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Abstract 

Ewing’s Sarcoma Family Tumors (ESFT) are the second most common malignancy 

of children and young adults that affect mostly soft tissue and solid bone. ESFT are 

very aggressive and highly metastatic, and are characterized by chromosomal 

translocations involving the EWSR1 gene and several ETS transcription factor genes. 

The most frequently observed translocation, t(11;22)(q24;q12), results in the fusion of 

portions of the EWSR1 gene with the Fli1 (Friend leukemia integration site 1) 

transcription factor gene, and is observed in 80-85% of all cases.  

Interestingly, many attributes of ESFT are typically associated with hypoxia in many 

tumor entities and linked to high metastatic potential and bad prognosis. Solid tumors 

have been shown to respond to hypoxia mainly via hypoxia inducible factor- 1α (HIF-

1α). Since the role of hypoxia and especially the contribution of HIF-1α to the 

aggressiveness of ESFT remain unknown, we aimed at clarifying the role of hypoxia 

inducible factors in ESFT cell lines.  

For that purpose, we first checked whether HIF-1α can be induced in the ESFT cell 

lines TC252 and SK-N-MC by using the canonical hypoxia mimetics cobalt chloride 

(CoCl2) and Desferrioxamine (DFX). We showed that HIF-1α was induced both in a 

dose- and time-dependent manner. Notably, increased HIF-1α protein levels were 

accompanied by elevated EWS-Fli1 levels, indicating that hypoxia might regulate 

EWS-Fli1 which is discussed as a possible therapeutic target in ESFT. To reveal, 

whether this finding was HIF-1α dependent or independent, we first over-expressed 

either a wild-type version of HIF-1α or a mutant version, baring the P564A and 

N803A mutations within the oxygen degradation domain. Secondly, we performed 

knockdown studies using shRNA targeting HIF-1α. Both experiments revealed that 

EWS-Fli1 protein is regulated in a HIF-1α dependent manner, whereas EWS-Fli1 

mRNA levels remained unchanged. To analyse whether hypoxia has any functional 

consequence on ESFT cell lines in vitro we further performed proliferation, migration 

and invasion assays. The latter clearly showed that hypoxia enhances the invasive 

capability of ESFT cell lines whereas no significant effect on proliferation and 

migration was observed. 

 

 



8 

Zusammenfassung 

Ewing’s Sarcoma Family Tumors (ESFT) sind die am zweithäufigsten auftretenden 

Knochen- und Weichteil-tumore bei Kindern und Jugendlichen. ESFT sind äußerst 

aggressive und stark metastasierende Tumore, welche durch chromosomale 

Translokationen zwischen dem EWSR1 Gen sowie Genen der Familie der ETS 

Transkriptions-Faktoren charakterisiert sind. Die am häufigsten auftretende 

Translokation t(11;22)(q24;q12) umfasst die Fusion des EWSR1 Gens mit dem Fli1 

Gen und tritt in 80-85% der Fälle auf. Interessanterweise sind viele Eigenschaften 

der ESFT generell typisch für hypoxische Tumoren. Dazu zählt eine erhöhte Tumor-

Aggressivität, die mit hohem Metastasierungspotential und einer damit verbundenen 

schlechten  Prognose einhergeht. Viele solide Tumore sind hypoxisch und reagieren 

auf diese Bedingungen hauptsächlich mit der Regulation des hypoxia inducible 

factors-1α (HIF-1α). Da die Rolle von Hypoxie und im Speziellen von HIF-1α in der 

Bösartigkeit von Ewing Sarkomen noch weitestgehend unbekannt ist, wurde die Rolle 

der hypoxia inducible factors in ESFT Zelllinien untersucht. Um HIF-1α zu induzieren 

wurden die Zelllinien TC252 und SK-N-MC sowohl mit Cobalt Chlorid als auch mit 

Desferrioxamin behandelt, welche anerkannter Weise den Zustand der Hypoxie 

imitieren. Tatsächlich konnte HIF-1α, sowohl in einer Konzentrations- als auch in 

einer Zeit-abhängigen Art und Weise, nachgewiesen werden. Interessanterweise, 

wurde nicht nur HIF-1α, sondern auch EWS-Fli1 induziert. Da EWS-Fli1 als 

möglicher therapeutischer Angriffspunkt in ESFT gilt, wurde im Folgenden 

untersucht, ob der erhöhte EWS-Fli1 Level von HIF-1α abhängig oder unabhängig 

ist. Hierfür wurden einerseits sowohl Wildtyp HIF-1α als auch mutiertes HIF-1α, 

welches eine P564A und N803A Mutation in der (oxygen degradation domain) trägt, 

über- exprimiert, andererseits wurde HIF-1α durch Verwendung von shRNA  gezielt 

ausgeschaltet. Beide Experimente zeigten, dass EWS-Fli1 Protein in einer HIF-1α 

abhängigen Art und Weise reguliert wurde, die EWS-Fli1-mRNA hingegen blieb 

unverändert. Um festzustellen, ob Hypoxie funktionelle Konsequenzen zur Folge hat, 

wurde sowohl Proliferation, Migration, als auch das Invasions-Potential von ESFT 

Zelllinien untersucht. Tatsächlich konnte gezeigt werden, dass das Invasions-

Potential durch Hypoxie erhöht wurde, während keine Unterschiede im Proliferation- 

und Migration- Verhalten nachweisbar waren.  
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1 Introduction 

1.1 The role of transcription factors in regulating  gene expression 

Since the human genome was sequenced first in 2001 by Celera Genomics [1] and 

IHGSC [2] the near-complete sequence (99% accuracy) was only obtained three 

years later in 2004. The current estimation of protein-coding genes is in the range of 

20,000-25,000 [3]. Additionally, there are many non-coding RNAs that affect a great 

variety of cellular processes like transcriptional regulation, mRNA stability and 

translation as well as RNA processing and modification [4].  

The ability to express these genes under different environmental conditions, and at 

different time points during cell differentiation and development, reflects the great 

dynamics in the regulation of gene expression. Gene expression of eukaryotic 

protein-coding genes is a multi-step process that is mainly regulated at the level of 

transcription initiation as well as transcription elongation, mRNA processing, transport 

and translation [5]. However, it is important to emphasize that the chromatin-state 

decides whether the basal transcription machinery gets access to the promoter-

region of a specific gene or not [6]. Transcription of eukaryotic protein-coding genes 

is performed by RNA Polymerase II: (1)The promoter region is composed of the core 

promoter, which is recognized by the general transcription factors in order to form a 

transcription pre-initiations complex (PIC) that directs the RNA polymerase II to the 

transcription start site [5] (Fig.1). 

 

 

 

Fig. 1:  Transcriptional regulatory elements [5].  
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Proximal promoter elements as well as the core promoter build up the promoter 

region which is typically ≤1kb. (2) Enhancers, silencers, insulators or locus control 

regions belong to the so called cis-acting distal regulatory DNA elements, which 

contain recognition sites for trans-acting DNA-binding transcription factors that either 

enhance or repress transcription [5]. 

Protein-coding genes that are transcribed by RNA polymerase II involve transcription 

factors that can be classified into three groups: general transcription factors (GTFs) 

that facilitate the PIC assembly, promoter-specific activator proteins (activators) 

consisting of a DNA-binding domain and an activation domain, as well as 

coactivators, e.g. TATA-box binding protein (TBP) [7]. 

Since the focus of my thesis is on a promoter specific transcription factor, I will 

concentrate mainly on its molecular and structural features as well as the principles 

of DNA recognition.  

1.1.1 Sequence-specific DNA binding factors 

Sequence-specific DNA binding proteins affect the various gene specific programmes 

of transcriptional control by binding to the proximal promoter and distal regulatory 

elements (e.g. enhancer, silencer). These factors therefore play a key role in 

mediating the genetic regulatory information to the transcription system. Transcription 

is a complex multi-step process where sequence specific factors act together with the 

core RNA Polymerase II transcriptional machinery as well as co-regulators, 

chromatin remodelling factors and enzymes that catalyze covalent modifications of 

histones. All sequence specific transcription factors exhibit common properties 

(Fig.2)[8]: (A) they consist of several modules (e.g. DNA-binding module, activation 

or repression module) [9], (B) chromatin is the integral component in regulating the 

function of sequence specific transcription factors [10, 11], (C) they typically bind the 

DNA in clusters in order to overcome the low binding-specificity of single factors [12] 

and thereby function synergistically in the activation of transcription [13]. 

Specific transcription factors recognize transcription factor binding sites (TFBSs) that 

are typically small (in the range between 6-12 bp) and described by a consensus 

sequence. Transcription factors, especially sequence specific activators, frequently 

form heterodimers and/or homodimers [5].  

The special subunit composition of a transcription factor may highly influence the 

binding specificity and therefore alter its regulatory function [14]. 
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Fig. 2: Schematic representation of typically seque nce specific transcription factors and their 

properties [8].  

(A) Sequence specific factors are composed of sever al modules. (B) Chromatin functions as 

integral regulator of sequence specific transcripti on factors. (C) They typically bind the DNA in 

clusters. 

 

When the sequence specific transcription factors (activators or repressors) bind to 

their consensus sequence within a proximal promoter, they mainly work by 

recruitment of either transcriptional coactivators or corepressors to the DNA template 

via direct protein-protein interactions [15]. 

 

1.2 Transcription factor families 

 
Transcription factor families can be classified due to their structural properties and 

the way they recognize and bind to their specific DNA template [16].  

 

1. Helix-turn-Helix (HTH) structure  

The helix-turn-helix motif is a DNA-recognition motif whose crystal structure (e.g. λ 

Cro protein [17, 18]) has been shown to be a well conserved recognition motif 

consisting of an α-helix, a turn and a second α-helix [19, 20]. It is important to 

emphasize that HTH motifs can not fold or function by themselves thus they are 

always part of  bigger DNA-binding domains [16].  

The winged helix-turn-helix motif consists of three α-helices and four β-sheets. The 

third α-helix, the ‘wing’ region between β-strands 3 and 4 as well as the loop between 

α-helices 2 and 3 contain residues that build up the main protein-DNA contacts [21]. 
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2. Homeodomain structure 

 

Initially, the homeodomain structure was analysed by 2D NMR studies in Drosophila 

[22, 23] and further analysis revealed that the homeodomain structure contains a 

HTH motif as well [24]. The homeodomain is based on an extended N-terminal arm 

and three α-helices as well as a fourth α-helix which is composed of the C-terminal 

residues [22].  

 

3. Zinc finger motif 

The zinc finger family of proteins include proteins which are involved in differentiation, 

development (e.g. Drosophila) regulation of the basal transcription machinery as well 

as various regulatory functions in eukaryotic organisms [25, 26]. A typical zinc finger 

motif consists of a specific sequence pattern: Cys-X2or4-Cys-X12-His-X3-5-His[16].  

 

4. Steroid receptors 

Steroid receptors are very important regulatory proteins which contain separate 

domains for hormone binding, DNA binding as well as transcriptional activation [27, 

28]. Structural analysis of glucocorticoid and estrogen receptors revealed that each of 

these peptides fold into a globular domain with a pair of α-helices [29, 30].  

