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Abstract

The development and research of content-based music information retrieval (MIR)

applications in the last years have shown that the generation of descriptions enabling

the identi�cation and classi�cation of pieces of musical audio is a challenge that can

be coped with. Due to the huge masses of digital music available and the growth of

the particular databases, there are investigations of how to automatically perform

tasks concerning the management of audio data.

In this thesis I will provide a general introduction of the music information retrieval

techniques, especially the identi�cation of audio material and the comparison of

similarity-based approaches with content-based �ngerprint technology. On the one

hand, similarity retrieval systems try to model the human auditory system in various

aspects and therewith the model of perceptual similarity. On the other hand there are

�ngerprints or signatures which try to exactly identify music without any assessment

of similarity of sound titles. To �gure out the di�erences and consequences of using

these approaches I have performed several experiments that make clear how robust

and adaptable an identi�cation system must work. Rhythm Patterns, a similarity

based feature extraction scheme and FDMF, a free �ngerprint algorithm have been

investigated by performing 24 test cases in order to compare the principle behind.

This evaluation has also been done focusing on the greatest possible accuracy. It has

come out that similarity features like Rhythm Patterns are able to identify audio titles

promisingly as well (i.e. up to 89.53%) in the introduced test scenarios. The proper

choice of features enables that music tracks are identi�ed at best when focusing on

the highest similarity between the candidates both for varied excerpts and signal

modi�cations.
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Kurzfassung

Die Entwicklung und Erforschung von inhaltsbasierenden �Music Information Re-

trieval (MIR)� - Anwendungen in den letzten Jahren hat gezeigt, dass die automatis-

che Generierung von Inhaltsbeschreibungen, die eine Identi�kation oder Klassi�ka-

tion von Musik oder Musikteilen ermöglichen, eine bewältigbare Aufgabe darstellt.

Aufgrund der groÿen Massen an verfügbarer digitaler Musik und des enormen Wach-

stums der entsprechenden Datenbanken, werden Untersuchungen durchgeführt, die

eine möglichst automatisierte Ausführung der typischen Managementprozesse von

digitaler Musik ermöglichen.

In dieser Arbeit stelle ich eine allgemeine Einführung in das Gebiet des �Music

Information Retrieval� vor, insbesondere die automatische Identi�kation von Au-

diomaterial und den Vergleich von ähnlichkeitsbasierenden Ansätzen mit reinen in-

haltsbasierenden �Fingerprint�-Technologien. Einerseits versuchen Systeme, den men-

schlichen Hörapparat bzw. die Wahrnehmung und De�nition von �Ähnlichkeit� zu

modellieren, um eine Klassi�kation in Gruppen von verwandten Musiktiteln und

im Weiteren eine Identi�kation zu ermöglichen. Andererseits liegt der Fokus auf

der Erstellung von Signaturen, die auf eine eindeutige Wiedererkennung abzielen

ohne jede Aussage über ähnlich klingende Alternativen. In der Arbeit werden eine

Reihe von Tests durchgeführt, die deutlich machen sollen, wie robust, zuverläs-

sig und anpassbar Erkennungssysteme arbeiten sollen, wobei eine möglichst ho-

he Rate an richtig erkannten Musikstücken angestrebt wird. Dafür werden zwei

Algorithmen, Rhythm Patterns, ein ähnlichkeitsbasierter Ansatz, und FDMF, ein

frei verfügbarer Fingerprint-Extraktionsalgorithmus mittels 24 durchgeführten Test-

fällen gegenübergestellt, um die Arbeitsweisen der Verfahren zu vergleichen. Diese

Untersuchungen zielen darauf ab, eine möglichst hohe Genauigkeit in der Wieder-

erkennung zu erreichen. Ähnlichkeitsbasierte Ansätze wie Rhythm Patterns erreichen

7



bei der Identi�kation Wiedererkennungsraten bis zu 89.53% und übertre�en in den

durchgeführten Testszenarien somit den untersuchten Fingerprint-Ansatz deutlich.

Eine sorgfältige Auswahl relevanter Features, die zur Berechnung von Ähnlichkeit

herangezogen werden, führen zu äuÿerst vielversprechenden Ergebnissen sowohl bei

variierten Ausschnitten der Musikstücke als auch nach erheblichen Signalveränderun-

gen.

8



Contents

1 Introduction 11
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Related and Fundamental Work 15

3 Audio Content Identification 17
3.1 Audio Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Music Information . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Audio Content Models . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Music vs. Speech . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Fingerprint Techniques . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Robust Fingerprints . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.5 FDMF - Find Duplicate Music Files . . . . . . . . . . . . . . 31

3.3 Retrieval and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Matching and Search . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Hierarchical Temporal Sub-Fingerprints . . . . . . . . . . . . 35

4 Audio Similarity Feature Sets 37
4.1 Audio Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Common Musical Features . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Rhythm Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Audio Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Spectral Similarity . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Rhythmic Similarity . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Semantic Similarity . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.4 Distance Metrics and Representations . . . . . . . . . . . . . 46
4.2.5 Genre Classi�cation . . . . . . . . . . . . . . . . . . . . . . . 48

9



Contents

4.3 Considerations for Evaluation . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Database and Ranked Retrieval . . . . . . . . . . . . . . . . . 52

5 Experimental Results 55
5.1 Preliminary Considerations . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Audio Stream Models . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Compressed Audio Formats . . . . . . . . . . . . . . . . . . . 57

5.2 Test Case Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Modi�cations . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Test Set - Ground Truth . . . . . . . . . . . . . . . . . . . . . 58
5.2.3 Measurement of Performance . . . . . . . . . . . . . . . . . . 59

5.3 Results and Experimental Performance . . . . . . . . . . . . . . . . . 60
5.3.1 Detailed Realization . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Test case 1 - Matching single segments to database entries (RP) 61
5.3.3 Test case 2-3 - Increasing the number of considered segments

(RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.4 Test case 4-7 - Variable segments size and whole �les (FDMF) 64
5.3.5 Test case 8 - Majority Voting (RP) . . . . . . . . . . . . . . . 65
5.3.6 Test case 9 - One bit median quantization (RP) . . . . . . . . 66
5.3.7 Test case 10-11 - Increasing median quantized segments (RP) 68
5.3.8 Test case 12-14 - Retrieving ranked results (RP) . . . . . . . 68
5.3.9 Test case 15-20 - Pitch cue variations (RP) . . . . . . . . . . 70
5.3.10 Test case 21 - Frequency �lter (RP) . . . . . . . . . . . . . . 72
5.3.11 Test case 22 - Dynamic range compression (RP) . . . . . . . . 73
5.3.12 Test case 23-24 - Addition of white and pink noise (RP) . . . 75

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Implementation Details 81
6.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Capturing Audio . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1.2 Computing Fingerprints and Features . . . . . . . . . . . . . 83
6.1.3 Retrieving Results . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . . 84

7 Conclusion and Outlook 89
7.1 Summary and Review . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10



Chapter 1

Introduction

In this chapter I would like to provide an introduction into the �eld of music iden-

ti�cation and the lack of possibilities for analog devices. Furthermore I will give an

overview about common - already existing - applications, and in what sense they can

give an edge to end users or customers.

1.1 Motivation

In the last years, the rapid increase of interest in digital music, the storage and

organization of big libraries and - above all - the availability of music in that form

itself, has led to the development of systems which satisfy lots of demands of the

respective community. Besides the conventional way of storing music - mostly in a

compressed �le format - on a hard disk drive on a personal computer or portable

device, more and more network based music delivery techniques have come into being.

There is a huge amount of available internet radio stations which provide their audio

data via standardized streaming protocols and formats. In many cases, these do not

support proper meta data delivery or the client side streaming player cannot process

them e�ciently. Moreover this feature is in fact unable to be provided in many cases.

Consider that music is still often recorded or transformed from analog sources. These

sources cover instrumental live recordings as well as analog mediums. A �le format

is capable of o�ering included meta data automatically which can be added to the

audio stream. Analog - non semantically enhanced - data does not know about its
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Chapter 1 Introduction

contents and has to be annotated before in order to provide semantics like the digital

match. Nowadays it is recommended that this process is automated and need not be

done by hand. If we start from the assumption that the same piece of music is also

available in a digital form which in fact has already been associated with additional

meta data, then there must be a programmatic way of matching the content of these

basically di�erent, but concerning the contents equivalent versions.

Another related issue is the matter that there is still a huge amount of people who

desire the existence and maintenance of analog mediums - especially vinyl records.

These are said to be more precise in various aspects, (e.g. frequency bands) and in

general more pleasant for active listeners or in settings of live performance. It is not

likely that this community intends to change its habits and totally abstains from

old fashioned vinyl records. But what actually happens is, that the audio signal

is often recorded, saved and encoded to a digital format which then is published

over network-based services or storage mediums. If we can manage the process of

identifying the audio data by comparing them to already veri�ed digital data, we

could ensure that some of the bene�ts of digitalization can be achieved for analog

data via the speci�ed workaround.

1.2 Applications

In times of sharing music over the internet, storing and listening to downloaded

tracks on a personal MP3-player or consuming music from one of the huge amounts

of broadcasting stations, many use cases for audio �ngerprinting have arisen and

have led to immediate applications which are intended to ful�l the requirements of

both music content consumers and producers.

One big application refers to the broadcasting industry. The large number of radio

stations complicates the choice of selecting one appropriate program. There are sev-

eral projects which follow up the automatic organization and categorization of these

stations for facilitating a users decision and generating individual pro�les [LR06].

On the other hand, the industry is interested in applications which monitor users

demands, transmitted audio tracks and - above all - the prohibition of unauthorized
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copies of broad-casted material that is protected by copyright laws [Cer07]. Further-

more the realm of radio and television o�ers connection points to applications that

can automatically track advertisements or even replace them [BC06] [Cer07]. This is

very important for companies to ensure that their ad spot is really broadcasted for

and at the right time.

Another interesting issue is the automatic track-list generation and categorization

of real time analog audio signals. In settings of live studio performance or public

shows, artists still have to provide their play-list manually. If this step can be

automated too, the interested parties would be be able to move together in more

tighter way.

According to a consumers point of view, one can �nd much more applications.

Imagine that users would be able to identify music titles which they are listening to

at the moment independently of the corresponding host. Consumer electronic devices

can have software integrated that performs an automatic identi�cation by computing

a �ngerprint and comparing it to a built-in database which can be updated either

by hand or over a wireless connection. These devices can be MP3-players, handheld

computers, stationary hi-� equipment, mobile phones and many more [HK02].

1.3 Outline

This thesis is subdivided into seven main chapters that cover the following aspects.

Theses sections provide a deep understanding for both dedicated �ngerprint ap-

proaches and audio similarity measurement which are both used for an audio iden-

ti�cation system based on the content only.

(2) Related Work

A description of related articles and scienti�c results that have already been

achieved in previous studies. Scienti�c works, the contents of which has to be

taken into account, are introduced as well as the relevance to the research �eld.

(3) Audio Content Identi�cation

This chapter deals with general audio identi�cation and �ngerprint techniques,

common problems and the contrast to similarity based approaches.

13
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(4) Audio Similarity Feature Sets

The general procedure of extracting features from audio signals and the com-

parison to other elements using distance measures is illustrated in this section

as well as considerations for evaluation and quality assurance.

(5) Experimental Results

In this chapter, the whole experimental part is described in detail providing

numerical and comparable results. The test series include 24 test cases which

cover input length considerations as well as evaluation techniques and signal

modi�cations.

(6) Implementation Details

The results of the JAVA implementation with architecture details is illustrated

in this part.

(7) Conclusion and Outlook

Finally, conclusions and �ndings are summarized and an outlook for future

ideas is given.

14



Chapter 2

Related and Fundamental Work

In this chapter, related articles and scienti�c works of community members are in-

troduced to provide background information and the respective context.

The scienti�c �eld of content-based music information retrieval has become a very

popular and promising discipline that enables a lot of capabilities for humans inter-

ested in music. The management of huge databases as well as the computational

extraction schemes, procedures for classi�cation and identi�cation approaches have

led to the requirement of large-scale community discussions. Applications have shown

that the identi�cation of pieces of music can work very robustly and therewith nearly

independently of the transmission format and quality. Haitsma and Kalker are the

authors of one of the most well-known papers in the scienti�c �eld concerning the au-

tomatic identi�cation of audio signals via robust hashes and sub-�ngerprint database

strategy. (cp. [HK02]). This approach has become a common guideline describing

how to design a reliable feature extraction system for generating signatures.

There is a variety of descriptors that try to identify music. Betser, Collen and

Rault (cp. [BCR07]) present a new descriptor which is based on sinusoidal modeling

for jingle detection. It is robust against common distortions and signal deterioration

as well as non-random noise additions like speech overlay. The issue that some signal

which is not relevant for and potentially harmful to the identi�cation process is added

to the original piece of music is a challenging task. This leads to requirement of not

just identifying the original data or their derivates due to physical reasons, format

15
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changes, bitrate decrease, etc., but of recognizing remix versions or severe content

alterations. (cp. [CS07], [CS06], [DL05])

The classi�cation of audio material based on pre-de�ned terms like the genre is

another popular problem that has to be solved. A proper combination of various

features concerning the musical surface, rhythm and others can build vector rep-

resentations which are used for the association of audio tracks to genre-terms (cp.

