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1. Introduction 
 

Dissolved oxygen (DO) is a key environmental variable in estuarine and coastal 

marine ecosystems around the world, and its concentration has changed drastically in 

the past decades (Diaz 2001; Diaz and Rosenberg 2008). Hypoxia around the world 

is defined as dissolved oxygen values below 2 ml l-1 DO (equivalent to 2.8 mg O2 l-1 or 

91.4 mM; Diaz and Rosenberg 1995; Wu 2002) and is often associated with semi-

enclosed water bodies that, combined with water-column stratification, hinder full 

water exchange. At that value, benthic fauna start to show aberrant behaviour, 

culminating in mass mortality when DO declines below 0.5 ml l-1 (Diaz and Rosenberg 

1995). If anoxia, defined as 0 ml l-1 DO, is established on the sea floor, microbially 

generated H2S often occurs. Due to its toxic effects, sulphide shortens the survival 

times of organisms (Hagerman 1998). 

 

 

 
Fig. 1: Accumulated number of coastal sites where hypoxia has been reported (Vaquer-Sunyer and 
Duarte 2008). 
 

 

The number of hypoxic and anoxic environments in shallow coastal areas is 

increasing due to anthropogenic eutrophication (Diaz 2001), with an exponential 

growth rate of 5.54% (± 0.23%) per year (Fig. 1; Vaquer-Sunyer and Duarte 2008). 

More than 400 so-called dead zones have now been reported from all over the world 

(Fig. 2). When these areas were first studied they were not hypoxic (Diaz and 
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Rosenberg 2008), but, after 1955, eutrophication increased due to the use of 

phosphorus compounds by the detergent industry and of nitrogen and phosphorus by 

an expanding intensive agriculture. As a consequence, primary production has 

increased from that time on in the Adriatic (Justic et al. 1987). 

 

 

 
Fig. 2: Global distribution of more than 400 systems that have scientific reports of being 
eutrophication-associated dead zones (Diaz and Rosenberg 2008). 
 

 

Oxygen from the atmosphere or produced by phytoplankton is dissolved into the 

water column and mixed down into bottom waters, where it sustains the life of benthic 

fishes and invertebrates. This process can be disturbed, for example through water 

column stratification or decomposition of organic matter in the bottom water. In such 

cases, the oxygen can be depleted entirely. Values below 2 ml l-1 DO (about 18% of 

air saturation; Diaz 2001) are designated as being hypoxic. Physical and 

hydrodynamic processes control stratification and the renewal of oxygen in bottom 

waters. If there is water exchange and/or no stratification, hypoxia is less likely to 

occur (Conley et al. 2009a,b).  

 

One signal that a system has reached a critical point of eutrophication is episodic 

oxygen depletion. The next potential step is the onset of annual hypoxia. Diaz and 

Rosenberg (2008) reported that about 50% of the 400 so-called dead zones (Fig. 2) 

occur once a year in the summer after spring bloom, when the water reaches higher 

temperatures and stratification is strongest. This leads to mortality of benthic 

organisms, followed by some level of recolonization after the return of normal oxygen 
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conditions. Approximately 17 % of the dead zones are characterized by less than one 

such event per year, sometimes with years elapsing between events, and another 8% 

exhibit persistent hypoxic conditions (e.g. deeper parts of the Baltic Sea) due to 

extremely limited water exchange and excessive anthropogenic inputs of nutrients. 

 

 

The Adriatic Sea – an elongated basin in the Central Mediterranean – stretches NW 

to SE from the Gulf of Venice to the Strait of Otranto (800 km) and has an extremely 

long, geometrically complex coastline which creates a high diversity of hydrodynamic 

and sedimentary environments (Giordani et al. 2002). Those authors and Zavatarelli 

et al. (1988) subdivided the Adriatic into three parts: (1) the shallow northern part with 

an average depth of 35 m, which reaches from the Gulf of Venice to the Ancona-

Zadar transect, (2) the central Adriatic with an average depth of 140 m and (3) the 

southern part (max. depth 1200 m), extending down to the Otranto Strait. 

Especially the northern Adriatic Sea has been described several times as a sensitive 

ecosystem (Kollmann and Stachowitsch 2001; Schinner et al. 1997; Stachowitsch 

1986). Hypoxic events have been noted here periodically for centuries (Crema et al. 

1991), but the frequency and extent have increased during recent decades. 

Stachowitsch (1984, 1986), was among the first to describe the course of such 

oxygen crises in detail. The position at fairly high latitude makes the northern Adriatic 

subject to considerable seasonal fluctuations in temperature and radiation (Ott and 

Fedra 1977). A semi-enclosed, shallow water body (< 35 m), soft substrate, a high 

riverine input (e.g. from the Po River), high productivity and stratification favour the 

development of seasonal low DO events (Stachowitsch and Avcin 1987; Ott 1992). 

Thus, the shallowness and the nutrient-rich freshwater inflow make it one of the most 

productive areas in the Mediterranean (Stirn et al. 1974), while at the same time 

exhibiting the greatest amplitude of climatic factors during the year (Ott and Fedra 

1977).  

Degobbis et al. (2000) described the Po waters as a significant influence on the 

northern Adriatic Sea, because the freshwater inflow leads to higher water column 

stratification and changes both the general circulation and water exchange rate 

between the northern and the central Adriatic. The physical and chemical influences 

of this river, combined with meteorological conditions, such as calm weather along 

with an increased nutrient input in highly stratified water column, have a significant 
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biological effect on marine ecosystems. This promotes phytoplankton blooms 

followed by organic matter sedimentation, microbial decomposition and decreasing 

oxygen concentration. 

The soft-bottom of the northern Adriatic consists of muddy sand and is inhabited by 

well-known macrobenthic communities. Infaunal species are very common, for 

example the infaunal sea urchin Schizaster canaliferus and the brittle star Amphiura 

chiajei, which led to the description of the Schizaster chiajei zoocenosis in a large part 

of the northern Adriatic Sea, including the Gulf of Trieste, or the Schizaster-Turritella 

community in the Limski Canal (Vatova 1931, 1949). The macroepibenthos 

suspension-feeders in those parts of the Gulf of Trieste and further south along the 

Istrian coast are formed largely by the sponge Reniera spp., the ascidian 

Microcosmus sulcatus and the brittle star Ophiothrix quinquemaculata, an 

assemblage termed the Ophiothrix-Reniera-Microcosmus community (ORM-

community) by Fedra et al. (1976). The epifauna is aggregated into so-called multi-

species clumps or bioherms (Zuschin and Pervesler, 1996), with an average biomass 

of 370 ± 73 g m-2 (wet weight). They are capable of removing approximately 5% of the 

pelagic biomass from the water column each day (Ott and Fedra 1977). Thus, the 

benthos can be described as a buffer that plays an important role as a natural 

eutrophication control (Officer et al. 1982).  

 

As reviewed by Ott (1992) and Ott and Stachowitsch (1992), the large amount of 

organic matter (high primary production) can be removed by the suspension feeders 

or utilized by deposit feeders. As a result, many species grow rapidly and the biomass 

of the benthos increases. After spring, water column stratification isolates the surface 

layer from the sub-pycnocline layer, ultimately leading to decreased oxygen 

concentrations in the bottom layer. This prolonged stratification can promote hypoxic 

conditions during the summer and autumn months. Afterwards, in winter, the water 

column becomes homogeneous by vertical mixing, and macrobenthos recover again. 

Eutrophication compounds the effects of stratification. It leads to higher nutrient levels 

in the sea, therefore increasing the production of particulate organic matter (POM) 

and dissolved organic matter (DOM; Gray et al. 2002). This is often associated with a 

large amount of marine snow (stringers, macroflocs clouds; specified by Stachowitsch 

et al. 1990) in the upper layer. This sinking material can be temporarily retained at the 

pycnocline to form the so-called "false benthos". After stratification break-up due to 
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storms, these aggregates settle down and cover the sea floor, promoting widespread 

anoxia and thereby mass mortalities. As a consequence, the reduced macrobenthos 

is incapable of exerting its normal control over pelagic production (Ott 1992 and Ott 

and Stachowitsch 1992). 

 

The ehaviour and physiology of benthic organisms are influenced by both hypoxia 

and hydrogen sulphide (Mangum 1973; Vismann 1991). “Natural” oxygen crises are 

unpredictable and full documentation from the onset nearly impossible. To learn more 

about responses under decreasing oxygen conditions, a new underwater device, the 

Experimental Anoxia Generating Unit (EAGU), was built and deployed (Stachowitsch 

et al. 2007). It is equipped with a time-lapse camera and sensor equipment and 

successfully induced anoxia in a sublittoral macrobenthic community in situ. The 

"open" configuration (aluminum frame open on all sides) makes it possible to observe 

behaviours under normoxia. The "closed" configuration (plexiglass walls an all four 

sides) reveals the behavioural succession from the onset of hypoxia and anoxia. The 

novel feature is the combination of both time-lapse documentation and physico-

chemical data (dissolved oxygen, hydrogen sulphide, temperature and pH). Such 

parallel recording makes it possible to correlate atypical behaviours of various 

species to specific oxygen concentrations.  