 

5. Leucine Zipper motif 

Leucine zipper motif was found to be a well conserved sequence pattern in different 

eukaryotic transcription factors and they characteristically bear a hepta repeat of 

leucines over a region of 30-40 residues [31]. Leucine zipper motifs tend to form two 

parallel α-helices in a coiled-coiled manner [32]. The ability to form heterodimers 

enables leucin zipper- motif carrying transcription factors (e.g. AP-1 consisting of 

Fos- and Jun-protein) [33] to perform different combinations of either activation or 

repression thus covering a great range of regulatory properties [34].  

 

6. Helix-loop-helix motif 

Helix-loop-helix transcription factors (HLH TFs), as well as leucin zipper proteins, 

play fundamental roles in differentiation and development [16]. HLH-proteins have a 

basic region that leads to DNA binding and a neighbouring region that allows 

heterodimerisation [35]. Heterodimerisation allows mixing of activators, negative 
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regulators or ubiquitously expressed proteins to modulate gene expression in this 

family of proteins [36]. 

In the following sections I will focus on bHLH- and ETS- transcription factors based 

on their important roles in the topic of my thesis.  

1.2.1 Basic helix-loop-helix/PAS family of transcri ption factors 

 
The basic helix-loop-helix transcriptional regulators function in critical fundamental 

biological processes, such as cell differentiation, regulation of homeostasis as well as 

stress response and are found in organisms from yeast to humans [37]. 

Basic helix-loop-helix proteins can be categorized into three main sub-families (Fig 

3.): (a) transcriptional regulator proteins that contain only the bHLH dimerisation 

domain (b) proteins that either bear a second leucin zipper (Zip) dimerisation domain 

or (c) an additional PAS dimerisation domain [38]. 

Typical members of group (a) belong to the proteins that are involved in myogenesis 

(e.g. myoD) and neurogenesis [37], whereas proteins of group (b) are involved in the 

Myc/Max/Mad network of transcription factors [39]. Both bHLH transcription factor 

family members bind to specific DNA regions that contain the G (or A) CAXXTGG (or 

A) E-box consensus sequence [40].  

 
Fig. 3: Domain structure of bHLH transcription factor famil y members [38]  
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In contrast, basic helix-loop-helix/PAS proteins tend to be factors whose activity is 

signal-regulated and often recognize DNA sequences that diverge from the classical 

E-box consensus sequence [41, 42]. Since bHLH/PAS transcription factors differ in 

their dimerisation behaviour they have been grouped into two classes. Class I factors 

neither homodimerise nor heterodimerise with other class I factors (e.g. HIF-α 

factors) [43] but need to dimerise with class II factors (e.g. ARNT) to form functional 

active transcription factor complexes [44]. Once a bHLH/Pas protein dimerises with a 

second bHLH/PAS protein in order to form a functional transcription factor within the 

nucleus, the basic region of the bHLH domain binds the specific DNA consensus 

sequence thus interacting with the transcriptional machinery to enhance or repress 

expression of the target gene [45]. 

The dimerisation reaction is highly specific and regulated through the PAS domain, 

which acts as a secondary dimerisation interface whereas the N-terminal bHLH-

domain functions as the primary dimerisation interface [42]. Notably, many 

bHLH/PAS transcription factors like the HIFα proteins, that play an essential role in 

oxygen sensing, or SIM proteins which control neural development, seem to be 

biologically essential, as revealed in knock-out studies [46-48]. 

1.2.2 The ETS-domain transcription factor family 

ETS transcription factors (e.g. Ets1/2, Fli-1, Erg, PU.1, TEL) are characterized by 

their specific DNA-binding structure (ETS domain) [21]. Structural studies on the 

ETS-domain transcription factor Fli-1 revealed that the ETS domain belongs to the 

family of winged helix-turn-helix motif carrying transcription factors [49]. Further 

structural analysis on Ets-1 [50] , PU.1 [51], SAP-1 [52] and Elk1 [53] revealed 

structural conservations and showed that each of these proteins contained three α-

helices and four β-sheets (Fig. 4). In addition, protein-protein interactions are 

mediated intramolecularly or by co-regulatory proteins [21]. 

Some members of the ETS-domain family can be classified by further conserved 

domains, such as the pointed domain (Pnt) [54] which has been shown to function in 

homo-oligomerization [55], heterodimerisation [56] and transcriptional repression 

[57].  
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Fig. 4: Structure of an ETS-domain transcription fa ctor (Ets-1)[21]. 

 
ETS-domain transcription factors bind to a common GGAA/T motif. This motif is 

sufficient for individual ETS-domain proteins, to maintain specific DNA-binding up to 

an 11 base-pair sequence [58].  

Notably, the alteration of a single amino acid within the C-terminus of the DNA-

recognition helix in the ETS domain is enough to change the DNA-binding specificity 

[59] and of protein-protein interactions [60]. Since most of the ETS-domain TFs are 

autoregulated, their DNA-binding activity is on hold till an adequate signal, such as 

phosphorylation or co-regulator- binding occurs [21].  

 

1.3 Hypoxia and the HIF-system 

Cells, tissues and organs need to maintain appropriate oxygen levels in order to 

survive and ensure a proper cellular function. Maintaining the oxygen homeostasis, 

therefore, is key to all oxygen-dependent processes and crucial to minimize 

production of reactive oxygen species (ROS) that are able to cause oxidative 

damage to DNA, proteins and lipids [61].  

Once the oxygen levels decrease to a certain value between 5-0.5%, this state is 

designated as hypoxia (Fig.5). Hypoxia is known to induce certain response 

mechanisms such as placental and vascular development, but it also plays a causal 

role in ischemic-related diseases and cancer [62]. Notably, when oxygen is 

completely absent (anoxia), cells stop their ATP-synthesis and undergo apoptosis 

soon after the anoxia exposure [63, 64]. On the other hand, cells that are exposed to 

hypoxia convert to a more anaerobic glycolytic metabolism to sustain ATP-synthesis 
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and therefore escape apoptosis [65]. However, hypoxic cells undergo rapid 

proliferation thereby generating levels of local anoxia concomitantly. For that reason, 

cells must quickly respond to this oxygen stress in order to survive [62].  

 
Fig. 5: Reduced oxygen levels activate response mec hanisms via the HIF-system [62]. 

 
The main transcriptional regulators of this hypoxic response are named hypoxia 

inducible factors and were first discovered in 1992 by Semenza et.al. [66]. This 

broad-action transcription factors are expressed in virtually all mammalian cells of the 

body [66-68]. 

1.3.1 The HIF-family 

The HIF family of transcription factors are basic helix-loop-helix/PAS domain 

transcription factors (Fig.6) that are composed of a heterodimeric α and β subunit 

[69]. This transcription factor family consists of three known HIF-α isoforms: HIF-1α, 

HIF-2α and HIF-3α, each consisting of various splice variants [70]. In contrast to the 

HIF-α proteins the HIF-1β protein, also known as ARNT (aryl hydrocarbon receptor 

nuclear translocator) possesses several splice variants and is constitutively 

expressed [71, 72].  

In addition to the PAS (Per/ARNT/Sim) domain, the three HIF-α isoforms possess an 

oxygen degradation domain (ODD) that subjects them to oxygen-dependent 

regulation by hydroxylases [70] 

As mentioned in section 1.1.1, sequence specific transcription factors (activators or 

repressors) are modular and usually contain a DNA-binding domain as well as an 

activation or repression domain. 
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Both HIF-1α and HIF-2α contain a C-terminal activation domain, whereas HIF-3α 

lacks this specific domain on its C-terminus and is thereby thought to act as an 

inhibitor of these two hypoxia inducible factors [71]. Furthermore, HIF-1α and HIF-2α 

contain a nuclear localization signal (NLS) and an N-terminal activation domain, 

whereas HIF-3α possesses a leucine-zipper domain instead of a C-terminal 

activation domain [70]. 

 
Fig. 6: Domain structure of hypoxia inducible trans cription factors [70]. 

Abbreviations: CTAD, C-terminal activation domain; LZIP, leucine zipper ; NLS, nuclear 

localization signal ; NTAD, N-terminal activation d omain ; PAS, PER/ARNT/Sim domain; PAC, 

PAS-associated C-terminal domain.  

 

HIF-1α is the best understood isoform which functions within the cell in a non-

redundant way together with HIF-2α [70], which was shown to be involved in 

important cellular functions [73, 74].  

Once HIF-α and HIF-β heterodimerize within the nucleus, they bind together with the 

transcriptional coactivators CBP/p300 to hypoxia responsive elements (HREs), which 

consist of the core motif G/ACGTG [75].  

1.3.2 Molecular regulation of hypoxia inducible fac tors 

The identifications of a novel class of dioxygenases made HIF proteins prime 

candidates for oxygen sensing proteins [70]. 

The hydroxylation reactions can be performed by either PHDs (prolyl hydroxylase 

domain proteins), that recognize prolyl residues or by FIH-1s (factor inhibiting 

hypoxia inducible factor-1) that recognize asparaginyl residues (Fig.7) [75].  
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1.3.2.1 Prolyl hydroxylation 

Hydroxylation of prolyl residues is catalyzed by the PHDs that recognize the ODD 

(oxygen degradation domain) within the C- or N-terminus of the hypoxia inducible 

transcription factors [76]. PHDs require specific co-factors to catalyze this reaction, 

such as oxygen, iron and 2-oxoglutarate [77]. The hydroxylation of HIF-α’s mediates 

the interaction with the von Hippel-Lindau tumor suppressor (pVHL), which acts as an 

E3 ligase, promoting the ubiquitination-mediated proteasomal degradation [78, 79]. 

Four different PHD isoforms are known: PHD1-4 but only PHD1-3 have been shown 

to hydroxylate HIF [76]. PHD1 and PHD3 show higher affinity towards HIF-2α, 

whereas PHD2 favours HIF-1α [80].  

1.3.2.2 Asparaginyl hydroxylation 

Asparaginyl hydroxylation is catalyzed by FIH-1s [81]. The FIH catalyzed 

hydroxylation event prevents binding of the CBP/p300 co-activator to the HIFs thus 

impeding the target gene activation [70].  

Notably, studies on FIH-1 and p300 could show that even though these proteins were 

absent, some HIF-target genes were still HIF-inducible [82, 83].  

 

 
Fig. 7: Molecular regulation of HIF by prolyl and asparaginyl hydroxylation [75]. 

 
 

Under normoxic conditions, both PHDs and FIHs can hydroxylate their specific target 

residues within the oxygen degradation domains (ODD) of HIF-α subunits.  
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This leads to an E3 ligase (von Hippel-Lindau tumor suppressor complex) mediated 

ubiquitinylation of HIF-α, that triggers proteasomal degradation, or to a blocked p300 

co-activator recruitment, thus preventing HIF from activating specific target genes. 

When the oxygen levels decrease, HIF α subunits get stabilized due to the inactive 

hydroxylases. Stabilized HIF-α subunits can dimerise with HIF-1β within the nucleus, 

bind the co-activator CBP/p300 and turn on target gene transcription by binding to 

hypoxia responsive elements (HREs) [61].  

1.3.3 Cross-talk between hypoxia responsive transcr iption factors 

Hypoxia activates HIF as well as other hypoxia responsive transcription factors. 

Taken together, all of these factors mediate the hypoxia response in a collective 

manner to alter the gene expression profile of the cell (Fig. 8) [70].  

This section should reveal the diversity of transcription factors that are activated 

during hypoxia and how these factors might function in order to ensure a co-ordinate 

cellular response.  

