
DISSERTATION

Titel der Dissertation

"Modeling and Verification of Web Service Composition
Based Interorganizational Workflows"

Verfasser

Dipl.-Ing. Amirreza Tahamtan

angestrebter akademischer Grad

Doktor der Technischen Wissenschaften (Dr. techn.)

Wien, im Januar 2009

Studienkennzahl lt. Studienblatt: A 786 881
Dissertationsgebiet lt. Studienblatt: Informatik
Betreuer: O.Univ.-Prof. Dipl.-Ing. Dr. Johann Eder

Acknowledgements

I am deeply grateful to my supervisor and teacher Prof. Johann Eder who made this
dissertation initially possible, for his invaluable guidance, endless patience, perfectionism
and generosity. I have not only learned a lot about computer sciences but also a lot about
good personality.

A special thank to Prof. Erich Schikuta for peer-reviewing of this dissertation and for
his support and friendliness.

I wish to thank both Prof. Johann Eder and Prof. Erich Schikuta as heads of the depart-
ment during writing of this dissertation for providing an excellent working atmosphere.

I owe a special note of gratitude to my colleagues at the Dept. of Knowledge and
Business Engineering of the University of Vienna for their support, feedback, answering
my questions, proofreading and a very friendly atmosphere at work.

I want to extend many thanks to the team of the European project WS-Diamond for
their cooperation.

I would like to thank Dr. Marek Lehmann and Dr. Horst Pichler for their collaboration
and cooperation.

I would like to acknowledge those who directly and indirectly supported this work but
are not listed here, specially my friends.

Last but definitely not the least, I would like to specially thank my family for being
a constant source of support, love and patience and their understanding for my tight
schedule.

This dissertation is funded by the European Commission and logistically supported by
the University of Vienna, Dept. of Knowledge and Business Engineering.

iii

Research Statement

The contributions of this dissertation proceeded in course of the European project WS-
Diamond (Web Services - DIAgnosability, Monitoring and Diagnosis). The results pre-
sented here are a part of the overall framework developed in WS-Diamond for self healing
web services. The research contributions of this dissertation are published in the following
peer-reviewed international conferences and workshops:

¥ J. Eder, M. Lehmann, and A. Tahamtan. Choreographies as federations of choreogra-
phies and orchestrations. In Proc. of International Workshop on Conceptual Modeling of
Service-Oriented Software Systems (CoSS ’06), 2006.

¥ J. Eder, M. Lehmann, and A. Tahamtan. Conformance test of federated choreogra-
phies. In Proc. of the 3rd International Conference on Interoperability for Enterprise Soft-
ware and Applications (I-ESA ’07), 2007.

¥ J. Eder and A. Tahamtan. Temporal conformance of federated choreographies. In
Proc. of the 19th International Conference on Database and Expert Systems Applications
(DEXA ’08), 2008.

¥ J. Eder and A. Tahamtan. Temporal consistency of view based interorganizational
workflows. In Proc. of the 2nd International United Information Systems Conference, 2008.

¥ J. Eder, H. Pichler, and A. Tahamtan. Probabilistic time management of choreogra-
phies. In Proc. of the 1st International Workshop on QoS in Self-healing Web Services in
conjunction with BPM 2008 6th International Conference on Business Process Management,
2008.

v

Abstract

Interorganizational workflows are workflows that cross the boundaries of a single organi-
zation and provide a framework for cooperation of different autonomous organizations.
An important issue when designing such workflows is the balance between the open-
ness needed for cooperation and the privacy needed for protection of business know-how.
Workflow views provide an efficient tool for this aim. By exposure of only selected parts
of a process, organizations can both cooperate and protect their business logic. This dis-
sertation presents a technique for a correct construction of workflow views.

It is assumed that organizations and partners use web services and web service related
technology to model and implement interorganizational workflows. Application of web
services offers several advantages for organizations. The real surplus of web services is
their capability of being composed to more complex systems. Available web services can
be reused by other choreographies and orchestrations and the need for development of
new systems from scratch can be minimized. The essential requirements are on the one
hand an architecture with adequate capabilities and on the other hand, verification of
correctness.

This dissertation proposes an architecture for modeling web service composition based
interorganizational workflows, called federated choreographies, that provides several advan-
tages compared to existing proposals. Moreover, algorithms and techniques for verifica-
tion of structural and temporal correctness of interorganizational workflows are proposed.
Structural conformance checks if the structures of the involved processes match. Tempo-
ral conformance checks if an interorganizational workflow composed of choreographies
and orchestrations is temporally error-free with respect to local and global temporal con-
straints. The proposed algorithms can be applied for checking the structural and tem-
poral conformance of the federated choreographies at design-time. If the model is not
structurally or temporally conformant, necessary modifications can be done such that the
correct execution of the flow at run-time can be guaranteed. The conformance checking
at design time reduces the cost of process because of two reasons: first, errors detected at
design time are normally cheaper than those detected at run time and second, exception
handling mechanisms can be avoided which are, in turn, coupled with additional costs.
In addition to the proposed architecture, a more general architecture together with the
conformance checking algorithms and techniques for interorganizational workflows are
presented. The presented approach is language and platform independent and algorithms
work in a distributed manner.

vii

Contents

1. Introduction 1

2. Workflow Technology 5
2.1. Workflow Terminology . 6
2.2. Benefits of Workflows . 8
2.3. Types of Workflows . 9
2.4. Workflow Components . 9
2.5. Workflow Reference Model . 10
2.6. Workflow Control-Flow Structures . 11
2.7. Workflow Conformance Classes . 14
2.8. Workflow Interoperability . 15

3. Workflow Modeling Languages 17
3.1. Petri-Nets . 17

3.1.1. Behavioral Properties . 20
3.2. Workflow-Nets . 21

4. Interorganizational Workflows 23
4.1. Related Works . 23

5. Workflow Views 35
5.1. Related Works . 37
5.2. Correctness of Views . 42
5.3. Construction of Views . 43

5.3.1. Concatenation of Operators . 51

6. Web Services and Web Service Standards 55
6.1. Web Services . 55
6.2. SOAP . 56
6.3. WSDL . 57
6.4. UDDI . 60

6.4.1. UDDI Architecture . 61
6.4.2. Comparison of UDDI . 62

6.5. WS-BPEL . 63

ix

6.5.1. Business Processes in WS-BPEL . 65
6.5.1.1. Partner Links . 66
6.5.1.2. Partners . 66
6.5.1.3. Variables . 66
6.5.1.4. Correlation and Correlation Sets 67
6.5.1.5. Fault Handlers . 67
6.5.1.6. Compensation Handlers . 68
6.5.1.7. Event Handlers . 69
6.5.1.8. Activities . 70

7. An Architecture for Interorganizational Workflows 75
7.1. Choreographies and Orchestrations . 75
7.2. Federated Choreographies . 85

7.2.1. Advantages of the Federated Choreographies 91
7.2.2. Metamodel of the Federated Choreographies 92
7.2.3. Graph Representation of the Control Flow 96
7.2.4. Mapping onto WF-nets . 96

8. Conformance of the Federated Choreographies 99
8.1. Differrent Notions of Process Equivalence . 99

8.1.1. Bisimulation . 99
8.1.2. Trace Equivalence . 110
8.1.3. Testing Equivalence . 110
8.1.4. Failure Equivalence . 112
8.1.5. Observation Equivalence . 113
8.1.6. Weak Observation Equivalence . 115
8.1.7. Logical Equivalence . 116
8.1.8. Classification of the Equivalence Relationships 116
8.1.9. Kennaway Equivalence . 118
8.1.10. Darondeau Equivalence . 119

8.2. Structural Conformance of the Federated Choreographies 120
8.2.1. Conformance Algorithm . 123

8.3. Temporal Conformance . 129
8.3.1. Related Works . 130
8.3.2. Best Case, Worst Case Time Management of the Federated Chore-

ographies . 132
8.3.2.1. Prerequisites . 132
8.3.2.2. The Proposed Approach . 135
8.3.2.3. Methods . 138
8.3.2.4. Temporal Conformance Checking Algorithm 141
8.3.2.5. Implementation and Proof of Concept 143

x

8.3.2.6. Proof of Termination and Complexity Analysis 146
8.3.3. Interval-Based Calculations of Temporal Conformance 148

8.3.3.1. Calculation of Timed Graphs and Temporal Conformance
Checking . 150

8.3.4. Calculation of Temporal Execution Plans of Views 151
8.3.4.1. Calculation of Timed Graphs of Views 151

8.3.5. Probabilistic Time Management of the Federated Choreographies . . 153
8.3.5.1. Probabilistic Model Description 158
8.3.5.2. Histogram Operations . 160
8.3.5.3. Calculation of Probabilistic Timed Graphs 161
8.3.5.4. The Proposed Approach . 163
8.3.5.5. Methods . 163
8.3.5.6. Temporal Conformance Checking Algorithm 166
8.3.5.7. Proof of Termination and Complexity Analysis 172
8.3.5.8. Run-time Applications . 172

8.3.6. Temporal Aspects of BPEL Processes 173
8.4. Correctness of View-Based Interorganizational Workflows 174

9. A General Case of Interorganizational Workflows 179
9.1. A More General Architecture for Interorganizational Workflows 179
9.2. Conformance Issues . 180

9.2.1. Structural Conformance . 181
9.2.2. Temporal Conformance . 181

9.2.2.1. Best Case, Worst Case Calculations 181
9.2.2.2. Probabilistic Calculations . 184

10. Conclusions 187

A. Calculation of Timed Graphs 191

B. Calculation of The Probabilistic Values 199

xi

List of Figures

2.1. The Workflow Reference Model (image from [15]) 10
2.2. Sequence . 11
2.3. AND-split . 12
2.4. AND-join . 12
2.5. XOR-split . 13
2.6. XOR-join . 13
2.7. Loop . 14
2.8. A Full-blocked workflow . 14

3.1. An example of a petri-net . 19
3.2. After the transition t1 in figure 3.1 has fired . 20

5.1. An interorganizational workflow composed of views 37
5.2. Workflow G modeled as a directed acyclic graph 44
5.3. Workflow G′ after application of abstraction operator on activity b in G . . . 45
5.4. Aggregated activity is not a connected subgraph 47
5.5. Left: A wrongly aggregated activity, Right: A correctly aggregated activity . 47
5.6. The counterpart of control nodes must be included in aggregation 48
5.7. Application of aggregation . 49
5.8. Recursive application of aggregation . 49
5.9. Constructing a view by a sequence of operators 52
5.10. Constructing the same view as in Figures 5.9 by a different sequence of

operators . 53

6.1. Web serive standards . 56
6.2. Possible operations in WSDL . 58
6.3. The relationship among different elements of WSDL 59
6.4. The idea of UDDI . 60
6.5. Left: the abstract process between buyer and seller, Right: seller’s executable

process . 65
6.6. A link between two activities . 71
6.7. A sequence of activities . 73

7.1. The difference between choreography and orchestration (Image from [217]) . 77

xiii

7.2. A typical scenario of web service composition 77
7.3. The shared choreography between buyer, seller and shipper 79
7.4. The buyer’s orchestration . 80
7.5. The view on the buyer’s orchestration . 81
7.6. The seller’s orchestration . 82
7.7. The view on the seller’s orchestration . 83
7.8. The shipper’s orchestration . 84
7.9. The shipper’s part in the shared choreography 85
7.10. The idea of the federated choreographies . 87
7.11. A web shopping example modeled by the federated choreographies 88
7.12. The shipment processing choreography . 90
7.13. Federated choreographies are extendable . 92
7.14. Metamodel of the Federated Choreographies 94
7.15. The WF-net of workflow graph in figure 7.3 98

8.1. Weak bisimulation . 101
8.2. Delay bisimulation . 102
8.3. η-bisimulation . 103
8.4. Bisimulation equivalence . 104
8.5. Branching bisimulation . 104
8.6. Semi-branching bisimulation . 105
8.7. Left: Branching bisimulation, Right: Semi-branching bisimulation 106
8.8. Semi-branching bisimulation . 107
8.9. Branching bisimulation . 108
8.10. Left: Branching bisimulation, Right: Semi-branching bisimulation 109
8.11. Two Processes are trace equivalent . 111
8.12. Left: The original process, Right: Visible parts of the process 115
8.13. Classification of equivalence relationships . 117
8.14. Classification of Logical equivalences . 117
8.15. Classification of Equivalence relationships . 118
8.16. TE ⊆ TR . 118
8.17. The WF-net of the workflow graph in figure 7.12 121
8.18. Wb supports or realizes Wa . 122
8.19. The shared view between the Purchase processing choreography and the Ship-

ment processing choreography . 124
8.20. Seller’s orchestration in WF-net . 125
8.21. The shared view between the Purchase processing choreography and the

Seller’s orchestration . 126
8.22. By changing AND-split into XOR-split, the structural conformance is violated128
8.23. An example of a timed graph with deadline= 25 133

xiv

8.24. a.) Propagation of the eps and lae-values of a complex activity. b) Propaga-
tion of values for the same activity in different graphs 134

8.25. Calculation of temporal values for AND-split and XOR-split 135
8.26. Starting point of the algorithm . 136
8.27. Supported choreography with multiple incoming links 137
8.28. After recalculation of S2 . 144
8.29. A sample graph as input . 144
8.30. Modeling variable duration of activities with upper-bound and lower-bound

constraints . 149
8.31. Temporal plan of a WF and its view by application of τ-operator 152
8.32. Temporal plan of a view by application of aggregation 153
8.33. A sample timed graph with branching probabilities 158
8.34. A sample probabilistic timed graph (PTG) . 159
8.35. Calculating the values for histogram comparison 161
8.36. Supported choreography G . 169
8.37. Supporting choreography S1 . 169
8.38. Supporting choreography S2 . 169
8.39. From process design to temporal conformance checking 173

9.1. A typical scenario: a set of choreographies and orchestrations 180
9.2. A set of independent choreographies . 182
9.3. A set of temporally dependent choreographies 183
9.4. Two choreographies with a shared orchestration 183

A.1. After initialization and calculation of G . 191
A.2. After propagationfrom G to S1 . 192
A.3. After calculation of S1 . 192
A.4. After propagation from S1 back to G . 193
A.5. After recalculation of G . 193
A.6. After propagation from G to S2 . 194
A.7. After calculation of S2 . 194
A.8. After propagation from S2 back to G . 195
A.9. After recalculation of G . 195
A.10.After propagation from G to S1 . 196
A.11.After calculation of S1 . 196
A.12.After propagation from S1 back to G . 197
A.13.After recalculation of G . 197
A.14.After propagation from G to S2 . 198
A.15.After recalculation of S2 . 198

xv

List of Tables

4.1. Summary of related works on interorganizational workflows 33

5.1. Summary of related work on workflow views 42

8.1. Summary of related work on temporal aspects 131
8.2. Calculation of temporal values . 136
8.3. Data sets with different numbers of flows and activities 148
8.4. Execution probability of each path of the graph in figure 8.33 158
8.5. Calculation of e-histograms . 162
8.6. Calculation of l-histograms . 162
8.7. Forward Calculation: starting with time point 0 175
8.8. Forward Calculation: starting with time point 0 (cntd.) 176
8.9. Backward Calculation: starting with deadline= 50 177

B.1. Forward Calculation: starting with time point 0 199
B.2. Forward Calculation: starting with time point 0 (cntd.) 200
B.3. Forward Calculation: starting with time point 0 (cntd.) 201
B.4. Forward Calculation: starting with time point 0 (cntd.) 202
B.5. Forward Calculation: starting with time point 0 (cntd.) 203
B.6. Forward Calculation: starting with time point 0 (cntd.) 204
B.7. Forward Calculation: starting with time point 0 (cntd.) 205
B.8. Backward Calculation: starting with deadline= 50 206
B.9. Backward Calculation: starting with deadline= 50 (cntd.) 207
B.10. Backward Calculation: starting with deadline= 50 (cntd.) 208

xvii

List of Algorithms

1. The Structural conformance algorithm . 123
2. The Method initialize(G) . 139
3. The Method calculate(G, G.deadline) . 139
4. The Method propagate(G, H) . 140
5. The Method checkConformance(G) . 141
6. The Algorithm temporalConformanceFederation() 142
7. The Method calculate(G, G.deadline) . 155
8. The Method incorporateUbc(G, {ubc(s, d, δ)}) 156
9. The Algorithm temporalConformanceFederationUbcLbc() 157
10. The Method initialize(G) . 163
11. The Method propagate(G, H, certainty) . 164
12. The Method calculate(G) . 165
13. The Method checkConformance(G,certainty) 166
14. The Algorithm temporalConformanceFederation(certainty) 168
15. The Algorithm temporalConformance() . 185
16. The Algorithm temporalConformance(certainty) 186

xix

Chapter 1
Introduction

Interorganizational workflows are workflows that facilitate the cooperation and provide a
framework for collaboration among autonomous organizations. Partners of an interorgani-
zational workflow belong to autonomous and organizationally independent and possibly
geographically distant entities that cooperate with each other and work together in order
to reach the overall defined goals. In contrast to workflows within single organizations, in-
terorganizational workflows are more challenging because privacy and access permission
to partners from outside of an organization play an essential role. On the one hand, organi-
zations want to isolate their private workflow in order to protect their business know-how
and business logic and on the other hand they have to expose some parts of their private
workflow to external partners in order to enable interaction and communication. This
dissertation proposes the application of workflow views to achieve this goal. Workflow
views are handy and powerful tools that define visible parts of a process for external
partners which are needed for interaction whilst keep the internal business logic hidden
from outside observers. This dissertation proposes a method for correct construction of
workflow views and interorganizational workflows. Application of workflow views give
organizations the ability to balance the need for cooperation and protection of know-how.

Web services and web service technology are suitable means for many application
domains such as business process management, business-to-business interactions, dis-
tributed computing, e-commerce and many more. Because of the useful characteristics of
web services and web service related technologies such as modularity and loosely coupled-
ness which enable cheaper to implement and maintain systems and the trend in academia
and industry towards software oriented architecture and web services, it is assumed that
partners of interorganizational workflows use web services and web services related tech-
nologies for both definition of communication protocol and implementation of private
workflows.

A web service is a stand alone entity that is operational in isolation and as well can
be a part of a bigger system. A web service interacts and cooperates with other web
services within a system in order to reach the common goals of a business process. What
makes web services specially advantageous and a useful technology is their capability of
being composed into more complex orchestrated and choreographed systems in a modular

1

2 1. Introduction

and recursive fashion. In such a way available web services are building blocks of more
complex systems for more sophisticated requirements. This capability eliminates the need
for designing and implementing all systems from scratch. Instead such systems can be
put together using available web services. It is obvious that web service composition
reduces the cost of process design, implementation and maintenance in organizations.
In a recursive fashion choreographies and orchestrations can again be exposed to and
used by other more complex choreographies and orchestrations. Choreographies are in
charge of describing the interaction among partners and orchestrations are internal and
private processes owned by one partner which in addition to other tasks are in charge of
realization of choreographies.

The central requirement for a functioning interorganizational workflow is an archi-
tectural model that meets the requirements of real life applications. Besides, It must be
ensured that an Interorganizational workflow is consistent and conformant with respect
to the local and global constraints, i.e. the correctness criteria must be verified. Execution
of the model must not lead to any conflicts or errors.

This dissertation introduces a nouvelle architecture for web service composition based
interorganizational workflows, called federated choreographies, that provides a more realistic
approach for requirements of real life scenarios and offers advantages for organizations
and businesses. In addition, different techniques for checking the structural and temporal
conformance of the model are proposed.

For structural conformance different notions of process equivalence are studied and
an algorithm based on branching bisimulation for checking the structural conformance of
the federated choreographies is proposed. By structural conformance it can be ensured
that structures of processes that participate in an interorganizational workflow are confor-
mant. In other words, it is checked if the structural requirements (e.g. execution order of
activities) imposed by one process are not violated by other processes.

Temporal conformance guarantees the correct temporal execution of the flow. Temporal
conformance of an interorganizational workflow must not only consider local constraints
(e.g. assigned deadline) but also global constraints (e.g. restrictions imposed by workflows
of other interacting partners). Temporal conformance checking helps process designers to
detect possible temporal failures early enough such that corrective actions can be triggered
in order to guarantee the correct temporal execution of the flow. In this approach, valid
temporal execution plans for all involved activities are calculated. The calculated plans
can be monitored at run time and possible deviations from the valid temporal intervals
can be detected. This technique gives process designers and managers tools to predict the
future behavior of a flow and possible upcoming temporal failures. Prediction of future
upcoming failures is obviously a great advantage to avoid them which reduces the cost
of process execution. If a temporal failure has not yet been occurred, counter-measures
can be triggered early enough to prevent the error and in case of already occurrence of
a temporal failure exception handling mechanisms must be triggered. In order to cater
for different requirements and model the uncertainties incorporated with temporal con-

3

formance checking and temporal information, several approaches are proposed for mod-
eling temporal information and checking the temporal conformance. Approaches based
on fixed temporal values, interval based temporal values and a probabilistic approach for
modeling the uncertainties coupled with activity durations and branching probabilities
are presented for modeling and handling different requirements.

Both structural and temporal conformance checking are performed at design time and
can be monitored at run time. By application of the proposed algorithms at design-time,
possible structural and temporal errors can be detected and consequently corrected. Error
detection at design-time reduce the cost of process because of two reasons: first, errors
detected at run-time are usually more costly than those detected at design-time and cause
less costs for process reengineering and second, triggering of exception handling mecha-
nisms can be avoided which are, in turn, coupled with additional costs.

This dissertation provides a summary on the state of the art of the most important
standards of the web service technology such as SOAP, UDDI, WSDL and WS-BPEL. Be-
cause of the prominence of WS-BPEL in the industry as well as academia and its status as
a de-facto standard, WS-BPEL is handled in more depth. WS-BPEL can be used for mod-
eling choreographies and orchestrations as abstract and executable processes respectively.
Business processes modeled by WS-BPEL can be temporally annotated in order to ensure
the temporal conformance of interacting and cooperating processes in a web service com-
position scenario. The underlying techniques for checking the temporal conformance are
handled in this dissertation.

The main contributions of this dissertation are:

¥ A nouvelle hierarchical architecture for web service composition based interorgani-
zational workflows

¥ Techniques for a correct construction of workflow views

¥ A technique and algorithm for automated checking of the structural conformance of
the model

¥ Different approaches for checking the temporal conformance of the model that cater
for different sets of requirements

¥ A temporal conformance checking tool

¥ Introduction of underlying techniques for time management of business processes
in WS-BPEL

This dissertation is structured as follows:

Chapter 2: gives an overview on workflow and workflow-related technology and pro-
vides a motivation for application of workflow technology.

4 1. Introduction

Chapter 3: presents the formal and mathematical foundations of workflow modeling
languages that are used throughout this work: Petri-nets and workflow-nets.

Chapter 4: presents the concept of interorganizational workflows and summarizes and
compares the related research works in this field.

Chapter 5: discusses why workflow views should be used in interorganizational work-
flows, provides a summary and comparison of related works and proposes techniques for
a correct construction of views.

Chapter 6: motivates the use of web services and represent the state of the art of the
underlying standards for web services and web service technology.

Chapter 7: discusses the available approaches for web services composition, clarifies
the related concepts and presents a nouvelle, hierarchical architecture for web service
composition based interorganizational workflows.

Chapter 8: provides a discussion for the conformance issues of the proposed architec-
ture, introduces different notions of process equivalence, presents an algorithm for struc-
tural conformance checking and proposes several approaches for temporal conformance
checking.

Chapter 9: provides a more general architecture for web service based interorganiza-
tional workflows and presents its conformance checking techniques.

The techniques and methods presented in this dissertation are not only limited to the
proposed architecture but they also can be applied on a broad range of scenarios involving
web services, web service composition, intraorganizational and interorganizational work-
flows and business process management. Moreover, the proposed approach is platform
and language independent and algorithms work in a distributed manner.

Chapter 2
Workflow Technology

The concept of workflow has been used in many contexts within and outside the field
of computer science. It is an important and beneficial technology with a huge influ-
ence on organizational performance in many fields such as business process management
(BPM), web service technology, office automation, distributed information systems and
e-business applications. Many firms, vendors and institutions are involved with work-
flow and workflow-related technologies. The Workflow Management Coalition (WfMC)
[15], founded in 1993, is a non-profit, international organization of workflow specialists
that serve as the standardization body. According to the glossary of terminology [20]
published by the workflow management coalition , a workflow [20] is :

"automation of a business process, in whole or part, during which documents, infor-
mation or tasks are passed from one participant to another for actions according to a set
of procedural rules".

A business process [20] is defined as:

"A set of one or more linked procedures or activities which collectively realize a busi-
ness objective or policy goal, normally within the context of an organizational structure
defining functional roles and relationships."

In other words, a workflow can be understood as an automation of a process that
handles the created data, e.g. documents, in order to meet the defined business goals. The
state of the data is changed after the data has been processed by different activities (steps
of the workflow). Modern workflow systems are capable of modeling and execution of
complex processes which can be modeled and verified by different calculi [61, 276, 279,
163] such as pi-calculus [226, 269] and event calculus [80, 81]. A worfkflow management
systems (WfMS) [20] is defined by the workflow management coalition as:

"A system that defines, creates and manages the execution of workflows through the
use of software, running on one or more workflow engines, which is able to interpret the

5

6 2. Workflow Technology

process definition, interact with workflow participants and, where required, invoke the
use of IT tools and applications".

A workflow management system is composed of software components and has admin-
istrative and supervisory functions. It is in charge of interpretation of process definition,
creation, execution and management of process instances and interaction among partic-
ipants and applications. A wokflow management system assigns activities (manual or
automated) to participants (human or machines) for execution. It monitors the execution
as well as satisfaction of constraints and is in charge of triggering alarms and exception
handling mechanisms if a constraint is violated.

2.1. Workflow Terminology

A workflow is based on processes. According to workflow management coalition’s termi-
nology and glossary, A process [20] is defined as:

"The representation of a business process in a form which supports automated manip-
ulation, such as modeling, or enactment by a workflow management system. The process
definition consists of a network of activities and their relationships, criteria to indicate the
start and termination of the process, and information about the individual activities, such
as participants, associated IT applications and data, etc."

A process is composed of activities. An activity [20] is:

"A description of a piece of work that forms one logical step within a process. An activ-
ity may be a manual activity, which does not support computer automation, or a workflow
(automated) activity. A workflow activity requires human and/or machine resources(s) to
support process execution; where human resource is required an activity is allocated to a
workflow participant."

An activity is either a manual activity [20], defined as:

"An activity within a business process which is not capable of automation and hence
lies outside the scope of a workflow management system. Such activities may be included
within a process definition, for example to support modeling of the process, but do not
form part of a resulting workflow"

or an automated activity [20], defined as:

2.1. Workflow Terminology 7

"An activity which is capable of computer automation using a workflow management
system to manage the activity during execution of the business process of which it forms
a part"

After processes and activities have been defined, an instance [20] of them is created by
the workflow management system :

"The representation of a single enactment of a process, or activity within a process,
including its associated data. Each instance represents a separate thread of execution1
of the process or activity, which may be controlled independently and will have its own
internal state and externally visible identity, which may be used as a handle, for example,
to record or retrieve audit data relating to the individual enactment."

A process often calls another sub-process [20], which is:
"A process that is enacted or called from another (initiating) process (or sub process),

and which forms part of the overall (initiating) process. Multiple levels of sub process may
be supported"

Basically, A workflow management systems is designed for automation of tasks of its
participants. A workflow participant [20] is:

"A resource which performs the work represented by a workflow activity instance.
This work is normally manifested as one or more work items assigned to the workflow
participant via the worklist"

A workflow participant may participate in a workflow by his organizational role [20]:
"A group of participants exhibiting a specific set of attributes, qualifications and/or

skills"

Workflow participants are assigned work items [20]:

"The representation of the work to be processed (by a workflow participant) in the
context of an activity within a process instance"

The assigned wok items to a workflow participant can be grouped into worklists [20]:

"A list of work items associated with a given workflow participant (or in some cases
with a group of workflow participants who may share a common worklist). The worklist
forms part of the interface between a workflow engine and the worklist handler"

And finally a worklist handler [20] is needed for the interaction:

8 2. Workflow Technology

"A software component that manages the interaction between the user (or group of
users) and the worklist maintained by a workflow engine. It enables work items to be
passed from the workflow management system to users and notifications of completion or
other work status conditions to be passed between the user and the workflow management
system"

2.2. Benefits of Workflows

Workflow technology provides many benefits to organizations as a consequence of process
automation and process management capabilities. These include but not limited to:

Decreased error rate: Automation of repetitive activities which are usually tiresome and
error-prone for human participants leads to a decrease or even elimination of errors.

Increased productivity: Automation of routine tasks on the other hand results in an im-
proved productivity in organizations because cases can be handled faster and with a
greater efficiency.

Faster handling of cases: In addition to the fact that computer based systems are much
more faster than humans in processing tasks, workflow management systems pro-
vides possibilities for parallel processing that again reduces the required time for
handling cases.

Less organizational overhead: Application of workflow management systems in an organi-
zation reduces the organizational overhead and drops the organizational and man-
agerial costs.

Increased revenue: Workflow management systems enable organizations to be available for
customers 24 hours a day and 7 days a week. Inquiries such as purchase requests
can be accepted and processed at any time which results in a higher revenue.

Process analysis and process optimization: Workflow management systems provide log-
ging possibilities which assist process designers and process managers to analyze
the process, identify the bottlenecks and consequently optimize the process.

Shift of the organizational attention: By automatization and optimization of processes, re-
sources become free such that the organization can concentrate on issues like innova-
tion, adjustment to future demands and emerging markets which ensure mid-term
and long-term competitiveness.

Better planning capabilities: Workflow management systems provide decision support
and better planing skills. As the knowledge where business is made and how pro-
cesses are handled is available more easily.

2.3. Types of Workflows 9

Process flexibility: Organizations are better equipped for modification and change of pro-
cesses as a response to different market requirements.

2.3. Types of Workflows

Production Workflows: This type of workflows shows repetitive characteristics of tasks.
Production workflows [175, 197, 139] are used for automation of repetitive tasks
and minimization of human interventions in a business process with high quality
and precision. Activities of a production workflow and their attributes are known a
priori.

Administrative Workflows: In contrast to production workflows whose focus is on produc-
tivity, the focus of administrative workflows [173, 69, 24] is on flexibility. They are
used for automatization of manual processes in administrative environments such
as offices. Processes are often defined using forms.

Ad-Hoc Workflows: These workflows are very flexible workflows. The process definition
of the ad-hoc workflows [147, 134, 63, 147] can be modified and changed frequently
as a consequence of changes in the environment. In other types of workflow, nor-
mally there are a limited number of workflow definitions and many instances of each
definition. In ad-hoc workflows as many workflow instances as workflow definitions
may exist.

Collaborative Workflows: The focus of collaborative workflows [152, 167, 282, 225] is on
communication and inter-group collaboration in order to achieve the goals of the
group. Collaborative workflows support team work and are also called groupware.

2.4. Workflow Components

A workflow management systems is composed of several components. Some of the ma-
jor components are workflow engine and workflow enactment system. A workflow engine is
responsible for creation and cancelation of the process, scheduling of the activities and
communication with external entities. It provides the run-time environment for a work-
flow instance. A workflow engine has a kind of application tool invocation capability and
may be distributed over several machines and work in a non-centralized manner.

A workflow enactment service consists of one or more workflow engines and provides
mainly the run-time environment for a process. It links the roles to the actual agents
(human or machine). In other words, it defines which role a specific participant has in the
process. Besides, it is responsible for interpretation and instantiation of the process and
also controls the worklists of the participants. The control data of a workflow enactment
service may be distributed over several workflow engines.

10 2. Workflow Technology

2.5. Workflow Reference Model

The workflow management coalition defines five interfaces for the interoperability be-
tween various workflow components at different levels. The workflow reference model
and the relationship between its different interfaces is depicted in figure 2.1.

Figure 2.1.: The Workflow Reference Model (image from [15])

Interface 1: Process Definition: This interface separates the build-time environment from
the run-time environment. The defined process in the build-time environment can
be exported to the run-time environment and used as input. The build-time environ-
ment offers modeling tools for workflow processes.

Interface 2: Workflow Client Application: This interface specifies the communication pro-
tocol and controls and manages the interaction between an engine and client appli-
cations. There are multiple interaction mechanisms covering diversity of workflow
implementations.

Interface 3: Invoked Application: The communication protocol between an engine and
other (external) applications in the environment is defined through this interface.
The environment includes local applications, the platform on which the engine re-
sides as well as other accessible platforms.

Interface 4: Other Workflow Enactment Services: Through this interface the interaction
protocol between a workflow engine and an external workflow engine is defined

2.6. Workflow Control-Flow Structures 11

and handled. The interaction between two workflow engines includes enactment
and invocation of activities and sub-processes, status control of invoked activities
and sub-processes, synchronization, coordination, process definition and transfer of
required data. For this aim it is necessary to provide common interpretation and
run-time support for transfer of required data.

Interface 5: Administration and Monitoring Tools: This interface handles the interaction
between a workflow engine and administration and monitoring tools and enables
a shared usage of administration and monitoring tools among several workflow en-
gines. The administration and monitoring tools may be an independent entity or
part of a workflow enactment service. Security and authorization issues also fall into
the administration and monitoring tools responsibilities.

2.6. Workflow Control-Flow Structures

A major aspect for medeling a workflow process is its control flow. It must be clear in
which order the activities are executed and when the thread of control is passed from one
activity to another. The control flow structures are

Sequence

Some activities are executed in a chain under a single thread of execution, i.e. one after
another. It is important to note that the successor activity can not start execution unless
its predecessor has finished execution. See figure 2.2 for an example. The activity Process
request can start execution as soon as its predecessor, activity Receive request, has finished
execution.

Figure 2.2.: Sequence

AND-split

AND-split is a structure in a workflow where one path (a thread of execution) splits
into two or more paths. Each path, then, will be executed in parallel with the other paths
of the AND-split structure. See figure 2.3 for an example of this structure. After the AND-
split, two paths are executed simultaneously. The request is approved (activity Approve
request) and then the contract is sent (activity Send contract). In parallel to this thread of
execution, the purchase history of the buyer is updated (activity Update history).

12 2. Workflow Technology

Figure 2.3.: AND-split

AND-join

In an AND-join multiple parallel paths merge again to one path. AND-join waits for
all of its incoming paths to finish execution and then commits. In other words, the length
of the path between an AND-split and AND-join is equal to the length of its longest path.
Figure 2.4 demonstrates an example of an AND-join. Only after two paths have finished
execution, i.e. the request has been approved, the contract sent and the purchase history
of the buyer has been updated, the AND-join commits. The successor activity of the AND-
join (activity Plan production) can start execution after the AND-join has committed.

Figure 2.4.: AND-join

XOR-split

XOR-split offers some alternative paths for execution. Based on some conditions eval-
uated at run-time, a branch of the XOR-split is taken and executed. Figure 2.5 illustrates
an example of the XOR-split. After the request has been received (activity Receive request),
the request may be approved (activity Approve request) or rejected (activity Reject request).
Approval or rejection of the request is based on some conditions that are not shown in this
example.

2.6. Workflow Control-Flow Structures 13

Figure 2.5.: XOR-split

XOR-join
XOR-join is the counterpart of a XOR-split. Similar to AND-join, in this structure paths

of a XOR-split, representing alternative behavior of the flow, again merge into one path.
Unlike AND-split, there is no need for synchronization. In other words, the duration of
the structure between a XOR-split and a XOR-join equals the duration of the executed
path. Obviously, this duration can not be known a priori at design-time because one can
not know which path may be taken and executed at run-time. Figure 2.6 illustrates an
application of XOR-join. After the request has been approved (activity Approve request)
or has been rejected (activity Reject request), the result of the decision is sent to the buyer
(activity Send results). The XOR-split waits only for one of its incoming paths to commit.
It is clear that the request is either approved or rejected but not both.

Figure 2.6.: XOR-join

LOOP
Sometimes it is needed to iterate an activity or a group of activities. In a workflow,

similar to many programming languages, this iteration can be implemented by a loop.
The defined activity or a group of activities are iterated as long as the exit condition from
the loop is not yet satisfied. Figure 2.7 demonstrates such a scenario. In this scenario, a
buyer looks for and finds a supplier for his required item (activity Find supplier), then the
buyer sends a request for his item to the supplier (activity Send request) and then receives
the results (approval or rejection) from the supplier (activity Receive result). The buyer
iterates these three activities as long as he has received an approval for his request. As

14 2. Workflow Technology

soon as a supplier approves the request the loop terminates and the order is placed at the
supplier in the next step (activity Place order).

Figure 2.7.: Loop

2.7. Workflow Conformance Classes

The workflow management coalition in its published standards [21] identifies three con-
formance classes for structure of a workflow, which are:

Full-blocked: This conformance class requires that for each AND-split there is a counter-
part AND-join and for each XOR-split there is a counterpart XOR-join. In other
words, each outgoing path from a split-structure (AND-split, XOR-split) must even-
tually reach its counterpart join-structure (AND-join, XOR-join). Figure 2.8 depicts a
portion of a full-blocked workflow description. As it can be seen there is a counter-
part join-structure for each split-structure.

Loop-blocked: In the loop-blocked class, loops must be nested properly and the activities
must form a directed acyclic graph (DAG). Arbitrary cycles are prohibited.

Non-blocked: This conformance class imposes no restriction on the structure of a workflow
process. activities and transitions may form an arbitrary structure.

Figure 2.8.: A Full-blocked workflow

2.8. Workflow Interoperability 15

2.8. Workflow Interoperability

The interoperability of workflow systems is an important issues to be considered when two
or more workflows cooperate and work together. Such a scenario may arise in different
applications and domains for example a distributed implementation over several workflow
systems or in interorganizational workflows where several autonomous workflow systems
of different organizations cooperate and collaborate in order to reach the common goals
of a business process. (See chapter 4 for interorganizational workflows).

The workflow management coalition’s white paper on interoperability [19] identifies
several levels of interoperability:

No interoperability: Two different workflow systems have no communication and interac-
tion and are fully isolated from each other.

Coexistence: Only the run-time environment is shared by several workflow systems but
there is no interaction between workflow systems. When for example a process
is partially implemented by different workflow systems, each part with a different
system, the underlying systems coexist with each other.

Unique gateways1: In this level of interoperability cooperating workflow systems route op-
erations between engines and instances and furthermore translate and deliver work-
flow relevant and application data.

Common gateway API: This level assumes that the common subset of used gateways by
workflow systems can be supported by a standard and gateways share a common
application programming interface (API).

Limited common API subset: In this level the shared APIs allow direct interaction between
workflow systems.

Complete workflow API: In this interoperability level all workflow systems share a single
standard API, granting access to all of operations by any workflow system.

Shared definition formats: Different workflow systems use the same process definition for-
mat. When a process is defined on one workflow system, it can be reused by other
systems as well.

Protocol compatibility: This level assumes standardized API client/server communication
between workflow systems.

Common look and feel utilities: This level requires that the user interfaces of different
workflow systems are the same or at least look and feel the same to the user.

1A gateway is a mechanism that allows specific workflow products to move work between each other[19]

Chapter 3
Workflow Modeling Languages

Workflow processes can be modeled by different languages and formalism. Each language
and formalism has its own strengths and weaknesses. The characteristics of each formal-
ism make it suitable for some application domains while maybe not enough expressive or
too complex for other problems. The choice of the modeling language shall be done in the
context of the modeling task.

Web Services Flow Language (WSFL) [176], Web Services for Business Process Design
(XLANG) [255], Business Process Modeling Notation (BPMN) [23], Yet Another Workflow
Language (YAWL) [260] and XML Process Definition Language (XPDL) [22] belong to
these languages. In the following sections, two formalisms that are used in this work have
been formalized. For a specification of other languages and formalisms please refer to the
references.

3.1. Petri-Nets

Petri-nets [198, 26, 229, 218] and their subclasses such as workflow-nets (abbreviated WF-
nets) [250, 100] and labeled Place/Transition nets (abbreviated Labeled P/T nets) [46]
are a convenient modeling language for workflows and workflow based applications and
are widely used and vastly studied in the literature. This is because petri-nets are a
highly expressive language, both graphically and mathematically, with a well-defined
structure and are supported by many tools and applications. These characteristics make
petri-nets suitable for many application areas such as embedded systems [230], commu-
nication protocols [50], fault-tolerant and fault detection systems [280], manufacturing
systems [267], software engineering [119, 277], multiprocessor systems [125], database sys-
tems [127, 199, 283], parallel computing [40, 73], discrete event systems [92, 128], dataflow
systems [171, 248], logic-based systems [281, 251], compiler technology [186], informa-
tion systems [240, 93, 137, 206, 236, 33], formal methods [150, 210], control, robotic and
flexible manufacturing systems [68], decision support systems [258], artificial intelligence
[216, 190], multi-agent systems [183, 85], knowledge representation [153], expert systems
[178], neural networks [75], business process management [239, 91, 87], workflow manage-

17

18 3. Workflow Modeling Languages

ment systems [237, 35, 179] and web service technology [254, 241, 253]. On the other hand,
a major difficulty when applying petri-nets is its complexity which causes an overhead
for modeling the problem at hand. It should be noted that however, petri-nets provide a
strong and expressive formalism for different application domains, based on the context
the problem may be solved and modeled more efficiently with less complex formalisms
such as directed graphs.

Definition 3.1: (Petri-net)
A petri-net as defined in [198] is a 5-tuple N = (P, T, F, W, M0), where

¥ P is a finite set of places

¥ T is a finite set of transitions

¥ F ⊆ (P× T)
⋃

(T× P) is a set of flow relations

¥ W : F → N is a weight function

¥ M0 : P → N0 is the initial marking

where N is the set of natural numbers and N0 denotes N
⋃{0}

A petri-net is composed of two different kinds of nodes:

1. Places

2. Transitions

The set of places and transitions are non-empty and disjoint, i.e. P
⋂

T = ∅
∧

P
⋃

T 6=
∅. The flow relations are arcs that connect places with transitions or vice versa. A flow
relation may have an assigned weight. A flow relation with the weight w is equal to the w
parallel flow relations. The initial marking denotes the distribution of tokens over places.
In other words, the initial marking assigns an integer i ∈ N0 to each place where i indicates
the number of tokens in that place, i.e. a place can have zero, one or many tokens. Petri-
nets that allow for weights w > 1 are called generalized petri-nets, whereas petri-nets
that allow for only weights w = 1 are called ordinary petri-nets. It has been shown
that generalized petri-nets are equivalent to ordinary petri-nets. However, generalized
petri-nets provide more convenience at use [132, 162]. Graphically, places are depicted as
circles, transitions as black boxes, flow relations as arcs and tokens as black dots. Note that
the roles of places and transitions must be interpreted differently in different application
domains and based on the application they may have different semantics. For example,
in a petri-net model of a workflow application, transitions represent tasks and places the
pre and post conditions of the tasks. However in another scenario the transitions may be
the processing steps and places the required input and the produced output respectively.
Figure 3.1 illustrates a very simple example of a petri-net.

3.1. Petri-Nets 19

Figure 3.1.: An example of a petri-net

In a petri-net, a place with no incoming flow relation is called the source place (in
Figure 3.1 place p1) and the place with no outgoing flow relations is called the sink place
(place p7). Place p1 is the input place of the transition t1 and place p2 is its output place.
The flow relation from place p1 to transition t1 has the weight 2 and all other flow relations
have the weight 1 and hence omitted in the figure 3.1 . The distribution of the tokens
represents the marking. The marking of a petri-net can be shown by a column vector M
where the number of tokens in the i-th place is assigned to the i-th row of the vector. The
initial marking is typically presented by M0.

The dynamic behavior of petri-nets can be described by its state change. A state change
identifies a change in distribution of tokens over places, i.e. removal of tokens from input
places and adding them to output places due to firing of transitions.

Enabled Transitions: A transition t is enabled if each input place pi of t contains at least wi

tokens, where wi is the weight of the flow relation from place pi to t.

Firing of Transitions: If a transition t fires, it consumes wi tokens from each input place pi

and produces wo tokens to each output place po, where wi is the weight of the flow
relation from pi to t and wo is the weight of the flow relation from t to po.

20 3. Workflow Modeling Languages

Figure 3.2 shows the marking of the net after the transition t1 in figure 3.1 has fired.

Figure 3.2.: After the transition t1 in figure 3.1 has fired

The petri-net depicted in figure 3.1 and figure 3.2 contains only a sequence and a
parallel structure. Petri-nets are also capable of presenting other control structures like
XOR.

3.1.1. Behavioral Properties

In the following some of the most important behavioral properties of petri-nets have been
introduced. For a more detailed discussion, its properties and other behaviorial character-
istic refer to the references at the beginning of this section.

Definition 3.2: (Firing Sequence)
A sequence of place-transitions of the form σ = (p1)(t1)(p2)(t2)...(pn − 1)(tn −

1)(pn)(tn) is called a firing sequence if all transitions ti : i ∈ {1..n} are enabled or fire-
able.

Definition 3.3: (Reachability)

3.2. Workflow-Nets 21

Let M1 and M2 be two markings and σ as defined in Definition 3.2. The marking M2 is
reachable from M1, if ∃ σ : σ transform M1 into M2. R(M) denotes the reachable markings
from the marking M.

Definition 3.4: (Liveliness of Transitions)
Let M be a marking and M0 the initial marking. Further L(M) characterizes the possible

firing sequences of M. A transition t is called

L0-live: if t can never fire in L(M0)

L1-live: if t can fire at least once in L(M0)

L2-live: if t can fire at least k times in L(M0), where k ∈ N

L3-live: if t fires infinitely in L(M0)

L4-live: if t is L1-live for every M in R(M0)

li-liveliness implies Li−1-liveliness

Definition 3.5: (Liveliness of Petri-Nets)
A L4-live petri-net is called a live petri-net. In contrary, a L0-live net is said to be a

dead net.

The concept of liveliness correspond to the conflict-free execution of a net and its
deadlock-freeness.

Definition 3.6: (Boundedness of Petri-Nets)
Let N(pi) denote the number of tokens in place pi, k be a finite integer and R(M0) as

defined in Definition 3.3. A petri-net is bounded if ∀ i
∧ ∀M ∈ R(M0) : N(pi) ¹ k.

Definition 3.7: (Safeness of Petri-Nets)
A petri-net is safe if it is bounded and K = 1.

3.2. Workflow-Nets

Workflow-nets are a subclass of petri-net for modeling workflow process definitions. They
are the classical petri-nets with some additional properties. [94, 96, 250, 100]. A WF-net is
formally defined as:

Definition 3.8: A WF-net is a Petri-net N = (P, T, F, W, M0) with the following additional
properties:

¥ N has a special place i whose preset is empty. This place is called source place.

¥ N has a special place o whose postset is empty. This place is called sink place.

22 3. Workflow Modeling Languages

¥ Any node n ∈ (P
⋃

T) is on a path from source place to sink place, Where P is the
set of places and T the set of transitions i.e. there is no dangling node and all places
and transitions contribute to the processing of cases.

Definition 3.9: A sequence of place-transitions of the form ρ = (p1)(t1)(p2)(t2)...(pn −
1)(tn− 1)(pn) is called a path from place p1 to place pn if and only if < pi, ti >∈ F, 1 ≤ i ≤ n,
where F is the set of flow relations.

If there is a path ρ for every pair of place p and transition t in N, this net is said to be
strongly connected [96].

Chapter 4
Interorganizational Workflows

Interorganizational workflows are an interesting and challenging point for application of
workflow management systems. Interorganizational workflows are workflows that belong
to a group of several autonomous organizations. These organizations may not be only
organizationally autonomous but also geographically separate. The whole process of an
interorganizational workflows is spread over the participating organizations, crossing the
boundaries of single organizations. Each organization is in charge of implementing parts
of the whole process. The overall business goal is defined in the whole interorganizational
workflow process. This kind of process definition is very useful and even inevitable in the
today world of business. Imagine for example a book shopping scenario at Amazon.com.
When a customer orders a book, if the book is not on stock, it will be ordered at the Ama-
zon’s supplier’s workflow. In another workflow between Amazon and Mater Card the
credit card of the customer is charged. This interorganizational workflow is spread over
Amazon, Amazon’s book supplier and Master card to reach the common business goal of
ordering books at Amazon.com. In addition to the need for such interactions and cooper-
ations, availability of Internet that enables a cheap and effective communication medium
is an important factor. An essential issue when designing and implementing interorga-
nizational workflows is the balance between privacy and autonomy. The autonomous
organizations that participate in an interorganizational workflow want on the one hand
cooperate and communicate with other organizations which requires giving others access
to the private workflow or at least parts of it. On the other hand they want to prevent
others from knowing their know-how which is implemented in their business logic. See
chapter 5 for more on the balance between autonomy and privacy.

