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Abbreviations: 

ADP: adenosine diphosphate 
Apo A: apolipoprotein A 
Apo B: apolipoprotein B 
Apo E: apolipoprotein E 
ASA: acetylsalicylic acid 
CD: cluster of differentiation 
CD40L: CD40 ligand 
Cox: cyclooxygenase 
CuOxHDL: copper oxidized high density proteins 
CuOxLDL: copper oxidized low density proteins 
GFP: gel filtered platelets 
EDTA: ethylene diamine tetraacetic acid  
eNOS: endothelial nitric oxide synthase  
FACS: fluorescence-activated cell sorting 
FITC: fluorescein-5-isothiocyanat 
HDL: high density lipoproteins 
HOCl: hypochlorous acid 
HSA: human serum albumin 
hypOxHDL: hypochlorite oxidized high density lipoproteins 
hypOxLDL: hypochlorite oxidized low density lipoproteins 
IL-1β: interleukin-1β 
LDL: low density lipoproteins 
L-NMMA: N-monomethyl-L-arginine 
LOX-1: Lectin-like oxidized LDL receptor  
mHSA: maleylated human serum albumin 
NO: nitric oxide 
PBS: phosphate buffered saline 
PE: phycoerythrin  
PF-4: platelet factor 4 
PGE1: prostaglandine E1 

PRP: platelet rich plasma 
RANTES: regulated upon activation normal T-cell expressed and secreted 
REM: relative electrophoretic mobility 
RNA: ribonucleic acid 
VASP: vasodilator stimulated phosphoprotein 
VLDL: very low density lipoproteins 
vWf: von Willebrand factor 
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1 Introduction 

Platelets and their reactivity state play an important role in the development of 

atherosclerotic disease, which represents the major source of morbidity and 

mortality in the Western world.  

The aim of this work was to investigate the effects of native lipoproteins and 

lipoproteins under conditions of oxidative stress on human platelets. 

Since this work brings many different fields together, an introduction of all 

players involved is necessary.  

Therefore, the introduction starts by giving an insight in the development and 

clinical manifestations of atherosclerosis, followed by discussing the role of 

lipoproteins and the impact of oxidative stress, particularly with regard to 

atherosclerotic events. 

Thereafter, the role of platelets, which are important factors in haemostasis, 

inflammation and atherosclerosis, is outlined.  

For a better understanding of platelet lipoprotein interaction, it is necessary to 

mention details of the regulatory mechanisms of platelet function, to get an 

understanding of signal transduction events involved in platelet adhesion and 

aggregation. Moreover, inhibitory mechanisms of platelet function are 

discussed. Subsequently, the current knowledge regarding the interaction of 

human platelets with native and modified lipoproteins is reviewed. The 

introduction concludes with summarizing the aim of this work. 
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1.1 Development and clinical manifestation of atherosclerosis  

Atherosclerosis is a pathological process that underlies most cardiovascular 

diseases, which represent the leading cause of death worldwide.  

The apparent beginning of an atherosclerotic event is characterised by 

accumulation of cholesterol deposits in macrophages or smooth muscle cells of 

large and medium sized arteries, which leads to so called foam cells, noticeable 

as fatty streaks.  

Extensive studies over the last decades investigated the mechanisms 

responsible for initiating atherosclerosis. Whereas atherogenesis has 

traditionally been viewed as a response to an vascular injury (response-to-injury 

hypothesis)1 or a simple retention of lipids within the vessel wall (response-to-

retention hypothesis)2, more recent data emphasize the importance of oxidative 

stress in this process by highlighting the requirement of  lipoprotein oxidation 

(oxidative modification hypothesis)3.  

The initial cause for the development of atherosclerosis is still discussed 

controversially, but it is for sure a highly complicated, active process and 

essentially hallmarked by an inflammatory reaction, in which, codetermined by 

oxidative stress, lipoproteins and platelets play a leading role.  

The progressive course of this disease is characterised by changes in the 

subendothelial region, where certain cell types proliferate, more cholesterol 

accumulates and the vessel wall lumen is gradually impinged. These changes 

also lead to activation of the immune system and migration of inflammatory 

cells, which create (due to respiratory burst) a pro-oxidative environment and 

endothelial dysfunction, central factors for further atherogenesis.  

Atherosclerosis without flow-limiting thrombosis is a slowly progressing disease, 

which often lasts for decades without clinical manifestations. The usual 

mechanism responsible for a sudden transition from a stable disease to a 

symptomatic life threatening condition is the denudation and erosion of the 

endothelial surface or plaque disruption, which leads to exposure of deep 

arterial wall components to flowing blood, followed by thrombosis and 

compromised oxygen supply to target organs4. Reduced blood flow can result in 

the loss of heart or brain functions, known as heart attack or stroke.  
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1.2 Lipoproteins and oxidative stress  
Cholesterol, apart from being important in vitamin D and steroid synthesis as 

well as membrane viscosity, is considered a pivotal risk factor for the 

development of atherosclerotic disease.  It derives either from dietary origin or 

de novo synthesis. Due to its insolubility in blood, cholesterol, like all other 

lipophilic substances, has to be transported through the circulatory system in 

the form of transport molecules, known as lipoproteins.  

Lipoprotein particles are composed of a surface monolayer of phospholipids, 

which renders the particle soluble in water, a core of lipids, including 

cholesterol, and surface apolipoprotein molecules that allow cells to recognize 

and take up the particle. Lipoproteins are usually classified by their density: high 

density lipoproteins (HDL), low density lipoproteins (LDL) and very low density 

lipoproteins (VLDL). These lipoproteins vary in their ratio of protein to lipid and 

in their particular apolipoproteins and lipids which they contain and hence their 

function essentially differs. The major apolipoprotein of LDL is Apo B-100, which 

is essential for the receptor mediated cellular uptake of LDL. In HDL the most 

abundant apolipoprotein is Apo A-I, but HDL also comprise a number of other 

apolipoproteins, like Apo A-II, Apo C, Apo D and Apo E, which play an important 

role in activating lipases and lecithin-cholesterol acyltransferase (LCAT). Since 

this work emphasis on LDL and HDL, only these two lipoproteins are discussed 

in detail. 

 

1.2.1 LDL and its atherogenic effects 

LDL is responsible for cholesterol transport from the liver to peripheral tissues, 

where cells take up LDL by receptor-mediated endocytosis. The surface 

expression of the LDL receptor, which recognizes and binds apolipoprotein 

B-100, is strictly regulated by concentration of intracellular cholesterol on a 

transcriptional level. High intracellular cholesterol concentrations lead to a 

decreased release of sterol regulatory element binding protein (SREBP), which 

is responsible for LDL receptor transcription5. This negative feedback prevents 
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cells from excessive cholesterol uptake. Therefore, internalization of cholesterol 

by this route can not result in foam cell formation.  