 

The NF-κB family of transcription factors 

The NF-κB family is composed of seven proteins which are encoded by five genes 

(RelA, RelB, c-Rel, NF-κB1(p105/p50), NF-κB2 (p100/p52)) [84]. The NF-κB 

transcription factors are known to play important roles in the immune system and 

inflammatory responses but recent studies revealed that NF-κB plays a role in 

disorders such as cancer [85]. It was already known that hypoxia induces NF-κB [86], 

but the underlying molecular mechanisms were not so clear. It had been shown that 

NF-κB acts as both a survival signal and as a pro-death factor and therefore shows a 

dual nature of regulation [70]. Furthermore, it was shown that NF-κB directly 

modulates HIF-1 transcriptionally [87] , which might reveal interesting mechanisms of 

how these factors work together in order to respond to low oxygen levels.  

 

AP-1 transcription factors 

AP-1 transcription factors are formed by combination of dimers between Jun, Fos 

and ATF (activating transcription factor) transcription factors and therefore regulate 

highly complex biological functions, such as proliferation, apoptosis and 

tumorigenesis [70]. Knock-out studies revealed the high importance of some AP-1 

members in developmental processes [88]. Since AP-1 generally acts by co-

operation with other transcription factors in order to modulate their activity, this is also 
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thought to occur under hypoxia due to clear evidence of co-operation between these 

two transcription factors [89]. Additionally, it was observed that NF-κB co-operates 

with AP-1 [90].  

 

p53 

Since p53 is one of the most important tumor suppressors, activated by a great 

variety of cellular stress signals, it is not surprising that p53 is activated by hypoxia as 

well. Even though hypoxia does not induce any detectable DNA damage, it induces 

p53 but surprisingly both in an HIF-1 dependent and independent manner [91]. 

Studies with focus on the transcriptional activity of p53 revealed that p53 did not 

induce the same sets of genes under hypoxia compared to typical p53-activating 

stimuli, such as UV-light [91, 92]. Beside these controversial findings, it is clear that 

p53 plays a role in hypoxia- induced apoptosis [70]. 

 

The Myc family of transcription factors 

The Myc family is composed of four members: c-Myc, N-Myc, L-Myc, and S-Myc [93]. 

Since the Myc family of transcription factors play important roles in various diverse 

biological processes, such as cell growth, cell proliferation, inhibition of cell 

differentiation, angiogenesis as well as genomic instability, they are tightly regulated 

[93, 94]. Under hypoxic conditions, cells usually stop to proliferate and undergo cell 

cycle arrest via induction of cyclin-dependent kinase inhibitors, which are normally 

repressed under normoxia [95, 96].  

Interestingly, it has been shown that Myc and HIF can compete for promoter binding 

sites in order to activate target gene transcription. Normally, the cyclin-dependent 

kinase inhibitor p21 is repressed under normoxia by c-Myc which binds to its 

promoter, whereas, under hypoxia c-Myc is replaced by HIF, thus active p21 leads to 

cell cycle arrest [97]. Surprisingly, neither HIF transcriptional activity, nor its DNA 

binding is essential for induction of cell cycle arrest [96]. 

There are many processes where Myc and HIF have contrasting effects, but both 

transcription factors are up-regulated in various tumor cells where they promote the 

same biological processes, such as angiogenesis [98].  

However, both HIF as well as Myc can co-operate in order to respond to hypoxic 

stress by inducing shared target genes like VEGF (vascular endothelial growth factor) 

or PDK1 (pyruvate dehydrogenase kinase 1) [99].  
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Fig. 8: Cross-talk between hypoxia responsive trans cription factors [70].  

Even though the hypoxia inducible factors are the m ain regulators of hypoxia, they co-operate 

with other hypoxia responsive transcription factors  in order to ensure a co-ordinate cellular 

response. 

 
 

1.4 HIF target genes  

 
Functional HIF complexes (HIF-α/HIF-β) bind to specific hypoxia responsive 

elements (HREs) within regulatory regions of their target genes to modulate gene 

expression. These transcriptional targets play different roles in the complex 

regulation of oxygen homeostasis and are involved in cell migration, hormonal 

regulation, energy metabolism, angiogenic signalling as well as cell growth and 

apoptosis (Fig.9) [75].  

For example, erythropoietin and various iron-metabolising genes are direct targets of 

HIF-1α which lead to increased capacity of red blood cells to transport oxygen during 

erythropoiesis [61, 100, 101]. Other prominent HIF targets are; vascular endothelial 

growth factor (VEGF) [102], Glucose transporter 1/3 (GLUT1/3) [103], or Aldolase-

A/C (ALDO A/C) [68], all of which are involved in angiogenesis, glucose uptake or 

glycolysis.  
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Large-scale gene-expression arrays revealed that in any given cell, hundreds of 

genes are either up- or down-regulated by hypoxia [104-106]. Notably, the set of 

genes that are regulated by hypoxia greatly differ between different cell types [75].  

 

 
Fig. 9: HIF target genes, an overview [75]. 

 

Genetic studies revealed that defective HIF-α-subunit-cells, as well as defective von 

Hippel Lindau tumor suppressor-cells, in combination with non-specific hydroxylase 

inhibitors, mostly need a functional HIF/pVHL/hydroxylase system to respond to 

hypoxia [75]. 
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1.5 Hypoxia and cancer 

The majority of solid tumors show expression of HIF-1α. These tumors, involving 

brain, bladder, breast, colon, ovarian, pancreatic, renal as well as prostate [107, 108], 

must increase their oxygen supply due to hypoxic areas that evolve during tumor- 

growth via angiogenesis as well as switch to glycolytic ATP-production, which is 

known as the Warburg effect [109].  

However, the important role of hypoxia inducible factors in these adaptive processes 

leave no doubt that both HIF-1α and HIF-2α play fundamental roles in tumor 

progression and grade, in order to provide a selective advantage to tumor cells [61].  

Characteristically, hypoxic tumors show common features:  

(1) They cannot grow beyond a certain size (mm3) without turning on angiogenesis to 

maintain their oxygen- and nutrient- supply [110, 111]. (2) Increased vascularisation 

in tumors is often correlated with reduced survival rates in patients [112]. (3) Hypoxic 

levels within tumors are positively correlated with increased invasion capability as 

well as metastasis and death [113]. (4) The proliferation rate of cancer cells are 

enhanced in comparison to the angiogenic rates [110]. (5) Hypoxic tumors are 

resistant to chemotherapy, immunotherapy and radiotherapy [114].  

It is important to emphasize that beside HIF-1α, whose function in hypoxic tumor 

growth is of main interest, HIF-2 α is also up-regulated in human cancers [115].  

Since over-expression of HIF-1α correlates with high aggressiveness as well as poor 

prognosis and treatment failure [65], it could be advantageous to develop agents that 

inhibit HIF activation.     

1.6 Cancer classification 

Cancers have been classified due to the tissues and specific cell types from which 

they originate [116]. In contrast to this type of classification, the WHO (World Health 

Organisation) utilizes an organ system approach that is based on the different body 

sites at which the tumors occur [117].  

The organ system approach of tumor classification is problematic since nearly all 

organs are comprised of various organ-specific as well as organ non-specific cell 

types. A complete list of tumors that occur in one specific organ could therefore be 

shared with another organ that possibly consists of an analogous tissue-composition. 

Therefore, the same tumors appear in every site-specific classification over and over 

again [117].  
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The histological based cancer classification categorises the various types of cancers 

as follows: 

 

(1) Carcinomas 

Carcinomas arise from epithelial cells and tend to infiltrate the surrounding tissue and 

therefore have a high metastatic potential [118]. 90% of all human cancers are 

carcinomas, which could be due to the high proliferation rate within the epithelia 

[116].  

 

(2) Lymphoma 

Lymphoma is the general term that characterizes various neoplastic diseases derived 

from lymphoid tissues. They are further sub-divided into Hodgkin disease, 

immunoproliferative small intestinal disease and non- Hodgkin’s disease [118]. 

 

(3) Leukemia 

Leukemia is a malignant disease of the blood-forming organs and characterized 

through the malfunctioning proliferation and differentiation of leukocytes, as well as 

their precursors within the bone marrow and blood. Originally, leukemias were 

divided into either acute or chronic leukemias, which reflected the life expectancies of 

patients. Additionally, leukemias can be further classified into myeloid and lymphoid 

leukemias [118]. 

 

(4) Melanoma: 

Melanomas derive from melanin forming cells and therefore affect the skin of nearly 

every site in the body. This malignant neoplasm is highly metastatic and therefore 

accompanied by poor prognosis [118]. 

  

(5) Sarcoma 

Sarcoma is a highly malignant neoplasm of connective tissue which is formed by 

proliferation of mesodermal cells [118].  

Compared to this historical type of classification, there is currently no modern cancer 

classification existing but the technological progress makes it possible to develop 

new classification methods, based on molecular gene expression profiles using 

microarrays [117, 119].  
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1.7 Ewing’s Sarcoma   

 
Sarcomas are one of the most aggressive and frequently metastatic malignancies of 

children and adults, which mostly originate from mesenchymal stem/progenitor cells 

[120, 121]. 

Ewing’s sarcoma is the second most common malignancy of children and young 

adults that affects mostly soft tissue and solid bone [122]. There are 1-3 million 

incidences per year in the Western hemisphere with a slightly higher frequency in 

males than in females [123].  

Although Ewing’s sarcomas may arise in any bone and from soft tissue, the most 

common sites of these tumors are the pelvic bones (Fig. 10), followed by the long 

bones of the lower extremities and the bones of the chest wall. Metastasis occur 

mainly in the bone marrow, bones and lungs in about 25% of all patients [124].  

 

 
Fig. 10: Ewing’s sarcoma of the pelvis, magnetic re sonance image [124]. 

 
  

Ewing’s sarcoma belongs to a group of small blue round cell tumors that exhibit a 

poorly differentiated cell phenotype (Fig.11). This histological group consists of 

neuroblastoma, alveolar rhabdomyosarcoma, lymphoblastic lymphoma and Ewing’s 

Sarcoma family tumors (ESFT) [123]. Since all of these tumors share common 

morphological features, it has been difficult to diagnose Ewing’s sarcoma due to the 

lack of specific molecular markers [122].  
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For instance, Ewing’s sarcomas express high levels of the transmembrane 

glycoprotein CD99 [125], which is expressed by other small blue round cell tumors as 

well.  

However, intense immunohistochemistry of small blue round cell tumors is frequently 

required to ensure appropriate diagnosis. As already mentioned, ESFT, just like 

lymphoblastic lymphomas, express CD99 but only lymphoblastic lymphoma 

expresses CD45 whereas Ewing’s sarcomas do not. Furthermore, alveolar 

rhabdomyosarcoma may express CD99 but the difference to Ewing’s sarcomas is 

expression of specific markers like desmin, myogenin and MyoD1 that are lacking in 

ESFT cells. Neuroblastomas as well as ESFT tend to express neural specific enolase 

(NSE) and S-100 but, additionally, neuroblastomas are vimentin-negative and 

neurofilament-positive whereas Ewing’s sarcomas are not [123].  

 

 
Fig. 11: Typical small blue round cell phenotype of  Ewing’s sarcoma [123]. 

 
 
In the early 1990s, ESFT were characterized by a chromosomal translocation that 

gives rise to a functional fusion protein called EWS-Fli1 [126]. This discovery led to 

improved diagnosis due to the usage of fluorescence in situ hybridization (FISH), 

and/or reverse transcriptase polymerase chain reaction (RT-PCR) [122].  
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1.8 EWS-Fli1 

ESFT are characterized by chromosomal translocations involving the EWSR1 gene 

and several ETS transcription factor genes, giving rise to EWS-ETS oncoproteins. 