4.1. Related Works

Interorganizational Workflows: An approach based on Message Sequence Charts and
Petri Nets

In this work [98] Van der Aalst after a brief motivation for interorganizational work-
flows and description of various forms of workflow interoperability, introduces a tech-

23

24 4. Interorganizational Workflows

nique for verification of interorganizational workflows based on the notion of correctness
presented in [97]. This works considers loosely coupled interorganizational workflows
presented as WF-nets. In this approach, an interorganizational wokrlfow is correct if all of
the participating (private) workflows as well as the global workflow, defining the commu-
nication among participants, satisfy the correctness criteria. The notion of soundness is
used as correctness criteria for private workflows and the IO-soundness for interorganiza-
tional workflow. An unfolding function connects all the local workflows by a start transition
and a termination transition. Further it provides the process with a global source place
and a global sink place. Moreover, asynchronous communication elements are mapped
onto places and synchronous communication elements are replaced by new transitions. A
renaming function maps old transitions into new ones. The application of the unfolding
function results in a new unfolded WF-net. The unfolded WF-net is used for correctness
verification of interorganizational workflows. An interorganizational workflow is correct if
and only if all private workflows are sound and the unfolded global workflow is IO-sound.
Furthermore, it defines a notion of consistency, called 1-consistency to check if the actual
behavior of an interorganizational workflow is consistent with the communication struc-
ture between private workflows. A variation of message sequence charts (MSC) [17, 18]
is used for description of message exchange among private workflows. For verification
of 1-consistency, it must be checked if no firing sequence violates the partial order (of the
messages) imposed by the message sequence chart.

Deriving Service Models in Cross-Organizational Workflows
Klingemann et al. in [170] propose an approach to derive models of external services

from their visible behavior in an interorganizational setting. They argue that there is a
need for service requester to control and monitor the execution of a service. However,
service requester has a limited control and a priori knowledge about a service provider.
Hence it makes sense to model and predict the service model based on the visible external
behavior. The authors only consider the case of outsourcing for interoperation of work-
flows and call a business process cross-organizational if the process provides means for
outsourcing to other external organizations or service providers. Hence, an architecture
with centralized control of the service requester is proposed. Based on a previous work
[169] and by analyzing the logs of external service providers, a technique for deriving the
(external) service models as continuous time Markov chain (CTMC)2 is proposed. How-
ever not stated explicitly, the assumption is that the service requester has access to logs
of the service provider and services are treated as black box to a service requester. The
derived model consists of a set of states, transition between states, transition probability
and average amount of time that a service resides in each state. A state is either an start
event or an end event. The elapsed time in a state can be calculated by subtracting the time
stamps of an end event from its corresponding start event. By analyzing the service logs,
CTMC-models are built which help the service requester to compare the actual behavior
with intended behavior and derive conclusions such as order of execution. Moreover it

4.1. Related Works 25

allows for predictions such as expected remaining time till end of service or till a state sj

is reached given a state si.

Supporting Workflow Cooperation Within and Across Organizations
Asati and Discenza in [71] propose a model for interaction among workflows based on

event nodes. Synchronization is realized by sending or receiving events to or from other
workflows or external non-workflow applications. Hence, an event node is either a send
node or a request node. Send nodes are points in a flow where events are produced and
are non-blocking activities. Request nodes block until the requested events have been re-
ceived and correspond to points in a flow where events are consumed. Each event belongs
to an event class with a unique name and an optional or mandatory set of parameters.
The essential part of the system is a so-called event service [103] for correlation of events,
dispatching them between workflow instances as well as data conversion between het-
erogenous applications. For this, the event service uses a publish-subscribe model. It uses
a filtering rule for identification of events in which a request node is interested. A filtering
rule is a set of constraints on the names and parameters of events. Filtered events will be
sent to the requester by the event service. In addition to filtering rules, capturing rules
are used for assignment of values to the parameters in terms of local workflow variables.
Authors also introduce an architecture and a prototype called DEPRA [72].

Architectural Issues for Cross-Organisational B2B Interactions
Schulz and Orlowska in [242] introduce an architecture for cross-organizational appli-

cations. Their model is two-tiered. The first tier consists of private business processes and
the second tier contains shared business processes. The internal logic and structure of a
private business process is only known to its owner. A private business process, alone or
grouped with other private processes, can be exposed to other partners as a service. In
other words, a service is an abstraction or encapsulation of one or more private business
process. The shared processes define the interaction between participants and each par-
ticipant is responsible for parts of the process that belong to him. Contracts are needed
for setting up shared business processes. In their model the interaction between private
business tasks and shared business tasks is handled through events. An event is defined
as a piece of data specifying the sender, recipient, I/O data, description and ID. Moreover
an architecture for B2B processes is introduced. This architecture uses a broker for man-
aging the interaction among partners. The partners expose their internal business process
as services and the broker is in charge of coordination of interaction and running of the
shared business processes. In addition, the broker routes the events to the corresponding
partner and can produce audit data for monitoring and logging purposes.

2A continuous time Markov chain (CTMC) is a stochastic process that proceeds through different states in
certain time epochs. The Markov property states that the probability of entering a state depends only on
the current state and not on the previous history

26 4. Interorganizational Workflows

Consistency Between Executable and Abstract Processes
Martens in [189] introduces an approach for checking the behavioral consistency be-

tween globally defined shared business process and locally defined executable processes.
This work uses a Petri-net formalism for process modeling. The mapping from BPEL to
Petri-nets can be done automatically by WOMBAT4WS [275]. It uses the notion of sim-
ulation as equivalence relation between two workflows. "A workflow module A simulates
a workflow module B if each utilizing environment of module B is an utilizing environment of
module A, too". Two workflows are equivalent if the simulation relationship is reciprocal.
That means if workflow A simulates workflow B and workflow B simulates workflow A.
Informally, two workflows have behaviorial equivalence if both behave similar and the
external observer can not distinguish between their behavior. Note that this notion only
considers the behaviorial equivalence and not the structural equivalence. A description of
other notions of equivalence can be found in section 8.1 of this dissertation. The notion of
communication graphs (c-graphs) [188] is used in this work to formalize the behavior of a
web service. A communication graph contains the maximal information that an utilizing
environment can derive about a web service. The assumption is that an environment has
no explicit knowledge about the internal structure of a web service and derives its informa-
tion implicitly by observing the communication or communicating with the module. Such
implicitly derived information is presented using communication graphs. Two workflows
are equivalent if their c-graphs simulate each other.

Business Process Choreography for B2B Collaboration
Authors in [155] present an approach for modeling choreography for B2B applications

based on a predefined set of interoperability patterns. Three kinds of processes for realiza-
tion of a business choreography is defined: contract processes (CP), executable processes
(EP) and interface protocols (IP). A contract process is a choreography which defines the
collaboration with other business partners and is a sequence of business logic containing
elements of data formats, logical end points and security levels. An executable process is
the internal realization of the tasks involved in a contract process. Interface protocols are
intermediate processes between executable processes and contract processes and define
the inter-operations between executable and contract processes. The authors propose a
different approach for modeling a shared business process among different partners than
some other authors. Whilst e.g. [43, 102, 217, 107] use a shared global choreography that
all participants have the same view on, this work suggests a separate contract process for
each executable process. The shared business process consists of a set of contract processes
that interact which each other. Note that an interface protocol is required for interoper-
ation between an executable process or a group of executable processes and a contract
process. The disadvantage of this technique is the more complicated modeling without an
obvious advantage compared to the approaches proposed by other authors. Further, based
on the proposal of workflow management coalition [15], six basic interoperability patterns
for interoperations between processes have been introduced. These basic patterns can be

4.1. Related Works 27

combined together for building more complex patters. The pattern are used for modeling
the interactions in the interface protocol. In other words, the interactions in the interface
protocol are mapped onto the interoperability patterns. Put it another way, the interaction
patterns must cover all possible cases of interactions. The authors provides no proof that
six elementary patterns can cover all cases and implicitly leave it to the user for building
an optimal and complete set of interaction patterns using the six basic interoperability
patterns. A top-down approach is applied for constructing the shared business process.
The definition of contract processes is followed by preparing the executable processes of
each partner and finally the interface protocols between the two previous processes are de-
fined. This work is silent on the consistency and conformance issues among the suggested
patterns.

A Decentralized Services Choreography Approach for Business Collaboration
[278] proposes a technique for inter-enterprize business collaboration based on service

choreography. The proposed approach consists of three main steps:

¥ Building the centralized global business process for collaboration

¥ Role-based decomposition of the centralized process into a set of subprocesses

¥ Mediation between decentralized subprocess of internal process of each partner by
data dependency analysis

Authors use a state machine formalism proposed by object management group (OMG)
for modeling the centralized, shared business process. In the second step the built process
in the previous step is decomposed by a role-based decomposition, i.e. each subprocess
contains activities that belong to one partner or this partner (role) is in charge of their exe-
cution. The abstract activities in such subprocesses are in charge of interaction with other
abstract processes as well as mediation of data to and from executable activities. A data-
dependency mechanism is used for mediation between subprocess extracted in step 2 and
the partner’s internal process. Each state in the process, either abstract or executable, has
a channel which is used for storage of data. The dependency is defined between the chan-
nels of a receiver and a sender by (channels, channeld.data), where channels is the channel
of the source (sender), channeld is the channel of the destination (receiver) and data is the
transmitted message. When a message is received by an abstract process, data is extracted
and copied to the channel of the corresponding executable activity. The right executable
activity can be decided by the predefined data dependencies. After consumption of data
by the executable activity, data is sent back to the channel of the abstract activity. This
work does not consider conformance issues between subprocesses and executable process.

E Role-based Decomposition of Business Processes using BPEL
Khalaf and Leymann in [166] present a method for role-based decomposition of BPEL

business processes such that each fragment of the process belong to one participant and

28 4. Interorganizational Workflows

can be enacted by the owner or executed by the role in charge. A modified version of
BPEL, here called BPEL-D, has been used. In BPEL-D scope variables are replaced with
data links and each activity possesses input and output containers. Access to the con-
tainers is controlled by transition conditions. A data link is a tuple d(A1, A2) and assigns
(parts of) output container of A1 to (parts of) input container of A2. A data link between
two given activities can be defined only if a control flow dependency between them exists.
The presented approach takes as input a process model described in BPEL-D, the corre-
sponding WSDL-files and a specification of which activities belong to which partners. The
output is a BPEL specification and a WSDL-files for each participant and the connection
definition of subprocesses of each partner such that the connected subprocesses again
builds the initial process. This work uses exchanged messages for passing control if a
link after decomposition is broken. After decomposition of the original process, subpro-
cesses are augmented with additional information if necessary e.g. some receive activities
must be able to create new instances of the process, new correlation sets must be defined,
etc. Finally subprocesses will be wired together such that the original process can again
be reached. This approach is advantageous when for example a top-down approach for
modeling and execution of a choreography is applied. Its shortcoming is necessity for
description of the original process (input) in BPEL-D and not the original BPEL.

Cross-Organizational Workflow Integration using Contracts
Weigand and van den Heuvel in [271] present contracts as a way for modeling inter-

action in a cross-organizational setting. Such contracts consist of obligations of business
partners and are modeled by business contract specification language (XLBC), which is an
XML version of formal language for business commitments (FLBC) [168]. The authors con-
sider contracts as a shared purpose comprising the mutual obligations and authorizations
in a legally binding manner. In other words a contract contains rights and duties of par-
ticipants. However, the assertion of "legally binding" is not always necessary. Imagine for
example if the participants are two different departments of the same organization. This
work considers business interaction as a pyramid with four layers consisting of speech acts
(most elementary form), transactions, workflow loops and contracts (highest communica-
tion level). The higher level builds upon the lower level. A speech act represents an action
like request or promise. A transaction is a pair of speech acts such as request and commit
with an effect in the social world of participants. A workflow loop is a group of transac-
tions and finally a contract is represented as two interleaving workflow loops. Note that
in this work the concepts, e.g. transactions and workflow loops, have different meaning
than in database and workflow literature. This work represents a different approach for
contracts. While most other works consider contracts for defining the order of message ex-
change among participants, this work considers contracts by means of actions and external
effects in the social world. Whilst this approach can be suitable for production workflows,
it is inappropriate for realm of web services e.g. for definition of choreographies where
everything is based on exchange of messages.

4.1. Related Works 29

[271] describes an inter-organizational workflow as a workflow consisting of two parts:
an execution workflow and a control workflow. The execution part is responsible for
internal tasks (cf. orchestrations) and the control part, itself comprising an actagenic part
and a factagenic part, is in charge of interaction with others (cf. choreographies). An
actagenic part controls service providings and a factagenic part is responsible for service
requests. Their approach, based on actions rather than messages, is again obvious here.
The control workflow, responsible for communications, is divided into two parts: service
provision and request. It is mainly taken into account which actions are performed or
should be performed instead of which messages are exchanged or should be exchanged.

On the Controlled Evolution of Process Choreographies
Rinderle et al. in [231] deal with the controlled evolution of process choreographies i.e.

the problem of change of interaction structure among partners. For instance they study
when a change in a private orchestration shall be propagated to the choreography and
other orchestrations and how it can be done automatically. This work only considers the
structural changes of a process for example insertion and deletion of an activity into or
from a process.

Assume two processes Pa and Pb interact. Each with a private process and a public
process (cf. process view). If the public process of Pa has been changed, this change must
be reflected in its private process. A change can be addition of a message (additive change)
or removal of a message (subtractive change). Other types of change, e.g. process reorga-
nization, are not considered in this work. Next, it must be checked if the modified public
process of Pa is still consistent with the public process of Pb. If this is the case, there is no
need for propagation of change (invariant change), otherwise the pubic process of Pb must
be modified as well to cater to the change (variant change). If the performed change in
private process of Pa has no effect on its public process, the change can be kept local and
no further check or propagation is necessary. Note that consistency here means a dead-
lock free execution of two processes. This work uses an extension of finite state automaton
[145] called annotated finite state automaton (aFSA) for formalizing the consistency and
its checking. The authors provide a proof that two automata are deadlock-free and con-
sequently consistent if their intersection is non-empty. In other words two automata are
bilaterally consistent if there is a path from the start node to the end node with respect to
their execution. For checking the bilateral consistency all transition that do not contribute
to the public process are relabeled (cf. silent actions) such that two processes contain
only bilateral message sequences. If a change of public process of Pb is necessary, the
change must be propagated to the belonging private process such that the newly added
or removed messages are taken into account when the process executes. Regions of the
private process of Pb that must be changed are to be identified. After performing the ap-
propriate modifications in the private process, these changes are again propagated back
to its public process and the consistency with public process of Pa is checked. In case of
non-consistency this cycle must be repeated as long as both public processes are consis-

30 4. Interorganizational Workflows

tent. In case of additive change union of public process and added message and in case of
subtractive change difference of public process and removed message can be used as basis
for adaptation of public processes.

The need for mapping the BPEL from and into aFSA makes the proposed approach
rather complex and computationally expensive. In addition, because the required modi-
fications of the private and public processes can be performed in various ways, it is not
clear how an effective and optimal method can be achieved. The authors do not mention
the complexity of the algorithms.

Matchmaking for Business Processes Based on Choreographies
[274] represents a formal approach for matchmaking of business partners in a choreog-

raphy in order to decide if processes of two interacting partners are consistent with each
other and a deadlock free execution can be guaranteed. This paper uses an annotated
deterministic finite state automaton (aDFA) as modeling language. Like [231] the non-
emptiness of intersection of two annotated deterministic finite state automata serves as a
proof of deadlock-freeness. That means two processes modeled as aDFA match together
and are consistent if their intersection is not empty. The emptiness of intersection implies
that no final state can be reached.

The proposed formalism and approach can be applied for very simple scenarios but is
not suitable for real life applications because deterministic finite state automata (DFA) are
incapable of presenting branching conditions and parallel execution which are indispens-
able for business processes and choreographies. Hence richer formalisms with a higher
expressiveness such as Petri-nets are required. In addition the need for mapping from
other languages and industry standards such as BPEL onto and from aDFA is another
shortcoming of this approach for business processes consisting of some hundred activi-
ties.

Compatibility Verification for Web Service Choreography
Foster et al. in [124] represent an approach for testing compatibility of interacting busi-

ness processes. This paper considers only safety compatibility and liveness compatibility.
Safety compatibility concerns checking for deadlock-freeness and liveness compatibility is
the progress analysis of a process, i.e. does service exhibit behaviors that do not lead to
success e.g. does process eventually terminate?

The proposed approach is based on finite state process (FSP) formalisms and BPEL-
processes need to be mapped onto this formalism for safety and liveness compatibility
check [122]. The mapping and compatibility check can be done by a tool called LTSA.
While not stated explicitly, the assumption here is that there is no predefined choreog-
raphy that defines the message exchange among partners and only a set of separate or-
chestrations are available. After identification of all activities involved in all processes
the counterparts of activities are identified, for example which receive activity belongs to
which invoke activity and so on. Based on the previous analysis step a model of choreog-

4.1. Related Works 31

raphy can be built. After mapping of the obtained model onto FSP it can be checked if the
process meets the deadlock-freeness and liveliness properties.

The authors do not make clear if only BPEL primitive activities such as receive, re-
ply and invoke are considered or structured activities such as flows as well have to be
analyzed and how constructs such as onAlaram or onEvent are handled. On the other
side constructing a choreography by analyzing a set of orchestrations is tedious and error-
prone.

The Self-Serv Environment for Web Services Composition

[49] introduces a P2P-based orchestration model for discovery, dynamic selection and
declarative composition of web services, called self-serv environment. The main compo-
nent of the system is the so-called service container. It is an aggregation of a set of services
with common capabilities. A container is itself a service, that means it can be invoked by
other services. Instead of searching and selecting a specific service, the service requester
can invoke a service container and the invoked service container selects the service with
the highest score from the set of contained services. The highest scored services is chosen
based on a multi-attribute selection in the form of sum of weighted scores of attributes,
where a scoring function is assigned to each attribute. Attributes’ scores may be set a
priori or extracted from logs. A Service can be defined as a member of a container at
creation time of the container (explicit membership), it can be queried by the container
from other registries at invocation time (query membership) or a service can register it-
self as a member at the container (registration membership). The membership is a n-to-n
relationship.

For the interaction of web services the self-serv environment provides two components:
a state coordinator and a routing table. A state coordinator is in charge of checking if
preconditions for entering a state are fulfilled, receiving notification of completion from
predecessor states and sending notification of completion to successor states. An initial
coordinator is in charge of service initialization and instantiation. Routing tables store
preconditions and post-conditions of each state which is looked up by state coordinators.
Further a layered architecture consisting of service layer, conversation layer, directory layer
and user layer is presented. Service layer is a collection of services and defines method
invocations. Conversation layer supports standardized interaction of services. Directory
layer provides meta data information about services and user layer provides access for
discovery, building and deployment of services.

The message overhead imposed by state coordinators is a disadvantage of this ap-
proach. As one state coordinator is attached to each state and the communication among
states and coordinators happens by message exchange, the message exchange overhead is
increased.

Managing Virtual Organizations with Contracts

32 4. Interorganizational Workflows

[191] discusses the required features of contracts in B2B virtual organizations and intro-
duces a middleware-based prototype called web-Pilarcos that provides general infrastruc-
ture for B2B interactions. The provided functionalities include: business network model
repository, where community structures are defined. Service offer repository, service type
repository, contract repository, policy repository and monitoring module are other com-
ponents. The monitoring module is an intermediate module between message senders
and receivers. The monitoring module intercepts each message and checks its compliance
with context and rules. If a message is compliant, it will be passed otherwise the sender
receives an error notification.

This work considers contracts as the governing element of virtual organizations and
integrates the exception handling module as a part of the negotiated contract. There
is no predefined exception handling mechanisms, rather the corrective actions must be
decided by participants in a collaborative manner. This approach has some disadvantages,
for example the protocol for group decisions must be again negotiated, communication
channels must be reserved in advanced and so on. Furthermore, the ability to react on
errors and failures that must be compensated and corrected in a timely manner is severely
limited.

Model Driven Distribution of Collaborative Business Processes
Authors in [235] represent a top-down approach for integrated modeling of business

processes. The proposed approach consists of seven steps: building a centralized process
containing all tasks, building swimlane partitions of the centralized process according to
participants, identification of control transfer within and between swimlanes, extraction
of distributed process models for each partition, transformation of activities into sender-
receiver activities and finally deployment of the process.

The approach presented in [235] is very similar to that presented in [166] where a role
based decomposition of business processes is studied.

Summary and comparison of related works
Table 4.1 summarizes the fields of application, used formalisms and consideration of

consistency issues of the above discussed papers in the section 4.1

4.1. Related Works 33

pa
pe

r
C

on
tr

ib
ut

io
n/

A
pp

lic
at

io
n

U
se

d
Fo

rm
al

is
m

C
on

si
st

en
cy

[2
42

]
A

rc
hi

te
ct

ur
e

fo
r

in
te

ro
rg

an
iz

at
io

na
la

pp
lic

at
io

ns
-

N
o

[1
55

]
A

rc
hi

te
ct

ur
e

fo
r

m
od

el
in

g
in

te
ro

rg
an

iz
at

io
al

w
or

kfl
ow

s
-

N
o

[4
9]

A
rc

hi
te

ct
ur

e
fo

r
se

rv
ic

e
se

le
ct

io
n

an
d

di
sc

ov
er

y
-

N
o

[1
91

]
A

rc
hi

te
ct

ur
e

fo
r

vi
rt

ua
lo

rg
an

iz
at

io
ns

-
N

o
[2

78
]

M
od

el
in

g
in

te
ro

rg
an

iz
at

io
na

lb
us

in
es

s
co

lla
bo

ra
ti

on
st

at
e

m
ac

hi
ne

s
N

o
[2

35
]

M
od

el
in

g
bu

si
ne

ss
pr

oc
es

se
s

-
N

o
[1

70
]

M
od

el
ex

tr
ac

ti
on

fr
om

lo
g

co
nt

in
uo

us
ti

m
e

M
ar

ko
v

ch
ai

n
Ye

s
[2

74
]

C
on

si
st

en
cy

of
in

te
ro

rg
an

iz
at

io
na

lw
or

kfl
ow

s
fin

it
e

st
at

e
au

to
m

at
a

Ye
s

[1
24

]
C

on
si

st
en

cy
of

in
te

ro
rg

an
iz

at
io

na
lw

or
kfl

ow
s

fin
it

e
st

at
e

au
to

m
at

a
Ye

s
[9

8]
C

or
re

ct
ne

ss
ve

ri
fic

at
io

n
W

F-
ne

t
an

d
m

es
sa

ge
se

qu
en

ce
ch

ar
ts

Ye
s

[1
89

]
ch

ec
ki

ng
be

ha
vi

or
al

co
ns

is
te

nc
y

Pe
tr

i-
ne

ts
Ye

s
[2

31
]

Pr
op

ag
at

io
n

of
pr

oc
es

s
ch

an
ge

s
fin

it
e

st
at

e
au

to
m

at
a

Ye
s

[7
1]

In
te

ra
ct

io
n

in
in

te
ro

rg
an

iz
at

io
na

lw
or

kfl
ow

s
-

N
o

[1
66

]
Pa

rt
it

io
ni

ng
of

BP
EL

-p
ro

ce
ss

es
BP

EL
-D

N
o

[2
71

]
C

on
tr

ac
ts

fo
r

in
te

ro
rg

an
iz

at
io

na
lw

or
kfl

ow
s

X
LB

C
N

o
D

is
se

rt
at

io
n

A
rc

hi
te

ct
ur

e
fo

r
in

te
ro

rg
an

iz
at

io
na

lw
or

kfl
ow

s
D

A
G

an
d

W
F-

ne
t

Ye
s

Ta
bl

e
4.

1.
:S

um
m
ar
y
of

re
la
te
d
w
or
ks

on
in
te
ro
rg
an

iz
at
io
na

lw
or
kfl

ow
s

Chapter 5
Workflow Views

In the always more globalized world of business it is essential for companies to be able to
offer their products and services cheaper and become more competitive. For this sake, au-
tomation of tasks and processes plays an essential role for providing cheaper services with
a better quality. In recent years, workflow management systems have provided an effec-
tive and powerful tool for this aim. It is necessary for organizations to build short or long
term cooperations with other organizations to reach the overall goal of a business process.
Spread of internet, as a mean of communication, provides a powerful infrastructure for
interorganizational workflows. Such workflows enable autonomous organizations, which
may be geographically distant, to cooperate with each other. A challenging point when
constructing such workflows is the balance between autonomy and cooperation. On the
one hand, organizations must reveal some information to the business partners which are
necessary for communication, monitoring, tracking purposes, etc. and on the other hand
they want to hide their internal process logic to protect their know-how and improve their
business secrecy. For external partners, as well, it is neither necessary nor desirable to have
access to all parts of a provider’s internal workflow as they do not want to be overloaded
by unnecessary data and uninteresting messages. External partners are interested in those
parts of a workflow which address them.

Workflow views provide a mean for this aim. Views define the accessible and visi-
ble parts of a process for external partners. A view can be a subset of the (activities of
the) original workflow or represent the original workflow in an abstracted or aggregated
fashion. External users communicate and interact with the view and not with the private
executable workflow. Views are in charge of redirecting the data and messages to the ex-
ecutable workflow as well as forwarding them to external users. In business-to-customer
(B2C) applications the external partner is normally a human user and in case of business-
to-business (B2B) application the external user is another organization which in turn may
interact and take part in the interorganizational workflow through its view. By using
views, organizations are able to show as little information as possible but sufficient for the
communication and interaction to reach the goals of a business process. By application of
views, organizations do not need to change the interaction and communication with other

35

36 5. Workflow Views

partners or negotiate to set up a new choreography or a shared business process when the
internal workflow is changed. As long as changes in a private workflow do not affect its
view, this change can be kept local and there is no need for modification of the view and
therefore, an organization can be sure that its external partners can still communicate in a
conformant and consistent manner. In this work the focus is on business-to-business ap-
plications. The assumption is that each organization takes part in the interorganizational
workflow through its workflow view, i.e. the shared business process is an integration
of the partners’ views. The approach presented here can be applied in a straightforward
manner to business-to-customer applications where only the organization exposes its pri-
vate workflow through a view on the process and external (human) users interact with
the view. Partners communicate by their views and not with their private workflows.
Figure 5.1 depicts this scenario. Three partners take part in the choreography (shared
business process), each with its own private workflow. The interaction among partners is
defined in the choreography. Each partner provides a view of its private workflow and
the choreography is composed of the views of the private workflows. Each view is on the
one hand a view on the corresponding private workflow and on the other hand a view on
the choreography. For a discussion on correctness of interorganizational workflows refer
to section 8.4. It must be ensured that views are conformant with each other and can inter-
act without conflict. Several issues such as structural conformance, data flow conformance,
messaging conformance and temporal conformance must be checked in order to ensure the
consistency and conformance of an overall interorganizational workflow. This dissertation
provides correctness criteria for both views and the interorganizational workflow and be-
sides handles the structural and temporal conformance of view-based interorganizational
workflows to ensure that structures of participating processes match and interactions are
done in a timely manner with respect to local and global constraints. A temporally con-
formant interorganizational workflow enables partners to execute the workflow without
violating temporal constraints such as explicitly assigned deadlines and also reduces the
process costs because fewer temporal exception must be raised and handled accordingly.
Such a mechanism is a helpful tool in the hand of process designers and managers to fore-
see the possible upcoming temporal violations and trigger necessary counter-measures in
a proactive manner.

5.1. Related Works 37

Figure 5.1.: An interorganizational workflow composed of views

5.1. Related Works

Facilitating Cross-Organisational Workflows with a Workflow View Approach

Schulz and Orlowska in [243] propose an application of workflow views as a mean for
realizing communication and cooperation between independent and autonomous work-
flows in an interorganizational setting. In this work, a partner in a business process owns
his private workflow which is only visible to its owner. Partners participate in a shared
business process, in this work called coalition workflow, through their workflow views. A
workflow view is an abstraction of the corresponding private workflow and reflects the
communication requirements of the coalition workflow. When running the coalition work-
flow, the workflow views outsource the execution to the according private workflows. The
cross-organizational workflow is composed of the private workflows of the participating
partners. Further, an architecture for cross-organizational workflows is proposed. Authors
apply a tightly coupled approach between private workflows and its view(s) based on
state dependencies and a loosely coupled approach between views in the shared business
process or coalition workflow based on control flow dependencies. The state mapping
between workflow views and private workflows is realized through a Petri-net based state
transition diagram. They also use synchronization tasks for modeling the interaction be-
tween two workflow views. This work only discusses the views from a state perspective
and is silent on correctness issues of workflow views or how views may be built correctly.

38 5. Workflow Views

This dissertation uses somehow the same architectural model for view-based interor-
ganizational workflows and in addition proposes two techniques for constructing views.
Besides, correctness criteria for views and structural and temporal conformance and tem-
poral execution plans are considered.

Workflow Modeling for Virtual Processes: An Order-Preserving Process-View Ap-
proach

Liu and Shen in [180] propose an order preserving approach for constructing views
from a given workflow. A workflow view is composed of virtual activities. A virtual
activity is an aggregation of base activities of a workflow (cf. complex activity). In this
approach, a workflow view is not a subset of the activities of a workflow (e.g. by appli-
cation of the abstraction operator) rather each virtual activity contains one or more base
activities. In other words, a process view contains all activities of the base process but
in a new grouping. After a formal definition of elementary and virtual elements such as
activity, dependency, loop, etc., a rather simplistic meta-model is introduced. The authors
present three rules for construction of process views. An algorithm for automatic construc-
tion of possible process views with respect to the above mentioned rules is also presented.
It seems that the proposed approach may not be fully sufficient, as the process view is
considered as a new ordering of base activities and this may possibly be more effectively
implemented by means of complex activities. Note that all activities of the base process
must be contained in a process view. On the other hand this work is silent on correctness
issues of workflow views in an interorganizational workflow.

In addition to aggregation used in this work, the dissertation proposes application
of abstraction operator for constructing views. The dissertation is complementary in the
sense that temporal execution plans of the views and temporal and structural conformance
of interacting views are considered.

Business-to-Business Workflow Interoperation Based on Process-Views
[181] can be seen as a combination of [243, 180]. The construction of process views

originates from the authors’ previous work [180] enriched with the state mapping used
in [243]. However the authors use slightly different terminology for naming the states.
By introducing states for virtual activities, partners might be able to monitor the progress
status of a virtual activity. The state of a virtual activity is a function of the states of its
member base activities. This work is again silent on correctness issues of workflow views.

The focus of this work is state mapping between a process and its views. However, this
dissertation mainly focuses on how views can be correctly built.

The View-Based Approach to Dynamic Inter-Organizational Workflow Cooperation
Chebi, Dustdar and Tata in [74] propose an approach based on software oriented ar-

chitecture paradigm (SOA) for interconnection and cooperation of workflows. A semantic
registry for publishing and discovery of services is proposed, enabling other organiza-

5.1. Related Works 39

tions to build a cross-organizational cooperation by finding and binding to other partners.
Participants take part in the interorganizational workflow with their workflow views. In
order to minimize a view, it contains only cooperative tasks. i.e. tasks that either send
data to external workflows or receive data from external workflows. Workflow views are
called cooperative processes in this work. The interorganizational workflow, here called
public process, consists of virtual activities. Virtual activities are in charge of transferring
data to/from executable activities. A virtual activity is a subset of cooperative activities.
The cooperation between partners is handled and modeled by cooperation policies. In
contrast to a protocol, cooperation policies describe a set of allowed interaction scenarios
and are a set of rules in terms of data flow, access contract and workflow public process
definition. A third party is responsible for monitoring the interaction policies. Communi-
cation between partners is managed through a trusted third party. The authors claim that
their approach is appropriate for a dynamic setting i.e. where partners, their workflows
and interconnections are not predefined. However, there is a need for negotiation and a
contract for setting up the interaction policy and identification of public virtual activities.
The contribution of this work is introducing a semantic service registry, similar to SOA,
for searching and identification of partners in a semi-automatic fashion. In other words,
the negotiation between partners is shifted after identification of partners from the registry.
Note that this step is implicitly done in other approaches. Partners cannot negotiate and
set up a contract unless they do not know each other. The assumption that a workflow
view consists of only cooperative tasks, may not be sufficient in all scenarios. Imagine for
example when a service consumer subcontracts a service to a provider and the consumer
requires the monitoring of process progress at provider’s workflow. This work is silent
on correctness issues of public processes. It is assumed that negotiation between partners
results in a correct process.

This work uses views as a mean for cooperation between partners using only commu-
nication activities. The approach in this dissertation is more general. Not only communica-
tion activities but also other activities which may be necessary for a cooperation between
partners can be included in a view. Furthermore, temporal and structural conformance of
an interorganizational workflow composed of views is considered.

Workflow View Driven Cross-Organizational Interoperability in a Web-Service En-
vironment

Chiu et al. in [78] propose the application of workflow views for interoperability in
cross-organizational workflows. The balance between security and trust is considered to
be achieved through views. In other words, views restrict the access on a workflow and
conceal the internal, private or unnecessary information. A workflow view is defined as a
structurally correct subset of a workflow definition. The authors introduce a meta-model
concerning access rights on objects associated with a view. Other aspects like structural
or dataflow are not further considered. Moreover, they do not describe how views can be
constructed from a workflow and they provide no correctness criteria. An interaction pro-

40 5. Workflow Views

tocol consists of workflow views, communication graphs between these views, and a set
of inter-operation parameters. Communication graphs are a container for communication
links which in turn, are responsible for sending and receiving messages, i.e. messages are
sent through communication links. Inter-operation parameters are a set of attributes de-
scribing the necessary information for the business. The authors consider exception rules
also as a kind of interoperation parameter. In [78] an integrated view on workflow views
in an interorganizational interoperation is missing.

This work focuses on views as a tool for access restriction. This aspect is implicitly
considered in the proposed approach of this dissertation. Because such decisions, e.g.
which partner can access an activity, depend heavily on the context it is left to the user to
decide which activities are included in a view for a partner. The presented approach in
this dissertation gives workflow designers tools to design views from a private workflow.

Discovering Role-Relevant Process-Views for Disseminating Process Knowledge
In [182] Shen and Liu based on the framework provided in their previous work [78]

present a technique for designing workflow views and identification of relevant tasks
included in a workflow view for a specific role. In their approach, workflow views are
visible part of a process for a specific role. Hence, the authors argue that defining some
metrics for tasks (regarding a given role) in a workflow helps to find the most relevant
tasks for the according role. Workflow operations are used as a criteria to evaluate role-
task relevance. The provided metrics can be easily altered by considering other factors like
cost or the context of a process. These metrics are extracted and calculated by analyzing
the workflow logs. Given a threshold and by calculation of the metrics, the authors present
three algorithm for construction of a virtual activity set, construction of a virtual activity
set whose total relevance degree approximates granular threshold and construction of a
legal virtual activity.

This work uses metrics for construction of views. Such metrics are mined from work-
flow logs which implies that a private workflow must be exposed to specific roles before
such data can be mined for construction of views. The approach of this dissertation as-
sumes that workflow owners use views to protect their business know-how encoded in
the private workflow and they do not want to expose their private workflow to external
users.

Flows and Views for Scalable Scientific Integration
Building upon the notion of workflow views presented in [78], Li et al. in [177] in-

troduce a methodology for decomposition of complex processes in scientific domain and
building views based on flows. The authors argue that "the separation of flows results
in the increased flexibility and scalability of information services for cross-organizational
processes integration". Moreover, this separation yields in a better modifiability of the pro-
cess for different situations and applications. Note that only predefined exceptions can be
handled by exception flows and unknown exception are not considered in this work. The

5.1. Related Works 41

interactions among mentioned flows are triggered by external messages. Each flow can
have multiple views. The authors propose to build a view of a flow based on the analysis
of the required incoming messages (beginning with the core activities of a process and its
sub-processes), its immediate responses and the dependency between data and messages.
After all partners have published their views, the overall process can be constructed by in-
tegration of all views, whilst other flows such as exception flows and security flows have
to be considered in this step.

This work uses views as a tool for decomposition of a complex workflow into some
sub-flows. In other words, data flows, control flows, etc. are decomposed and each flow
is presented as a view on the workflow. This dissertation applies views mainly for the
interaction and cooperation of partners in an interorganizational setting.

Object-Oriented Realization of Workflow Views for Web Services - An Object
Deputy Model Based Approach

Shan et al. in [247] introduce an object oriented approach for workflow views called the
object deputy model. The definition and concept of workflow views is again taken from
[78]. A deputy object has its own persistent identifier and may have additional attributes
and methods that are not derived from its source objects. Moreover, there is a bilateral
link between objects and one of its deputy objects, which allows not only for inheritance
but also for update propagations between them. The authors provide a taxonomy of views
and a very simple meta model stating solely a subset-relationship between a workflow and
its views. In this work views are used for two main purposes: restriction of access and
composition. It is not discussed how workflow views can be constructed for mentioned
applications. Similar to a workflow view, a workflow restriction view is defined as a
structurally correct subset of a workflow definition. A workflow composition view is a
virtual workflow composed of components from different workflows, which may span
across organizational boundaries. The authors introduce a deputy algebra for definition
of classes and inheritance consisting of six operations. A workflow object model is also
introduced in this work. However, this model is mainly based on the model of object
management group.

This works sees views as a subset of a flow which can inherit properties from the
original flow and is silent on construction of views and its correctness. The focus of this
dissertation is on construction and correctness of views.

Summary and comparison of related works
Table 5.1 compares the related works on workflow views. The table summarizes if

τ-operator or aggregation are used for construction of view. If any correctness criteria
for constructed views are provided and if any other conformance criteria like temporal
conformance have been considered and for which purpose views are basically applied.
The last row summarizes the contribution of this dissertation. Note that the τ-operator is
defined in section 5.3 of this chapter.

42 5. Workflow Views

This dissertation is complementary to the related works in the sense that it provides
two ways for constructing views out of flows and in addition it provides a technique
for calculating the temporal execution plans of views based on flows. Furthermore, an
approach for checking the temporal and structural conformance of interorganizational
workflows composed of views has been proposed.

Paper Construction of Views Correctness Applied for
τ-operator Aggregation Views Other issues

[74] No Yes No No Cooperation
[78] No No No No Interoperability
[177] No No No No Flexibility
[180] No Yes Yes No N.A.
[181] No No No No Monitoring
[182] No Yes Yes No N.A.
[243] No No No No Cooperation
[247] No No No No Access restriction

Dissertation Yes Yes Yes Yes Cooperation

Table 5.1.: Summary of related work on workflow views

5.2. Correctness of Views

The assumption is that each partner has a private workflow which is only visible to its
owner and external parties have no knowledge about the process structure and internal
logic of the private workflow. In order to provide the necessary information for communi-
cation and interaction with other partners and/or service requesters, the workflow owner
provides views. A workflow can have many views, one for each partner, for each role of a
partner or for a group of partners. In this way the workflow is able to interact with external
parties whilst protecting private aspects of the process. It is assumed that all workflows
are full-blocked, i.e. each split-node has a counterpart join-node and vice versa. In this
work workflows are modeled by directed acyclic graphs G = (N, E), where N denotes the
set of nodes and E the set of edges. Nodes correspond to activities and control nodes and
edges to the dependencies between activities and control nodes. See also subsection 7.2.3.
Note that a view on a workflow is again a full-blocked workflow.

In order to construct correct views on workflows it is necessary that activities in a view
have the same ordering as in the underlying workflow. In other words a view on a flow
can not change the ordering of the activities of the underlying workflow. Such a view is
called an order-preserving view.

Definition 5.1: (Correctness of Views)
A workflow G′ = (N′, E′) is a correct view of a workflow G = (N, E) if and only if the

following properties hold:

5.3. Construction of Views 43

(a) G′ is a valid full-blocked workflow definition

(b) The nodes contained in G′ are a subset of the nodes of G or represent a subset of the
nodes of G

(c) ∀ nodes a, b ∈ N
⋂

N′ : [a > b]G′ ⇔ [a > b]G, where [a > b]G denotes that there is a
path from node a to node b in the graph G and N′ ⊂ N

A view G′ of a workflow G with the property (c) is called an order preserving view
of G. An order preserving view does not change the order of the nodes of the underlying
workflow.

5.3. Construction of Views

Here two ways for construction of views are considered:

1. Application of abstraction operator

2. Aggregation

By application of the abstraction operator (called τ-operator in process algebra [51])
it is possible to make parts of a process invisible to external observers. The τ-operator
is like a renaming operator that renames the label of an activity into a τ-label. The τ-
labeled activities then become internal activities and invisible to an external observer. The
abstraction operator provides a mean for construction of views. By application of this
operator parts of a process that do not contribute to the interaction with another partner,
are not interesting for external partners or are intended to be hidden because of privacy
issues can be made unobservable and the rest of the process can be exposed as a view on
the process.

Definition 5.2: (Abstraction operator)
Let G = (N, E) be a workflow. Application of the abstraction operator on an activity j

of a workflow G results in a workflow G′ = (N′, E′), denoted by τ(G, j) = G′.
τ(G, j) = G′ = (N′, E′) with

N′ = N− {j},
E′ = {(ns, nt) | [(ns, nt) ∈ E

∧
ns 6= j

∧
nt 6= j]}⋃{(ns, nt) | [(ns, j) ∈ E

∧
(j, nt) ∈ E]}

Abstraction of an activity j removes the activity j from the set of nodes N as well as all
edges whose source node or target node is the activity j from the set of edges E. An edge
from the predecessor of the activity j to its successor is added to the set of edges E. Note
that the abstraction operator can only be applied on activities and not on control nodes.

Definition 5.3: (Silent activity)
A τ-labeled activity is called a silent activity and is unobservable from outside by an

external observer.

44 5. Workflow Views

Figure 5.2.: Workflow G modeled as a directed acyclic graph

Let G = (N, E) be the graph depicted in figure 8.39.
The set of nodes of G is N = {a, b, c, d, e, AS, AJ} and the the set of its edges is

E = {(start, a), (a, b), (b, AS), (AS, c), (AS, d), (c, AJ), (d, AJ), (AJ, e), (e, end)}.
After application of the abstraction operator on activity b ∈ G, the graph transforms to

a new graph G′ with N′ = {a, c, d, e, AS, AJ} and
E′ = {(start, a), (a, AS), (AS, c), (AS, d), (c, AJ), (d, AJ), (AJ, e), (e, end)}. The new graph G′ is
depicted in figure 5.3.

Proposition 5.1: (Properties of the abstraction operator)

(a) Abstraction operator is commutative, i.e.
Let G = (N, E), ∀ activities a, b ∈ N :
τ(τ(G, a), b) = τ(τ(G, b), a)

(b) Abstraction operator is associative, i.e.
Let G = (N, E), ∀ activities a, b, c ∈ N :
τ(τ(τ(G, a), b), c) = τ(τ(τ(G, c), b), a)

(c) Abstraction is an order preserving operation and does not change the order of remain-
ing activities, i.e. Let G = (N, E) and G′ = (N′, E′) be the resulting graph after

5.3. Construction of Views 45

Figure 5.3.: Workflow G′ after application of abstraction operator on activity b in G

application of the abstractor operator on an activity of G,
∀ activities a, b ∈ N′ : [a > b]G′ ⇔ [a > b]G, where [a > b]G denotes that there is a
path from a to b in G

The resulting graph G′ is a valid full-blocked workflow definition.

The properties (a) and (b) follow directly from definition of the abstraction operator
(definition 5.2). The abstraction operator removes an activity from the set of nodes and
consequently the ordering of the activities in the resulting graph remains the same as
in the underlying workflow. In other words, abstraction is an order-preserving operator
and the resulting workflow view is an order-preserving view. Because the abstraction
operator can be applied only on activities and not on control nodes and it is assumed
that all workflows all full-blocked, the resulting graph after application of the abstraction
operator on a workflow is still a full-blocked workflow.

Another way of constructing workflow views is application of aggregation. By aggrega-
tion some activities are grouped into a so-called abstract or aggregated activity. Aggrega-
tion can be used for hiding the internal structure of a group of activities. The aggregated
activity is consequently contained in the workflow view and is in charge of sending and
receiving data to and from activities in the underlying workflow.

46 5. Workflow Views

Definition 5.4: (Aggregated activity)
Let G = (N, E) be a workflow. An aggregated activity AGA represents a graph GA =

(NA, EA) with the following properties:

¥ GA is a connected subgraph of G

¥ GA has a unique first node and a unique last node, i.e. GA has only one incoming
edge and only one outgoing edge

¥ If a split-node (join-node) is in NA, its counterpart join-node (split-node) is also in
NA

NA ⊆ N denotes the set of activities and control nodes in the aggregated activity and
EA the dependencies between activities and control nodes, where EA = {(ns, nt) ∈ E |
ns, nt ∈ NA}.

Note that GA is the graph representing internal structure of the aggregated activity and
AGA identifies the aggregated activity.

Definition 5.5: (Aggregation)
Aggregation is an operator that groups a subset of nodes of a workflow into an aggre-

gated activity. Let G = (N, E) be a workflow and G′ = (N′, E′) the resulting graph after
application of aggregation on some activities of G. Application of the aggregation operator
on a workflow G results in a new workflow G′, denoted by AG(G, NA) = G′.

AG(G, NA) = G′(N′, E′) with
N′ = N−NA

⋃{AGA},
E′ = {(ns, nt) ∈ E | ns 6∈ NA

∧
nt 6∈ NA}⋃{(ns, AGA), (AGA , nt) | ∃(ns, nf), (nl, nt) ∈

E, nf , nl ∈ NA}, where nf denotes the first node of GA and nl its last node respectively.

All nodes n ∈ NA are removed from N and the aggregated activity AGA is added. All
edges of the nodes contained in GA are as well removed from the set of edges E and
two edges are added. One edge from the predecessor of the first node of the aggregated
activity to the aggregated activity and another from aggregated activity to the successor
of the last node of the aggregated activity.

The above properties for NA are required to ensure that the workflow after applica-
tion of aggregation is still a valid full-blocked workflow definition. The following figures
demonstrate that by lack of any of these properties in definition 5.4 the resulting graph is
not a valid full-blocked workflow definition anymore.

Figure 5.4 clarifies why it is required that an aggregated activity be a connected sub-
graph of the underlying workflow. The aggregated activity in figure 5.4 is not a connected
subgraph and it can be seen that after aggregation the resulting workflow is not a valid
workflow definition anymore.

5.3. Construction of Views 47

Figure 5.4.: Aggregated activity is not a connected subgraph

Figure 5.5.: Left: A wrongly aggregated activity, Right: A correctly aggregated activity

48 5. Workflow Views

The left part of the figure 5.5 illustrates a wrongly aggregated activity. As it can be seen
the aggregated activity has three incoming edges and three outgoing edges. In such a case
it is not clear which activity is the first and the last activity of the aggregated activity. The
right part of the figure shows a correctly aggregated activity with only one incoming and
outgoing edge.

Figure 5.6 illustrates the need to include the counterpart of control nodes in aggrega-
tion. If it is not the case, the resulting graph is not a valid workflow definition as it can be
seen in figure 5.6.

Figure 5.6.: The counterpart of control nodes must be included in aggregation

Figure 5.7 demonstrates an application of aggregation. The workflow G on the left
part of the figure 5.7 has N = {a, b, c, d, e, f , g, AS, AJ} and
E = {(start, a), (a, b), (b, c), (c, d), (d, AS), (AS, e), (AS, f), (e, AJ), (f , AJ), (AJ, g), (g, end)}.
The resulting graph G′ has N′ = {a, x, e, f , g, AS, AJ} and
E′ = {(start, a), (a, x), (x, AS), (AS, e), (AS, f), (e, AJ), (f , AJ), (AJ, g), (g, end)}.