The present study focuses on a range of organisms making up and surrounding the 

multi-species clumps. It is based on one of 13 experiments and was conducted from 

10.10.2006 - 14.10.2006. We used the oxygen thresholds 2, 1, and 0.5 ml l-1 DO 

proposed by Diaz and Rosenberg (1995). These oxygen values were successively 

associated with escape patterns in the epifauna, emerging infauna and initial 

mortalities. Whereas some behaviours are reversible, mortalities can lead to long-

term ecosystem shifts (Gray et al. 2002, Wu 2002). 

This work is a step forward in compiling a list of sensitive and tolerant species and a 

generally valid catalogue of behaviours to determine in situ ecosystem status and 

stability here and elsewhere. 
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2. Material and Methods 
 

2.1 Study site and deployment 
The study site is located in the Gulf of Trieste, northern Adriatic Sea (45° 32´ 55.68´´ 

N. 13° 33´ 1.89´´ E) off Cape Madona in Piran (Slovenia; Fig. 3a). The diving site is 

about 2 km off shore at a depth of 24 m and positioned under the oceanographic 

buoy of the Marine Biology Station (Fig. 3b) to minimize potential damage by 

commercial fisheries. The salinity was 38‰ and the bottom water temperature at the 

time in which the evaluated photo series averaged 21.5°C. 

 

  
Fig. 3: Study site in the Gulf of Trieste (a) and the oceanographic buoy (b). 
 

The diving site is composed of a soft bottom (poorly sorted silty sand) and is 

dominated by stable, high-biomass macroepibenthic communities (Stachowitsch et al. 

2007). They consist largely of sponges, ascidians and brittle stars, and one of the 

most widespread is known as the Ophiothrix-Reniera-Microcosmus community 

(ORM-community; Fedra et al. 1976). In most cases the organisms are aggregated in 

so-called multi-species clumps or bioherms that consist of a shelly base overgrown by 

sessile species (Zuschin et al. 1999).  

(a) (b) 
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2.2 Experimental design and sampling 
 

The Experimental Anoxia Generating Unit, in short EAGU (Fig. 4), is a new 

underwater device that induces anoxia in situ in marine benthic communities 

(Stachowitsch et al. 2007). In the initial deployments, i.e. also in the presently 

evaluated experiment, the emphasis was on including a wide range of representative 

organisms within the 50 x 50 cm view of the camera. 

The unit consists of two interchangeable bases and a separate lid that houses a time-

lapse camera, two flashes and a datalogger with a sensor array (Stachowitsch et al. 

2007). The frame consists of a 2 cm thick aluminum frame (L x W x H = 50 x 50 x 50 

cm) that was used in the first step, the "open" configuration (see detail of deployment 

below). For the second step, the "closed" configuration, the aluminum frame was 

switched with the plexiglass chamber and pushed approximately 2 cm into the 

sediment to hinder water exchange through the sediment. This plexiglass chamber 

consists of an aluminum frame and 6-mm-thick plexiglass walls on four sides, so it is 

open at the top and at the bottom. 

 

 
Fig. 4: The Experimental Anoxia Generating Unit (EAGU) with the instrumental lid positioned on top of 
the plexiglass chamber and one sensor connected to the datalogger and inserted through a sensor 
port. ch: camera housing, dl: datalogger, eb: external battery, fl: flashes, mb: metal brackets, os: 
oxygen sensor, pc: plexiglass chamber, sp: sensor port (Stachowitsch et al. 2007). 
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In both configurations a lid is placed on the top of the aluminum frame. This 12 cm 

thick plexiglass lid measures 51 x 70 cm and contains the whole instrumentation for 

the documentation: a digital camera (Canon EOS 30D, 8.2 MP) with a zoom lens 

(Canon EFS 10-22 mm, f/3.5-4.5 USM), a Canon Timer Remote Controller (TC-80N3) 

and a 1 GB flashcard (Figure 5b). Two underwater flashes ("midi analog" series 

11897; Subtronic, Germany) are attached to the lid by PVC-swivel arms on two 

adjoining sides. Moreover, four sensors, two battery packs (9Ah Panasonic. Werner 

light power, Unterwassertechnik, Germany) and the datalogger unit (PA3000UD, 

Unisense, Denmark) are placed on the lid. The camera was timed to take one image 

every 6 minutes and thus allowed us to document the full anoxia event over 3-5 days.  

All four sensors – two oxygen Clark-type microsensors (sensor type: OX-100, outside 

tip diameter 90-110 μm), one hydrogen sulphide Clark-type microsensor (sensor type: 

H2S-50, outside tip diameter 40-60 μm) and one temperature microsensor (sensor 

type: TP-200, outside tip diameter 180-220 μm; consists of a thermocouple within a 

tapered glass capillary) (Unisense) – were placed in plexiglass tubes (15 mm 

diameter; 40 cm length) and were pushed through O-ring-equipped sensor ports in 

the four corners of the lid. To calibrate the sensors at the beginning and end of the 

experiment the oxygen microelectrodes were inserted into fully oxygenated seawater 

from the surface and then in seawater that had been deoxygenated with sodium 

hydroxide. The microelectrode for hydrogen sulphide was calibrated in seawater and 

in a standard pH buffer reduced with a stock solution of total sulphide (for more 

information see Unisense instruction manual). 

 

The tips of the two oxygen sensors were positioned 2 cm (Ox1) and 20 cm (Ox2) 

above the sediment to detect potential oxygen stratification in the water. The 

temperature sensor was placed 20 cm above the sediment and the hydrogen 

sulphide sensor at 2 cm height. 

The two-channel datalogger unit (PA3000UD, Unisense, Germany) consists of one 

compartment containing four amplifier circuits with displays and datalogger, and one 

compartment containing the battery and communication cable (Fig. 5a). The 

datalogger has a memory capacity of 4000 samples per channel and allowed us to 

log sensor data every minute. 

The pH-value was measured separately with a pH-sensor (TA 197-pH, WTW, 

Germany) once a day during daily control dives. The sensor was inserted into the 
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chamber through a 2 cm diameter opening, which was closed with a rubber stopper 

during regular operation. The sensor is connected to a datalogger (Multi 197i, WTW) 

on the dive boat by a 60 m cable. 

 

 

 
Fig. 5: The datalogger and battery packs (a), the time-lapse camera in its housing (b) and the 
instrument-equipped lid (c) of the EAGU-system on board the research vessel Sagitta of the Marine 
Biology Station, Piran. 
 

Every experiment was subdivided into two configurations. The first is the "open" 

configuration, designed to observe the activities of the benthic fauna under normoxia 

for about 24 h. The second is the "closed" configuration; this involved exchanging the 

aluminum frame against the plexiglass chamber. Over a period of approximately 72 h 

we observed the onset of hypoxia and anoxia along with the onset of unusual 

behaviours, the emergence of infaunal organisms, colour changes of organisms and 

the sediment and the sequence of mortality. 

After approximately 72 h the plexiglass chamber and the lid (Figure 5c) were removed 

and transported to the boat and serviced. The photos and datalogger values were 

downloaded on a computer, the batteries exchanged and the sensors calibrated 

again (for more information see Unisense instruction manual). 

(a) (b) 

(c) 
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As many organisms as possible were collected by hand from the 50 x 50 cm surface 

after the experiment with a wide-mouthed syringe or with small hand sieves. They 

were transported to the laboratory and placed in plastic trays or small aquaria with 

seawater to separate living from dead organisms. Afterwards, they were all preserved 

in 4% formaldehyde:seawater solution (for further information see Stachowitsch et al. 

2007). 

 

2.3 Data analyses 
 

2.3.1 Investigated behaviours and reactions 

The present thesis evaluates one of 13 experiments, specifically experiment number 

12. The fieldwork was done by SCUBA diving and included deployment on 

10.10.2006 at 13:37 and termination on 14.10.2006 at 19:37. The experiment yielded 

a total of 1010 images and had an overall documentation time of 100.6 h. These 

images were also combined into a time-lapse movie using the Adobe Premier 6.5 

program. The whole movie is available at http://www.marine-hypoxia.com. 

The evaluated organisms were analysed image per image, and behaviours were 

registered in excel-sheets. If there were less than 5 individuals per species, all of 

them were evaluated; otherwise, up to 9 individuals were selected. To obtain an 

overview of different behaviours, sponges, bivalves, polychaetes, serpulids, 

crustaceans, echinoids, ophiuroids, ascidians were evaluated (Table 1). Bioherm-

associated crustaceans have been evaluated by Haselmair (2008). General 

behavioural categories included visibility (i.e. visible on the surface versus hiding 

under/in a bioherm or in sediment), locomotion, body movements, interactions and 

mortality. Some behaviours were further subdivided into different stages: horizontal 

and vertical locomotion or minor and major moves. Species-specific categories 

included visibility of the tentacle crown (serpulids), arm-tipping (brittle stars) or 

presence of camouflage (regular echinoids). As long as living organisms were visible, 

behaviours were recorded, i.e. until decomposition created poor visibility or until 

mortality or predation. Table 2 (see results) shows all individuals from the different 

class and genus, the number of observed organisms and the species-specific 

behaviours which were evaluated. The last observed locomotion or body movement 

(in some species plus two hours to account for a potential moribund phase; Table 3) 
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were equated with mortality. All behaviours were evaluated with respect to the values 

of the lower oxygen sensor. 