The most frequently observed translocation, t(11;22)(q24;q12), results in the fusion of 

portions of the EWSR1 gene with the Fli1 (Friend leukemia integration site 1) 

transcription factor gene and is observed in 80-85% of all cases [122].  

The EWSR1 gene, which encodes for the EWS protein (Fig.12), is composed of an 

N-terminal serine-tyrosine-glutamine-glycine-rich (SYQG) region, that has a high 

transactivation potential [127, 128], and of a C-terminal RNA recognition motif. 

Additionally, this RNA-binding protein contains three arginine-glycine-glycine-rich 

(RGG) regions which have been shown to interact with RNA as well [126].  

On the other hand, Fli1 belongs to the ETS transcription factor family, as mentioned 

in section 1.2.2, that recognizes a conserved DNA sequence [129].  

The most common EWS-Fli1 fusion involves the first 264 amino-acid EWS portion 

and the C-terminal Fli1 portion, consisting of 233 amino-acids. This gene fusion is 

due to a specific rearrangement which affects intron 7 of EWSR1 and intron 5 of Fli1 

[122]. However, there are alternative EWS-Fli1 fusion proteins that arise from other 

breakpoints, but all bear the transactivation domain of EWS and the DNA-binding 

domain of Fli1. The resulting chimeric transcription factor is aberrantly active and 

capable of binding DNA [130, 131].  

 
Fig. 12: Fusion of the RNA-binding protein EWS with  the DNA-binding protein FLI 1, resulting in 

a chimeric, aberrantly active transcription factor which is able to bind DNA [122].  

Abbreviations: DNA-BD, DNA binding domain; Pro, pro line-rich activation domain; PTD, 

pointed domain; RGG, arginine-glycine-glycine-rich region; RRM, RNA recognition motif; 

SYQG, serine-tyrosine-glutamine-glycine-rich region ; ZN, zinc finger. 
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Notably, it is widely accepted that EWS-Fli1 fusion proteins are oncogenic due to 

clear evidence demonstrating that they can transform NIH3T3 mouse fibroblasts in 

vitro [132]. On the other hand, introduction of siRNA or EWS-Fli1 antisense 

constructs into Ewing’s sarcoma cells resulted in increased apoptosis, growth 

inhibition as well as prevention of tumor formation in nude mice [133-135]. 

Interestingly, no single Ewing tumor has been identified to contain a EWS-ETS 

protein with a defective DNA-binding domain, indicating that this ability is essential for 

the oncogenic potential of Ewing tumors [122]. Additionally, the fusion mode of EWS 

and Fli1 determines the transactivation potential of the resulting oncoprotein [136].  

Beside the EWS-Fli1 fusion, there are around 15% of Ewing tumors that do not show 

a t(11;22)(q24;q12) translocation. The most common translocation, among these 15 

% of tumors, involves the EWS-ERG fusion between the EWSR1 gene and the ERG 

(ETS-related gene) gene that makes up ~ 10% of all cases [137]. Other members of 

the ETS-family of transcription factors that are known to fuse with the EWSR1 gene 

are: ETV1 (ETS variant gene 1) [138], ETV4 (ETS variant gene 4, also known as 

E1AF) [139], and FEV (fifth Ewing sarcoma variant) [140]. The latter are fairly rare 

and make up <1% of all ESFT cases [122].  

Since EWS-ETS fusion proteins operate as transcription factors with a highly potent 

transactivation- as well as DNA-binding-domain, they may up- or down-regulate 

many target genes in ESFT [122]. It has been shown that these chimeric transcription 

factors affect fundamental biological processes, such as stimulation of cell 

proliferation (e.g. PDGF, platelete-derived growth factor) [141], evading growth 

inhibition (e.g. TGF-β, transforming growth factor-β; Id2, inhibitor of DNA binding 2) 

[142, 143], escape from apoptosis (e.g. IGFBP-3, insulin-like growth factor binding 

protein-3) [144] or invasion and formation of metastasis (e.g. MMPs, matrix 

metalloproteinases) [122].  
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1.9 Aim of the thesis 

 
Since ESFT are highly malignant and often associated with poor prognosis, it is of 

great interest to identify new prognostic markers in order to enable risk-adapted 

therapy. 

Hypoxia is known to stimulate invasion and metastasis in many tumors resulting in 

adverse prognosis. Solid tumors that have been shown to contain hypoxic areas 

respond mainly via HIF-1α to promote further tumor development.  

So far, the role of hypoxia and especially the contribution of HIF-1α to the 

aggressiveness of ESFT remain unknown. The aim of this thesis, therefore, is to 

investigate the role of hypoxia and HIFs in ESFT cell lines.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Media 

 
RPMI 1640 with GlutaMAX Tm-I 

Invitrogen, Groningen, Netherlands 

Add 10% fetal calf serum (FCS Gold, PAA Laboratories, Linz, Austria) and 100.000 

Units/l penicillin / streptomycin (PAA Laboratories, Linz, Austria) 

 

DMEM 

Invitrogen, Groningen, Netherlands 

1000 mg/L glucose, 4mM L-glutamine and 110 mg/L sodium pyruvate 

Add 10% fetal calf serum (FCS Gold, PAA Laboratories, Linz, Austria) and 100.000 

Units/l penicillin / streptomycin (PAA Laboratories, Linz, Austria) 

 

Luria Broth (LB) 

1% Trypton,  

1% NaCl,  

0,5% Yeast-extract; LB was autoclaved  

 

Opti-MEM: Invitrogen, Groningen, Netherlands 

 

Trypsin / EDTA:  PAA Laboratories, Linz, Austria 

 

Accutase:  PAA Laboratories, Linz, Austria 

 

2.1.2 Buffers 

 
TBS-T:  50mM Tris, 150mM NaCl, 0,1% Tween 20; pH 7,5 

 

TBS:  50mM Tris, 150mM NaCl, pH 7,5 
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PBS:  137mM NaCl; 3mM KCl; 6,5mM Na2HPO4-2H2O; 1,5mM KH2PO4 

 

Laemmli buffer 

15,1g Tris 

72g glycine 

25ml 20% SDS 

per 1 liter 

 

Transfer buffer  

14g glycine 

3g Tris 

20% methanol 

per 1 liter 

 

2x sample buffer  

20% (v/v) glycerol 

6% ß-mercaptoethanol 

3% SDS 

125mM Tris-Cl pH 6,8 

small amount of bromphenol blue crystals 

 

Ponceau S staining solution (10x stock) 

2g Ponceau S 

30g trichloroacetic acid 

30g 5-sulfosalicylic acid 

fill up to 100ml with dH20 

 

Loading Dye 

4M Urea 

80mM EDTA 

10% Saccharose 

0,25% BPB 
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TBE 

5,4g Tris Base 

2,75g Boric Acid 

2ml 0,5M EDTA/pH8 

per 1 liter 

 

Blocking solution 

10% (v/v) blocking reagent (Roche, Basel, Switzerland) in maleic acid buffer (100mM 

Maleic Acid, 150 mM NaCl, pH= 7.5, sterile).  

 

2.1.3 Chemicals 

Desferrioxamine (DFX): Compound that mimics hypoxia by chelating iron, therefore 

impeding appropriate prolyl hydroxylase domain protein (PHD) function, resulting in 

stabilization of HIF-1α. (D 9533-1G, Sigma, St. Louis, USA) 

 

Cobalt (II) chloride (CoCl 2): A transition metal that inhibits prolyl hydroxylase 

domain proteins (PHDs) by depleting the cells of ascorbic acid, which is a co-factor of 

prolyl hydroxylases, with concomitant HIF-1α stabilization. (C 8661-25G, Sigma, 

St.Louis, USA) 

 

Propidium Iodide (PI): (P4170) Sigma, St. Louis, USA 

 
Doxycycline:  Sigma, St. Louis, USA 

 

Puromycin :  Sigma, St. Louis, USA 

 

Zeocin:  Cayla, Toulouse, France 

 

Blasticidin:  Invitrogen, Groningen, Netherlands 

 

Ampicillin:  Biomol, Hamburg, Germany 

 
Trypan blue: Sigma, St. Louis, USA 
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2.1.4 Ewing tumor cell lines 

 
TC252 

Established by T. Triche (Dep. of Pathology, Children’s hospital, Los Angeles, USA); 

p53 wild type, expresses the type I (Exon 7 [EWS]/ Exon 6 [Fli1]) EWS-Fli1 fusion.  

 

SK-N-MC 

Established by J. Biedler (Memorial Sloan Ketternig Cancer Center, New York, USA); 

truncated p53, expresses the type I EWS-Fli1 fusion, derived from pPNET localized 

within the rib.  

 

STA-ET-7.2 

Cell lines that are designated ‘STA-ET’ were established at the CCRI (Children’s 

Cancer Research Institute, Vienna, Austria). STA.ET7.2 was established from a 

pleural effusion; p53 mutant (R273C) [145]; expresses type II (Exon 7 [EWS]/ Exon 5 

[Fli1]) EWS-Fli1 fusion. 

 

STA-ET-1 

Established at the CCRI, Vienna, Austria, expresses type I EWS-Fli1 fusion and 

harbours wild type p53.  

 

ASP14 

Established from the A673 parental ESFT cell line by Javier Alonso (Laboratorio de 

Patología Molecular de Tumores Sólidos Infantiles, Departamento de Biología 

Molecular y Celular del Cáncer, Instituto de Investigaciones Biomédicas, Madrid, 

Spain); p53 mutant (2BP-INS 118/119) [145], expresses type I EWS-Fli1 fusion and 

doxycycline-inducible small hairpin RNA against EWS-Fli1. 

 

VH64 

Established by F. Van Valen (Dep. of Paediatrics, University of Münster, Germany); 

p53 wild type, expresses type II EWS-Fli1 fusion.  
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WE68 

Established by F. Van Valen (Dep. of Paediatrics, University of Münster, Germany); 

wild type p53 and expresses type I EWS-Fli1 fusion.  