5.3. Construction of Views 49

Figure 5.7.: Application of aggregation

Figure 5.8.: Recursive application of aggregation

50 5. Workflow Views

The activities contained in an aggregated activity are not necessarily executable activ-
ities. Aggregated activities can again be aggregated into a new aggregated activity. In
other words aggregation can be applied in a recursive fashion. Aggregation is transitive
in the sense that if an activity j is contained in an aggregated activity x and the aggregated
activity x is itself contained in another aggregated activity y, then the activity j is contained
in the aggregated activity y, j ∈ x

∧
x ∈ y ⇒ j ∈ y.

Figure 5.8 demonstrates a recursive application of aggregation.

Proposition 5.2: (Properties of aggregation)

(a) Let G = (N, E) be a workflow and G′ = (N′, E′) the resulting workflow after applica-
tion of aggregation on some activities of G and NA the set of nodes of the aggregated
activity AGA :
∀ a, b ∈ N:
[a > b]G

∧
a, b 6∈ NA ⇒ [a > b]G′

[a > b]G
∧

a 6∈ NA
∧

b ∈ NA ⇒ [a > AGA]G′
[a > b]G

∧
a ∈ NA

∧
b 6∈ NA ⇒ [AGA > b]G′

(b) ∀ a, b ∈ N′:
[a > b]G′∧ a, b 6= GA ⇒ [a > b]G
[a > AGA]G′ ⇒ ∀ i ∈ NA : [a > i]G

(c) G′ is a valid full-blocked workflow definition

The above properties of the aggregation operator follow directly from the definition of
the aggregation operator (definition 5.5).

It is clear that if two nodes are not member of an aggregated activity, the path between
these two nodes remains the same and hence the ordering between these nodes remains
also the same. ([a > b]G

∧
a, b 6∈ NA ⇒ [a > b]G′) is true because aggregation only affects

members of an aggregated activity and all other nodes remains unaffected. If a node a
precedes a node of an aggregated activity, aggregation removes all edges of the aggregated
activity and adds one incoming edge to the aggregated activity, i.e. the node a precedes
the aggregated activity and ([a > b]G

∧
a 6∈ NA

∧
b ∈ NA ⇒ [a > AGA]G′) is true.

If a node b follows a node of an aggregated activity, aggregation removes all edges of
the aggregated activity and adds one outgoing edge from the aggregated activity, i.e. the
node b follows the aggregated activity and ([a > b]G

∧
a ∈ NA

∧
b 6∈ NA ⇒ [AGA > b]G′)

is true. With the same argumentation the reverse direction can also be proved. The above
properties show that aggregation is an order-preserving operator.

Also directly from definition of the aggregation operator follows that the resulting
graph after aggregation is a valid full-blocked workflow. Definition 5.5 requires that the
counterpart of each join-node or split-node must also be contained in an aggregated ac-
tivity. Because the underlying workflow is a full-blocked workflow, the resulting graph
remains also a valid full-blocked workflow definition.

5.3. Construction of Views 51

Definition 5.6: (Event Correspondence)
An aggregated activity begins when its first activity begins and terminates when its

last activity has terminated. The start of an aggregated activity corresponds to the start of
its first activity and its end corresponds to the end of its last activity

Proposition 5.3: (Property of views)
Let N = (G, E) be a workflow. Construction of views by application of abstraction

operator or aggregation as defined in definitions 5.2 and 5.5 on N results in a graph
N′ = (G′, E′) which is again a workflow.

The proof follows directly from the definition and properties of abstraction operator
and aggregation.

Theorem 5.1: (Aggregation and abstraction construct correct views)
Let N = (G, E) be a workflow. Application of abstraction operator or aggregation as

defined in definitions 5.2 and 5.5 on N results in a graph N′ = (G′, E′) which is a correct
view on N

In the properties of the abstraction operator (proposition 5.1) and properties of the ag-
gregation (proposition 5.2) it has been shown that the abstraction operator and aggregation
are order-preserving operators and the resulting graph after application of the abstraction
operator and aggregation is a valid full-blocked workflow definition. From the definition
of the abstraction operator (definition 5.2) follows that the set of nodes in the resulting
graph is a subset of the nodes of the underlying workflow and from the definition of ag-
gregation (definition 5.5) follows that only one node representing a subset of nodes of the
underlying workflow is added to the set of nodes of the resulting graph and the other
nodes are a subset of the nodes of the underlying workflow. Hence, workflow views con-
structed by application of abstraction operator and aggregation satisfy all the correctness
criteria in definition 5.1 and such views are correct workflow views.

5.3.1. Concatenation of Operators

After application of abstraction or aggregation operators on a workflow, the resulting work-
flow is again a valid full-blocked workflow definition on which abstraction or aggregation
operators can again be applied. Operators can be applied consecutively on a workflow to
construct a view.

Definition 5.7: (View Constructor)
Let G = (N, E) be a workflow and G′ = (N′, E′) a view on G. The view constructor

operator, VC(G) = G′, is a sequence of abstraction or aggregation operators, denoted by
G α→ .. α→ .. α→ G′, where α is either the abstraction operator or the aggregation operator.

After each application of α the workflow transforms to a new workflow. Note that the
sequence is finite and can be empty. Obviously there is no unique way of constructing

52 5. Workflow Views

views rather the same view can be constructed by different sequence of operators. The
view constructor is transitive in the sense that if G′ is a view on G and G′′ a view on
G′ then G′′ is a view on G. However, the commutativity is not valid because different
sequence of operators, produce different views.

Figures 5.9 and 5.10 show how the same view on the same workflow can be constructed
by two different sequences of operators.

Figure 5.9.: Constructing a view by a sequence of operators

5.3. Construction of Views 53

Figure 5.10.: Constructing the same view as in Figures 5.9 by a different sequence of operators

Chapter 6
Web Services and Web Service Standards

This chapter provides an overview on web services and the state of the art of its most
important related standards.

6.1. Web Services

A web service is a piece of code that executes a task. Web services are published on the
internet by service providers. A service provider can develop a web service with defined
interfaces and publish it. A service requester can search for services that he is interested in,
find them, bind to available web services and use the published services. This paradigm
remembers very strong of remote procedure calls (RPC). In the recent years web services
and web service technology have become popular in both industry and academia. This
is mainly because of useful and handy characteristics of web services that make them a
suitable technology for many application areas such as business process management and
distributed information systems. On the other hand, availability of internet as a medium
plays also an important role. Another reason for acceptance of web services is the fact that
it is standardized. The big plus of web services that makes them specially interesting is
their capability of being integrated into more complex systems, the so-called web service
composition. In other words web services are autonomous, stand-alone systems that can
be used as building blocks of other systems. Web services are autonomous in the sense
that they are operational in isolation as stand-alone systems and besides, they can be part
of a bigger, more complex, composed system.

The world wide web consortium defines a web service as "a software application iden-
tified by an URI, whose interfaces and bindings are capable of being defined, described,
and discovered as XML artifacts. A Web service supports direct interactions with other
software agents using XML based messages exchanged via Internet-based protocols". This
definition points out the important characteristics of web services. First of all web services
should be defined and published (by service providers) such that they can be discovered
by others (service requesters). It describes the main underlying standard of web service
technology: XML. All web service standards are XML-based. Web service technology is

55

56 6. Web Services and Web Service Standards

Figure 6.1.: Web serive standards

based on a set of standards as depicted in figure 6.1. In the following subsections the web
service standards are briefly introduced and discussed. Because the data transportation
layer is not web service specific, it is omitted and is out of scope of this work.

6.2. SOAP

Simple Object Access Protocol (SOAP) is a language and platform independent transport
protocol for data transportation which enables interoperability between services, systems
and remote machines over the Internet. SOAP has been specified by Microsoft in late
nineties with the primary goal of enabling remote procedure calls in decentralized, non-
homogeneous, distributed environments like Internet. Later other international big players
such as IBM , Sun Micro Systems , Developmentor and Userland have joined. SOAP is an
XML-based specification and builds upon existing transport protocols such as Hypertext
Transfer Protocol (HTTP), Simple Mail Transfer Protocol (SMTP) or File Transfer Protocol
(FTP). SOAP does not force any specific transport protocol. However, till now only HTTP
has been specified as underlying transport protocol and seems to become the standard.
SOAP is an XML-based language and it uses XML as intermediary representation when
messages are exchanged among heterogenous systems like java-based and C-based sys-
tems. In such a case the messages are transformed from the source representation into an
XML-representation and after the transport, again, to the data format of the destination
system.

A SOAP-message consists of three Parts:

1. An obligatory envelope

2. An optional header

6.3. WSDL 57

3. An obligatory body

All three parts are XML-messages. Body and header are child-elements of the enve-
lope. The envelope covers the message and provides a description of the message content.
The SOAP specification enforces how messages should be processed and who should pro-
cess them (the so-called actors). The optional header may contain additional information
such as comments, usernames, etc. that are not contained in the actual message. The
actual message is presented in the body of a message. It provides a mechanism for remote
procedure calls (RPC) and responses to such calls. The actual message may contain vari-
ables for RPCs, responses to RPCs or possible failures. Note that only failures resulted
by message processings will be contained in the body of a message. Other failures re-
sulted by the message transportation are handled directly by the HTTP mechanisms. The
SOAP-specification can be found at [1].

For specification, discussion, applications and detailed information on SOAP, refer to
[245, 249, 244, 151, 234, 116, 28].

6.3. WSDL

Web Services Description Language (WSDL) is an XML-based specification for description
of web services’ interfaces, interactions among web services as well as specification of their
locations. In the view of WSDL, a web service is a collection of ports. A WSDL-document
is basically comprised of two parts:

1. Abstract definition

2. Concrete definition

The separation of abstract and concrete definitions of ports or endpoints in WSDL
enables reusability, in the sense that concrete endpoint can reuse and deploy the definition
of abstract endpoints. The abstract part contains the following elements:

Types : defines the used data types for message exchange.

Messages : consist of one or more parts and are abstract definitions of exchanged data
(compare with function parameters).

PortTypes : are an aggregation of operations together with the involved messages (input
and output parameters).

WSDL supports all type systems such as XML schema definition and provides the
possibility for importing other data types defined in external schemas. An operation refers
to the communication style supported by an endpoint. WSDL Provides four types of
operations:

58 6. Web Services and Web Service Standards

1. Notification: an endpoint sends a message

2. One-way: an endpoint receives a message

3. Solicit-response: an endpoint sends a message and then receives its response

4. Request-response: an endpoint receives a message and then sends its response

Figure 6.2 illustrates the possible message transmission primitives, called operations,
in WSDL.

End pointmessageNotification

End pointmessageOne-way

End point

message
(1)

response
(2)

Solicit-response

End point

message
(1)

response
(2)

Request-response

Figure 6.2.: Possible operations in WSDL

The concrete part definition provides possibility for actual network deployment of the
abstract parts and consists of:

Bindings : define the binding information (message format, protocol details) for each of
the operations defined in the PortTypes part.

Services : are collection of ports. Each port is a communication endpoint for bindings.

Figure 6.3 shows schematically the relationship among different elements of a WSDL
specification.

6.3. WSDL 59

Is_composed_ofMessages Parts

Types

PortTypes Operation

Ports

Bindings

Services

Is_associated_with

Is_composed_of

Refers_to

Provides_specification_for

Is_composed_of

Specifies_address_for

Abstract Part

Concrete Part

Figure 6.3.: The relationship among different elements of WSDL

For specification, application, extensions, relationship with other web service standards
and discussion on WSDL, please refer to [77, 53, 27, 31, 84]

60 6. Web Services and Web Service Standards

6.4. UDDI

Universal Description, Discovery and integration (UDDI) [2] is an specification based on
standards such as XML and SOAP that does the almost similar thing for business ser-
vices and web services as search engines like Google do for the web. As its name implies,
by UDDI one can publish web services (description), search for web services (discovery)
and bind to the discovered web services (integration). A collaboration of IBM , Microsoft
and Ariba released the first version of the UDDI specification by the year 2000. The sec-
ond version has followed in the year 2001. The latest released version of UDDI is UDDI
Version 3.0.2. An organization consisting of several hundred firms [2] is responsible for
management, development and specification of UDDI.

As the numbers of available web services rapidly increases and almost explodes, there
is a need for a kind of search engine through which available web services can be explored
according to some user defined criteria and parameters. In addition, after finding the
appropriate web service or web services that match the user’s criteria, the user must know
where to find the service and how to bind to it. On the other hand, service providers
also need a mechanism for publishing their services. Building a bridge between service
providers and service requesters is the core idea of UDDI. This has obvious advantages
for business-to-business applications and facilitates the use of international marketplaces
over the Internet for enterprizes of any size on the globe.

Figure 6.4 shows how a UDDI registry works. The numbers beside the arrows, show
the order of execution.

UDDI

Registry

publish

Service

provider
Service

requester

search

find

bind

(1)

(2)

(3)

(4)

Figure 6.4.: The idea of UDDI

A service provider publishes its services on a UDDI registry (1), a service requester
queries the registry (2), receives the result list (3) and finally binds to the chosen service
(4). In the following, it is explained in more detail how each step is performed. Although
an UDDI-registry may seems to be a singular database to the user, it is in fact a distributed

6.4. UDDI 61

database. For publishing data in a UDDI-registry, it is imperative to use taxonomies and
data has to be published within taxonomies. Taxonomies provide a structure for data pre-
sentation and information can be published in a coherent and consistent way. In addition
to standard taxonomies such as the United Nations Standard Products and Services Code
System (UNSPSC) [14] or the North American Industry Classification System (NAICS)
[12], UDDI allows users to define their own taxonomy. Note that simultaneously more
than one taxonomy can be used. In addition to the requirement of using taxonomy for
publication of data into registries, it is required that UDDI implementations provide a way
for querying registries based on different taxonomies.

Analogous to a telephone directory, an UDDI-registry is composed of three different
categories:

1. White pages

2. Yellow pages

3. Green pages

White pages and yellow pages provide information for locating a service provider
(service discovery) while green pages provide technical information (service integration).
On white pages, general information about a provider such as name, contact information
e.g. address, telephone number, fax number, e-mail and URL can be found. Other optional
identifiers of a service provider may also be contained in white pages. Yellow pages
are classification of providers into different business categories. Service providers are
categorized on yellow pages and can be searched based on their business field. Finally,
the required technical information on how to bind to specific services can be found on
green pages. Green pages include references to web service implementations.

6.4.1. UDDI Architecture

The UDDI main architecture is composed of the following parts, which are briefly de-
scribed:

1. Data

2. Services and API sets

3. Nodes

4. Registries

UDDI Data Model
Data represents the stored information in nodes. The UDDI data model consists of six

different entities. Each entity is an XML-based, persistent piece of data.

62 6. Web Services and Web Service Standards

1. businessEntity: a description of a service provider

2. businessService: a description of provided services by a service provider

3. bindingTemplate: a description of the required information for binding to the pro-
vided services

4. tModel: a description of the technical model of a web service such as the used
protocol

5. publisherAssertion: a description of the relationships between different service
providers

6. subscription: by which a subscriber can be informed of possible changes in entities.
A change can be a new entry, deletion or update of data

UDDI Services and API sets
Application Programming Interfaces (APIs) and services are used for manipulation of

stored data and a standardized behavior and communication. By offered APIs, nodes and
clients are able to perform required actions such as data publication and data replication.

UDDI Nodes
An UDDI node is a web service or a set of web services supporting at least one of the

APIs. Each node can belong to at most one registry. The communication and manipulation
of data is realized through APIs.

UDDI Registries
An UDDI registry is a collection of (at least one) UDDI nodes. The stored data and

entities in a registry are managed by all of the constructing nodes of the registry. Stored
data in a registry can be accessed and manipulated by SOAP-messages through available
APIs. In addition, UDDI-registries may provide a web interface for accessing the stored
data in the registries. Some implementations of UDDI registry include the implementation
of IBM, accessible at [3] and the public test version of SAP which can be found at [4].
Microsoft has discontinued to operate its public UDDI registry.

6.4.2. Comparison of UDDI

In addition to UDDI, other somehow similar specifications such as ebXML [5] and mi-
crosoft’s BizTalk [6] are available.

ebXML working groups encompass more than one thousand companies and have
been started by the United Nations Center for Trade Facilitation and Electronic Business
(UN/CEFACT) [7] and Organization for the Advancement of Structured Information Stan-
dards (OASIS). The aim of ebXML is to manage business processes between the partners

6.5. WS-BPEL 63

in a specific business field. It describes the business processes and data exchanges in an
operational and functional view. The former describes the semantics and the latter the
services respectively. ebXML shows many parallels to UDDI. Shared data and services
are stored in a registry which is tightly coupled with a repository. The repository serves
as back-end. ebXML-based systems and UDDI-based systems can be integrated into each
other in the sense that ebXML based systems can contain UDDI registries and UDDI reg-
istries may have references to ebXML registries. Despite their similarities, the main ideas
for developing both specifications are different. While UDDI helps firms to integrate to
Internet-based market places, ebXML is thought for facilitation of business-to-business
applications [270]. In addition, ebXML provides a richer description data than UDDI. It
seems that UDDI is more suitable for large sized firms and ebXML for small and middle
sized companies.

BizTalk [184] is an initiative of Microsoft to enable secure exchange of documents and
is again an XML-based language. BizTalk enables organizations to exchange documents
through a Biztalk server [184]. Like ebXML, BizTalk can use and can be used by UDDI,
however it does not offer any possibilities for web service integration. Therefore UDDI is
more suitable for implementation of business processes through web services.

For specification, applications and discussions on UDDI refer to [8, 213, 159, 257]

6.5. WS-BPEL

Business Process Execution Language for Web Services (WS-BPEL) is a specification of
Microsoft, IBM, Siebel Systems, BEA and SAP aimed at providing interoperability among
business processes. WS-BPEL is a successor of IBM’s Web Services Flow Language (WSFL)
[176] and Microsoft’s XLANG (Web Services for Business Process Design) [255]. XLANG is
a hierarchical block structured language with common control flow constructs (sequence,
parallel, etc) while WSFL offers graph based constructs with specific control flow struc-
tures. WS-BPEL combines possibilities of both languages and provides both block struc-
tured and graph-based constructs. WS-BPEL is an XML-based language and lies on top of
WSDL. WS-BPEL uses common web services and XML standards such as WSDL [79], XML
schema [16], XPATH [82], WS-Addressing [62] and WS-Policy [39]. It should be noted that
WSDL introduces basically a stateless model of interaction while long running business
processes modeled by WS-BPEL are essentially stateful. For example when a requester
sends requests to some service providers, the requester must know which reply belongs
to which request.

WS-BPEL provides a formalism for modeling business processes, their (data depen-
dent) behavior and interactions among involved partners. It also provides an exception
handling mechanism including compensation activities. Every functionality is realized
thorough web services. Interactions, represented as abstract WSDL definitions, are per-
formed via web service interfaces and all partners are presented as services described in

64 6. Web Services and Web Service Standards

WSDL. The business process itself is again a web service which can be used and invoked
by other business processes.

WS-BPEL provides possibilities for two kinds of business processes:

1. Executable processes (orchestrations)

2. Abstract processes (choreographies)

An executable process is owned by one service provider and models the actual work
performed by a service including data transformations, data manipulations, etc. and is
only visible to its owner. An abstract process is owned by no partner and models the
message exchange protocol among involved partners. All involved partners are of equal
importance and the involved messages are visible to all of them. For the reasons of data
visibility, the data associated with an executable process is referred to as opaque data and the
associated data with an abstract process as transparent data. This distinction has obvious
advantages. The service provider dose not need to reveal its internal process logic and
can protect its business know-how while still able to communicate with other partners. In
addition, as long as an abstract process remains the same, the executable process can be
changed and modified with no external effect. In other words, interacting partners need
just to conform to the abstract process and do not care about the executable processes of
other partners. (compare workflow views, introduced in chapter 5). Despite the distinction
between executable and abstract processes, these two have an implicit relationship with
each other, e.g. the executed paths and decisions made at choice nodes may depend on
exchanged messages in the abstract process. For example in a web shopping scenario, the
quantity of purchased items by the buyer decides if the buyer receives a discount on his
purchase or no. Figure 6.5 illustrates such a scenario in graph representation. The left
side of the figure represents the abstract process between the buyer and the seller and the
right side the executable process of the seller. Note that this scenario is very simplistic and
does not represent a real life application. In the abstract process: the buyer first selects the
items (from a possible set of items), selects the quantity, finalize the order and puts it in
the basket and requests an invoice for his order. The seller receives the request for invoice,
calculates the final price and sends the invoice back to the buyer. The buyer receives the
invoice for his order and the interaction terminates. In the seller’s executable process: the
seller calculates the invoice. If the quantity of the ordered items is greater or equal to 5,
the buyer receives 10% discount on his order, otherwise the original price is calculated.
This example shows that how message exchange in the abstract process may influence
the behavior of the executable process. In this example the quantity of the ordered items
implicitly decides which branch of the decision node in the seller’s executable process
must be taken and executed. For a more detailed discussion on abstract and executable
processes please refer to section 7.1.

6.5. WS-BPEL 65

Figure 6.5.: Left: the abstract process between buyer and seller, Right: seller’s executable process

6.5.1. Business Processes in WS-BPEL

Definition of business processes in WS-BPEL contains the following parts, which are
shortly described in this subsection:

¥ Partner Links

¥ Partners

¥ Variables

¥ Correlation and Correlation Sets

¥ Fault Handlers

¥ Compensation handlers

¥ Event Handlers

¥ Activities

66 6. Web Services and Web Service Standards

6.5.1.1. Partner Links

A PartnerLink defines the interaction model between two business partners, where port
types and messages are defined. The interaction is modeled as a peer-to-peer (P2P) con-
versation. In other words, a PartnerLink identifies the interacting partner on the other side
of the communication and defines the static behavior of the process. Each PartnerLink is
characterized by a PartnerLinkType and must have a unique name. In a PartnerLinkType
the roles of the interacting partners are provided, where myRole and partnerRole identify
the defined roles for the business process and its interacting partner respectively. Roles
and WSDL ports have a one-to-one relationship. Note that it is also possible to define only
one role (myRole) in partnerLinkType definition. In this case the business process can
bind to any partner without constraints. WS-BPEL uses the notion of endpoint references
[62] for dynamic binding to other partners. Each role has a unique end point reference
and business processes can dynamically bind to providers of specific services.

6.5.1.2. Partners

The optional definition of partner is simply a disjoint subset of partnerLink definitions.
The relationship between a partnerLink and a partner definition is one-to-one.

6.5.1.3. Variables

in WS-BPEL variables are used for three purposes:

1. Data expression

2. Data manipulation

3. Management of process states

WS-BPEL assumes that the main work, including data manipulation, is performed
externally by web services and hence only basic, general purpose data expression and
manipulation possibilities are provided. WS-BPEL provides four types of variable expres-
sions:

¥ Boolean expressions are used for evaluation. E.g. decision nodes or exit conditions
of loops.

¥ Deadline expressions: identify reaching of a specific deadline (date and time).

¥ Duration expressions: identify that a period has passed.

¥ General expressions: such as alphanumeric values.

6.5. WS-BPEL 67

In addition to common operators such as ≥,≤, the activity assignment is used for copy-
ing and insertion of values from a source variable to a target variable. assignment can also
be used for copying of endpoint references.

6.5.1.4. Correlation and Correlation Sets

As stated earlier, in contrast to stateless nature of WSDL messages, WS-BPEL processes
are long running and stateful business processes which send and receive many messages
during execution of a process. It must be clear which reply belongs to which request and
also it must be ensured that messages are sent to the right WSDL port of the receiver in
course of the execution. In addition to the assurance of delivery to the right WSDL port,
it must be guaranteed that the message is also delivered to the right instance of a process
definition, as a process may have many simultaneously running process instances. WS-
BPEL as a platform and implementation independent specification, realizes these goals by
"business data and communication protocol headers". Correlation tokens are in charge of
handling the automatic instance routing. Correlation tokens or correlation set is referred
to the shared properties by all messages in a correlated set of operations within a single
instance. A correlation token may by for example a reference number that uniquely iden-
tifies this communication. The relationship between messages and correlation tokens is
one to many, in the sense that one message can carry many correlation tokens. Correlation
sets can be declared and are valid within scopes. correlation sets declared within a local
scope, are called local correlation sets. They loose their validity outside of the associated
scope or after completion of the scope. The correlation sets defined for the entire business
process are called global correlation sets (cf. variable declaration in object oriented pro-
gramming). Within the validity scope, the property values of the correlation set, carried by
different messages of different operations, are not allowed to be changed and must remain
the same. A scope provides the execution context for activities in WS-BPEL. A scope, in
addition to its normal activities, correlation sets and variables, may have fault, compen-
sation and event handlers. Each scope is only visible and valid up to its next immediate
scope that directly encloses it.

6.5.1.5. Fault Handlers

During the execution of a WS-BPEL process several kinds of faults may occur. Occurrence
of faults means that the normal behavior of the scope is interrupted and the scope is
in faulty mode. Similar to the object-oriented paradigm, WS-BPEL provides a throw-
catch mechanism for fault handling where faults have associated fault handlers. WS-BPEL
provides two types of fault handlers:

1. Explicit fault handlers

68 6. Web Services and Web Service Standards

2. Implicit fault handlers

Explicit fault handlers are basically user defined activities that will be executed when
a certain fault or a set of faults are caught. Explicit fault handlers may contain an empty
set of activities and simply do nothing about the caught faults. They can be seen as a
wrapper for the defined set of fault handling activities. An optional catchAll can catch all
faults that are not caught by more specific fault handlers. The semantic of a fault handler
in WS-BPEL is in fact reversal and undoing the faulty parts of the associated scope. Note
that fault handler itself does not always complete successfully and may rethrow the fault.
If a fault handler itself ends up faulty or if the fault is not caught by the scope within a
fault handler, it will be delivered to the scope that immediately encloses the current scope.

A fault is uniquely identifiable by its name and may have associated fault data and
an optional internal fault variable. By absence of fault data, faults are caught by their
matching fault names. If no such catch activity is present, they will be caught by the
catchAll activity. If again, no catchAll statement is given, the fault is delivered to the parent
scope, i.e. the scope that directly encloses the current scope. If fault data is present, a fault
handler whose catch activity has the matching fault name and fault variable is in charge of
catching and handling the fault. If there is no fault handler with both matching fault name
and fault variable, a fault handler with just a matching fault is responsible for catching
and handling the fault. Else, as before, a catchAll and the parent scope respectively are
in charge of catching and handling the fault. In addition to the fault handler associated
to the scope in which an activity executes, it is possible to define inline fault handlers for
each activity.

In case no explicit fault handler has caught a specific fault, this fault is handled im-
plicitly in the sense that all compensation handlers of the scope in which the fault has
occurred are executed in the reverse order for the parent scope and the fault is delivered
to the parent scope and rethrown there.

6.5.1.6. Compensation Handlers

Another possibility of WS-BPEL is compensation handlers. Compensation means reversal
and undoing the done work. Compensation can be performed for a single activity, a scope
or an entire business process instance. Note that there is an important difference between
compensation and cancel activity. A cancel activity is usually has no side effects, the
canceled activity terminates and the state of the world is the same as before the execution
of the activity. On the other hand, compensation is usually associated with additional
costs or side effects. In many scenarios, compensation does not bring the state of the
world back to the original state of the world (the state of the world before the execution of
the activity). Imagine for example buying a book from Amazon. When a buyer orders a
book, he can cancels his order before the book is shipped and his credit card is not charged.

6.5. WS-BPEL 69

But when the ordered book is shipped and the buyer wants to compensate his order, he
has to send the book back to Amazon, which is coupled with shipping costs and also he
may not receive the whole purchase price.

Based on Sagas [126, 41] providing semantic atomicity and open nested transaction
[256, 273], WS-BPEL provides a mechanism for execution of compensation activities. In
the domain of business processes, compensation handlers are more important and play
a bigger role than fault handlers. Due to the long running nature of business processes,
the ACID properties- atomicity, consistency, isolation, durability- are not available for the
entire business process and hence it is impossible to lock the the resources for a long
period.

Like faults handlers, compensation handlers are a group of defined activities, which
again can be empty. These activities will be executed in case of invocation of the associ-
ated compensation handler. A compensation handler can be defined for a scope, inline
for single activities or for an entire business process instance. In contrast to fault handlers
which can be invoked if their scope terminates unsuccessfully and abnormally, compensa-
tion handlers can only be invoked if the scope, for which they are defined, has completed
successfully. It means also that a faulty scope never has an installed compensation handler.
The semantic of compensation handlers says that compensation handlers after completion
of their associated scopes see a snapshot of variables (state of the world) i.e. live data of a
business process cannot be updated by compensation handlers. A compensation handler
can be explicitly invoked by the activity compensate. Note that the activity compensate
can be used only in a fault handler of a compensation handler of the parent scope. If no
compensation handler is present, WS-BPEL provides an implicit compensation handling
mechanism by running all compensation handlers of the parent scope in the reverse order
of completion of the current scope.

6.5.1.7. Event Handlers

Another type of handlers in WS-BPEL are event handlers. Event handlers define a group
of activities that will be executed in case of occurrence of the corresponding event. In
WS-BPEL, an event is either an incoming message or an alarm event that indicates a time-
out. Except for explicit invocation of compensation activities, activity compensate, an event
handler can contain all activities. Event handlers are parallel constructs to the associated
scope and are considered as normal behavior of the scope. It means that faulty behavior
of an event handler is considered as faulty behavior of the scope. Event handlers can be
enabled as long as the scope is active and the whole scope, itself, remains active as long as
the event handlers are enabled.

A message event handler, identified with the tag onMessage, defines the activities that
have to be performed if a message arrives. Its semantics is very similar to that of the
reply activity (see subsection 6.5.1.8 for the semantics of the reply activity). Note that

70 6. Web Services and Web Service Standards

the incoming message may correspond to a synchronous or asynchronous pattern. In the
former pattern, the event handler is in charge of sending the reply. It is obvious that
multiple messages may arrive during the lifetime of a scope and hence message event
handlers remains active as long as the scope is active and can be enabled multiple times.

An alarm event handler, identified by onAlarm tag, executes a set of defined activities
when a predefined time point has been reached. This can be a deadline (a point in time)
a period in time (a duration). The clock starts when the scope becomes active. Unlike
message event handlers, alarm event handlers can be enabled only once during the lifetime
of a scope.

6.5.1.8. Activities

Activities are basic units of work that are performed in the course of a business process.
They include control flow activities, web service invocations and activities for interaction
and messaging. WS-BPEL does not provide sophisticated activities for data manipulation
or alpha-numerical operations. The assumption is that data manipulations and computa-
tions are basically carried out externally by web services. For concurrency and synchro-
nization purposes, two activities can be connected through a link. A link is identified by a
unique name and defines the order of execution of activities. The target activity of a link
can not execute until the source activity has terminated successfully. In addition to struc-
tural requirements of a business process, links, as well, impose restrictions on execution
order of activities. There may be an optional transition condition for a link. A link with a
transition condition is followed if its transition condition evaluates to true.

Figure 6.6 illustrates parts of a business process in graph notation. The dotted line
demonstrates a link between activities X and D. The activity X is the source activity
and the activity D the target activity. In this example, the activity D must wait for its
predecessor, activity B (structural constraint) and also for the the source activity of the link,
activity X (link constraints) before it can start execution. As this example shows, a link
can cross the boundaries of structured activities such as sequence and parallel constructs.
However it must bo noted that links are not allowed to cross the boundaries of while,
event and compensation handlers and serializable scopes1.

1Similar to serializability in database systems [54, 214], a serializable scope provides concurrency and access
control for shared resources and variables. The fault handler of a serializable scope share its serializability
while its compensation handlers do not.

6.5. WS-BPEL 71

Figure 6.6.: A link between two activities

An activity has two standard boolean-valued attributes: join condition and suppresseJoin-
Failure. The join condition specifies when the target activity of other activities can execute
i.e. it evaluates the status of incoming links and the corresponding activity is executed
if the join condition evaluates to true. If an explicit join condition is absent, WS-BPEL
assumes an implicit join condition which evaluates to true when status of at least one in-
coming link is positive. suppresseJoinFailure whose default value is no, determines if an
occurred join failure should be suppressed or no. A value of yes for suppresseJoinFailure
means that the failure has been caught by an inline fault handler for this activity. How-
ever, the inline fault handler has an empty list of fault handling activities and actually
does nothing about the caught fault. If a join condition of an activity whose suppresseJoin-
Failure value is set to yes evaluates to false, the activity will be skipped and consequently
all of its outgoing links will be assigned a negative status.

WS-BPEL provides following activities which are briefly discussed:

¥ invoke

¥ receive

¥ reply

¥ throw

¥ wait

¥ empty

¥ sequence

72 6. Web Services and Web Service Standards

¥ switch

¥ while

¥ pick

¥ flow

Invoke provides the possibility of invoking exposed services of other web services. This
can be done in a synchronous (request-response) or asynchronous (one-way) fashion. The
difference between these two communication patterns is that in a synchronous communi-
cation the requester after sending the request, blocks and waits until the corresponding
reply is arrived and then the execution of the rest of business process can be continued.
The advantage of this pattern is its rather simple implementation and its obvious disad-
vantage is longer execution time because the requester blocks and waits for the response.
In an asynchronous communication the requester after sending the request does not block
and continues with the business process. In a later time point when the reply has arrived,
it will be processed. The advantage of this pattern is the shorter execution time of the
whole business process but on the other hand the implementation is more complex than
synchronous pattern. In WS-BPEL, synchronous communications require variables for
both input and output while an asynchronous communication requires variables only for
input.

Through receive activity web services expose their services which can be invoked by
other web services. The invoking partner must know which operation via which partner
link and port type can be invoked. Note that the same port type, operation, partner link
and correlation set can be assigned to only one receive activity. In addition, a receive
activity can be creator of a new process instance. The activity receive can be used in
synchronous communications i.e. it is a blocking activity that blocks and waits for the
corresponding message to arrive at its specified ports through the specified link.

After a message has been received through a receive activity its response can be sent
through a reply activity. A reply activity must always come after a receive activity. It is
obvious that it is impossible to reply as long as no request or message is present.

The throw activity is used when faults need to be thrown and consequently handled.
Faults must have unique names. However, there is no need to predefine them before they
are thrown by a throw activity.

Activity wait can be applied in scenarios when delays need to be inserted in a busi-
ness process. In such a case the business process simply waits and delays the execution
of subsequent activities. This activity can be used for time management purposes. E.g.
invocation of a partner’s service can be performed only at a certain time point or time
interval.

empty is a basic activity that does nothing and has no effect. See for example suppress-
ing join failures described above for an application of this activity.

6.5. WS-BPEL 73

sequence is a control flow activity that defines in which order a group of activities
will be performed. The activity sequence describes a chain of activities that are executed
one after another in the exact order that are listed between the sequence tags. Figure 6.7
illustrates a sequence of activities A, B and C. The activities will be executed exactly in
this order. Note that each activity can executes as soon as its predecessor has finished
execution. E.g. activity B must wait for activity A to finish in order to start execution. A
sequence starts when its first activity starts execution and finishes when its last activity
finishes execution.

Figure 6.7.: A sequence of activities

The conditional behavior (XOR-split) can be modeled by activity switch. This activity
has several branches and an optional otherwise branch. If the condition for a branch is
fulfilled (characterized by the case statement), this branch will be taken and executed. If
condition of no branch evaluates to true, the otherwise branch is taken. By absence of an
explicit otherwise branch, WS-BPEL assumes an implicit otherwise-branch that does noth-
ing. In other words, a switch terminates always even if condition of no branch evaluates
to true. A switch activity starts when a branch is taken and completes when the taken
branch completes.

Similar to other programming languages, the activity while models loops. The loop is
iterated as long as the while condition remains true.

The activity pick is used for event handling. It waits for the occurrence of a set of events
and handles the event accordingly. An event can be either an alarm or a message. In the
latter case, the pick activity can be used as an alternative to a receive activity which also
provides possibility of creation of a new process instance (createInstance=yes). The pick
handles the first arriving event and discards the subsequent events. If two events arrive al-
most simultaneously, the accepted event is chosen based on temporal and implementation
issues.

Parallelism and concurrency can be modeled by the activity flow. It provides several
branches that are executed in parallel. A flow construct terminates when all of its branches
have terminated. In other words, a flow construct always waits for its longest branch to
complete and the execution duration of a flow construct is equal to the length of its longest
branch. In addition to parallelism, flow enables expression of concurrency for its nested
activities.

74 6. Web Services and Web Service Standards

For a whole specification of WS-BPEL [32], syntax of activities, examples and exten-
sions for executable and abstract processes please refer to WS-BPEL specification which
can be found at [9].

Chapter 7
An Architecture for Interorganizational Workflows

In this chapter an architecture for interorganizational workflows is presented. Such work-
flows cross the boundaries of single organizations and inter-connect several partners that
belong to different organizations. Partners communicate and cooperate with each other
in the context of the interorganizational workflow to reach the over all goals of a business
process. It is assumed that partners and organizations use web services and web service
related technologies to define the communication protocol and implement the tasks. One
of the biggest advantages of web services is their capability of being composed into more
complex systems. Web services can be seen as autonomous, stand-alone entities that can
be integrated in a modular fashion into bigger systems with web services as their building
blocks. The composed system is greater than the sum of their components. Composition
of web services is recursive, in the sense that the composed system can itself be published
as a web service and be integrated in an even more complex system. By composition, there
is no need to develop web services for specific tasks from scratch rather the system can be
built using available web services. In this chapter, in addition to presentation of a nouvelle
architecture that offers some advantages compared with available proposals, the concepts
used in web service composition and state of the art are discussed and introduced.

7.1. Choreographies and Orchestrations

Two mostly used concepts in the realm of web service composition are choreographies
and orchestrations. Web service composition refers to building more complex and sophis-
ticated systems out of the basic building blocks. The composed system is in turn a web
service that can be invoked by other web services.

An orchestration, also called an executable process in WS-BPEL, belongs to and is con-
trolled by one partner and describes an executable process which is run by its owner. A
partner’s internal logic and business know-how are contained in his orchestration. An-
other tasks such as data transformations, data handling, arithmetic operations, the actual
performed work and communication tasks (send and receive of messages) are as well
contained in an orchestration. An orchestration is solely visible to its owner and other

75

76 7. An Architecture for Interorganizational Workflows

external partners have no view on and knowledge about this orchestration. An orches-
tration is a process viewed only from the perspective of its owner. An orchestration is a
recursive composition of web services, in the sense that it is composed of web services and
the orchestration, itself, can be exposed as a service and reused by other orchestrations.
An orchestration engine is in charge of running and execution of orchestrations. Different
languages such as WS-BPEL executable process or business process modeling language
(BPML) [34] can be used for definition of Orchestrations.

On the other hand, a choreography, called abstract process in WS-BPEL, is a non-
executable, abstract process that defines the message exchange protocol between (at least
two) partners. A choreography defines a collaboration among involved partners for reach-
ing an overall business goal. A choreography contains only the visible messages that are
exchanged between partners in course of a business process. The exchanged messages
are visible to all participants of a choreography. External parties who are not part of a
choreography are not able to view and monitor the messages and have no view on the
choreography. A choreography has no owner or a super user in charge of control and
all involved partners are treated equally. A choreography is a process definition from
a global perspective shared among all involved partners [217]. A choreography can be
seen as a contract among partners where duties and rights of each partner are defined.
In other words, it is defined which operations a partner has to execute and provide for
other partners (duties) and to which operations a partner has access (rights). The tasks
contained in a choreography are divided between its participants i.e. each task is assigned
to a partner for execution. Partners execute their tasks in their orchestrations. Because of
the abstract nature of a choreography definition, there is no engine needed for execution
of a choreography. Choreographies are called collaboration protocol profiles in ebXML.
Choreographies can be modeled amongst other by WS-BPEL abstract process or web ser-
vices choreography description language (WS-CDL) [158]. A discussion and critique on
WS-CDL can be found at [90, 42].

Figure 7.1 illustrates the difference between choreographies and orchestrations. On
both left and right sides there are two orchestrations composed of web services. The
choreography defines the message exchange and communication protocol between these
two orchestrations.

7.1. Choreographies and Orchestrations 77

Figure 7.1.: The difference between choreography and orchestration (Image from [217])

Figure 7.2.: A typical scenario of web service composition

78 7. An Architecture for Interorganizational Workflows

A typical scenario [90, 42, 102] of web service composition assumes one choreography
shared among several partners where each partner realizes and executes its parts of the
choreography in its private orchestration. Each orchestration provides a view which is
used for interaction and communication with other partners. The shared choreography
defines and coordinates the communication and interaction among orchestrations and is
an integration of the views on the orchestrations. A view is not only a view on an or-
chestration bur also a view on the shared choreography. For a more detailed discussion
on views and its correctness criteria refer to chapter 5. Figure 7.2 illustrates this scenario
consisting of three partners each with his own orchestration. The realize relationship be-
tween orchestrations and the shared choreography describes a partial realization of the
shared choreography by an orchestration. An orchestration realizes only those parts of the
shared choreography that belong to its owner, i.e. the provided view on this orchestration.
In other words, the realization of the shared choreography is divided among the three
orchestrations. The parts that belong to each partner is defined in its view.

Imagine a procurement scenario, which is a well understood scenario in the literature,
whose participants are a buyer, a seller and a shipper. Figure 7.3 shows a choreography
between them. In this choreography, the seller after receipt of the Request quote from buyer,
processes it and decides if to accept or reject the request and then informs the buyer about
his decision. After buyer has received the result, if seller has rejected the request the
process goes to the end states and terminates, otherwise the buyer places an order. The
seller processes the order and sends the details, such as recipient’s name and address to
the shipper which are needed for the shipment of the ordered item. The shipper receives
the results and processes it. The shipper then in parallel ships the goods to the seller and
informs the seller about the shipment. After the seller has been notified that the ordered
item is shipped, sends the bill to the buyer. The buyer after receipt of both bill and the
ordered item, makes the payment. The process terminates when the seller has received
the payment. This process represents a simple scenario. A real life business process is
more complex including exception handling mechanisms or for example the shipper may
be chosen dynamically from a possible list of available shippers based on some criteria by
the seller. The partners’ orchestrations have additional activities which are not contained
in the shared choreography. The buyer’s orchestration is depicted in figure 7.4. The
buyer before making a request for quote to the seller, searches for available sellers for his
requested item and based on his internal criteria selects a seller. Figure 7.5 depicts the view
on the buyer’s orchestration. As noted earlier, a view on an orchestration is in addition a
view on the shared choreography and identifies the parts that belong to a specific partner
of the shared choreography and this partner is in charge of its realization. By realization of
the activities that belong to a partner, the partner has a conformant behavior with respect
to the agreed upon choreography. A view shows a single partner’s perspective on the
choreography and can be used as a skeleton for designing the partner’s orchestrations by
adding other internal tasks. In other words they show the minimum amount of task as

7.1. Choreographies and Orchestrations 79

well as the structure of the tasks that a partner’s orchestration must contain in order to be
conformant with the shared choreography.

Figure 7.3.: The shared choreography between buyer, seller and shipper

80 7. An Architecture for Interorganizational Workflows

Figure 7.4.: The buyer’s orchestration

7.1. Choreographies and Orchestrations 81

Figure 7.5.: The view on the buyer’s orchestration

The seller’s orchestration is presented in figure 7.6. The seller in parallel to preparing
the shipment (this includes also payment of the shipment costs to the shipper), evaluates
the history of the buyer and based on the buyer’s previous purchase history considers
possible discounts. In addition, the seller calculates the total cost based on the original
price, possible discounts and shipment costs. After receiving the payment from the buyer,
the seller’s orchestration is finalized by updating buyer’s history. The view on the seller’s
orchestration is presented in figure 7.7.

82 7. An Architecture for Interorganizational Workflows

Figure 7.6.: The seller’s orchestration

7.1. Choreographies and Orchestrations 83

Figure 7.7.: The view on the seller’s orchestration

The shipper’s orchestration, as illustrated in figure 7.8, has as well additional activities
compared to his part in the choreography. This includes sending the shipment bills to
the seller, activity Send Ship bill, and receiving a confirmation from bank indicating the
payment of the bill by the seller, activity Receive confirm. After the goods are sent to the
buyer and the seller has been informed about the shipment details, the seller’s history is
being updated in shipper’s database. The view on the shipper’s orchestration is presented
in figure 7.9.

84 7. An Architecture for Interorganizational Workflows

Figure 7.8.: The shipper’s orchestration

7.2. Federated Choreographies 85

Figure 7.9.: The shipper’s part in the shared choreography

7.2. Federated Choreographies

The typical scenario explained above, one shared choreography and a set of private orches-
trations, misses an important facet. This scenario, presence of only one choreography, is
not fully adequate for all real life applications. Imagine a web shopping scenario. When
shopping online a buyer takes part in a choreography whose partners are the buyer, a
seller company like Amazon , a credit card provider like Visa or Master Card and a ship-
per company like DHL or FedEx. The buyer knows the following partners and steps: the
buyer orders something at the seller, pays by a credit card and expects to receive the items
from a shipper. At the same time the seller takes part in several other choreographies
which are not visible to the buyer, e.g. the seller and the credit card company are involved
in a process for handling payment through a bank. Furthermore, the seller and the ship-
per realize another protocol they agreed upon containing other actions such as money
transfer from the seller’s bank to the shipper for balancing shipment charges (see seller’s
and shipper’s orchestrations represented in figures 7.6 and 7.8). As this example shows,
more than one choreography may be needed for reaching the goals of a business process.

86 7. An Architecture for Interorganizational Workflows

Besides, two partners involved in one choreography may also take part in another chore-
ography that is not visible to other partners of the choreography, however essential for the
realization of business goals. All these choreographies overlap in some parts but cannot
be composed into a single global choreography. Moreover, such choreographies must be
realized by orchestrations of partners that take part in them. In the above example the
seller implements an orchestration enacting the different interaction protocols with the
buyer, the shipper and the credit card company. Even if the combination of all choreogra-
phies into one choreography would be possible, the separation offers obvious advantages.
To overcome these restriction, a new architecture and a nouvelle approach for interorga-
nizational workflows, called federated choreographies, is proposed. The main idea of the
federated choreographies is presented in figure 7.10. It consists of two layers. The upper
layer consists of the federated choreographies shared between different partners, e.g. in
figure 7.10 choreography 1 is shared between partner 2, partner 3 and partner 4. A choreog-
raphy is composed of views of the orchestrations by which the choreography is (partially)
realized. In other words, the activities contained in a choreography are only those in
the views. A choreography may support another choreography. This means the former,
the supporting choreography, contributes to the latter, the supported choreography, and
partially elaborates it. E.g. choreography 1 is the supporting choreography and global chore-
ography is the supported choreography. The set of activities contained in a supporting
choreography is an extended subset of the activities of the supported choreography. The
supporting choreography describes parts of the supported choreography in more detail.
The choreography which supports no other choreography and is only supported by other
choreographies is called the global choreography. Informally, the global choreography cap-
tures the core of a business process and other choreographies which support the global
choreography describe parts of the global choreography in the needed detail for imple-
mentation. In order to clarify the concept, the general architecture is applied to the web
shop example and is depicted in figure 7.11. The bottom layer consists of orchestrations
that realize the choreographies in the upper layer. Each orchestration provides several
views for different interactions with other partners. The interactions with other partners
are reflected in the choreographies. Hence, an orchestration needs to provide as many
views as the number of choreographies this orchestration (partially) realizes. Each partner
provides its own internal realization of relevant parts of the according choreographies, e.g.
seller has an orchestration which realizes its part in all three choreographies. The seller’s
orchestration is presented in figure 7.6.

7.2. Federated Choreographies 87

Figure 7.10.: The idea of the federated choreographies

In order to clarify the concept the general architecture is applied to the web shop ex-
ample and is depicted in figure 7.11. In figure 7.11 the global choreography, Purchase
processing choreography, describes how an item is sold and shipped to the buyer. It contains
the activities and steps which are interesting for the buyer and the buyer needs to know
them in order to take part in or initiate the business process. How shipping of the items
and debiting the buyer’s credit card is handled in reality are described in the Shipment
processing choreography and the Payment processing choreography respectively. Let the pur-
chase processing choreography be the choreography depicted in figure 7.3, the Shipment
processing choreography, the supporting choreography, is represented in figure 7.12.