[TEC02]). This approach has become the main idea behind selecting representative

features which constitute a comparable semantic description for the underlying music

track.

Details of the two main approaches (similarity-based vs. �ngerprinting) as well as

related articles are given by Chapter 3 and Chapter 4.
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Chapter 3

Audio Content Identification

In this chapter I will give an overview about the meanings of audio content as well

as the di�erences between audio in terms of music and other audio signal producing

sources like the human voice (Section 3.1). In Chapter 3.2, various identi�cation

approaches and techniques are introduced to outline how content identi�cation can be

achieved via �ngerprinting. Section 3.3 is about matching �ngerprints with database

entries and measuring the distances in order to retrieve reliable results for a recogni-

tion request.

3.1 Audio Content

3.1.1 Music Information

Music information is the entirety of basic audio related informative messages which

are included in a piece of music. This information is transmitted by sound waves

through the air and reaches our auditory system, which �lters the signal and passes

the relevant parts to our brain. This in general is called acoustic perception. Thus,

music contains information that is extractable by the human auditory sense.

The common human understanding of music is lying in the time domain. Music

titles are played back on the time axis and have a de�ned length as the representation

of the amplitude that is varying over the time let suppose. But this information alone

does not provide features which can be used for calculations or extractions which

17



Chapter 3 Audio Content Identification

would be useful for creating convincing descriptions with the purpose to identify

music unambiguously. Foremost the transformation of an audio signal from the

time domain to the frequency domain enables the possibility to make statements

about the existence and progression of periodical elements as well as pitch, frequency

ranges, harmonics and many more. The most frequently used and well known Fourier

Transformation performs this fundamental transformation. Equation 3.1 provides

the formal de�nition for the DFT (Discrete Fourier Transformation) which is used

for discrete digital signals.

Xk =
N−1

∑
n=0

xne−
2πi
N nk k = 0, . . . ,N−1. (3.1)

. . . where xn are the time-based complex numbers, N the number of values to trans-

form and Xk the resulting Fourier transformed complex numbers - also called the

Fourier Coe�cients. The inversion, the transformation of a signal in the frequency

domain to the time domain is given by equation 3.2. The variable denomination

conforms to equation 3.1.

xn =
1
N

N−1

∑
k=0

Xke
2πi
N kn n = 0, . . . ,N−1 (3.2)

The frequency domain allows several extractions and computational time-invariant

possibilities that bring out characteristic features and representations like spectro-

grams (cp. Figure 3.1), energy deviations, frequency histograms and the magnitude

of certain frequency ranges respectively transformations that illustrate its in�uences

to our perception. In addition to the analysis of sinusoidal frequency and phase

contents, the time discrete Short Time Fourier Transformation (STFT) performs on

short single segments of a signal that is changing over time. The result is a represen-

tation of frequency lots at a speci�c time, commonly visualized by a time-frequency

diagram.

It is used in applications that have to maintain a rough subdivision and allocation

of frequency ranges to particular sections of an input signal. This is especially true

for systems which realize a segmentation of di�erent parts. (e.g. separation of
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Figure 3.1: Spectrogram example - Frequency-time representation of an audio track

advertisement from music content on broad-casted material). [MTB+04], [HKO02],

[KSWW00], [Pei07]

The Bark scale is a psycho-acoustical scale that matches frequency range intervals

to a speci�ed number. It is based on the perception of pitch of human beings with

respect to the relative acoustic feeling. It considers the almost linear relation in

lower frequency ranges as well as the logarithmic in higher ranges and its basic idea

originates from frequency grouping and the subdivision concept as it is known from

research concerning the human ear. The association to the frequency ranges is given

by Table 3.1.

3.1.2 Audio Content Models

In general, there must be a pre-de�ned model for any identi�cation scenario that

works like the described schemes. This can include assumptions about the frequency

domain or the sequence of acoustic events in the time domain.
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Chapter 3 Audio Content Identification

z Hz z Hz z Hz z Hz
1 20−100 7 630−770 13 1720−2000 19 4400−5300
2 100−200 8 770−920 14 2000−2320 20 5300−6400
3 200−300 9 920−1080 15 2320−2700 21 6400−7700
4 300−400 10 1080−1270 16 2700−3150 22 7700−9500
5 400−510 11 1270−1480 17 3150−3700 23 9500−12000
6 510−630 12 1480−1720 18 3700−4400 24 12000−15500

Table 3.1: Bark scale - Bark bands (z) and corresponding frequency ranges

For instance, the concept of a DNA like model which can be applied to the recog-

nition of audio titles is presented in [NMB01]. The principle of the identi�cation

task is similar to the general �ngerprint approach as described in detail in Chapter

3.2.3 and illustrated in �gure 3.4: the Audio-DNA is extracted, stored and �nally

compared to identify audio signals. The structure of the resulting �ngerprint is based

on a time-line and occurring events with speci�ed length and type. The assumption

has been made that these events are discriminative enough to perform the relevant

processes of identi�cation. The following chapter will describe a similar approach

with the same fundamental idea, but specialized in the use of speech signals.

3.1.3 Music vs. Speech

The comparison of music and speech in terms of recognition and identi�cation brings

up several aspects that have to be taken into account. First of all, the analysis of

spoken speech is sub-classi�ed into three methods [Vas07]. All of them are subsumed

under the term �speech recognition� and often used synonymously.

• Recognition of speech

• Recognition of speaker (identi�cation / veri�cation)

• Recognition of spoken language

20



3.1 Audio Content

Recognition of speech

This issue deals with the capability to automatically transcribe speech signals into

a digital text representation format. It is used for text creation applications. (e.g.

dictation)

Recognition of speaker

The recognition of a speaker or the identi�cation of a pre-recorded voice builds the

second main approach to speech recognition. This again can be divided into two

aspects, the identi�cation of the speaker itself, i.e. the allocation of a present speaker

to a de�ned group, and the veri�cation that is used for systems detecting if an input

signal belongs to a given authorized speaker, i.e. testing if any identi�cation has

been done properly.

Recognition of spoken language

The third interesting part is about the identi�cation of the used language. This is

applicable to spoken and written words. In case of texts this is a required feature

for subsequent translation processes.

The main problem and di�erence between speech and music identi�cation has

its origin in the underlying model. Information that is covered by speech follows

systematics which are not as simple as being applied to music or sound in general

[CBMN02]. There is a sound- and word model for speech recognition as follows, but

there are no de�ned models like this for music signals.

Phone is the smallest segmental unit of a sound.

Phoneme is the smallest structural unit that has a distinctive in terms of meaning

but no distinguishing function. Phonemes are realized by phones or multiple al-

lophones (i.e. similar speech sound variations belonging to the same phoneme).

Morpheme is called the smallest meaning-distinguishing element concerning the

structure of a word.
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Chapter 3 Audio Content Identification

Morphe is the analogy to phones applied on whole words.

These assumptions lead to a concept of speech that is a sequence of distinctive

and abstract elements. We get our conventional understanding of speech if we add

transitions of these elements and - above all - semantics to this de�nition.

start endt

ah

ow

m

ey

aa

t

a

ow
0.4

0.6
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0.5 0.1

0.9

Figure 3.2: Phonemes and transitions for the word “tomato”

The analysis is performed by using a Hidden Markov Model on two stages. Figure

3.2 indicates a Markov chain for the phoneme analysis of the word �tomato� and

its transition probabilities. Each path in this diagram shows one valid variant of

pronunciation. In analogy to that the same concept can be applied to whole words,

the second stage. The results are networks of both word and sentence interpretations

having multiple plausibility values.

By contrast to these very basic and clear models which can only be applied to

speech signals, music does not have such strict modelling primitives that can be

structured and processed by automatic systems. The need for and investigations

about �nding a proper model is one of the most challenging tasks in the whole

scienti�c �eld.

3.2 Identification

There is a variety of systems that either are subject to scienti�c research or actually

are used in branches of audio and signal processing industry. There are two main

approaches that have evolved in the last years, that are in fact able to identify

pieces of music with certain accuracy reserves. These two techniques which I have

dealt with are called Watermarking and Fingerprinting. Although the quantitative
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and e�ective results of these two approaches are very similar, the principle and aim

behind is totally di�erent. While Watermarking aims at the non-audible inclusion

of meta-data directly in the signal which can be extracted afterwards, �ngerprinting

technologies perform an analysis of the audio content itself without altering the

original signal.

3.2.1 Watermarking

Figure 3.3: Watermarking - encoding additional data

The basic idea behind watermarking techniques is given by �gure 3.3. Additional

data (e.g. meta-data about the contents of the audio track) is included into the

original �le in a way that is not audible for human beings. This can be done by paying

attention to the human auditory system. After the distribution the so included data

can be extracted by a special watermark decoder that splits the �le again into real

audio information and additional meta-data. Yet, these steps alone do not constitute

an advantage over the conventional situation due to the fact that the same e�ect is

achieved with any container �le formats. But, watermarking can be used also for a

reliable identi�cation after analog transmission and therewith possible distortion, bit

rate decrease or other severe transformation steps. In case of a digital representation,

the exceptional is that the �le does not change its type. It stays an audio �le and
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can be played back at any time. [Cve04] [CZW08]

3.2.2 Fingerprinting

Figure 3.4: Fingerprint-based audio identification

Figure 3.4 provides the principle behind a classical �ngerprinting approach. The

upper half indicates the capturing, �ngerprint extraction and database-storage steps.

A title that shall be registered must be sent to the extraction block at �rst. The

resulting �ngerprint is stored maintaining an association to the corresponding meta-

data in the database. The lower half shows the process which is applied to a given

query signal that has to be identi�ed. This indicates the end-users point of view.

The input is processed in the same way as above. The result of the extraction block

is then compared to the stored items. The meta-data of a matching item (i.e. the

identi�ed song) which is determined by measuring distance values that must conform

to a given threshold are returned. The results is meta-data again associated with

the query. [SBA06]
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3.2.3 Fingerprint Techniques

The de�nition of an audio �ngerprint can be seen in analogy to a human �ngerprint

meaning. A �ngerprint that actually is an o�print of �ngertips can identify human

beings due to their uniqueness. Having such a copy of smallest rills on �ngers let

us claim that it corresponds to a certain person if we have the same �ngerprint

already recorded into a catalogue. The fact that such a �signature� has been recorded

before any statement about the a�liation is essential - the identi�cation is based on

comparison to existing elements. [BM07] [HLH07]

In terms of an audio signal the same principle is applied. Audio �ngerprints

have to be extracted from the information which is contained in the piece of sound.

There is no clear given feature that would be easy to just read or can be used as is.

Several signal theoretical and mathematical considerations have to be made to get

representations of sounds that make it possible to uniquely identify related sequences

of audio frames. For this purpose, these audio features are widely transformed into

bit strings or hash codes which then can be compared to each other by any given

metric system. The result of this transformations is a 'small' digest of the contents

of an audio signal, a kind of a summarization. The application is not limited to

music contents or speech only, but covers a wide range of applications which try to

associate audio information with meta-data of the corresponding content.

Baluja and Covell (cp. [BC06]) describe an audio �ngerprint as an object that

enables the ability to link small audio snippets with information about the content.

The combination with sharing services, network based broad-casting techniques and

the readiness of the consumers opens a lot of possibilities such as tagging, classi�-

cation and identi�cation. Another de�nition which is very suitable with regard to

the applications used within the experimental part (chapter 5) and implementation

(chapter 6) would de�ne it as a 'content-based compact signature that summarizes

an audio recording' [CBG03].

There are several limitations that implicate that the extraction of an audio �nger-

print is not a trivial task. The fact that the similarity between di�erent music titles

can be very high or simply not discriminative enough in many cases leads to require-

ments which have to be ful�lled by a �ngerprint extraction system. Mathematical
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similarity is not inherently comparable with the similarity that is noticed by hu-

man beings. A good example here is the comparison of MP3-encoded data with raw

PCM-coded audio. According to the the human auditory system, the HAS (which in

fact has been responsible for the development of MP3 [IIS]) these two representations

will sound very similar although the mathematical similarity has become very low

due to the high data compression (about 1:11). Moreover, perceptual similarity is

not de�ned in the same way by di�erent individual subjects. There is no �right� way

or even a model which ensures that people or systems may have the exact same idea

of resemblance. In order to guarantee reasonable results in the particular �eld, the

following properties have turned out to be desirable [Cer07], [CBG03]:

• Complexity - computational load

• Robustness

• Accuracy

• Reliability

• Scalability and extensibility

• Granularity

• Versatility

• Response time

Complexity

It is essential that an algorithm that generates summarizations of audio portions

with as minimal computational e�ort as possible. The load of the extracting device

should be applicable to thick clients (e.g. personal computers with extended hard-

ware infrastructure - network connection, audio hardware . . . ) as well as to thin

clients (e.g. handheld computers, integrated into electronic devices . . . ). The com-

plexity covers all aspects of an identi�cation process. This includes the extraction,

comparison, transformation and all other steps which are needed to provide a result

of a given recognition query.
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Robustness

The term robust is derived from the Latin expression 'robustus', from 'robur' which

means 'hardwood'. Robustness in terms of a proper identi�cation attempt quali�es

the independence and reliability of recognition even if the signal that has to be

analysed is severely degraded in quality, or wilfully altered because of the setting in

which it has been recorded. Section 3.2.4 deals with these aspects. [BPJ02]

Accuracy

The accuracy is a term speci�ed for the quality of identi�cation. It addresses the

evaluation of the number of correctly recognized tracks, the count of incorrect iden-

ti�cations and false-positives analysis. The accuracy is mostly given by a percentage

or mean probability that a title can be matched to its original database entry.