2.1.5 Antibodies 

 
Anti-HIF-1 α:  Mouse monoclonal antibody against amino acids 610-727 

of human HIF-1α. (Becton Dickinson transduction 

laboratories, USA, 610959) Dilution: 1:200; 1:100  

 

Anti-HIF-2 α:  Mouse monoclonal antibody (ab8356), clone number-

[ep190b], human HIF-2α. (Abcam, Cambridge Science 

Park, Cambridge, UK) Dilution 1:500  

 

Anti- β-actin: Mouse monoclonal [ab8226] to beta Actin, clone number 

[mAbcam 8226]. (Abcam, Cambridge Science Park, 

Cambridge, UK) Dilution 1:10000  

 

Anti-Fli-1 (C-19):  Rabbit polyclonal antibody against the C-terminus of Fli1 

(Santa Cruz Biotechnology Inc., Santa Cruz, USA, sc-

356). Dilution:  1:500  

 

Anti-Fli-1(Hybridoma): Supernatant of Hybridoma cell line 7.3, producing 

monoclonal antibody against the C-terminus of Fli1, was 

derived from Olivier Delattre (Institut Curie, Paris, France)  

 use: undiluted  

 

Anti-mouse POD: Anti-Mouse IgG, (H+L), Peroxidase conjugated secondary 

antibody using chemiluminescence. (product no. 31430, 

Pierce, Rockford Illinois, USA) Dilution: 1:10000   

 

Anti-rabbit mouse POD: Anti-Rabbit IgG, (H+L), Peroxidase conjugated secondary 

antibody using chemiluminescence (product no. 31460, 

Pierce, Rockford Illinois, USA) Dilution: 1:10000  
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2.1.6 Plasmids 

 
 
pEF-Bos-cs- ∆HIF-1α:  EF1 promoter based mammalian expression vector, 

bearing a non-degradable version of HIF-1α (P564A and 

N803A within the ODD of HIF-1α). (Gift from Dr. Murray 

Whitelaw, School of Molecular and Biomedical Sciences, 

The University of Adelaide, Adelaide, Australia) [146] 

 

pEF-Bos-cs-HIF-1 α:  EF1 promoter based mammalian expression vector 

bearing wild type HIF-1α. (Gift from Dr. Murray Whitelaw, 

School of Molecular and Biomedical Sciences, The 

University of Adelaide, Adelaide, Australia) [146] 

 

pRS-puro-shHIF-1 α: Retroviral vector containing shRNA oligo that targets HIF-

1α. (Gift from Dr. M. Vooijs, Department of Pathology, 

University Medical Centre Utrecht, Netherlands) [147] 

 

pSuper ∆RVsh30:  mammalian expression vector encoding shRNA against 

Ews-Fli type I. (constructed by Jozef Ban, CCRI, Vienna) 

[148] 

 

pCMV-GFP-shHIF-2α: CMV promoter based mammalian expression vector, 

containing shRNA against HIF-2α. (Gift from Prof. Hsu, 

Department of Pathology and Laboratory Medicine, 

Hollings Cancer Center, Medical University of South 

Carolina, South Carolina, USA) [149] 

 

pSuper ∆RV: pSUPER-based retroviral mammalian expression vector. 

(Gift from Reuven Agami, Division of Tumor Biology, 

Netherlands Cancer Institute, Amsterdam, Netherlands) 

[150] 
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2.1.7 Oligonucleotides 

 
Aldolase C (ALDOC):  forward primer:  ACTCCATACCACAGCCCTTG 

 reverse primer: GCAATTTCTGCCCTCAG 

 product size: 211bp 

 

Bnip3:   forward primer: CTGGACGGAGTAGCTCCAAG 

 reverse primer: AGCAGCAGAGATGGAAGGAA 

 product size: 351bp 

 

Carbon anhydrase IX: forward primer: ATCTGCCCAGTGAAGAGGATT 

(CAIX) reverse primer: TCTCCAGGAGCCTCAACAGTA 

 product size: 151bp 

 

EWS-Fli1:  forward primer: TCCTACAGCCAAGCTCCAAGTC 

 reverse primer: ACTCCCCGTTGGTCCCCTCC 

 product size: 328bp 

 

Glucose transporter 1: forward primer: CTTCACTGTCGTGTCGCTGT 

(GLUT1) reverse primer: TGAAGAGTTCAGCCACGATG 
 product size: 229bp 

 

Glucose transporter 3: forward primer: TGGGGCTATCTTGGTCTTTG 

(GLUT3) reverse primer: GTAATGAGGAAGCCGGTGAA 

 product size; 221bp 

 

HIF-1α: forward primer: CTCAAAGTCGGACAGCCTCA 

 reverse primer: CCCTGCAGTAGGTTTCTGCT 

 product size: 440bp 

 

HIF-2 α: forward primer: AGGGGACGGTCATCTACAACC 

 reverse primer: ATGGCCTTGCCATAGGCTGAG 

 product size: 307bp 

 

 



37 

Insulin growth factor forward primer: CAGAGACTCGAGCACAGCAC 

binding protein (Igfbp3): reverse primer: GATGACCGGGGTTTAAAGGT 

 product size: 194bp 

 

Vascular endothelial   forward primer: CCTCCGAAACCATGAACTTT 

Growth factor (VEGF):  reverse primer: AGAGATCTGGTTCCCGAAAC 

 product size: 740bp 

 

β-Actin:  forward primer: GCCGGGAAATCGTGCGTG 

 reverse primer: GGGTACATGGTGGTGCCG 

 product size: 305bp 

 

2.1.8 Kits 

 

BD Cycletest™ Plus:  

BD cycletest was used to estimate the cell-cycle phase distributions of differently 

treated ESFT cell lines via FACS analysis. (BD Biosciences, San Jose, USA, 

340242) 

  

Transwell® permeable inserts, Corning: 

Transwell inserts (8µm pore size, polycarbonate (PC) coated) were used for invasion 

assay with various ESFT cell lines. (Corning Incorporated, Life Sciences, NY, USA) 

 

Culture-Insert µ-Dish 35mm, low , Ibidi treat: 

Culture-Inserts ready to use in a µ-Dish 35 mm ibiTreat, tissue culture treated, sterile, 

low walls, were used for 2D migration assays (Scratch Assay) with various ESFT cell 

lines. (no. 80206, ibidi GmBH, Martinsried, Germany) 

 

SuperSignal® West Femto Maximum Sensitivity Substra te Kit: 

SuperSignal® West Femto Maximum Sensitivity Substrate Kit is an extremely 

sensitive enhanced chemiluminescent substrate for detecting horseradish peroxidase 

(HRP) on western blots. (34096, Thermo Fisher Scientific, USA) 
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2.2 Methods 

 

2.2.1 DNA/RNA methods 

 

2.2.1.1 RNA extraction 

RNA extraction was performed using the RNAeasy Mini Kit (Qiagen, Austin, USA) 

according to the manufacturer’s instructions. 

 

2.2.1.2 cDNA synthesis 

5µg of total RNA was denatured at 70°C for 10 minute s. After 2 min on ice, master 

mix, containing MMLV reverse transcriptase (Promega, Madison, USA), random 

hexamer primers and dNTP’s were incubated for 60 min at 37°C. Subsequent 

incubation for 30 min on 42°C and addition of RNase free water was followed by 

incubation for 5 min at 70°C; cDNA was stored at -20°C.  

 

2.2.1.3 RT-PCR 

Standard RT-PCR was performed on 20-50ng cDNA template, mixed with a 

nucleotide mix, containing 2,5mM of dCTP, dATP, dTTP and dGTP (Promega, 

Madison, USA), 511 Reaction Buffer, (Finnzymes, Espoo, Finnland) containing 

15mM MgCl2, 0,4µM of each primer, and 0,5µl DyNAzyme DNA Polymerase (2U/µl, 

Finnzymes, Espoo, Finnland). The mix was filled up with ddH2O to a total volume of 

50µl per PCR reaction.  

The polymerase chain reaction was performed by using the Dyad-Disciple thermal 

cycler (Biorad, California, USA) under following conditions: 

Denaturation at 95°C for 2 min,  95°C for 1 min, spe cific annealing temperature, 

between 50-70°C, for 30 sec, elongation at 72°C for 1 min, all for the first 10 x cycles. 

This programme was slightly modified for the next 25 x cycles: 95°C for 30 sec, 

annealing temperature for 15 sec, elongation at 72°C  for 1 min 30 sec, 72°C for 10 

min and 15°C forever.  
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The following optimized PCR conditions were obtained: 

 

HIF1alpha  
[20ng] cDNA; 10pmol/µl primer; annealing: 58.4°C; 2. 0mM MgCl2; x35cycles, 
elongation 1’-1’30’’ 
 
HIF2alpha 
[20ng] cDNA; 10pmol/µl primer; annealing: 66.8°C; 3. 0mM MgCl2; 1% DMSO; 
x35cycles; elongation 1’-1’30’’ 
 
Igfbp3 
[20ng] cDNA; 10pmol/µl primer; annealing: 55.5°C; 3. 0mM MgCl2; x35cycles; 
elongation 1’-1’30’’ 
 
AldolaseC 
[20ng] cDNA; 10pmol/µl primer; annealing: 64.6°C; 3. 0mM MgCl2; x35cycles; 
elongation  
1’-1’30’’ 
 
VEGF 
[20ng] cDNA; 20pmol/µl primer; annealing: 55.5°C; 1. 5mM MgCl2; x35cycles; 
elongation 1’-1’30’’ 
 
EWS-Fli1 
[20ng] cDNA; 20pmol/µl primer; annealing: 64.6°C; 1. 5mM MgCl2; x35cycles; 
elongation 1’-1’30’’ 
  
Bnip3 
[20ng] cDNA; 20pmol/µl primer; annealing: 53.2°C; 1. 5mM MgCl2; x35cycles; 
elongation 1’-1’30’’ 
 
β-actin 
elong. 1'-1'30''; annealing: 58.4°C x 22cycles; 20pmol /µl; 1.5mM MgCl2;  
 
 
Glut3 
[20-50ng] cDNA; 20pmol/µl primer; annealing: 55.5°C;  0.8mM MgCl2; x35cycles; 
elongation 1’-1’30’’ 
 
Glut1 
[20-50ng]cDNA; 20pmol/µl primer; annealing: 64.6°C; 2.0mM MgCl2; x35cycles; 

elongation 1’-1’30’’ 

CAIX  
[20-50ng]cDNA; 20pmol/µl primer; annealing: 61.8°C; 2.0mM MgCl2; x35cycles; 

elongation 1’-1’30’’ 
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2.2.1.4 Quantitative RT-PCR 

5µg of total RNA was denatured at 70°C for 10 minute s. After 2 min on ice, master 

mix, containing MMLV reverse transcriptase (Promega, Madison, USA), random 

hexamer primers and dNTP’s were incubated for 60 min at 37°C. Subsequent 

incubation for 30 min at 42°C and addition of RNase-f ree water was followed by 

incubation for 5 min at 70°C; cDNA was stored at -20°C.  

Reactions were set up in a total volume of 25µl containing 12,5µl 2x Universal PCR 

Master Mix, including uracil N’-glycosylase and AmpliTaq Gold DNA polymerase 

(Applied Biosystems, Vienna, Austria) and 1.5mM MgCl2, 900nM (EWS-Fli1, EWS, 

β2-microglobulin) of each primer and 400nM (EWS-Fli1, EWS, β2-microglobulin) 

TaqMan probe, and 6µl of cDNA template. The mixtures were prepared in 96-well 

optical microtiter plates and amplified on the ABI 7900 Sequence Detection System 

using the following cycling parameters: 2 min at 50°C , 10 min a 95°C, and 50 cycles 

of 15s at 95°C and 60s at 60°C. The beta-2-microglobu lin values were used for 

normalization. 

 

EWS-Fli1  

(Type I Exon 7/6): forward primer: CAGCCAAGCTCCAAGTCAATATAG 

reverse primer: GCTCCTCTTCTGACTGAGTCATAAGA 

 probe: CTGCCCGTAGCTGCTGCTCTGTTG 
 

EWS: forward primer: ACAGCAGAGTAGCTATGGTCAACAA 

reverse primer: ACTTGGAGCTTGGCTGTAGGAT 

probe: AGCCTCCCACTAGTTACCCACCCCAAA 

 

β2-microglobulin: forward primer: TGAGTATGCCTGCCGTGTGA 

reverse primer: TGATGCTGCTTACATGTCTCGAT 

probe:  CCATGTGACTTTGTCACAGCCCAAGATAGTT 
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2.2.1.5 Maxi Prep 

The day prior to preparation, 250ml of LB (containing 10mg/ml ampicillin) were 

inoculated with a pre-culture of the corresponding plasmid and incubated at 37°C 

overnight. Qiagen Endotoxin free MaxiPrep kit (Qiagen, Austin, USA) was used for 

preparation according to the manufacturer’s instructions.  