Native LDL have to undergo oxidative modification in order to be taken up at an 

enhanced level. Due to these modifications, LDL lose their specifity for the 

classical LDL receptor and are recognized by scavenger receptors, which are a 

group of receptors that recognize oxidised or acetylated lipoproteins and do not 

underlie a negative feedback regulation. Therefore, intracellular lipid 

accumulation by cellular uptake of lipoproteins is feasible by this pathway. 

Scavenger receptors are found on the surface of different types of cells, among 

them macrophages and smooth muscle cells. Due to scavenger receptors these 

cells take up oxidised LDL, transforming them into foam cells, with huge 

cytoplasmic lipid droplets6.  

The existence of such an alternative pathway for cellular uptake of LDL is 

supported by the fact that macrophages completely lacking LDL receptors can 

still become foam cells7.  

Although there are other candidate lipoprotein modifications that can enhance 

LDL uptake by macrophages in vitro (including self-aggregation of lipoproteins, 

immune-complex formation and complex-formation with proteoglycans8), most 

interest to date has focused on the oxidation of LDL.  

 

1.2.2 The protective role of HDL 

Unlike LDL cholesterol, that represents a major cardiovascular risk factor, HDL 

cholesterol levels are proven to inversely correlate with the risk for 

atherosclerosis9.  

The classical function of HDL is its participation on removal of cholesterol from 

peripheral tissues followed by cholesterol transport to the liver for excretion, 

known as reverse cholesterol transport10. 

Moreover, HDL have the capacity to increase endothelial nitric oxide synthase 

expression and activity as well as prostacyclin release and to decrease 

endothelial cell apoptosis, proliferation and migration11. In addition, HDL 

enhance anticoagulant activities of protein S and activated protein C 12. 
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HDL also possess antioxidative properties, which is mainly mediated by Apo A-I, 

but also other apolipoproteins have been demonstrated to bear antioxidative 

capacity13. By protection of other lipoproteins from oxidation, HDL themselves 

can undergo oxidative modification, which alters its function14.  

 

1.2.3 Oxidative stress within blood vessel and its impact on lipoproteins  

Oxidative stress is described as an imbalance between oxidants and 

antioxidants in favour of the former, potentially leading to damage of 

biomolecules such as DNA, lipids or proteins15.  

Oxidative stress increases with individual risk factors of atherosclerosis such as 

obesity, hypertension, hyperlipidemia, diabetes and smoking16.  

The fact that lipoprotein oxidation occurs only in a prooxidative environment, 

makes oxidative stress an important factor in the initiation of atherosclerosis. 

The in vivo mechanism of the initiation and progression of lipoprotein oxidation 

is investigated intensively, but presently still unclear. Relevant information come 

from immunohistochemical and biochemical analysis of the atherosclerotic 

lesions and lipoproteins within, showing that nonenzymatic and enzymatic 

mechanisms may contribute to LDL oxidation17. Among them, ceruloplasmin, 

15-lipoxygenase and myeloperoxidase (MPO) are discussed to be involved in 

oxidation of lipoproteins. 

Ceruloplasmin, the major copper carrying protein in blood, exhibits a copper-

dependent oxidase activity, associated with possible oxidation of ferrous iron 

into ferric iron and is suggested to provoke LDL oxidation by its redoxactive 

metal ions. But since specific markers of metal ion-catalyzed protein damage 

are not elevated in early and intermediate lesions, it appears rather unlikely that 

ceruloplasmin or metal ions significantly contribute to LDL oxidation in vivo18. 

15-lipoxygenase, an enzyme that participates in arachidonic acid and linoleic 

acid metabolism has been suggested to be involved in LDL modification in 

vivo19.  Several results promote that 15-lipoxygenase is proatherogenic: it has 

been shown that fibroblasts overexpressing 15-lipoxygenase are able to 

transform native LDL into minimally modified LDL. Moreover, oxidative 
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modification of LDL that is achieved by coincubation of LDL and cultured 

endothelial cells or monocytes could be shown to, be mediated by 

15-lipoxygenase20. 

Recent studies in a mouse model have shown that MPO, a haem enzyme 

secreted by human phagocytes upon activation, is present in atherosclerotic 

tissue, co-localizing with macrophages21. The enzyme is a potent catalyst of 

LDL oxidation in vitro and it generates products that are detectable in 

atherosclerotic plaque. Moreover hypochlorite/hypochlorous acid (referred to as 

HOCl within this work), the major strong oxidant generated by MPO, has been 

implicated in the in vivo oxidation of LDL22. In vitro studies have shown that 

hypochlorite oxidised LDL (hypOxLDL) are able to cause foam cell formation, 

enhance leukocyte oxidant and cytokine production, degranulation, migration 

and adherence of endothelial cells and increase vascular permeability17. 

Moreover our group has demonstrated an important role of hypOxLDL in 

platelet activation23.  

Taken together, these findings suggest that myeloperoxidase plays an important 

role in LDL oxidation occuring in vivo. The fact that oxidised LDL have not only 

be found in atherosclerotic lesions but also in plasma itself24 provides a solid 

basis for the in vivo relevance of investigations dealing with platelet interaction 

with oxidised LDL. 

While these studies only concern LDL oxidation, there is also evidence for the 

presence of oxidised HDL in vivo – both are present in atherosclerotic lesions 

as well as in plasma25.  

Apo A-I in HDL recovered from atherosclerotic lesions displays significant 

oxidative modifications26 and lipids isolated from HDL and LDL found in 

atherosclerotic lesions have been reported to be oxidised to a comparable 

extent, increasing with severity of disease27, 28.  

Upon oxidative modification of HDL, these lipoproteins not only lose important 

protective functions, but also acquire severe pro-inflammatory and pro-

thrombotic properties.  

In detail, it could be shown that oxidatively modified HDL interfere with reverse 

cholesterol transport, activate mitogen-activated protein kinase and upregulate 
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the expression of cyclooxygenase-2 (Cox-2), plasminogen activator inhibitor-1 

and matrix-degrading proteases in endothelial cells29.  

Additionally, it was reported that oxidised HDL stimulate the delivery of 

intracellular cholesterol to the cell surface, where it becomes available for 

removal by other, non-oxidised, HDL particles14. 

 

 

1.3 Platelets – important factors in haemostasis, immune 
response, inflammation and atherosclerosis 

 

1.3.1 Primary haemostasis 

Platelets, which are produced in the bone marrow by megakaryocytes, 

represent anucleate cells that lack genomic DNA, but contain megakaryocyte-

derived messenger RNA and the translational machinery, needed for protein 

synthesis.  

After leaving their site of origin, platelets circulate in the blood for about 10 days. 

There platelets mediate the process of primary haemostasis, a process by 

which a barrier against blood loss is created in the case of injury. The contact of 

platelets with (mostly) collagen fibrils leads to signal transduction, which results 

in platelet adhesion, followed by activation and aggregation of platelets. 