88 7. An Architecture for Interorganizational Workflows

Figure 7.11.: A web shopping example modeled by the federated choreographies

The bottom layer consists of orchestrations that realize the choreographies in the up-
per layer. Each orchestration provides several views for different interactions with other
partners. The interactions with other partners are reflected in the choreographies. Hence,
an orchestration needs to provide as many views as the number of choreographies this
orchestration (partially) realizes. Each partner provides its own internal realization of rele-
vant parts of the according choreographies, e.g. seller has an orchestration which realizes
its part in all three choreographies. The seller’s orchestration is presented in figure 7.6.

The presented approach is fully distributed and there is no need for a centralized coor-
dination. Each partner has local models of all choreographies in which it participates. All
local models of the same choreography are identical. By having the identical local models

7.2. Federated Choreographies 89

of choreographies, partners know to which activities they have access, which activities
they have to execute and in which order. In addition, partners are aware when to expect
messages and in which interval they can send messages. In other words, the knowledge
about execution of the model is distributed among involved partners and each partner
is aware of its duties in the course of process execution. Hence, there is no need for a
super-user or a central role that possesses the whole knowledge about execution of the
process. Rather this knowledge is distributed among participants and each partner knows
what he needs to know. Additionally, each partner holds and runs its own model of the or-
chestration. Note that if there is a link between two chorographies and/or orchestrations,
either a support link between two choreographies or a realize link between a choreography
and an orchestration, it implies that these two choreographies and orchestrations have at
least one activity in common. That means that the greatest common divisor of these two
choreographies and/or orchestrations is not empty. Greatest common divisor is defined
in definition 8.38.

90 7. An Architecture for Interorganizational Workflows

Figure 7.12.: The shipment processing choreography

In fact, one can argue that supporting choreographies may be combined by the means
of composition as described in [158, 70] where existing choreography definitions can be
reused and recursively combined into more complex choreographies. But, in fact, the re-
lationship between choreographies can be more sophisticated than merely a composition.
In our example the relationship between the seller and the shipper includes not only the
passing of shipment details from the seller to the shipper but it also involves payment
of shipment charges through the seller’s bank. This is described by a separate choreog-
raphy between seller, shipper and the bank. This choreography, shown in figure 7.12,
has additional activities and partners which are not visible in its supported choreography.
This choreography contributes to the Purchase processing choreography (see figure 7.3) and
elaborates the interaction between the seller and the shipper.

7.2. Federated Choreographies 91

7.2.1. Advantages of the Federated Choreographies

Federated choreographies are more flexible than typical compositional approaches used in
proposals like WS-CDL and it closes the gap between choreographies and orchestrations
by providing a coherent and integrated view on both choreographies and orchestrations.
Federated choreographies offer obvious advantages such as:

Protection of busienss know-how: Federated choreographies improve business secrecy and
protect business know-how. If the whole business process including all involved
partners are modeled as one single choreography, all message exchanges are visible
to all partners. For example a customer or a provider can view how the seller handles
the shipment with the shipper. But if the interactions between the seller and the
shipper are separated into a different choreography, other external observers has no
view on and knowledge about the message exchanges and the actual handling of
business. In other words, the seller can keep how he does business with the shipper
private .

Avoidance of unnecessary information: Federated choreographies avoid unnecessary infor-
mation. Even if there is no need for protection of business know-how, it is desirable
to separate choreographies and limit them only to the interested parties. Imagine a
customer intending to buy a book from Amazon. As long as he receives the orderer
book, the customer is not interested to be aware of how the shipment is handled
between Amazon and the shipper and he/she has no interest to receive messages
regarding the detail of shipment process between Amazon and the shipper.

Extendability: Federated choreographies are extendable, when such a need arises. See
figure 7.11 where a web shopping example is illustrated. If the bank needs to check
the credit-worthiness of the buyer, it can initiate a new choreography and extend the
model without interfering with other choreographies or interactions. This scenario
is depicted in figure 7.13. As it can be seen, a Credit-check processing choreography
whose participants are the bank and a credit-check firm and supports the Payment
processing choreography is added to the model. In other words as long as the con-
formance conditions are satisfied, the model can be extended and there is no need
to interfere with the running process and notifying the partners for setting up new
choreographies. The conformance issues are discussed in chapter 8.

92 7. An Architecture for Interorganizational Workflows

Figure 7.13.: Federated choreographies are extendable

Uniform modeling: Finally, federated choreographies use a coherent and uniform model-
ing for both choreographies and orchestrations and eliminates the need for different
modeling languages and techniques for choreographies and orchestrations. The uni-
form modeling technique reduces the cost of process at design phase.

7.2.2. Metamodel of the Federated Choreographies

Choreographies, orchestrations and workflow views are treated as workflows. Thus a
workflow is either a choreography, an orchestration or a workflow view. A choreography
coordinates several orchestrations owned by different partners and a single orchestration

7.2. Federated Choreographies 93

may realize parts of several choreographies. An orchestration provides several views.
Choreographies can be federated into more complex ones. Choreographies are composed
of views. Moreover, as all choreographies are workflows, they can be composed out of
other choreographies by means of complex activities and control structures available in
the workflow models. The same applies for orchestrations. The metamodel enables the
representation of choreographies, orchestrations and workflow views which are described
as workflow models. Therefore, choreographies, orchestrations and workflow views can
be modeled using typical workflow control flow structures. Moreover, it provides a coher-
ent view on both choreographies and orchestrations and their mutual relationships, thus
bridging the gap between abstract and executable processes. The metamodel allows to
describe several choreographies on different levels of detail and orchestrations responsible
for a private implementation of these choreographies. Choreographies and orchestrations
can share the same activities. These activities are contained in a view that is provided by
the orchestration and is also a view on the choreography. Such a view identifies which
activities of the choreography must be realized in the orchestration. An activity visible
in one choreography can be extended by its relationships with other activities in a fed-
erated choreography. On the other hand, an activity visible in a choreography can have
a complex implementation described in an orchestration. Thus, choreographies and or-
chestrations together with their activities can be viewed on different levels of detail and
in context of different relationships. The metamodel of the federated choreographies is
represented in figure 7.14.

94 7. An Architecture for Interorganizational Workflows

Figure 7.14.: Metamodel of the Federated Choreographies

7.2. Federated Choreographies 95

A workflow is either a choreography, an orchestration or a workflow view. A workflow
can have many views. A workflow define views for different roles (of partners). Each
role sees and accesses the workflow through the view. A workflow uses activities. An
activity is either a task, a complex activity or a (sub-)workflow. An activity can be used to
compose complex activities and workflows. An activity occurrence in such a composition
is represented by an activity step. One activity can be represented by several activity steps
in one or several workflows or complex activities and each activity step belongs to exactly
one activity. In other words, activity steps are placeholders for reusable activities. The
same activity can occur in different workflows (choreographies, orchestrations or workflow
views). The control structure of a complex activity is described by its type (seq for sequence,
par for parallel and cond for conditional).

An activity may be owned by a partner. Orchestrations and tasks must have an owner,
whereas choreographies must not have an owner. A partner may have several roles and
one role can be played by several partners. A role may take part in a workflow and call an
activity step in this workflow. An activity step is provided by another role. Thus a single
parter can use different roles to participate in a workflow and provide or call activity steps.
A role sees and accesses a defined view on the workflow.

The notion of a step is very important for the presented metamodel. Both workflows
and complex activities consist of steps. Between the subsequent steps there can be a
transition from a predecessor to a successor which represents control flow dependencies
between steps.

A complex activity may be decomposed in a given workflow into steps that constitute
this complex activity only if all of the activities corresponding to these steps are also used
and visible in this workflow. Therefore, a workflow can be decomposed and analyzed on
different levels of detail with complex activities disclosing their content, but without re-
vealing protected information on the implementation of these complex activities. To allow
a correct decomposition, a complex activity must have only one activity without any pre-
decessors and only one activity without any successors. The same applies to workflows.

A step can be either an activity step or a control step. As mentioned above, activity
steps are placeholders for reusable activities and each activity step belongs to exactly one
activity. Activity steps can be called in a workflow definition. An activity step may be used
as a reply for a previous activity step. A single activity step may have several alternative
replies.

A control step represents a control flow element such as a split or a join. Conditional
and parallel structures are allowed, i.e. the type of a control step is one of the followings:
par-split, par-join, cond-split or cond-join. An attribute predicate is specified only for steps
corresponding to a conditional split and represents a conditional predicate. Conditional
splits have XOR-semantics. A split control step may have a corresponding join control
step what is represented by the recursive relation is counterpart. This relation is used to
represent well structured workflows [104] where each split node has a corresponding join
node of the same type and vice versa.

96 7. An Architecture for Interorganizational Workflows

7.2.3. Graph Representation of the Control Flow

A control flow of a workflow model can be represented as a directed graph with two
kinds of nodes corresponding to activity steps and control steps. The edges correspond to
transitions between steps and determine the execution sequence of nodes, i.e. a successor
can start if its predecessor(s) is(are) completed. A complex activity can be decomposed
into a subgraph with one input node and one output node. In the graphical notation
additionally two control nodes are used: start node and end node, before the start activity
and after the end activity of the workflow, respectively. Figures 7.3- 7.8 are examples of
the graph representations.

7.2.4. Mapping onto WF-nets

A graph representing the control flow of a workflow model, described in terms of the
metamodel, can be mapped onto a workflow-net (WF-net) [95, 261] in a similar manner
as described in [264]. Workflow-nets are an extension of classical Petri-nets [198, 218]. A
WF-net contains exactly one place without any predecessors (source place) and exactly one
place without any successors (sink place). Moreover, the net extended with an additional
transition from the sink place to the source place is strongly connected, i.e. for each node
n there exists a path from the source place to n and from n to the sink place. A formal
definition of WF-nets is presented in section 3.2. WF-nets are used with a set of special
transitions added to express branching decisions in a more human readable form: AND-
split, AND-join, XOR-split and XOR-join.

A workflow model transformed onto a WF-net can be analyzed with all the techniques
developed for Petri-nets and important properties of such a model can be checked. WF-
nets are used to test structural conformance as described in section 8.2. On the other hand,
models described with Petri-nets are usually much larger than traditional workflow graphs
(because they contain both transitions and places) and therefore difficult to understand by
humans.

The mapping from a workflow graph onto a WF-net is as follows:

¥ Each activity step is mapped onto a transition with a single input and output place,
the label of the transition is the same as the name of the activity

¥ Each cond-split is mapped onto a XOR-split transition with a single input place and
at least two output places

¥ Each cond-join is mapped onto a XOR-join transition with at least two input places
and exactly one output place

¥ Each par-split is mapped onto an AND-split transition with a single input place and
at least two output places

7.2. Federated Choreographies 97

¥ Each par-join is mapped onto an AND-join transition with at least two input places
and exactly one output place

¥ A start node is mapped onto a single source place

¥ An end node is mapped onto a single sink place

¥ Edges in the original graph are mapped onto dummy transitions connecting subse-
quent transformed nodes

After the mapping completes, the dummy transitions introduced in the last step can
be reduced by fusion of series places (FSP) [198] to improve readability. Mapping of the
workflow graph in figure 7.3 onto a WF-net is presented in figure 7.15.

The concept of federated choreographies and the metamodel has been also presented
separately in [107]. The metamodel presented in this dissertation reflects only the control
flow aspects of workflows and do not consider data flow aspects. For a variation of the
metamodel that also considers data flow aspects please refer to [107].

98 7. An Architecture for Interorganizational Workflows

Figure 7.15.: The WF-net of workflow graph in figure 7.3

Chapter 8
Conformance of the Federated Choreographies

The key requirement of the federated choreographies is the inter-layer and intra-layer
conformance and consistency. This requires conformance of orchestrations with the chore-
ographies, as well as conformance of choreographies with each other in the choreography
layer. The execution of the model should not lead to any conflicts. Several issues have to
be considered: the structure of the business processes must match, i.e. supporting chore-
ographies and realizing orchestrations must have no conflicts regarding the structure of
the process with the choreography they support or realize (structural conformance). The
sent messages between two business processes must be received and understood (messag-
ing conformance). The exchanged data follow a common and known format and can be
interpreted correctly (data flow conformance) and finally messaging is done in a timely
manner and data is delivered at the right time (temporal conformance).

In the following sections two techniques for checking the structural and temporal con-
formance of the federated choreographies are presented. Using these techniques, one can
check at design-time if the model is structurally and temporally conformant and if not,
necessary modifications can be done to ensure the compatibility of the model. Checking
the model for conflict-freeness reduces the cost of a process because on the one hand de-
tected errors at runtime cause more costs than those detected at design-time and on the
other hand less exception handling mechanisms need to be triggered. Exception handling
mechanisms are as well associated with additional costs during the process execution. In
addition, a conflict-free and conformant process model increases the quality of service
(QoS) as organizations in the competitive world of business strive for the highest possible
quality.

8.1. Differrent Notions of Process Equivalence

8.1.1. Bisimulation

Branching bisimulation is an important equivalence when studying the behavior of concur-
rent systems. In contrast to linear time equivalences (cf. trace equivalence in [140]) branch-
ing time semantics consider the branching structure of a process. Such semantics are inde-

99

100 8. Conformance of the Federated Choreographies

pendent of precise nature of observability (of process) and allow for a proper modeling of
deadlock behavior [129, 130]. The branching bisimulation as a generalization of the theory
of bisimulation has become popular in the computer sciences community e.g. for studying
the concurrent systems. Other equivalences have also been introduced by other authors
[203, 204, 262, 263, 36, 56, 65, 201, 202, 142] and also see [220, 222, 223, 38, 55, 76, 89, 209].
Note that the other introduced equivalences lie between linear time and branching time
equivalence semantics and can be seen as a subset of the branching time semantics. In
other words, the verified equivalence in branching time semantics is valid in all of the
proposed equivalence relations but the converse is not true.

Central to the definition of branching bisimulation is the concept of silent action. In
process algebra the notion of abstraction [51] provides a mean for making actions unob-
servable or hiding them. The abstraction operator renames the label of actions to the label
τ. A τ-labeled action is called a silent action or synonymously hidden action or internal action.
The abstraction operator is like a renaming operator and changes the label of an action into
τ. Multiple τ-labels have no additional effect since only one τ-label makes the relabeled
action invisible. A silent action is invisible from outside and cannot be recognized since
it is hidden from the external observer and has no external effect. All other actions are
external actions and visible. The branching bisimulation as introduced in [129, 130] ex-
tends the observation equivalence [192, 215], also known as weak bisimulation, and makes
more processes distinguishable than the weak bisimulation. The difference between or-
dinary bisimulation and weak bisimulation is that weak bisimulation allows for arbitrary
τ-steps proceeding and succeeding actions. Consequently, it can not be guaranteed that all
intermediate states of computations of two bisimilar processes correspond to each other.
In other words, weak bisimulation lacks this central property of ordinary bisimulation
equivalence. Another notion of bisimulation is also presented in [193]. A weaker form of
bisimulation, also called η-bisimulation, can be found in [37].

Weak bisimulation, synonymously observation equivalence or τ-bisimulation equiva-
lence, as the basis for bisimulation equivalence can be formalized as follows. Note that in
the provided definitions the following notations are used:

¥ Let {A} be the set of action a system may perform, i.e. the set of executable actions,
Aτ = A

⋃{τ}, where τ is the silent action

¥ ℘ is the set of processes

¥ r α−→ r′ denotes the existence of an edge from a node r to a node r′ with label α.
In other words, It says that the system evolves from a state r to another state r′ by
performing the action α ∈ Aτ

¥ r V r′ denotes a path from a node r to a node r′ with at least 0 τ-steps

¥ A process graph is a connected, directed graph whose edges are labeled with α ∈ Aτ.
G denotes the domain of process graphs

8.1. Differrent Notions of Process Equivalence 101

¥ g.r denotes the root of a graph g

Definition 8.1: (Weak Bisimulation)
The graphs g and h are weakly bisimilar, denoted g 'w h, if there exists a symmetric

relation < satisfying:

¥ (g.r<h.r)

¥ [(r<s)
∧

(r α−→ r′)] ⇒ {[(α = τ)
∧

(r′<s)]
∨

[∃(s V s1
α−→ s2 V s′) : r′<s′]}

The notation (r<s) denotes that a node r is related by the relation < to a node s.

Figure 8.1 depicts the weak bisimilarity. Left part of the figure illustrates the first case,
[(r<s)

∧
(r α−→ r′)] ⇒ [(α = τ)

∧
(r′<s)], and the right part of the figure illustrates the

second case, [(r<s)
∧

(r α−→ r′)] ⇒ [∃(s V s1
α−→ s2 V s′) : r′<s′]. Note that the dotted

line represents the weak bisimulation and the double arrow represents a path consisting
of at least 0 τ-steps, denoted by V in the definition.

Figure 8.1.: Weak bisimulation

Alternatively, by considering only the external action steps and extraction of the inter-
nal actions (τ-steps), weak bisimulation can be defined as follows:

Definition 8.2: (Weak Bisimulation)
Let p ⇑ p′ denote a path from p to p′ containing only external actions, two graphs g and

h are weakly bisimilar, denoted g 'w h, if there exists a symmetric relation < satisfying

¥ (g.r<h.r)

¥ [(r<s)
∧

(r ⇑ r′)] ⇒ [∃(s ⇑ s′) : (r′<s′)]

r ⇑ r′ is similarly (r V α1−→V α2−→...αn−1−→V αn−→V r′). Remember that internal actions are
removed.

102 8. Conformance of the Federated Choreographies

Another variant of observation equivalence has been also introduced by [193], which
in [129] is called delay bisimulation.

Definition 8.3: (Delay Bisimulation)
Two graphs g and h are delay bisimilar, denoted g 'd h, if there exists a symmetric

relation < satisfying

¥ (g.r<h.r)

¥ [(r<s)
∧

(r α−→ r′)] ⇒ {[(α = τ)
∧

(r′<s)]
∨

[∃(s V s1
α−→ s2 V s′) :

((r′<s2)
∧

(r′<s′))]}

Figure 8.2 shows the concept of delay bisimulation. Again here, the left part corre-
sponds to the first case, [(r<s)

∧
(r α−→ r′)] ⇒ [(α = τ)

∧
(r′<s)], and the right part

corresponds to the second case, [(r<s)
∧

(r α−→ r′)] ⇒ [∃(s V s1
α−→ s2 V s′) :

((r′<s2)
∧

(r′<s′))].

Figure 8.2.: Delay bisimulation

Above figures makes the difference between weak and delay bisimulation visible. Note
the additional horizontal line between r′ and s2 which corresponds to ((r′<s2) and shows
a delay bisimulation between these two nodes.

Another variant by Baeten and van Glabbee has been also introduced in [37], the so-
called η-bisimulation.

Definition 8.4: (η-Bisimulation)
Two graphs g and h are η-bisimilar, denoted g 'η h, if there exists a symmetric relation

< satisfying

¥ (g.r<h.r)

8.1. Differrent Notions of Process Equivalence 103

¥ [(r<s)
∧

(r α−→ r′)] ⇒ {[(α = τ)
∧

(r′<s)]
∨

[∃(s V s1
α−→ s2 V s′) :

((r<s1)
∧

(r′<s′))]}

Figure 8.3 illustrates the η-bisimulation graphically. In this figure, again, the left part
corresponds to the first case and the right part corresponds to the second case. The differ-
ence between η-bisimulation and other two notions is clear. Consider the horizontal lines.
While in the delay bisimulation, there is a bisimulation relationship between r′ and s2, in
η-bisimulation the bisimulation relationship exists between r and s1.

Figure 8.3.: η-bisimulation

Based on [215, 192, 194, 195, 196] the bisimulation equivalence on G can be formalized
as follows:

Definition 8.5: (Bisimulation Equivalence)
Let g and h be graphs. Bisimulation equivalence is a relation R ⊆ nodes(g)× nodes(h),

satisfying

¥ (g.r<h.r)

¥ [(r<s)
∧

(r α−→ r′)] ⇒ [∃ s′ : (s α−→ s′) ∧
(r′<s′)]

¥ [(r<s)
∧

(s α−→ s′)] ⇒ [∃ r′ : (r α−→ r′) ∧
(r′<s′)]

It is obvious that the bisimulation equivalence in the Definition. 8.5 is a symmetric
relations. Hence, bisimulation equivalence can be equivalently defined as follows:

Definition 8.6: (Bisimulation Equivalence)
Two graphs g and h are bisimilar, denoted g 'h h, if there exists a symmetric relation

< satisfying

¥ (g.r<h.r)

104 8. Conformance of the Federated Choreographies

¥ [(r<s)
∧

(r α−→ r′)] ⇒ [∃ s′ : (s α−→ s′) ∧
(r′<s′)]

Figure 8.4 illustrates the bisimulation equivalence graphically.

Figure 8.4.: Bisimulation equivalence

Finally, the branching bisimulation is formalized as follows according to [129, 130]

Definition 8.7: (Branching Bisimulation)
Two graphs g and h are branching bisimilar, denoted g 'b h, if there exists a symmetric

relation < , called branching bisimulation, between the nodes of g and h satisfying

¥ (g.r<h.r)

¥ [(r<s)
∧

(r α−→ r′)] ⇒ {[(a = τ)
∧

(r′<s)]
∨

[∃(s V s1
α−→ s2 V s′) :

(r<s1), (r′<s2), (r′<s′)]}
Figure 8.5 illustrates the substantial nature of branching bisimulation.

Figure 8.5.: Branching bisimulation

Branching bisimulation is closed under arbitrary union, i.e. existence of branching
bisimulation means existence of largest branching bisimulation and union of two branch-
ing bisimulations is again a branching bisimulation [272].

8.1. Differrent Notions of Process Equivalence 105

In addition to above mentioned notions of bisimulation, Van Glabbeek and Weijland
defined a slightly different notion of bisimulation which can be used to prove branching
bisimulation is an equivalence relationship. This notion, called semi-branching bisimula-
tion, is formalized as follows and is referred to in this work for the sake of completeness.

Definition 8.8: (Semi-branching Bisimulation)
Two graphs g and h are semi-branching bisimilar if there exists a symmetric relation <

, called semi-branching bisimulation, between the nodes of g and h satisfying

¥ (g.r<h.r)

¥ [(r<s)
∧

(r α−→ r′)] ⇒ {[(a = τ)
∧

(∃(s V s′) : ((r<s′) ∧
(r′<s′)))] ∨

[∃(s V s1
α−→

s2 V s′) : ((r<s1)
∧

(r′<s2)
∧

(r′<s′))]}

Figure 8.6 illustrates this relationship. The left part corresponds to [(r<s)
∧

(r α−→
r′)] ⇒ [(a = τ)

∧
(∃(s V s′) : ((r<s′) ∧

(r′<s′)))] and the right part corresponds to
[(r<s)

∧
(r α−→ r′)] ⇒ [∃(s V s1

α−→ s2 V s′) : ((r<s1)
∧

(r′<s2)
∧

(r′<s′))] respectively.

Figure 8.6.: Semi-branching bisimulation

Figure 8.7 clarifies the difference between both notions of branching and semi-
branching bisimulation. It can be observed that any branching bisimulation is a semi-
branching bisimulation but the converse is not true. Besides, a compositional relation of
two semi-branching bisimulations is again a semi-branching bisimulation, which is not
valid for branching bisimulation. Therefore, a semi-branching bisimulation is an equiv-
alence relationship [44]. Note that This property only shows the transitivity of semi-
branching bisimulation. Other two properties needed for an equivalence relationship,
reflexivity and symmetry, are obvious from definition. Let < be the semi-branching bisim-
ulation, ∀ process r, r<r (reflexivity) and symmetry follows immediately from the defi-
nition of semi-branching bisimulation, i.e. the inverse of < is again a semi-branching
bisimulation, r<s ⇒ s<r.

106 8. Conformance of the Federated Choreographies

Figure 8.7.: Left: Branching bisimulation, Right: Semi-branching bisimulation

Although, Van Glabbeek and Weijland do not explicitly prove that branching bisimula-
tion is an equivalence relationship but provide the required material for the proof which
is done by Basten [44]. However Basten uses a slightly different and more intuitive defi-
nition of branching and semi-branching bisimulation. Whatever definitions, both notions
as defined in [129, 130] and [44] induce the same concept of bisimilarity, i.e. the defined
process equivalence relation is the same.

Before formalizing the definitions of bisimilarity according to [44] some auxiliary and
supporting definitions are needed.

Definition 8.9: (Process Space)
A process space over Aτ is a pair (℘,→), where ℘ and Aτ as defined before and

→) ⊆ ℘×Aτ × ℘ a ternary transition relation.

Definition 8.10: The relation ³ ⊆ ℘×℘ is the smallest relation ∀ r, r′, r′′ ∈ ℘, satisfying:

¥ r ³ r

¥ [(r ³ r′) ∧
(r′ τ−→ r′′)] ⇒ (r ³ r′′)

Definition 8.10 states that a process evolves to another process by performing a se-
quence of zero or more silent actions. Now the semi-branching and branching bisimu-
lation according to Basten can be formalized. In the following definition the notation

(r
(α)−→ r′) is used as an abbreviation for (r α−→ r′) ∨

(α = τ
∧

r = r′). That is either the
system evolves from r to r′ by performing an action α ∈ Aτ or the action τ is a sequence
of zero or more silent steps and both r and r′ overlap.

Definition 8.11: (Semi-branching Bisimulation)
∀ r, r′, s, s′ ∈ ℘, α ∈ Aτ, a binary relation < ⊆ ℘× ℘ satisfying the following properties

is called a semi-branching bisimulation

¥ [(r<s)
∧

(r α−→ r′)] ⇒ [(∃ s′, s′′ : (s ³ s′′ (α)−→ s′) ∧
(r<s′′) ∧

(r′<s′)]

¥ [(r<s)
∧

(s α−→ s′)] ⇒ [(∃ r′, r′′ : (r ³ r′′ (α)−→ r′) ∧
(r′′<s)

∧
(r′<s′)]

8.1. Differrent Notions of Process Equivalence 107

The first condition can be decomposed to
{[(r<s)

∧
(r α−→ r′)] ⇒ [(∃ s′, s′′ : (s ³ s′′ α−→ s′) ∧

(r<s′′) ∧
(r′<s′)] ∨

[(r<s)
∧

(r τ−→ r′)] ⇒ [(∃ s′, s′′ : (s ³ (s′′ = s′)) ∧
(r<s′′) ∧

(r′<s′)]}
and the second condition can be decomposed to:

{[(r<s)
∧

(s α−→ s′)] ⇒ [(∃ r′, r′′ : (r ³ r′′ α−→ r′) ∧
(r′′<s)

∧
(r′<s′)] ∨

[(r<s)
∧

(s τ−→ s′)] ⇒ [(∃ r′, r′′ : (r ³ (r′′ = r′)) ∧
(r′′<s)

∧
(r′<s′)]}

Whilst the semi-branching bisimulation is a symmetric relationship, it can also be de-
fined using the symmetry property which yields in a more compact definition and the
transfer property needs to be defined only for one direction.

Definition 8.12: (Semi-branching Bisimulation)
∀ r, r′, s, s′ ∈ ℘, α ∈ Aτ, a symmetric binary relation < ⊆ ℘× ℘ satisfying the following

property is called a semi-branching bisimulation

¥ [(r<s)
∧

(r α−→ r′)] ⇒ [(∃ s′, s′′ : (s ³ s′′ (α)−→ s′) ∧
(r<s′′) ∧

(r′<s′)]

Figure 8.8 illustrates the concept of semi-branching bisimulation according to Basten.

Figure 8.8.: Semi-branching bisimulation

The Basten’s definition of branching bisimulation is also slightly different but more
intuitive than that defined by Van Glabbeek and Weijland.

Definition 8.13: (Branching Bisimulation)
∀ r, r′, s, s′ ∈ ℘, α ∈ Aτ, a binary relation < ⊆ ℘× ℘ satisfying the following properties

is called a branching bisimulation

¥ [(r<s)
∧

(r α−→ r′)] ⇒ {[(α = τ)
∧

(r′<s)]
∨

[∃ s′, s′′ : (s ³ s′′ α−→
s′) ∧

(r<s′′) ∧
(r′<s′)]}

108 8. Conformance of the Federated Choreographies

¥ [(r<s)
∧

(s α−→ s′)] ⇒ {[(α = τ)
∧

(r<s′)] ∨
[∃ r′, r′′ : (r ³ r′′ α−→

r′) ∧
(r′′<s)

∧
(r′<s′)]}

Using the symmetry property of branching bisimulation as required in [129, 130],
branching bisimulation can be defined more concisely as follows:

Definition 8.14: (Branching Bisimulation)

∀ r, r′, s, s′ ∈ ℘, α ∈ Aτ, a symmetric binary relation < ⊆ ℘× ℘ satisfying the following
property is called a branching bisimulation

¥ [(r<s)
∧

(r α−→ r′)] ⇒ {[(α = τ)
∧

(r′<s)]
∨

[∃ s′, s′′ : (s ³ s′′ α−→
s′) ∧

(r<s′′) ∧
(r′<s′)]}

If two processes r1, r2 ∈ ℘ are branching bisimilar, denoted r1 ≈b r2, one process must
be able to simulate an arbitrary action of its equivalent(i.e. ∀ α : α ∈ Aτ) process after
execution an arbitrary number of τ-steps. Figure 8.9 shows the definition of branching
bisimulation (Definitions 8.13 and 8.14) graphically. In the above definitions of branching
bisimulation, the internal actions at the beginning of a process can be removed and do not
contribute to the external behavior of the process.

Figure 8.9.: Branching bisimulation

Figure 8.10 clarifies the difference between branching and semi-branching bisimulation
according to Basten.

8.1. Differrent Notions of Process Equivalence 109

Figure 8.10.: Left: Branching bisimulation, Right: Semi-branching bisimulation

Basten suggests several ways to prove that branching bisimulation is an equivalence
relation and uses semi-branching bisimulation for the proof. He concludes that "Branching
bisimlarity is an equivalence relation, which coincides with semi-branching bisimilarity". For a
detailed proof, discussion and definitions please refer to [44].

In a later work [47] Basten and van der Aalst extend the branching bisimulation by
considering the termination predicate of processes and introduce a variant of branching
bisimulation called rooted branching bisimulation. In contrast to branching bisimulation,
rooted branching bisimulation does not allow for removal of τ-actions at the beginning of
a process. Rooted branching bisimulation is again an equivalence relationship.

Definition 8.15: (Branching Bisimulation)
∀ r, r′, s, s′ ∈ ℘, α ∈ Aτ, a binary relation < ⊆ ℘× ℘ satisfying the following properties

is called a branching bisimulation

¥ [(r<s)
∧

(r α−→ r′)] ⇒ {[∃ s′, s′′ : (s ³ s′′ (α)−→ s′) ∧
(r<s′′) ∧

(r′<s′)]}

¥ [(r<s)
∧

(s α−→ s′)] ⇒ {[∃ r′, r′′ : (r ³ r′′ (α)−→ r′) ∧
(r′′<s)

∧
(r′<s′)]}

¥ (r<s) ⇒ [(↓ r ⇒⇓ s)
∧

(↓ s ⇒⇓ r)]

where ↓ r is the termination predicate of process r and ⇓ r as defined in definition 8.16.

Definition 8.16: ∀ r, r′ ∈ ℘,⇓ ⊆ ℘ is the smallest set of processes satisfying following
properties:

¥ (↓ r ⇒⇓ r)

¥ [⇓ r
∧

(r′ τ−→ r)] ⇒⇓ r′

where ↓ r is the termination predicate of process r

Note that in definition 8.15 the notation (r
(α)−→ r′) is a placeholder for (r α−→ r′) ∨

(α =
τ

∧
r = r′) and hence it can be equivalently rewritten as

110 8. Conformance of the Federated Choreographies

Definition 8.17: (Branching Bisimulation)
∀ r, r′, s, s′ ∈ ℘, α ∈ Aτ, a binary relation < ⊆ ℘× ℘ satisfying the following properties

is called a branching bisimulation

¥ [(r<s)
∧

(r α−→ r′)] ⇒ {[(α = τ)
∧

(r′<s)]
∨

[∃ s′, s′′ : (s ³ s′′ α−→
s′) ∧

(r<s′′) ∧
(r′<s′)]}

¥ [(r<s)
∧

(s α−→ s′)] ⇒ {[(α = τ)
∧

(r<s′)] ∨
[∃ r′, r′′ : (r ³ r′′ α−→

r′) ∧
(r′′<s)

∧
(r′<s′)]}

¥ (r<s) ⇒ [(↓ r ⇒⇓ s)
∧

(↓ s ⇒⇓ r)]

8.1.2. Trace Equivalence

Trace Equivalence, also known as string equivalence [141] is the weakest equivalence pre-
sented here, in the sense that it discriminates less processes than all other equivalence
relationships. The main idea behind the trace equivalence is that two processes are equiv-
alent and possess the same behavior if they perform the same sequence of observable
actions (here called trace) or engage in the same sequence of observable transitions. Let
T∗ denote the set of all possible traces i.e. all possible transition in which a process may
engage in or alternatively all visible action that a process may perform.

Definition 8.18: (Trace)
Let p1, p2 be two processes and T∗ as defined above.
tr(p1) = {t ∈ T∗ | ∃ p2 : p1

t→ p2}
the set tr(p1) contains all possible traces of a process p1.

Definition 8.19: (Trace Equivalence)
Two processes are trace equivalent, denoted p1 ∼tr p2 if and only if they have exactly

the same traces.
tr(p1) = tr(p2) ⇔ p1 ∼tr p2

Figure 8.11 shows an example of two trace equivalent processes. These two processes
produce the same sequence of visible actions and their traces are the same.

For a more detailed discussion on trace equivalence, concepts, model and its applica-
tion for other domains refer to [223, 118, 60, 138, 146, 268, 205, 123, 185, 30].

8.1.3. Testing Equivalence

Testing equivalence [200, 201, 202] deals with the external observable behavior of processes
and considers two processes as equivalent if their external behaviors are equivalent. Test-
ing of processes is considered as the measure for evaluation of interaction of processes
with the environment. Let P be a set of processes and O a set of observers. In this set-
ting the tests are performed by the observers. Performing a test t by an observer o on a

8.1. Differrent Notions of Process Equivalence 111

Figure 8.11.: Two Processes are trace equivalent

precess p results in a computation c at process p. c ∈ C(o, p), where C(o, p) denotes the
set of computations resulted by the tests performed by an observer o on a process p. The
result of a computation c decides if a process p has passed a test t or not. If the result
of the computation c is successful, a process p has passed the test, otherwise p has failed.
Let S be the set of states, the set of successful states is a subset of S, denoted by succ, i.e.
{succ} ⊆ {S}. Further let R(o, p) be the result of the test performed by o on p. The result
set is defined as follows:

Definition 8.20: (Result Set)
R(o, p) ⊆ {>,⊥}, where

¥ ∃ c ∈ C(o, p) : c ∈ {succ} ⇒ > ∈ R(o, p)

¥ ∃ c ∈ C(o, p) : c 6∈ {succ} ⇒ ⊥ ∈ R(o, p)

Note that deadlocks and divergent states are also contained in the unsuccessful states.
A divergent state denotes an infinite computation without the possibility of reaching a
successful state. Whereas a deadlock denotes a finite computation that can not terminate
successfully.

The testing equivalence can be formalized as follows

Definition 8.21: (Testing Equivalence)
Two processes p1, p2 ∈ P are testing equivalent, denoted p1 ≈t p2, if the result set of the

tests performed by all observers on these two processes are the same. Formally:
∀ o ∈ O : R(o, p1) = R(o, p2) ⇒ p1 ≈t p2

112 8. Conformance of the Federated Choreographies

If all computations end in a successful state, the process p must satisfy the observer o.
However if only a subset of computations ends in a successful state, we say p may satisfy
o. If all computations are unsuccessful, process p cannot satisfy o.

For a detailed discussion, the model, testing equivalence for asynchronous processes,
its applications and relationship with other equivalence notions, refer to [143, 164, 192, 233,
60, 25, 83, 59, 148, 172].

8.1.4. Failure Equivalence

Failure equivalence [65, 143] is another equivalence relationship that studies the behavior
of a process in terms of its interaction with the environment. The important difference
between failure equivalence and other notions of equivalence, e.g. observational equiva-
lence and trace equivalence, is that failure equivalence deals with the negative behavior of
a process, i.e. what must not happen whereas other notions of equivalence consider the
positive aspects of the behavior, i.e. what may happen. Failure equivalence has been first
proposed by Hoare, Brookes and Roscoe in [143, 65]. In the failure equivalence, failure sets
of a process describe its behavior. These sets are of the form (s, X), where s is a sequence
of visible events or transitions, also called trace, in which a process has engaged up to a
specific moment in time and X denotes the set of future transitions that a process may not
be able to perform. The inability of a process to perform transitions X comes from the
indeterministic nature of a process. Let p1, p2 be two processes and p1

s→ p2 denotes that a
process p1 has been engaged in the sequence s and has transformed to the process p2. The
failure set can be formalized as:

Definition 8.22: (Failure set)
failures(p1) = {(s, X) | ∃ p2 : p1

s→ p2
∧ ∀ x ∈ X : @p2 : p1

x→ p2}
After the process p1 has been engaged in the sequence of events s and has transformed

to the process p2, p1 refuses to perform any more, i.e. all the transitions of the set x.
However the transitions x ∈ X are offered by the environment. The Set X is called the
refusal set of the process p1 and identifies all the transition that the process p1 may not be
able to perform. The failure set can be formalized in terms of the refusal set.

Definition 8.23: (Refusal set)

refusal(p1) = {X | Xfinite
∧ ∃ p2 : p1

()→ p2
∧

X
⋂

in(p2) = ∅}
In the above definition, X finite describes an environment which is able of performing

a finite number of events. p1
()→ p2 denotes that a process p1 transforms into and behave

like p2 after performing an empty sequence. This can be the case if p1 has only performed
internal steps and transitions which are externally not observable. The set in(p2) identifies
those events that can be performed by p2 at its first step and is called the initial set of p2. Let
X denote all the possible events offered by the environment. X

⋂
in(p2) = ∅ means that

the events that can trigger a process are not offered by the environment and the process

8.1. Differrent Notions of Process Equivalence 113

can not continue. The refusal set, refusal(p1), describes those events that a process p1 can
not perform. This set together with the previous sequence of a process define a failure set
of a process.

Definition 8.24: (Failure set)
failures(p1) = {(s, X) | ∃ p2 : p1

s→ p2
∧

X ∈ refusal(p2)}

The failure sets of process are externally visible and its behavior is distinguishable in
terms of its failure sets. Moreover, failure sets uniquely identify a process. i.e. if two
processes have the same failure set they are equivalent.

Definition 8.25: (Failure Equivalence)
Two processes p1 and p2 are failure equivalent, denoted p1 ∼f p2 if they have the same

failure set.
failure(p1)=failure(p2) ⇒ p1 ∼f p2

The failure equivalence is a PSPACE-complete problem [156, 157, 67], which makes it
slower for verification that observation equivalence which can be verified in cubic time.
However, [259] claims that despite of theoretical worst case complexity results of the fail-
ure equivalence and observational equivalence, in typical practical situations it is not clear
and there are no supporting evidences that failure-based equivalences are slower for veri-
fication than observational-based equivalences.

For a more detailed introduction and discussion, proofs and applications refer to [207,
64, 52, 154, 66, 211, 232, 228, 266, 149].

8.1.5. Observation Equivalence

Observation equivalence [192] has been presented by Milner and as its name implies, it
deals with the external observable behavior of processes. The set of actions is divided
into a set of observable actions and the unobservable action τ. Let A be the set of observ-
able actions. Aτ is defined as Aτ = A

⋃{τ}. If two processes p1 and p2 are equivalent,
then p1 must be substitutable with p2 (or vice versa) in a larger environment without
any observable effect on the environment. Bearing this mind, it implies that intermedi-
ate states of two equivalent processes p1 and p2 must also be taken into account. Two
processes whose intermediate states do not corresponding may expose different behaviors
and substitution of one with another may lead to deadlock. Let P be a set of processes and
p1, p2 ∈ P. Moreover, Let O denote the set of possible observation types. Observations are
captured through the interaction of processes with the environment. Note that an obser-
vation changes the process state. In other words, after observation the process transforms
into a new process because of a change in its process state. Observational equivalence can
be formalized as a series of relations over P.

Definition 8.26: (Observation Equivalence)

114 8. Conformance of the Federated Choreographies

Let Ro denote a binary relation over P, where o is an observation, i.e. {Ro ⊆ P× P | o ∈
O}. p and q are n-observational equivalent if and only if

¥ p, q ∈ P ⇒ p ∼0 q

¥ {[∀ o ∈ O : (p, p′) ∈ Ro ⇒ ∃ q′ : (q, q′) ∈ Ro
∧

p′ ∼n q′] ∧
[∀ o ∈ O : (q, q′) ∈ Ro ⇒ ∃ p′ :

(p, p′) ∈ Ro
∧

p′ ∼n q′]} ⇒ p ∼n+1 q

p and q are observationally equivalent, denoted p ∼o q if ∀ n : p ∼n q.

In the above definition the set Ro includes the observation instances. Note the dif-
ference between the sets Ro and O. The observational equivalence is decidable in cubic
time [156, 157]. The advantages of observational equivalence include its intuitive notion,
mathematical models and properties and several algorithms developed for it.

Milner in [192] uses the notion of synchronization trees over which the observational
equivalence is defined. Synchronization trees are used to model the behavior of processes.

Definition 8.27: (Synchronization Tree)
A synchronization tree is a rooted, unordered, finitely branching tree whose arcs are

labeled with elements of Aτ.

Let S α→ T denote that S accepts α or performs an action α and transforms to T. When
we consider a sequence of atomic actions, it is possible that arbitrary τ-actions occur in

between, i.e. S
β−→ T, where β is of form τiα1τjα2τkα3...., i, j, k, ... ≥ 0. S τ−→ T means that

S performs an internal action and transforms into T. However, This transformation is not
observable. Because the observer cannot see the τ-actions, we can remove these internal
actions and define an S-experiment which contains only visible actions.

Definition 8.28: (S-experiment)
Let β = τiα1τjα2τkα3...., i, j, k, ... ≥ 0 be a sequence of atomic experiments. An S-

experiment is defined by removal of all τ-actions. i.e. s = α1α2α3,

S s⇒ T denotes that S accepts or performs an S-experiment and transforms to T and
this transformation is fully observable. Now observation equivalence can be formalized in
terms of synchronization trees and S-experiment as follows: Let A denote a finite alphabet
and A∗ the set of finite strings over the alphabet A.

Definition 8.29: (Observation Equivalence)
Let S, T be synchronization tress

¥ S ∼0 T always true

¥ S ∼n+1 T ⇔ ∀ s ∈ A∗ :

¤ S s⇒ S′ ⇒ ∃T′ : (T s⇒ T′)
∧

(S′ ∼n T′)

¤ T s⇒ T′ ⇒ ∃ S′ : (S s⇒ S′)
∧

(S′ ∼n T′)

8.1. Differrent Notions of Process Equivalence 115

S is observation equivalent to T, denoted S ∼o T if any only if ∀ n ≥ 0 : S ∼n T

By induction on n it can be proved that ∼n is an equivalence relation and ∼n−1⊆∼n, i.e.
S ∼n T ⇒ S ∼n−1 T. The observation equivalence is defined as intersection of all ∼n. With
increasing n, one obtains a finer equivalence relationship ∼n to depth n. The trees S and
T are observationally equivalent if none of the ∼i, 0 ≤ i ≤ n can distinguish their external
behavior.

Figure 8.12 depicts an example. The left part illustrates the original process and the
right part its visible parts for the external observer. Remember that edges with a label τ

are internal actions and therefore not externally visible. For a more detailed introduction,
discussion, proofs and the relationship of the observational equivalence with other notions
of equivalence refer to [135, 136, 25, 118, 120, 117, 57, 238, 58, 227].

Figure 8.12.: Left: The original process, Right: Visible parts of the process

8.1.6. Weak Observation Equivalence

The weak observational equivalence is a special form of the observation equivalence with
the exception that at each iteration external actions can be constructed (not τ-labeled)
whose lengths are at most one. This equivalence relation can be formalized as follows,
where ε denotes the empty word and the rest as defined in the subsection 8.1.5.

Definition 8.30: (Weak Observation Equivalence)

¥ S ∼0 T always true

¥ S ∼n+1 T ⇔ ∀ s ∈ A
⋃{ε} :

¤ S s⇒ S′ ⇒ ∃T′ : (T s⇒ T′)
∧

(S′ ∼n T′)

¤ T s⇒ T′ ⇒ ∃ S′ : (S s⇒ S′)
∧

(S′ ∼n T′)

p1 ∼wo p2 denotes that p1 and p2 are weak observational equivalent. As the name
implies, this relationship is weaker than general observational equivalence relation (cf.
subsection 8.1.5). However, in case of image-finiteness both observational and weak ob-
servational equivalences overlap [192].

116 8. Conformance of the Federated Choreographies

8.1.7. Logical Equivalence

In addition to above described equivalence relations, it is possible to formalize and de-
scribe the behavior of processes through logical formulas. Two processes are then equiv-
alent if they accept the same set of formulas. Regular trace logic [208, 284], propositional
dynamic logic [121, 133, 252], Hennessy-Milner logic [136, 174, 144] belong to this group.
The relationship between these three logics has been studied in [67].

8.1.8. Classification of the Equivalence Relationships

In the previous subsections following equivalence relationships have been introduced and
defined:

¥ Bisimulation

¥ Trace Equivalence

¥ Testing Equivalence

¥ Failure Equivalence

¥ Observation Equivalence

¥ Weak Observation Equivalence

¥ Logical Equivalences

It is important to note that the above mentioned equivalence relationships posses dif-
ferent discrimination power, i.e. they do not discriminate exactly the same set of processes.
Two processes that are trace equivalent may not be observational or failure equivalent as
well. Based on the discrimination power of the equivalence relations, the notion of equiv-
alence weakness (strength) can be defined. In the sense that weakest equivalence relation
is the least discriminating equivalence and identifies the biggest set of equivalent pro-
cesses under this equivalence notion. Consequently, the strongest relationship is the most
discriminating equivalence relation and identifies the smallest set of equivalent processes
under this equivalence relation.

Definition 8.31: (Weakness of Equivalence Relations)
Let <a and <b be two equivalence relations and p, p′ two processes. p<ap′ denotes that p

and p′ are equivalent under the equivalence relation <a. Equivalence relation <a is weaker
than <b, i.e. <a is less discriminating than <b, if and only if <b ⊆ <a, i.e. p<bp′ ⇒ p<ap′

Note that the weakness or strength of an equivalence says nothing about how good this
equivalence relationship is. The choice of the equivalence relationship is more based on
the application and environment. Figure 8.13 Show the relationship among equivalence
notions. The following abbreviations are used: trace equivalence (TR), failure equivalence

8.1. Differrent Notions of Process Equivalence 117

(FA), Logical Equivalence (LO), observation equivalence (OB), weak observation equiva-
lence (WO), bisimulation (BI), Regular trace logic (RTL), propositional dynamic logic (PDL),
Hennessy-Milner logic (HML) and testing equivalence (TE).

As one can see in the figure 8.13, the observation equivalence is the weakest equivalence
relationship, followed by failure equivalence, logical equivalence, observation equivalence
and finally the strongest equivalence relation, bisimulation. Note that weakest equivalence
implies that this equivalence is the least discriminating equivalence among processes.

Figure 8.13.: Classification of equivalence relationships

The logical equivalence itself can be divided into three equivalence relations, which are
RTL, PDL and HML. Figure 8.14 shows classification of these logical equivalences.

Figure 8.14.: Classification of Logical equivalences

With consideration of the weak observational equivalence, the relationship among
equivalence relationships are depicted in figure 8.15.

118 8. Conformance of the Federated Choreographies

Figure 8.15.: Classification of Equivalence relationships

The testing equivalence and other equivalence relationships, except trace equivalence,
are not comparable and it can only be concluded that testing equivalence is stronger that
trace equivalence, which is depicted in Figure 8.16.

Figure 8.16.: TE ⊆ TR

Note that in case of image-finiteness, we have BI = OB = WO = HML. [135, 136]. For a
formal proof of discriminating power of equivalence notions refer to [67, 224]. In addition
to introduced equivalence relations, there are other equivalences, Kennaway equivalence
and Darondeau equivalence, which can be seen as an extension to the previously presented
equivalence relations and are briefly discussed in the following subsections for the sake of
completeness.