 

2.2.2 Protein methods 

 

2.2.2.1 SDS- Polyacrylamide Gel Electrophoresis (PA GE) 

 
The SDS- polyacrylamide gel consists of a stacking and a separating gel: 

Seperating gel: 

 6% 8,5% 12,5% 
30%Acrylamid / 0,8% Bis 1,05ml 1,4ml 2,1ml 
H2O 2,625ml 2,275ml 1,575ml 
1,5M Tris pH8,8 1,25ml 1,25ml 1,25ml 
20% SDS 25µl 25µl 25µl 
10% APS 50µl 50µl 50µl 
TEMED 6µl 6µl 6µl 

 

 

Stacking gel: 

30%Acrylamid / 0,8% Bis 415µl 
H2O 1,7ml 
1M Tris pH6,8 315µl 

20% SDS 12,5µl 
10% APS 25µl 

TEMED 2,5µl 

 

 

Cells were counted and adjusted to a concentration of 30.000 cells/ µl with PBS and 

the same volume of 2x sample buffer. Samples were boiled for 10 min at 96°C, 

followed by centrifugation at top speed, and finally loaded on the SDS-gel. The gel 

was run at 40mA for ~ 60 min, till the bromphenol blue front began to phase out.  
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2.2.2.2 Western Blot 

 
The transfer was started by assembling the transfer unit, consisting of the typical 

sandwich conformation (sponge, 3x Whatman paper, gel, nitrocellulose membrane, 

3x Whatman paper, sponge), which was put in the blotting tank. The transfer 

occurred during 90 min at 400mA with the blotting tank cooled on ice.  

The nitrocellulose membrane was stained with 1x PonceauS solution for several 

minutes, and was subsequently scanned. To avoid unspecific binding of the primary 

antibody, the membrane was incubated in 1% blocking solution for 60 minutes at 

room temperature. The primary antibody was diluted in 0.5% blocking solution, added 

to the membrane and incubated overnight at 4°C. On t he next day, the membrane 

was washed three times with TBST and once with 0.5x blocking solution for 10 

minutes at room temperature. Again, the secondary antibody was diluted in 0.5% 

blocking solution and incubated with the membrane for 1h at room temperature, 

followed by three times washing with TBST. The membrane was then carefully rinsed 

once with deionized water and incubated, with appropriate dilution of SuperSignal® 

West Femto Maximum Sensitivity Substrate Kit (Thermo Fisher Scientific, USA), for 

3- 5 minutes in the dark. Films were developed using a standard radiograph 

processor (AGFA, CP-1000). 

 

 

2.2.2.3 Cell culture techniques 

 
ESFT cell lines were routinely cultured in RPMI 1640 with GlutaMAXTm-I (Invitrogen, 

Groningen, Netherlands), containing 10% fetal calf serum (FCS Gold, PAA 

Laboratories, Linz, Austria) and 100.000 Units/l penicillin / streptomycin (PAA 

Laboratories, Linz, Austria) in 5% CO2 at 37°C. 

For hypoxia studies, ESFT cell lines were cultured in RPMI 1640, containing 10% 

FCS, Pen/Strep and 25mM Hepes, placed in a hypoxia chamber at 1% O2 and 

incubated in a humified atmosphere in 5% CO2 at 37°C. To induce HIF-1 α under 

normoxic conditions (21% O2), 200µM CoCl2 or 150µM DFX were used.  
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2.2.2.4 Transfection 

 
Cells were split, according to the required amount, and cultured mainly in middle 

sized flasks (75cm2). Transfection was performed, when cells reached 70-80% 

confluency, using Lipofectamine and Plus reagent (Invitrogen, Groningen, 

Netherlands) in serum-free OptiMEM I medium (Invitrogen, Groningen, Netherlands) 

according to the manufacturer’s instructions.  

Cells were incubated in OptiMEM I, including the transfection mix, for four hours at 

37°C. Subsequently, the serum free medium was replaced  by supplemented RPMI 

medium. Puromycin selection [1µg/ml] was initiated on the following day and cells 

were harvested after 72h.  

 

2.2.3 Functional Assays  

2.2.3.1 Scratch-Assay 

 
Culture-Insert µ-Dish 35mm, low, Ibidi treat (ibidi GmBH, Martinsried, Germany) were 

used to perform 2D- migration assays. Cells were seeded, according to the cell type, 

between 4 x 104- 5 x 104 cells/segment and cultured in standard RPMI 1640 with 

GlutaMAXTm-I (containing Penc./Strep. and FCS). The following day, the 

supplemented RPMI was replaced with RPMI containing just Penicillin/Streptomycin 

but no FCS, in order to starve the cells for 18 hours. The culture insert was removed 

according to the manufacturer’s instructions and migration was monitored with a 

standard inverted microscope after each day. Image analysis was carried out by 

S.CO LifeScience (S.CORE image analysis, Garching (Munich), Germany). 

 

2.2.3.2 Proliferation Assay 

Depending on the duration of the experiment, ESFT cell lines were seeded at a 

density between 2x105-5x105 cells/ well into 6-well plates, cultured in RPMI 1640 

(10% FCS, Pen/Strep (PAA, Linz, Austria)) and incubated for 3-5 days in a humified 

atmosphere containing 5%CO2. Cells were treated with Accutase (PAA Laboratories, 

Linz, Austria), for 10 minutes and 10µl of the cell suspension were mixed with the 

same volume of trypan blue (T-8154-100, Sigma, St. Louis, USA), and subsequently 

applied onto a Bürker counting chamber.  
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2.2.3.3 Cell cycle Assay 

Cell cycle analysis of ESFT cell lines was performed using the BD Cycletest™ Plus 

(BD Biosciences, San Jose, USA, 340242) according to the manufacturer’s 

instructions.  

2.2.3.4 Invasion Assay 

The invasive potential of ESFT cell lines was tested using 8µm, polycarbonate 

coated Transwell inserts (Corning Incorporated, Life Sciences, NY, USA). RPMI 1640 

(Invitrogen, Groening, Netherlands) plus 10% FCS was filled into the lower 

compartment. A total of 5x105 cells resuspended in RPMI 1640 serum free medium 

were seeded in the upper compartment and incubated overnight at 37°C in 5% CO 2 

atmosphere. Cells that migrated through the membrane were stained according to 

the manufacturer’s instructions with 0,2% crystal violet and counted optically using a 

standard inverted microscope.  

2.2.3.4.1 Matrigel Coating 
 
Matrigel (BD Biosciences, 354248, San Jose, CA USA) was thawed overnight at 4°C 

on ice and kept on ice before use. Pre-cooled pipettes, tubes and tips were used, 

since matrigel rapidly polymerizes at 22°C to 35°C. Ma trigel was diluted in serum free 

medium (RPMI 1640 + Pen/Strep) to 1mg/ml final concentration and 1ml of diluted 

matrigel/6-well insert was used. Plates have been stored at 2-8°C before use.  
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3 Results 

3.1 Hypoxia mimetics induce HIF-1 α in a dose dependent manner 

Since hypoxia inducible factor 1-α is the main regulator of hypoxia, it was of great 

interest to detect this specific sensor-protein in ESFT cell lines. In the first approach 

we used canonical hypoxia mimetics, such as Cobalt-chloride (CoCl2) or 

Desferrioxamine (DFX), to check whether HIF-1α protein is inducible under standard 

culture conditions (37°C in 5% CO 2, 21% O2 atmosphere) and how the protein levels 

change upon treatment with different concentrations of these mimetics.  

CoCl2 is a transition metal that depletes the cells from ascorbic acid, thus impeding 

appropriate PHD function. On the other hand, DFX is known to function as an iron-

chelator, therefore inhibiting hydroxylation of HIF-1α. Both hypoxia mimetics were 

used in order to test for dose-dependent HIF-1α induction using 50, 100, 150 and 

200µM CoCl2 or DFX (Fig.13). 

 

 
Fig. 13: HIF-1α induction using CoCl 2/DFX is dose-dependent. 

The ESFT cell lines A) TC252 B) SK-N-MC were utiliz ed. 
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EWS-Fli1  
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β-actin  
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In the very first experiments, we used the ESFT cell lines SK-N-MC, TC252, STA-

ET1, WE68, ASP14 and STA-ET-7.2. Although we initially performed studies on 

many different ESFT cell lines, we chose to subsequently focus on TC252 and SK-N-

MC that have been extensively characterized. Importantly, these cell lines are known 

to differ in their p53 status (section 2.1.4), which may affect their response to 

hypoxia.  

The ESFT cells were seeded in middle sized flasks (75cm2), incubated under 

normoxic conditions (37°C, 5% CO 2, 21% O2 in a humified atmosphere) and 

harvested by using trypsin, once the cells reached 70-80% confluence.  

These experiments revealed that HIF-1α not only accumulates to high levels upon 

CoCl2/DFX-treatment, but also reaches the peak of induction at 200µM CoCl2 and 

150-200µM DFX. Notably, the increased HIF-1α -levels in TC252 ESFT cells 

correlated proportionally with an increase of EWS-Fli1, indicating that hypoxia might 

influence EWS-Fli1 protein levels.  

3.2 HIF-1α induction is time dependent 

After having assessed the optimal CoCl2-concentration, we established the kinetics of 

HIF-1α induction. For that purpose, we performed several time-course experiments 

using either 200µM CoCl2 (Fig.14) or 1% O2 (Fig.15) as a standard hypoxia condition.  

 
Fig. 14: Kinetics of HIF-1 α and EWS-Fli1 expression upon CoCl 2 treatment. 

A) TC252- and B) SK-N-MC- ESFT cell lines. Cells we re incubated with 200µM CoCl 2 at 37°C and 

5% CO2 in a humified atmosphere, containing 21% O 2, and harvested after 0, 2, 4, 8, 16, and 24 

hours.  
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These time-course experiments showed again, that EWS-Fli1 levels are transiently 

elevated upon HIF-1α induction. Interestingly, EWS-Fli1 seems to reach its 

expression-peak between 8 and 16 h, followed by a decrease of the protein to basal 

expression levels. This might be explained by the fact that EWS-Fli1 levels are 

essential for ESFT cells in order to survive, but are toxic when expressed at very high 

levels. Therefore, ESFT cell lines might show an adaption response to sustain their 

viability by holding accurate EWS-Fli1 levels. 

In addition we performed time-course experiments for 24, 48, 72, and 96 h under 

hypoxic conditions (1% O2) in order to see how HIF-1α levels change with time (Fig. 

15). Notably, hypoxia-treatment supported our previous observations with hypoxia 

mimetics, revealing maximum HIF-1α expression at 16 h and transiently increased 

EWS-Fli1 levels upon HIF-1α induction.  

 
Fig. 15: Kinetics of HIF-1 α and EWS-Fli1 expression upon hypoxia (1% O 2) treatment. 

A) TC252- and B) SK-N-MC- ESFT cell lines. Cells we re incubated in a humified atmosphere 

containing 1% O 2, 5% CO2 at 37°C and harvested after 0, 4, 8, 16, 24, 48, 7 2, and 96 hours.  