 
Table 1: List of evaluated behaviours associated with the different taxa. 

Taxonomic group N Species-specific behaviours evaluated 
Porifera 5 colour change1 
Bivalvia   
Chlamys varia 1 visibility, valve gape2, mantle shape3 
Corbula gibba 7 sediment movement, visibility, locomotion4 
Polychaeta   
Infaunal polychaetes 9 visibility, locomotion4, squirms in place 
Serpula vermicularis 2 tentacle crown5 
Crustacea   
Paguristes eremita 5 visibility, locomotion4, extension/shell6, body movement7 
Echinoidea   
Psammechinus 
microtuberculatus 

1 visibility, locomotion4, camouflage 

Schizaster canaliferus 3 sediment movement, visibility, locomotion4, spine movement 
Ophiuroidea   
Ophiothrix 
quinquemaculata 

4 visibility, locomotion4, arm position8 

Ophiura spp. 2 visibility, locomotion4 
Ascidiacea   
Microcosmus sulcatus 1 visibility, siphon habitus9, body contraction 
Phallusia mammilata 2 visibility, siphon habitus9, body contraction 
Behaviour subdivisions: 1 original, transforming, final colour; 2 closed, half, open, normal, widely gaping 
valves; 3 normal, swollen, retracted mantle tissue; 4 horizontal, vertical locomotion; 5 visible, retracted 
tentacle crown; 6 normal, extended, out from shell; 7 while the crabs themselves were immobile;  
8 upward arm-posture, arm-tipping, cling to clumps, on sediment; 9 open, half open, closed tentacle 
crown. 
 

2.3.2 Statistical analyses 

The observed behaviours were associated to five DO categories: normoxia  

(> 2.0 ml l-1 DO), beginning hypoxia (2.0- 1.01 ml l-1 DO), moderate (1.0-0.51 ml l-1 

DO), severe hypoxia (0.5- 0.01 ml l-1) DO and anoxia (no oxygen). Behaviours were 

recorded on Microsoft Excel sheets and further processed using an SPSS software 

package (version 11.5). The non-parametric Kruskal-Wallis test was used to 

determine if oxygen concentration significantly changes behaviour. To determine 

significant differences in behavioural reactions between oxygen categories, the Mann-

Whitney U test was chosen. 
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3. Results 
 

3.1 Sensor data - Chemophysical parameters 
 

Dissolved oxygen and hydrogen sulphide values for experiment 12 are shown in 

Figure 6. During the open configuration (h0 - h25), the DO values of the lower sensor 

varied from 4.5-5.5 ml l-1 (Ox1) and those of the higher sensor from 7.3-8.8 ml l-1 (20 

cm above the sediment; Ox2). Stormy weather probably explains the difference 

between the higher and lower sensors. After switching to the closed configuration, 

oxygen values of both sensors decreased continuously, reaching hypoxia after ~ 18 h 

and anoxia after ~ 48 h. Hydrogen sulphide value then increased rapidly, peaking at 

79.4 µM. The arrow in Fig. 6 marks the time of the final photographic image (both 

oxygen values: 0 ml l-1 DO; H2S: 17.9 µM).  
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Fig. 6: Sensor data from experiment 12 conducted from 10-14 Oct 2006. Corresponding to the image 
intervals, every sixth value was entered. The vertical line marks the time when the frame was switched 
to the chamber. The arrow marks the final photographic image. Ox2 (light blue, 20 cm above the 
sediment) is consistently higher than Ox1 (dark blue line, 2 cm above the sediment). H2S begins to 
increase half a day after attainment of anoxia. 
 

The whole experiment lasted over 5 days, but the photographic documentation 

stopped at h101 (4.2 days). The pH value was 8.26 at the beginning of the 

experiment and decreased to 7.68 on the final day. The temperature averaged 

21.5°C. 

0                             24                            48                            72                           96                          120 

open                   closed open                   closed 
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3.2 Photograph analyses and investigated taxa 
 

The macrobenthic assemblage during the initial "open" configuration is shown in 

Figure 7. The aluminum frame was open-sided and contained no plexiglass walls. 

The organisms showed their normal behaviour (e.g. brittle stars with their arms in 

upward suspension-feeding position, the tubeworms extended in filter-feeding 

position). Infaunal and cryptic species were not visible. The sediment had the same 

colour both in- and outside the frame. In the lower left- and right-hand corner the 

lower oxygen- and the H2S sensors are visible. 

 

 

Fig. 7: Initial, open configuration of experiment 12 showing the ascidians Phallusia mammilata (ph) 
and Microcosmus sulcatus (mi), brittle stars Ophiothrix quinquemaculata (op), Serpula vermicularis 
(se), sponges (sp) and the bivalve Chlamys varia (ch). 

ph 

sp 

se 

mi op 

ch 
ph 
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Fig. 8: First (a) and final (b) image after switch to closed configuration (chamber) in experiment 12. 
The frame contains the ascidians Phallusia mammilata (ph) and Microcosmus sp. (mi), the brittle star 
Ophiothrix quinquemaculata (op), the tubeworm Serpula vermicularis (se), sponges (sp), the bivalve 
Chlamys varia (ch), emerged infaunal sea urchins Schizaster canaliferus (sc). Note broadly gaping C. 
varia, retracted tube worms, and the sea cucumber Ocnus planci (oc) exposed on sediment surface. 
Some hermit crabs (Paguristes eremita: pa), have left their hiding places and extended from their 
shells (upper right-hand corner). Lower oxygen- and H2S sensor are visible in the lower left- and right-
hand corner. Note dark colour of the inside versus outside sediment due to H2S. 
 

 

At the beginning of the "closed" configuration (Figure 8 a) the behaviour was still 

normal. With decreasing oxygen, organisms showed numerous atypical behaviours. 

Figure 8 b shows the changes recorded in the behaviour and appearance of every 
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organism/species. Also, the sediment colour had changed at the end of the 

experiment. The hermit crabs emerged from their initial hiding places and the cryptic 

crabs aggregated on the highest point (e.g. on the sea squirt). The tentacle crowns of 

the tubeworms were retracted and the infaunal worms came out of the sediment. 

After bulging of the sediment, the infaunal sea urchin Schizaster canaliferus were 

visible. At the end, most organisms were lying motionless on the sediment, which was 

clearly darker than outside.  

 

The experiment included a wide range of epi- or infaunal organisms. Those species 

collected at the end of the experiment (Nx) and evaluated (N), the life habit (epi = 

epifaunal, in = infaunal) and the mobility are shown in Table 2.  

 

 
Table 2: List of species evaluated in experiment 12. Nx = number of collected specimens; N = number 
of evaluated organisms; life habit (epi = epifaunal, in = infaunal). 
Taxonomic group Species or organism Nx N Life habit Mobility 
Porifera  5 5 epi sessile 
Bivalvia      
 Chlamys varia 1 1 epi hemisessile
 Corbula gibba 15 7 in mobile 
Polychaeta      
 Infaunal polychaetes (not identified) 29 9 in mobile 
 Serpula vermicularis 2 2 epi sessile 
Crustacea      
 Paguristes eremita 9 5 epi mobile 
Echinoidea      
 Psammechinus microtuberculatus 1 1 epi mobile 
 Schizaster canaliferus  3 3 in mobile 
Ophiuroidea      
 Ophiothrix quinquemaculata 20 4 epi mobile 
 Ophiura spp. 2 2 epi mobile 
Ascidiacea      
 Microcosmus sulcatus 1 1 epi sessile 
 Phallusia mammilata 2 2 epi sessile 
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3.3 Behavioural analyses 
 

Under normoxia, no atypical behaviours were observed. With decreasing oxygen 

values, however, the organisms showed unusual behaviours correlated to the 

different oxygen thresholds 2, 1, and 0.5 ml l-1 DO. Observed behaviours differed not 

only between species but also within species, for example between juvenile and adult 

individuals in the infaunal sea urchin Schizaster canaliferus. With the exception of the 

bivalves Corbula gibba, all organisms died during the experiment. 

To simplify the evaluation, I numbered all multi-species clumps in the 50 x 50 cm area 

from 1 to 5. This made it easier to associate them with different organisms and to find 

the individuals again (Fig. 9).  

 

 
Fig. 9: Experiment 12, open configuration, numeration of the multi-species clumps. 
 