8.1.9. Kennaway Equivalence

Kennaway and Hoare in [165] have presented an equivalence relationship very similar to
testing equivalence as described in subsection 8.1.3. The main idea of the kennaway equiv-
alence is that if two different sets of non-deterministic machines M1 and M2 pass exactly
the same set of tests, it is impossible for an external observer to distinguish them and
hence they are equivalent with respect to the exposed behavior to the external observer. In
this equivalence, a test is a finite set of actions or observations performed on the machines.

8.1. Differrent Notions of Process Equivalence 119

Let M be a set of non-deterministic machines and T a set of tests. P ⊆ M× T identifies the
tests T passed by the machines M. P(m, t) denotes if a machine m can pass a test t.

Definition 8.32: (Tests passed by a machine)
∀m ∈ M : t(m) = {t ∈ T | P(m, t)}
The set t(m) includes all the tests t that can be passed by a machine m.

Definition 8.33: (Machine capable of passing a test)
∀ t ∈ T : m(t) = {m ∈ M | P(m, t)}
The set m(t) includes all the machines m that can pass a test t.

The above defined sets, t(m) and m(t) are maximal sets. That means t(m) includes the
largest set of tests ti that can be passed by a machine m and m(t) includes the largest set
of machines mj that are capable of passing a test t.

Definition 8.34: (Kennayway Equivalence)
Let M1 and M2 be sets of non-deterministic machines. d(t(M1)) is the largest set of

non-deterministic machines equivalent to M1 containing all deterministic machines with
the property t(M1), i.e. capable of passing the same set of test as M1.

M1 and M2 are kennaway equivalent, denoted M1 ≈k M2 if and only if d(t(M1)) =
d(t(M2)). i.e:

M1 ≈k M2 ⇔ d(t(M1)) = d(t(M2))

The kennaway equivalence considers the partial or total correctness of machines for
expressing M may satisfy T or M must satisfy T. If only a subset M′ ⊆ M pass the tests
ti ∈ T we can say M may satisfy T. Whereas all mj ∈ M pass the test ti ∈ T one can say M
must satisfy T.

8.1.10. Darondeau Equivalence

Darondeau in [88] presents an equivalence relationship for finite state processes with full
synchronization. The daroundeau equivalence is based on Milner’s observational equiva-
lence and can be seen as its extension. However, the used algebraic notations are different.
As in observational equivalence the interactions of processes with the environment decide
equivalence of processes. Imagine that an observer sends a request r to a process and re-
ceives an answer a. If two processes p1 and p2 have exactly the same answers to a sequence
of requests ri, then p1 and p2 are equivalent. Note that exactly the same answers includes
also lack of answers. It means that if a process p1 sends no answer to a request rj, then the
equivalent process p2 lacks also an answer for this request.

Definition 8.35: (Possible experiment with a process)
Let (ri → ai) be a pair of corresponding request-answer, where ri and ai is a request

sent to a process by an observer and the received answer from the process respectively. A
possible experiment is a sequence of request-answer pairs.

S = (r1 → a1)(r2 → a2), ...(ri → ai)i ∈ n

120 8. Conformance of the Federated Choreographies

The darondeau-equivalence is formalized as follows:

Definition 8.36: (Darondeau Equivalence)
Two processes p1 and p2 are equivalent if and only if:

¥ If S is a possible experiment in p1 then it is a possible experiment in p2

¥ For any possible experiments: after experiment S, two processes p1 and p2 send
exactly the same answers to the same experiment

8.2. Structural Conformance of the Federated Choreographies

Intuitively, the notion of structural conformance indicates that supporting choreographies
and realizing orchestrations must violate none of the requirements of the choreographies
they support or realize. Such choreographies and orchestrations are an extended subset
of the supported choreography. This means supporting choreographies and realizing or-
chestrations can not change the order of execution of the activities defined in a supported
and/or realized choreography nor define any alternative for activities. The reason is that
at run-time the alternative activity and not the originally defined activity can be executed
which is an obvious violation of the requirements of the supported choreography. For ex-
ample, as depicted in figure 7.11, the Shipment processing choreography supports the chore-
ography responsible for Purchase processing. As illustrated in figure 7.3 (Purchase processing
choreography), the seller orders the shipment after the buyer has placed an order. The
choreography between the buyer and the shipper in the Shipment processing choreography
(figure 7.12) and their orchestrations must be designed in such a way that their executions
do not lead to skip of any of the tasks defined in the Purchase processing choreography e.g. no
shipment order or shipment details are sent to the shipper after receipt of the order by the
seller. In the following subsection the notion of conformance using projection inheritance
[101, 45] based on branching bisimulation as equivalence relation has been formalized.
Branching Bisimulation has been explained in subsection 8.1.1.

In order to check the structural conformance of federated choreograhies, the choreogra-
phies and orchestrations need to be translated into WF-nets (section 3.2). The reason for
this translation is availability of tools for checking the branching bisimulation of WF-nets,
e.g. [99, 265]. Thus WF-nets are used as modeling language throughout this section for the
aim of structural conformance checking. How graph representations can be translated into
WF-nets is explained in subsection 7.2.4. The WF-nets of Purchase processing choreography
and Shipment processing choreography are presented in figures 7.15 and 8.17 respectively.

Essentially, the participating partners are autonomous organizations that may have ex-
isting workflows for their orchestrations as well as for their interactions with other organi-
zations. Therefore, they favor to use the existing workflows instead of designing new ones
from scratch and integrate them in the organization. It is pivotal to ensure that utilization
of these orchestrations and choreographies lead to no conflict with other choreographies

8.2. Structural Conformance of the Federated Choreographies 121

and orchestrations. In order to check if two workflows, choreographies or orchestrations,
are conformant the notion of projection inheritance is used. This concept and other notions
of inheritance and the relationship among them as well as the relationship with branching
bisimulation have been defined in [101, 45].

Figure 8.17.: The WF-net of the workflow graph in figure 7.12

Definition 8.37: (Projection inheritance)

122 8. Conformance of the Federated Choreographies

"If it is not possible to distinguish the behaviors of x and y when arbitrary tasks of x
are executed, but when only the effects of tasks that are also present in y are considered,
then x is a subclass of y."

Assume Wa and Wb are two choreographies or orchestrations, modeled as WF-nets,
and Wb has a link to Wa i.e. Wb supports or realizes Wa. This scenario is depicted in
figure 8.18.

Figure 8.18.: Wb supports or realizes Wa

Wb comprises a set of tasks some of which are internal and not included in Wa and Wa

includes activities that are not interesting for Wb. These activities can be made invisible
using the abstraction operator. In order to decide which activities of Wa shall be made
invisible, the greatest common divisor of Wa and Wb needs to be defined.

Definition 8.38: (Greatest Common Divisor) The greatest common divisor of two WF-nets
are parts of the nets that two nets have in common, denoted GCDWa,Wb .

The greatest common divisor of Wa and Wb is the shared view between them. Note
that the view is a view on both Wb and Wa. Wb is conformant with Wa, if and only
if its visible behavior has a branching bisimulation relation to the shared view. Note
that a view can be extracted by abstraction of all non-common activities of two graphs,
i.e. those that are not members of the GCD. For instance for the running example let
W′a = Wa − GCDWa,Wb , these are the nodes of Wa that are not included in GCDWa,Wb .
Let τ1(W′a) be the corresponding net after application of the abstraction operator on W′a.
τ1(W′a) is the view between Wa and Wb.

8.2. Structural Conformance of the Federated Choreographies 123

Groote and Vaandrager in [131] have introduced an algorithm by which in polynomial
time is decidable if two processes are branching bisimilar. This algorithm has time com-
plexity O(n.(n + m)) and space complexity O(n + m), where n is the number of states and
m the number of transitions.

8.2.1. Conformance Algorithm

Let Wa, Wb be two WF-nets such that there is a link between Wa, Wb and Wb supports
or realizes Wa. Further let Va,b be the view between Wa and Wb. In order to decide if
the federated choreographies are conformant it must be checked if all choreographies and
orchestrations that are linked to another choreography are conformant.

The Structural conformance algorithm

conformance := true;1

repeat2

select randomly a link s.t. Wb supports or realizes Wa and Va,b is the view between3

Wb and Wa;

if Wb is not a subclass of Va,b under projection inheritance then4

conformance :=false;5

endif6

mark the selected link;7

until all links are marked
∨

conformance = false ;8

The algorithm iteratively takes two supporting and supported choreographies (intra-
layer conformance) or realizing orchestration and realized choreography (inter-layer con-
formance). It then checks if Wb, the supporting choreography or the realizing orchestra-
tion, has a subclass relationship with the shared view. If such a relationship does not exist,
the federated choreographies are not structurally conformant and the boolean variable
conformance is set to false which stops the loop. Otherwise if this subclass relationship for
all links of the model exists, the federated choreographies are structurally conformant. If
two choreographies and/or orchestrations has no link they are structurally conformant.
In other words two independent choreographies and/or orchestrations are always con-
formant. This is also reflected in the algorithm. Only choreographies and orchestrations
with a link are checked for structural conformance. There are some tools that based on
the algorithm in [131] by an enumerative approach can decide if a WF-net is a subclass
of another WF-net under projection inheritance among other inheritance definitions. For

124 8. Conformance of the Federated Choreographies

example Woflan [99, 265] can be used for deciding the subclass relationship between two
WF-nets.

Figure 7.15 depicts the Purchase processing choreography and figure 8.17 the Shipment
processing choreography. As illustrated in figure 7.11, the Shipment processing choreog-
raphy supports the Purchase processing choreography. In order to check if the Shipment
processing choreography is conformant with the Purchase processing choreography it must
be checked if the Shipment processing choreography (the supporting choreography) is sub-
class of the shared view between the Shipment processing choreography and the Purchase
processing choreography under projection inheritance. Figure 8.19 illustrates the shared
view between these two choreographies. It can be checked, and in fact is true, that in this
case a subclass relationship exists and two choreographies are structurally conformant.

Figure 8.19.: The shared view between the Purchase processing choreography and the Shipment pro-
cessing choreography

Checking of the structural conformance of an orchestration with the choreography that
is realizes can be done in a similar way. The inter-layer conformance of the model, e.g.
between the Purchase processing choreography and the seller’s orchestration can be done in the
same manner. For this, again it can be checked if the subclass relationship under projection
inheritance between the shared view and the realizing orchestration exists. Note that this
algorithm checks only the structural conformance of the model and not other consistency
issues. Figure 8.20 represents the seller’s orchestration in WF-net notation. The shared
view between the choreography and the orchestration is presented in figure 8.21.

8.2. Structural Conformance of the Federated Choreographies 125

Figure 8.20.: Seller’s orchestration in WF-net

126 8. Conformance of the Federated Choreographies

Figure 8.21.: The shared view between the Purchase processing choreography and the Seller’s orches-
tration

8.2. Structural Conformance of the Federated Choreographies 127

If in the seller’s orchestration (figure 8.20) the AND-split be changed to a XOR-split,
the seller’s orchestration will not be structurally conformant with the Purchase processing
choreography. The reason is that at run-time only the path containing the evaluation of the
buyer’s history may be executed and the activities on the other path which are sending
of shipment details, receiving info, receiving shipment bill and paying the shipment bill
will be omitted. This means that the activities of choreography will not be realized in the
orchestration. This variation of the seller’s orchestration is depicted in figure 8.22.

Structural conformance of federated choreographies is also presented separately in
[108]. However, the algorithm presented in [108] does not consider workflow views.

128 8. Conformance of the Federated Choreographies

Figure 8.22.: By changing AND-split into XOR-split, the structural conformance is violated

8.3. Temporal Conformance 129

8.3. Temporal Conformance

Temporal aspects are important quality criteria in business process execution. Temporal
constraints, e.g. time between a request and a reply from a web service, are envisioned as
part of the negotiations for setting up choreographies. It must be ensured that activities are
performed in a timely manner and the right information is delivered to the right activity
at the right time such that the overall temporal restrictions are satisfied. Choreographies
and orchestrations may have deadlines which specify the latest point in time in which the
last activity must finish execution. Temporal conformance checking assists organization
to provide services with a higher quality of service (QoS) and hence be more competitive.
Besides, it reduces the cost of the process as violation of temporal constraints leads to a
kind of exception handling which is coupled with additional costs [212].

An algorithm for automated checking of the temporal constraints of the federated
choreographies and generation of a valid temporal execution plan for choreographies and
orchestrations is proposed. Based on this, it is possible to decide if the execution of the
system leads to temporal exceptions and therefore modifications can be done if necessary.
The proposed algorithm works in a distributed manner and there is no need for a central
role or an organization for running the algorithm. Each participating partner possesses its
local workflow model which interacts with other workflows. Because of the distributed
functionality of the algorithm, one partner may need data from another partner to process
locally. A partner can request and receive data which is only associated to accessible activ-
ities to this partner. Such activities are defined in a choreography and are anyway public
to all participants of the choreography. In other words, data provider has not to reveal its
private data to others and solely provide required data for interaction with other partners.
This enables partners to hide their internal process logic whilst allow for interaction with
other partners. Temporal conformance checking has a build-time and a run-time aspect.
At build-time it is checked whether all orchestrations meet the temporal restrictions given
by the choreographies they realize. At run-time the progress of execution has to be mon-
itored to allow for diagnosis of potential violations of temporal constraints early enough
such that counter-measures still can be taken in order to guarantee the correct functionality
of the choreographies and orchestrations. Time management of the federated choreogra-
phies can be applied for three purposes:

Predictive time management: to predict the possible temporal behavior of the system and
pre-calculate future possible violations of temporal constraints

Pro-active time management: to detect potential future violations and raise alarm in such
a case such that counter-measure mechanisms can be triggered early enough. E.g.
executing the shortest path if the deadline is about to pass

Reactive time management: to react and trigger exception handling mechanism if a tem-
poral failure has already occurred

130 8. Conformance of the Federated Choreographies

It should be ensured that the flow of information and tasks is done in a timely manner
with consideration of the dependencies between activities which can reside in different
choreographies and orchestrations of separate layers. For example if an activity a provides
the input for another activity b, activity b must execute in a valid interval after activity a. In
addition it must be checked that no explicitly assigned deadline is violated. Satisfaction of
temporal restrictions of activities and assigned deadlines is necessary as organizations
in the competitive world of business compete for highest possible efficiency. Besides,
violation of constraints increases the cost of a process as each time an exception must
be raised and exception handling mechanisms have to be triggered [212].

8.3.1. Related Works

The time management concepts come from a related field, namely workflow management
research.

Maintaining Knowledge about Temporal Intervals
One of the earliest works on time properties is [29]. Allen describes a temporal rep-

resentation using the concept of temporal intervals and introduces a hierarchical repre-
sentation of relationships between temporal intervals applying constraints propagation
techniques. This work describes thirteen ways in which an ordered pair of intervals can
be related.

Time Constraints in Workflow Systems
Eder et al. in [110] present a model for calculation of temporal plans and propose some

algorithms for calculation and incorporation of time constraints.

Managing Time in Workflow Systems
[109] provides a methodology for calculating temporal plans of workflows at design-

time, instantiation-time and run-time. It considers several temporal constraints like lower-
bound, upper-bound and fixed-date constraints and explains how these constraints can be
incorporated. Moreover, a model for monitoring the satisfaction of temporal constraints at
run-time is provided.

Temporal Modeling of Workflows with Conditional Execution Paths
[105] provides a technique for modeling and checking time constraints whilst con-

ditional and parallel branches are discriminated. In addition, an unfolding-method for
detection of scheduling conflicts is provided.

Dynamic Verification of Temporal Constraints in Production Workflows
Marjanovic in [187] represents the notions of duration space and instantiation space

and describes a technique for verification of temporal constraints in production workflows.

8.3. Temporal Conformance 131

The approach presented in this dissertation is complementary to that introduced in [187]
in the way that a temporal plan for execution of all activities is calculated.

Temporal aspects of web services have been studied in [48, 161, 160].

On Temporal Abstractions of Web Service Protocols
[48] uses temporal abstractions of business protocols for their compatibility and re-

placeability analysis based on a finite state machine formalism.

Timed Modelling and Analysis in Web Service Compositions
Kazhamiakin, Pandya and Pistore in [161], as well as in Representation, Verification, and

Computation of Timed Properties in Web Service Compositions [160], exploit an extension of
timed automata formalism called web service time transition system (WSTTS) for model-
ing time properties of web services.

The approach presented in this work can cover cases which can be modeled in these
works and additionally allows for definition of explicit deadlines. This work extends pre-
vious works by addressing the conformance and verification problem and provides an a
priori execution plan at build-time (both best and worst case calculations) consisting of
valid execution intervals for all activities of participating choreographies and orchestra-
tions with consideration of the overall structure and temporal restrictions. The calculated
execution plans can be monitored at run-time.

Summary and comparison of related works
Table 8.1 compares the related works on temporal issues. It summarizes the discussed

papers, if the approach calculates temporal plans, if it is suitable for interacting workflows,
i.e. in situations like interorganizational workflows or web service composition and if other
consistency issues such as structural conformance are considered.

paper calculation of temporal plans Interacting entities Other consistency issues
[29] No No No

[110] Yes No No
[109] Yes No Yes
[105] Yes No Yes
[187] No No Yes
[48] No Yes Yes

[161] No Yes No
[160] No Yes No

Dissertation Yes Yes Yes

Table 8.1.: Summary of related work on temporal aspects

132 8. Conformance of the Federated Choreographies

8.3.2. Best Case, Worst Case Time Management of the Federated Choreographies

This approach calculates the best case and worst case temporal values for the federated
choreographies. Best case is the case of execution of the shortest path in a flow. Worst case
identifies the case when the longest path of a flow is taken and executed. The assumption
is that activities have a fixed duration and each workflow has an assigned deadline. These
assumptions are relaxed in other approaches presented for temporal conformance of the
federated choreographies.

8.3.2.1. Prerequisites

Time is considered as discrete values expressed in some basic chronons like Minutes (M),
Seconds (S) etc. The basic concepts used for calculation of temporal plans come originally
from the field of project management and operations research [219] such as critical path
method (CPM) [246] and program evaluation and review technique (PERT) [86] and its
extended version (ePERT) [113]. There are two kinds of temporal constraints considered
for this approach:

¥ Implicit constraints are derived implicitly from the structure of the process, e.g.
an activity can start execution if and only if all of its predecessors have finished
execution. This kind of constraints also can be referred to as structural constraints.

¥ Explicit Constraints, e.g. assigned deadlines, can be set explicitly by the process
designer or enforced by law, regulations or business rules.

[109] identifies another temporal constraint called "fixed-date constraint" which is not
used in this work. A fixed-date constraint is a time constraint that binds an event to some
fixed date e.g. information updates are sent 15th of every month.

As the basic modeling language timed activity graphs or timed graphs [212] are used.
They are familiar workflow graphs where nodes correspond to activities and edges the
dependencies between activities, enriched with temporal information. Figure 8.23 shows
an example of a timed workflow graph.

All activities have a unique name and two corresponding events. An event is either
start of an activity (denoted as for an activity a) or its end (denoted ae for an activity a).
The relationship between a supporting and a supported choreography is modeled simply
by event correspondence. e1 ≡ e2 denotes that event e1 corresponds to event e2. Note that
e1 and e2 may belong to different choreographies and/or orchestrations. See figure 8.24
for an example of event correspondence. The notations used in figure 8.24 are explained
in the following subsections. In the top part of the figure (case a), event correspondence is
used for propagation of the temporal values of a complex activity a which is decomposed
beneath. Start of the complex activity a corresponds to the start of the first activity (activity
i) and the end of the complex activity a corresponds to the end of the last activity contained
in the complex activity (activity j). Case b shows how event correspondence is used for

8.3. Temporal Conformance 133

propagation and copy of the temporal values of the same activity which is present in
different choreographies and orchestrations. In this case as well, event correspondence is
used to determine the corresponding events, i.e. to identify the start and the end of the
corresponding activities. The propagation of temporal values is described in details in the
subsection 8.3.2.3.

Figure 8.23.: An example of a timed graph with deadline= 25

All activities have durations. a.d denotes the duration of an activity a. At the first use
of a model an estimation of the activity durations, e.g. expert opinion, may be used. Later,
workflow logs can be mined for actual activity durations. In the approach presented
for best case and worst case calculations, deterministic values for activity durations are
used. Then the proposed approach is adapted for interval-based (subsection 8.3.3) and
stochastic temporal values (subsection 8.3.5). An interval in which an activity may execute
is calculated. This interval is delimited by earliest possible start (eps-value) and latest allowed
end (lae-value). a.eps denotes the eps-value of an activity a and is the earliest point in time
in which an activity a can start execution. a.lae represents the latest point in time in which
an activity a can finish execution in order to hold the assigned deadline. Both eps and lae
values are calculated for best case and worst case. If there is a XOR-split in the workflow,
there are multiple paths to be chosen and based on some evaluated conditions at run-
time one of the available paths is executed. The best case is given, if the shortest path is
executed and we have the worst case when the longest path is executed. It is possible that
a XOR-split has other branches whose lengths lie between best and worst cases. In this
work only best and worst cases are considered. If all branches of a XOR-split have the
same length, both cases have the same eps and lae-values.

134 8. Conformance of the Federated Choreographies

Figure 8.24.: a.) Propagation of the eps and lae-values of a complex activity. b) Propagation of values
for the same activity in different graphs

eps-values are calculated in a forward pass by adding the eps-value of the predecessor
to its duration. For example b.eps = a.eps + a.d if an activity a is a predecessor of an activity
b. If an activity a has multiple predecessors, e.g. if activity a is an immediate successor of
an AND-join, the maximum of eps-values of predecessors of a is taken into account. The
eps-value of the first activity or the set of first activities are set to 0.

In contrast to the eps-values, lae-values are calculated in a backward pass by subtracting
the lae-value of the successor from its duration, e.g. a.lae = b.lae− b.d, if an activity b is
a successor of an activity a. If an activity a has multiple successors, e.g. if activity a
is an immediate successor of an AND-split, the minimum of eps-values of predecessors
of a is taken into account. The lae-values of the last activity or the set of last activities
are set to the assigned deadline. If no deadline is assigned, length of the longest path
can be used instead of deadline. In this case the critical path has no buffer time. When
parallel structures are present in the model, always the longest path (worst case calculation)

8.3. Temporal Conformance 135

between a split and its counterpart join nodes is considered. Hence, best case has the same
temporal values as the worst case. The reason is that parallel-join must wait in any case
for the longest branch of the parallel structure to commit. Figure 8.25 shows calculation
of temporal values when AND-split and XOR-split are present in the model.

Figure 8.25.: Calculation of temporal values for AND-split and XOR-split

In addition to eps and lae-values, earliest possible end (epe-value) and latest allowed start
(las-value) for the activities can be defined. However, given activity durations they may
be calculated interchangeably applying the following formulas: a.epe = a.eps + a.d and
a.lae = a.las + a.d. For a more detailed discussion refer to [105]. Table 8.2 summarizes the
calculation of temporal values.

8.3.2.2. The Proposed Approach

Figure 8.26 exemplary illustrates the starting point of the algorithm. The assumption is
that there is only one global choreography present in the model. For the sake of readability,
in figure 8.26 the views between choreographies and orchestrations are not depicted. As a
mater of fact, because choreographies are composed of views, there is no need to calculate
the temporal execution plans of the views separately, rather it suffices to calculate the tem-

136 8. Conformance of the Federated Choreographies

Calculation of Temporal Values
Forward Calculation Best Case Worst Case

Sequence a.eps.bc = b.eps.bc + a.d a.eps.wc = b.eps.wc + a.d
AND-join a.eps.bc = max({b.eps.bc + a.d}) a.eps.wc = max({b.eps.wc + a.d})
XOR-join a.eps.bc = min({b.eps.bc + a.d}) a.eps.wc = max({b.eps.wc + a.d})

∀ immediate predecessors b of a
Backward Calculation Best Case Worst Case

Sequence a.lae.bc = b.lae.bc− b.d a.lae.wc = b.lae.wc− b.d
AND-split a.lae.bc = min({b.lae.bc− b.d}) a.lae.wc = min({b.lae.wc− b.d})
XOR-split a.lae.bc = max({b.lae.bc− b.d}) a.lae.wc = min({b.lae.wc− b.d})

∀ immediate successors b of a

Table 8.2.: Calculation of temporal values

poral execution plans of the choreographies and check their temporal conformance. In this
sense views are auxiliary constructs that do not contribute to the temporal conformance
of the federated choreographies. How temporal execution plans of views can be basically
calculated is explained in subsection 8.3.4.

Figure 8.26.: Starting point of the algorithm

8.3. Temporal Conformance 137

The calculation of the timed graphs of participating choreographies and orchestrations
is based on iteratively delimiting the initial intervals of activities because of implicit and
explicit constraints. In addition, other choreographies and orchestration with a link may
also impose a restriction on the calculated timed graph because of additional activities
present in them. The imposed restriction further tightens the calculated interval. Note that
a link identifies a dependency between choreographies and orchestration and is either a
support relationship between two choreographies or a realization between a choreography
and an orchestration. A valid execution interval is calculated when all factors affecting this
interval are taken into account, which are:

1. Implicit constraints

2. Explicit constraints

3. Dependencies with other choreographies and orchestrations

Remember that the conformance condition must consistently be satisfied i.e. The sum
of eps-value of an activity and its duration must be less or equal to its lae-value in both
best and worst cases, i.e.

∀ activities a: a.bc.eps + a.d ≤ a.bc.lae
∧

a.wc.eps + a.d ≤ a.wc.eps.

One important issue to be addressed is the case when one choreography has multi-
ple supporting choreographies and/or realizing orchestrations as depicted in figure 8.27.
The numbers beside the arrows show their order of execution. The method "propagate" is
described in subsection 8.3.2.3.

Figure 8.27.: Supported choreography with multiple incoming links

First, after initial calculation at G, temporal values are propagated from G to S1 (1),
after recalculations at S1, they are again propagated upward to G (2). Note that a propa-

138 8. Conformance of the Federated Choreographies

gation from a source node to a target node may change the temporal values of the target
node. This cycle is again repeated for S2 (3,4). If S2 again modifies the values of G, the
most recently modified values may again impose a restriction on the values of the sup-
porting choreography S1. In other words, two or more supporting choreographies and/or
realizing orchestrations with the same supported choreography may affect each other in-
directly even if they have no direct link to each other. This downward, upward cycle of
propagation-recalculation, e.g. propagation from G to S1, recalculation at S1, propagation
from S1 to G and recalculation at G, must be iterated for all supporting choreographies and
realizing orchestrations of a supported choreography as long as a stable state is reached.
A stable state is reached if for all links, after propagation of temporal values from a source
node to a target node, no modification of temporal values at the target node is necessary.
In other words, no source node imposes a restriction on its target node(s) and no interval
is further tightened after a propagation. The figures in appendix A show by a numeric
example how this procedure and cycle of calculation-propagation-calculation works. The
dependency between nodes of this example is illustrated in figure 8.27. If the values of
a choreography or an orchestration are changed, this change can be propagated in both
directions, i.e. to the choreography that it supports or realizes and/or to the choreogra-
phies or orchestrations by which it is supported or realized. After change of the values of
a choreography or an orchestration G, all of its incoming and outgoing links are marked
and the recalculated values are propagated for all links whose source or target node is G.

8.3.2.3. Methods

Following notations are used in the described methods: a.bc.eps and a.bc.lae denote the
best case eps and lae-values respectively. a.wc.eps and a.wc.lae represent these values for
the worst case. a.d identifies the duration of an activity a. a.pred and a.succ are the set of
predecessors and successors of an activity a respectively. a.pos identifies the position of an
activity a in a timed graph. as denotes the start-event of an activity a and ae its end-event.
G.deadline denotes the deadline of a timed graph G. d.max denotes the maximum allowed
duration of a choreography or an orchestration. Upper case letters represent the graphs
(choreographies or orchestrations) and lower case letters the activities.

The method initialize(G sets the eps and lae-values of activities a choreography or an
orchestration to 0 and ∞ respectively. The reason is that in this approach the eps-values
can always become greater and the lae-value can only become smaller when calculating
timed graphs and delimiting the initial interval.

8.3. Temporal Conformance 139

The Method initialize(G)

for all activities a ∈ G do1

a.wc.eps := 0;2

a.bc.eps := 0;3

a.wc.lae := ∞;4

a.bc.lae = ∞;5

endfor6

The Method calculate(G, G.deadline)

// -Forward Calculation-

for all activities a ∈ G in a topological order do1

// -Worst Case-

a.wc.eps = Max(Max{b.wc.eps + b.d | b ∈ a.pred}, a.wc.eps);2

// -Best Case-

if a is an immediate successor of a XOR-Join then3

a.bc.eps = Max(Min{b.bc.eps + b.d | b ∈ a.pred}, a.bc.eps);4

else5

a.bc.eps = Max(Max{b.bc.eps + b.d | b ∈ a.pred}, a.bc.eps);6

endif7

endfor8

// -Backward Calculation-

for all activities a ∈ G with a.pos = end do9

// -Worst Case-

a.wc.lae := G.deadline;10

// -Best Case-

a.bc.lae := G.deadline;11

endfor12

for all activities a ∈ G with a.pos 6= end in a reverse topological order do13

// -Worst Case-

a.wc.lae := Min(Min{c.wc.lae− c.d | c ∈ a.succ}, a.wc.lae);14

// -Best Case-

if a is an immediate predecessor of a XOR-Split then15

a.bc.lae := Min(Max{c.bc.lae− c.d | c ∈ a.succ}, a.bc.lae);16

else17

a.bc.lae := Min(Min{c.bc.lae− c.d | c ∈ a.succ}, a.bc.lae);18

endif19

endfor20

140 8. Conformance of the Federated Choreographies

The calculate(G, G.deadline) method takes as input a choreography or an orchestration
in graph representation and the output is the calculated timed graph for both best and
worst cases.

This method consists of two parts. In the first part in a forward pass from the start node
to the end node the eps-values are calculated. The existing eps-values are replaced by the
calculated eps only if the calculated eps is greater. Again, eps-values can only become
greater. The Backward Calculation part calculates the lae-values in a backward pass and
replaces the existing lae-value by calculated values only if the calculated lae-values are
smaller. This method is used for pre-calculation of timed graphs as well as for recalculation
of a timed graph after propagation of eps and lae-values from another choreography or
orchestration.

The Method propagate(G, H)

change := false;1

// -Propagation of eps-

for all activities {x ∈ H | ∃ a ∈ G : xs ≡ as} in a topological order do2

endfor3

if x.eps < a.eps then4

endif5

x.bc.eps := a.bc.eps;6

x.wc.eps := a.wc.eps;7

change := true;8

// -Propagation of lae-

for all activities {x ∈ H | ∃ a ∈ G : xe ≡ ae} in a topological order do9

if x.lae > a.lae then10

x.bc.lae := a.bc.lae;11

x.wc.lae := a.wc.lae;12

change := true;13

endif14

endfor15

return change;16

8.3. Temporal Conformance 141

This method propagates the eps and lae-values from one choreography or orchestration
to another. It uses event correspondence for propagation of the eps and lae-values from
a source activity to a target activity. The correspondence of the start events are used for
propagation of the eps-values and the correspondence of end events for the propagation of
lae-values.

When a complex activity is decomposed, the eps-value is propagated to its first activity
and the lae-value to its last activity respectively. The temporal values of other activities
of the complex activity as well as the lae-value of the first activity and the eps-value of
the last activity can be calculated using the calculate(G, G.deadline) method as described.
Figure 8.24 illustrates two cases.

The Method checkConformance(G)

for all activities a ∈ G in a reverse topological order do1

if a.wc.eps + a.d > a.wc.lae then2

conf := false;3

else if a.bc.eps + a.d > a.bc.lae then4

conf := false;5

endif6

endfor7

return conf;8

The above method checks if the conformance condition is fulfilled. It checks if the
sum of eps and duration of an activity is less than or equal to lae. Otherwise the boolean
variable conf is set to false. This condition must always be met for all activities of all
choreographies and orchestrations.

8.3.2.4. Temporal Conformance Checking Algorithm

The algorithm consists of two parts:

1. The initialization and precalculation phase

2. The recalculation and conformance checking phase

142 8. Conformance of the Federated Choreographies

The Algorithm temporalConformanceFederation()

// -initialization and precalculation-

conf := true;1

initialize(Cg);2

calculate(Cg);3

conf := checkConformance (Cg);4

for all directly and indirectly supporting choreographies and realizing orchestrations G of Cg5

in a topological order do

initialize(G);6

change := propagate(Cg, G);7

if change = true then8

G.deadline := G.first.eps + G.d.max;9

calculate (G);10

endif11

change: = propagate(G, Cg);12

if change = true then13

calculate(Cg);14

conf := checkConformance(Cg);15

mark all incoming and outgoing edges of Cg;16

endif17

endfor18

// -recalculation and conformance checking-

repeat19

select randomly a marked edge e such that G is the supported choreography and20

H the supporting choreography or realizing orchestration;
change: = propagate(G, H);21

if change = true then22

calculate H;23

conf := checkConformance (H);24

mark all incoming and outgoing edges ∈ H;25

endif26

unmark e;27

change: = propagate(H, G);28

if change = true then29

calculate G;30

conf := checkConformance (G);31

mark all incoming and outgoing edges ∈ G;32

endif33

until all edges are unmarked
∨

conf = false ;34

8.3. Temporal Conformance 143

In the first phase after initialization of the global choreography its eps and lae-values are
calculated without consideration of other supporting choreographies and realizing orches-
trations . That means only implicit and explicit constraints are taken into account. Note
that maximum allowed duration is considered for calculating the deadline of support-
ing choreographies and realizing orchestrations. d.max is the maximum duration during
which a workflow can execute whereas a deadline denotes a point in time. Like deadlines,
d.max is given a priori. It suffices in this phase to propagate the values to each node only
once. These values only serve as initial values for further calculations. Hence each node,
except the global choreography, is visited only once. A boolean variable change serves
as an indicator if temporal values of a node are changed. If this variable becomes true
all incoming and outgoing links of the corresponding choreography or orchestration are
marked. Start and target node of each marked link must be revisited and recalculated if
any value is changed. Note that multiple marks on an edge have no additional effect.

The second phase, the recalculation and conformance checking phase, consists of re-
calculation of the precalculated values in the first phase. For all marked edges, the cycle
of propagation-recalculation is repeated until a stable state is reached or the conformance
condition is violated. A stable state is reached if all marked edges are unmarked.

Figure 8.28 shows the end results of the graphs in figure 8.27. For a detailed calculation
refer to figures A.1- A.15 in appendix A.

At this stage the system has reached a stable state and the final temporal plans of the
supported choreography G and its two supporting choreographies S1 and S2 are calcu-
lated. It can be seen that same activities, no matter in which choreography, have the same
temporal values. At the first glance, the lae-values of the activity e in the supported chore-
ography G and the supporting choreography S1 are different, namely 50 and 52. Note that
this is because of the absolute deadline of 50 for the supported choreography G and the
maximum duration of 50 for the supporting choreography S1. A deadline is a time point
whilst maximum duration identifies a period of time. When considering the difference
between absolute deadline and maximum duration, the activity e has as well the same
temporal value.

8.3.2.5. Implementation and Proof of Concept

A prototype of the proposed approach as proof of concept has been implemented. The
workflow specifications of choreographies and orchestrations together with assigned dead-
lines, maximum durations and their dependencies are read as input. For each choreogra-
phy or orchestration two inputs are required: An XML-file containing the structure of
the workflow and a second XML-file containing the temporal information. The first file
includes the activities and the dependencies between activities. The second file contains
duration of the activities, assigned deadline and granularity of time. In addition to tem-
poral information, it is possible to assign costs to activities and the total process execution

144 8. Conformance of the Federated Choreographies

cost can be calculated. The required XML-files for the graph depicted in figure 8.29 are
presented in the following listings:

Figure 8.28.: After recalculation of S2

Figure 8.29.: A sample graph as input

8.3. Temporal Conformance 145

Listing 8.1: Structure of the graph in figure 8.29

<graph name=" G l o b a l Choreography " d e s c r i p t i o n =" Simple Workflow ">

< ! --

* structure: FIRST..A..B..Or[C,D]..And[E,F]..G..LAST

* only joins may have multiple predecessors

* only splits may have multiple successors

* there must be exactly one node of type BEGIN

* there must be exactly one node of type END

* the graph must be acyclic

-->

<node name="FIRST" t y p e ="BEGIN" d e s c r i p t i o n =" S t a r t o f t h e work f l ow " / >
<node name="A" t y p e ="ACTIVITY" d e s c r i p t i o n ="The a c t i v i t y A" / >
<node name="B" t y p e ="ACTIVITY" d e s c r i p t i o n ="The a c t i v i t y B" / >
<node name="C" t y p e ="ACTIVITY" d e s c r i p t i o n ="The a c t i v i t y C" / >
<node name="D" t y p e ="ACTIVITY" d e s c r i p t i o n ="The a c t i v i t y D" / >
<node name="E" t y p e ="ACTIVITY" d e s c r i p t i o n ="The a c t i v i t y E" / >
<node name="F" t y p e ="ACTIVITY" d e s c r i p t i o n ="The a c t i v i t y F" / >
<node name="G" t y p e ="ACTIVITY" d e s c r i p t i o n ="The a c t i v i t y G" / >
<node name="OS1" t y p e ="ORSPLIT" d e s c r i p t i o n ="The or−s p l i t OS1" / >
<node name="OJ1" t y p e ="ORJOIN" d e s c r i p t i o n =" The or−j o i n OJ1" / >
<node name="AS1" t y p e ="ANDSPLIT" d e s c r i p t i o n ="The and−s p l i t AS1" / >
<node name="AJ1" t y p e ="ANDJOIN" d e s c r i p t i o n ="The and−j o i n AJ1" / >
<node name="LAST" t y p e ="END" d e s c r i p t i o n ="End o f t h e work f l ow " / >

<edge p r e d e c e s s o r ="FIRST" s u c c e s s o r ="A" d e s c r i p t i o n =" " / >
<edge p r e d e c e s s o r ="A" s u c c e s s o r ="B" d e s c r i p t i o n =" " / >
<edge p r e d e c e s s o r ="B" s u c c e s s o r ="OS1" d e s c r i p t i o n =" " / >
< ! -- start or -->
<edge p r e d e c e s s o r ="OS1" s u c c e s s o r ="C" d e s c r i p t i o n =" " / >
<edge p r e d e c e s s o r ="OS1" s u c c e s s o r ="D" d e s c r i p t i o n =" " / >
<edge p r e d e c e s s o r ="C" s u c c e s s o r ="OJ1" d e s c r i p t i o n =" " / >
<edge p r e d e c e s s o r ="D" s u c c e s s o r ="OJ1" d e s c r i p t i o n =" " / >
< ! -- end or -->
<edge p r e d e c e s s o r ="OJ1" s u c c e s s o r ="AS1" d e s c r i p t i o n =" " / >
< ! -- start and -->
<edge p r e d e c e s s o r ="AS1" s u c c e s s o r ="E" d e s c r i p t i o n =" " / >
<edge p r e d e c e s s o r ="AS1" s u c c e s s o r ="F" d e s c r i p t i o n =" " / >
<edge p r e d e c e s s o r ="E" s u c c e s s o r ="AJ1" d e s c r i p t i o n =" " / >
<edge p r e d e c e s s o r ="F" s u c c e s s o r ="AJ1" d e s c r i p t i o n =" " / >
< ! -- end and -->
<edge p r e d e c e s s o r ="AJ1" s u c c e s s o r ="G" d e s c r i p t i o n =" " / >
<edge p r e d e c e s s o r ="G" s u c c e s s o r ="LAST" d e s c r i p t i o n =" " / >

< / graph>

146 8. Conformance of the Federated Choreographies

Listing 8.2: Temporal data of the graph in figure 8.29

< d a t a s e t
r e f e r s T o =" G l o b a l Choreography "
d a t a S e t D e s c r i p t i o n =" E m p i r i c a l Data ">
< ! -- The overall process DEADLINE; defined as deadline for last node. -->
<t ime r e f e r s T o N o d e ="LAST" t y p e ="DEADLINE" v a l u e ="55" g r a n u l a r i t y ="MINUTES" / >

< ! -- Durations: activities not listed are assumed to have duration 0 -->
<t ime r e f e r s T o N o d e ="A" t y p e ="DURATION" v a l u e ="15" / >
<t ime r e f e r s T o N o d e ="B" t y p e ="DURATION" v a l u e ="7" / >
<t ime r e f e r s T o N o d e ="C" t y p e ="DURATION" v a l u e ="9" / >
<t ime r e f e r s T o N o d e ="D" t y p e ="DURATION" v a l u e ="17" / >
<t ime r e f e r s T o N o d e ="E" t y p e ="DURATION" v a l u e ="13" / >
<t ime r e f e r s T o N o d e ="F" t y p e ="DURATION" v a l u e ="5" / >
<t ime r e f e r s T o N o d e ="G" t y p e ="DURATION" v a l u e ="6" / >

< ! -- Costs: activities not listed are assumed to have cost 0 -->

< / d a t a s e t >

The prototype reads the XML-Files as input and convert the XML-description of the
choreographies and orchestrations into directed acyclic graphs. After that, the prototype
calculates the execution plan for all participating choreographies and orchestrations and
checks if the conformance condition is met for all involved nodes. The prototype has
been implemented under JAVA and has been validated in the framework of the European
project WS-Diamond [11]. Table 8.3 at the end of this subsection shows the experimental
results, applied on data sets consisting of different number of choreographies and/or
orchestrations and different number of activities.

The above presented approach considers implicit and explicit constraints when calcu-
lating time graphs. However, in a straightforward manner upper-bound and lower-bound
constraints can also be considered. Lower-bound and upper-bound constraints can be
used for modeling interval-based duration of activities rather than deterministic values.
See subsection 8.3.3 for a modified version of the algorithm that considers lower-bound
and upper-bound constraints.

The approach for checking the temporal conformance of the federated choreographies
with deterministic fixed-values are also separately presented in [114].

8.3.2.6. Proof of Termination and Complexity Analysis

There are two possibilities: either there is a stable state or there is no such a stable state.
A stable state is a state in which the same activities in all choreographies or orchestrations
have the same temporal values and after a propagation from a source choreography or
orchestration to a target choreography or orchestrationn, no changes are made to the

8.3. Temporal Conformance 147

temporal values of the target choreography or orchestration. The algorithm terminates in
both cases.

Case 1: There is a stable state. Let | e | denote the cardinality of edges and | me |
the cardinality of marked edges. It is obvious that always | me |≤| e | is valid. Because
the number of choreographies and orchestrations are finite, it follows that the number of
edges is also finite, i.e. | me |≤| e |< ∞. In this case after a finite number of steps (propa-
gation and recalculation) all the same activities that reside in different choreographies and
orchestrations have the same temporal values and the stable state is reached. That means
| me |= ∅ and the algorithm terminates.

Case 2: There is no stable state. The absence of the stable state means that number
of marked edges can never be empty, i.e. | me |= ∅ is never valid. It implies that there
is at least one propagation that changes the temporal values of a target choreography
or orchestration. In the algorithm, change of a temporal value means that the lae-value
becomes smaller, the eps-value becomes greater or both. In any of these cases because
there is a finite number of chronons between the time points, eps + a.d > lae becomes true
in a finite number of steps which violates the conformance condition and the algorithm
terminates.

Complexity Analysis
The problem can be decided in polynomial time and the algorithm has a worst case

time complexity of O(δ×m× n3), where δ denotes the maximum value of assigned dead-
lines and maximum durations of all choreographies and orchestrations, m the total num-
ber of choreographies and orchestrations in the model and n the maximum number of
activities contained in the graph of a participating choreography or orchestration.

The method initialize(G) has a worst case complexity of O(n). The method
calculate(G, G.deadline) has a worst case complexity of O(n2). The method propagate(G, H)
has a worst case complexity of O(n). The method
checkConformance(G) has a worst case complexity of O(n).

The first part of the algorithm temporalConformanceFederation(), the initialization and
precalculation phase, has a complexity of O(m× n2), n and m as defined before. In this
phase, the propagations and calculations are performed only once from the global chore-
ography to all of its directly and indirectly choreographies and orchestrations for pre-
calculation purposes. Hence the first part of the algorithm has a complexity of O(m× n2).

In the second part of the algorithm, the recalculation and conformance checking phase,
the cycle of calculation-propagation-calculation is repeated as long as a stable state is
reached or the conformance condition is violated. The worst case is given if in one cycle
of iterations, the number of chronons between eps-value of an activity and its lae-value
becomes only one unit smaller, i.e. if eps-value becomes only one unit greater or lae-value

148 8. Conformance of the Federated Choreographies

becomes only one unit smaller. The total number of chronons in the model equals n×m×
δ, where n, m and δ as defined before. Note that if a choreography or an orchestration
starts at time point 0 its maximum duration can be treated the same as assigned deadline.
The worst case complexity of the second part of the algorithm is therefore O(δ×m× n3).
Consequently, the worst case complexity of the overall algorithm is O(δ×m× n3).

Nr. Number of workflows Number of activities Deadline Execution time (MS)
1 3 39 50 161
2 3 78 100 187
3 3 117 150 244
4 3 156 200 294
5 3 195 250 306
6 5 81 50 200
7 5 160 100 250
8 5 239 150 284
9 5 318 200 317

10 5 397 250 356
11 6 498 250 391
12 7 599 250 422
13 8 700 250 469
14 9 801 250 515
15 10 902 250 563
16 11 1003 250 609
17 12 1104 250 656
18 13 1205 250 703
19 14 1306 250 734
20 15 1407 250 766
21 16 1508 250 828
22 17 1609 250 875
23 18 1710 250 907
24 19 1811 250 922
25 20 1912 250 969

Table 8.3.: Data sets with different numbers of flows and activities

8.3.3. Interval-Based Calculations of Temporal Conformance

The approach presented in subsection 8.3.2.2 considers only implicit constraints (structure
of the process) and explicit constraints (assigned temporal restriction). Here a modified

8.3. Temporal Conformance 149

version of the algorithm is represented that caters for representation of upper-bound and
lower-bound constraints [109].

Lower-bound constraint identifies the minimum temporal distance between two events.
Let a be the source event and b the destination event. lbc(a, b, δ) denotes that be-
tween the event a and the event b at least δ time points must pass.

Upper-bound constraint identifies the maximum temporal distance between two events.
Let a be the source event and b the destination event. ubc(a, b, δ) denotes that between
the event a and the event b at most δ time points can pass.

Such constraints can be used for modeling interval-based, variable duration of activities
by insertion of upper-bound and lower-bound constraints between start event and end
event of each activity as depicted in figure 8.30. In this figure a.d ∈ [0, 10] and b.d ∈ [0, 15].

Figure 8.30.: Modeling variable duration of activities with upper-bound and lower-bound constraints

The temporal conformance algorithm for lower-bound and upper-bound constraints
uses following methods:

¥ initialize(G)

¥ calculate(G, G.deadline)

¥ incorporateUbc(G, {ubc(s, d, δ)})

¥ propagate(G, H)

¥ checkConformance(G)

The methods initialize(G), propagate(G, H) and checkConformance(G) are the
same as those described in subsection 8.3.2.3 and therefor are not again described
here. The adapted versions of the method calculate(G, G.deadline) and the method
incorporateUbc(G, {ubc(s, d, δ)}) which is used for incorporation of upper-bound con-
straints into a timed graph are described at the end of this subsection. Finally, the overall
algorithm for checking the interval-based temporal conformance is presented.

150 8. Conformance of the Federated Choreographies

The method calculate(G, G.deadline takes as input a choreography or an orchestration in
graph representation and as output it calculates the timed graph for both best case and
worst case.

This method consists of two parts. In the first part in a forward pass from the start
node to the end node the eps-values are calculated. Three values are considered: the ex-
isting eps-values, the newly calculated eps-values and possible lower-bound constraints.
Depending on the position of the activity in the flow (e.g. immediate successor of a XOR-
join or source of a lower-bound constraint) the valid eps value is calculated. The Backward
Calculation part calculates the lae-values in a backward pass by again considering three
values i.e. existing lae-values, newly calculated lae-values and possible lower-bound con-
straints. This method is used for precalculation of timed graphs as well as for recalculation
of the timed graph after propagation of eps and lae-values from another choreography or
orchestration.