Reliability

According to [CBG03] reliability means that a system should be aware of the presence

of a given query in the database. It should be able to give a statement about the

possibility to give a result to a retrieval attempt as a matter of principle. Especially

for play-list generation, real time on-the-�y song detection or library tagging, it is

essential that there is a way to classify a given request as 'not identi�able' even if the

false-positive rate may take an e�ect from that. In situations in which a database

entry has not been present as yet or simply does not exist but a corresponding

request is sent, the system should not give a response with a link to wrong meta-

data. Instead of this a more useful reacting would be a request for the original data

or using the query itself as a new database entry.

Scalability

The ability to identify and work well even if the number of database entries increases

signi�cantly is a very important requirement for audio processing applications in gen-

eral. But especially the process of identi�cation has to perform correctly also with a

27



Chapter 3 Audio Content Identification

large number of reference audio tracks. Respect that personal music collections of-

ten contain many thousands of music titles. To provide nearly universal recognition,

systems for use by lots of people with variable interests must be highly scalable.

Granularity

The requirement that an audio snippet, which is intended to be analysed, should be as

small as possible, is an essential demand. The amount of input data is an adaptable

parameter for an identi�cation system. Typically the �ngerprint extraction operates

with excerpts that have a length of a few seconds. In chapter 5 I will present

experiment results which show that a segment size of ≈ 6 seconds can be su�cient in

various aspects to extract frequency-based features that are representative enough.

In [HK02], less than three seconds of audio build one �ngerprint consisting of 256

subsequent sub-�ngerprints that are calculated for each 11.6 milliseconds. On the

other hand, the FDMF algorithm (compare section 3.2.5), an algorithm which is

designed to �nd duplicate �les concerning the contents, works on whole tracks the

size of which is dependent on the length of the given query song. For use in real-

time tracking or tagging applications, the amount of data or length in time which is

utilized is the most important parameter at all. It has consequences on the whole

extraction process and its requirements including complexity, robustness, accuracy

and many more.

Versatility

Versatility and �exibility in all aspects in general is a major requirement and rule

for software design. Thus it is worthwhile to design an identi�cation application in

a way that o�ers potential to alter or extend it. This demand is not just applica-

ble to the number of supported audio formats or possibilities of input modes but

also to database design [CBKH02]. Especially when using complex data-structures

which hold information about subsequent �ngerprints, versatility is essential to be

ful�lled.
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Response time

One main key parameter of an audio application that enables �nding meta-data by

query is the amount of time that is taken by the search. A simple look-up of database

entries which are stored in a key-value-pair manner is not as complex, but when the

database scales up and holds many thousand or millions of songs, a quick search is

not a trivial task. Data-structures that contain cross-references to other �ngerprints

or parts of them can cause even inde�nite search times that have to be determined by

any threshold to stop. A search time in the order of milliseconds for over 100.000 song

entries must be achieved to get wide acceptance for the distribution of commercial

systems [HK02].

3.2.4 Robust Fingerprints

As mentioned above, the robustness of an algorithm concerning severe degrading of

the input signal is very import to get appropriate results. Thus, a robust �ngerprint

has to enable the identi�cation of audio snippets independent of many in�uence

factors. These factors include frequency range limitations, cropping, down-sampling,

compression and many more. Some of the most widespread modi�cations of an input

signal have been tested in chapter 5.

The ideal robust �ngerprint is a signature the generation of which and especially

the ability of extracting relevant recognizable information works exactly like the hu-

man auditory system (HAS). Ideally, �ngerprint representations of similar sounding

portions of audio according to our meaning of similarity should be very similar as

well. The measurement of this computational similarity is not just as simple as for

humans, but with an e�cient bit �ngerprint (as introduced as follows), this can be

done using the number of erroneous hash bits.

The same issue has been explored by [HKO01]. In this article, the following

de�nition of a robust hash is proposed:

�A robust audio hash is a function that associates to every basic time-unit

of audio content a short semi-unique bit-sequence that is continuous with

respect to content similarity as perceived by the HAS.�
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Philips Research has developed a hash extraction system that performs really

well. Concerning the reliability, a false-positive rate of 3.6∗10−20 has been achieved.

Results have shown that this system is a splendid solution for identifying audio

data with robust hashes [HK02]. Figure 3.5 shows the overall process of the feature

extraction and bit derivation. From left to right, the signal is being framed by

Hanning windows. This is a common �ltering step before a Fourier Transformation

to ensure that there are no �leakage� e�ects in the frequency domain. �Leakage� is

a common source of error when applying a Fourier Transformation (i.e. especially

DFT) to an input signal in the time which is not periodical or a multiple of any given

ground period. This error induces non-trivial positive values for frequency bins that

have no corresponding audible amplitude in the domain of time [Vas07].

The single windows are overlapping with a factor of 0.96875 which leads to a high

similarity between subsequent frames. This is con�rmable because the FT of audio

signals with harmonic or nearly periodic amplitudes varies slowly in time. Music

itself is often characterized by harmony and rhythm elements, so this assumption and

the used model are consistent. On all windows the FT is applied and the resulting

frequency range is divided into 33 disjoint frequency bands from 300Hz to 3000Hz.

This subdivision is spaced logarithmically based on the almost logarithmic spacing

of the Bark scale (cp. Chapter 3.1.1) in high frequency ranges. Each band has a

bandwidth of one musical tone (i.e. each band increases by the factor 21/12 according

to the scale of western music). After that, the energy of the bands is computed and

delivered to the bit derivation step (highlighted gray in Figure 3.5), where the values

are quantized to a bit sequence. Equation 3.3 provides the formal de�nition of the

computation step. Depicting in words this means, that a bit becomes a �one� when

the subtraction of the di�erence of adjacent frequency bands and the di�erence of

neighboured frames results in a positive value. EB(n,m) indicates the energy for

band m of frame n.

H(n,m) =

{
1 i f EB(n,m)−EB(n,m+1)− (EB(n−1,m)−EB(n−1,m+1)) > 0

0 i f EB(n,m)−EB(n,m+1)− (EB(n−1,m)−EB(n−1,m+1))≤ 0
(3.3)
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Evaluation and measurement approaches are described in chapter 3.3.

Figure 3.5: Hash extraction scheme [HKO01]

3.2.5 FDMF - Find Duplicate Music Files

FDMF is an acronym for 'Find Duplicate Music Files' and constitutes an open source

�ngerprint system provided by Kurt Rosenfeld on the MusicBrainz Websites1. Pre-

liminary investigations have shown promising prospects which has led to the decision

to examine the algorithm for identi�cation quality in Chapter 5. Due to the usage for

experimental identi�cation purposes and the comparison with similarity-based ap-

proaches in the practical part I would like to describe the functionality and principle

of the FDMF algorithm. It has been designed to detect equal versions of the same

song title even if the meta-data is not the same and, of course, the �les themselves

are not totally equal. (cp. [Sin06])

Detailed operation of the algorithm

1. Decode / decompress the input �le to raw audio data (PCM)

1URLs: http://wiki.musicbrainz.org/FDMF, http://www.musicbrainz.org, http://wiki.musicbrainz.org/
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2. Apply the Fast Fourier Transformation (FFT)

3. Divide the frequency spectrum into 4 non-overlapping frequency bands (B1 -

B4)

4. Calculate the energy of the bands for each 250 milliseconds chunks

5. De�ne a result list (FP . . . �ngerprint) consisting of three regions and calculate

the following values:

a) FP[0..255] = The sum of the energy bands for each chunk

b) FP[256..511] = (B2+B3)/(B0+B1)-ratio for each chunk

c) FP[512..767] = (B0+B2)/(B1+B3)-ratio for each chunk

6. Calculate the power spectra for each array

7. Apply spline �t smoothing operation

8. Apply a one-bit median quantization on these values

9. Concatenate the bit string to get the full �ngerprint out of 3 times 256 bit, a

768 bit signature.

10. Store the representation to the database (default: GDBM2)

For the evaluation, the following steps have to be performed:

1. Extraction of the �ngerprint as described

2. Comparison with database entries

3. If the results (i.e. distance values) exceed the given thresholds (one for each

region), a proper identi�cation is con�rmed and printed.

The whole success of the procedure is mainly dependent on the choice of the

threshold array. The three thresholds are given by [75,115,85] by default and can be

varied to support more or less fuzzy matches. The maximum and minimum values

apparently are limited to 256 and 0 bit errors, the size of the 'sub-signatures'. The

term sub-signatures does not refer to a temporal hierarchy of subsequent segments.

The realization of these is introduced in chapter 3.3.2. The FDMF library addition-

ally tests the input �les for a conformance of the generated �le digest that maps the

2Gnu Database Management System (http://www.gnu.org/software/gdbm/)
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contents of the �le at bit level to a hash representation. If these hashes are equal,

the �ngerprint extraction step can be skipped and a match is detected immediately

because the actual �le has already been treated as input.

In chapter 5 a detailed analysis and discussion of the performance and usefulness

of FDMF has been performed. This has mainly be done in comparison to Rhythm

Pattern, a similarity based feature extraction approach.

3.3 Retrieval and Evaluation

The �nal step of an identi�cation system that has already performed the computation

of the �ngerprint or the extraction of a watermark is the comparison or matching

process. This is the component that tests the result of an observed input signal

against the pre-recorded database entries. Basically there is a subdivision of the

concept into approximate and exact operation the use of which depends on the un-

derlying identi�cation scheme. In case of approximate or fuzzy matching, there must

be a given threshold that determines at which point a result is good enough to be

identi�ed as the detected track. It seems clear that fuzzy matching has to be used

because of possible distortions or altered inputs (cp. chapter 5).

3.3.1 Matching and Search

Having extracted a signature, what and why is some database key being returned?

There must be a de�ned criterion that decides whether to return a database entry

or not. The conceivably simplest solution for this problem with �ngerprints of bit

sequences is to count the number of bits which do not match between the query

�ngerprint and the database entry. This must be done for all database signatures to

�nd the one with the minimal number of errors (compare equation 3.4).

Eb =
n

∑
i=0
|x[i]−d[i]|=

n

∑
i=0

(x[i] xor d[i])

∣∣∣∣∣ x[i] bit at index i of input hash

d[i] bit at index i of database hash
(3.4)
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The Bit error ratio (BER) in general indicates the ratio of the number of erroneous

bits (Eb) to the total number of bits that are transmitted by any transport medium

(i.e. the signature length). With respect to the comparison of di�erent �ngerprint bit

sequences this ratio is an indicator for the overall identi�cation success, furthermore

the already mentioned response criterion.

Conventional relational database management systems (R-DBMS) store their con-

tents in a tabular manner and have clear relations between the single elements.

Search operations on such databases are based on exact matching. They perform

an exhaustive search over all entries and return all elements that comply a given

criteria. The simplest case here is to look for the existence of a character sequence.

This approach is not usable for fuzzy-matching applications [KE04] [CBMN02].

There are solutions for this major problem described in [HKO01], [HK02], [CBMN02],

[CBG03], [HKO02] and others. All of them share these main requirements for the

matching and search procedure:

• Speed

• Scalability

• E�ciency

Due to the enormous amounts of persistent entries, �brute-force� search attempts

will last too long as it would be acceptable to wait for. There are more intelligent

approaches. One possible way is to use a look-up table (LUT) for all possible sub-

�ngerprints (cp. Chapter 3.3.2) that can occur (cp. Figure 3.6). These values point

to the single tracks or rather the speci�c positions of identi�ed sequences within the

audio signal, realized by linked lists. Assuming that at least one of the signatures of

an observed track is free of errors, we can �nd the position of the given input sequence

and, as a consequence, the best match for the whole candidate data in the database

by calculating the BER which must be below the given threshold. The assumption

that every now and then, a sub-�ngerprint of an audio piece in the database is bit-

error-free has been proven. In case of no match, a Hamming distance of 1 or more

can be utilized or the report of no relevant results available is returned.
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Figure 3.6: Possible database layout for sub-fingerprint architecture using a look-up table (LUT) [HK02]

A detailed description of the model for these assumptions and realizations is pro-

vided in the next section.