 

 

3.3.1 Porifera (not identified) 

There were five sponge colonies in experiment 12. Three orange colonies belong to 

clumps 1, 3 and 4, and two light brown colonies belong to clump 3. Only colour 

changes were documented (subdivided into three stages): original, transforming and 
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final colour. At h75 the colour started to change from the original light brown into grey 

(Fig. 10b-b’), and at h80 the first colony showed the final dark grey colour. All three of 

the grey colonies showed this final colour at h95 (Fig. 10c-c’). The colour of the two 

orange colonies at clumps 1 and 4 did not change at all. 
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      N=     2145   415   290    955  1245 
                  >2     ≤2      ≤1    ≤0.5     0 
                  DO conc. category (ml l-1) 

Fig. 10: Colour changes of sponges during induced hypoxia and anoxia. The histograms (a-c) show 
the number of behaviours observed per hour in relation to the lower oxygen sensor (values averaged 
per hour). Note different scales on the second y-axis. The error bar diagrams (a’-c’) show course of 
selected behaviours during the five oxygen categories. N = number of photographs per oxygen 
category.  
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3.3.2 Bivalvia 

3.3.2 (i) Chlamys varia 

One Chlamys varia individual was positioned on the top of clump 2 and remained in 

the same position throughout the experiment. A hermit crab occasionally sat on the 

bivalve and so there were fluctuations in visibility (Fig. 11a). Its normal behaviour 

(shell gape open) was shown up until severe hypoxia was reached (Fig. 11b). At 

anoxia, the bivalve showed two atypical behaviours at the same time: the number of 

observations in which the mantle tissue of the bivalve was in its normal position 

dropped sharply (h91), simultaneously the shells opened widely and the mantle tissue 

began to swell (highly significant; p<0.01; Fig. 11c+d).  
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      N=    429    83    58    191   249             N=    429    83    58    191   249 
                >2    ≤2     ≤1   ≤0.5     0                         >2    ≤2     ≤1   ≤0.5    0 
                                            DO conc. category (ml l-1) 

Fig. 11: Changes in the species-specific behaviour of Chlamys varia during induced hypoxia and 
anoxia. The behaviours visibility, valve gaps and mantle shape were evaluated. The course of the 
selected behaviours during the five oxygen categories is shown by the error bar diagrams. Numbers 
below the x-axes (N) show the number of photographs per oxygen category. 
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3.3.2 (ii) Corbula gibba 

The infaunal bivalve Corbula gibba reacted very sensitively to decreasing oxygen. 

They emerged from the sediment when the dissolved oxygen dropped below 4 ml l-1 

DO at h29 (Fig. 12a). At this point the sediment over the bivalves started to move and 

bulge. Below 2 ml l-1 DO, four individuals reburrowed into the sediment but emerged 

again at h59 and h92 (small peaks in Fig. 12b). Once exposed on the sediment, 12% 

moved around as soon as they became visible (Fig 12c-c'), but after peaking during 

late normoxia the number of observed locomotions decreased significantly (p<0.05). 

Some remained visible on surface but did not move. In this experiment, all individuals 

survived. 



 

20 

 
         (a) sediment bulging 

0

1

2

3

4

5

6

1 13 25 37 49 61 73 85 97
0

1

2

3

4

5

6

7

8

9

10

         (a’) sediment bulging 
 

  1.0 
 
 
  0.8 
 
 
  0.6 
 
 
  0.4 
 
 
  0.2 
 

 
         (b) visibility 

0

1

2

3

4

5

6

1 13 25 37 49 61 73 85 97
0

10

20

30

40

50

60

70

 
          (b’) visibility 
 

   25 
 
 
   20 
 
 
   15 
 
 
   10 
 
 
     5 
 
 

   
   

   
   

   
   

   
 m

ea
n 

D
O

 c
on

c.
 h

-1
 (m

l l
-1

) 

 
         (c) horizontal locomotion  

0

1

2

3

4

5

6

1 13 25 37 49 61 73 85 97
0

10

20

30

40

50

60

time (h) 

                                                                                                                                                           num
ber of observations / hour 

   
   

   
   

  m
ea

n 
%

 o
f  

ob
se

rv
at

io
ns

 (9
5%

 C
l) 

 
          (c’) horizontal locomotion 
 

    25 
 
 
    20 
 
 
    15 
 
 
    10 
 
 
      5 
 
 
 

     N=      3003   581   406  1337  1743 
                 >2      ≤2      ≤1    ≤0.5     0 
                  DO conc. category (ml l-1) 

Fig. 12: Changes in the species-specific behaviour of Corbula gibba during induced hypoxia and 
anoxia. The histograms (a-c) show the number of behaviours observed per hour in relation to oxygen 
curve (values averaged per hour). Note different scales on the second y-axis. The error bar diagrams 
(a’-c’) show course of selected behaviours during the five oxygen categories. N = number of 
photographs per oxygen category. 
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3.3.3 Polychaeta 

3.3.3 (i) Infaunal polychaetes (not identified) 

Nine individuals out of 29 infaunal polychaetes that emerged on the sediment surface 

were evaluated. After exposure, the polychaetes remained visible just for a few hours. 

They either reburrowed or hid behind the sensors. The first individuals emerged at 

moderate hypoxia (h53). Figure 13a clearly shows that the number of visible 

individuals fluctuated between h52-72. After h73 the number of visible individuals 

increased constantly and 45 % were visible (after h85). 

Horizontal locomotion was rare, but most polychaetes showed the behaviour "squirms 

in place" at anoxia: they squirmed and writhed at one particular spot. 

One individual moved in the sediment in the left half of the 50x50 cm frame: it was 

successively visible (1) at h77 midway along the upper plexiglass wall, (2) midway 

along the left plexiglass wall, (3) between clumps 4 and 5 and (4) it crawled down to 

the lower wall, where it was visible until h90.  
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    N=      3861   747    522  1719  2241 
                >2      ≤2      ≤1    ≤0.5     0 
                DO conc. category (ml l-1) 

Fig. 13: Changes in the species-specific behaviour of infaunal polychaetes during induced hypoxia and 
anoxia. The histograms (a-c) show the number of behaviours observed per hour in relation to oxygen 
curve (values averaged per hour). Note different scales on the second y-axis. The error bar diagrams 
(a’-c’) show course of selected behaviours during the five oxygen categories. N = number of 
photographs per oxygen category. 
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3.3.3 (ii) Serpula vermicularis 

Two of these tubeworm individuals were located in the left half of the chamber; one 

was part of clump 4 and the other a part of clump 5. The tubes remained visible 

throughout the experiment. Whereas under normoxia and until moderate hypoxia the 

tentacle crowns were visible most of the time, below 0.5 ml l-1 DO (h59) the worms 

started markedly to retract their crown into the tube (highly significant; p<0.01; Fig. 

14a').  
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    N=       858    166   116    382   498 
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                 DO conc. category (ml l-1) 

Fig. 14: Changes in the species-specific behaviour of Serpula vermicularis during induced hypoxia and 
anoxia. The histograms (a) show the number of behaviours observed per hour in relation to oxygen 
curve (values averaged per hour). The error bar diagrams (a’) show course of selected behaviours 
during the five oxygen categories. N = number of photographs per oxygen category. 
 

3.3.4 Crustacea - Paguristes eremita 

Under normoxia, the five evaluated hermit crabs were mostly hidden under multi-

species clumps. With beginning hypoxia they started to leave their hiding places (Fig. 

15a+a') and moved on the sediment or on the clumps (Fig. 15b+b'). There was a 

highly significant (p<0.01) increase in the number of visible crabs from normoxia to 

beginning hypoxia. Throughout the experiment, individual crabs hid under a multi-

species clump. 

Body movements (Fig. 15d-d'), i.e. movements while the crabs themselves were 

immobile, were recorded and slightly increased after h40.  

The hermit crabs extended from their shells only under anoxia (after h79; Fig. 15c+c'). 

At the end of the experiment (h100), two individuals were completely outside their 

shells and lying on the sediment in the upper right-hand corner. 
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Fig. 15: Changes in species-specific behavioural of Paguristes eremita responses during induced 
hypoxia and anoxia. The histograms (a-d) show the number of behaviours observed per hour in 
relation to oxygen curve (values averaged per hour). Note different scales on the second y-axis. The 
error bar diagrams (a’-d’) show course of selected behaviours during the five oxygen categories.  
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3.3.5 Echinoidea 

3.3.5 (i) Psammechinus microtuberculatus 

Only one individual of the epifaunal sea urchin Psammechinus microtuberculatus was 

present in experiment 12. At the beginning it was positioned outside the frame, but 

during the "open" configuration entered it and was visible 75% of the time (Fig. 16a); 

when not visible it was hiding under the multi-species clumps number 4 and 5 (e.g. 

h29 to h38). 

Horizontal locomotion was observed in phases (Fig. 16b) but decreased markedly 

with severe hypoxia (Fig. 16b'). From h85 on, the sea cucumber Ocnus planci was 

lying on the sea urchin and no further evaluation was possible. 
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Fig. 16: Changes in the species-specific behaviour of Psammechinus microtuberculatus during 
induced hypoxia and anoxia. The histograms (a-b) show the number of behaviours observed per hour 
in relation to oxygen curve (values averaged per hour). The error bar diagrams (a’-b’) show course of 
selected behaviours during the five oxygen categories. N = number of photographs per oxygen 
category. 
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Under normoxia the sea urchin was camouflaged with 2 pieces of shell debris (Fig. 