The method incorporateUbc(G, {ubc(s, d, δ)}) incorporates the upper-bound con-
straints into a choreography or an orchestration. It first checks if the consistency condition
of the upper-bound constrains are violated, i.e. if s.eps + δ < d.eps and s.lae + δ < d.lae.
Where δ denotes the value of the upper-bound constraint, s.eps and s.lae denote the eps
and lae-value of the source activity and d.eps and d.lae identify the eps and lae-value of the
destination activity respectively.

These conditions must be valid for both best case and worst case. If this condition is
violated, it is tried to incorporate the ubc by shifting the temporal values of the source ac-
tivity of the ubc. The eps-value of the source activity is set to : s.wc.eps := d.wc.eps− δ. First,
it is checked if the conformance condition is still fulfilled. In other words, it is checked if
a.eps + a.d ≤ a.lae for both worst and base cases (method checkConformance(G)). After this,
the temporal value of the graph is again calculated (method calculate (G,G.deadline)). If the
temporal value of the source activity of the ubc is not changed, the ubc is incorporated.
Otherwise a violation is occurred. In a backward calculation the lae-values are calculated
and incorporated. Temporal values are calculated for both best and worst cases.

8.3.3.1. Calculation of Timed Graphs and Temporal Conformance Checking

The algorithm temporalConformanceFederationUbcLbc() except for the additional method
incorporateUbc(G, {ubc(s, d, δ)}), works in a similar manner as in subsection 8.3.2.3

8.3. Temporal Conformance 151

8.3.4. Calculation of Temporal Execution Plans of Views

In this subsection calculation of temporal execution plans of views is presented. Views
and construction of views are presented in chapter5. However because views are rather
supporting and auxiliary constructs, the temporal conformance of views are not necessar-
ily important for the temporal conformance of an interorganizational workflow. On the
other hand, there are situations in which one needs to calculate the temporal execution
plans of the views. For example in business-to-costumer situations where a human actor
interacts with a view of a flow, it is necessary to calculate the temporal execution plan of
the view such that the customer knows in which interval he can send messages and in
which interval he can expect messages from a service provider. It is assumed that each
workflow has a deadline and based on the calculation of the temporal plans of a private
workflow, the temporal plans of its views are calculated. In other words a valid interval
in which an activity, executable or aggregated, can execute is calculated. How temporal
execution plans of workflows are calculated is described in subsection 8.3.2.1.

8.3.4.1. Calculation of Timed Graphs of Views

As explained, two ways for constructing views are considered: application of the abstrac-
tion operator and aggregation. If the abstraction operator is applied on an executable
private workflow process, there is no need to recalculate the temporal execution plan of
the view. In this case, after calculation of the temporal plan of a private process, the
calculated values can be directly taken over for the activities contained in the view. See
figure 8.31 for an example.

152 8. Conformance of the Federated Choreographies

Figure 8.31.: Temporal plan of a WF and its view by application of τ-operator

If aggregation is applied, the temporal values of the aggregated activities in views can
be calculated in a straightforward manner.The duration of the aggregated activity is sum
of the durations of the executable activities contained in it. Note that the parallel or join
structure can be considered as one activity because the length of its longest path is taken
as its duration. This yields to a worst case estimation of the duration of an aggregated
activity. For the interacting partner it is important to know in which time interval they
can interact with the workflow. Hence, worst case duration for the aggregated activities
is a reasonable estimation. This yields always to a temporally valid interaction with the
view and therefore guarantees the correct temporal behavior of the flow. The eps-value
of an aggregated activity is the eps-value of its first executable activity or the maximum
value of the set of its first executable activities. The lae-value of an aggregated activity
is the lae-value of its last executable activity or the minimum value of the set of its last
executable activities. The temporal values of other activities that are not contained in
another aggregated activity can be taken over directly from temporal plan of the private
workflow.

8.3. Temporal Conformance 153

Figure 8.32.: Temporal plan of a view by application of aggregation

Figure 8.32 shows an example for this case. As can be seen in figure 8.32, the aggre-
gated activity x has a duration of 14 time units, whereas the activity e in the view has a
best case eps-value of 9 time units. It implies that the aggregated activity e in the view of
figure 8.32 can start execution before the aggregated activity x (its direct predecessor) has
finished execution, which is a violation of the structural constraints. The reason is that the
aggregated activity x reflects its worst case value whilst 9 is the eps-value of activity e if
the aggregated activity x execute its shortest path and terminates at best case. To resolve
this issue, it is necessary to recalculate the eps-values of the view. Note that the lae-values
remain unaffected. This can be done in the same way as explained before (the forward
pass calculation). The end results are depicted in the right most part of the figure 8.32.

The approach for calculating the temporal execution plans of the views are also sep-
arately presented in [115]. This work proposes another form for checking the temporal
conformance of the flows of the interacting partners.

8.3.5. Probabilistic Time Management of the Federated Choreographies

In this subsection another approach for time management of the federated choreographies
is presented that caters for a new set of questions regarding time management and tem-
poral conformance of the federated choreographies. In real life applications, it is almost
impossible to give exact statements about temporal constraints such as how long the exe-
cution of a business process takes. This is mainly because of two issues:

154 8. Conformance of the Federated Choreographies

¥ Variable duration of activities

¥ (Unknown) branching probabilities at conditional nodes

By application of the probabilistic approach one can answer questions such as with
which probability a choreography or an orchestration will finish execution such that the
assigned deadline is not violated or with which probability the remaining execution time
is equal or less than t time points. The uncertainty associated with such statements arises
from two factors mentioned above. Contrary to the previous approach, the probabilistic
approach does not consider best case (when the shortest path of a graph is executed) and
worst case (when the longest path of a graph is executed) when calculating timed graphs.
Figure 8.33 shows an example of a graph with branching probabilities. The branching
probability of each path is shown on the arc. For example, in 40% of cases the activity
c is executed and in 60% the activity d. After activity c, in 10% of cases the activity e
is executed whilst in 90% of cases the activity f. Given the paths are independent from
each other, the path containing both activities c and e is executed with the probability
of p = 0.4 × 0.1 = 0.04. Table 8.4 shows the execution probability of each path of the
probabilistic timed graph in figure 8.33. Note that the sum of the probabilities of execution
paths must be always 1, i.e. let G be a probabilistic timed graph with n ∈ N distinct paths,
where pi identifies the execution probability of the i-th path:Σi=n

i=1(pi) = 1.

8.3. Temporal Conformance 155

The Method calculate(G, G.deadline)

// -Forward Calculation-
for all activities a ∈ G in a topological order do1

// -Worst Case-
if a is the destination of a lbc(s, a, δ) then2

a.wc.eps = Max({b.wc.eps + b.d | b ∈ a.pred}, a.wc.eps, s.wc.eps + δ)3

else4

a.wc.eps = Max({b.wc.eps + b.d | b ∈ a.pred}, a.wc.eps)5

// -Best Case-
if a is the immediate successor of a XOR-Join then6

if a is destination of a lbc(s, a, δ) then7

a.bc.eps = Max(Min{b.bc.eps + b.d | b ∈ a.pred}, a.bc.eps, s.bc.eps + δ)8

else9

a.bc.eps = Max(Min{b.bc.eps + b.d | b ∈ a.pred}, a.bc.eps)10

else11

if a is the destination of a lbc(s, a, δ) then12

a.bc.eps = Max({b.bc.eps + b.d | b ∈ a.pred}, a.bc.eps, s.bc.eps + δ)13

else14

a.bc.eps = Max({b.bc.eps + b.d | b ∈ a.pred}, a.bc.eps)15

// -Backward Calculation-
for all activities a ∈ G with a.pos = end do16

// -Worst Case-
a.wc.lae := G.deadline;17

// -Best Case-
a.bc.lae := G.deadline;18

for all activities a ∈ G with a.pos 6= end in a reverse topological order do19

// -Worst Case-
if a is the source of a lbc(a, d, δ) then20

a.wc.lae := Min({c.wc.lae− c.d | c ∈ a.succ}, a.wc.lae, d.wc.lae− δ)21

else22

a.wc.lae := Min({c.wc.lae− c.d | c ∈ a.succ}, a.wc.lae)23

// -Best Case-
if a is the immediate predecessor of a XOR-Split then24

if a is the source of a lbc(a, d, δ) then25

a.bc.lae := Min(Max{c.bc.lae− c.d | c ∈ a.succ}, a.bc.lae, d.bc.lae− δ)26

else27

a.bc.lae := Min(Max{c.bc.lae− c.d | c ∈ a.succ}, a.bc.lae)28

else29

if a is the source of a lbc(a, d, δ) then30

a.bc.lae := Min({c.bc.lae− c.d | c ∈ a.succ}, a.bc.lae, d.bc.lae− δ)31

else32

a.bc.lae := Min({c.bc.lae− c.d | c ∈ a.succ}, a.bc.lae)33

156 8. Conformance of the Federated Choreographies

The Method incorporateUbc(G, {ubc(s, d, δ)})

violation := false;1

oldValue := 0;2

repeat3

for all ubc(s, d, δ) in G do4

// -Worst Case-
if s.wc.eps + δ < d.wc.eps then5

s.wc.eps := d.wc.eps− δ;6

oldValue := d.wc.eps;7

calculate(G, G.deadline);8

conf := checkConformance(G);9

if d.wc.eps 6= oldValue then10

violation := true;11

if s.wc.lae + δ < d.wc.lae then12

d.wc.lae := s.wc.lae + δ;13

oldValue := s.wc.lae;14

calculate(G, G.deadline);15

conf := checkConformance(G);16

if s.wc.lae 6= oldValue then17

violation :=true;18

// -Best Case-
if s.bc.eps + δ < d.bc.eps then19

s.bc.eps := d.bc.eps− δ;20

oldValue := d.bc.eps;21

calculate(G, G.deadline);22

conf := checkConformance(G);23

if d.bc.eps 6= oldValue then24

violation := true;25

if s.bc.lae + δ < d.bc.lae then26

d.bc.lae := s.bc.lae + δ;27

oldValue := s.bc.lae;28

calculate(G, G.deadline);29

conf := checkConformance(G);30

if s.bc.lae 6= oldValue then31

violation :=true;32

until violation = true
∨

conf = false
∨

all Ubc(s, d, δ) are incorporated ;33

8.3. Temporal Conformance 157

The Algorithm temporalConformanceFederationUbcLbc()

// -initialization and precalculation-

conf := true;1

initialize(Cg);2

calculate(Cg);3

incorportaeUbc(G, {s, d, δ)4

conf := checkConformance; (Cg);5

for all directly and indirectly supporting choreographies and realizing orchestrations G of Cg6

in a topological order do

initialize(G);7

change := propagate(Cg, G);8

if change = true then9

G.deadline := G.first.eps + G.d.max;10

calculate (G);11

endif12

change: = propagate(G, Cg);13

if change = true then14

calculate(Cg);15

conf := checkConformance(Cg);16

mark all incoming and outgoing edges of Cg;17

endif18

endfor19

// -recalculation and conformance checking-

repeat20

select randomly a marked edge e such that G is the supported choreography and21

H the supporting choreography or realizing orchestration;
change: = propagate(G, H);22

if change = true then23

calculate H;24

conf := checkConformance (H);25

mark all incoming and outgoing edges ∈ H;26

endif27

unmark e;28

change: = propagate(H, G);29

if change = true then30

calculate G;31

conf := checkConformance (G);32

mark all incoming and outgoing edges ∈ G;33

endif34

until all edges are unmarked
∨

conf = false ;35

158 8. Conformance of the Federated Choreographies

Figure 8.33.: A sample timed graph with branching probabilities

Number Path Probability
1 abcej 0.4× 0.1 = 0.04
2 abcfj 0.4× 0.9 = 0.36
3 abdghj 0.6× 0.3 = 0.18
4 abdij 0.6× 0.7 = 0.42

Table 8.4.: Execution probability of each path of the graph in figure 8.33

8.3.5.1. Probabilistic Model Description

In order to express the variable duration of activities, the notion of time histograms
[221, 106] has been used. A duration histogram, basically, is a data structure for repre-
sentation of the (probabilistic and variable) duration of basic activities, complex activities,
subworkflows and workflow itself. A duration histogram is a tuple (p, d), where p is a
probability and d a duration. For example the probabilistic duration of an activity can be
represented as {(0.1, 10), (0.25, 12), (0.32, 15), (0.33, 20)} which can be interpreted as fol-
lows: the duration of this activity is with the probability 10%, 10 time points, with the
probability 25%, 12 time points, with the probability 32%, 15 time points and with the
probability 33%, 20 time points. Note that the values for activity or workflow durations
can be extracted from empirical data e.g. workflow logs and by lack of such data other
sources or estimations such as expert opinion may be used. If in a duration histogram
there is any tuples whose time values are the same, these tuples must be merged by
adding the probabilities of tuples with the same duration. A workflow graph augmented
with stochastic temporal information for activities and nodes is referred to as probabilistic
timed graph. Figure 8.34 illustrates an example of such a probabilistic timed graph. The
duration of activities are given in the table above the graph.

8.3. Temporal Conformance 159

All control nodes, i.e. start node, end node, XOR-split, XOR-join, AND-split and AND-
join, have the duration 0. The deadline of the workflow is also given in form of a (prob-
ability, duration) tuple. Further, it is assumed that there is no delay between end of an
activity and start of its successor or the set of its successors.

Analogous to duration Histograms (d-histograms), [221] defines e-histograms for pre-
sentation of e-values and l-histograms for presentation of l-values. e-values are earliest
possible start values (eps-values) and/or earliest possible end values (epe-values). l-values
are latest allowed start values (las-values) and/or latest allowed end values (lae-values).
Note that e-histograms and l-histograms must be interpreted in a different way different
than d-histograms.

Start End
OSa b j

c

d

40%

60%

OJ AS

e

f

AJ

a.d={(0.2,1),(0.5,5),(0.3,10)}
b.d={(0.5,4),(0.5,8)}
c.d={(0.1,8),(0.9,15)}
d.d={(1.0,7)}
e.d={(0.4,4),(0.6,6)}
f.d={(0.7,3),(0.3,7)}
J.d={(1.0,5)}
Start.d=OS.d=OJ.d=AS.d=AJ.d=End.d={(1.0,0)}
deadline={(1.0,50)}

Figure 8.34.: A sample probabilistic timed graph (PTG)

160 8. Conformance of the Federated Choreographies

8.3.5.2. Histogram Operations

In order to calculate the execution plan and temporal values (eps-values, epe-values, las-
values and lae-values) of a probabilistic timed graph, operations on histograms are neces-
sary. Theses histograms operations are briefly introduced in this subsection.

The histogram addition generates the cartesian product of the tuples of two histograms,
where probabilities are multiplied and time values are added: {(0.25, 3), (0.75, 5)} +
{(0.5, 3), (0.5, 5)} = {(0.125, 6), (0.125, 8), (0.375, 8), (0.375, 10)}. Resulting tuples with
equal time values are aggregated, which means they are merged by summing up their
probabilities: {(0.125, 6), (0.5, 8), (0.375, 10)}.

The histogram subtraction h1 − h2 is a variation of the addition, with the only
difference that time values for the resulting tuples are subtracted. For exam-
ple Let h1 = {(0.5, 10), (0.5, 15)} and h2 = {(0.3, 3), (0.7, 7)}, then h1 − h2 =
{(0.15, 7), (0.35, 3), (0.15, 12), (0.35, 8)}. In this example there is no need for aggregation
as all durations have unique values.

The histogram conjunction also generates a cartesian product. Again probabilities are
multiplied, but this time the maximum time value of each tuple-combination determines
the time value of the resulting tuple. Therefore it is also called the max-conjunction:
{(0.25, 3), (0.75, 5)}∧

max{(0.5, 3), (0.5, 5)} = {(0.125, 3),
(0.125, 5), (0.375, 5), (0.375, 5)}. Again the final resulting histogram has to be aggregated,
which results in {(0.125, 3), (0.875, 5)}. A variation of this operation is the min-conjunction
which determines the time value of the resulting tuple by applying a minimum-operation.
{(0.25, 3), (0.75, 5)}∧

min{(0.5, 3), (0.5, 5)} = {(0.125, 3), (0.125, 3), (0.375, 3), (0.375, 5)}
which yields to {(0.625, 3), (0.375, 5)}.

The weight-operation multiplies all probabilities in a histogram with a given probabil-
ity: {(0.25, 3), (0.75, 5)} ∗ 0.25 = {(0.0625, 3), (0.1875, 5)} and {(0.5, 3), (0.5, 5)}
∗0.75 = {(0.375, 3), (0.375, 5)}. Please note that the weight operation produces an invalid
histogram, as the sum of probabilities is less than 1.0. Therefore it always appears
in combination with the histogram disjunction, which merges two weighted histograms:
{(0.0625, 3), (0.1875, 5)}∨{(0.375, 3), (0.375, 5)} = {(0.0.625, 3),
(0.1875, 5), (0.375, 3), (0.375, 5)}; and the aggregation which yields to {(0.4375, 3), (0.5625, 5)}.

Both, conjunction and disjunction, are commutative and associative, therefore they can
be extended to k histograms, e.g.: h = h1 ∨ . . . ∨ hk =

∨
hi, where 1 ≤ i ≤ k.

The histogram comparison is applied for comparing two histograms with each other.
Unlike discrete values, two histograms h1 and h2 may partially overlap. Thus an expression
like h1 < h2 can be true and false at the same time, each at least up to a certain degree.
Therefore, the comparison of two histograms h1 and h2 with the comparison-operator
./ ∈ {≤, <, =, >,≥} for a given degree 0 ≤ deg ≤ 1 is defined as follows:

h1 ./deg h2 =

{
true : Σp1 ∗ p2 ≥ deg∧ t1 ./ t2, ∀(p1, t1) ∈ h1, ∀(p2, t2) ∈ h2

false : otherwise

8.3. Temporal Conformance 161

Based on the histograms h1 and h2, depicted in Figure 8.35, we can make the following
statements: up to a degree of 0.545, h1 is greater than h2 and up to a degree of 0.35, h1 is
equal to h2. Thus, for instance, the following expressions are true: h1 <0.05 h2, h1 >0.25 h2,
h1 >0.545 h2, and the following are false: h1 >0.7 h2, h1 ≥0.9 h2. In order to check the
total histogram equality the certainty degree must be set to 1.0: h1 =1.0 h2 and to ensure
that two histograms have no overlapping regions at all, they must be compared with the
certainty degree of 1.0: h1 <1.0 h2 or h1 >1.0 h2.

0.15

0.50

0.35

10

15

20

0.30

0.70

9

15

0.045 10

15

20

10

15

20

9

9

9

15

15

15

>

>

>

<

=

>

0.350

0.105

0.105

0.150

0.245

t1 > t2 : 54.5 %

t1 t2p1 p2 p1 * p2 t1 t2

Histogram h1 Histogram h2

t1 = t2 : 35.0 %

t1 < t2 : 10.5 %

t1 <= t2 : 45.5 %

t1 => t2 : 89.5 %

Figure 8.35.: Calculating the values for histogram comparison

A relaxed certainty allows for overlapping regions, which might prove useful especially
if there are (extreme) outliers in histograms. For example imagine that the mean of a
histogram h3 is 5 and it contains one extreme outlier, the tuple (0.005,1000). Even with a
histograms h4 that contains much higher time values, a <-comparison with 100%-certainty
always yields false. Therefore, relaxing the certainty-value just by 0.01% will avoid most
conformance-conflicts (still, one day this highly improbable case might occur).

8.3.5.3. Calculation of Probabilistic Timed Graphs

e-histograms (eps-histograms, epe-histograms) of nodes of a workflow can be calculated
by applying the forward calculation rules in a topological order. These rules are specified
in table 8.5 according to the node types. In table 8.5, node.eps denotes the eps-histogram of
the current node, node.epe its epe-histogram, node.d the duration histogram of the current
node, pred.epe identifies the epe-histogram of the predecessor node, node.Pred the set of
predecessor nodes of the current node and ppred⇒node identifies the execution probability of
the edge connecting the predecessor node to the current node.

Except for nodes with multiple incoming paths, i.e. AND-join, XOR-join, the duration-
histograms are summed up to calculate the according e-histograms. For AND-joins the
max-conjunction is applied because the longest path (or histogram-tuple) determines the
resulting tuple. For XOR-joins, the histograms of predecessors are weighted with the
according branching probability and subsequently they are merged applying the conjunc-
tion.

Analogously, for calculation of l-histograms (las-histograms and lae-histograms) the
backward calculation rules, as specified in table 8.6, have to be applied in a backward

162 8. Conformance of the Federated Choreographies

type of node node.eps = node.epe =
Start {(1.0, 0)} node.eps + node.d
End pred.epe node.eps + node.d

Activity pred.epe node.eps + node.d
AND-split pred.epe node.eps + node.d
XOR-split pred.epe node.eps + node.d
AND-join ∀ pred ∈ node.Pred :

∧
max(pred.epe) node.eps + node.d

XOR-join ∀ pred ∈ node.Pred :
∨

(pred.epe ∗ ppred⇒node) node.eps + node.d

Table 8.5.: Calculation of e-histograms

topological order. In table 8.6 node.lae refers to the lae-histogram of the current node,
node.las the las-histogram of the current node, {(1.0, δ)} denotes the assigned deadline,
node.d the duration histogram of the current node, succ.las identifies the las-histogram of
the successor node, node.Succ the set of successor nodes of the current node and pnode⇐succ

the execution probability of the edge connecting the current node with the successor node.

When reversing the direction of calculation, beginning from the end-node to the start-
node, histogram subtraction is applied instead of histogram addition. lae-histogram of
the end-node is initialized with the assigned deadline. Special rules must be applied
when calculating the l-histograms of the nodes with multiple outgoing paths, AND-split
and XOR-split. lae-histogram of an AND-split is calculated by a min-conjunction over its
outgoing paths. XOR-splits are calculated by a weighted disjunction of the outgoing paths.

type of node node.lae = node.las =
End {(1.0, δ)} node.lae− node.d
Start succ.las node.lae− node.d

Activity succ.las node.lae− node.d
AND-join succ.las node.lae− node.d
XOR-join succ.las node.lae− node.d

AND-split ∀ succ ∈ node.Succ :
∧

min(succ.las) node.lae− node.d
XOR-split ∀ succ ∈ node.Succ :

∨
(succ.las ∗ pnode⇐succ) node.lae− node.d

Table 8.6.: Calculation of l-histograms

As a numeric example, using the forward and backward calculation rules for e-
histograms and l-Histograms in table 8.5 and table 8.6, the temporal values of the graph
depicted in figure 8.34 are calculated. In the tables 8.7, 8.8 and 8.9 at the end of this chap-
ter only the final results are represented. For a detailed calculation of the temporal value
please refer to appendix B.

8.3. Temporal Conformance 163

8.3.5.4. The Proposed Approach

In the previous subsection the best case, worst case approach for temporal conformance
of federated choreographis has been presented. In this subsection, the probabilistic ap-
proach is discussed, i.e. how it can be checked that federated choreographies are tem-
porally conformant, given the stochastic information for activity durations and branch-
ing probabilities. The proposed approach for probabilistic management of the federated
choreographies uses basically the same principle as presented for the best case, worst case
calculations (see subsection 8.3.2.2). As already mentioned, the difference between two
approaches is that probabilities for possible durations of activities and branches of deci-
sion nodes have been considered. In this approach there is no need to calculate the best
case and worst cases. Hence, In the following subsections a modification of methods for
the probabilistic approach have been presented.

8.3.5.5. Methods

Method initialize This method initializes all e-histograms and l-histograms in a given
graph. The variable a.eps′ and a.lae′ are used for the propagation of interval restrictions.
Histograms are initialized at the first step of the algorithm.

The Method initialize(G)

for all activities a ∈ G do1

a.eps := {(1.0, 0)};2

a.lae := {(1.0, ∞)};3

a.eps′ := ∅;4

a.lae′ := ∅;5

endfor6

Method propagate This method propagates time-interval restrictions on activities from
a source choreography or orchestration G to a target choreography or orchestration H.
The propagation is performed only if the propagated values further constraint the existing
values of the target choreography or orchestration, i.e. interval [eps,lae] of the target
choreography or orchestration becomes tighter. This means that propagation will only
occur if eps increases or lae decreases. The parametercertainty defines the probability
(degree) applied for histogram comparison operations (see also subsection 8.3.5.2). A
100%-certainty ensures that the compared histograms have no overlapping regions at all,
but a very high certainty will be more vulnerable to non-conformance conflicts than lower
ones (see method checkConformance for further details). The propagated histograms will be
stored in x.eps′ and x.lae′ of an activity x for further usage in the subsequent calculation of

164 8. Conformance of the Federated Choreographies

probabilistic timed graphs. The method uses event correspondence for propagation of eps
and lae-histograms from a source activity to a target activity. The correspondence of start
events are used for propagation of eps-histograms and the correspondence of end events
for propagation of lae-histograms.

The Method propagate(G, H, certainty)

change := false;1

for all activities {x ∈ H | ∃ a ∈ G : xs ≡ as} in a topological order do2

// -propagation of eps-

if x.eps <certainty a.eps then3

x.eps′ := a.eps;4

change := true;5

endif6

// -propagation of lae-

if x.lae >certainty a.lae then7

x.lae′ := a.lae;8

change := true;9

endif10

endfor11

Method calculate Input parameter is a choreography or an orchestration. This method
is used for pre-calculation of probabilistic timed graphs as well as for recalculations after
interval propagations. Basically this method uses the same technique for calculation of
probabilistic timed graphs as described in subsection 8.3.5.3 for forward and backward-
calculation of eps-histograms and lae-histograms. It must be considered that the execution
interval of an activity a (eps and lae-histogram) may already be restricted due to a prior
propagation from another orchestration and/or choreography (stored in a.eps′ and a.lae′).
If this is the case the calculated histogram is merged with the propagated histogram. As
this merge has exactly the same semantics as an ordinary AND-structure, the histogram
conjunction operations (max for eps, min for lae) can be used. This ensures that the eps-
histogram only increases and the lae-histogram only decreases, hence further restricting
the valid interval.

8.3. Temporal Conformance 165

The Method calculate(G)

for all nodes n ∈ N, G = (N, E) in forward topological order do1

calculate n.eps according to Table 8.5;2

if n.type = activity∧ n.eps′ 6= ∅ then3

n.eps := n.eps∧max n.eps′;4

n.eps′ = ∅;5

endif6

calculate n.epe according to Table 8.5;7

endfor8

for all nodes n ∈ N, G = (N, E) in backward topological order do9

calculate n.lae according to Table 8.6;10

if n.type = activity∧ n.lae′ 6= ∅ then11

n.lae := n.eps∧min n.eps′;12

n.eps′ = ∅;13

endif14

calculate n.las according to Table 8.6;15

endfor16

Method checkConformance This method checks if the basic conformance conditions
are satisfied:

1. The earliest possible start time of an activity must always be less than or equal to its
latest allowed start time, i.e. ∀ activities a: a.eps ≤ a.las

2. The earliest possible start time of an activity must not exceed its earliest possible end
time, i.e. ∀ activities a: a.eps ≤ a.epe

Otherwise the boolean variable conf is set to false, which stops the algorithm. This
condition must always be met for all activities of all choreographies and orchestrations.
For the same reason as before, the variable certainty is used for histogram comparison
operations. A 100%-certainty ensures that the compared histograms have no overlapping
regions at all, but a very high certainty is more vulnerable to non-conformance conflicts
than lower ones. A relaxed certainty allows for overlapping regions, which might prove
useful when dealing with outliers. Furthermore it is possible to use the certainty as an
adjusting bolt, to select a strategy from very conservative (strict) to risky which allows
more possible violations during run-time.

166 8. Conformance of the Federated Choreographies

The Method checkConformance(G,certainty)

for all activities a ∈ G in a reverse topological order do1

if a.eps >certainty a.las then2

conf := false;3

else if a.eps >certainty a.epe then4

conf := false;5

endif6

endfor7

return conf;8

8.3.5.6. Temporal Conformance Checking Algorithm

The algorithm consists of two parts:

1. The initialization and precalculation phase

2. The recalculation and conformance checking phase

Note that the algorithm needs a certainty-value as input-parameter. The higher this
value, the stricter the conformance check.

In the first phase the global choreography is initialized and then its histograms are
calculated. After checking the conformance condition of the global choreography,all of
its supporting choreographies and realizing orchestrations O are initialized, followed by
the propagation from the global choreography and calculation of their timed graphs (e
and l-histograms). Note that the value d.max denotes the explicitly defined maximum
durations for graphs (orchestration or choreography), which is needed to initialize the ac-
cording deadline δ necessary for the backward calculation of a timed graph. In this phase
propagation only occurs between all directly or indirectly supporting choreographies and
realizing orchestrations of the global choreography and vice versa. The resulting e and
l-histograms serve as initial values for further calculations.

Each calculation is followed by an initial basic conformance check. The value of the flag
conf signals if temporal conformance can be guaranteed at least up to the given certainty-
value. The only reason why the check may fail at this stage is a too tight deadline caused by
a too low maximum duration. A boolean variable change serves as an indicator if temporal
values of a node are changed. If this variable becomes true all incoming and outgoing links
of the corresponding choreography or orchestration are marked. Source and target node of
each marked link will be revisited and eventually recalculated in the next phase. Multiple
marks on an edge have no additional effect. If the temporal conformance condition is not

8.3. Temporal Conformance 167

violated, the second phase of the algorithm starts: recalculation and conformance checking.
For all marked edges, the cycle of propagation, recalculation, and conformance-check is
repeated until a stable state is reached or the conformance condition is violated. A stable
state is reached if no edge has a mark on it.

168 8. Conformance of the Federated Choreographies

The Algorithm temporalConformanceFederation(certainty)

// -initialization and precalculation-

conf := true;1

initialize(Cg);2

calculate(Cg);3

conf := checkConformance (Cg, certainty);4

for all directly and indirectly supporting choreographies and realizing orchestrations G of Cg5

in a topological order do

initialize(G);6

change := propagate(Cg, G,certainty);7

if change = true then8

G.deadline := G.first.eps + G.d.max;9

calculate (G);10

endif11

change: = propagate(G, Cg,certainty);12

if change = true then13

calculate(Cg);14

conf :=checkConformance(Cg,certainty);15

mark all incoming and outgoing edges of Cg;16

endif17

endfor18

// -recalculation and conformance checking-

repeat19

select randomly a marked edge e such that G is the supported choreography and20

H the supporting choreography or realizing orchestration;
change: = propagate(G, H,certainty);21

if change = true then22

calculate H;23

conf := checkConformance(H, certainty);24

mark all incoming and outgoing edges ∈ H;25

endif26

unmark e;27

change: = propagate(H, G,certainty);28

if change = true then29

calculate G;30

conf := checkConformance(G, certainty);31

mark all incoming and outgoing edges ∈ G;32

endif33

until all edges are unmarked
∨

conf = false ;34

8.3. Temporal Conformance 169

Let G, S1 and S2 be the choreographies depicted in figure 8.27. The graph of the Sup-
ported Choreography G is presented by the graph illustrated in figure 8.36. The graphs of the
supporting choreography S1 and the supporting choreography S2 are illustrated in figure 8.37
and figure 8.38 respectively. The supported choreography is linked to the supporting
choreographies as follows:

Figure 8.36.: Supported choreography G

Figure 8.37.: Supporting choreography S1

Figure 8.38.: Supporting choreography S2

170 8. Conformance of the Federated Choreographies

¥ By the corresponding node b, which is one of the conditional nodes in G and the
middle nodes in S1. Both nodes refer to the same activity, and therefor they have the
same duration.

¥ By the corresponding node d, which is the last activity in G and the first activity in
S2.

¥ Activities a and c in C correspond to further orchestrations or choreographies which
are not consider here.

For the algorithm a very strict certainty = 99% is defined. The first phase starts with the
initialization and calculation of G. The temporal values are represented in the following
listing:

Forward Calculation : starting with time point 0

a.eps = start.epe = start.eps = {(1.0, 0)}
s.eps = a.epe = a.d + a.eps = {(0.5, 1), (0.5, 5)}
b.eps = c.eps = s.epe = s.eps

b.epe = b.d + b.eps = {(0.5, 5), (0.5, 9)}
c.epe = c.d + b.eps = {(0.5, 9), (0.5, 13)}
j.eps = (b.epe ∗ 0.25) ∨ (c.epe ∗ 0.75) = {(0.125, 5), (0.5, 9), (0.375, 13)}
d.eps = j.epe = j.eps

end.epe = end.eps = d.epe = d.d + d.eps = {(0.125, 12), (0.5, 16), (0.375, 20)}
Backward Calculation : starting with deadline δ = 20

d.lae = end.las = end.lae = {1.0, δ)}
b.lae = c.lae = j.las = j.lae = d.las = d.lae− d.d = {(1.0, 13)}
b.las = b.lae− b.d = {(1.0, 9)}
c.las = c.lae− c.d = {(1.0, 5)}
s.lae = (b.las ∗ 0.25) ∨ (c.las ∗ 0.75) = {(0.25, 9), (0.75, 5)}
a.lae = s.las = s.lae

start.las = start.lae = a.las = a.lae− a.d = {(0.125, 8), (0.75, 4), (0.125, 0)}

The initialization of the eps and lae-histograms of S1 (with 0 and ∞ values respec-
tively) is followed by the propagation between corresponding nodes of G and S1 (activity
b). Propagation only occurs if it further constrains the interval [eps,lae] of S1.b. The
method propagate first checks if S1.b.eps <0.99 G.b.eps; this is the case, therefore S1.b.eps′ =
{(0.5, 1), (0.5, 5)}. Analogously the lae-histograms is checked: as S1.b.lae >0.99 G.b.lae, the
method propagate sets the intermediate S1.b.lae′ = {(1.0, 13)}. Now the calculation of S1

8.3. Temporal Conformance 171

starts as described in method calculate(G) (calculation-details only for max-conjunction at
b.eps and min-conjunction at b.lae):

x.eps = start.epe = start.eps = {(1.0, 0)}
b.eps = x.epe = {(1.0, 1)}
b.eps = b.eps∧max b.eps′ = {(0.5, 1), (0.5, 5)}
y.eps = b.epe = {(0.5, 1), (0.5, 5)}

end.epe = end.eps = y.epe = {(0.5, 2), (0.5, 6)}

y.lae = end.las = end.lae = {1.0, 20)}
b.lae = y.las = {(1.0, 19)}
b.lae = b.lae∧min b.lae′ = {(1.0, 13)}
x.lae = b.las = {(1.0, 9)}

start.las = start.lae = x.las = {(0.5, 8), (0.5, 4)}

In the next step the calculated values must be propagated from S1 to G, if the according
propagation conditions apply for b.eps and b.lae. This is not the case, therefore the timed
graph of G does not change and the existing values remain the same. In this stage the
initialization and precalculation starts for S2. After the initialization, the method propagate
sets S2.d.eps = {(0.125, 5), (0.5, 9), (0.375, 13)} and S2.d.lae = {(1.0, 20)}, and the subse-
quent calculation of the probabilistic timed graph continues:

d.eps = start.epe = start.eps = {(1.0, 0)}
d.eps = d.eps∧max d.eps′ = {(0.125, 5), (0.5, 9), (0.375, 13)}
z.eps = d.epe = {(0.125, 12), (0.5, 16), (0.375, 20)}
u.eps = z.epe = {(0.125, 18), (0.5, 22), (0.375, 26)}

end.epe = end.eps = u.epe = {(0.125, 26), (0.5, 30), (0.375, 34)}

u.lae = end.las = end.lae = {(1.0, 50)}
z.lae = u.las = {(1.0, 42)}
d.lae = z.las = {(1.0, 36)}
d.lae = d.lae∧min d.lae′ = {(1.0, 20)}

start.las = start.lae = d.las = d.las = {(1.0, 13)}

172 8. Conformance of the Federated Choreographies

The reverse propagation – of d from S1 to G – does not change any value in the timed graph
of G. As no further choreographies exist, and no marked edges are left, the algorithm
terminates successfully. This specific composition temporally conforms, and no deadline
is violated if the real durations of activities adhere to the estimated/mined durations. The
build-time calculations are now complete.

The probabilistic approach for time management of choreographies is also separately
presented in [111].

8.3.5.7. Proof of Termination and Complexity Analysis

Analogues to the argumentation in subsection 8.3.2.6 it can be proved that the proposed
algorithm terminates. The algorithm terminates in two cases: (1) as the number of edges
is finite, a stable state will be reached in a finite number of steps. Or (2), if such a stable
state does not exist, after a finite number of steps the conformance condition will be
violated, because with each iteration the lae becomes smaller and the eps value greater
until eps >certainty lae, since there is only a finite number of chronons between time points.
The same argumentation for the complexity analysis also applies here.

8.3.5.8. Run-time Applications

During run-time the probabilistic timed graph of each choreography and orchestration can
be used for several purposes, for instance (given that the time values specify hours):

¥ Pre-dispatching of time-frames for all activities of the choreography and all orches-
trations, as soon as the first activity a of the orchestration starts; e.g. the owner of
orchestration O2 can be notified, that d will be called in {(0.125,5),(0.5,9),(0.375,13)}
hours and should be finished in {(1.0,36)} hours.

¥ If, for instance, b ends 20 hours after the start of the process (choreography), then
a deadline violation will occur with a ’probability’ of 100% (according to b.lae).
With the availability of this information, the administrator is able to trigger counter-
measure issues to avoid the upcoming temporal failure and deadline violation.

8.3. Temporal Conformance 173

8.3.6. Temporal Aspects of BPEL Processes

The methods and techniques proposed here can be used for time management of processes
in WS-BPEL. As noted before, in WS-BPEL orchestrations can be modeled as executable
processes and choreographies as abstract processes. Figure 8.39 illustrates schematically
the cycle form process design to temporal conformance checking.

Figure 8.39.: From process design to temporal conformance checking

Processes can be designed using tools such as ActiveBPEL [10] or Oracle BPEL designer
[13]. Using these tools choreographies and orchestrations can be defined and modeled. Af-
ter definition of the choreographies and the orchestrations the underlying workflow of the
modeled choreographies and orchestrations can be extracted. Based on the methods and
techniques introduced in this dissertation, temporal execution plans of the involved chore-
ographies and orchestrations can be calculated and subsequently can be checked if the
model is temporally conformant or are there any changes necessary. When there is some
temporal inconsistencies, it may be possible to solve this issue with some modification
such as extension of the deadline or defining alternatives for some activities with shorter
execution durations. After checking the temporal conformance of the model, the results
can be considered for possible redesigning of the process at process designer. Eder et. al
in [112] propose a technique for time management of different communication patterns be-
tween processes such as request/reply or solicit response. Using the techniques presented
in [112] different communication patterns in WS-BPEL can be modeled and handled.

174 8. Conformance of the Federated Choreographies

8.4. Correctness of View-Based Interorganizational Workflows

The architecture of the view-based interorganizational workflows are illustrated in fig-
ure 5.1. The choreography is a workflow composed of views and it must be ensured
that it conforms to correctness criteria. It must be checked that activities contained in the
choreography are only those contained in the views. A choreography is order-preserving
with respect to the views and the choreography itself is a valid full-blocked workflow
definition.

Definition 8.39: (Correctness of Interorganizational Workflows)
Let C = (NC, EC) be a choreography and Vi = (Nvi , Evi), 1 ≤ i ≤ n the workflow views.

A choreography C is correct with respect to Vi, 1 ≤ i ≤ n if and only if:

(a) C is a valid full-blocked workflow

(b) ∀ i : Vi is a correct view on C

(c) C is composed of the activities of Vi, i.e. ∀ activity a : a ∈ NC ⇒ ∃Vi : a ∈ Nvi

Note that only activities contained in the Choreography C must also be contained in
a view and not the control nodes. The reason is that the structure of the activities in the
choreography can be different than that in views. In other words, the choreography can
present the activities of the views in a new ordering.

8.4. Correctness of View-Based Interorganizational Workflows 175

Forward Calculation: starting with time point 0
start.eps= {(1.0,0)}
start.epe = {(1.0,0)}

a.eps = {(1.0,0)}
a.epe = {(0.2,1), (0.5,5), (0.3,10)}
b.eps = {(0.2,1), (0.5,5), (0.3,10)}
b.epe = {(0.1,5),(0.35,9), (0.25,13), (0.15,14),(0.15,18)}

OS.eps = {(0.1,5), (0.35,9), (0.25,13), (0.15,14), (0.15,18)}
OS.epe = {(0.1,5), (0.35,9), (0.25,13), (0.15,14), (0.15,18)}

c.eps = {(0.1,5), (0.35,9), (0.25,13), (0.15,14), (0.15,18)}
c.epe = {(0.01,13),(0.035,17), (0.09,20), (0.025,21), (0.015,22), (0.315,24), (0.015,26),

(0.225,28), (0.135,29), (0.135,33)}
d.eps = {(0.1,5), (0.35,9), (0.25,13), (0.15,14), (0.15,18)}
d.epe = {(0.1,12), (0.35,16),(0.25,20), (0.15,21), (0.15,25)}

OJ.eps = {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21), (0.006,22),
(0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

OJ.epe = {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21), (0.006,22),
(0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

AS.eps = {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21), (0.006,22),
(0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

AS.epe = {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21), (0.006,22),
(0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

e.eps = {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21), (0.006,22),
(0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

e.epe = {(0.024,16), (0.0016,17), (0.036,18), (0.0024,19), (0.084,20), (0.0056,21),
(0.126,22), (0.0084,23), (0.0744,24), (0.04,25), (0.114,26), (0.06,27), (0.054,28),
(0.036,29), (0.078,30), (0.054,31), (0.0396,32), (0.0216,33), (0.054,34),
(0.0324,35), (0.0216,37), (0.0324,39)}

f.eps = {(0.06,12),(0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21), (0.006,22),
(0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

f.epe = {(0.042,15), (0.0028,16), (0.165,19), (0.011,20), (0.1932,23), (0.0742,24),
(0.0042,25), (0.144,27), (0.093,28), (0.006.29), (0.1008,31), (0.0648,32),
(0.0018,33), (0.027,35), (0.054,36), (0.0162,40)}

AJ.eps = {(0,0010752,16), (0,00007168,17), (0,0016128,18), (0,01066752,19),
(0,0192512,20), (0,00123648,21), (0,0278208,22), (0,05749632,23),
(0,05769168,24), (0,02121808,25), (0,0561336,26), (0,1125456,27),
(0,0929928,28), (0,0302568,29), (0,0573612,30), (0,12019032,31),
(0,08088192,32), (0,02100888,33), (0,0487512,34), (0,05479272,35),
(0,0553176,36), (0,02125008,37), (0,03187512,39), (0,0162,40)}

AJ.epe = {(0,0010752,16), (0,00007168,17), (0,0016128,18), (0,01066752,19),
(0,0192512,20), (0,00123648,21), (0,0278208,22), (0,05749632,23),
(0,05769168,24), (0,02121808,25), (0,0561336,26), (0,1125456,27),
(0,0929928,28), (0,0302568,29), (0,0573612,30), (0,12019032,31),
(0,08088192,32), (0,02100888,33), (0,0487512,34), (0,05479272,35),
(0,0553176,36), (0,02125008,37), (0,03187512,39), (0,0162,40)}

Table 8.7.: Forward Calculation: starting with time point 0

176 8. Conformance of the Federated Choreographies

Forward Calculation: starting with time point 0 (cntd.)
j.eps = {(0,0010752,16), (0,00007168,17), (0,0016128,18), (0,01066752,19),

(0,0192512,20), (0,00123648,21), (0,0278208,22), (0,05749632,23),
(0,05769168,24), (0,02121808,25), (0,0561336,26), (0,1125456,27),
(0,0929928,28), (0,0302568,29), (0,0573612,30), (0,12019032,31),
(0,08088192,32), (0,02100888,33), (0,0487512,34), (0,05479272,35),
(0,0553176,36), (0,02125008,37), (0,03187512,39), (0,0162,40)}

j.epe = {(0,0010752,21), (0,00007168,22), (0,0016128,23), (0,01066752,24),
(0,0192512,25), (0,00123648,26), (0,0278208,27), (0,05749632,28),
(0,05769168,29), (0,02121808,30), (0,0561336,31), (0,1125456,32),
(0,0929928,33), (0,0302568,34), (0,0573612,35), (0,12019032,36),
(0,08088192,37), (0,02100888,38), (0,0487512,39), (0,05479272,40),
(0,0553176,41), (0,02125008,42), (0,03187512,44), (0,0162,45)}

End.eps = {(0,0010752,21), (0,00007168,22), (0,0016128,23), (0,01066752,24),
(0,0192512,25), (0,00123648,26), (0,0278208,27), (0,05749632,28),
(0,05769168,29), (0,02121808,30), (0,0561336,31), (0,1125456,32),
(0,0929928,33), (0,0302568,34), (0,0573612,35), (0,12019032,36),
(0,08088192,37), (0,02100888,38), (0,0487512,39), (0,05479272,40),
(0,0553176,41), (0,02125008,42), (0,03187512,44), (0,0162,45)}

End.epe = {(0,0010752,21), (0,00007168,22), (0,0016128,23), (0,01066752,24),
(0,0192512,25), (0,00123648,26), (0,0278208,27), (0,05749632,28),
(0,05769168,29), (0,02121808,30), (0,0561336,31), (0,1125456,32),
(0,0929928,33), (0,0302568,34), (0,0573612,35), (0,12019032,36),
(0,08088192,37), (0,02100888,38), (0,0487512,39), (0,05479272,40),
(0,0553176,41), (0,02125008,42), (0,03187512,44), (0,0162,45)}

Table 8.8.: Forward Calculation: starting with time point 0 (cntd.)

8.4. Correctness of View-Based Interorganizational Workflows 177

Backward Calculation: starting with deadline= 50
End.lae = { 1.0, 50)}
End.las = { 1.0, 50)}

j.lae = { 1.0, 50)}
j.las = {(1.0,45)}

AJ.lae = {(1.0,45)}
AJ.las = {(1.0,45)}
e.ale = {(1.0,45)}
e.las = {(0.4,41),(0.6,39)}
f.ale= {(1.0,45)}
f.las= {(0.7,42),(0.3,38)}

AS.lae= {(0.3,38),(0.42,39),(0.28,41)}
AS.las= {(0.3,38),(0.42,39),(0.28,41)}
OJ.lae = {(0.3,38),(0.42,39),(0.28,41)}
OJ.las = {(0.3,38),(0.42,39),(0.28,41)}
c.lae = {(0.3,38),(0.42,39),(0.28,41)}
c.las = {(0.27,23),(0.378,24),(0.252,26),(0.03,30),(0.042,31),(0.028,33)}
d.lae = {(0.3,38),(0.42,39),(0.28,41)}
d.las = {(0.3,31),(0.42,32),(0.28,34)}

OS.lae = {(0.108,23), (0.1512,24), (0.1008,26), (0.012,30), (0.1968,31), (0.252,32),
(0.0112,33), (0.168,34)}

OS.las = {(0.108,23), (0.1512,24), (0.1008,26), (0.012,30), (0.1968,31), (0.252,32),
(0.0112,33), (0.168,34)}

b.lae = {(0.108,23), (0.1512,24), (0.1008,26), (0.012,30), (0.1968,31), (0.252,32),
(0.0112,33), (0.168,34)}

b.las = {(0,054,15), (0,0756,16), (0,0504,18), (0,054,19), (0,0756,20), (0,0564,22),
(0,0984,23), (0,126,24), (0,0056,25), (0,09,26), (0,0984,27), (0,126,28),
(0,0056,29), (0,084,30)}

a.lae = {(0,054,15), (0,0756,16), (0,0504,18), (0,054,19), (0,0756,20), (0,0564,22),
(0,0984,23), (0,126,24), (0,0056,25), (0,09,26), (0,0984,27), (0,126,28),
(0,0056,29), (0,084,30)}

a.las = {(0,0162,5), (0,02268,6), (0,01512,8), (0,0162,9), (0,04968,10), (0,0378,11),
(0,01692,12), (0,05472,13), (0,0756,14), (0,0546,15), (0,027,16), (0,0678,17),
(0,0978,18), (0,0798,19), (0,028,20), (0,05628,21), (0,06888,22), (0,0882,23),
(0,00392,24), (0,06,25), (0,01968,26), (0,0252,27), (0,00112,28), (0,0168,29)}

Start.lae = {(0,0162,5), (0,02268,6), (0,01512,8), (0,0162,9), (0,04968,10), (0,0378,11),
(0,01692,12), (0,05472,13), (0,0756,14), (0,0546,15), (0,027,16), (0,0678,17),
(0,0978,18), (0,0798,19), (0,028,20), (0,05628,21), (0,06888,22), (0,0882,23),
(0,00392,24), (0,06,25), (0,01968,26), (0,0252,27), (0,00112,28), (0,0168,29)}

Start.las = {(0,0162,5), (0,02268,6), (0,01512,8), (0,0162,9), (0,04968,10), (0,0378,11),
(0,01692,12), (0,05472,13), (0,0756,14), (0,0546,15), (0,027,16), (0,0678,17),
(0,0978,18), (0,0798,19), (0,028,20), (0,05628,21), (0,06888,22), (0,0882,23),
(0,00392,24), (0,06,25), (0,01968,26), (0,0252,27), (0,00112,28),(0,0168,29)}

Table 8.9.: Backward Calculation: starting with deadline= 50

Chapter 9
A General Case of Interorganizational Workflows

In the previous chapter the concept of the federate choreographies (section 7.2) has been in-
troduced and structural conformance (section 8.2) and temporal conformance (section 8.3)
of the federated choreographies have been studied and algorithms for the conformance
checking have been proposed.