3.3.2 Hierarchical Temporal Sub-Fingerprints

As already mentioned, there is a grave limitation of the common �ngerprint tech-

nology. Just reducing any extracted features out of an audio track and converting

them into a bit representation results in signatures containing absolutely no infor-

mation about the temporal occurrence and sequence order of acoustic events. This

issue is assimilable to the Fourier Transformation in general very well. The only

way to maintain some general time information is to subdivide the input signal into

multiple parts, analysing them separately and merging the results again in a way

that preserves the temporal data. Figure 3.7 shows the temporal evolution of Cos-

inus functions with varying frequency every 55 time units (i.e. samples). Haitsma

and Kalker introduce a �ngerprint system in [HKO01], [HK02] that takes care of

exactly this problem. The extraction of the whole robust hash which identi�es a

track consists of a variable number of so-called sub-�ngerprint blocks which again
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Short Time Fourier Transformation
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Figure 3.7: Short Time Fourier Example - Frequencies for temporal intervals

are divided into single sub-�ngerprints (SFP). These SFPs have a encoded length

of 32 bits which correspond to a temporal length of 11.6 milliseconds. 256 of these

SFPs build one SFP block (11.6∗256≈ 3 seconds).

Considering the database layout in chapter 3.3.1, illustrated in Figure 3.6, this

approach is useful for both �nding a certain position within the piece of audio of

a database entry while analysing and identifying audio signals taking just about 3

seconds of data.
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Audio Similarity Feature Sets

The second main approach which I have dealt with in this thesis treats the possibility

to use similarity based feature sets not just as a method to get distances in terms of

musical similarity as it can be used for building classes of similar music like genres

or retrieving acoustical neighbours, but as a useful technique which originates in the

capability of identifying music. Further on I will give an overview about the features

themselves as well as measuring, retrieving and ranking the results. As an exemplary

implementation, I investigated the 'Rhythm Patterns' feature set for its practicability

in audio identi�cation compared to a dedicated audio identi�cation algorithm. The

basic functionality is described due to later usage in the empirical part.

4.1 Audio Feature Extraction

Data about or describing other data in the common sense is called meta data. These

can be additional information about contents, hardware related, formats and other

useful and processable information. In case of an MP3-audio �le, ID3-tags hold

content related properties that have been added manually (annotations). Being able

to extract or generate meta-data automatically induces the term feature which in

fact is a characteristic property of the referred data itself.

A feature can contain a variety of information that is inherently included in the

original signal. Common properties like tempo, length and others are also possible

37



Chapter 4 Audio Similarity Feature Sets

extraction results as well as features that can not be comprehended by humans as

easily, such as spectral �ux, roll-o�, zero crossing rate and many more. [TEC02]

Musical features in general are measures for speci�c characteristic interests of parts

of audio signals. For classi�cation or identi�cation purposes the assumption can be

made that proper feature combinations and weights build a distinctive description

which can be used to distinguish music tracks from other, di�erent sounding titles.

Additionally the grade of di�erence - the distance - constitutes a measure for simi-

larity. [FGDW06]

The challenge for many applications then is to �nd, de�ne, extract, combine and

eventually transform single values into powerful music descriptions that are used for

the tasks mentioned.

4.1.1 Common Musical Features

Semantic level and classification

Meta-data or additional semantic information can be classi�ed using di�erent ap-

proaches. A subdivision into high level and low level data is often used to delimit

annotations which are done by hand from technically extractable information. Refer-

ring to this di�erentiation, high level features have to be used for systems that should

lead to any advantage. According to the semantic level of description of the relevant

objects, the features do not have to be present in a numerical form but in any data

type that enables the storage of the relevant interests. [AHH+03] [HBW+08]

[NL99] proposes a classi�cation scheme that has been developed under the research

activities for MPEG-7 descriptions. The examples have been chosen according to

audio related scenarios.

Medium-based

the description of the medium / the form in which the data is expressed (e.g.

sampling rate, word length of quantization)
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Physical

computational features that can be extracted out of the raw audio material

(e.g. loudness level, power in frequency domain)

Perceptual

grouped and derived from the physical aspect; characteristic features that are

present in a form which corresponds to the human perception or are in fact

perceivable (e.g. timbre)

Transcription

the semantically enhanced data that has been created out of the contents or is

a reconstruction of the object (e.g. lyrics)

Architectural

de�nes the syntactic structure that is needed for building semantic descriptions

on lower levels

Annotative

additional annotations of human beings which would not be extractable auto-

matically

The abstraction level gains from top to bottom. Medium-based data is located

inside the object itself where annotative has to be generated arbitrarily by humans.

Musical features that are intended to be used for similarity measurement or identi�-

cation purposes with respect to the domain of music information retrieval are located

on the physical and perceptual layer. The extraction of them is chie�y done in the

time domain or frequency domain. The appropriate transformation that converts

the time based signal into frequency information respectively its inverse procedure

is performed by the Fourier Transformation (DFT for discrete signals). Possible and

useful features are outlined in the following sections.

The frequency domain

Many properties and features of music can only be obtained by analysing the fre-

quency domain. Although they have their main characteristics that are remarkable

for us humans in the time domain - music is considered to be amplitude variations
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over time - or as a representation of changes of the amplitude of di�erent frequencies,

a conversion into the frequency domain must be done which gives a deeper insight

into amplitude variations on di�erent frequency bands. This enables the extraction of

features that would not be extractable otherwise. The formal de�nition is illustrated

in Equations 3.1, 3.2 in Chapter 3.1.1. [BK07]

Commonly used techniques perform parts of and extensions of the following fun-

damental steps:

• Subdivision of the audio signal into frames of a speci�ed window size wS

• Windowing using Hanning windows, Hamming windows or another function

that lowers the amplitude towards the borders. This reduces the artifacts on

the frequency side such as leakage e�ects.

• Transformation from time to frequency domain using the discrete Fourier Trans-

formation (DFT), discrete Cosinus Transformation (DCT), Wavelet Transfor-

mation, . . .

• Subdivision into multiple bands (frequency ranges)

• Calculation of features from the spectral data

• (Summarization)

By these and other transformations [GDPW04], features can be extracted that

include characteristical descriptions about rhythm, tempo and many other aspects.

A well-known feature is the BPM value - beats per minute. It speci�es the overall

tempo which is mostly given by percussion or bass instruments. By contrast to the

naive tempo, it calculates the feature in a more intelligent way than just considering

the re-occurrence and periodicity of the highest peaks that can be found. Beat

histograms illustrate the deviation of intensities of beat-supposed elements over the

whole frequency range. A high value for one bar then shows the tempo and the

responsible frequency lots.

The problem for all rhythm-based features is the fact that there is no exact asso-

ciation of rhythm or periodicity to any �xed classi�cation or musical division which

would consequently lead to a recognition of the genre. Although di�erent musi-

cal styles are often characterized by the tempo and periodicity, there are too many
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styles available to clearly associate simple rhythm descriptors with a genre. An indis-

putable connection of rhythm as is with the identity of an audio title is not possible.

As mentioned before, there must be a proper combination of multiple sets of features

to model the human identi�cation ability.

As an example, in [TEC02], genre classi�cation is performed utilizing a charac-

terization of musical texture and timbre as well as instrumentation. The extraction

process produces a 9-dimensional feature vector containing values that are calculated

using the STFT / FFT in the frequency domain. Time domain based features are

also part of this categorization process. Therefore the input signal is subdivided

into texture windows with a length of 1 second that contain 20-milliseconds analysis

windows. Mean values and standard deviations are based on the occurrence and

comparison of these analysis windows.

Mean and standard deviation of centroid

are values which indicate the spectral brightness of an audio signal

Mean and standard deviation of roll-o�

constitute measures for characterizing the spectral shapes

Mean and standard deviation of �ux

represent descriptions of change in the spectral domain

Mean and standard deviation of zero crossings

indicate the dynamic behaviour of a signal by counting the number of crossings

of the �zero line� (i.e. change of the signum function) in the time domain

Low energy

describes the ratio of the count of analysis windows that have less energy than

the average over all in a texture window by all 40.

These combined features are used to classify musical genres. The quality of this

process has been tested using confusion matrices as well as 10-fold cross-validation.

For a complete description of the calculation and evaluation, refer to [TEC02].
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4.1.2 Rhythm Patterns

Basically a Rhythm Pattern is a representation of sinusoidal audio contents using a

relation of critical bands to the periodicity on critical frequencies according to the

human perception. The full range of critical bands leads to a matrix dimension of

24 frequency bands × 60 di�erent modulation frequencies for amplitude modulation

= 1440 values. The so included information covers the common sense of rhythmic

elements as well as frequency based regularities.

Due to the usage in the experimental part of this thesis, Rhythm Patterns (RP)

are introduced in detail.

The extraction process is illustrated in Figure 4.1 and described as follows [Lid06]

[RPM02]:

First of all, input data that should be analysed has to be preprocessed before-

hand. Depending on the underlying application scenario di�erent procession steps

can be performed. Normally this process includes stereo to mono conversion, initial

segmentation, skipping of lead in or lead out (etc.). [KQG04]

The Rhythm Patterns extraction processes audio data in chunks of ≈ 6 seconds

of length which correspond to 218 samples at a sampling frequency of 44.1kHz (for

lower sampling frequency, the number of samples is halved linearly to maintain the

6-seconds segment size). Each of the segments is transformed using the Short Time

Fourier Transformation (STFT). The FT-windows are Hanning �ltered with an over-

lap of 0.5 at a length of 23 milliseconds. The frequency range of the signal is then

divided with respect to the Bark scale into 24 Bark bands. This is done due to

psycho-acoustical issues i.e. the loudness perception of human beings.

After spectral masking, conversing to the dB-scale, loudness equalization and the

transformation to Phon1, the critical bands are now analysed separately to get mod-

ulation frequency parts. For each band the FFT provides a time-invariant represen-

tation which in fact contains the rhythm information (like pitch, tempo, BPM . . . ).

1Phon is a unit for the loudness level with respect to the human perception introduced by Stanley Smith
Stevens (1906 – 1973)
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Final �ltering and smoothing operations lead to the Rhythm Pattern representation

as described. [SWS07]

The resulting matrix can be used for similarity measurement. There is the as-

sumption that a small distance value between two Rhythm Patterns consequently

implicates high similarity concerning the human perception. De�nitions for di�erent

similarity ideas are provided by Chapter 4.2.

4.2 Audio Similarity

Similarity in the common sense refers to an assessment of relations of descriptions

of di�erent elements in a subjective way. What a human being calls similar to

something does in general not conform to opinions of others. This statement seems

to be very trivial and self-evident, nevertheless it is a non-trivial challenge to de�ne

a model that enables a formal measurement and evaluation of the term similar.

[AP02]

Grouping elements having a relative high similarity leads to kinds of clusters which

represent one mean description. The level of cohesion is then given by the deviation

between these objects. The main problem here is not to �nd a criteria which is used

for the clustering procedure, but the fact that there are a lot of possible in�uence

factors that exclude each others. Trying to maintain a kind of rhythm information

will possibly neglect pitch characteristics or dynamics.

In terms of audio tracks, similarity can be de�ned using a variety of features that

are extracted. A proper combination of them is the main goal for getting a useful

feature vector that really models our sense of musical similarity. The most widespread

meaning of similarity between audio tracks is the genre. The classi�cation and usage

of this semantic descriptor is outlined in Chapter 4.2.5.

4.2.1 Spectral Similarity

According to [LS01], there is a basic way to compare distinct audio titles while only

considering the audio contents. The division of the signal into multiple frames with

43



Chapter 4 Audio Similarity Feature Sets

Power Spectrum (STFT)

Critical Bands (Bark scale)

Sound Pressure Level (dB)

Equal Loudness (Phon)

Specific Loudness Sens. (Sone)

Modulation Amplitude Spec. (FFT)

Fluctuation Strength Weighting

Filtering/Blurring

Pre-Processing, Segmentation

Audio Signal

Feature Extraction

Rhythm Patterns

Median Vector from Segments

Figure 4.1: Extraction of a Rhythm Pattern [Lid06]
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speci�c size, the conversion into a spectral representation that covers the sinusoidal

parts as well as the subsequent clustering of the frames results in an audio signature

based on the spectral domain. Among others, this approach has become one of

the most popular ideas behind audio content similarity measurement in the whole

scienti�c �eld. (cp. [FGDW06])

4.2.2 Rhythmic Similarity

Rhythm can be de�ned by a general structuring of tones, sounds or even movements

into sections or parts which are concerning the contents that are even, similar or just

re-occur periodically in an equal or similar way.

This term contains several aspects that have to be taken into account. Rhythm

does not just cover the simple temporal issues (i.e. speed of periodical events like

bass drums etc.) but also the kind of beat as there are multiple musical bars and the

variations of them [GDPW04] [FGDW06] [TEC02]. Just being similar in terms of the

rhythm does not consequently implicate a subjective, overall similarity. The tempo

or rhythm alone therefore are no clear nor general descriptors for music similarity.

4.2.3 Semantic Similarity

Another point of view of similarity also considers the semantics of a piece of music

that does not originate from the contents - the context. Although this has absolutely

no relevance concerning the audio content itself and the extraction of content-based

audio information, the semantic information and context is an often underestimated

criteria for similarity retrieval and identi�cation systems. It is obvious that existing

semantic information cannot be included into real content-based approaches but in

fact there are semantic features which would be extractable in an automatic way.

Intelligent system would bene�t from that. In [Lei04, pp. 69] users show a totally

di�erent understanding for declaring two songs as similar. For example, the used

speech in some of the example tracks is a criteria which di�erentiates di�erent de-

scription groups or genres. There are approaches which deal with the detection of
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languages (cp. [Vas07]). A possible combination of these extraction ideas would lead

to an advantage at least in this special scenario.