17a). With moderate hypoxia it started to discard the camouflage, whiel slowly moved 

down the test from the aboral side (peak at severe hypoxia; Fig. 17b-b'). At the end of 

severe hypoxia (h66) it had lost all its camouflage (Fig 17c).  
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Fig. 17: Changes in the species-specific behaviour of Psammechinus microtuberculatus during 
induced hypoxia and anoxia. The histograms (a-c) show the number of behaviours observed per hour 
in relation to oxygen curve (values averaged per hour). The error bar diagrams (a’-c’) show course of 
selected behaviours during the five oxygen categories. N = number of photographs per oxygen 
category. 
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3.3.5 (ii) Schizaster canaliferus 

Three individuals of this infaunal, irregular sea urchin emerged from the sediment: 

two small juveniles and one large adult. Under normoxia they were not visible 

because at their infaunal life habit. With beginning hypoxia (h44) the sediment above 

them started to bulge and clump 2 began to wobble (one sea urchin was apparently 

under this clump), peaking at moderate hypoxia (Fig. 18a). During emergence the 

adult individual pushed over clump 3. At h64 and h66 the adult and one juvenile were 

visible (Fig. 18b) and moved on the sediment (Fig. 18c). The second juvenile 

emerged at h90. The adult moved in the upper right-hand corner between the upper 

plexiglass wall and clumps 1 and 3. The first juvenile moved around in the middle of 

the deployment between the clumps 1 to 4, and the second juvenile moved between 

the lower plexiglass wall and clumps 2 and 4. Mortality occurred at h88, 91 and 99 

when the last body movement (plus 2h) was recorded. While lying motionless on the 

sediment, spine moves (Fig. 18d) were still observed. 

In this species, differences were evident between the two juveniles and the adult. The 

adult was the first to emerge from the sediment but showed longer body movement 

(h99) and therefore apparently lived longer than the two younger individuals. 
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Fig. 18: Changes in the species-specific behaviour of Schizaster canaliferus during induced hypoxia 
and anoxia. The histograms (a-d) show the number of behaviours observed per hour in relation to 
oxygen curve (values averaged per hour). Note different scales on the second y-axis. The error bar 
diagrams (a’-d’) show course of selected behaviours during the five oxygen categories.  
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3.3.6 Ophiuroidea  

3.3.6 (i) Ophiothrix quinquemaculata 

All evaluated brittle stars were visible throughout the experiment (Fig. 19a). Under 

normoxia they were mostly stationary and positioned on multi-species clumps. Up to 

seven individuals sat on one bioherm, so the discs were sometimes observed. With 

beginning hypoxia, they started to move horizontally on the bioherms, peaking at 

moderate hypoxia (Fig. 19d). At moderate hypoxia, 30% of the evaluated individuals 

left the substrate and moved onto the sediment (Fig. 19f).  

Also a marked change in arm-posture was documented. Under normoxia they 

showed typical suspension-feeding behaviour with the arms stretched upwards to 

filter the water (Fig. 19b and Fig. 20a). With beginning hypoxia, arm-posture changed: 

the brittle stars either frequently stood on their arms (so-called arm-tipping) between 

h44 to h59 to elevate their central disc (Fig. 19e and Fig 20b) or clung to the multi-

species clumps. The latter behaviour increased constantly and peaked at severe 

hypoxia between h56 to h67 (Fig. 19c and Fig 20c). At anoxia, 50 % of the evaluated 

individuals were lying motionless on the sediment (Fig. 19f and Fig. 20d). All 

evaluated O. quinquemaculata individuals died at the onset of anoxia (h66, 67, 73 

and 77), making them the most sensitive species in the experiment. 
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Fig. 19: Changes in the species-specific behaviour of Ophiothix quinquemaculata during induced 
hypoxia and anoxia. The error bar diagrams show course of selected behaviours during the five 
oxygen categories. N = number of photographs per oxygen category. 
 

 

Figure 20a-d clearly show a succession of arm-posture correlated to decreasing 

oxygen in all evaluated individuals. The photographs on the right side illustrate the 

atypical changes in arm posture. 
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Fig. 20: Changes in the species-specific behaviour of Ophiothrix quinquemaculata during induced 
hypoxia and anoxia. The histograms (a-d) show the number of behaviours observed per hour in 
relation to oxygen curve (values averaged per hour). Note different scales on the second y-axis.  
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3.3.6 (ii) Ophiura spp. 

The brittle star Ophiura spp. is an epifaunal subsurface suspension-feeder. The first 

individual emerged at severe hypoxia (h70), the second at anoxia (h88). Both 

remained visible until the end of the experiment (Fig. 21a) and showed horizontal 

movement after emergence from the sediment (Fig. 21b). The first peak (Fig. 21b) 

between h70-h76 reflects the locomotion of the first emerged individual; the second 

peak between h86-h94 describes the movement of the other one. The last arm 

movements were observed at h88 and 95 and mortality occurred. 
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Fig. 21: Changes in the species-specific behaviour of Ophiura spp. during induced hypoxia and 
anoxia. The histograms (a-b) show the number of behaviours observed per hour in relation to oxygen 
curve (values averaged per hour). Note different scales on the second y-axis. The error bar diagrams 
(a’-b’) show course of selected behaviours during the five oxygen categories. N = number of 
photographs per oxygen category. 
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3.3.7 Ascidiacea 

3.3.7 (i) Microcosmus sulcatus 

This ascidian individual was part of clump 2. During normoxia both siphons remained 

largely open (80 %, Fig. 22a'). With beginning hypoxia, however, the ascidians started 

to close both siphons simultaneously (Fig. 22a). This behaviour correlated with body 

contraction (the ascidian contracts its entire body), peaking at beginning hypoxia 

(nearly 50 %). At moderate hypoxia, siphons were open again but body contraction 

decreased unitl the end of the experiment (Fig. 22b+b’). 
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Fig. 22: Changes in the species-specific behaviour of Microcosmus sulcatus during induced hypoxia 
and anoxia. The histograms (a-c) show the number of behaviours observed per hour in relation to 
oxygen curve (values averaged per hour). The error bar diagrams (a’-c’) show course of selected 
behaviours during the five oxygen categories. N = number of photographs per oxygen category. 
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3.3.7 (ii) Phallusia mammilata 

The two individuals of the ascidian species Phallusia mammilata belong to clumps 2 

and 3 and their siphons were always visible (Fig. 23a). They started to contract their 

body up until the time where anoxia was reached. Fig. 23b shows that the number of 

body contractions increased slightly until severe hypoxia and ceased at anoxia 

(p<0.01) observed in h75. While the individuals contract their body, the siphons were 

open up to 78 % of the time (Fig. 23c). During body contractions, closed siphons were 

rare (about 1.5 %). Afterwards, at anoxia, when there were no body contractions, the 

number of observed closed siphons increased to 5 % (Fig. 23d). 
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Fig. 23: Changes in the species-specific behaviour of Phallusia mammilata during induced hypoxia 
and anoxia. The error bar diagrams show course of selected behaviours during the five oxygen 
categories. N = number of photographs per oxygen category. 
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3.4 Mortality 
 

Decreasing oxygen caused not only atypical behaviours, but also led to mortality. 

Except for the bivalve Corbula gibba, all evaluated organisms died at either severe 

hypoxia or anoxia. Mortality was defined by the last visible activity such as 

locomotion, arm- or body movement (in the species Serpula vermicularis, Schizaster 

canaliferus and Paguristes eremita plus two hours to account for a potential moribund 

phase; Table 3). Table 3 also lists the time of death (h), the oxygen value and the 

hydrogen sulphide value for each dead individual.  

 

The evaluated brittle star Ophiothrix quinquemaculata individuals were the most 

sensitive to low dissolved oxygen concentration. This species not only showed 

atypical behaviour very early on, at beginning hypoxia, but were also among the first 

to die (between h66 and h77, DO 0.3, H2S absent). Due to the lack of hydrogen 

sulphide, mortality can be attributed solely to the low oxygen concentration. 

As contrast, all evaluated hermit crabs Paguristes eremita died forewards the end of 

the experiment, approximately 24 h after the brittle stars (h101, DO 0, H2S 17.9).  

In the infaunal sea urchin Schizaster canaliferus the two juveniles died earlier (h88 

and h91) than the adult (h99). 