In the absence of injury, the endothelium prevents haemostasis by providing a 

physical barrier and by secreting nitric oxide (NO) and prostaglandin (PGI), 

which counteract platelet activation. 

 

1.3.2 Platelets in immune response  

Upon activation, platelets secrete several antimicrobial peptides like “regulated 

upon activation normal T-cell expressed and secreted“ (RANTES), platelet 

factor 4 (PF-4), thymocin-β and its derivates, which can deaden microbes by 

forming pores in the microbial membrane, causing depolarisation and 

breakdown of the membrane30, 31. RANTES and PF-4 also act as 
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chemoattractants for monocytes and promote their differentiation into 

macrophages. They also induce expression of E-selectin by endothelial cells32. 

Moreover, PF-4 may directly facilitate atherosclerosis by inhibiting LDL 

catabolism and enhancing uptake of oxidised LDL by macrophages33, 34. Since 

PF-4 deposition correlates with lesion severity in atherosclerosis, persistent 

platelet activation may contribute to the evolution of atherosclerotic lesions35. 

Apart from secreting factors important for immune response, platelets also 

directly interact with cells of immune response via platelet surface receptor 

P-selectin, derived from the α-granule membrane, which, upon activation, is 

expressed on the platelet surface.  

P-selectin binding to P-selectin glycoprotein ligand-1 (PSGP-1), on 

lymphocytes, enhances adhesion of lymphocytes to endothelial tissue.  

Platelet-monocyte binding favours transmigration of monocytes to sites of 

inflammation36, 37, which also leads to translocation of platelets into 

extravascular tissue, where they can further interact with leucocytes38. 

 

1.3.3 Platelets in inflammation  

Inflammation is a complex biological response to harmful stimuli like pathogens, 

injury or irritants.  Due to activation of endothelial cells and macrophages, 

platelets indirectly favour inflammatory reactions. Platelets are also able to 

participate directly in inflammation by the release of soluble agents, like 

Interleukin-1β (IL-1β), which is synthesised upon platelet activation and can 

induce endothelial cells to express genes that mediate the adhesion of 

leukocytes. Moreover endothelial cells, activated by IL-1β, release chemokines 

and up-regulate molecules that promote adhesion of neutrophils and monocytes 

to the endothelium39. 

By no doubt the most important inflammatory mediator released by stimulated 

platelets is the trimeric transmembrane protein CD40 Ligand (CD40L, CD154), 

structurally related to cytokine tumour necrosis factor α (TNFα). CD40L is stored 

in the cytoplasma of resting platelets and rapidly appears on the cell surface 

after platelet activation. In a period of minutes to hours (depending on the 

activator) CD40L undergoes cleavage from the platelet surface and a functional 
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soluble fragment is generated40. CD40L can trigger specific immune response 

through dentritic cell maturation, T cell activation and isotype switching of 

immunoglobulin from IgM to IgG41. Moreover, CD40L can induce inflammatory 

responses in the endothelium, such as the release of interleukin-8 (IL-8) and 

monocyte chemoattractant protein 1 (MCP-1)42, as well as secretion of 

chemokines and adhesion molecules for leukocyte recruitment43.  

Recently “homologous to lymphotoxin; exhibits inducible expression and 

competes with HSV glycoprotein D for herpes virus entry mediator”; a receptor 

expressed on T cells (LIGHT, TNFSF 14), which also belongs to the TNF 

superfamily, was identified on the platelet surface upon activation. LIGHT leads 

to pro-inflammatory and pro-thrombotic responses of vascular endothelial cells 

comparable to CD40L, by enhancing platelet adhesion to endothelium and 

endothelial activation via NFkB. In vitro studies with recombinant, soluble 

LIGHT showed upregulation of inflammatory markers like ICAM-1, tissue factor 

(TF) and IL-8 on the endothelium44. 

Elevated serum levels of CD40L and LIGHT indicate an acute risk for coronary 

events45, 46. Since platelets are the main source of CD40L and an important 

source for LIGHT, their crucial role of in the pathogenesis of atherosclerosis is 

undoubted. 

 

1.3.4 The role of platelets in the initiation of atherosclerosis  

One of the key events in the initiation of atherosclerosis is the monocyte arrest 

on vascular endothelium and recruitment of blood monocytes into the arterial 

wall. Via MCP-1 secretion platelets play an important role in this process and 

they are also involved in macrophage differentiation via RANTES and PF-4. 

Platelet adhesion to the intact endothelium provokes leukocyte recruitment and, 

through multistep adhesive and signalling events, leads to infiltration of 

inflammatory cells into the blood vessel47. Moreover, adhesion of platelets to the 

endothelial surface generates signals recruiting monocytes to the site of 

inflammation48. These processes represent a vicious cycle and the principle of 

cause and effect is hard to dissect. Due to their activation, platelets, 

macrophages, leukocytes and endothelial cells produce potent inflammatory 
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and mitogenic substances which alter adhesive and proteolytic properties of the 

endothelium, leading to recruitment of further inflammatory cells49 and as a 

consequence to a pro-oxidative microenvironment.  

 

 

1.4 Regulation of platelet function 

 

1.4.1 Platelet function 

As mentioned before, the classical role of human platelets is to seal injured 

vessels, by adhesion and subsequent aggregation. Platelet adhesion is 

mediated by binding of von Willebrand factor (vWF) to glycoprotein (GP) Ib-IX-V 

and by direct binding of integrin α2β1 (GPIa/IIa) to collagen fibrils.  

Platelet adhesion to the vessel wall leads to platelet activation, which causes 

shape change of platelets and activation of integrin αIIbβ3 (GPIIb/IIIa), which 

then binds fibrinogen and vWF. Upon activation, platelets synthesize and 

release thromboxane A2 (TxA2) and platelet activating factor (PAF), which are 

potent platelet aggregating agonists and vasoconstrictors. Moreover, platelets 

immediately respond by exocytosis of α-granules and dense bodies, which 

leads to the release of adhesion molecules, coagulation factors, cytokines, 

growth factors and antimicrobial compounds, by which platelets interact with 

other cells and recruit further platelets. Besides the release of soluble 

compounds, platelet degranulation also leads to the expression of new 

membrane proteins (like GPIb, GPIIb/IIIa, P-selectin and granulophysin) on the 

surface of activated platelets. 

Platelet aggregation is mediated by fibrinogen, which links adjacent platelets by 

activated GPIIb/IIIa, leading to platelet clustering. This primary, reversible 

platelet plug must then be stabilized by the formation of fibrin. 

 

1.4.2 Inhibition of platelet function 

Since the activation of platelets has strong impact on different cell types and the 

consequences of inadvertent platelet activation (e.g. thrombosis and 
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atherosclerosis) can be lethal, platelets have to be prevented from unintentional 

activation.  