 

In addition, these time-course experiments at 1% O2 revealed that HIF-1α is already 

induced within the first four hours at low oxygen and stays fairly stable throughout a 

period of four days.   
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3.3 Hypoxia does not affect m-RNA levels of EWS-Fli 1 

The next step was to investigate whether, the increased EWS-Fli1 levels that have 

been monitored on protein level are reflected on the mRNA-level. Therefore, cDNAs 

from the time-course experiments were utilized to perform standard RT-PCR for HIF-

1α, EWS-Fli1 and several hypoxia regulated genes. β-Actin was used for control.  

 

 

Fig. 16: EWS-Fli1 mRNA levels did not change upon h ypoxia treatment (1% O 2). 

Samples corresponding to the time points 0, 4, 8 an d 16h were chosen according to the clear 

EWS-Fli1 induction on protein level (Fig.15).  
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Abbreviations: HIF-1/HIF-2 α, hypoxia inducible factor 1/2 α; EWS-Fli1, fusion of EWS and Fli1 

giving rise to a chimeric transcription factor; GLU T1/3, glucose transporter 1/3; ALDOC, 

Aldolase C; Bnip3, BCL2/adenovirus E1B 19kDa intera cting protein 3; VEGF, vascular 

endothelial growth factor; CAIX, carbonic anhydrase  IX; IGFBP3, insulin-like growth factor 

binding protein 3; β-actin, house-keeping gene 

 

We could clearly show that the mRNA levels of EWS-Fli1 were not affected upon 

hypoxia treatment, whereas the protein levels exhibited enhanced EWS-Fli1. These 

results were confirmed by utilizing qRT-PCR on the same samples (Fig.17). 
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Fig. 17: Quantitative analysis of EWS-Fli1 mRNA der ived from TC252 cells.  

A representative qRT-PCR of cDNAs derived from TC25 2 cells that were utilized for the time-

course experiment (Fig.15) as well as for RT-PCR (F ig.16). The experiment was carried out in 

triplicates and the mean values were used for the c alculation of fold changes.   

 
These results indicate that it is most likely a post transcriptional mechanism that 

regulates EWS-Fli1 enhancement.  

Additionally, some prominent HIF-1α target genes were clearly induced under 

hypoxia, such as GLUT1, GLUT3, ALDOC, VEGF, CAIX and IGFBP3 whereas HIF-

2α was constitutively expressed. Unfortunately, due to problems in the cDNA 

synthesis with samples derived from SK-N-MC, these results could only partially be 

reproduced, but are not shown here. Beside these problems, we reproduced that 

EWS-Fli1 mRNA levels were not enhanced under hypoxia at any time in both TC252 

and SK-N-MC cell lines. 
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3.4 HIF-1α over-expression is accompanied by elevated EWS-Fli 1 

levels 

To proof our previous observations, we over-expressed both a wild type HIF-1α and 

a non-degradable version of HIF-1α, carrying the P564A and N803A mutations within 

the ODD (∆HIF-1 α), in ESFT cell lines and subsequently analyzed EWS-Fli1- and 

HIF-1α (Fig.18).  

 
Fig. 18: Induction of EWS-Fli1 protein by over-expr ession of wild type and mutant HIF-1 α. 

Transfection of A) TC252- and B) SK-N-MC- ESFT cell  lines with either 2 or 4µg of pEF-Bos-cs- 

plasmid carrying HIF-1 α wild type or a HIF-1 α mutant version designated as ∆ HIF-1α. Cells 

were incubated under normoxic conditions (21% O 2) in 5% CO 2 at 37°C.  

 

For that purpose, ESFT cell lines, TC252 and SK-N-MC, were transfected with an 

EF1- driven mammalian expression vector (pEF-Bos-cs), bearing either the wild type- 

or mutant- version of HIF-1α. Puromycin selection was accomplished for three days 

and cells were harvested afterwards.  

These experiments clearly showed that both, over-expression of wild type HIF-1α 

and mutant HIF-1α under normoxia, caused a noticeable increase of EWS-Fli1 

levels.  
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3.5 EWS-Fli1 is regulated in an HIF-dependent manne r 

The ultimate experiment to investigate the role of HIF-1α for increased EWS-Fli1 

levels was to knockdown HIF-1α and monitor EWS-Fli1 levels concomitantly (Fig.19). 

Again, TC252 and SK-N-MC were utilized as model ESFT-cell lines. Cells were 

transfected with shRNA targeting HIF-1α (section 2.1.6), puromycin selected and 

subsequently harvested.    

 
Fig. 19: Knockdown of HIF-1 α using shRNA.  

Both, SK-N-MC and TC252 ESFT cell lines were treate d with 200µM CoCl 2 to mimic hypoxia 

under normal conditions (21% O 2) in order to definitely induce HIF-1 α. In addition, SK-N-MC 

cells were incubated under 0,1% O 2 but unfortunately, no HIF-1 α signal was obtained. Cells 

were treated with either empty vector (p ∆RV) or shRNA against HIF-1 α (psh HIF-1α) for 3 days.  

 
This knockdown studies clearly showed that EWS-Fli1 levels decreased with HIF-1α 

knockdown, indicating that EWS-Fli1 is regulated in an HIF-1α dependent manner. 

This conclusion is supported by our time-course data as well as by the HIF-1α over-

expression experiments.  

Unfortunately, hypoxic treatment with 0,1% O2 failed to reveal HIF-1α protein 

induction which might be explained by the very short half life of HIF-1α (< 5min) [151] 

during the harvesting period at normoxia.  

3.6 EWS-Fli1 possibly represses HIF-2 α in Asp14 cells  

HIF-1, HIF-2α and EWS-Fli1 expression were also investigated in the A673 derived 

ESFT cell line ASP14, which allows for inducible knockdown of EWS-Fli1 via addition 

of doxycycline.  

We over-expressed HIF-1α in ASP14 cell by transfecting with either pEF-Bos- HIF-1α 

or pEF-Bos-∆ HIF-1α in the presence or absence of doxycycline (Fig. 20).  
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Fig. 20: HIF-2α mRNA levels were induced upon doxycycline-mediated  EWS-Fli1 knockdown. 

RT-PCR of either wild type- or mutant- HIF-1 α transfected ASP14 cells.  Knock down of EWS-

Fli1 via doxyycline [1µg/ml] did not have any affec t on HIF-1α mRNA whereas, HIF-2 α mRNA 

levels were induced. This finding suggests that HIF -2α might be a target of EWS-Fli1.  

 

Surprisingly, RT-PCR of transfected ASP14 cells showed that even though HIF-2α 

mRNA was completely absent in the presence of EWS-Fli1, knockdown of EWS-Fli1 

by adding doxycycline induced HIF-2α mRNA. This data suggests that HIF-2α might 

be a target of EWS-Fli1 in the ASP14 cell line. 

 

3.7 Over-expression of HIF-1 α in ASP14 cells leads to increased 

EWS-Fli1 mRNA levels 

As shown in Figure 20, EWS-Fli1 levels were increased in ASP14 cells in the 

absence of doxycycline due to the over-expression of both wild-type- and mutant 

HIF-1α. To determine the magnitude of the elevated EWS-Fli1 mRNA levels in these 

cells we utilized qRT-PCR to quantify this increase properly.  

qRT-PCR was carried out by using a probe against EWS-Fli1 (fusion type I), EWS 

and β2-microglobulin, which was utilized for normalization. The same cDNAs which 

were used in the previous experiment (Fig.20) served as template for the quantitative 

RT-PCR.  
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Fig. 21: Quantitative analysis of EWS-Fli1 mRNA lev els after over-expression of wild type or 

mutant HIF-1 α in ASP14 cells. 

A qRT-PCR of cDNAs (cf. Fig.20) revealed that EWS-F li1 mRNA was up-regulated due to over-

expression of HIF-1 α. The highest change, up to 2 fold, was accomplishe d by transfecting with 

pEFBos- ∆HIF-1α whereas wild type HIF-1 α transfection resulted only in a 0,5 fold change. T he 

experiment was carried out in triplicates and the m ean values were used for calculation of fold 

changes.  

 

In contrast to TC252 and SK-N-MC cells, EWS-Fli1 mRNA levels were slightly up-

regulated in ASP14 cells upon HIF-1α/∆ HIF-1α over-expression up to two fold, 

whereas EWS mRNA levels did not change.  

Even though this qRT-PCR analysis revealed that EWS-Fli1 mRNA levels were up-

regulated, these findings could not be reproduced in other ESFT cell lines.  
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3.8 Hypoxia does not enhance proliferation in vitro  

Our previous data showed that hypoxia leads to increased EWS-Fli1 levels in a HIF-

1α dependent manner, but we further wanted to know if hypoxia causes any 

functional consequences in vitro.  

First, we studied proliferation of ESFT cell lines which have been cultured under 

hypoxic conditions compared to normoxia treated cells (Fig. 22).  

For these studies, 5 x 104 cells of the ESFT cell lines TC252 and SK-N-MC were 

seeded in 6-well plates. One day after seeding, the experiment was started by 

exposing the cells to either normoxic (21% O2) or hypoxic conditions (1% O2; 200µM 

CoCl2) for three days. The experiment was performed in triplicates and cells were 

counted every 24 hours.  
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Fig. 22: Proliferation of TC252 and SK-N-MC ESFT ce ll lines within a period of three days. 

Experiments were carried out in triplicates and dis crimination between living and dead cells 

was accomplished by Trypan Blue exclusion.   
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Although hypoxia did not enhance proliferation, neither in TC252 nor in SK-N-MC, 

clear differences in the response to hypoxic conditions between the cell lines were 

observed. SK-N-MC cells proliferated fairly consistent both under normoxia and 

hypoxia and were only slightly affected by CoCl2 treatment. . In contrast, TC252 cells 

clearly showed decreased proliferation rates and increased apoptosis, suggesting a 

p53 response under hypoxia.  

 

3.9 Hypoxia mediates a G1-arrest in the ESFT cell l ine TC252 

 
To study the cell cycle during incubation at hypoxic (1% O2; 200µM CoCl2) versus 

normoxic conditions (21% O2) in more detail, we seeded 2 x 104 cells of both TC252 

and SK-N-MC in 6-well plates and monitored cell cycle distribution over a period of 5 

days by using BD Cycletest™ Plus followed by FACS analysis. Propidium Iodide (PI), 

added 10 minutes prior to the FACS measurement, was used to determine the 

amount of dead cells. All experiments were carried out in triplicates.  

The cell cycle distribution of SK-N-MC cells, which were incubated for five days either 

under normoxic or hypoxic conditions, did not reveal outstanding differences. If there 

was any difference at all, hypoxia treated SK-N-MC cells exhibited a slight increase in 

G2-phase in the first two days of treatment which adjusted to normal levels already 

on day 3 (Fig. 23).  

Notably, TC252 cells that were cultured under hypoxic conditions, showed a marked 

G1-arrest compared to the normoxia control. Both, hypoxia (1% O2) and CoCl2- 

treatment consistently induced a G1-arrest throughout the first four days. CoCl2 

caused the strongest G1-arrest accompanied by reduced cell numbers and apoptosis 

on days four and five (Fig 24).  

Taken together, these results indicate that hypoxia, or treatment with hypoxia 

mimetics, does not lead to increased S-phases corroborating our previous 

proliferation data. Therefore hypoxia does not enhance proliferation but rather may 

induce a p53 dependent cell cycle arrest.  
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Fig. 23: Cell cycle analysis of the SK-N-MC ESFT ce ll line.  