In some species (Chlamys varia, Psammechinus microtuberculatus, Phallusia 

mammilata, Microcosmus sulcatus and sponges) it was not possible to determine the 

time of death due to the lack of clear signs of mortality (e.g. drooping in ascidians). 
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Table 3: Criteria and time of death. 
Taxonomic group N Final activity Time of death 

(h) no. 
Individuals 

DO (ml l-1) H2S (µM) 

O. quinquemaculata 4 arm movement 66/67/73/77/- 0.3/0.3/0.3/0.3
/- 

0/0/0/0/- 

S. vermicularis 2 movement + 2 h 79/98 0/0 0/12.8 
Infaunal polychaetes 
(not identified) 

9 body movement 80/90/90/97/-
/-/-/-/- 

0/0/0/0/-/-/-/-/- 0/9.0/9.0/11.6/-/-/-
/-/- 

Ophiura spp. 2 arm movement 88/95 0/0 5.15/10.27 
S. canaliferus 3 locomotion + 2 h 88/91/99 0/0/0 5.2/10.3/14.1 
P. eremita 5 body movement 

+ 2 h 
100/100/101/
-/- 

0/0/0/-/- 15.4/16.7/17.9/-/- 

C. varia 1 -    
P. microtuberculatus 1 -    
Porifera 5 -/-/-/-/-    
M. sulcatus 1 -    
P. mammilata 2 -/-    
C. gibba 7 survivors    
- mortality in this deployment undiscernible. 
 

A temporal succession of mortality is shown in Fig. 24. The purple bars mark the time 

of death of the brittle star Ophiothrix quinquemaculata at severe hypoxia or anoxia. 

Especially the infaunal polychaetes (orange bars) and the Serpula vermicularis (blue 

bars) show clear intraspecific differences, up to 19 h within one species.  

Body movements of the hermit crab Paguristes eremita (pink bars) were still observed 

in the final photographs (h100 and 101); it is therefore possible that they survived 

longer.  
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Fig. 24: Sequence of mortality. a = Ophiothrix quinquemaculata, b = Serpula vermicularis, c = Ophiura 
spp., d = Schizaster canaliferus,e = infaunal polychaetes, and f = Paguristes eremita.  
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4. Discussion 
 

The lack or absence of dissolved oxygen in coastal marine ecosystems influences a 

wide range of organisms and therefore impacts the system as a whole. Biological 

factors like respiration are the main drivers for decreasing oxygen and pH values 

(Hagerman 1998).  

The organisms show special behaviours correlated to different oxygen thresholds. 

The experimental approach and the evaluation of one full deployment enabled me to 

define the sequence of in situ reactions of species, to correlate them to different 

oxygen concentrations and to determine a sequence of mortality.  

 

 

4.1 Critical oxygen levels and behavioural reactions 
 

Decreasing oxygen caused different types of basic reactions, reinforcing the results of 

Riedel et al. (2008):  

• increase or decrease in normal activities 

• initiation of atypical behaviours 

• emergence of infaunal organisms 

• colour changes of species and the sediment 

• mortality 

The experiment described in Riedel et al. (2008) provided an initial evaluation of the 

responses of the benthic community and provided a framework for the present study. 

It was subdivided by an unexpected oxygen peak into two declining phases. The 

organisms showed the same behaviours twice, once during each decline (with 

recovery in between), underlining the hypothesis that behavioural changes are 

correlated to different oxygen thresholds. There are considerable differences in 

tolerance to oxygen depletion from species to species due to their different 

physiological capacities and adaptabilities. Moreover, the presence of hydrogen 

sulphide reduces this tolerance due to its toxic effects (Hagerman 1998).
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4.1.1 Beginning hypoxia (≤ 2 ml l-1 DO) 

Hypoxic conditions affect the life and behaviour of many marine organisms (Nilsson 

and Sköld 1996; Stierhoff et al. 2006; Vismann 1990; Vistisen and Vismann 1997). 

Although most authors (Rosenberg et al. 1991; Diaz and Rosenberg 1995; Riedel et 

al. 2007; Stachowitsch et al. 2007; Diaz and Rosenberg 2008; Riedel et al. 2008) 

apply oxygen thresholds below 2 ml l-1 DO, Vaquer-Sunyer and Duarte (2008) are of 

the opinion that this threshold is too low for the more sensitive taxa. In the present 

study, this also applied to the bivalve Corbula gibba and the ascidians Microcosmus 

sulcatus and Phallusia mammilata: they already showed initial aberrant behaviour at 

slightly below 4 ml l-1 DO. 

Nevertheless, most organisms in my experiment first initiated atypical behaviour at 

the generally accepted level of 2 ml l-1 DO, which we termed beginning hypoxia. The 

hermit crabs Paguristes eremita left their hiding places below 2 ml l-1 DO. The brittle 

stars Ophiothrix quinquemaculata started to stand on their arms and to cling to the 

multi-species clumps. The infaunal sea urchins Schizaster canaliferus started to 

approach the sediment surface.  

A typical species of the transition zone between detrital and muddy bottoms is the 

highly abundant lamellibranch Corbula gibba (Crema et al. 1991). They showed an 

atypical behaviour by emerging from the sediment when the oxygen concentration 

was at 4 ml l-1 DO, making them one of the first organisms to show a clear response.  

The hermit crabs Paguristes eremita also showed very early atypical behaviour. Most 

of these crabs were initially not visible because they were hidden under multi-species 

clumps. They left their hiding places as oxygen values fell and then moved around 

within the EAGU frame during the whole deployment. Stachowitsch (1984) observed 

abnormal extension from shells already on "day 1" of a mass mortality event in 1983, 

but oxygen values were not measured at that time. In the present deployment this 

behaviour started at h 80.  

A total of 20 individuals of the brittle star Ophiothrix quinquemaculata were in the 

EAGU frame (50 x 50 cm). This is equivalent to 80 individuals m-2 and agrees with the 

observations in Fedra et al. (1976), who counted 50 to 250 specimens m-2 within the 

ORM-community. Under normoxia and beginning hypoxia, most individuals were 

positioned on multi-species clumps. That behaviour was also observed by Wurzian 

(1977), who related this to the recruitment of these brittle stars, and who reported an 

increase in the numbers and weight of O. quinquemaculata with increasing clump 
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size. Such high densities on one clump were also reported for Ophiothrix fragilis 

(Morgan and Jangoux 2004) and reduce the risk of the juveniles being isolated from 

the group. Moreover, this behaviour enables the juveniles to feed by cleaning off the 

adult spines with their own tube-feet. The fact that the juveniles were found only on 

adults or on other suspension-feeding organisms indicates that they are unable to 

suspension-feed themselves. The close relationship between the two age groups 

could also influence juvenile survival and thus the stability of the population (Morgan 

and Jangoux 2004). O. quinquemaculata showed its first atypical behaviour at 4 ml l-1 

DO: they started to wrap themselves around the multi-species clumps, as was also 

observed in a "natural" oxygen crisis in 1983 (Stachowitsch 1986). The major change 

in behaviour took place at slightly below 1.5 ml l-1 DO, at which point they began to 

show "arm-tipping". One explanation for this behaviour is that there is typically more 

oxygen higher up in the water column. This is supported by Fig. 6, where the upper 

sensor shows higher oxygen values. Vertical movement is one of the simplest 

strategies to avoid hypoxia (Hagerman 1998).  

Both ascidians Microcosmus sulcatus and Phallusia mammilata showed two 

simultaneous behaviours: they started to close both siphons and to contract their 

body. This agrees with the observations on the ascidian Pyura praeputialis in 

Australia (Evans and Huntington 1992). That species closed its siphons to avoid 

osmotic stress and increased its so-called squirting behaviour. Such coordinated 

contractions of the mantle wall and siphons cause an outflow of hypoxic water when 

the oxygen or salinity concentration was reduced, refilling their body with normoxic 

water. The infaunal sea urchins Schizaster canaliferus were in the initial phase of 

emergence. This was evident became visible because the sediment above them 

began to bulge (i.e. the animals themselves were not yet visible). 

 

4.1.2 Moderate hypoxia (≤ 1 ml l-1 DO) 

The infaunal sea urchins Schizaster canaliferus were still emerging, but not yet 

visible. Emerging sea urchins under hypoxic conditions were also described by 

Schinner et al. (1997). This probably positioned them in better oxygenated 

surroundings.  

In this oxygen category the infaunal polychaetes emerged from the sediment. As 

shown for Arenicola marina and Nereis diversicolor (Schöttler 1990), polychaetes are 

able to survive anaerobic conditions for more than 4 d at 12 °C because they can 
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switch to anaerobic energy production or reduce their metabolic rate. Mangum (1973) 

described Glycera dibranciata as a species with a large pool of high-oxygen-affinity 

haemoglobin, which allows them to continue a low level of aerobic metabolism in the 

absence of oxygen uptake.  

 

4.1.3 Severe hypoxia (≤ 0.5 ml l-1 DO) and anoxia 

The last two thresholds are severe hypoxia and anoxia; both induced further atypical 

behaviours and mortality.  