Therefore, one of the physiological functions of endothelial cells is to 

downregulate platelet function by releasing nitric oxide (NO) and prostacyclin 

(PGI2) Under physiological conditions endothelium constantly releases small 

amounts of NO and PGI2, which prevent platelet activation50. Not only the 

endothelium, but also platelets themselves are able to limit size and growth of 

thrombus via production of NO.  

 

1.4.2.1 Nitric oxide (NO) 

The potent platelet inhibitor and vasodilator NO was first discovered in 

endothelial cells in 198051. Biosynthesis of NO is carried out by a family of 

enzymes called nitric oxide synthases (NOS), which produce NO either in a 

constitutive or an inducible manner (endothelial NOS (eNOS), inducible NOS 

(iNOS), neuronal NOS (nNOS) and mitochondrial NOS (mtNOS)). Membrane-

associated eNOS is expressed by platelets and endothelial cells52 and 

catalyzes, in the presence of several cofactors (calmodulin/Ca++, NADPH, 

tetrahydrobiopterin(BH4), FAD and FMN), the multi-electron oxidation reaction 

of L-arginine with oxygen, forming L-citrulline and releasing NO53. The activity of 

eNOS is regulated by intracellular Ca++ concentration, (de)phosphorylation at 

various tyrosine, serine and threonine residues as well as the association or 

dissociation of eNOS interacting proteins54. In the absence of L-arginine or BH4 

or in the presence of eNOS inhibitors N-monomethyl-L-arginine (L-NMMA) or 

L-N6-Nitroargenine methyl ester (L-NAME), eNOS can undergo a process called 

“uncoupling”, whereby superoxide is produced instead of NO which immediately 

reacts with NO to form peroxynitrite, that represents a powerful oxidant55.  

Besides its vasodilatory effects, endothelial derived NO has also antithrombotic 

effects, leading to inhibition of activation, adhesion and aggregation of 

platelets51, 56. Moreover, platelet derived NO, which is released during rest and 

activation, is important for modulation of platelet function itself. Therefore a 

large amount of NO is released shortly after activation to prevent further 

aggregation57.  
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NO binds soluble guanylyl cyclase (sGC), thereby increasing its activity and 

leading to an increase of intracellular cyclic guanosine 5´-monophosphate 

(cGMP). This affects multiple signalling pathways, including protein kinases and 

receptor proteins58. Furthermore, increased cGMP levels lead to a decrease of 

intracellular Ca++ flux by cGMP-dependent protein kinase G (PKG) by inhibiting 

Ca++ entry and Ca++ release from the dense tubular system59. 

The decrease in Ca++ levels inhibits the conformational change in GPIIb/IIIa 

required for activation and thus a decrease of platelet association with 

fibrinogen. Moreover GPIIb/IIIa affinity for fibrinogen is lowered by cGMP 

dependent phosphorylation of vasodilator-stimulated phosphoprotein (VASP) on 

serine 15760. 

 

1.4.2.2 Prostacyclin  

Prostacyclin (PGI2), a derivative of the (semi)essential unsaturated fatty acid 

arachidonic acid, was discovered in 1976 as potent vasodilator, antithrombotic 

and antiplatelet agent with a very limited lifetime under physiologial conditions61. 

Prostacyclin synthesis by endothelial cells is regulated by two mechanisms, 

which involve either endogenous precursors or endoperoxides (like TxA2) 

derived from activated platelets62. The rate limiting enzyme in PGI2 production is 

cyclooxygenase (Cox), which exists in two isoforms63. HDL could be shown to 

increase Cox-2 expression in vascular smooth muscle cells64. 

PGI2 is stabilized by serum albumin, which enhances receptor binding and 

activity, while a possible stabilizing role of HDL could not be proven65.  

The platelet prostacyclin receptor, a G protein-coupled receptor, is located in the 

plasma membrane and binds the cyclopentane ring of both PGI2 and 

prostaglandins PGE1 and PGE2.  

Via the platelet prostacyclin receptor, PGI2 inhibits platelet activation, limits 

thrombus size and prevents platelet and leukocyte adhesion to endothelial cells. 

PGI2 binding to its receptor induces a signal cascade, which leads via adenylate 

cyclase (AC) to an increase of intracellular cAMP levels66. 

As a consequence of increased cAMP production protein kinase A (PKA) 

becomes activated, which then phosphorylates several key proteins, like myosin 
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light chain kinase (MLCK), inositol 1,4,5-triphosphate receptor and the 

vasodilator stimulated phosphoprotein (VASP). 

This leads to inhibition of MLCK and Rho-kinase, which subsequently inhibits 

granule secretion and activation of GPIIb/IIIa and PKC. Moreover, increase of 

intracellular Ca++ levels is inhibited67. The induction of these inhibitory 

mechanisms enables PGI2 not only to inhibit platelet aggregation, but also 

facilitates disaggregation of existing platelet aggregates. 

 

1.4.3 Interaction of platelet and lipoproteins 

Lipoproteins have traditionally been viewed as simple carriers of cholesterol, 

phospholipids and triglycerides, but increasing evidence indicates that 

lipoproteins are also able to induce intracellular signalling pathways in different 

target cells. 

The interaction of platelets with lipoproteins has been under investigation for 

many years, since epidemiological studies revealed a correlation between lipid 

profiles and hyperaggregability of platelets68. Platelets of hypercholesterolemic 

patients show enhanced activation in vivo, suggesting that LDL enhances 

platelet responsiveness. HDL seem to oppose these activating properties, 

whereas the effects of chylomicrons, VLDL or IDL on platelet function are 

discussed controversially69. These changes on platelet reactivity are either 

results of cholesterol-phospholipid uptake by platelet membranes during platelet 

formation or are based on signal transduction induced by direct contact with 

lipoproteins70. While older literature favours lipid uptake during platelet 

formation, nowadays direct interaction of lipoproteins and circulating platelets is 

proposed. 

 

1.4.3.1 Potential lipoprotein receptor candidates 

It is presently unclear which component of the lipoprotein, lipid or protein, is 

responsible for its influence on platelet function. Some work argues that 

receptor independent, lipid interactions are responsible for platelets response, 

whereas others regard protein moiety, for example apolipoproteins, like Apo 
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B-100 (in LDL and VLDL) and Apo A or Apo E (in HDL), as the responsible 

factors for binding and signal transduction. 

The exact nature of receptors for native and/or modified lipoproteins on human 

platelets is presently unclear. The following section gives an overview of 

receptors currently discussed to be involved in lipoprotein platelet interaction. 

 

CD36 (FAT, GPIV) belongs to the scavenger receptor family class B and has 

been known for decades, but its role in lipid uptake and its important role in 

atherosclerosis was not recognized until 15 years ago, when macrophage 

derived CD36 was proven to bind moderately oxidised LDL (reviewed by 

MOORE et al.71).  Moreover, CD36 was discovered to bind native HDL, LDL and 

VLDL, as well as thrombospondin-1, collagen, fatty acids and pathogen derived 

ligands in mammalian cells72, 73.  