4.2.4 Distance Metrics and Representations

In the mathematical sense, a distance is the length of a direct connection between

two points in any dimensional space. Hence, it is a function that has two input

parameters and assigns one numerical value to the pair of input data that indicates

the distance. Equation 4.1 shows the formal de�nition for the L2- or Euclidean

distance which is widely used in music information retrieval. It has been used for

the experimental part of this thesis (cp. chapter 5).

d(x,y) =
√

(x1− y1)2 + · · ·+(xn− yn)2 =

√
n

∑
i=1

(xi− yi)2 (4.1)

The input vectors are given by:

X =


x1
...

xn

 ∈ Rn and Y =


y1
...

yn

 ∈ Rn (4.2)

Picturing illustratively, the common spatial distance in the 3-dimensional space

(R3) is given by the choice of a 3-dimensional vector for the elements (n = 3) that

have to be considered. A �at Cartesian coordinate system with 2 dimensions uses a

2-element vector. As Equation 4.2 illustrates, the generalization (the L2 distance) is

able to compare n dimensions. It is an appropriate metric for pairwise comparison

of feature vector elements with the special case of equal weights for all features and

- of course - the same number of elements on both sides, the query and the database

entries.
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Self organizing maps (SOM)

A popular technique for managing high dimensional data is the Self Organizing Map

(SOM). It is a type of an arti�cial neural network that reduces the dimensionality of

high-dimensional vectors down to (usually) 2 coordinates on a �at grid. This kind

of representation has a lot of bene�ts as it is much more comprehensible for human

beings than high-dimensional vectors. It can be post-processed in various ways to

produce other useful representations (cp. [VHAP00]). In case of audio data and

extracted feature vectors, it is a useful technique to map the underlying audio tracks

which are represented by the neurons onto a map which illustrates the similarity of

neighboured titles.

Therefore, a sequential training process must be performed which is responsible

for the topology and structure of the map. Each iteration rearranges the neurons

and quasi unfolds the grid. There are weight vectors (one per unit / neuron), the

prototype vector, the feature vectors are associated with. They have to be determined

and in�uence the entire arrangement as they are connected to the adjacent neurons

via neighbourhood relations which are trained. The single steps are outlined as

follows: [VHAP00]

• Choice of trainings vector x randomly

• Computation of distance between x and all weight vectors of the SOM using

any distance measure (common Euclidean)

• Determination of the best matching unit (BMU) by using the smallest distance

to all others

• Update of the weight vectors so that the BMU gets a closer position to x than

it already has. The neighboured elements are treated similar to maintain a

relatively equal but stretched topology (cp. Figure 4.2)

Steps 2-4 are carried out iteratively.

In general, the whole training is performed in two main stages, the approximation

of a proper order as well as a �ne-tuning iteration sequence that determines small

variations leading to better results.
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Figure 4.2: Update of the best matching unit (BMU) and adjacent neurons according to input data x [VHAP00]

4.2.5 Genre Classification

Musical genres are categorical descriptions that are used to characterize

music in music stores, radio stations and now on the Internet [TEC02].

This de�nition of the term �genre� just describes the common meaning of the

most widely used classi�cation scheme in music at all. Although the understanding

is somewhat subjective and cannot be generalized, music genre classi�cation is a large

scienti�c sub-�eld of music information retrieval. As described in chapter 4.2, the

choice of the proper features and the concentration on the relevant parts of an audio

signal is not trivial. Therefore no exact statements can be made. Similar descriptions

of similar sounding titles are a general requirement which must be ful�lled. [Kos02]

[KQG04]

In [TEC02] it was pointed out that a combination of various musical views and their

corresponding features lead to quite satisfying results of a proper classi�cation that

models our common meaning of similarity and the genre. Musical surface features

(described in chapter 4.1.1) together with rhythm features build the descriptor for

the introduced feature extraction (cp. [TEC02]). There is also an implementation

of a real speech-music discrimination and separation. A hierarchical arrangement of
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musical styles as well as the speech have been used and treated di�erently according

to the recognized type of the signal on the coarse level. [FGDW06] [RPM02]

There are comparative studies about the ability of classifying musical styles. Hu-

mans are able to identify a genre - respectively assign music tracks to pre-de�ned

genre terms - astonishingly well. This does not just include real active listeners or

experts in the musical �eld, but also music interested people that have no specialised

knowledge [Kos02]. On the other hand - referring to the de�nition and aim of genre

classi�cation - it is the only apparent, even logical assumption as building models

always relies on the human understanding.[MB03]

4.3 Considerations for Evaluation

Retrieval systems in general have a clear structure that is visible to the �end-user�.

Besides the whole extraction process, the pre-procession, post-procession and others

as illustrated in chapter 4.1.1 and 4.2, the retrieval engine builds or receives a query

and sends it to the database. The comparison engine again can modify or transform

the input, but in general computes distances between feature values and produces a

result set in a speci�ed format. In case of identi�cation or similarity measurement,

a list of candidates with ratings is returned. While it is the purpose of retrieval-

by-similarity to return a ranked list of similar results, an identi�cation algorithm is

supposed to deliver the one identi�ed song - a single result.

In many cases, the query is not given in a machine-processable form as is. Hence,

the query engine must generate a request that can be dealt with out of the content

information. Two main examples which alter the overall view on the identi�cation

procedure are given as follows. These aspects just concentrate on the retrieval,

the extraction of features from all music tracks in the database must be performed

anyway. [Foo99] [MG06]

Query by humming

The input data is an audio signal (commonly recorded by a microphone) which

has been produced independently of the searched original �le. There is no
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transformation and therefore maintenance of signal parts as the data is pro-

duced completely di�erently. The retrieval of similar sounding descriptions

must be done by very robust and intelligent solutions when having the focus

on the extraction of features. MIDI-like sequences of musical tones and their

temporal o�sets as well as pitch di�erences can be considered too. [DG06]

Query by example

This term is nothing else than another view on the content based audio retrieval

as described. A single musical piece or an excerpt is used as the input for

the query. No transformation has to be made of the signal and the feature

extraction can be applied directly. The input has to be considered, processed,

features are extracted which are combined to build representations that can be

compared numerically.

4.3.1 Evaluation Measures

The responses of a retrieval system must be able to be measured and interpreted

in order to make statements about the resulting quality. The following evaluation

measures are based on the false-positive analysis and are used for the information

retrieval domain as well as clustering and classi�cation. The quality or relevance

of the individual resulting elements is not included by this evaluations methods.

Due to the limitation of certain systems that a result can only be true or false,

these measures are used for Boolean retrieval. Figure 4.3 illustrates the relations

between the di�erent sets using Venn diagrams. R indicates the set of relevant

elements, A stands for the answer set. The intersection and union sets are used for

the evaluation.

Per de�nition, identi�cation means that a speci�c element (i.e. audio track) is

found. Due to the assumption that this must be the database entry with minimum

distance or maximum similarity, a ranked answer set can be provided where rank

#1 should be the title in demand. Precision, recall and fallout are computed to rate

whole answer sets as well as the single results.
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A ... retrieved elements (answers)

R ... relevant elements

all elements

R A

l A∩R l

all elements

R A

l A-R ll all-A l

Figure 4.3: Result elements and intersections

Precision

The precision-value is given by the ratio of true-positives by all retrieved documents.

It corresponds to the statistical terms of relevance or positive predictive value. The

formal de�nition is given by Equation 4.3. The resulting p-value lies between 0 and

1 where 1 implies that all retrieved elements are relevant. For identi�cation purposes

commonly a ranked answer set is provided. The number of results can be increased

incrementally as long as the precision value for the last retrieved element tops a

pre-de�ned distance threshold. [DG06], [Vas07]

precision =
|{retrieved elements}∩{relevant elements}|

|{retrieved elements}|
(4.3)

Recall

Another characteristic value for evaluation of retrieved elements is the true positive

rate (TPR) or recall. According to the statistics this is called the sensitivity of a

process or operation which is expressed by the relation of relevant retrieved elements

to all relevant elements in the database (cp. Equation 4.4). A value of 1 corresponds

to the fact that all relevant elements have been found by the system. An identi�cation

attempt (i.e. recognizing one speci�c track) performs perfectly at a recall of 1.

recall =
|{retrieved elements}∩{relevant elements}|

|{relevant elements}|
(4.4)
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Fallout

The semantic inversion of the recall is given by the fallout-value or false positive rate

(FPR): the ratio of irrelevant found elements to all irrelevant elements (cp. Equation

4.5). It is mainly used for evaluating the negative performance.

fallout =
|{retrieved elements}\{relevant elements}|
|{all elements}\{relevant elements}|

(4.5)

F-Measure

A much more important characteristic value is the F-measure, which is a weighted

harmonic mean combination of recall and precision. The weights for the two in�u-

ence values are controlled by one parameter β . The bigger it is, the more recall is

respected, a value of 0 lets the f-measure correspond to the precision-value.

Fβ =
(1+β 2)∗ (precision∗ recall)

(β 2 ∗precision+ recall)
(4.6)

4.3.2 Database and Ranked Retrieval

The pivotal part of the whole extraction and comparison procedure is the ordered

representation of di�erent database entries which principally are worth considering.

Multimedia databases in general have a fuzzy retrieval nature which means that no

exact results can be given compared to the conventional way of relational databases.

This is an important assumption that has to be made. Content-based queries always

rely on the similarity or distance metrics that determine whether to return a speci�c

element as relevant or not. To ensure that a pre-selection of potentially unimportant

candidates is made before any result is found, there are several strategies that can

be applied. These cover Clustering, Query relaxation and Reformulation which are

described below. By contrast to conventional multimedia databases, the retrieval

respectively the identi�cation of audio material follows the strict requirements of a

real content-based system. Therefore no additional information is provided. There

is absolutely no combination of traditional query elements with the content-related
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features. This makes things much more complicated but ensures that semantic data

has no in�uence on the quality of feature extractions. Possible conversions from fea-

tures to semantic information, i.e. the abstraction of numerical values to a coherent

and usable semantic statement can improve the human ability to retrieve the right

elements since it is the human assessment that rates a retrieval system as successful

or not.

Clustering

A really important approach not just for identifying music but for information re-

trieval and classi�cation in general is the clustering of elements that are featured by

any similar properties of their own. The choice of the relevant extracted features is

no �xed criteria and can be varied. Using multiple feature descriptions and de�ned

classes this leads to classi�cations on various levels and abstraction grades.

In many cases, the clustering is based on semantic information. This is done due

to the similarity understanding of human beings. A cluster of elements given only by

the same extracted feature value does not really give insight for a subjective evalua-

tion. So there must be a relation and conversion from numerical values to semantic

interpretation considering the content-based analysis of music material. The best

example here is the classi�cation of di�erent music styles using genres. There is a

roughly common understanding - of course not totally consistent over multiple hu-

man beings - about what a musical style is about and what is describes. Otherwise

is would not be possible to de�ne style classes at all. This kind of information can

be extracted and converted into genres which in fact is a big research area in the

MIR (music information retrieval) �eld. [Kos02] [TEC02]

Concerning database search strategies, clusters can be used for prematurely se-

lecting a potentially useful group of elements. This leads to an early assessment of

the number of candidates and therefore feedback at an earlier point of time. Re-

member that the time for an identi�cation attempt is an essential criteria for quality

in retrieval systems. Additionally, an association of an element with a pre-de�ned

class may improve the whole search procedure by enabling the system to use di�er-

ent metrics, comparison approaches and even algorithms. This again can accelerate
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the retrieval and leads to better performance. To extend the clustering procedure

further, relaxation and reformulation can be applied. [MG06]

Query relaxation and reformulation

There are several techniques that are able to alter given queries to ful�l database-

related assumptions or improve the whole search process. Query relaxation produces

another query by lowering the exact matching assumption to a more fuzzy compar-

ison. Looking at the comparison techniques, this in general means that a certain

threshold is chosen together with a discrimination function in a way that actually

more results can be found. Hence, the whole query is made �fuzzy� dependent on the

underlying content and document format.

Having a look at the evaluation of Boolean retrieval techniques in chapter 4.3.1,

it comes out that a variation of a query in order to retrieve more or less results

consequently implies that the quality measures are in�uenced. �Relaxing� the query

too much will induce that too much non-relevant results are included into the answer

set. By reverse, applying too humble relaxations can cause that no relevant elements

can be found and therefore no identi�cation can be made. [MG06] [DG06]

The approach of �reformulation� considers the query not to be alterable. Hence

there must be a total reformulation to get reasonable, more or generally results.

[MG06] Having a look at audio retrieval systems, a reformulation induces a total

exchange of used features or a capture of another part of the regarded signal. Con-

sidering audio streams, the whole identi�cation system could wait for some seconds,

capture the input data at another position and start the whole analysis procedure

again.

