DIGE analysis (A) or western 

blotting (B, C). (A) 2D-DIGE: expression levels are given as fold ratios relative to unstimulated WT 

cells. Mean values ±SD of three biological replicates are shown. (B) 1D western blot: 5 µg protein per 

lane were separated by 10%T SDS-PAGE. Protein loading was controlled by reprobing with an anti-

panERK antibody. Data are representative of three experiments. (C) 2D western blot: 50 µg protein 

were separated by 2DE using a pH 6-10 gradient for the first dimension, followed by the second 

dimension on a 12%T SDS-PAGE. Data are representative of three experiments. W - WT, T - Tyk2-/-, 

** p ≤ 0.01. 

B

0       18       0       18

CATA

panERK
p42

Time (h)

W T   

C

kDa

60

60

WT Tyk2-/-

untreated

18 h LPS

pI 7.67.47.27.07.67.47.27.0

A

**

**

2D-DIGE

Time (h)

n-
fo

ld
 e

xp
re

ss
io

n

0 18

0.5

0

1

1.5
WT

Tyk2-/-

B

0       18       0       18

CATA

panERK
p42

Time (h)

W T   

0       18       0       18

CATA

panERK
p42

Time (h)

W T   

C

kDa

60

60

WT Tyk2-/-

untreated

18 h LPS

pI 7.67.47.27.07.67.47.27.0

C

kDa

60

60

WT Tyk2-/-

untreated

18 h LPS

pI 7.67.47.27.07.67.47.27.0

kDa

60

60

WT Tyk2-/-WT Tyk2-/-

untreated

18 h LPS

pI 7.67.47.27.07.67.47.27.0pI 7.67.47.27.0 7.67.47.27.07.67.47.27.0 7.67.47.27.0

A

**

**

2D-DIGE

Time (h)

n-
fo

ld
 e

xp
re

ss
io

n

0 18

0.5

0

1

1.5
WT

Tyk2-/-

A

**

**

2D-DIGE

Time (h)

n-
fo

ld
 e

xp
re

ss
io

n

0 18

0.5

0

1

1.5
**

**

2D-DIGE

Time (h)

n-
fo

ld
 e

xp
re

ss
io

n

0 18

0.5

0

1

1.5
WT

Tyk2-/-

WT

Tyk2-/-



Appendix 
 

 - 61 -

4. T-cell specific GTPase (TGTP) expression patterns 

TGTP was found as differentially expressed spot with reduced expression levels in Tyk2-

deficient macrophages both before and after LPS treatment (spot 7 in Fig. 2 and Table 1, 

and Fig. 4A). TGTP is up-regulated about 2-fold in WT cells after LPS treatment. In contrast, 

expression levels of TGTP remain unchanged in Tyk2-/- cells. Preliminary results from 

western blot analysis are shown in Fig. 4B. Up-regulation of TGTP protein after LPS 

treatment was clearly detectable in WT cells. TGTP is a known IFN-inducible protein and, as 

to be expected, TGTP could not be detected in untreated as well as LPS-treated IFNAR1-

deficient cells. In the absence of Tyk2, TGTP could not be detected in untreated cells, which 

is in accordance with the reduced expression as determined by 2D-DIGE. In contrast to the 

2D-DIGE data, a very faint TGTP band was detectable after LPS treatment in Tyk2-/- cells, 

arguing for LPS-mediated up-regulation in the absence of Tyk2. However, TGTP expression 

was still reduced as compared to WT cells. 

 
 

 

Figure 4. Effect of Tyk2 deficiency on the expression of TGTP protein. Macrophages were treated with 

LPS for the indicated times and whole cell lysates were subjected to 2D-DIGE (A) or western blotting 

(B). (A) 2D-DIGE: expression levels are given as fold ratios relative to unstimulated WT cells. Mean 

values ±SD of three biological replicates are shown. (B) Western blot analysis: 10 µg protein per lane 

were separated by 10%T SDS-PAGE. Protein loading was controlled by reprobing with an anti-

panERK antibody. Preliminary data from one experiment are shown. W - WT, T - Tyk2-/-, I - IFNAR1-/-, 

* p ≤ 0.05, ** p ≤ 0.01. 
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5. Material and Methods  

 
Animals, Cells and preparation of whole cell lysates  
Mice, BMM, and preparation of whole cell lysates were described previously [125]. PM were 

isolated and cultivated as described previously [183].  

 
Western blot analysis 

1D and 2D Western blots were performed as described previously [125]. Antibodies used: 

goat anti-TGTP (Santa Cruz Biotechnology), rabbit anti-CATA (Calbiochem) mouse anti-

panERK (BD Biosciences); donkey anti-goat IgG-HRP (Santa Cruz Biotechnology). 

 

2D-DIGE pH 4-10 NL (10 cm) 
The first dimension was carried out without oil for a total of 15 kVh on a Multiphor II system 

(GE Healthcare) using 10 cm laboratory-made pH 4-10 IPG strips with non-linear pH 

gradients. The three labelled samples were mixed and the volume was adjusted to 320 µL 

with rehydration buffer (8 M urea; 2% (w/v) CHAPS; 65 mM DTT; 2% (v/v) carrier ampholyte 

mix). The IPG strips pH 4-10 were loaded with the samples through passive in-gel 

rehydration for 8 h at room temperature. The focused IPG strips were reduced 10 min (1% 

DTT) and alkylated 5 min (1.25% IAA) in equilibration buffer (6M urea; 30% glycerol; 62.5 

mM Tris-HCl pH 6.8; 2% SDS). The equilibrated strips were placed onto 10-15% gradient 

polyacrylamide gels (with 5% stacking gel) and sealed with 1% agarose in SDS running 

buffer. SDS-PAGE was performed according to Laemmli [184]. Gels (14 × 14 × 0.15 cm) 

were run for 5 h at 25 mA per gel in a Hoefer SE600 electrophoresis chamber (Hoefer 

Scientific Instruments).  
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