Via CD36, macrophages internalize fatty acids which activate peroxisome 

proliferator-activated receptor γ (PPARγ) and this process stimulates further 

expression of CD3674, 75, leading to a positive feedback loop. This supports the 

importance of this receptor in foam cell formation and atherosclerosis.  

CD36, which is expressed on the platelet surface, is discussed intensively as 

one, if not the only, receptor for oxidised LDL on resting platelets. It has been 

suggested that platelet activation induced by oxidised LDL or by 

glycerophospholipids formed during oxidation is mediated by CD36, which then 

triggers activation of GPIIb/IIIa and P-selectin surface expression76. In contrast, 

others discuss a combined action of CD36 and scavenger receptor class A 

(SR-A)77.  

Our group could show that human platelets specifically bind oxidised LDL, but 

not acetylated LDL78. As acetylated LDL represent the classical ligand of class A 

scavenger receptors, these results rule out the existence of SR-A on human 

platelets.  

In contrast to CD36, lectin-like oxidised LDL receptor (LOX-1) appears on the 

platelet surface only upon platelet activation. In resting platelets, LOX-1 is 

stored in α-granules. LOX-1 was originally identified as a receptor for oxidised 
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LDL in aortic endothelial cells. Since it is only expressed in activated platelets, 

LOX-1 does not seem to play a major role in circulating resting platelets79. 

Class B scavenger receptor B1 (hSR-B1/CLA-1) has been shown to interact 

with both native and modified LDL as well as HDL in transfected cells and 

therefore might contribute to lipid metabolism and atherogenesis80.  

On human platelets and megakaryocytes, one group was able to detect CLA-1. 

This group also showed that the level of CLA-1 expression on human platelets 

inversely correlates with cholesterol ester content of platelets (from patients with 

atherosclerotic disease) and extent of platelet aggregation81. In this regard, it is 

noteworthy that the expression of CLA-1 on human platelets could not be 

confirmed by others82 nor by our group. Therefore, there is doubt if CLA-1 is 

really expressed on human platelets.  

LDL receptor-related protein 8 (LRP8), a splicing variant of apoER2, which 

belongs to the LDL receptor (LDLR) gene family, was identified on human 

platelets and has been proven to bind Apo E particles and thereby HDL83. 

Nevertheless, it is still unknown, if LRP8 is the only platelet receptor for native 

HDL. 

The receptor responsible for LDL interaction with human platelets is discussed 

controversially. Since platelets do not possess the classical Apo B receptor and 

the expression of CLA-1 is doubted, there must be another way responsible for 

interaction. Up to today, it remains unclear, if LDL directly interact with platelets, 

since different studies revealed controversial outcome. While GPIIb/IIIa, CD36 

and LDL receptor-related protein 8 (LRP8) are discussed intensively as receptor 

candidates (reviewed by KOLLER et al.84), others believe that platelet LDL 

interaction is carried out by a receptor independent mechanism85.  

 

1.4.3.2 Platelet interaction with HDL 

It has been demonstrated that HDL are able to directly influence platelet 

reactivity, since they mediate a dose dependent inhibition of platelet activation 

induced by various agonists86. Moreover an inverse correlation between HDL 

abundance and P-selectin positive platelets could be found in humans11. 
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Various reasons are responsible for these positive effects. On the one hand 

blocking of saturable binding sites by HDL leads to less binding of other 

agonists that bind to the same receptors. On the other hand HDL mediate the 

production of the atheroprotective signalling molecule nitric oxide by 

upregulating endothelial NO synthase (eNOS) and promote prostacyclin 

synthesis, both of which mediate inhibitory effects on platelets. The 

antithrombotic properties of HDL may also be related to their ability to attenuate 

the expression of tissue factor and selectins in endothelial cells and platelets 

and subsequenty decrease thrombin generation11. Also downregulation of TxA2 

plays an important role within this scenario, whereat in general HDL2 subclass is 

reported to be more effective than HDL3
87. This might relate to the Apo E 

content, which differs between the subclasses, being significantly higher in 

HDL2. Moreover, purified ApoE (in phospholipid vesicles) could be proven to 

stimulate eNOS in platelets and thereby upregulate cGMP88. 

Also in endothelial cells HDL was observed to play a role in eNOS activation 

and to stabilize eNOS localisation, thereby counteracting its depletion by 

oxidised LDL89. Apo A-I is the principally responsible - although solitary not 

sufficient - apolipoprotein for this atheroprotective feature of HDL90, 91.  

Since the regulation of eNOS activity demands complex signal transduction 

pathways, it is not astonishing that a variety of experiments in endothelial cells 

indicate multiple signalling events that are activated by HDL, among them 

eNOS phosphorylation of Ser1179, Scr activation and activation of MAP and 

Act kinases92. Moreover HDL could be shown to upregulate eNOS enzyme 

abundance by extending its half life93.  

 

1.4.3.3 Platelet interaction with LDL 

LDL interaction with platelets has been under investigation for many years, 

revealing several signalling pathways induced in vitro. 

Since it seems difficult to obtain completely unmodified LDL, it is hard to 

distinguish between effects of native or minimally modified LDL. Therefore, 

especially older data have to be accepted under reserve.  
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It could be shown that the presence of LDL itself increases binding of fibrinogen 

by platelets94. Moreover, native LDL are suggested to stimulate TxA2 formation, 

activation of PKC, which leads to an increase in diacylgylcerol (DAG) and 

inositol 1,4,5-triphosphate (InsP3), Ca++ release and inhibition of Na+/H+ 

antiporter and subsequent intracellular acidification (reviewed by KOLLER et 

al.84). Also, phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) 

and p125 focal adhesion kinase (p125FAK), which induces further activation, is 

reported to be induced by LDL. Since LDL also act on platelet-endothelial cell 

adhesion molecule (PECAM-1), these lipoproteins might also be able to 

downregulate p38MAPK activation and thereby counteract platelet 

aggregation95. Due to the ambiguous effects of LDL, the interpretation of their 

actions remains still unclear. 

 

1.4.3.4 Platelet interaction with oxidised lipoproteins 

Oxidative modification of lipoproteins is associated with the generation of new 

bioactive compounds within the lipoproteins. Whereat copper modification is 

proven to have an influence on lipid moiety of lipoproteins, the formation of lipid 

peroxides could be ruled out for modification of LDL by hypochlorite96, 97. It 

could be shown that the relative electrophoretic mobility (REM), a measure of 

protein modification, corresponded to the hypochlorite concentration used for 

modification and that thiobarbituric acid reactive substances (TBARS), an index 

for lipid peroxidation, were not formed97. Hence, changes in protein moiety are 

regarded to be responsible for platelet-stimulating effects of hypochlorite 

oxidised LDL.  