The important task of a retrieval system and therewith the whole database-

connected software is the con�rmation that results are provided which ful�l the

de�ned criteria. Depending on the input data, the content and the database strate-

gies, there must be a way to enable to make an assessment to permanently improve

music information applications.
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Chapter 5

Experimental Results

In the following chapter I will describe the practical and empirical part of my the-

sis. I want to introduce a series of test cases which have been performed during the

quantitative and qualitative analysis of the algorithms. The aim is to �gure out in

what sense a variation of the observed amount of data or a signal modi�cation results

in better or worse accuracy values. The cases are built up in constructing manner

and explain the basic functionality as well as the e�ects for identi�cation purposes.

Identi�cation in this case means that one speci�c audio data stream is analysed and

due to various comparison techniques considered to be equal to an existing track in

the database. The feature extraction methods are described in Chapter 3 and Chapter

4. This is done both for the RP 1 and the FDMF 2 algorithm. Furthermore I will

provide an interpretation of the results and give some explanations about the resulting

consequences and provide general conclusions.

5.1 Preliminary Considerations

5.1.1 Audio Stream Models

One special goal of the analysis is to �gure out, in what sense the content of an audio

stream can be identi�ed correctly using either a Rhythm Pattern or the FDMF

algorithm. Having Matlab as the computing tool, it is necessary and essential to

1RP . . . Rhythm Patterns
2FDMF . . . Find Duplicate Music Files
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build a simple model which conforms to the situation we have when capturing real

streamed data that can be expressed by Matlab constructs. For this purposes, the

test set (compare Table 5.2) is regarded as streamed audio.

Figure 5.1: Scheme for analysing streams

The current point in time t0 is chosen randomly after a minimum of wS samples,

the considered window whose included data is used for the analysis steps has its

window size wS. As Rhythm Patterns are extracted for segments of �xed size sS (218

samples), the window size of the stream must be a multiple of this segment size.

(wS = x ∗ 218). The resulting extract is given by the interval [t0−wS; t0]. This kind

of consideration, as the left bound is stated by a subtraction of the right bound,

conforms to the assumed real world scenario in which the user normally wants to get

the information about an audio signal which is currently playing at a speci�c point

in time. For special cases in which there is not enough data available yet at t0 - in

other words t0 < wS, the system will have to wait until wS samples are bu�ered and

ready to be processed. This approach is similar to the audio capture implementation

of the JAVA application (compare Chapter 6). Again - at a speci�c point in time

t0, data has already been bu�ered and can be retrieved as a byte array of raw audio

data until point t0 with bu�er size bS. Figure 5.1 shows illustrates a simple view of

this assumed model.
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5.1.2 Compressed Audio Formats

When using compressed audio formats as a transmitting format the incoming data

has to be decoded beforehand. Although most of the codecs are not loss-less there is

still enough data to perform tests on it. The portions of audio material have to be de-

coded using appropriate libraries (as it has been done in Java for the implementation

- Chapter 6) or external applications (so done in Matlab for the experimental part).

Streaming directly to raw PCM format solves this problem very smartly, because the

local bu�ered data is already present in the preferred form and can be used without

further procession steps.

5.2 Test Case Introduction

All experiments, which have been performed and are described in this chapter, have

been written in Matlab. The M-Code-Files are available in the code archive, which

is supplied on the complementary web page for this thesis3. Each of the test cases

is scripted in standalone manner for later comprehension and reproducibility. The

resulting �gures based on the values produced by the Matlab scripts can be provided

on demand.

5.2.1 Modifications

The main goal and a very important parameter that has to be minimized for an

audio identi�cation system which is based on the contents is the amount of data

that has to be taken into account. Normally the input signal in terms of time should

have a length of some seconds. This factor is investigated in detail in chapter 5.3.

The second main aim, besides having deeper interest in the amount of data which

is regarded for the identi�cation experiments and in how far the segment size has

an impact on the resulting precision, is the in�uence of signal modi�cations on the

results. Several of these audio signal variations have been tested to ensure reliability

3http://www.ifs.tuwien.ac.at/mir/audiofingerprinting.html
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despite severe data degrading. These modi�cations cover pitch cue variations, fre-

quency �lters and changes in the dynamic behaviour [CBMN02]. Table 5.1 gives an

overview. In Section 5.3.1 more information as well as the experimental results can

be found.

frequency
frequency filter (analog equalizer a)
band pass (GSM b)

tempo
pitch cue ±1%
pitch cue ±3%
pitch cue ±8%

dynamics compressor

Table 5.1: Signal modifications

aAnalog equalizers are widely spread when using analog mixing devices
bThe GSM scenario simulates a limited frequency band transmission with a butter-worth band pass filter:

[≈ 300Hz;≈ 3kHz]

5.2.2 Test Set - Ground Truth

For all experiments the same standardized test set is used (so-called ground truth).

This is recommended because of comparability and uniformity within the scienti�c

community, which wants to participate and bene�t from the results. The set used is

the one that has been o�ered for the ISMIR 2004 Audio Description Contest4

as Development Tracks 1 & Development Tracks 2 for the genre classi�cation task.

It contains 729 music �les, which are available in the speci�ed format:

For all extraction processes and tests, the audio data (originally provided in MP3-

encoded format - see Table 5.2) has been decoded to Uncompressed 16-bit PCM audio

using MPlayer for Ubuntu Linux 5. The uncompressed total size of the ground truth

amounts 29.0 GB (2.6 GB encoded), in terms of time about 49 hours.

In the following sections, the term query is called the observed input data which

has to be analysed and tested against the database. Prototypes or references refer

to the already recorded database entries.

4http://ismir2004.ismir.net/genre_contest/index.htm
5 MPlayer 1.0rc2-4.2.3 (C) 2000-2007 MPlayer Team
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Codec MPEG 1 Audio, Layer 3
Sample rate 44.100 Hz

Bit rate 128 kbps
Channels Stereo

Number of tracks 729
Minimum length 842.112 samples (≈ 19 secs)
Maximum length 68.353.920 samples (≈ 1.549 secs)

Average length 10.678.944 samples (≈ 242 secs)
Median length 9.536.256 samples (≈ 216 secs)

Genres

classical
electronic
jazz/blues
metal/punk
rock/pop
world

Table 5.2: Source format of ground truth

5.2.3 Measurement of Performance

The performance of the introduced test cases is measured by relative amounts of

correctly identi�ed audio track instances using each of the 729 songs as query title for

identi�cation. The results are given by their corresponding percentages (accuracy).

For the experiments, the single audio titles are selected and treated as queries. For all

�les in the database (references), the distances to the observed signals are calculated

and stored in an array. Sorting this array provides the best match on index #1. The

distances are measured by 'Euclidean metric' as follows:

√
n

∑
i=1

(xi−di)2

∣∣∣∣∣ xi . . .prototype values

di . . .database values
(5.1)

This way of getting distances between high dimensional feature vectors is used

for the comparison of decimals providing an option that takes all single values (of

the vector) into account and respects their speci�c distances - it is not a simple

summarization. In cases of the utilization of a bit representation (compare Section
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5.3.6 and Figure 5.4), the distances are expressed via simple bit errors which in fact

is a term for the XOR operation or just a special case for the Euclidean metrics.

Bit representations - in our case �ngerprints - are used for reducing the overall

amount of information available. The numeric values are transformed (e.g. Median

Quantization, compare Section 5.3.6) into a sequence of bits which cover the same

information set but in a form which has a much lower demand of both system memory

while processing the �ngerprint as well as hard disk memory for persistent storage

in a database. There is also an improvement of the overall procedure concerning

the response time, the search speed and the use of computational resources which is

quite important for real-time applications or just time-e�ective systems that should

be able to be executed on personal computers.

5.3 Results and Experimental Performance

The test cases are divided into multiple classes. First of all the cases will introduce

a deeper understanding of in how far a change of the segment size results in a better

or worse precision of an identi�cation process. The following experiments show how

acceptable performance and reliability can be achieved.

5.3.1 Detailed Realization

Each experimental step and test case is described in detail and the results are pre-

sented both in a graphical and tabular form. The experiments cover tests which bring

up several aspects about the Rhythm Patterns, the FDMF algorithm and various sig-

nal degrading manipulations in order to illustrate the robustness and independence

of the following performed calculation steps and furthermore the applicability of such

systems in real life situations. Each of the test cases has been repeated for 10 times

over the whole set of input audio �les for getting decently reliable results. A com-

plete overview of all test cases including the produced results is given by Table 5.9

in the summary of this chapter.
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Figures

In the following sections the �gures that show histograms illustrate the number of

tests passed on the x-axis, the relative number of instances that have reached the

particular number of succeeded identi�cation attempts are shown on the axis of

ordinates. Additionally there are median and mean values available. These values

commonly do not appear in histograms, but they illustrate a rough meaning for the

resulting accuracies and are represented by vertical lines.

5.3.2 Test case 1 - Matching single segments to database entries (RP)
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Figure 5.2: Histogram test case 1 - Tests passed

As mentioned before, the extraction process of Rhythm Patterns extracts feature

values for several segments with speci�ed size. The feature values are representatives

for modulation frequencies at a number of speci�c critical bands. (compare [Lid06,

page 31 �.]) In order to �nd out, which window length is needed for a reliable

identi�cation and therewith acceptable precision, the �rst case tests single segments

of the �xed size of 218 samples (which corresponds to 5.94 seconds) against the

description of the whole �les in the database. This is done because we want to

�nd out how stable an identi�cation can be achieved despite a quite small analysis

window and depending on the location of the start position. For each music �le

random sections are analysed. This step is repeated 9 times, varying the regarded

position to simulate real world situations where a �ngerprint has to be extracted
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and calculated reliably anywhere in a �le or audio stream. Figure 5.2 shows the

relative amounts of tests passed in a histogram. Speaking in terms of likelihoods,

this implies that the probability that an identi�cation is done accurately is stated

by a percentage of about 64.55%6, which in fact is the mean value of tests passed

in relation to the overall amount of tests and is called the precision (referred to as

Pp). The �rst row of Table 5.3 indicates the precision values for this test case with

a window of the size of one segment.

The Rhythm Patterns for the references in the database have been extracted out

of whole �les. The number of considered segments depends on the speci�c length of

the �le but the algorithm tries to divide the tracks into as many 218-samples-parts

as possible. These values are summarized by calculating the median and treating it

as description for the whole �le.

5.3.3 Test case 2-3 - Increasing the number of considered segments (RP)
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Figure 5.3: Histogram test case 2 - Tests passed - variable segment size

6Due to random selection and averaging this result may vary when reproducing the scenario, but it is consid-
ered as an admissible number for identification quality
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Keeping an eye on the extraction process for a Rhythm Pattern it seems to be

obvious that an increase of the partial audio signal query given as input should

consequently result in less distance between the query and the reference data in the

database. Taking multiple segments and applying the median should increase the

similarity between the observed and the pre-recorded signal.

Furthermore, distance values of pairs which do not represent equal contents in-

crease, which diminishes the precision and leads to worse relevance of result during

the identi�cation procedure. Multiple segments are extracted and stored in a list

with the goal to apply summarization techniques on them. In this test the fea-

ture extraction of the single segments are transformed into a single Rhythm Pattern

representation by applying the median function.

During the experiment characteristic values have arisen and are listed in Table 5.3

as well as they are illustrated in Figure 5.3. From left to right, the relative numbers

of instances per passed test run are visible. Each colored bar represents a speci�c

segment size (1-3). The right sub-�gure shows the mean values which constitute the

accuracy for each scenario.

Segments Tt Tp Tf Pp P±
1 (×218 samples) 7290 4706 2584 64.55% -
2 (×218 samples) 7290 5431 1859 74.50% +15.41%
3 (×218 samples) 7290 5673 1617 77.82% +4.46%

Table 5.3: Test case 2-3 - Results of variable segment size 7

From these results the statement can be made that more input data actually in-

duces a more precise recognition of audio data using Rhythm Patterns. Increasing the

segment size by a factor of 2 generates an improvement of precision by 15.41%. The

utilization of a segment size of 3 times 218 samples again results in better precision.

Compared with the single segment results it is stated by a relative increase of 20.55%

in precision, using 2 segments as the reference, the gain of precision is given by 4.46%.

Of course, the best results can be achieved when matching as much reference audio

as possible against the database entries. A comparison of totally equal contents of

7Identifiers: T . . . Tests: t total; p passed; f failed; | P. . . Precision: p passed; ± relative increase
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a whole piece of music leads to minimum distances towards zero. Non-zero values

just occur due to rounding inaccuracies, limitations of the used data-types and par-

tially due to di�erent o�sets in time. The resulting accuracy is probably inferior on

larger databases, but nevertheless achieves almost 78% on the test database using 3

segments (i.e. approximately 18 seconds) as input for retrieval. This characteristic

value will be used in the following test cases as a reference for precision.

5.3.4 Test case 4-7 - Variable segments size and whole files (FDMF)

Since there is the goal to compare RP and FDMF to �nd out which ful�ls our needs

best to enable a reliable identi�cation system, the same tests that have been done for

Rhythm Patterns are applied to the Find Duplicate Music Files-algorithm now.

The FDMF algorithm has been designed to �t the requirements of a system which

only determines whether �les are equal concerning the contents or not. And that is

what it does according to the results of the elaborated tests. There is no information

and therefore no reason for drawing conclusions about any similarity between query

and reference. Test case 7 performs analysis for whole tracks which leads to a mean

accuracy of ≈ 100%. FDMF takes all bytes into account and processes them exactly

in one-second steps. It just drops some of them at the end of an input �le which

represents less than 1 second. The comparison of the observed audio data is still

done to the pre-extracted FDMF-signatures which originate from whole tracks.