In this chapter a more general case of interorganizational workflows is presented and
adapted versions of the conformance checking algorithms for this case are proposed.

9.1. A More General Architecture for Interorganizational Workflows

For a more general scenario of interorganizational workflows it is assumed that an in-
terorganizational workflow is composed of a set of choreographies and orchestrations.
Choreographies, again, are abstract processes that define the message exchange protocols
among involved partners and orchestrations are in charge of realizing the abstract activ-
ities defined in a choreography. Figure 9.1 illustrates this scenario. In contrast to the
federated choreographies (compare figure 7.10) in this architecture the choreographies are
independent from each other. i.e. there is no support-link between two choreographies.
However, in this model, as well, partners can take part in several choreographies and their
according parts must be realized in their orchestrations which is run and controlled only
by its owner. For example Partner 4 takes part in choreography 1, choreography 2 and chore-
ography 3 and hence parts of these three choreographies that belong to partner 4 must
be realized in his orchestrations. In addition, there is no global choreography in the model
rather a set of independent choreographies. Remember that the global choreography is
a choreography that is only supported by other choreographies and in turn supports no
choreography. The global choreography captures the core of business process. In contrast,
in this model the business process is divided among a set of independent choreographies.
If there is only one choreography present in the model, we have the typical scenario, i.e.
one shared choreography and a set of orchestrations, one for each partner.

179

180 9. A General Case of Interorganizational Workflows

Figure 9.1.: A typical scenario: a set of choreographies and orchestrations

9.2. Conformance Issues

Indeed, it must be ensured that the underlying model of an interorganizational workflow
is conflict-free and its execution leads to no failures. For this aim, in this section the
modified version of the structural and temporal conformance are presented. Note that
the proposed algorithms in this section uses the same underlying methods and concepts
as used for the federated choreographies and therefore description of methods, mathe-
matical background, concepts and calculations are omitted in this section and only the
conformance checking algorithms are presented.

9.2. Conformance Issues 181

9.2.1. Structural Conformance

In this scenario, it must be checked that structural conformance conditions are satisfied, i.e.
orchestrations do not violate the structural requirements imposed by the choreographies
they realize.

For the structural conformance checking the algorithm presented in subsection 8.2.1
can be directly used. Note that in this architecture there is no support-link in the model
and the algorithm checks only the realize links, i.e. the links between realized choreogra-
phies and realizing orchestrations.

9.2.2. Temporal Conformance

The aim of the temporal conformance checking is to ensure that execution of an interorga-
nizational workflow leads to no temporal failures and enabling predictive and pro-active
time management such that counter-measures can be taken early enough to guarantee the
correct execution of the flow. In this case like the case of the federated choreographies by
application of the same underlying methods a valid temporal execution plan for all activ-
ities are computed at design-time. The computed temporal plans at design-time can be
monitored at run-time. The same both approaches of temporal conformance checking is
also applied for this scenario i.e. the best case, worst case calculations and the probabilistic
approach.

9.2.2.1. Best Case, Worst Case Calculations

In this case, there is no global choreography as well as no support-link in the model.
Hence, in the initialization and precalculation phase instead of initializing and calculating
the timed graph of the global choreography and subsequently all of its directly and in-
directly supporting choreographies and realizing orchestrations, this cycle must be done
along all of the realize-links in the model. That means from realized choreographies to
their realizing orchestrations and vice versa. However it must be noted that also in this
case choreographies may affect each other indirectly even when they are independent of
each other.

If the model consists of a set of clusters of independent orchestrations and choreogra-
phies, as depicted in figure 9.2, temporal values can be calculated in a straightforward
manner. Clusters here refer to one choreography together with its realizing orchestrations
(cf. typical scenario in figure 7.2). Independent clusters means that there is no link from
one cluster to another one, i.e. each cluster is temporally independent and imposes no
temporal restriction on other clusters. As it can be seen, figure 9.2 is composed of two in-
dependent clusters. In such a case temporal calculations can be done in a straightforward
manner and each cluster is handled separately. Initialization and synchronization of each

182 9. A General Case of Interorganizational Workflows

cluster must be done, as well, independently. Note that in figures 9.2 and 9.2 views are
not depicted as they do not contribute to the temporal conformance of the whole model.

Figure 9.2.: A set of independent choreographies

However, not necessarily all clusters all independent of each other. In some cases two
choreographies may have the same realizing orchestrations, as depicted in figure 9.3. In
this case the clusters are not temporally independent and through the shared orchestration
they impose reciprocal restrictions on each other.

9.2. Conformance Issues 183

Figure 9.3.: A set of temporally dependent choreographies

The same conclusion about one choreography with multiple realizing orchestrations
(as depicted in figure 8.27) can be derived about multiple choreographies with the same
shared realizing orchestration as depicted in figure 9.4.

Figure 9.4.: Two choreographies with a shared orchestration

184 9. A General Case of Interorganizational Workflows

Here again two or more choreographies with the same shared orchestration affect each
other even if they have no direct link to each other. Affecting each other means that
one choreography imposes temporal restrictions on the other choreography. In this case
the synchronization of choreographies are happened through the shared orchestration.
In other words, even if the choreographies are independent of each other, they must be
synchronized because of the shared orchestrations. In this case, after calculation of the
valid temporal execution plans, it is clear which orchestration or choreography begins its
execution first and when the other choreographies and orchestrations may start.

Let C be a choreography and O an orchestration such that the orchestration O (partially)
realizes the choreography C. The modified version of the conformance checking algorithm
is presented in algorithm temporalConformance(). Note that maximum duration (d.max) is
considered for calculation of orchestration deadlines.

9.2.2.2. Probabilistic Calculations

In addition to the best case, worst case calculations in this subsection the probabilistic time
management for the more general case of an interorganizational workflow is described in
algorithm temporalConformance(certainty).

9.2. Conformance Issues 185

The Algorithm temporalConformance()

// -initialization and precalculation-
conf := true;1

for all choreographies C in a topological order do2

initialize(C);3

calculate(C);4

conf := checkConformance (C);5

for all realizing orchestrations O of C in a topological order do6

initialize(O);7

change := propagate(C, O);8

if change = true then9

O.deadline := O.first.eps + O.d.max;10

calculate (O);11

endif12

change: = propagate(O, C);13

if change = true then14

calculate(C);15

conf :=checkConformance(C);16

mark all incoming edges of C;17

endif18

endfor19

endfor20

// -recalculation and conformance checking-
repeat21

select randomly a marked edge e such that C is the realized choreography and O22

the realizing orchestration;
change: = propagate(C, O);23

if change = true then24

calculate O;25

conf := checkConformance (O);26

mark all outgoing edges ∈ O;27

endif28

unmark e;29

change: = propagate(O, C);30

if change = true then31

calculate C;32

conf := checkConformance (C);33

mark all incoming edges ∈ C;34

endif35

until all edges are unmarked
∨

conf = false ;36

186 9. A General Case of Interorganizational Workflows

The Algorithm temporalConformance(certainty)

// -initialization and precalculation-
conf := true;1

for all choreographies C in a topological order do2

initialize(C);3

calculate(C);4

conf := checkConformance (C, certainty);5

for all realizing orchestrations O of C in a topological order do6

initialize(O);7

change := propagate(C,O,certainty);8

if change = true then9

O.deadline := O.first.eps + O.d.max;10

calculate (O);11

endif12

change: = propagate(O, C,certainty);13

if change = true then14

calculate(C);15

conf :=checkConformance(C,certainty);16

mark all incoming edges of C;17

endif18

endfor19

endfor20

// -recalculation and conformance checking-
repeat21

select randomly a marked edge e such that C is the choreography and O its22

realizing orchestration;
change: = propagate(C, O, certainty);23

if change = true then24

calculate(O);25

conf := checkConformance(O, certainty);26

mark all outgoing edges ∈ O;27

endif28

unmark e;29

change: = propagate(O, C, certainty);30

if change = true then31

calculate C;32

conf := checkConformance(C, certainty);33

mark all incoming edges ∈ C;34

endif35

until all edges are unmarked
∨

conf = false ;36

Chapter 10
Conclusions

Interorganizational workflows are workflows that interconnect partners that belong to au-
tonomous organizations. Such workflows provide a framework for cooperation of indepen-
dent entities. In order to ensure successful functionality of interorganizational workflows
several requirements must be satisfied:

¥ The balance between autonomy and cooperation

¥ An architecture with adequate capabilities

¥ Verification of correctness

This dissertation proposed the concept of workflow views to achieve the balance be-
tween the openness needed for cooperation and the isolation of internal workflows needed
for protection of business logic. In this way only those parts of a process that are needed for
communication are made accessible for external partners and business know-how which
is coded in other parts of the internal workflow is made hidden. Techniques for correct
construction of views and interorganizational workflows are proposed.

This work presented a nouvelle hierarchical architecture for web service based interor-
ganizational workflows, called Federated choreographies, which consist of autonomous
and interacting partners. Federated choreographies offer obvious advantages such as pro-
tection of business know-how, avoidance of unnecessary information, extendability and
uniform modeling of both choraographies and orchestrations. In this approach both chore-
ographies and orchestrations can be modeled uniformly and there is no need for different
modeling languages. For the sake of better comprehensibility full-blocked workflows are
chosen.

In order to ensure the correctness of interorganizational workflows, several techniques
for checking the structural and temporal conformance of the federated choreographies
and the correctness of interorganizational workflows are presented. By application of
these techniques at design time, it can be checked if the model is conflict-free or there is
any necessary modifications and redesign to guarantee the correct execution of the flow.
In order to provide adequate means for different requirements, three different approaches

187

188 10. Conclusions

for checking the temporal conformance have been proposed. The presented approaches
provide means for checking and modeling choreographies and orchestrations with a de-
terministic fixed duration of activities, variable duration of activities and a probabilistic
approach for modeling associated uncertainties with activity duration and branching prob-
abilities. In addition to algorithms for checking the structural and temporal conformance,
their mathematical background and related concepts have been presented and discussed.
This dissertation has presented a stand alone tool for temporal conformance checking.
The conformance checking approach focuses on prevention of errors rather on detecting
errors at run time and then repairing them. Application of the presented techniques on
the one hand guarantees a conflict-free execution of the involved choreographies and or-
chestrations and on the other hand reduces the cost of process execution because of two
reasons:

¥ Errors detected at design time cause less costs for process reengineering and redesign
than those detected at run time

¥ Avoidance of exception handling mechanisms

Additionally a more general framework for interorganizational workflows has been
presented and adapted versions of the conformance checking algorithms for the more
general case have been as well proposed.

The approaches presented in this work (e.g. correct construction of workflow views,
temporal conformance checking) are not limited to the federated choreographies but can
be applied to many other scenarios independently. Besides, this approach is langauge and
platform independent and algorithms work in a distributed manner.

Limitations of the Proposed Approach
The proposed approach focuses only on control-flow aspects and do not consider data

flow issues. Data-Flow issues are essential and central aspects for a correct functionality
of the model but they are out of scope of this work. In addition the conformance check-
ing considers only structural and temporal issues of the model. In order to assure full
conformance, data flow conformance and messaging conformance must be also taken into
account. Further, the modeling technique does not consider loops.

Future Work
The future work on this dissertation shall focus on extending its capabilities and solv-

ing its limitations, which are:

¥ Consideration of loops

¥ Consideration of Data-flow

¥ Full consistency of the model

189

At this stage, each phase (process modeling, structural conformance and temporal
conformance) can be performed with stand alone tools. An important improvement is a
software suite with a common interface that unifies all required tools in one framework.

An interesting improvement and contribution is the extension of available standards
such as WS-BPEL with capabilities that enables them to apply the concepts presented in
this dissertation, for example temporal annotation of WS-BPEL processes and extension of
WS-BPEL engine to enable temporal conformance checking.

Appendix A
Calculation of Timed Graphs

In this appendix the detailed calculations of the timed graphs of the choreograhies G,
S1 and S2 are presented. The dependency between these choreographies is depicted
in figure 8.27. The bold number in the timed graphs shows that this value has been
changed compared to the previous stage. Note that in figure A.11 the deadline is set to
S1.deadline := S1.first.eps + S1.d.max which is 50 + 2 = 52.

Figure A.1.: After initialization and calculation of G

191

192 A. Calculation of Timed Graphs

Figure A.2.: After propagationfrom G to S1

Figure A.3.: After calculation of S1

193

Figure A.4.: After propagation from S1 back to G

Figure A.5.: After recalculation of G

194 A. Calculation of Timed Graphs

Figure A.6.: After propagation from G to S2

Figure A.7.: After calculation of S2

195

Figure A.8.: After propagation from S2 back to G

Figure A.9.: After recalculation of G

196 A. Calculation of Timed Graphs

Figure A.10.: After propagation from G to S1

Figure A.11.: After calculation of S1

197

Figure A.12.: After propagation from S1 back to G

Figure A.13.: After recalculation of G

198 A. Calculation of Timed Graphs

Figure A.14.: After propagation from G to S2

Figure A.15.: After recalculation of S2

Appendix B
Calculation of The Probabilistic Values

Forward Calculation: starting with time point 0
start.eps = {(1.0, 0)}
start.epe = start.eps + start.d = {(1.0, 0)}+ {(1.0, 0)} = {(1.0, 0)}

a.eps = start.epe = {(1.0, 0)}
a.epe = a.eps + a.d = {(1.0, 0)} + {(0.2, 1), (0.5, 5), (0.3, 10)} =

{(0.2, 1), (0.5, 5), (0.3, 10)}
b.eps = a.epe = {(0.2, 1), (0.5, 5), (0.3, 10)}
b.epe = b.eps+ b.d= {(0.2,1), (0.5,5), (0.3,10)} + {(0.5,4), (0.5,8)}= {(0.1,5), (0.1,9),

(0.25,9), (0.25,13), (0.15,14), (0.15,18)}= {(0.1,5), (0.35,9), (0.25,13), (0.15,14),
(0.15,18)}

OS.eps = b.epe={(0.1,5),(0.35,9),(0.25,13),(0.15,14),(0.15,18)}
OS.epe = OS.eps+ OS.d= {(0.1,5), (0.35,9), (0.25,13), (0.15,14), (0.15,18)}+ {(1.0,0)}=

{(0.1,5), (0.35,9),(0.25,13), (0.15,14), (0.15,18)}
c.eps = OS.epe = {(0.1, 5), (0.35, 9), (0.25, 13), (0.15, 14), (0.15, 18)}
c.epe = OS.epe= c.eps+ c.d = {(0.1,5), (0.35,9), (0.25,13), (0.15,14), (0.15,18)}+

{(0.1,8),(0.9,15)}= {(0.01,13), (0.035,17), (0.09,20), (0.025,21), (0.015,22),
(0.315,24), (0.015,26), (0.225,28), (0.135,29), (0.135,33)}

d.eps = OS.epe= {(0.1,5),(0.35,9),(0.25,13),(0.15,14),(0.15,18)}
d.epe = d.eps+ d.d= {(0.1,5), (0.35,9), (0.25,13), (0.15,14), (0.15,18)}+ {(1.0,7)}=

{(0.1,12), (0.35,16), (0.25,20), (0.15,21), (0.15,25)}
OJ.eps = (c.epe* 0.40) ∨ (d.epe* 0.60) = {(0.01,13), (0.035,17), (0.09,20), (0.025,21),

(0.015,22), (0.315,24), (0.015,26), (0.225,28), (0.135,29), (0.135,33)} * (0.4)
∨

{(0.1,12), (0.35,16), (0.25,20), (0.15,21), (0.15,25)} *(0.6)= {(0.004,13), (0.014,17),
(0.036,20), (0.01,21), (0.006,22), (0.126,24), (0.006,26), (0.09,28), (0.054,29),
(0.054,33)}

∨
{(0.06,12), (0.21,16), (0.15,20), (0.09,21), (0.09,25)}= {(0.06,12),

(0.004,13), (0.21,16), (0.014,17), (0.15,20), (0.036,20), (0.09,21), (0.01,21),
(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}=
{(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21), (0.006,22),
(0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

Table B.1.: Forward Calculation: starting with time point 0

199

200 B. Calculation of The Probabilistic Values

Forward Calculation: starting with time point 0 (cntd.)
OJ.epe = OJ.eps + OJ.d= {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21),

(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}+
{(1.0,0)}= {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21),
(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

AS.eps = OJ.epe= {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21),
(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

AS.epe = AS.eps + AS.d= {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21),
(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29),(0.054,33)}+
{(1.0,0)}= {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21),
(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

e.eps = AS.epe= {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21),
(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

e.epe = e.eps + e.d= {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21),
(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}+
{(0.4,4), (0.6,6)} = {(0.024,16), (0.0016,17), (0.084,20), (0.0056,21),(0.0744,24),
(0.04,25), (0.0024,26), (0.0504,28), (0.036,29), (0.0024,30), (0.036,32),
(0.0216,33), (0.0216,37), (0.036,18), (0.0024,19), (0.126,22), (0.0084,23),
(0.1116,26), (0.06,27), (0.0036,28), (0.0756,30), (0.054,31), (0.0036,32),
(0.054,34), (0.0324,35), (0.0324,39)}= {(0.024,16), (0.0016,17), (0.036,18),
(0.0024,19), (0.084,20), (0.0056,21), (0.126,22), (0.0084,23), (0.0744,24),
(0.04,25), (0.114,26), (0.06,27), (0.054,28), (0.036,29), (0.078,30), (0.054,31),
(0.0396,32), (0.0216,33), (0.054,34), (0.0324,35), (0.0216,37), (0.0324,39)}

f.eps = AS.epe= {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21),
(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)}

f.epe = f.eps + f.d= {(0.06,12), (0.004,13), (0.21,16), (0.014,17), (0.186,20), (0.1,21),
(0.006,22), (0.126,24), (0.09,25), (0.006,26), (0.09,28), (0.054,29), (0.054,33)} +
{(0.7,3), (0.3,7)}= {(0.042,15), (0.0028,16), (0.147,19), (0.0098.20), (0.1302,23),
(0.07,24), (0.0042,25), (0.0882,27), (0.063,28), (0.0042,29), (0.063,31),
(0.0378,32), (0.0378,36), (0.018,19), (0.0012,20), (0.063,23), (0.0042,24),
(0.0558,27), (0.03,28), (0.0018.29), (0.0378,31), (0.027,32), (0.0018,33),
(0.027,35), (0.0162,36), (0.0162,40)}= {(0.042,15), (0.0028,16), (0.165,19),
(0.011,20), (0.1932,23), (0.0742,24), (0.0042,25), (0.144,27), (0.093,28),
(0.006.29), (0.1008,31), (0.0648,32), (0.0018,33), (0.027,35), (0.054,36),
(0.0162,40)}

AJ.eps = e.epe
∧

max f.epe= {(0.024,16), (0.0016,17), (0.036,18), (0.0024,19), (0.084,20),
(0.0056,21), (0.126,22), (0.0084,23), (0.0744,24), (0.04,25), (0.114,26),
(0.06,27), (0.054,28), (0.036,29), (0.078,30), (0.054,31), (0.0396,32), (0.0216,33),
(0.054,34), (0.0324,35), (0.0216,37), (0.0324,39)}

∧
max {(0.042,15), (0.0028,16),

Table B.2.: Forward Calculation: starting with time point 0 (cntd.)

201

Forward Calculation: starting with time point 0 (cntd.)
(0.165,19), (0.011,20), (0.1932,23), (0.0742,24), (0.0042,25), (0.144,27),
(0.093,28), (0.006.29), (0.1008,31), (0.0648,32), (0.0018,33), (0.027,35),
(0.054,36), (0.0162,40)}= {(0,001008,16), (0,0000672,17), (0,001512,18),
(0,0001008,19), (0,003528,20), (0,0002352,21), (0,005292,22), (0,0003528,23),
(0,0031248,24)(0,00168,25), (0,004788,26), (0,00252,27), (0,002268,28),
(0,001512,29), (0,003276,30), (0,002268,31)(0,0016632,32), (0,0009072,33),
(0,002268,34), (0,0013608,35), (0,0009072,37), (0,0013608,39), (0,0000672,16),
(0,00000448,17), (0,0001008,18), (0,00000672,19), (0,0002352,20),
(0,00001568,21), (0,0003528,22), (0,00002352,23), (0,00020832,24),
(0,000112,25), (0,0003192,26), (0,000168,27), (0,0001512,28), (0,0001008,29),
(0,0002184,30)(0,0001512,31), (0,00011088,32), (0,00006048,33),
(0,0001512,34), (0,00009072,35), (0,00006048,37), (0,00009072,39),
(0,00396,19), (0,000264,19), (0,00594,19), (0,000396,19), (0,01386,20),
(0,000924,21), (0,02079,22), (0,001386,23), (0,012276,24), (0,0066,25),
(0,01881,26), (0,0099,27), (0,00891,28), (0,00594,29), (0,01287,30),
(0,00891,31), (0,006534,32), (0,003564,33), (0,00891,34), (0,005346,35),
(0,003564,37), (0,005346,39), (0,000264,20), (0,0000176,20), (0,000396,20),
(0,0000264,20), (0,000924,20), (0,0000616,21), (0,001386,22), (0,0000924,23),
(0,0008184,24), (0,00044,25), (0,001254,26), (0,00066,27), (0,000594,28),
(0,000396,29), (0,000858,30), (0,000594,31), (0,0004356,32), (0,0002376,33),
(0,000594,34), (0,0003564,35), (0,0002376,37), (0,0003564,39), (0,0046368,23),
(0,00030912,23), (0,0069552,23), (0,00046368,23), (0,0162288,23),
(0,00108192,23), (0,0243432,23), (0,00162288,23), (0,01437408,24),
(0,007728,25), (0,0220248,26), (0,011592,27), (0,0104328,28), (0,0069552,29),
(0,0150696,30), (0,0104328,31), (0,00765072,32), (0,00417312,33),
(0,0104328,34), (0,00625968,35), (0,00417312,37), (0,00625968,39),
(0,0017808,24), (0,00011872,24), (0,0026712,24), (0,00017808,24),
(0,0062328,24), (0,00041552,24), (0,0093492,24), (0,00062328,24),
(0,00552048,24), (0,002968,25), (0,0084588,26), (0,004452,27), (0,0040068,28),
(0,0026712,29), (0,0057876,30), (0,0040068,31), (0,00293832,32),
(0,00160272,33), (0,0040068,34), (0,00240408,35), (0,00160272,37),
(0,00240408,39), (0,0001008,25), (0,00000672,25), (0,0001512,25),
(0,00001008,25), (0,0003528,25), (0,00002352,25), (0,0005292,25),
(0,00003528,25), (0,00031248,25), (0,000168,25), (0,0004788,26),
(0,000252,27), (0,0002268,28), (0,0001512,29), (0,0003276,30), (0,0002268,31),
(0,00016632,32), (0,00009072,33), (0,0002268,34), (0,00013608,35),
(0,00009072,37), (0,00013608,39), (0,003456,27), (0,0002304,27), (0,005184,27),
(0,0003456,27), (0,012096,27), (0,0008064,27), (0,018144,27), (0,0012096,27),
(0,0107136,27), (0,00576,27), (0,016416,27), (0,00864,27), (0,007776,28),
(0,005184,29), (0,011232,30), (0,007776,31), (0,0057024,32), (0,0031104,33),
(0,007776,34), (0,0046656,35), (0,0031104,37), (0,0046656,39), (0,002232,28),
(0,0001488,28), (0,003348,28), (0,0002232,28), (0,007812,28), (0,0005208,28),
(0,011718,28), (0,0007812,28), (0,0069192,28), (0,00372,28), (0,010602,28),
(0,00558,28), (0,005022,28), (0,003348,29), (0,007254,30), (0,005022,31),
(0,0036828,32), (0,0020088,33), (0,005022,34), (0,0030132,35), (0,0020088,37),

Table B.3.: Forward Calculation: starting with time point 0 (cntd.)

202 B. Calculation of The Probabilistic Values

Forward Calculation: starting with time point 0 (cntd.)
(0,0030132,39), (0,000144,29), (0,0000096,29), (0,000216,29),
(0,0000144,29),(0,000504,29), (0,0000336,29), (0,000756,29), (0,0000504,29),
(0,0004464,29), (0,00024,29), (0,000684,29), (0,00036,29), (0,000324,29),
(0,000216,29), (0,000468,30), (0,000324,31), (0,0002376,32), (0,0001296,33),
(0,000324,34), (0,0001944,35), (0,0001296,37), (0,0001944,39), (0,0024192,31),
(0,00016128,31), (0,0036288,31), (0,00024192,31), (0,0084672,31),
(0,00056448,31), (0,0127008,31), (0,00084672,31), (0,00749952,31),
(0,004032,31), (0,0114912,31), (0,006048,31), (0,0054432,31), (0,0036288,31),
(0,0078624,31), (0,0054432,31), (0,00399168,32), (0,00217728,33),
(0,0054432,34), (0,00326592,35), (0,00217728,37), (0,00326592,39),
(0,0015552,32), (0,00010368,32), (0,0023328,32), (0,00015552,32),
(0,0054432,32), (0,00036288,32), (0,0081648,32), (0,00054432,32),
(0,00482112,32), (0,002592,32), (0,0073872,32), (0,003888,32), (0,0034992,32),
(0,0023328,32), (0,0050544,32), (0,0034992,32), (0,00256608,32),
(0,00139968,33), (0,0034992,34), (0,00209952,35), (0,00139968,37),
(0,00209952,39), (0,0000432,33), (0,00000288,33), (0,0000648,33),
(0,00000432,33), (0,0001512,33), (0,00001008,33), (0,0002268,33),
(0,00001512,33), (0,00013392,33), (0,000072,33), (0,0002052,33),
(0,000108,33), (0,0000972,33), (0,0000648,33), (0,0001404,33), (0,0000972,33),
(0,00007128,33), (0,00003888,33), (0,0000972,34), (0,00005832,35),
(0,00003888,37), (0,00005832,39), (0,000648,35), (0,0000432,35), (0,000972,35),
(0,0000648,35), (0,002268,35), (0,0001512,35), (0,003402,35), (0,0002268,35),
(0,0020088,35), (0,00108,35), (0,003078,35), (0,00162,35), (0,001458,35),
(0,000972,35), (0,002106,35), (0,001458,35), (0,0010692,35), (0,0005832,35),
(0,001458,35), (0,0008748,35), (0,0005832,37), (0,0008748,39), (0,001296,36),
(0,0000864,36), (0,001944,36), (0,0001296,36), (0,004536,36), (0,004536,36),
(0,006804,36), (0,0004536,36), (0,0040176,36), (0,00216,36), (0,006156,36),
(0,00324,36), (0,002916,36), (0,001944,36), (0,004212,36), (0,002916,36),
(0,0021384,36), (0,0011664,36), (0,002916,36), (0,0017496,36), (0,0011664,37),
(0,0017496,39), (0,0003888,40), (0,00002592,40), (0,0005832,40),
(0,00003888,40), (0,0013608,40), (0,00009072,40), (0,0020412,40),
(0,00013608,40), (0,00120528,40), (0,000648,40), (0,0018468,40),
(0,000972,40), (0,0008748,40), (0,0005832,40), (0,0012636,40), (0,0008748,40),
(0,00064152,40), (0,00034992,40), (0,0008748,40), (0,00052488,40),
(0,00034992,40), (0,00052488,40)}= {(0,001008,16), (0,0000672,16),
(0,0000672,17), (0,00000448,17), (0,001512,18), (0,0001008,18), (0,0001008,19),
(0,00000672,19), (0,00396,19), (0,000264,19), (0,00594,19), (0,000396,19),
(0,003528,20), (0,0002352,20), (0,01386,20), (0,000264,20), (0,0000176,20),
(0,000396,20), (0,0000264,20), (0,000924,20), (0,0002352,21), (0,00001568,21),
(0,000924,21), (0,0000616,21), (0,005292,22), (0,0003528,22), (0,02079,22),
(0,001386,22), (0,0003528,23), (0,00002352,23), (0,001386,23), (0,0000924,23),
(0,0046368,23), (0,00030912,23), (0,0069552,23), (0,00046368,23),
(0,0162288,23)(0,00108192,23), (0,0243432,23), (0,00162288,23),
(0,0031248,24), (0,00020832,24), (0,012276,24), (0,0008184,24),
(0,01437408,24), (0,0017808,24), (0,00011872,24),

Table B.4.: Forward Calculation: starting with time point 0 (cntd.)

203

Forward Calculation: starting with time point 0 (cntd.)
(0,0026712,24), (0,00017808,24)(0,0062328,24), (0,00041552,24),
(0,0093492,24), (0,00062328,24), (0,00552048,24), (0,00168,25), (0,000112,25),
(0,0066,25), (0,00044,25), (0,007728,25), (0,002968,25), (0,0001008,25),
(0,00000672,25),(0,0001512,25), (0,00001008,25), (0,0003528,25),
(0,00002352,25), (0,0005292,25), (0,00003528,25), (0,00031248,25),
(0,000168,25) (0,004788,26), (0,0003192,26), (0,01881,26), (0,001254,26),
(0,0220248,26), (0,0084588,26), (0,0004788,26), (0,00252,27), (0,000168,27),
(0,0099,27), (0,00066,27), (0,004452,27), (0,000252,27), (0,003456,27),
(0,0002304,27), (0,005184,27), (0,0003456,27), (0,012096,27), (0,0008064,27),
(0,018144,27), (0,0012096,27), (0,0107136,27)(0,00576,27), (0,016416,27),
(0,00864,27), (0,011592,27), (0,002268,28), (0,0001512,28), (0,00891,28),
(0,000594,28), (0,0104328,28), (0,0040068,28), (0,0002268,28), (0,007776,28),
(0,002232,28), (0,0001488,28), (0,003348,28), (0,0002232,28), (0,007812,28),
(0,0005208,28), (0,011718,28), (0,0007812,28)(0,0069192,28), (0,00372,28),
(0,010602,28), (0,00558,28), (0,005022,28), (0,001512,29), (0,0001008,29),
(0,00594,29), (0,000396,29), (0,0069552,29), (0,0026712,29), (0,0001512,29),
(0,005184,29), (0,003348,29), (0,000144,29), (0,0000096,29), (0,000216,29),
(0,0000144,29), (0,000504,29), (0,0000336,29), (0,000756,29)(0,0000504,29),
(0,0004464,29), (0,00024,29), (0,000684,29), (0,00036,29), (0,000324,29),
(0,000216,29), (0,003276,30), (0,0002184,30), (0,01287,30), (0,000858,30),
(0,0150696,30), (0,0057876,30), (0,0003276,30), (0,011232,30), (0,007254,30),
(0,000468,30), (0,002268,31), (0,0001512,31), (0,00891,31), (0,000594,31),
(0,0104328,31), (0,0040068,31), (0,0002268,31), (0,007776,31), (0,005022,31),
(0,000324,31), (0,0024192,31), (0,00016128,31), (0,0036288,31),
(0,00024192,31), (0,0084672,31), (0,00056448,31), (0,0127008,31),
(0,00084672,31), (0,00749952,31), (0,004032,31), (0,0114912,31), (0,006048,31),
(0,0054432,31)(0,0036288,31), (0,0078624,31), (0,0054432,31), (0,0016632,32),
(0,00011088,32), (0,006534,32), (0,0004356,32), (0,00765072,32),
(0,00293832,32), (0,00016632,32), (0,0057024,32), (0,0036828,32),
(0,00399168,32), (0,0015552,32), (0,00010368,32), (0,0023328,32),
(0,00015552,32), (0,0054432,32)(0,00036288,32), (0,0081648,32),
(0,00054432,32), (0,00482112,32), (0,002592,32), (0,0073872,32),
(0,003888,32)(0,0034992,32), (0,0023328,32), (0,0050544,32), (0,0034992,32),
(0,00256608,32), (0,0002376,32), (0,0009072,33), (0,00006048,33),
(0,003564,33), (0,0002376,33), (0,00417312,33), (0,00160272,33),
(0,00009072,33), (0,0031104,33), (0,0020088,33), (0,00217728,33),
(0,00139968,33), (0,0000432,33), (0,00000288,33), (0,0000648,33),
(0,00000432,33), (0,0001512,33), (0,00001008,33), (0,0002268,33),
(0,00001512,33), (0,00013392,33), (0,000072,33), (0,0002052,33),
(0,000108,33), (0,0000972,33), (0,0000648,33), (0,0001404,33), (0,0000972,33),
(0,00007128,33), (0,00003888,33), (0,0001296,33), (0,002268,34),
(0,0001512,34), (0,00891,34), (0,000594,34), (0,0104328,34), (0,0040068,34),
(0,0002268,34), (0,007776,34), (0,005022,34), (0,000324,34), (0,0054432,34),
(0,0034992,34), (0,0000972,34), (0,0013608,35), (0,00009072,35), (0,005346,35),
(0,0003564,35), (0,00625968,35), (0,00240408,35), (0,00013608,35),

Table B.5.: Forward Calculation: starting with time point 0 (cntd.)

204 B. Calculation of The Probabilistic Values

Forward Calculation: starting with time point 0 (cntd.)
(0,0046656,35), (0,0030132,35), (0,0001944,35), (0,00326592,35),
(0,00209952,35), (0,000648,35), (0,0000432,35), (0,000972,35), (0,0000648,35),
(0,002268,35), (0,0001512,35), (0,003402,35), (0,0002268,35), (0,00005832,35),
(0,0020088,35), (0,00108,35), (0,003078,35), (0,00162,35), (0,001458,35),
(0,000972,35), (0,002106,35), (0,001458,35), (0,0010692,35), (0,0005832,35),
(0,001458,35), (0,0008748,35), (0,001296,36), (0,0000864,36), (0,001944,36),
(0,0001296,36), (0,004536,36), (0,004536,36), (0,006804,36), (0,004212,36),
(0,002916,36), (0,0021384,36), (0,0011664,36), (0,002916,36), (0,0017496,36),
(0,0004536,36), (0,0040176,36), (0,00216,36), (0,006156,36), (0,00324,36),
(0,002916,36), (0,001944,36), (0,0009072,37), (0,00006048,37), (0,003564,37),
(0,0002376,37), (0,00417312,37), (0,00160272,37), (0,00009072,37),
(0,0020088,37), (0,0001296,37), (0,00217728,37), (0,00139968,37),
(0,00003888,37), (0,0005832,37), (0,0011664,37), (0,0031104,37),
(0,0013608,39), (0,00009072,39), (0,005346,39), (0,0003564,39),
(0,00625968,39), (0,00240408,39), (0,00013608,39), (0,0046656,39),
(0,0030132,39), (0,0001944,39), (0,00326592,39), (0,00209952,39),
(0,0008748,39), (0,0017496,39), (0,00005832,39), (0,0003888,40),
(0,00002592,40), (0,0005832,40), (0,00003888,40), (0,0013608,40),
(0,00009072,40), (0,0020412,40), (0,00013608,40)(0,00120528,40),
(0,000648,40), (0,0018468,40), (0,000972,40), (0,0008748,40), (0,0005832,40),
(0,0012636,40), (0,0008748,40), (0,00064152,40), (0,00034992,40),
(0,0008748,40), (0,00052488,40), (0,00034992,40), (0,00052488,40)}=
{(0,0010752,16), (0,00007168,17), (0,0016128,18), (0,01066752,19),
(0,0192512,20), (0,00123648,21), (0,0278208,22), (0,05749632,23),
(0,05769168,24), (0,02121808,25), (0,0561336,26), (0,1125456,27),
(0,0929928,28), (0,0302568,29), (0,0573612,30), (0,12019032,31),
(0,08088192,32), (0,02100888,33), (0,0487512,34), (0,05479272,35),
(0,0553176,36), (0,02125008,37), (0,03187512,39), (0,0162,40)}

AJ.epe = AJ.eps + AJ.d= {(0,0010752,16), (0,00007168,17), (0,0016128,18),
(0,01066752,19), (0,0192512,20), (0,00123648,21), (0,0278208,22),
(0,05749632,23), (0,05769168,24), (0,02121808,25), (0,0561336,26),
(0,1125456,27), (0,0929928,28), (0,0302568,29), (0,0573612,30),
(0,12019032,31), (0,08088192,32), (0,02100888,33), (0,0487512,34),
(0,05479272,35), (0,0553176,36), (0,02125008,37), (0,03187512,39),
(0,0162,40)}+ {(1,0)}= {(0,0010752,16), (0,00007168,17), (0,0016128,18),
(0,01066752,19), (0,0192512,20), (0,00123648,21), (0,0278208,22),
(0,05749632,23), (0,05769168,24), (0,02121808,25), (0,0561336,26),
(0,1125456,27), (0,0929928,28), (0,0302568,29), (0,0573612,30),
(0,12019032,31), (0,08088192,32), (0,02100888,33), (0,0487512,34),
(0,05479272,35), (0,0553176,36), (0,02125008,37), (0,03187512,39),
(0,0162,40)}

j.eps = AJ.eps = {(0,0010752,16), (0,00007168,17), (0,0016128,18), (0,01066752,19),
(0,0192512,20), (0,00123648,21), (0,0278208,22), (0,05749632,23),
(0,05769168,24), (0,02121808,25), (0,0561336,26), (0,1125456,27),

Table B.6.: Forward Calculation: starting with time point 0 (cntd.)

205

Forward Calculation: starting with time point 0 (cntd.)
(0,0929928,28), (0,0302568,29), (0,0573612,30), (0,12019032,31),
(0,08088192,32), (0,02100888,33), (0,0487512,34), (0,05479272,35),
(0,0553176,36), (0,02125008,37), (0,03187512,39), (0,0162,40)}

j.epe = j.eps + j.d = {(0,0010752,16), (0,00007168,17), (0,0016128,18),
(0,01066752,19),(0,0192512,20), (0,00123648,21), (0,0278208,22),
(0,05749632,23), (0,05769168,24), (0,02121808,25), (0,0561336,26),
(0,1125456,27), (0,0929928,28), (0,0302568,29), (0,0573612,30),
(0,12019032,31), (0,08088192,32), (0,02100888,33), (0,0487512,34),
(0,05479272,35), (0,0553176,36), (0,02125008,37), (0,03187512,39), (0,0162,40)}
+ {(1.0,5)}= {(0,0010752,21), (0,00007168,22), (0,0016128,23), (0,01066752,24),
(0,0192512,25), (0,00123648,26), (0,0278208,27), (0,05749632,28),
(0,05769168,29), (0,02121808,30), (0,0561336,31), (0,1125456,32),
(0,0929928,33), (0,0302568,34), (0,0573612,35), (0,12019032,36),
(0,08088192,37), (0,02100888,38), (0,0487512,39), (0,05479272,40),
(0,0553176,41), (0,02125008,42), (0,03187512,44), (0,0162,45)}

End.eps = j.epe= {(0,0010752,21), (0,00007168,22), (0,0016128,23), (0,01066752,24),
(0,0192512,25), (0,00123648,26), (0,0278208,27), (0,05749632,28),
(0,05769168,29), (0,02121808,30), (0,0561336,31), (0,1125456,32),
(0,0929928,33), (0,0302568,34), (0,0573612,35), (0,12019032,36),
(0,08088192,37), (0,02100888,38), (0,0487512,39), (0,05479272,40),
(0,0553176,41), (0,02125008,42), (0,03187512,44), (0,0162,45)}

End.epe = End.eps + End.d = {(0,0010752,21), (0,00007168,22), (0,0016128,23),
(0,01066752,24), (0,0192512,25), (0,00123648,26), (0,0278208,27),
(0,05749632,28), (0,05769168,29), (0,02121808,30), (0,0561336,31),
(0,1125456,32), (0,0929928,33), (0,0302568,34), (0,0573612,35),
(0,12019032,36), (0,08088192,37), (0,02100888,38), (0,0487512,39),
(0,05479272,40), (0,0553176,41), (0,02125008,42), (0,03187512,44), (0,0162,45)}
+ {(1.0,0)}= {(0,0010752,21), (0,00007168,22), (0,0016128,23), (0,01066752,24),
(0,0192512,25), (0,00123648,26), (0,0278208,27), (0,05749632,28),
(0,05769168,29), (0,02121808,30), (0,0561336,31), (0,1125456,32),
(0,0929928,33), (0,0302568,34), (0,0573612,35), (0,12019032,36),
(0,08088192,37), (0,02100888,38), (0,0487512,39), (0,05479272,40),
(0,0553176,41), (0,02125008,42), (0,03187512,44), (0,0162,45)}

Table B.7.: Forward Calculation: starting with time point 0 (cntd.)

206 B. Calculation of The Probabilistic Values

Backward Calculation: starting with deadline= 50
End.lae = { 1.0, 50)}
End.las = End.lae - End.d = { 1.0, 50)}-{ 1.0, 0)} = { 1.0, 50)}

j.lae = End.las ={ 1.0, 50)}
j.las = j.lae - j.d ={ 1.0, 50)} - {(1.0, 5)} = {(1.0,45)}

AJ.lae = j.las ={(1.0,45)}
AJ.las = AJ.lae - AJ.d= {(1.0,45)} - {(1.0,0)}= {(1.0,45)}
e.ale = AJ.las= {(1.0,45)}
e.las = e.lae - e.d= {(1.0,45)} -{((0.4,4), (0.6,6))}= {(0.4,41), (0.6,39)}
f.ale = AJ.las ={(1.0,45)}
f.las = f.lae - f.d= {(1.0,45)} -{(0.7,3), (0.3,7)}= {(0.7,42), (0.3,38)}

AS.lae = e.las
∧

min f.las= {(0.4,41), (0.6,39)}
∧

min {(0.7,42), (0.3,38)}= {(0.28,41),
(0.12,38), (0.42,39), (0.18,38)}= {(0.3,38), (0.42,39), (0.28,41)}

AS.las = AS.lae - AS.d= {(0.3,38), (0.42,39), (0.28,41)}-{(1.0,0)}= {(0.3,38), (0.42,39),
(0.28,41)}

OJ.lae = AS.las ={(0.3,38), (0.42,39), (0.28,41)}
OJ.las = AOJ.lae - OJ.d ={(0.3,38), (0.42,39), (0.28,41)} - {(1.0,0)}= {(0.3,38), (0.42,39),

(0.28,41)}
c.lae = OJ.las ={(0.3,38), (0.42,39), (0.28,41)}
c.las = c.lae - c.d= {(0.3,38), (0.42,39), (0.28,41)} - {(0.1,8), (0.9,15)}= {(0.27,23),

(0.378,24), (0.252,26), (0.03,30), (0.042,31), (0.028,33)}
d.lae = OJ.las ={(0.3,38), (0.42,39), (0.28,41)}
d.las = d.lae - d.d= {(0.3,38), (0.42,39), (0.28,41)} - {(1.0,7)}= {(0.3,31), (0.42,32),

(0.28,34)}

Table B.8.: Backward Calculation: starting with deadline= 50

207

Backward Calculation: starting with deadline= 50 (cntd.)
OS.lae = (c.las*0.4)

∨
(d.las*0.6)= {(0.27,23), (0.378,24), (0.252,26), (0.03,30), (0.042,31),

(0.028,33)}*0.4
∨

{(0.3,31), (0.42,32), (0.28,34)}*0.6={(0.108,23), (0.1512,24),
(0.1008,26), (0.012,30), (0.0168,31), (0.0112,33)}

∨
{(0.18,31), (0.252,32),

(0.168,34)} ={(0.108,23), (0.1512,24), (0.1008,26), (0.012,30), (0.18,31),
(0.0168,31), (0.252,32), (0.0112,33), (0.168,34)}={(0.108,23), (0.1512,24),
(0.1008,26), (0.012,30), (0.1968,31), (0.252,32), (0.0112,33), (0.168,34)}

OS.las = OS.lae - OS.d={(0.108,23), (0.1512,24), (0.1008,26), (0.012,30), (0.1968,31),
(0.252,32), (0.0112,33), (0.168,34)}- {(1.0,0)}={(0.108,23), (0.1512,24),
(0.1008,26), (0.012,30), (0.1968,31), (0.252,32), (0.0112,33), (0.168,34)}

b.lae = OS.las={(0.108,23), (0.1512,24), (0.1008,26), (0.012,30), (0.1968,31), (0.252,32),
(0.0112,33), (0.168,34)}

b.las = b.lae - b.d={(0.108,23), (0.1512,24), (0.1008,26), (0.012,30), (0.1968,31),
(0.252,32), (0.0112,33), (0.168,34)} - {(0.5,4), (0.5,8)}= {(0,054,15), (0,0756,16),
(0,0504,18), (0,054,19), (0,0756,20), (0,006,22), (0,0504,22), (0,0984,23),
(0,126,24), (0,0056,25), (0,084,26), (0,006,26), (0,0984,27), (0,126,28),
(0,0056,29), (0,084,30)} ={(0,054,15), (0,0756,16), (0,0504,18), (0,054,19),
(0,0756,20), (0,0564,22), (0,0984,23), (0,126,24), (0,0056,25), (0,09,26),
(0,0984,27), (0,126,28), (0,0056,29), (0,084,30)}

a.lae = b.las= {(0,054,15), (0,0756,16), (0,0504,18), (0,054,19), (0,0756,20), (0,0564,22),
(0,0984,23), 0,126,24), (0,0056,25), (0,09,26), (0,0984,27), (0,126,28),
(0,0056,29), (0,084,30)}

a.las = a.lae - a.d= {(0,054,15), (0,0756,16), (0,0504,18), (0,054,19), (0,0756,20),
(0,0564,22), (0,0984,23), (0,126,24), (0,0056,25), (0,09,26), (0,0984,27),
(0,126,28), (0,0056,29), (0,084,30)} - {(0.2,1), (0.5,5), (0.3,10)}= (0,0108,14),
(0,01512,15), (0,01008,17), (0,0108,18), (0,01512,19), (0,01128,21),
(0,01968,22), (0,0252,23), (0,00112,24), (0,018,25), (0,01968,26),
(0,0252,27), (0,00112,28), (0,0168,29), (0,027,10), (0,0378,11), (0,0252,13),
(0,027,14), (0,0378,15), (0,0282,17), (0,0492,18), (0,063,19), (0,0028,20),
(0,045,21), (0,0492,22), (0,063,23), (0,0028,24), (0,042,25), (0,0162,5),
(0,02268,6), (0,01512,8), (0,0162,9), (0,02268,10), (0,01692,12), (0,02952,13),
(0,0378,14), (0,00168,15), (0,027,16), (0,02952,17), (0,0378,18), (0,00168,19),
(0,0252,20)}={(0,0162,5), (0,02268,6), (0,01512,8), (0,0162,9), (0,027,10),
(0,02268,10), (0,0378,11), (0,01692,12), (0,0252,13), (0,02952,13), (0,027,14),
(0,0108,14), (0,0378,14), (0,0378,15), (0,01512,15), (0,00168,15), (0,027,16),
(0,0282,17), (0,01008,17), (0,02952,17), (0,0108,18), (0,0492,18), (0,0378,18),
(0,01512,19), (0,063,19), (0,00168,19), (0,0028,20), (0,0252,20), (0,01128,21),
(0,045,21), (0,01968,22), (0,0492,22), (0,0252,23), (0,063,23), (0,00112,24),
(0,0028,24), (0,018,25), (0,042,25), (0,01968,26), (0,0252,27), (0,00112,28),
(0,0168,29)} ={(0,0162,5), (0,02268,6), (0,01512,8), (0,0162,9), (0,04968,10),
(0,0378,11), (0,01692,12), (0,05472,13), (0,0756,14), (0,0546,15), (0,027,16),
(0,0678,17), (0,0978,18), (0,0798,19), (0,028,20), (0,05628,21), (0,06888,22),
(0,0882,23), (0,00392,24), (0,06,25), (0,01968,26), (0,0252,27), (0,00112,28),
(0,0168,29)}

Table B.9.: Backward Calculation: starting with deadline= 50 (cntd.)