Comparison between platelet aggregation induced by CuOxLDL and 

hypOxLDL, identified hypOxLDL as the stronger platelet agonist97.  

LDL, which were modified with physiological concentrations of hypochlorite, 

were reported to mediate increasing effects on agonist-induced platelet 

aggregation96. 

Since the effects of hypOxLDL could be completely inhibited by mHSA, a potent 

inhibitor of binding of oxidised lipoproteins to all scavenger receptors, influence 
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of lipoproteins on platelet function seems to be transmitted via binding of 

lipoproteins to specific platelet receptors98. 

Moreover,  hypOxLDL could be shown to induce P-selectin surface expression 

and induction of p38MAPK phosphorylation77, 99. Other results showed, that in 

contrast to CuOxLDL, hypOxLDL lead to stimulation of Ca-ATPase in isolated 

platelet membranes and a decrease of intracellular Ca++100. 

Less is known about the impact of oxidatively modified HDL on platelets.  Up to 

now only few investigations of platelet interactions with oxidised HDL exist, 

which reveal contradictory results. No precise specifications of oxidised HDL 

binding to human platelets or of effects of oxidised HDL on platelet function 

have been made so far.   

It has been reported that upon oxidation of HDL with copper, these lipoproteins 

trigger spontaneous platelet aggregation101. Moreover, copper oxidised HDL 

promote platelet activation and intracellular Ca++ flux in washed platelets (but 

not in platelet rich plasma)102.  The effects of oxidised HDL on platelet 

aggregation are not attributable to increased production of TxA2, since Cox 

inhibitors show little effect. Therefore, changes in membrane fluidity are 

suggested as the underlying mechanism101. 

By contrast, copper oxidised HDL3 were also shown to inhibit thrombin-induced 

platelet aggregation and fibrinogen binding to platelets via decreased 

production of DAG and InsP3 to the same extent as unmodified HDL3
103. 

In terms of HOCl modification,  oxidised HDL3 have been reported to have no 

impact on platelet aggregation96 but stimulate Ca-ATPase activity in isolated 

platelet membranes, which results in a decrease of intracellular Ca++ in 

functional platelets100.  

Taken together, platelet activating properties of oxidised LDL are well 

established, although receptors and signal transduction pathways are not 

clarified yet. In contrast to oxidised LDL, the effects of oxidised HDL are 

discussed controversially. 
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1.5 Aims of this study 

In light of the central importance of platelets to the atherosclerotic process it 

was the aim of this work to investigate and characterise the impact of LDL and 

HDL – both in their native state as well as after oxidative modification – on 

several aspects of platelet function. By means of the performed experiments, 

the effects of these lipoproteins on platelet aggregation, degranulation, 

GPIIb/IIIa activation, VASP phosphorylation, CD40L expression and calcium flux 

should be determined. Moreover, binding studies should reveal if lipoproteins 

show specific and saturable binding to human platelets and potential receptor 

candidates investigated for their role in this proposed binding process and their 

influence on lipoprotein-mediated effects on platelet function. In light of the 

redox-sensitive nature of platelet function and as there are only very limited 

data concerning the impact of oxidatively modified HDL on platelets, it was the 

main aim of this work to also ascertain the effects of hypochlorite oxidised HDL 

on platelet function. 
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2 Material and methods 

 

2.1 Material 

 

2.1.1 Laboratory equipment 

Aggregometer: 490-4D 4 channel aggregometer (Chrono-Log) 

Centrifuge: RT6000 and RT6000D with a H1000B Rotor (Sorvall) 

    Allegra X12R (Beckman Coulter) 

Flow Cytometer: FACS Calibur analytic flow cytometer with a two laser system: 

Argon-488nm and 635nm Diode (Becton Dickinson) 

Gel electrophoresis: equipment type Minnie HE 33 (Hoefer) 

Microplate Reader: Anthos HT III (Anthos Labtec Instruments)  

Microplate Spectrofluorometer: Spectra Max Gemini XS (Molecular Devices) 

Spectrophotometer: U-3200 (Hitachi)  

Ultracentrifuge: OTD Combi with a T-885 rotor (Sorvall)  

Optima LXP Series with a 50.2 Ti rotor (Beckman Coulter) 

 

2.1.2 Buffers 

Phosphate buffered saline (PBS):  

potassium phosphate (1.5mM) 

potassium chloride (2.7mM) 

sodium chloride  (137mM) 

sodium phosphate (8.3mM)  

 

Hoefer buffer:  

diethylbarbituric acid (50mM) 

sodium acetate (70mM) 

pH: 8.2 
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Fixing solution (gel electrophoresis):  

methanol (500ml) 

glacial acetic acid (20ml) 

distilled water (480ml) 

 

Lowry solutions: 

 A1: copper sulphate (40mM) 

 A2: potassium sodium tartrat (70mM) 

 B: 50ml 2% (w/v) sodium carbonate +1ml A 

       (A: 500µl A1+ 500µl A2, freshly mixed) 

 C: Folin reagent + H2O (1:1) 

 D: NaOH (1N) 

 

Tyrode-HEPES buffer (with glucose and albumin):  

sodium chloride (140mM) 
potassium chloride (3mM) 

magnesium chloride (1mM) 

sodium hydrogen carbonate (16.62mM) 

HEPES (10mM) 

(D-glucose (5.5mM)) 

(human serum albumin (0.5%)) 

For platelet isolation by gel filtration and all functional platelet experiments 

buffer was set to a pH of 7.35. For platelet washing it was set to pH 6.2. Buffer 

without glucose and albumin was stored at 4°C and used within 2 month. Buffer 

with glucose and albumin was used immediately or frozen at -20°C and never 

refrozen. 

 

Borate buffer with EDTA:  

boric acid (0.1M) 

EDTA (100µM) 

pH: 7.2 
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Borate buffer with sodium chloride 

boric acid (0.1M) 

sodium chloride (0.05M) 

pH: 7.2 

 

2.1.3 Chemicals and solutions 

Platelet agonists were always freshly prepared from ADP (Sigma-Aldrich), 

thrombin (Sigma-Aldrich) and collagen (Nycomed) stock solutions.  

ADP and thrombin stock solutions were deeply frozen stored in small portions 

(100µl) (-80°C) and never refrozen. Collagen stock solution was always 

prepared on the same day. 

PGE1 (Sigma Aldrich) was dissolved in pure ethanol at 10mM and stored at 

-80°C. Further dilutions were performed in PBS and always freshly prepared 

immediately before use. 

For cell fixation, 10% formaldehyde stock solution in 0.9% sodium chloride was 

used.  

Cell permeabilization was carried out with 0.2% triton (triton x-100, Sigma 

Aldrich) solution.  

For lipoprotein oxidation, sodium hypochlorite solution (NaOCl) from Sigma 

Aldrich was used. Its concentration was determined spectrophotometrically 

before use (ε290=350 L mol-1cm-1). 