After beginning to emerge at moderate hypoxia, all individuals of the infaunal sea 

urchin Schizaster canaliferus were visible on the sediment surface. This observation 

agrees to those of Stachowitsch (1984), who saw many individuals lying on the 

sediment. In agreement with Shumway et al. (1983), both juveniles were the last to 

emerge from the sediment because they are more tolerant to low oxygen due to their 

lower respiratory demands. Schinner et al. (1997) described S. canaliferus as very 

sensitive to oxygen depletion and observed that they lose their spines within 4 days 

after emergence. Due to the short duration of the EAGU development, no spine 

losses were observed. 

Under normoxia, epifaunal regular sea urchins like Psammechinus microtuberculatus 

are camouflaged with material from the surrounding environment (e.g. shell debris). 

Such an "antipredator adaption" should make them less visible to predators and pose 

a physical barrier that reduces predator success (Dumont et al. 2007). Moreover, 

those authors observed a significantly higher covering in exposure to direct sunlight. 

With decreasing oxygen levels, however, the sea urchins start to drop their 

camouflage and at severe hypoxia they lack it entirely. One potential explanation is 

that it is too cost-intensive to hold the material with the tube feet, and that under 

stress it is dropped.  

Ophiothrix quinquemaculata no longer showed their arm-tipping behaviour but 

remained wrapped around clumps and lying on the sediment. From severe hypoxia 

on, an increasing number of animals lay overturned on the bottom. This condition was 

also reported during a hypoxic event in 1983 (Stachowitsch 1984, 1986). In the 

present EAGU deployment they died approximately 42 h after the onset of hypoxia, 

making them the first species to show mortality. As shown in Table 4 and Figure 25, 

they died in severe hypoxia, when some oxygen still remained (0.3 ml l-1 DO). 
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The epifaunal brittle stars Ophiura spp. live in the subsurface of the sediment; in 

contrast to Riedel et al. (2008), where ophiorids emerged at 1.5 ml l-1 DO, they were 

not observed in the present study until severe hypoxia has reached. The tolerance to 

low oxygen levels (without hydrogen sulphide) was high and agrees the results of 

Vistisen and Vismann (1997). Those authors also show that severe hypoxia has to be 

of long duration before the individuals are affected and that the presence of very 

small concentrations of sulphide decreases survival significantly. Nevertheless, 

Ophiura spp. are more vulnerable to oxygen depletion than infaunal brittle stars (e.g. 

Amphiura filiformis), which supports the hypothesis that infaunal species are more 

tolerant to hypoxia than epifaunal species (Hagerman 1998). Arm fragmentation in 

Ophiura spp. was observed in the 1983 event (Stachowitsch 1984) but not in the 

present deployment. Hypoxic conditions reduce arm regeneration significantly and 

thereby alter benthic production (Nilsson and Sköld 1996). 

Stachowitsch (1984) observed that the multi-species clumps were covered with 

whitish grey threads of mucus-like matter at an early stage of the 1983 hypoxic event. 

This marine snow played an important role in that event but doesn't occur in the 

EAGU deployments. Furthermore, he reported sponges to be among the most 

sensitive organisms, based on colour changes. In the present experiment, however, 

no colour change from the normal light brown to dark grey was observed prior to 

anoxia.  

Phallusia mammilata no longer showed body contractions, but closed its siphons. P. 

mammilata and Microcosmus sulcatus did not droop during the photographic 

documentation, and mortality could therefore not be determined. In contrast to 

Corbula gibba, which closes its valves, Chlamys varia opens them under anoxic 

conditions. The mantle tissue was swollen and the valves were gaping widely. The 

data on the ascidians and bivalves correlate to the observations in Stachowitsch 

(1984): he assumed mortality of ascidians and reported widely gaping Chlamys varia 

at day 4. 

The tubeworms Serpula vermicularis are filter feeders and extend their tentacle 

crowns to filter the water. Although the arms of the brittle stars Ophiothrix 

quinquemaculata were near the tube aperture, the worms did not retract. Retraction is 

a typical response to predators (Dill et al. 1997). Those authors describe a decrease 

in food availability as a trigger for lengthier retraction times. However, reduced 
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oxygen levels in the water column require the worm to re-emerge in order to respire. 

This behaviour was also observed in the present deployment.  

Riedel et al. (2008) also described certain behaviours that are not correlated to 

thresholds but increase gradually during the experiment. One example is the hermit 

crabs Paguristes eremita, which extended even further from their shell. This 

behaviour was also observed in 1983 (Stachowitsch 1984), although the oxygen 

value at the time of that behaviour was not known. 

 

 

4.2 Mortality 
 

Different authors (Diaz and Rosenberg 2008; Vaquer-Sunyer and Duarte 2008) have 

described mortalities of organisms due to hypoxia and anoxia. Mortalities due to 

"natural" oxygen crises, for example in the northern Adriatic Sea in 1983, are very 

rapid. Organisms making up more than 90 % of the total macroepifaunal biomass 

died in the first four days after the first indication of stress (Stachowitsch 1992). The 

tolerance of organisms is not only influenced by the absence of oxygen, but also by 

the appearance of hydrogen sulphide and differs from species to species (Theede et 

al. 1969).  

In the experiment evaluated here, anoxia began at h78 and H2S reached 19.2 µM at 

the end of the photographic documentation. All atypical behaviours described above 

eventually end in mortality. Mortality of the four brittle stars Ophiothrix 

quinquemaculata was already observed at h66, 67, 73 and 77. All other organisms 

died later, when anoxia was reached and hydrogen sulphide began to increase: 

Serpula vermicularis (h79 and 98), infaunal polychaetes (h80 - 97), Ophiura spp. (h88 

and 95), Schizaster canaliferus (h88 - 99) and Paguristes eremita (h100 - 101). For 

those species, the relative roles of oxygen deficiency or H2S evolution are less clear. 

These results confirm those of Vaquer-Sunyer and Duarte (2008), who described 

molluscs to be the organisms most tolerant to hypoxia (having the lowest LC50). In the 

present study the bivalve Corbula gibba was the only species that survived. This 

opportunistic bivalve is very common in unstable environments (e.g. polluted bays 

and harbours) and colonizes defaunated communities. They are very tolerant to 

anthropogenic and natural disturbances and also known as bioindicators of pollution 

in benthic communities. They survive hypoxic events by closing their valves 



 

44 

hermetically and switching between aerobic and anaerobic metabolism by increasing 

the lactate concentration in the tissue (reviewed by Hrs-Brenko 2006). In contrast to 

this bivalve, crustaceans have been repeatedly described as very sensitive taxa 

(Vaquer-Sunyer and Duarte 2008). The bioherm associated crustaceans in 

experiment 12 were treated in Haselmair (2008). Vaquer-Sunyer and Duarte (2008) 

reported that crustaceans showed the highest LC50 and the lowest LT50, and Riedel et 

al. (2008) described certain species (Hexaplex trunculus, Macropodia sp.) leaving 

their hiding places already at beginning hypoxia.  

Differences between the hypoxia tolerance of juveniles and adults are known for the 

infaunal sea urchin Schizaster canaliferus (Shumway et al. 1983). Although both 

juveniles emerged later on the sediment, they were the first to die. Generally, 

juveniles are more susceptible to sulphide due to the lower respiratory demand, but 

more tolerant to low oxygen (Shumway et al. 1983; Tyson and Pearson 1991).  

 

As shown by Nilsson and Rosenberg (1994), the composition of benthic communities 

can change during hypoxia, and survival is significantly affected in the step between 

moderate and severe hypoxia. Sulphide production after anoxia leads to a reduced 

survival in macrobenthic communities of about 20 % in most species (Theede et al. 

1969) because its toxicity reduces the tolerance to oxygen deficiency (Hagerman 

1998). 

Whereas death is very rapid, re-colonization of collapsed marine ecosystems in the 

northern Adriatic Sea is a long-term process that takes years or perhaps decades 

(Stachowitsch 1992; Stachowitsch and Fuchs 1995). After a mass mortality the 

original benthic composition is no longer present. Often, only shells of gastropods and 

bivalves or the tests of sea urchins remain on the sediment surface. These then serve 

as a nucleus for the settlement of new larvae (Stachowitsch 1991; Kollmann and 

Stachowitsch 2001). Three years after an oxygen crisis in the northern Adriatic, 

Kollmann and Stachowitsch (2001) observed that the biomass was 50% of previous 

levels and that it was dominated by sessile (serpulid polychaetes) and rapidly growing 

species (certain ascidians). Further community development was then interrupted by 

a series of other disturbances (fisheries) and by another mass mortality in 1988.  

The suspension-feeding community in the northern Adriatic Sea is not a short-term 

phenomenon (Fedra et al. 1976). However, oxygen crises eliminate large and long-

lived species, and the populations shift toward smaller species, which are more short-
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lived (Diaz and Rosenberg 1995). In general these smaller species are less capable 

of bringing oxygen downward into the sediments. Thus, the change in community 

structure goes hand in hand with a change in function (Karlson et al. 2002). This 

makes the community more susceptible to renewed or persistent hypoxia (Conley et 

al. 2009a). If human inputs such as fertilizers etc. are not reduced, then the number of 

oxygen crises is expected to increase, especially in the northern and western parts of 

the Adriatic Sea (Justic et al. 1987). 