208 B. Calculation of The Probabilistic Values

Backward Calculation: starting with deadline= 50 (cntd.)
Start.lae = a.las= {(0,0162,5), (0,02268,6), (0,01512,8), (0,0162,9), (0,04968,10),

(0,0378,11), (0,01692,12), (0,05472,13), (0,0756,14), (0,0546,15), (0,027,16),
(0,0678,17), (0,0978,18), (0,0798,19), (0,028,20), (0,05628,21), (0,06888,22),
(0,0882,23), (0,00392,24), (0,06,25), (0,01968,26), (0,0252,27), (0,00112,28),
(0,0168,29)}

Start.las = Start.lae-Start.d= {(0,0162,5), (0,02268,6), (0,01512,8), (0,0162,9), (0,04968,10),
(0,0378,11), (0,01692,12), (0,05472,13), (0,0756,14), (0,0546,15), (0,027,16),
(0,0678,17), (0,0978,18), (0,0798,19), (0,028,20), (0,05628,21), (0,06888,22),
(0,0882,23), (0,00392,24), (0,06,25), (0,01968,26), (0,0252,27), (0,00112,28),
(0,0168,29)}

Table B.10.: Backward Calculation: starting with deadline= 50 (cntd.)

Bibliography

[1] http://www.w3.org/TR/soap/.

[2] http://uddi.xml.org/.

[3] http : //publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic =
/com.ibm.websphere.express.doc/info/exp/ae/twsu ep.html.

[4] http://udditest.sap.com/webdynpro/dispatcher/sap.com/tc uddi webui wd-
p/UDDIWebUI.

[5] http://www.ebxml.org/.

[6] http://www.microsoft.com/germany/biztalk/default.mspx.

[7] http://unece.org/cefact/.

[8] http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-
20041019.htm.

[9] http://dev2dev.bea.com/webservices/BPEL4WS.html.

[10] Active endpoints. http://www.activevos.com/.

[11] The european project ws-diamond. http://wsdiamond.di.unito.it/.

[12] The north american industry classification system.
http://www.census.gov/epcd/www/naics.html.

[13] Oracle bpel designer. http://www.oracle.com/technology/products/ias/bpel/index.html.

[14] United nations standard product and services classification (unspsc) code organiza-
tion. http://www.unspsc.org/.

[15] The woekflow management coalition. http://www.wfmc.org/.

[16] Xml schema ver. 1.1. http://www.w3.org/XML/Schema.

[17] Ccitt recomendation z.120: Message sequence chart (msc92). Technical report,
CCITT, Geneva, 1992.

209

210 Bibliography

[18] Itu-ts recomendation z.120: Message sequence chart 1996 (msc96). Technical report,
ITU-TS, Geneva, 1996.

[19] Interoperability abstract specification, wfmc-tc-1012. Technical report, Workflow
Management Coalition, 1999.

[20] Terminology and glossary, wfmc-tc-1011. Technical report, The Workflow Manage-
ment Coalition, 1999.

[21] Workflow process definition interface- xml process definition language. Technical
Report WFMC-TC-1025, Workflow Management Coalition, 2002.

[22] Workflow process definition interface Ű xml process definition language version
1.15. Technical Report WFMC-TC-1025, Workflow Management Coalition, http :
//www.wfmc.org/standards/documents/TC − 1025/xpdl/2/2005 − 10 − 03.pdf , Octo-
ber 2005.

[23] Bpmn specification, version 1.1. Technical Report formal/2008-01-17,
Object Management Group, Business Process Management Initiative,
http://www.omg.org/spec/BPMN/1.1/PDF, February 2008.

[24] A. Abecker, A. Bernardi, H. Maus, M. Sintek, and C. Wenzel. Information supply
for business processes: coupling workflow with document analysis and information
retrieval. Knowledge-Based Systems, 13(5):271–284, 2000.

[25] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical Computer
Science, 53:225–241, 1987.

[26] N.R. Adam, V. Atluri, and W.K. Huang. Modeling and analysis of workflows using
petri nets. Journal of Intelligent Information Systems, 10:131–158, 1998.

[27] C. Adams and S. Boeyen. Uddi and wsdl extensions for web service: a security
framework. In Proc. of the ACM workshop on XML security, 2002.

[28] C.C. Albrecht. How clean is the future of soap? Communications of the ACM, 47(2):66–
68, 2004.

[29] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983.

[30] R. Alur, C. Courcoubetis, and T.A. Henzinger. The observational power of clocks. In
Proc. of the Concurrency Theory, 1994.

[31] A. DŠ Ambrogio. A model-driven wsdl extension for describing the qos ofweb
services. In Proc. of the IEEE International Conference on Web Services, 2006.

Bibliography 211

[32] T. Andrews and et al. Business process execution language for web services
(bpel4ws), ver. 1.1. BEA, IBM, Microsoft, SAP, Siebel Systems, 2003.

[33] N. Aoumeur and G. Saake. Dynamically evolving concurrent information systems
specification and validation: a component-based petri nets proposal. Data & Knowl-
edge Engineering, 50(2):117–173, 2004.

[34] A. Arkin. Business process modeling language (bpml), ver. 1.0. Technical report,
eBPML, 2002.

[35] V. Atluri and W.K. Huang. A petri net based safety analysis of workflow authoriza-
tion models. Journal of Computer Security, 8(2-3):209–240, 2000.

[36] J.C.M. Baeten and J.A. Bergstra. Ready-trace semantics for concrete process algebra
with the priority operator. The Computer Journa, 30(6):498 – 506, 1987.

[37] J.C.M. Baeten and R.J. van Glabbeek. Another look at abstraction in process algebra
(extended abstract). In Proc. of the 14th International Colloquium, on Automata, Lan-
guages and Programming, Lecture Notes In Computer Science, Volume 267, pages 84-94,
1987.

[38] J.C.M. Baeten and W.P. Weijland. Process algebra, Volume 18 of Cambridge tracts in
theoretical computer science. Cambridge University Press, 1990.

[39] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo,
C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam, H. Prafullchandra, C. von
Riegen, D. Roth, J. Schlimmer, C. Sharp, J. Shewchuk, A. Vedamuthu, U. Yalçinalp,
and D. Orchard. Web services policy framework (ws-policy). Technical report, BEA
Systems, IBM, Microsoft, SAP, Sonic Software, VeriSign, 2006.

[40] G. BALBO, S. DONATELLI, and G. FRANCESCHINIS. Understanding parallel pro-
gram behavior through petri net models. Journal of parallel and distributed computing,
15(3):171–187, 1992.

[41] N.S. Barghouti and G.E. Kaiser. Concurrency control in advanced database applica-
tions. ACM Computing Surveys (CSUR), 23(3):269–317, 1991.

[42] A. Barros, M. Dumas, and P. Oaks. A critical overview of the web services chore-
ography description language(ws-cdl). Technical report, Business Process Trends,
2005.

[43] P.A. Barros, M. Dumas, and P. Oaks. Standards for web service choreography and
orchestration: Status and perspectives. In BPM 2005 Work- shops, LNCS 3812, 2005.

[44] T. Basten. Branching bisimilarity is an equivalence indeed! Information Processing
Letters, 58(3):141–147, 1996.

212 Bibliography

[45] T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra. PhD
thesis, TU Eindhoven, 1998.

[46] T. Basten and W.M.P. Van der Aalst. Inheritance of behavior. Journal of Logic and
Algebraic Programming, 47(2):47–145, 2001.

[47] T. Basten and W.M.P. van der Aalst. Inheritance of behavior. Journal of Logic and
Algebraic Programming, 47(2):47–145, 2001.

[48] B. Benatallah, F. Casati, J. Ponge, and F. Toumani. On temporal abstractions of web
service protocols. In Proc. of CAiSE Forum, 2005.

[49] B. Benatallah, Q.Z. Sheng, and M. Dumas M. The self-serv environment for web
services composition. Internet Computing, 7(1):40–48, 2003.

[50] N. Berge, M. Samaan, G. Juanole, and Y. Atamna. Methodology for lan modeling
and analysis using petri nets basedmodels. In Proc. of the Second International Work-
shop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS 94), 1994.

[51] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Comput. Sci., 37:77–121, 1985.

[52] J.A. Bergstra, J.W. Klop, and E.R. Olderrog. Readies and failures in the algebra of
communicating processes. SIAM Journal on Computing, 17(6):1134 – 1177, 1988.

[53] M. Bernauer, G. Kappel, and G. Kramler. Comparing wsdl-based and ebxml-based
approaches for b2b protocol specification. In Proc. of the international conference on
service-oriented computing, 2003.

[54] P.A. Bernstein, D.W. Shipman, and W.S. Wong. Formal aspects of serializability in
database concurrency control. IEEE Transactions on Software Engineering, SE-5(3):203–
216, 1979.

[55] B. Bloom. Structural operational semantics for weak bisimulations. Theoretical Com-
puter Science, 146:25–68, 1995.

[56] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation cant be traced. Journal of the ACM,
42(1):232–268, 1995.

[57] S.L. Bloom and D.R. Troeger. Logical characterization of observation equivalence.
Theoretical Computer Science, 35(1):43–53, 1985.

[58] T. Bolognesi and S.A. Smolka. Fundamental results for the verification of observa-
tional equivalence: A survey. In Proc. of the IFIP WG6.1 Seventh International Confer-
ence on Protocol Specification, Testing and Verification VII, 1987.

Bibliography 213

[59] M. Boreale and R. De Nicola. Testing equivalence for mobile processes. Information
and Computation, 120(2):279 Ű303, 1995.

[60] M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asyn-
chronous processes. Information and Computation, 172(2):139–164, 2002.

[61] S. Bowers and B. Ludaescher. A calculus for propagating semantic annotations
through scientific workflow queries. In Proc. of the 11th International Conference on
Current Trends in Database Technology (EDBT 06), 2006.

[62] D. Box and F. Curbera (Eds). Web services addressing (ws-addressing). Technical
report, BEA, IBM and Microsoft, 2003.

[63] M.A. Bragen. Go with the flow. PC Magazine, pages 253–302, 19994.

[64] S.D. Brookes. On the relationship of ccs and csp. In Proc. of the 10th Colloquium on
Automata, Languages and Programming, 1983.

[65] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560–599, 1984.

[66] S.D. Brookes and A.W. Roscoe. An Improved Failures Model for Communicating Processe,
volume Volume 197 of LNCS, pages 281–305. Springer-Verlag, London, UK, 1985.

[67] S.D. Brookes and W.C. Rounds. Behavioural equivalence relations induced by pro-
gramming logics. In Proc. of the 10th Colloquium on Automata, Languages and Program-
ming, 1983.

[68] G. Bruzzone, M. Caccia, P. Coletta, and G. Veruggio. Execution control of robotic
tasks: estimators representation. In Proc. of the IEEE International Conference on
Robotics and Automation, 2002.

[69] I. Budinska, V. Oravec, E. Gatial, M. Laclavik, M. Seleng, Z. Balogh, B. Frankovic,
R. Forgac, I. Mokris, and L. Hluchy. Raport - a knowledge support system for
administrative workflow processes. In Proc. of the Seventh International Conference on
Application of Concurrency to System Design, 2007.

[70] D. Burdett and N. Kavantzas. Ws choreography model overview. Technical report,
W3C, 2004.

[71] F. Casati and A. Discenza. Supporting workflow cooperation within and across
organizations. In Proc. of the 2000 ACM symposium on Applied computing - Volume 1,
2000.

[72] S. Ceri, E. Di Nitro, A. Discenza, A. Fuggetta, and G. Valetto. Derpa: a generic
distributed eventbased reactive processing architecture. Technical report, CEFRIEL,
Milano, Italy, 1998.

214 Bibliography

[73] A.T. Chamillard and L.A. Clarke. Improving the accuracy of petri net-based analysis
of concurrent programs. In Proc. of the international symposium on Software testing and
analysis (ACM SIGSOFT), 1996.

[74] I. Chebbi, S. Dustdar, and S. Tata. The view-based approach to dynamic inter-
organizational workflow cooperation. Data and Knowledge Engineering, 56(2):139–173,
2006.

[75] S.W. Chen, C.Y. Fang, and K.E. Chang. Neural simulation of petri nets. Parallel
Computing, 25(2):183–207, 1999.

[76] F. Cherief and P.H. Schnoebelen. τ-bisimulations and full abstraction for refinement
of actions. Information Processing Letters, 40(4):219–222, 1991.

[77] R. Chinnici, J.J. Moreau, A. Ryman, and S. Weerawarana. Web services description
language (wsdl) version 2.0 part 1: Core language. Technical report, The World Wide
Web Consortium, 2007.

[78] D.K.W. Chiu, S.C. Cheung, K. Karlapalem, Q. Li, and S. Till. Workflow view driven
cross-organizational interoperability in a web-service environment. In Proc. of the
Web Services, E-Business, and the Semantic Web, CAiSE 2002 International Workshop,
2002.

[79] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
The web services description language wsdl. http://www-
4.ibm.com/software/solutions/webservices/resources.html, 2001.

[80] N.K. Cicekli and I. Cicekli. Formalizing the specification and execution of workflows
using the event calculus. Information Sciences, 176(15):2227–2267, 2006.

[81] N.K. Cicekli and Y. Yildirim. Formalizing workflows using the event calculus. In
Proc. of the 11th International Conference on Database and Expert Systems Applications
(DEXA 00), 2000.

[82] J. Clark and S. DeRose. Xml path language (xpath. Technical report, The World
Wide Web Consortium, 1999.

[83] R. Cleaveland and M.C.B. Hennessy. Testing equivalence as a bisimulation equiva-
lence. In Proc. of the Workshop on Automatic Verification Methods for Finite-State Systems,
1989.

[84] J. Colgrave and K. Januszewski. Using wsdl in a uddi registry, version 2.0. 2. Tech-
nical report, OASIS, 2004.

[85] R.S. Cost, Y. Chen, T.W. Finin, Y. Labrou, and Y. Peng. Using colored petri nets for
conversation modeling. In Issues in Agent Communication, 2000.

Bibliography 215

[86] W.D. Cottrell. Simplified program evaluation and review technique (pert). Journal
Of Construction Engineering and Management, 125(1):16–22, 1999.

[87] N.P. Dalal, M. Kamath, W.J. Kolarik, and E. Sivaraman. Toward an integrated frame-
work for modeling enterprise processes. Communications of the ACM, 47(3):83 – 87,
2004.

[88] P. Darondeau. An enlarged definition and complete axiomatization of observational
congruence of finite processes. In Proc. of the 5th Colloquium on International Sympo-
sium on Programming, 1982.

[89] P.H. Darondeau and P. Degano. About semantic action refinement. Fundamenta
Informaticae, 14(2):221–234, 1991.

[90] G. Decker, H. Overdick, and J.M. Zaha. On the suitability of ws-cdl for choreography
modeling. In Proc. of the Methoden, Konzepte und Technologien fuer die Entwicklung von
dienstebasierten Informationssystemen (EMISA 06), 2006.

[91] J. Dehnert and P. Rittgen. Relaxed soundness of business processes. In Proc. of
the 13th International Conference on Advanced Information Systems Engineering (CAiSE),
2001.

[92] I. Demongodin and N.T. Koussoulas. Differential petri nets: representing continuous
systems in adiscrete-event world. IEEE Transactions on Automatic Control, 43(4):573–
579, 1998.

[93] Y. Deng, S.K. Chang, J.C. A. de Figueired, and A. Perkusich. Integrating software
engineering methods and petri nets for the specification and prototyping of complex
information systems. In Proc. of the 14th International Conference on Application and
Theory of Petri Nets, 1993.

[94] W.M.P. Van der Aalst. Verification of workflow nets. In Proc. of the 18th International
Conference on Application and Theory of Petri Nets, 1997.

[95] W.M.P. Van der Aalst. The application of petri nets to workflow management. The
Journal of Circuits, Systems and Computers, 8:21–66, 1998.

[96] W.M.P. Van der Aalst. The application of petri nets toworkflow management. The
Journal of Circuits, Systems and Computers, 8(1):21Ű66, 1998.

[97] W.M.P. Van der Aalst. Modeling and analyzing interorganizationalworkflows. In
Proc. of the International Conference on Application of Concurrency to System Design
(CSDŠ98), 1998.

[98] W.M.P. Van der Aalst. Interorganizational workflows: An approach based on
message sequence charts and petri nets. Systems Analysis - Modelling - Simulation,
34(3):335–367, 1999.

216 Bibliography

[99] W.M.P. Van der Aalst. Woflan: a petri-net-based workflow analyzer. Systems Analysis
Modelling Simulation, 35(3):345–357, 1999.

[100] W.M.P. Van der Aalst. Inheritance of interorganizational workflows: How to agree
to disagree without loosing control? Information Technology and Management, 4(4):345
– 389, 2003.

[101] W.M.P. Van der Aalst and T. Basten. Inheritance of workflows: an approach to
tackling problems related to change. Theoretical Computer Science, 270(1-2):125 – 203,
2002.

[102] R.M. Dijkman and M. Dumas. Service-oriented design: A multi-viewpoint approach.
Int. J. Cooperative Inf. Syst., 13(4):337Ű368, 2004.

[103] A. Discenza. Filtering events in a distributed architecture. Technical report, Diparti-
mento di Elettronica e Informazione, Politecnico di Milano, 1998.

[104] J. Eder and W. Gruber. A meta model for structured workflows supporting workflow
transformations. In In Proc. of the 6th East European Conference on the Advances in
Databases and Information Systems (ADBIS 2002), 2002.

[105] J. Eder, W. Gruber, and E. Panagos. Temporal modeling of workflows with condi-
tional execution paths. In Proc. of the 11th International Conference on Database and
Expert Systems Applications, 2000.

[106] J. Eder and H.Pichler. Duration histograms for workflow systems. In Proc. of the
IFIP TC8 / WG8.1 Working Conference on Engineering Information Systems in the Internet
Context, 2002.

[107] J. Eder, M. Lehmann, and A. Tahamtan. Choreographies as federations of choreogra-
phies and orchestrations. In Proc. of International Workshop on Conceptual Modeling of
Service-Oriented Software Systems, 2006.

[108] J. Eder, M. Lehmann, and A. Tahamtan. Conformance test of federated choreogra-
phies. In Proc. of the 3rd International Conference on Interoperability for Enterprise Soft-
ware and Applications, 2007.

[109] J. Eder and E. Panagos. WfMC WorkFlow Handbook 2001, chapter Managing Time in
Workflow Systems. J. Wiley & Sons, 2001.

[110] J. Eder, E. Panagos, and M. Rabinovich. Time constraints in workflow systems. In
Proc. of the 11th International Conference on Advanced Information Systems Engineering
(CAiSE), 1999.

[111] J. Eder, H. Pichler, and A. Tahamtan. Probabilistic time management of choreogra-
phies. In Proc. of the 1st International Workshop on QoS in Self-healing Web Services in

Bibliography 217

conjunction with BPM 2008 6th International Conference on Business Process Management,
2008.

[112] J. Eder, H. Pichler, and S. Vielgut. Avoidance of deadline-violations for inter-
organizational business processes. In Proc. of the 7th International Baltic Conference
on Databases and Information Systems, 2006.

[113] J. Eder, H. Pozewaunig, and W. Liebhart. epert: Extending pert for workflow man-
agement systems. In Proc. of the First East-European Symposium on Advances in Database
and Information Systems, 1997.

[114] J. Eder and A. Tahamtan. Temporal conformance of federated choreographies. In
Proc. of the 19th International Conference on Database and Expert Systems Applications,
2008.

[115] J. Eder and A. Tahamtan. Temporal consistency of view based interorganizational
workflows. In Proc. of the 2nd International United Information Systems Conference, 2008.

[116] R. Elfwing, U. Paulsson, and L. Lundberg. Performance of soap in web service
environment compared to corba. In Proc. of the Ninth Asia-Pacific Software Engineering
Conference, 2002.

[117] J. Eloranta. Minimizing the number of transitions with respect to observation equiv-
alence. BIT, 31(4):576–590, 1991.

[118] J. Engelfriet. Determinacy arrow right (observation equivalence = trace equivalence).
Theoretical Computer Science, 36(1):21–25, 1985.

[119] R. ESSER. An Object Oriented Petri Net Approach to Embedded System Design. PhD
thesis, ETH Zuerich, 1996.

[120] G.L. Ferrari, U. Montanari, and P. Quaglia. The weak late pi-calculus semantics as
observation equivalence. In Proc. of the 6th International Conference on Concurrency
Theory, 1995.

[121] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences, 18:194–211, 1979.

[122] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web ser-
vice compositions. In Proc. of 18th IEEE International Conference on Automated Software
Engineering, 2003.

[123] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web
service compositions. In Proc. of the 18th IEEE International conference on Automated
Software Engineering, 2003.

218 Bibliography

[124] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification for web
service choreography. In Proc. of IEEE International Conference on Web Services, 2004.

[125] G. Franceschinis S. Haddad G. Chiola, C. Dutheillet. Stochastic well-formed col-
ored nets and symmetric modelingapplications. IEEE Transactions on Computers,
42(11):1343–1360, 1993.

[126] H. Garcia-Molina and K. Salem. Sagas. In Proc. of the ACM special interest group on
management of data annual conference, 1987.

[127] S. Gatziu and K.R. Dittrich. Detecting composite events in active database systems
using petrinets. In Proc. of the Fourth International Workshop on Research Issues in Data
Engineering, 1994.

[128] S. Genc and S. Lafortune. Distributed diagnosis of discrete-event systems using petri
nets. In Proc. of the international conference on applications and theory of Petri nets, 2003.

[129] R.J. Van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation
semantics. Journal of ACM, 43(3):555–600, 1996.

[130] R.J. Van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation
semantics (extended abstract). In Proc. of IFIP 11th World Comput. Congr, 1998.

[131] J.F. Groote and F. W. Vaandrager. An efficient algorithm for branching bisimulation
and stuttering equivalence. In Proc. 17th International Colloquium of the Automata,
Languages and Programming (ICALP 90), 1990.

[132] M. Hack. Decision problems for petrl nets and vector addition systems. Technical
report, Massachusetts Institute of Technology, 1975.

[133] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular pro-
grams. Journal of Computer and System Sciences, 26:222–243, 1983.

[134] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. A comprehen-
sive approach to flexibility in workflow management systems. ACM Sigsoft Software
Engineering Notes, 24(2):79–88, 1999.

[135] M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In
Proc. of the 7th Colloquium on Automata, Languages and Programming, 1980.

[136] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985.

[137] C.A. Heuser and G. Richter. Constructs for modeling information systems with petri
nets. In Proc. of the 13th International Conference on Application and Theory of Petri Nets,
1992.

Bibliography 219

[138] Y. Hishfeld. Petri nets and the equivalence problem. In Proc. of the 7th Workshop on
Computer Science Logic, 1993.

[139] G.T.S. Ho, H.C.W. Lau, C.K.M. Lee, A.W.H. Ip, and K.F. Pun. An intelligent produc-
tion workflow mining system for continual quality enhancement. The International
Journal of Advanced Manufacturing Technology, 28(7-8):792–809, 2006.

[140] CAR Hoare. In On the construction ofprograms, chapter Communicationg sequential
processes, pages 229–254. Cambridge University Press, Cambridge, England, 1980.

[141] C.A.R. Hoare. A model for communicating sequential processes. Technical Report
PRG-22, Programming Research Group, University of Oxford, 1981.

[142] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science. Prentice-
Hall International, London, 1985.

[143] C.A.R. Hoare, S.D. Brookes, and A.W. Roscoe. A theory of communicating sequential
processes. Technical Report PRG-16, Programming Research Group, University of
Oxford, 1981.

[144] S. Holmstroem. A refinement calculus for specifications in hennessy-milner logic
with recursion. Formal Aspects of Computing, 1(3):242–272, 1989.

[145] J.E. Hopcroft and J.D. Ullman. Introduction To Automata Theory, Languages, And Com-
putation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[146] H. Huettel. Undecidable equivalences for basic parallel processes. In Proc. of the
International Conference on Theoretical Aspects of Computer Software, 1994.

[147] C. Huth, I. Erdmann, and L. Nastansky. Groupprocess: using process knowledge
from the participative design and practical operation of ad hoc processes for the
design of structured workflows. In Proc. of the 34th Annual Hawaii International Con-
ference on System Sciences, 2001.

[148] L. Jategaonkar and A. Meyer. Testing equivalence for petri nets with action refine-
ment: Preliminary report. In Proc. of the Third International Conference on Concurrency
Theory (CONCUR 92), 1992.

[149] L. Jategaonkar and A.R. Meyer. Deciding true concurrency equivalences on finite
sate nets. In Proc. of the 20th International Colloquium on Automata, Languages and
Programming, 1993.

[150] K. Jensen, L.M. Kristensen, and L. Wells. Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer, 9(3-4):213–254, 2007.

220 Bibliography

[151] T. Jepsen. Soap cleans up interoperability problems on the web. IT Professional,
3(1):52–55, 2001.

[152] P. Jiang, Q. Mair, and J. Newman. Using uml to design distributed collaborative
workflows: from uml to xpdl. In Proc. of the Twelfth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003.

[153] W.T. Jong, Y.S. Shiau, Y.J. Horng, H.H. Chen, and S.-M. Chen. Temporal knowledge
representation and reasoning techniques usingtime petri nets. IEEE Transactions on
Systems, Man, and Cybernetics, 29(4):541–545, 19999.

[154] C.C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatizations
for probabilistic processes. In Proc. of the Theories of concurrency : unification and
extension: unification and extension, 1990.

[155] J.Y. Jung, W. Hur, S.H. Kang, and H. Kim. Business process choreography for b2b
collaboration. Internet Computing, 8(1):37–45, 2004.

[156] P.C. Kanellakis and S.A. Smolka. Ccs expressions, finite state processes, and three
problems of equivalence. In Proc. of the second annual ACM symposium on Principles of
distributed computing, 1983.

[157] P.C. Kanellakis and S.A. Smolka. Ccs expressions finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43–68, 1990.

[158] N. Kavantzas and et al. Web services choreography description language (ws-cdl)
1.0. Technical report, W3C, 2004.

[159] T. Kawamura, J.A. De Blasio, T. Hasegawa, M. Paolucci, and K. Sycara. Preliminary
report of public experiment of semantic service matchmaker with uddi business
registry. In Proc. of the First International Conference on Service-Oriented Computing,
2003.

[160] R. Kazhamiakin, P. Pandya, and M. Pistore. Representation, verification, and com-
putation of timed properties in web service compositions. In Proc. of ICWS 06, 2006.

[161] R. Kazhamiakin, P. Pandya, and M. Pistore. Timed modelling and analysis in web
service compositions. In Proc. of ARESŠ06, 2006.

[162] R.M. Keller. Generaltzed petrz nets as models for system verification. Technical
report, Princeton University, 1975.

[163] P.M. Kelly, P.D. Coddington, and A.L. Wendelborn. Lambda calculus as a workflow
model. In Proc. of the The 3rd International Conference on Grid and Pervasive Computing.,
2008.

Bibliography 221

[164] J.K. Kennaway. Formal semantics of nondeterminism and parallelism. PhD thesis, Uni-
versity of Oxford, 1981.

[165] R. Kennaway and C.A.R. Hoare. A theory of nondeterminism. In Proc. of the 7th
Colloquium on Automata, Languages and Programming, 1980.

[166] R. Khalaf and F. Leymann. E role-based decomposition of business processes using
bpel. In Proc. of IEEE International Conference on Web Services (ICWS 06), 2006.

[167] A. Khetawat, H. Lavana, and F. Brglez. Collaborative workflows: A paradigm for dis-
tributed benchmarking and design on the internet. Technical report, North Carolina
State University, 1997.

[168] S.O. Kimbrough and S.A. Moore. On automated message processing in electronic
commerce and work support systems: speech act theory and expressive felicity.
ACM Transactions on Information Systems, 15(4):321–367, 1997.

[169] J. Klingemann and J. Waesch J K. Aberer. Adaptive outsourcing in cross-
organizational workflows. Technical report, GMD Ű German National Research
Center for Information Technology, 1998.

[170] J. Klingemann and J. Waesch J K. Aberer. Deriving service models in cross-
organizational workflows. In Proc. of Ninth International Workshop on Research Issues
in Data Engineering:Virtual Enterprise, RIDE-VE 99, 1999.

[171] S.Y. Kung, S.C. Lo, and P.S. Lewis. Timing analysis and design optimization of vlsi
data flow arrays. In Proc. of the International Conference on Parallel Processing, 1986.

[172] M. Z. Kwiatkowska and G. Norman. A testing equivalence for reactive probabilistic
processes. Electronic Notes in Theoretical Computer Science, 16(2):114Ű132, 1998.

[173] C. Lambrinoudakis, S. Kokolakis, M. Karyda, V. Tsoumas, D. Gritzalis, and S. Kat-
sikas. Electronic voting systems: security implications of the administrative work-
flow. In Proc. of the 14th International Workshop on Database and Expert Systems Appli-
cations, 2003.

[174] K.G. Larsen. Proof systems for satisfiability in hennessy-milner logic with recursion.
Theoretical Computer Science, 72(2-3):265 – 288, 1990.

[175] F. Leymann. Production workflow: concepts and techniques. Prentice Hall PTR Upper
Saddle River, NJ, USA, 19999.

[176] F. Leymann. Web services flow language (wsfl 1.0). Technical report, IBM, 2001.

[177] Q. Li, Z. Shan, P.C.K. Hung, D.K.W. Chiu, and S.C. Cheung. Flows and views for
scalable scientific integration. In Proc. of InfoScale 06, ACM International Conference
Proceeding Series, Vol. 152, 2006.

222 Bibliography

[178] S.H. Liao. Expert system methodologies and applicationsŮa decade review from
1995 to 2004. Expert Systems with Applications, 28(1):93–103, 2005.

[179] C. Lin, Y. Qu, F. Ren, and D.C. Marinescu. Performance equivalent analysis of work-
flow systems based on stochastic petri net models. In Proc. of the First International
Conference on Engineering and Deployment of Cooperative Information Systems, 2002.

[180] D.R. Liu and M. Shen. Workflow modeling for virtual processes: An order-
preserving process-view approach. Information Systems, 28(6):505–532, 2003.

[181] D.R. Liu and M. Shen. Business-to-business workflow interoperation based on
process-views. Decision Support Systems, 38(3):399–419, 2004.

[182] D.R. Liu and M. Shen. Discovering role-relevant process-views for disseminating
process knowledge. Expert Systems with Applications, 26(3):301–310, 2004.

[183] I.A. Lomazova. Nested petri nets - a formalism for specification and verification of
multi-agent distributed systems. Fundamenta Informaticae, 43(1-4):195–214, 2000.

[184] D. Lowe, X. Chen, T. Mondor, T. Rus, N. Rynearson, S. Wright, and T. Xu. BizTalk
Server: The Complete Reference. McGraw-Hill Professional, 2001.

[185] G. Luo, G. von Bochmann, and A. Petrenko. Test selection based on communicating
nondeterministic finite-statemachines using a generalized wp-metho. IEEE Transac-
tions on Software Engineering, 20(2):149–162, 1994.

[186] M. Makela. Applying compiler techniques to reachability analysis of high-level mod-
els. In Proc. of the Workshop on Concurrency, Specification & Programming, 2000.

[187] O. Marjanovic. Dynamic verification of temporal constraints in production work-
flows. In Proc. of the Australasian Database Conference, 2000.

[188] A. Martens. Verteilte Geschaeftsprozesse-Modellierung und Verifikation mit Hilfe von Web
Services. PhD thesis, Humbolst-Universitaet Zu Berlin, 2004.

[189] A. Martens. Consistency between executable and abstract processes. In Proc. of IEEE
International Conference on e-Technology, e-Commerce and e-Service, 2005.

[190] J. Martinez, P.R. Muro, M. Silva, S. Smith, and J.L. Villarroel. Merging artificial intel-
ligence techniques and petri nets for real-time scheduling and control of production
systems. In Proc. of the 12th IMACS world congress on scientific computation, 1988.

[191] J. Metso and L. Kutvonen. Managing virtual organizations with contracts. In Proc.
of Workshop on Contract Architectures and Languages, Enschede, The Netherlands, 2005.

[192] R. Milner. A Calculus of Communicating Systems (Lecture Notes in Computer Science,
Volume 92). Springer Verlag, 1980.

Bibliography 223

[193] R. Milner. A modal characterisation of observable machine-behaviour. In Proc. of the
6th Colloquium on Trees in Algebra and Programming, Lecture Notes In Computer Science,
Volume 112, Pages 25-34, 1981.

[194] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267–
310, 1983.

[195] R. Milner. Lectures on a calculus for communicating systems. In Proc. of the Seminar
on Concurrency, Lecture Notes in Computer Science, volume 97, pages 197-220, 1985.

[196] R Milner. Communication and concurrency. Prentice-Hall International Computer
Science Series, London, England, 1989.

[197] R. Muehlberger, M.E. Orlowska, and B. Kiepuszewski. Backward step: The right
direction for production workflow systems. In Proc. of the Australian Database Confer-
ence, 1999.

[198] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77:541–580, 1989.

[199] W. Naqvi and M.T. Ibrahim. Reflex active database model: Application of petri-nets.
In Proc. of the 4th International Conference on Database and Expert Systems Applications,
1993.

[200] R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. Technical
Report CSR-123-82, University of Edinburgh, 1982.

[201] R. De Nicola and M.C.B. Hennessy. Testing equivalence for processes. In Proc. of the
10th Colloquium on Automata, Languages and Programming, Lecture Notes In Computer
Science, Volume 154, 1983.

[202] R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
computer science, 34:83–133, 1984.

[203] R. De Nicola, U. Montanari, and F.W. Vaandrager. Back and forth bislmulations. In
Proc. of CONCUR Š90, Lecture Notes in Computer Science, vol. 458. Springer-Verlag, New
York, pp. 152-165., 1990.

[204] R. De Nicola and F.W. Vaandrager. Three logics for branching bisimulation. Journal
of ACM, 42(2):458–487, 1995.

[205] M. Nielsen and P.S. Thiagarajan. Degrees of non-determinism and concurrency: A
petri net view. In Proc. of the Fourth Conference on Foundations of Software Technology
and Theoretical Computer Science, 1984.

[206] A. Oberweis and P. Sander. Information system behavior specification by high level
petri nets. ACM Transactions on Information Systems, 14(4):380 – 420, 1996.

224 Bibliography

[207] E.R. Olderog. Specification oriented programming in tcsp. In Proc. of the NATO
Advanced Study Institute in Logics and Models of Concurrent Systems, 1985.

[208] E.R. Olderog. Nets, Terms and Formulas. Cambridge University Press, 1991.

[209] E.R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating
processes. Acta Informatica, 23(1):9–66, 1986.

[210] C. Ouyang and J. Billington. Formal analysis of the internet open trading protocol.
In Proc. of the Applying Formal Methods: Testing, Performance, and M/E-Commerce, 2004.

[211] A. Overkamp. Supervisory control using failure semantics and partialspecifications.
IEEE transactions on Automatic Control, 42(4):498–510, 1997.

[212] E. Panagos and M. Rabinovich. Predictive workflow management. In Proc. of the 3rd
Int. Workshop on Next Generation Information Technologies and Systems, 1997.

[213] M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara. Importing the semantic
web in uddi. In Proc. of the International Workshop on Web Services, E-Business, and the
Semantic Web, 2002.

[214] C. Papadimitriou. The theory of database concurrency control. Computer Science Press,
Inc., 1986.

[215] D.M.R. Park. Concurrency and automata on infinite sequences. In Proc. of he 5th GI
Conference. Lecture Notes in Computer Science, vol. 104. Springer-Verlag, New York, 1981.

[216] K.M. Passino and P.J. Antsaklis. Artificial intelligence planning problems in a petri
net framework. In Proc. of the American Control Conference, 1988.

[217] C. Peltz. Web services orchestration and choreography. IEEE Computer, 36(10):46Ű53,
2003.

[218] J.L. Peterson. Petri nets. ACM Computing Surveys (CSUR), 9:223–252, 1977.

[219] S. Philipose. Operations Research A Practical Approach. Tata McGrawHill, New Delhi,
New York, 1986.

[220] I. Phillips. Refusal testing. Theoretical Computer Science, 50(3):241–284, 1987.

[221] H. Pichler. Time Management for Workflow Systems. A probabilistic Approach for Basic and
Advanced Control Flow Structures. PhD thesis, Alpen-Adria-Universitaet Klagenfurt.
Fakultaet fuer Wirtschaftswissenschaften und Informatik, 2006.

[222] A. Pnueli. Linear and branching structures in the semantics and logics of reactive
systems. In Proc. of the 12th Colloquium on Automata, Languages and Programming,
Lecture Notes In Computer Science, Volume 194, 1985.

Bibliography 225

[223] L. Pomello. Some equivalence notions for concurrent systems. an overview. In Proc.
of the 6th European Workshop on Applications and Theory in Petri Nets, 1985.

[224] L. Pomello, G. Rozenberg, and C. Simone. A survey of equivalence notions for net
based systems. In Proc. of the Advances in Petri Nets, 1992.

[225] L. Pudhota, A. Tierney, and E. Chang. Services integration monitor for collaborative
workflow management. In Proc. of the 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise, 2005.

[226] F. Puhlmann and M. Weske. Using the pi-calculus for formalizing workflow patterns.
In Proc. of the 3rd International Conference on Business Process Management (BPM 05),
2005.

[227] H. Qin and P. Lewis. Factorization of finite state machines under observational
equivalence. In Proc. of the Theories of concurrency : unification and extension: unification
and extension, 1990.

[228] G.M. Reed and A.W. Roscoe. The timed failures-stability model for csp. Theoretical
Computer Science, 211(1-2):85 – 127, 1999.

[229] W. Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc., 1985.

[230] W. Reisig. Embedded system description using petri nets. In Lecture Notes in Com-
puter Science, Volume 284, 1987.

[231] S. Rinderle, A. Wombacher, and M. Reichert. On the controlled evolution of process
choreographies. In Proc. of 22nd International Conference on Data Engineering, 2006.

[232] A.W. Roscoe. An alternative order for the failures model. Journal of Logic and Compu-
tation, 2(5):557–577, 1992.

[233] W.C. Rounds and S.D. Brookes. Possible futures, acceptances, refusals and commu-
nicating processes. In Proc. of the 22 thAnnual Symposium on Foundations of Computer
Science, 1981.

[234] A. Ryman. Simple object access protocol (soap) and web services. In Proc. of the 23rd
International Conference on Software Engineering, 2001.

[235] W. Sadiq, S. Shazia, and K. Schulz. Model driven distribution of collaborative busi-
ness processes. In Proc. of IEEE International Conference on Services Computing, 2006.

[236] S. Sakthivel and M.R. Tanniru. Information system verification and validation during
requirement analysis using petri nets. Journal of Management Information Systems,
5(3):33–50, 1989.

226 Bibliography

[237] K. Salimifard and M. Wright. Petri net-based modelling of workflow systems: An
overview. European Journal of Operational Research, 134(3):664–676, 2001.

[238] D. Sannella and A. Tarlecki. On observational equivalence and algebraic specifica-
tion. Journal of Computer and System Sciences, 34(2-3):150–178, 1987.

[239] K. Sarshar, T. Theling, P. Loos, and M. Jerrentrup. Integrating process and orga-
nization models of collaborations through object petri nets. In Proc. of the Third
GI-Workshop XML4BPM - XML Integration and Transformation for Business Process Man-
agement, 2006.

[240] H.J. Schek and M.H. Scholl. The relational model with relation-valued attributes.
Journal of Information Systems, 11(2):137–147, 1986.

[241] H. Schlinglof, A. Martens, and K. Schmidt. Modeling and model checking web
services. Electronic Notes in Theoretical Computer Science, 126:3–26, 2005.

[242] K. Schulz and ME. Orlowska. Architectural issues for cross-organisational b2b inter-
actions. In Proc. International Conference on Distributed Computing Systems, 2001.

[243] K.A. Schulz and M.E. Orlowska. Facilitating cross-organisational workflows with a
workflow view approach. Data and Knowledge Engineering, 51(1):109–147, 2004.

[244] K. Scribner, K. Scribner, and M.C. Stiver. Understanding Soap: Simple Object Access
Protocol. Sams Indianapolis, 2000.

[245] S. Seely. SOAP: Cross Platform Web Service Development Using XML. Prentice Hall,
2001.

[246] L.R. Shaffer, J.B. Ritter, and W.L. Meyer. The Critical-path Method. McGraw-Hill
Education, 1965.

[247] Z. Shan, Z. Long, Y. Luo, and Z. Peng. Object-oriented realization of workflow
views for web services Ű an object deputy model based approach. In Proc. of the 5th
International Conference on Advances in Web-Age Information Management, 2004.

[248] T. Smigelski, T. Murata, and M. Sowa. A timed petri net model and simulation of a
dataflow computer. In Proc. of the nternational Workshop on Timed Petri Nets, 1985.

[249] J. Snell, D. Tidwell, and P. Kulchenko. Programming Web services with SOAP. O Reilly
& Associates, Inc., 2002.

[250] UK Springer-Verlag London. Workflow Verification: Finding Control-Flow Errors Us-
ing Petri-Net-Based Techniques, chapter Business Process Management, Models, Tech-
niques, and Empirical Studies, Lecture Notes In Computer Science; Vol. 1806., pages
161–183. Springer-Verlag, London, UK, 2000.

Bibliography 227

[251] M.O. Stehr, J. Meseguer, and P. Csaba Oelveczky. Rewriting logic as a unifying
framework for petri nets. In Lecture Notes In Computer Science, Vol. 2128, 2001.

[252] R.S. Streett. Propositional dynamic logic of looping and converse. In Proc. of the
thirteenth annual ACM symposium on Theory of computing, 1981.

[253] Z. Tan, C. Lin, H. Yin, Y. Hong, and G. Zhu. Approximate performance analysis
of web services flow using stochastic petri net. In Proc. of the Grid and Cooperative
Computing, 2004.

[254] Y. Tang, L. Chen, K.T. He, and N. Jing. Srn: an extended petri-net-based workflow
model for web service composition. In Proc. of the IEEE International Conference on
Web Services, 2004.

[255] S. Thatte. Xlang: Web services for business process design. Technical report, Mi-
crosoft, 2001.

[256] I.L. Traiger. Trends in systems aspects of database management. In Proc. of the 2nd
International Conference on Databases, 1983.

[257] W.T. Tsai, R. Paul, Z. Cao, L. Yu, and A. Saimi. Verification of web services using an
enhanced uddi server. In Proc. of the Eighth International Workshop on Object-Oriented
Real-Time Dependable Systems, 2003.

[258] G. Tuncel and G.M. Bayhan. A high-level petri net based decision support system
for real-time scheduling and control of flexible manufacturing systems: An object-
oriented approach. In Proc. of the International Conference on Computational Science,
2005.

[259] A. Valmari. Failure-based equivalences are faster than many believe. In Proc. of the
Structures in Concurrency Theory, 1995.

[260] W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: Yet another workflow lan-
guage. Information Systems, 30(4):245–275, 2005.

[261] W.M.P. van der Aalst and K.M. van Hee. Business process redesign: A petri-net-
based approach. Computers in Industry, 29(1-2):15–26, 1996.

[262] R.J. van Glabbee. Mathematical Foundations of Computer Science 1993, chapter A
Complete Axiomatization for Branching Bisimulation Congruence of Finite-State Be-
haviours., pages 473–484. Springer-Verlag, New York-Berlin, 1993.

[263] R.J. van Glabbeek. The linear time branching time spectrum ii: The semantics of
sequential systems with silent moves (extended abstract). In Proc. of CONCUR 93,
4th. International Conference on Concurrency Theory, Lecture Notes in Computer Science,
volume 715, pp. 66-81, 1993.

228 Bibliography

[264] H.M.W. Verbeek. Verification of WF-nets. PhD thesis, TU Eindhoven, 2004.

[265] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0 a petri-net-based workflow
diagnosis tool. In Proc. of Application and Theory of Petri Nets 2000, 2000.

[266] W. Vogler. Failures semantics and deadlocking of modular petri nets. In Proc. of the
Mathematical Foundations of Computer Science, 1988.

[267] L.C. Wang. Object-oriented petri nets for modelling and analysis of automated man-
ufacturing systems. Computer Integrated Manufacturing Systems, 9(2):111–125, 1996.

[268] Y. Wang and D.L. Parnas. Simulating the behavior of software modules by trace
rewriting. IEEE Transactions on Software Engineering, 20(10):750–759, 1994.

[269] Y. Wang, C. Wu, and K. Xu. Study on pi-calculus based equipment grid service chain
model. In Proc. of the IFIP International Conference on Network and Parallel Computing
(NPC 05), 2005.

[270] D. Webber and A. Dutton. Understanding ebxml, uddi and xml/edi. XML Global,
online at: http://www.touchbriefings.com/pdf/977/webber.pdf, 2000.

[271] H. Weigand and WJ. van den Heuvel. Cross-organizational workflow integration
using contracts. Decision Support Systems, 33 (3):247–265, 2002.

[272] W.P. Weijland. Synchrony and Asynchrony in Process Algebra. PhD thesis, University
of Amsterdam, Department of Mathematics and Computer Science, 1989.

[273] G. Weikum. Principles and realization strategies of multilevel transaction manage-
ment. ACM Transactions on Database Systems (TODS), 16(1):132–180, 1991.

[274] A. Wombacher, P. Fankhauser, B. Mahleko, and E. Neuhold. Matchmaking for busi-
ness processes based on choreographies. In Proc. of IEEE International Conference on
e-Technology, e-Commerce and e-Service, 2004.

[275] WOMBAT4WS. Workflow modeling and business analysis toolkit for web services.
http://www. informatik.hu-berlin.de/top/wombat/.

[276] P.Y.H. Wong and J. Gibbons. A process-algebraic approach to workflow specification
and refinement. In Proc. of the 6th International Symposium on Software Composition (SC
07), 2007.

[277] Jr. W.W. McLendon and R.F. Vidale. Analysis of an ada system using coloured petri
nets and occurrence graphs. In Proc. of the 13th International Conference on Application
and Theory of Petri Nets, 1992.

[278] Q. Xiaoqiang and J. Wei. A decentralized services choreography approach for busi-
ness collaboration. In Proc. of IEEE International Conference on Services Computing (SCC
06), 2006.

Bibliography 229

[279] F. Xu and Z. Yu. A workflow verification method based on calculus. In Proc. of the
First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering, 2007.

[280] B.S. Yang, S.K. Jeong, Y.M. Oh, and A.C.C. Tan. Case-based reasoning system
with petri nets for induction motor fault diagnosis. Expert Systems with Applications,
27(2):301–311, 2004.

[281] A.K. Zaidi. On temporal logic programming using petri nets. IEEE Transactions on
Systems, Man and Cybernetics, 29(3):245–254, 1999.

[282] X. Zhao, C. Liu, and Y. Yang. An organisational perspective on collaborative business
processes. In Proc. of the 3rd International Conference on Business Process Management,
2005.

[283] D. Zimmer, A. Meckenstock, and R. Unland. Using petri nets for rule termination
analysis. In Proc. of the workshop on on Databases: active and real-time, 1996.

[284] J. Zwiers. Compositionality, concurrency and partial correctness:proof theories for
networks of processes and their relationship. In Lecture Notes In Computer Science,
Volume: 231, 1989.