Reduction of oxidised lipoproteins was performed with 200mM methionine stock 

solution (Sigma Aldrich).  

For platelet gel filtration sepharose 4B (GE Healthcare) was used. 

Gelfiltration of lipoproteins was performed with Econo-Pac 10DG 

polyacrylamide chromatography columns (Bio-Rad).  

Lipoproteins were filtered using Rotilabo PVDF syringe membrane with a pore 

diameter of 0.45 μm (Roth).  

For concentrating lipoprotein solutions an ultrafree-15 unit with a molecular 

weight cut-off of 100 000 (Millipore) was used. 
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2.1.4  Antibodies and fluorescence marker 

 

The following antibodies were obtained from Becton Dickinson: 

monoclonal anti CD62 (cat # 348107, PE conjugated) 

monoclonal anti CD63 (cat # 556020, FITC conjugated) 

monoclonal anti PAC-1 (cat # 340507, FITC conjugated) 

monoclonal anti CD40L (cat # 555699,  FITC conjugated) 

polyclonal anti-mouse IgG antibody (cat # 349031, FITC conjugated) 

 

 

Antibodies and fluorescence markers obtained from Invitrogen/Molecular 

Probes: 

polyclonal anti-goat IgG (cat # 45624A , Alexa 488 conjugated)  

Fluo-4 and Fura-Red (cat # 28B1-2, cat # 28B2-3, acetoxymethylester-

derivatives, diluted in DMSO to a final concentration of 1µg/µl) 

Alexa Fluor 633 (cat # 34571A, carboxylic acid, succinimidyl ester) 

 

 

Further antibodies: 

polyclonal anti Apo B (cat # 600111101, Rockland)  

polyclonal anti Apo A-I (cat # 0510013255, Chemicon International) 

polyclonal anti CD36 (cat # K1606, Santa Cruz) 

monoclonal anti CD36, FA6. 152 antibody (cat # ab17044, Immunotech) 

monoclonal anti CD32, AT10 antibody (azide free, cat # MCA1075XZ, 

Serotec) 

monoclonal anti-phospho-VASP (cat # 0153S0202, pSer 239, 

clone 22E11, nanoTools)  
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2.2 Methods 

 

2.2.1 Platelet isolation 

Venous blood from healthy donors, who declared to be free of any medication 

for at least one week, was drawn into anticoagulation tubes filled with 

3.8% sodium citrate (used in a 1:9 volume ratio). Platelet-rich plasma (PRP) 

was obtained by centrifugation immediately after taking the sample (125g; 

20 minutes; Beckman Coulter). 

 

2.2.1.1 Gel filtration technique 

To obtain gel filtered platelets, a sepharose 4B filled column was prepared, by 

cutting off the tip of a serological, plastic pipette (20ml) with hot wire and stuffing 

the cone end with a piece of nylon to hold back liquid sepharose. Thereafter the 

pipette was filled with sepharose and washed with Tyrode-HEPES buffer 

containing glucose and albumin (pH: 7.35). Then 3ml of PRP were loaded and 

500µl fractions collected in test tubes. Columns were always freshly prepared 

and only used once. The platelet fraction can be identified by a change from 

clear fractions (buffer) to a milky clouding (platelets), which, after about 

6 fractions, start getting a yellowish tint, indicating the occurrence of plasma. 

Only pure platelet fractions were used for platelet studies. 

 

2.2.1.2 Washing technique 

To obtain washed platelets, 10ml PRP were incubated with PGI2 at a final 

concentration of 1µM and centrifuged for 10minutes at 2000g. The supernatant 

was discarded and the pellet resuspended in 10ml Tyrode-HEPES buffer 

(pH: 6.2) with PGI2 (f.c.: 1µM) and centrifuged again (10minutes; 2000g). The 

pellet was resuspended with Tyrode-HEPES buffer (pH: 7.35) in a volume of 

1ml. Washed platelets were used between half an hour and two hours after 

isolation, so that platelet function was no longer inhibited by PGI2 activity.  
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2.2.2 Patelet count 

2.2.2.1 Counting chamber method: 

For determination of platelet count, a 25-, a 50- and a 100-fold dilution of gel 

filtered platelets was prepared from each donor. Dilution was performed in 

1% ammonium oxalate, to lyse all erythrocytes left in the filtrate. A Bürker and 

Türk counting chamber was filled with 10µl of the platelet dilution. Thereafter the 

chamber was incubated in a damp cloth for at least 15 minutes, allowing 

platelets to settle. Afterwards platelets were counted under the 40X objective 

with the help of the specific counting lines of the Bürker and Türk counting 

chamber. Platelets in 5 squares were counted and the number of platelets was 

calculated according to the following formula: 

Platelets per µl = counted platelets ∗  dilution factor ∗  40 

 

2.2.2.2 Photometrical method: 

For photometric determination of platelet count, a 50-, a 100-, a 500- and a 

1000-fold dilution of platelets from each donor was prepared. Plastic cuvettes 

(10 mm optical path) were filled with 1ml of the platelet dilution and placed in a 

photometer. The photometric measurements of the platelet dilutions were 

performed at 800 nm. The instrument was set for zero with Tyrode-HEPES 

buffer. Stated numbers of platelet count are always means of all 4 dilutions.  

The standard formula for platelet count calculation by Walkowiak104 was used: 
 

R∗⎟
⎠
⎞

⎜
⎝
⎛ −

∗∗∗
09.3

E/800k w 2.016
6.23=/ml)(10 N 8

 

N............... estimated platelet count 
R ............... sample dilution 
w............... used wavelength 
E ............... extinction of the sample 
k................ geometrical factor equal 1 for 10 mm optical path 
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2.2.3 Platelet aggregation 

2.2.3.1 Aggregometer 

Platelet aggregation was carried out in a 4-channel aggregometer 

(Chrono-Log), measuring light transmission. 420µl of gel filtrated platelets were 

pipetted into a coated glass cuvettes with stirring bars and placed into the 

instrument, where they were preincubated at 37°C for 5 min without stirring. 

Then stirring (1000 rpm) was started and the zero level as well as 100% 

transmission was adjusted. Potential antagonists (nHDL, FA6.152 or mHSA in 

volumes of 5-40µl) were added. To avoid artificial results due to possible 

spontaneous platelet aggregation, experiments proceeded only if no changes in 

light transmission occurred during the first minute. Thereafter the aggregation 

process was triggered by the addition of platelet agonists (ADP, hypOxLDL, 

hypOxHDL in volumes between 5µl and 40µl) and effects observed for 12 min. 

Total volume of each probe always amounted 500µl, therefore volumes of 

controls were adjusted, to grant the same amount of platelets in all probes.  