Cells were cultured under normoxic (21% O 2) and hypoxic conditions (1% O 2; 200µM CoCl 2), 

and DNA content was analyzed by FACS.  For this lon g term study, 2 x 10 4 cells were seeded in 

6-well plates; experiments were carried out in trip licates.  
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Fig. 24:  Cell cycle analysis of the TC252 ESFT cell line.  

The same culturing conditions and cell numbers were  used as in Fig. 23. TC252 hypoxia and 

CoCl 2 treated cells clearly exhibit a strong G1 arrest, indicating that p53 might affect the 

response of ESFT cell lines in vitro.  
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3.10  Hypoxia does not enhance migration in vitro 

Since our previous experiment revealed, that there was no proliferation advantage for 

TC252 and SK-N-MC cell lines that were cultured under hypoxic conditions, we 

further wanted to know if hypoxia causes any functional consequence on the 

migration ability of ESFT cell lines using the wound healing (scratch) assay (Fig. 25).  

To assure comparable conditions during the wound healing assay, we utilized 

standardized dishes (ibidi GmBH, Martinsried, Germany) bearing inserts that gave 

rise to a 400µm ± 50µm scratch area. The insert was composed of two segments that 

were seeded with either 5 x 104 TC252 or 4 x 104 SK-N-MC cells. The cells were 

starved for 18h in serum free medium and inserts were removed on the next day. 

Pictures were taken 24, 48 and 72 h after removing the insert by using a standard 

inverted microscope (magnification 5 x).  

 
Fig. 25: Migration ability of TC252 and SK-N-MC cel ls to close a distinct scratch region of 

400µm ± 50µm. 

Both cell lines were incubated either under hypoxic  (H) (1%O2) or normoxic (N) conditions (21% 

O2), or under 200µM CoCl 2. 
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As shown in Fig.26, TC252 cells that were cultured either with 200µM CoCl2 or 1% 

O2 revealed almost no migration which corresponded to our previous findings of a 

hypoxia induced G1 arrest. By contrast, SK-N-MC cells were just slightly affected by 

hypoxia and migrated fairly consistent. 

 
Fig. 26: Schematic representation of ESFT cell line s TC252 and SK-N-MC to close a 400µm 

scratch over a period of three days. 

The experiment was carried out by taking three pict ures along the scratch area per day and 

images were stitched, converted to a uniform dimens ion and finally analyzed by S.CO 

LifeScience. The percentage of the cell-covered are a at day 0 was utilized as reference-value to 

calculate fold changes. 

 

This experiment revealed that hypoxia does not induce any increase in the migration 

ability of Ewing tumor cell lines in vitro.  
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3.11  Hypoxia affects the invasive capability of ES FT cell lines 

Since our previous experiments did not reveal any functional advantage of hypoxia 

treated ESFT cells on neither proliferation nor migration, we concentrated on the 

invasive capability of ESFT cell lines that were either cultured under normoxia or 

hypoxia (Fig.27). 

 

 
Fig. 27: Invasive capacity of TC252 of ESFT cell li nes A) & B) TC252 and C) & D) SK-N-MC.   

The Experiment was carried out in triplicates for 4 8 hours. A) and C) Quantification of cells that 

have invaded into the lower chamber through matrige l. B) and D) Photographs of invading cells 

on the bottom site of the transwell membrane.  

 

This experiment was carried out by utilizing polycarbonate coated Transwell inserts 

(Corning Incorporated, Life Sciences, NY, USA) with 8µm pore size and 5 x 105 cells 

were seeded in triplicates. SK-N-MC and TC252 were cultured under normoxic (21% 

O2) and hypoxic (1%O2) conditions for 48 hours, cells were fixed in 4% PFA and 

stained with 0,2% crystal violet containing 20% methanol. Cells were counted using 

Image J software and the mean number of invasive cells were monitored.  
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This experiment clearly showed that both SK-N-MC and TC252 cells that were 

cultured under hypoxia exhibited an enhanced invasive capability to cross the 

matrigel barrier compared to the normoxia control.  
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4 Discussion 

 
The features of many hypoxic tumors have been extensively characterized, such as 

increased proliferation, invasion and accompanying metastatic potential. These 

features contribute to the high aggressiveness of hypoxic tumors.  

So far, very little is known about the contribution of hypoxia to the aggressiveness of 

ESFT. Thus our first aim was to investigate whether HIF-1α, which is the main 

regulator of hypoxia, can be induced during hypoxia treatment of ESFT in vitro.  

For that purpose, we chose two representative ESFT cell lines that differed in their 

p53 status, and treated them with different concentrations of canonical hypoxia 

mimetics, CoCl2 and DFX. Both compounds have been shown to impede appropriate 

PHD function, thus stabilizing HIF-1α [152]. The usage of these mimetics was 

advantageous due to the possibility of culturing the cells under normoxic conditions 

and an increased probability of stable HIF-1α induction.  

We showed that HIF-1α was induced in TC252 and SK-N-MC cell lines, and that the 

expression magnitude was time and concentration dependent. A similar dose 

dependent HIF-1α induction by hypoxia mimetics has also been described in a 

variety of other cancer cell lines [153]. Interestingly, however, our studies revealed 

that treatment with hypoxia mimetics transiently increased EWS-Fli1 levels with an 

expression peak at 8 hours of treatment. Since EWS-Fli1 levels are toxic at high 

concentrations [154] but essential for ESFT cell lines to sustain their cellular functions 

[155], the fluctuating EWS-Fli1 levels might be explained by an adaptive response 

mechanism to ensure tolerable EWS-Fli1 levels. 

Since both proteins, EWS-Fli1 and HIF-1α, were induced under hypoxia, we tested if 

these findings were dependent or independent from each other. To assess a 

potential interplay between these two transcription factors we followed two 

experimental approaches: First, we over-expressed either a wild-type or a non-

degradable HIF-1α protein. Second, we silenced hypoxia induced HIF-1α expression 

in SK-N-MC and TC252. Ectopic expression of HIF-1α supported our previous 

findings of enhanced EWS-Fli1 protein levels, whereas EWS-Fli1 was clearly 

modulated in response to the knockdown of HIF-1α. This indicates that EWS-Fli1 is 

regulated in an HIF-1α dependent manner. Further investigations are necessary to 

reveal whether this is due to a direct or indirect mechanism. Collaboration between 

transcription factors is a well established phenomenon especially in hypoxia 
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mediated responses [70]. Interestingly, pan-genomic expression profiling studies 

from our lab revealed that some EWS-Fli1 and HIF-1α target genes are regulated in 

a synergistic, others in an antagonistic way, indicating that hypoxia influences EWS-

Fli1 target regulation (data not shown).    

However, EWS-Fli1 mRNA levels were not affected by hypoxia, indicating that the 

increased protein levels are due to posttranscriptional mechanisms. ASP14 cells 

represented an exception, showing elevated EWS-Fli1 levels in response to hypoxia, 

but this finding could not be reproduced in other ESFT cell lines. Further studies on 

ASP14 revealed that upon EWS-Fli1 knockdown, HIF-2α mRNA was strongly and 

reproducibly induced, indicating that EWS-Fli1 might repress HIF-2α in ASP14 cells 

on the transcriptional level.  

The question why HIF-2α might be repressed by EWS-Fli1 remains unsolved but it 

has been shown that HIF-1α and HIF-2α have antagonistic effects [156]. HIF-1α, for 

example, exhibits both pro- and anti-proliferative properties whereas HIF-2α lacks 

anti-proliferative properties and is therefore considered to be involved in 

tumorigenesis even stronger [156].  

However, the interplay between HIF-1α and HIF-2α in ESFT, though complex, may 

be of high relevance to the role of hypoxia for the aggressiveness of Ewing tumors.  

We further wanted to know if hypoxia causes any functional consequences to ESFT 

cell lines in vitro.  For that purpose we followed three experimental strategies: a) 

proliferation assays, to clarify if hypoxia treated ESFT cell lines have any proliferative 

advantage to normoxic cells, b) 2-D migration assays for testing migration capability 

under normoxia and hypoxia, and c) invasion assays that should answer the 

question, if hypoxia can alter the invasive behaviour of Ewing tumor cell lines.  

 

The proliferation assay revealed that there was no hypoxia-driven proliferative 

advantage for neither SK-N-MC nor TC252 cell lines. More precisely, SK-N-MC cells 

were almost not affected by hypoxia and proliferation rates were fairly similar to 

normoxia treated SK-N-MC cells. In contrast, TC252 seemed to be handicapped in 

their proliferation ability when cultured under hypoxic conditions. Since TC252 cells 

were wild type for p53 while SK-N-MC cells were mutant, this results may indicate 

that the p53 status is responsible for an adequate response to hypoxia. It is widely 

accepted, that hypoxia activates p53 [70] which is one of the major players in 

mediating stress-sensitivity within a cell [157].  
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Furthermore, hypoxia mostly induces a G1 arrest in the cell cycle via HIF-1 

dependent and independent mechanisms [158], which may explain, why the wildtype 

p53 cell line TC252 exhibited reduced proliferation ability under hypoxia.  

Similar observations were obtained in the wound healing assay. While the capability 

of SK-N-MC cells to fill the gap was not affected by hypoxia, TC252 cells showed 

delayed in vitro wound healing. This observation may either be the consequence of 

impaired migration ability, or reduced proliferation at the margins of the gap.  

This result prompted us to analyze whether there was a difference in the cell cycle 

distribution between the cell lines under hypoxic versus normoxic conditions. 

Corroborating our results from proliferation assays, hypoxia treated SK-N-MC cells 

did not exhibit differences to the normoxia treated control cells, but TC252 revealed a 

strong G1-arrest, explaining the observed disadvantage of TC252 cells to fill the gap 

in the wound healing assay. Even though proliferation as well as migration are very 

consistently enhanced under hypoxia  in various cell types [159], our experiments did 

not reveal a similar effect in adherent ESFT cell cultures. 

Although there was no functional advantage for hypoxic ESFT cells in either 

proliferation or migration, we further analyzed the invasive potential of ESFT cell lines 

under normoxia or hypoxia.  Of note, the invasion assay revealed an enhanced 

invasive capability of both TC252 and SK-N-MC cells, indicating that hypoxia might 

contribute to the very aggressive phenotype of Ewing tumors. In addition, soft agar 

assay results from our group revealed that SK-N-MC cells that were cultured under 

hypoxia tend to form bigger and more colonies than their normoxia counterparts, 

indicating that hypoxia might increase clonogenicity and induce proliferation under 

anchorage independent conditions (data not shown).  

These results suggest that hypoxia affects proliferation and invasion under 

anchorage independent conditions, but not in adherent cell cultures. One might 

speculate that these conditions more closely mirror the in-vivo situation than standard 

adherent cultures.  These in-vitro findings need to be verified in future in-vivo studies.  

 

To address the question which of our findings may be attributed to increased EWS-

Fli1 levels and which EWS-Fli1 independent hypoxia-induced effects, it will be 

necessary to perform invasion and soft agar assays under conditions that mimic 

increased EWS-Fli1 expression under normoxia, respectively that keep stably low 

EWS-Fli1 levels under hypoxia. 
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Taken together, this thesis revealed new insights into the role of hypoxia inducible 

factors and their putative contribution to the aggressiveness of ESFT cells in vitro, but 

the question, how these findings correlate to the in vivo situation, should be subject 

of further investigations in the future.  
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