Segments Tt Tp Pp P±
1 (×218 samples) 7290 11 0.15% -
2 (×218 samples) 7290 16 0.22% +45.45%
3 (×218 samples) 7290 23 0.32% +43.75%
all (full track) 7290 7289 99.99% -

Table 5.4: Test case 4-6 - Results of variable segment size

Processing audio data that is utilized as query of only 1, 2 or 3 segments (each of

about 6 secs. of length) results in minimal accuracies of less than 1% (i.e. test cases

4, 5 & 6, cp. Table 5.4). The precision only increases if descriptions of the observed

signals are made for the same length as it has been done when pre-recording and
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�lling the database. A proper identi�cation testing segments against whole tracks

as references can not be achieved using the FDMF as is. There are more intelligent

solutions such as extracting single segments and storing them in a list like manner to

the database maintaining the information about the time occurrence of the regarded

part. These extracts can then be compared incrementally to both �nd the position

in time which can be used for comparison purposes and in addition to that the

corresponding piece of music [HKO01]. Such tests have not been performed in this

thesis, but can be comprehended in [HKO02].

Figure 5.12 makes clear that the threshold for a precision value that would be

acceptable lies between 90% and 100% of amount of query signal data in relation to

the overall length. Comparing this to common identi�cation systems that process

only some seconds (cp. Chapter 3.2.3) lets claim that FDMF cannot be used in

present form for our purposes.

For this reason further test series which should be performed for both RP and

FDMF have been omitted for FDMF which can be noticed by the missing results in

Table 5.9. In general, signal modi�cations, noise addition and others produce worse

results than the original, just cropped query signal. It is the same here and therefore

there is no need to list the results which lie below 1% of precision.

The following chapters thus deal with the RP approach only and investigate the

reliability and robustness in identi�cation processes.

5.3.5 Test case 8 - Majority Voting (RP)

Another way of evaluating the results of the whole extraction process alternative to

combining or summarizing the single segment results by median is the majority vote

technique. In this case, 3 segments are analysed independently and are not summa-

rized by sum, median or mean values. For each individual segment the identi�cation

is done and the resulting distances are saved individually. The track which gets most

best-matches wins and is regarded as the identi�ed audio �le.

Using this technique, the accuracy is narrowed down to 72.76%. This happens

because 3 segments seem to be not enough to get a clear decision or eliminate outliers.
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If the results of individual parts do not obtain an absolute majority, there is a

fallback available that enables the usage of the calculated median values beforehand

to encourage a clear decision. In 2044 out of 7290 or 28.04% of the cases, the 3

segments deliver 3 di�erent identi�cation results and the fallback has to be applied.

More segments may induce higher precision, but there is still the requirement that

as few input data as possible should be needed for an identi�cation process. Better

performance can be achieved by using more single analysis steps and / or adding

another criteria (e.g. summarizing, reduction, combination with other features, etc.)

for decision when getting too many di�erent results.

5.3.6 Test case 9 - One bit median quantization (RP)
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Figure 5.4: Conversion from decimals to bits

As mentioned in the theoretical part of this thesis (Chapter 3, it is a common

technique to build bit representations out of decimals to get a �ngerprint. This can

be simply done by several methods. In this case, I have chosen a one bit median

threshold quantization, which is characterized in equation 5.2.

Quantization for each instance

One possibility for using this approach is to quantize every query after extracting

the RP as normal. The result of this procedure is a bit sequence containing the same

number of bits as the corresponding vector contains double values. The database

is also quantized with the same procedure. Any kind of distance measurement or
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comparison may be easily performed by hamming distances or - in other words - bit

errors. Equation 5.2 provides a formal de�nition of the quantization.

∀(xi ∈ X) . . .b[i] =

1 if xi > median(X)

0 else
(5.2)

Figure 5.5 shows the results of test case 9 - the histogram of the number of �le

instances per number of passed tests, 10 test runs as well as median and mean

value. The abscissa shows the amount of tests passed, the ordinate indicates the

corresponding relative count.
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Figure 5.5: Histogram test case 9 - Tests passed - One bit quantization

Quantization with median RP

Another version of information reduction has been done by calculating the median

values for each feature attribute over the whole test set. The result is one median

feature vector which is used for the quantization step mentioned above. The main

disadvantage here is, that the median value of a single median value computed from

all attributes of a RP may not be representative enough as to be used as a reference.

The only information which is extractable then is the bit-error distance to the median

of all �les, not a speci�c summarized distance between all features. Because of

the fact that a test set should not be too homogeneous, this kind of bit sequence
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comparison, which is just a possible representation for discrimination, is not suitable

as the resulting values prove.

Due to such severe information reduction, a precision of just 55.16% is achievable

when using the instance-based bit quantization, applying the median-RP-quantization,

this is narrowed down to 51.44%. The �rst row of Table 5.5 provides details.

5.3.7 Test case 10-11 - Increasing median quantized segments (RP)

In the next step, the same tests which have been performed for the decimal values

in test case 2 are applied to the bit representations of the Rhythm Patterns. Al-

though this severe reduction of the available information by the bit quantization,

the identi�cation accuracies have only slightly declined. Doubling the query signal

length results in a precision of 65.65%, considering 3 segments of audio, this can be

extended again and amounts 69.76%. (compare Table 5.5)

Segments Tt Tp Tf Pp P±
1 (×218 samples) 7290 4021 3269 55.16% -
2 (×218 samples) 7290 4786 2504 65.65% +19.03%
3 (×218 samples) 7290 5086 2204 69.76% +6.27%

Table 5.5: Test case 9-11 - Varying the segment size considering median quantized vectors

Having a look at Figure 5.6 it becomes clear that the reliability of the identi�cation

process is growing with the number of segments and both the median and mean values

are increasing. Remember that all segments are extracted at random positions.

5.3.8 Test case 12-14 - Retrieving ranked results (RP)

Until now the tests have only been de�ned as passed when the algorithm has been

delivering the right tracks with minimum distance (i.e. the top position in terms

of similarity). In real world scenarios this way of result delivery could be varied.

Users may want to retrieve a result set with a possible list of potential candidates

that could match the query even if the distance is not minimal. Therefore test cases
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Figure 5.6: Test case 10-11 - Median quantized values
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Figure 5.7: Test case 12-14 - Retrieving ranked results
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12-14 returns all database entries with speci�ed similarity to the reference audio.

Weakening the requirements in a way that the �rst 5 or 10 results are considered

to be recognized as well results in better identi�cation accuracies. In so far this is

an acceptable solution because users might �nd the right answer to their query in

the top 5 or 10 results as well. This seems to be useful because the system may

return wrong results and then the second or third match (etc.) could be the right

result. Additionally providing more than one candidate includes helpful information

for users which are interested in related or similar tracks. Even though a statement

about similarity is not the aim of an identi�cation system, this is an appropriable

side e�ect.

Rank interval Tp Pp P±
1 5673 77.82% -

1 - 5 6344 87.02% +11.82%
1 - 10 6527 89.53% +2.88%

Table 5.6: Test case 12 - Ranked results in numbers

As evident from Table 5.6 the recognition rate can be increased up to ≈ 90%.

All ±-percentages are given relatively to the 3-segment precision of test case 2:

77.82%. Figure 5.7 illustrates the gain of reliability when increasing the range of the

interval in which an identi�cation is considered to be successful. The x-axis indicates

the number of tests passed, where the y-axis shows the relative number of songs -

the precision. Additionally, the mean values for 3-segment identi�cation accuracy

considering di�erent numbers of top positions are given by the right sub-�gure.

5.3.9 Test case 15-20 - Pitch cue variations (RP)

The following test cases will investigate the robustness of the Rhythm Patterns al-

gorithm for several signal modi�cations starting with varying the playback speed.

As opposed to time stretching I want to simulate a real world scenario like the

pitch adjustment control of an analog turntable which in fact is a quite common

technique for seamless beat matching of 2 concurrently running tracks. Hence, a

robust audio identi�cation system should be able to work nearly independent of
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decent pitch variations. [ECM08] Rhythm Patterns do completely the contrary, but

for small variations, the recognition numbers are satisfying. Variations of the original

signal by the factor±0.01 (corresponds to 1%) result in a decreased detection rates by

−1.36% / −7.65%. Table 5.7 gives an overview. The relative percentages (P±) again

have been compared to the mean identi�cation precision based on the consideration

of 3 segments as described in test case 2 (77.82%).

Pitch cue Tt Tp Pp P±
−8% 7290 1374 18.85% −75.78%
−3% 7290 3042 41.73% −46.38%
−1% 7290 5239 71.87% −7.65%
+1% 7290 5596 76.76% −1.36%
+3% 7290 4000 54.87% −29.49%
+8% 7290 1957 28.85% −65.50%

Table 5.7: Test case 15-20 - Pitch cue variation results
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Figure 5.8: Test case 15-20 - Pitch cue variation

In Figure 5.8 there is a more explicit presentation of the results. The horizontal
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axis again indicates the number of passed tests, the ordinate shows the precision for

given tests and pitch cues. Ascending envelopes are provided by ±1%, all others have

a relatively high number of unrecognized music tracks (large bars at tests passed

0%). Generally, there seems to be better recognition when increasing the speed

rather than decreasing. The resampling step has been done by linear interpolation

algorithm which is quite satisfying in cases of small pitch variations.

5.3.10 Test case 21 - Frequency filter (RP)

A common use case for music identi�cation which has been implemented and has

already been used by customers of mobile telephone networks is a transmission of the

audio material through the mobile phone system Global System for Mobile Commu-

nications - GSM. MP3-encoded �les are able to contain frequencies up to 22050Hz.

Using GSM technology, frequencies just less than 4000Hz are reproducible, but in

fact this is narrowed again by interferences and low quality audio devices both on the

sending and receiving side. For simulation a band pass �lter of type butter-worth

with order 10 has been used for limiting the signals. All frequency lots above 3000Hz

and below 300Hz have been eliminated by �ltering the query signal. The reference

instances stay un�ltered.

Tempo or rhythm information as drums, bass lines or beat sounds are located in

very low frequency bins in many cases. So it's not astonishing that Rhythm Patterns

will su�er from this �ltering experiment, which is expressed by the decreased accuracy

of 39.84% which is quite a huge loss of reliability, compared to the 77.82% of test

case 2 where no �lters have been applied and the full frequency range has been

maintained. Keeping an eye on the �ltered Rhythm Patterns makes clear that the

bark scales below z = 3 (20Hz−300Hz) and above z = 17 (3150Hz−15500Hz) have

been eliminated. So a frequency range reduction like this is leads to a loss of the

in�uence of these bands. A representation illustrating the complete bark scale is

given in Chapter 3, Figure 3.1.
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5.3.11 Test case 22 - Dynamic range compression (RP)

In many cases broad casted material is being modi�ed by a dynamic range compres-

sion when �nalizing the stream to o�er it to others. A compression in terms of the

dynamic range means that the amplitude of an output signal is compressed when the

input signal exceeds a �xed threshold value (e.g. dB-value). The e�ective procedure

is de�ned by the parameters as follows:

• Compression ratio: 4 : 1

the compression ratio which is applied to signal elements that exceed the thresh-

old;

• Threshold: −12dB

threshold for compression criteria;

• Attack time: 300ms

the time span in milliseconds which is needed for the system to react on the

compression criteria;

• Release time: 2000ms

time span in milliseconds where the compression e�ect is dying away. After

the release time the signal is equal to the original if no new threshold exceeding

occurs;

• Knee: hard knee

hard knee means that there is a sharp angle in the bend of the response curve

instead of a rounded edge (soft knee);

See Figure 5.9 for an illustration of the compressor that has been used.

The results of the analysis of the compressed �les does not worsen the resulting

numbers aggravating. By contrast with the original tracks there is a precision number

of 72.57% at 3 segments. Remember that the original, uncompressed �les have been

identi�ed in 77.82% of the cases - so the compression step caused a reduction of

precision of 6.75%.
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Figure 5.9: Dynamic range compression - Response curve

Noise Tt Tp Pp P±
White noise 7290 5661 77.65% −0.21%
Pink noise 7290 5665 77.71% −0.14%

Table 5.8: Test case 23-24 - Addition of white / pink noise
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5.3.12 Test case 23-24 - Addition of white and pink noise (RP)

Processing signals which are recorded or created by analog devices or media usually

are distorted by some kind of noise. Even if it is not perturbing or perceivable for

human beings as a fence for identifying music, automatic solutions can be dazzled

by too much addition of noise signals. The de�nition of noise can be subdivided into

many colors (black, blue, brown, gray, green, orange, pink, purple, red and white)

and refers to a bias which tends to a speci�c range of frequencies. The most popular

noise signal is white noise, which has a regular deviation of frequency lots ( f -noise).