 

First, EAGU successfully induced decreasing oxygen values and increasing hydrogen 

sulphide value after anoxia. Second, the responses of infaunal as well as epifaunal 

organisms to hypoxia and anoxia are similar to those in "natural" oxygen crises 

(Stachowitsch 1984, 1986 and 1992). Third, the sequence of atypical behaviours and 

mortality is correlated to decreasing oxygen and anoxia. This is an important step 

forward in compiling (1) a generally valid catalogue of behaviours, (2) a list of 

sensitive and tolerant species and (3) a range of community compositions. This will 

allow conclusions to be drawn on the status and stability in situ of marine ecosystems 

here and elsewhere.  
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6. Abstract 
 

Hypoxia and anoxia are key threats to shallow coastal ecosystems worldwide, and 

the northern Adriatic Sea is a case study for such sensitive seas. Benthic community 

collapse during low dissolved oxygen (DO) events is not a gradual process, but 

involves a series of sudden steps. Using a new underwater device, the Experimental 

Anoxia Generating Unit (EAGU), equipped with time-lapse camera and sensor 

equipment, we artificially induced anoxia in a sublittoral macrobenthic community in 

24 m depth in the northern Adriatic Sea. The deployment shows that the oxygen 

levels beginning (≤ 2 ml l-1 DO), moderate (≤ 1 ml l-1 DO), severe hypoxia (≤ 0.5 ml l-1 

DO) and anoxia (0 ml l-1 DO) cause a series of different atypical behaviours and lead 

to mortality. Under beginning hypoxia the hermit crabs Paguristes eremita left their 

hiding places under multi-species clumps and moved around actively. Moderate 

hypoxia caused the emergence from the sediment of polychaetes and the infaunal 

sea urchin Schizaster canaliferus. At severe hypoxia the epifaunal sea urchin 

Psammechinus microtuberculatus discarded its camouflage and the first mortality in 

the brittle star Ophiothrix quinquemaculata occurred. In the present deployment, 

anoxia caused mortality in all organisms except the bivalve Corbula gibba. Whereas 

some behaviours are reversible, mortalities lead to long-term shifts in the benthic 

community and thereby alter the whole ecosystem.  

The observations in the evaluated deployment are a step forward in compiling a 

generally valid catalogue of behaviours, a list of sensitive and tolerant species, and a 

range of potential community compositions. This can help to determine the status and 

stability of such benthic ecosystems in situ.  
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7. Zusammenfassung 
 

Hypoxien und Anoxien in seichten Küstengewässern stellen ein weltweites Problem 

dar (Diaz und Rosenberg 2008). Wenn der Anteil an gelöstem Sauerstoff im Wasser 

unter 2 ml l-1 (Hypoxie) sinkt oder ganz verschwindet (Anoxia) kommt es unter 

anderem zu Verhaltensveränderungen und physiologischen Anpassungen (Diaz und 

Rosenberg 1995; Vismann 1991, Mangum 1973), die es den Organismen erlauben 

kurzfristig Störungen zu überleben. Halten hypoxische und anoxische Bedingungen 

jedoch über einen längeren Zeitpunkt an, können großflächige Massensterben 

auftreten. Zwei Faktoren, die Schichtung der Wassersäule (Stratifizierung) sowie der 

Anstieg der Planktonbiomasse durch Eutrophierung, lassen die Anzahl der 

betroffenen Gebiete deutlich ansteigen. Über 400 so genannte "dead-zones" wurden 

bereits beschrieben. Ca. 50% davon sind einmal im Jahr hypoxisch, 17% weniger als 

einmal im Jahr, und 8% sind permanent hypoxisch (Diaz und Rosenberg 2008). 

 

Die Nordadria ist wegen der geringen Tiefe (< 35 m), dem schlammigen Boden, dem 

hohen Süßwassereinstroms (v.a. durch den Fluss Po, Italien), der hohen Produktivität 

und der Schichtung der Wassersäule im Spätsommer, ein sehr empfindliches 

Ökosystem (Stachowitsch und Avcin 1987). Der Großteil der nördlichen Adria wird 

von macrobenthischen Bodengemeinschaften bedeckt. Im Golf von Trieste setzt sie 

sich Großteils aus dem Schwamm Reniera spp., dem Schlangenstern Ophiothrix 

quinquemaculata und der Seescheide Microcosmus sulcatus zusammen, und wird 

deshalb auch die Ophiothrix-Reniera-Microcosmus Gemeinschaft (ORM-

Gemeinschaft) genannt (Fedra et al. 1976). Diese filtrierende Gemeinschaft umfasst 

ca. 370 ± 73 g m-2 Nassgewicht. Die filtrierenden Organismen können ca. 5% der 

pelagischen Biomasse pro Tag abbauen (Ott und Fedra 1977) und werden deshalb 

auch als Puffer oder "natürliche Eutrophierungskontrolle" bezeichnet (Officer et al. 

1982).  

Seit dem dramatischen Anstieg der Eutrophierung kommt es weltweit auch immer 

öfter zu solchen Sauerstoffkrisen (Gray et al. 2002). Die hohe Primärproduktion im 

Meer führt anfänglich zu einem Anstieg der Biomasse der Bodenorganismen. Im 

Frühling kommt es durch die Stratifizierung zu einer Trennung der oberen, 

sauerstoffreichen von der unteren, sauerstoffärmeren Wasserschicht. Die 

Bodenorganismen verbrauchen während des Sommers weiteren Sauerstoff und 
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verstärken so die hypoxischen Bedingungen. Im Winter kommt es dann zu einer 

Durchmischung der kompletten Wassersäule und die Bodenorganismen wachsen 

wieder. Eutrophierung verstärkt den Effekt der Stratifizierung und führt zur Bildung 

des so genannten Meeresschnees. Wenn sich dieser über der Sprungschicht 

ansammelt, wird er auch als "falscher Benthos" bezeichnet. Durch das Auflösen der 

Sprungschicht, sinkt dieser Meeresschnee zu Boden und bedeckt große Flächen der 

benthischen Lebensgemeinschaften, die dann aufgrund des Sauerstoffmangels 

sterben (Ott 1992; Ott und Stachowitsch 1992). Eine „natürliche“ Sauerstoffkrise im 

Jahr 1983 wurde von Stachowitsch (1984, 1986) photographisch dokumentiert.  

 

Mit einem neuen Unterwassergerät, dem Experimental Anoxia Generating Unit 

(EAGU), das mit Foto- und Sensorausrüstung ausgestattet ist, wurden in einer Tiefe 

von 24 m im Golf von Trieste in situ Hypoxien und Anoxien induziert. Mit den Fotos 

und den dazugehörigen Sauerstoffwerten war es möglich, das Auftreten atypischer 

Verhaltensweisen bestimmter Sauerstoffgrenzwerten (beginnende Hypoxie: ≤ 2 ml l-1 

DO; moderate Hypoxie: ≤ 1 ml l-1 DO;  schwere Hypoxie: ≤ 0.5 ml l-1 DO sowie 

Anoxie: 0 ml l-1 DO) zuzuordnen. Während beginnender Hypoxie kommt zum Beispiel 

die infaunale Muschel Corbula gibba aus dem Sediment heraus und Einsiedlerkrebse 

(Paguristes eremita) zeigen einen deutlichen Anstieg an Lokomotion. Der 

Schlangenstern Ophiothrix quinquemaculata reagiert mit einer veränderten 

Armposition und beginnt entweder sich auf die Arme zu stellen oder sich eng an das 

Substrat zu ziehen. Die Seescheide Microcosmus sulcatus beginnt mit 

Körperkontraktionen und schließt währenddessen die beiden Siphonöffnungen. Unter 

moderater Hypoxie verlassen infaunale Polychaeten das Sediment. 

Sedimentbewegungen darauf hin deutet, dass der infaunale Seeigel Schizaster 

canaliferus bald an der Sedimentoberfläche erscheint. Sichtbar wird er (unter 

anderem auch der Schlangensterne Ophiura spp.) erst in der Kategorie "schwerer 

Hypoxie". Weiters lässt der epifaunale, reguläre Seeigel Psammechinus 

microtuberculatus seine Tarnung (z.B. Muschelstücke) los. Erste Mortalitäten (alle 

ausgewerteten Individuen der Art O. quinquemaculata) traten unter schwerer Hypoxie 

auf. Mit Ausnahme von C. gibba starben alle anderen Tiere bis zum Ende des 

Experimentes (Anoxie nach ~ 48 Stunden; H2S 17.9 µM).  
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Diese Arbeit, eingebettet in ein vom FWF gefördertes Projekt, ist ein erster Schritt um 

(1) einen Verhaltenskatalog unterschiedlicher Arten in Bezug zu verschiedenen 

Sauerstoffgrenzwerten zu erstellen, und (2) empfindliche und tolerante Arten für die 

Nordadria zu bestimmen um zukünftig in situ rasch den Status und die Stabilität des 

Ökosystems zu bestimmen. 
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