Pink noise (1/ f -noise) has narrowed energy for increasing frequencies in the spectral

representation. The deviation of brown or 1/ f 2-noise is in squared inverse proportion

to the frequency bins. Figure 5.10 depicts the spectrogram for both white noise (left)

and pink noise (right). The color map along the y axis shows the narrowing energy

for growing frequency bins.
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Figure 5.10: Comparison of white noise and pink noise

The tests show that the addition of white noise with the intensity of 0.1 decline the

precision results to 77.65% in comparison to the analysis of 3 segments of the original

signal. All tests using pink noise as disturbing signal result in a mean accuracy of

77.71% (compare Table 5.8. In terms of an audio signal this intensity is a value

compared to a normalized maximum amplitude of 1.0. This corresponds to a SNR

(Signal-to-noise ratio) of 20dB which is clearly remarkable for humans. Equation 5.3

illustrates the formal de�nition for signal-to-noise ratio (SNR) computation.
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SNR =
(

Ampsignal
Ampnoise

)2

SNRdB = 10∗ log10

((
Ampsignal
Ampnoise

)2
) (5.3)

5.4 Summary

Table 5.9 provides an overview of the performed tests and results. The third column

indicates the best result of the test case or of the series which is covered by the test

case number.

What I actually wanted to �gure out by this practical part of my thesis is the

di�erence between feature-based similarity measurement identi�cation / retrieval

techniques and audio �ngerprinting techniques using Rhythm Patterns and FDMF

as exemplary algorithms.

Rhythm Patterns are very useful when having small chunks of audio data and

comparing them to the extracted features of complete �les. Much better reliability

would be achieved when comparing to segments of the same size as it has been tested

by full music tracks and reduced database sets, but this would consequently lead to

much higher segment search and alignment times. I have shown that there must be

and there actually is a higher identi�cation precision when increasing the considered

query audio samples as the objective similarity gains.

By contrast �ngerprint algorithms generally map audio data onto binary string

representations. This means that a very small change of the signal can result in

totally di�erent bit strings. FDMF is quite intelligent because of the fact that it

processes frequency bands and comparing them to each other, but it is just acceptable

when having large audio signal parts at least of 90% of the original length.

Figures 5.11 and 5.12 illustrate very straight how the precision values vary in the

di�erent procedures. RP has its biggest slope at less than (0.1∗meanFileSize). For

the rest, the more data is available the more likely is a identi�cation in linear manner.

The mean detection of FDMF has little accuracy until almost (0.9 ∗meanFileSize).

The fact that the curve rises at 50% just accrues because of the small size of the test

76



5.4 Summary

Test case # Description add. Pp(RP) Pp(FDMF)
1 | 4 Matching single segments 64.55% 0.15%
2 | 5 Increasing the segment size sS = 2 74.50% 0.22%
3 | 6 Increasing the segment size sS = 3 77.82% 0.32%

7 Analysing full tracks 100.00% 99.99%a

8 Majority vote 72.76% – b

9a One bit median quantization per RP 55.16% –
9b One bit median quantization per attribute 51.44% –
10 Increasing median quantized segments sS = 2 65.65% –
11 Increasing median quantized segments sS = 3 69.76% –
12 Retrieving ranked results [1] 77.82% –
13 Retrieving ranked results [1..5] 87.02% –
14 Retrieving ranked results [1..10] 89.53% –
15 Pitch cue variation −8% 18.85% –
16 Pitch cue variation −3% 41.73% –
17 Pitch cue variation −1% 71.87% –
18 Pitch cue variation +1% 76.76% –
19 Pitch cue variation +3% 54.87% –
20 Pitch cue variation +8% 28.85% –
21 Applying frequency filters 39.84% –
22 Dynamic range compression 72.57% –
23 Addition of white noise 77.65% –
24 Addition of pink noise 77.71% –

Table 5.9: Test cases 4-6 (FDMF), test cases 1-3, 8-24 (RP) - Overview

aThese values may differ from 100 percent due to rounding inaccuracies and limitations of the underlying
data-types.

bFurther tests on FDMF were omitted due to the low performance of test cases 4 to 6 being < 1 %
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set which has been used for the experiments. Performing the tests for large sets of

many thousands would result in a similar small slope for x-values 0.4 to 0.9 like it

occurs in range 0.1 to 0.4.

Rhythm Patterns are de�nitely the better solution for the requirements I am con-

centrating on. The real-time analysis of streamed data is always processed for audio

snippets, not for whole �les. FDMF as is will stay a duplicate �le �nder if it's

not altered in some way that concentrates on music information not on �le content

information.
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Chapter 6

Implementation Details

This chapter is about the implementation part of my thesis. Several components

concerning the extraction of the �ngerprints or similarity features as well as capture

classes and a graphical user interface (GUI) have been developed and are described

here. I will give a brief overview about the functionality and the used architecture.

A detailed documentation can be found online on the complementary web site to this

thesis.

6.1 Functionality

The implementation covers the following topics:

• Audio capturing both via line input / microphone and streamed data over

networks

• Extraction and computation of the FDMF-�ngerprint and Rhythm Patterns 1

• Comparison of the extracted values to the database values

• Retrieval of results, i.e. identi�ed title(s)
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Figure 6.1: Graphical user interface - Capture panel

6.1.1 Capturing Audio

There are two main approaches and therewith two di�erent views how to capture

audio data both over network based streams and local audio hardware. Figure 6.1

shows a screen-shot of the panel with GTK (Gimp Tool Kit2) Look and Feel. The

GUI provides a simple check box to determine whether to use network or local audio

hardware (mark A). Owing to the implementation of a Java interface to MPlayer, it

is possible to insert any URL here which can be processed by MPlayer. In addition

to that the user interface provides audio controls to start and stop the capture (mark

B) as well as a timer that indicates the amount of audio data captured in terms of

time. Furthermore there are a list which shows the already captured audio snippets

(mark C), the controls for starting and stopping the playback (mark D) and a sound

level meter (mark E).
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Figure 6.2: Graphical user interface - Analysis panel

6.1.2 Computing Fingerprints and Features

Figure 6.2 indicates the possibilities for further processing. Having the audio data

recorded, the capture class saves the recorded items to a list which is displayed and

can be selected to play it back, save it or analyse it (markA) using FDMF or Rhythm

Patterns (mark B). Additionally, a local �le can be selected as well to be processed

via the analysis algorithms. This feature can be used to perform fundamental tests

on audio �les with known contents or on externally recorded signals.

6.1.3 Retrieving Results

The procession steps of extraction, computation of features and comparison to en-

tries in the database are totally transparent and their current progress can just be

monitored through a single progress bar which shows the overall course. The result

of these processes is simply given by one database key which �ts best to the given

query (mark C) according to the distance metrics which have been implemented

(Euclidean for Rhythm Patterns, bit error count for FDMF).

6.2 Architecture

In this section I will not describe the whole architecture in detail including classes,

libraries, methods (. . . ) but I will give a brief illustration of the core elements, how

1Partially integration of existing libraries
2URL: http://www.gtk.org/
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they work together and in what sense they are extensible and exchangeable by new

or di�erent realizations.

6.2.1 Architectural Overview

The following class diagrams (Figure 6.3 and Figure 6.4) are simpli�ed for a more

schematic representation and do not cover all elements according to the full-�edged

entity set of the Uni�ed Modeling Language (UML).

Extraction and Comparison

Basically, there is one main JAVA interface which predetermines the structure of the

implementation classes - ICompare. Classes that implement this interface have to

provide at least the methods which are necessary for a proper return of the found

database keys when passing either an audio byte array or nothing, when the data

has already been set by another way. To ensure that a comparison can be accessed

only once in a moment, singleton constructors are used. Additionally, there are two

classes for feature extraction or �ngerprint computation which are invoked by the

RPCompare- and FDMFCompare-classes - the extractors. For extension, it is just

essential to implement ICompare as interface and to write the relevant code which

extracts and compares the given prototype data to the database. Finally there must

be a return of the adequate song title.

Audio

The second functional part which I will describe concerns the capture, playback,

storage and conversion of audio data (compare Figure 6.4). As already mentioned,

there are two possible ways how to record audio signals and thus they are covered by

an interface - ICapture. The �rst one uses the local audio hardware to capture either

via a connected microphone or the line in jack. This is done using the Java Sound

API, respectively using the Java Sound Resources 3, a Java Sound Implementation.

3http://www.jsresources.org/
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Figure 6.3: Class diagram for feature extraction and comparison
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Figure 6.4: Class Diagram for audio capture, playback and storage
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The class CaptureJS provides the full functionality for both record and playback.

There are two Threads (CaptureThread and PlayThread) which work independently.

These Runnables are started and stopped via simple Boolean �ags by the CaptureJS

class which thus serves as a controller. Using this structure enables the possibility

to capture, store and play the incoming signal concurrently. For seamless access

and avoidance of data loss, InputStreams 4 are utilized. The third Thread (compare

Figure 6.4) is used for o�ering several methods to external components, which just

want to use the functionality of CaptureJS, but provide an own InputStream which

should be accessed.

On the other side there is the requirement which has led to the possibility to work

with network based streams as easy as using local audio. Thus the interface provides

the same methods and �elds to the CaptureStream-class. By contrast to CatureJS, no

Threads are used, but an interface class for MPlayer, an audio player for Linux, has

been developed. In this case, real processes are started which perform all necessary

actions on the audio source URL. The big advantage of using MPlayer for capturing

streamed data is that there is a quite large amount of features available which are

already implemented and can just be used as they are. To preserve the consistency

to the JavaSound approach, there are local stream objects to guarantee access to

the data. Here, the output of MPlayer is redirected to the standard output stream

(STDOUT), which can be read and processed by other operations system processes.

Using Java, the STDOUT can be accessed via InputStream / OutputStream objects

as desired.

The class AudioUtils just provides static functions which can be used by all other

components. These methods cover conversion steps of audio from Java object rep-

resentations like byte arrays or bu�ered streams to a �le format that can be read by

common applications.

For further information as documentation, source code, or the application itself

have a look at the complementary web page.

4http://java.sun.com/j2se/1.5.0/docs/api/java/io/InputStream.html
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Chapter 7

Conclusion and Outlook

7.1 Summary and Review

Finding recapitulating words to �nalize this thesis and therewith the comparison of

feature-based similarity measurement techniques and real �ngerprint approaches as

well as the general outline of the underlying theory and applications will be about

the usage and acceptance of such systems in real world scenarios.

Identi�cation mechanisms enable the recognition of parts of audio both local and

via network-based streaming technology. The association with a speci�c position

in a captured piece of music must be able to deal with deteriorated signals, very

small excerpts of audio tracks at a randomly selected position and the complexity of

the search procedure for appropriate candidates. In chapter 4.3.2 it comes out that

database-querying software components have to de�ne clear structures of the used

data �elds or sub-�ngerprints. Decisions which provide early information about the

overall plausibility are able to result in short response times and therefore usability

for non-expert users. An automatic assignment of the input track to a classi�cation

scheme can also improve the acceptance of potential community members.

As proven in Chapter 5, similarity based feature sets are usable for identi�cation

purposes. The proper selection, weighting and the comparison in a way that tries

to model the human understanding for musical similarity is a possible way to indis-

putable recognize music or audio signals in general. Conceiving the entirety of audio

tracks, respectively the numerical vector representations as a huge multi-dimensional
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vector space where similarity or identity can be expressed by distance measures and

metrics, a powerful approach is given to ensure that identi�cation is a task which

can be coped with.

It has come out that the FDMF-algorithm is de�nitely not usable for these kinds

of tasks. The detailed evaluation has been omitted due to the low identi�cation

precisions of the basic test scenarios. For this reason, the results of the test cases

which have been performed are given for the similarity-based approach only.

Considering small excerpts of music tracks, the Rhythm Patterns experiments have

shown that identi�cation accuracies of 64.55% for ≈ 6 seconds of audio, 74.50% for

twice as much, and 77.82% for 3 segments of the same size can be achieved without

any alteration of the algorithm, just by selecting the segments at random. Varying

the evaluation strategy improves the precision up to 89.53% (i.e. accepting ranked

results from rank #1-#10). Signal modi�cations have deep impact on the extraction

and therewith the resulting numbers of identi�cation quality. Pitch cue variations

(i.e. tempo increase / decrease) of ±1% can be neglected, applying higher alterations

leads to unacceptable accuracies of less that 50%. Limiting relevant frequency ranges

by applying frequency �lters constitute a real problem for the feature extraction,

whereas the addition of noise or dynamic range compression do not in�uence the

whole procedure severely.

7.2 Future Work

Applications in future will have to combine several techniques. These can be similar-

ity based approaches and exact �ngerprints. Another improvement could be achieved

when adding intelligent classi�cations or clustering on the database side of the iden-

ti�cation system. Applications will have to manage more and more audio titles as

the overall availability of digital music material as well as the number of central or

global administration systems gain.

Distributed systems would be a proper solution for managing the huge load of

data. Externalizing the signature extraction to client computers and just realizing
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the comparison and search on the server side would lead to a distributed mighty sys-

tem that allows to exchange information between the user community and integrate

a monitoring component. Using such an architecture would ensure that audio identi-

�cation is not limited to personal computer clients but enables the use of handheld,

mobile phones or integrated components into common consumer electronic devices.

In general, the possibility of identifying audio in consideration of the content only

would lead to major bene�ts and values for people interested in music.
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