 

2.2.3.2 Microplate reader 

Platelet aggregation was also monitored in a microplate reader, which was able 

to maintain temperature and continuously shake (forth and back) the 96 well 

microplate between readings. For the aggregation process temperature was set 

at 37°C and readings - performed at a wavelength of 405nm - were repeated 

every 20 sec for about 12 minutes. 

In detail, 50µl platelets were added to each well. According to the design of the 

experiments, some probes had to be preincubated with antagonists (10µl nHDL, 

5µl mHSA, 1µl FA6.152); therefore the volume of the other probes was adjusted 

to grant the same platelet density in all probes. Just before the probes were 

placed into the microplate reader, platelet agonists (or buffer for controls), in 5µl 

volume, were added using a multichannel pipette, and reading was started. The 

sample surfaces in every well had to be free from any air-bubbles in order to get 

well reproducible and smooth aggregation curves105. Controls for 100% 
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transmission (buffer) and zero level (GFP) were observed during the whole 

period of measurements. The last control allowed observing the degree of basal 

aggregation of platelets under the chosen experimental conditions. Moreover a 

positive control for maximal aggregation (induced by 50µM ADP) was always 

carried out as well. The collected data were finally converted to aggregation 

curves and evaluated by Microsoft Excel and Sigma Plot. 

 

2.2.4 Lipoprotein isolation  

Freshly drawn venous blood from healthy donors was drawn into 

anticoagulation tubes filled with 3.8% sodium citrate used in 1:9 volume ratio. 

Platelet-poor plasma was obtained by centrifugation (1300g; 20 minutes; 4°C). 

Plasma was used immediately or stored at -20°C. To avoid inadvertent oxidation 

of lipoproteins, all manipulations were performed at 4°C.  

 

2.2.4.1 Isolation of VLDL 

By addition of potassium bromide (KBr) the fresh or freshly defrozen plasma 

was brought to a density of 1.019g/ml which corresponds to a 2.85% KBr 

solution.  

Since the density of plasma corresponds to 1.1% KBr solution, only the balance 

of 1.75% KBr solution is necessary. The amount of KBr needed can therefore 

be calculated with the following formula: 

98.25
75.1g

= g (plasma)
(KBr)

∗
 

After adding the calculated amount of KBr, the plasma was filled into 

centrifugation tubes in 15ml portions and overlaid with 5ml 2.85% KBr solution. 

The plasma was then centrifuged for 16 hours at 35 000g at a temperature of 

4°C. Thereafter VLDL floated above the KBr layer and were carefully taken off 

with a syringe, while the centrifugation tubes were constantly kept on ice to 

reduce the risk of unwanted oxidative consequences. 
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2.2.4.2 Isolation of LDL: 

By adding KBr, the remaining plasma was brought to a density of 1.063g/ml, 

which corresponds to 8.6% KBr solution. The amount of KBr needed can 

therefore be calculated with the following formula: 

94.25
75.5g

= g (plasma)
(KBr)

∗
 

Each centrifugation tube was filled with 15ml plasma and overlaid with 5ml 

8.6% KBr solution. For isolation of LDL, centrifugation for 20 hours at 35 000g 

at a temperature of 4°C was performed. Thereafter LDL, which floated on top of 

the KBr layer, could be taken off and were filtered through a PVDF membrane 

with a pore size of 0.45µm. LDL and remaining plasma were always kept on ice 

or stored at 4°C.  

 

2.2.4.3 Isolation of HDL2: 

By adding KBr, the remaining plasma was brought to a density of 1.125g/ml, 

which corresponds to 16.1% KBr solution. The amount of KBr needed can 

therefore be calculated with the following formula: 

92.5
5.7g

= g (plasma)
(KBr)

∗
 

 

After addition of KBr, each centrifugation tube was filled with 15ml plasma and 

overlaid with 5ml 16.1 % KBr solution. For isolation of HDL2 centrifugation was 

performed for 48 hours at 35 000g and a temperature of 4°C. After 

centrifugation, HDL2 floated on top of the KBr layer and were taken off and 

filtered through a PVDF membrane with a pore size of 0.45µm and stored at 

4°C. 
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2.2.4.4 Isolation of HDL3: 

By adding KBr, the remaining plasma was brought to a density of 1.21g/ml, 

which corresponds to 25.2% KBr solution. The amount of KBr needed can 

therefore be calculated with the following formula: 

90.9
1.9g

= g (plasma)
(KBr)

∗
 

 

Each centrifugation tube was filled with 15ml plasma and overlaid with 5ml 

25.2% KBr solution. Isolation of HDL3 was performed by centrifugation for 

48 hours at 35 000g and a temperature of 4°C. After centrifugation HDL3 floated 

on top of the KBr layer and were taken off and filtered through a PVDF 

membrane with pore size of 0.45µm and stored at 4°C.  

The protein concentration of LDL, HDL2 and HDL3 was determined and 

lipoproteins stored at 4°C and used within three weeks. 

 

2.2.5 Lipoprotein modification 

2.2.5.1 Modification by hypochlorite 

Hypochlorite modification of HDL and LDL was performed according to the 

protocol by Arnhold et al106. 1ml of native lipoprotein was rebuffered into borate 

buffer with EDTA by size exclusion chromatography. Thereafter HOCl/NaOCl in 

5µl portions was added to the lipoprotein, while rapidly and gently mixing. All 

manipulations were performed on ice and probes were allowed two minutes of 

incubation time after addition of each 5µl portion of HOCl/NaOCl. For maximal 

oxidation, hypochlorite was added until lipoproteins were bleached completely, 

which usually corresponds to a 300-fold molar excess of hypochlorite over HDL 

and a 400-fold molar excess of hypochlorite over LDL. For minor degrees of 

modifications, lipoproteins were incubated with half or quarter the amount of 

hypochlorite used for maximal modification. The molar excess of hypochlorite 

used for the preparation of oxidised LDL (hypOxLDL) was usually 400 or 300 for 

oxidised HDL (hypOxHDL). If another degree of modification was used, the 

molar excess of hypochlorite over LDL or HDL is indicated in square brackets. 

After treatment with HOCl/NaOCl, the possibly remaining oxidant was removed 
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by size exclusion chromatography and concomitant transfer to isotonic borate 

buffer. Therefore, 1ml of oxidised lipoprotein was loaded on an Econo-Pac 

column calibrated with isotonic borate buffer. Upon migration of the lipoprotein, 

borat buffer was loaded and, since the dead volume of the column amounts to 

3ml, the third millilitre, which contained the lipoproteins, was collected.  

HypOxLDL were always prepared on the day before use, since LDL of some 

donors showed autofluorescence during the first couple of hours after oxidation. 

HypOxHDL were always prepared immediately before use.  

 

2.2.5.2 Copper oxidised lipoproteins 

LDL oxidation by copper ions was performed according to a commonly used 

protocol. After gelflitration of LDL into borate buffer, lipoproteins were diluted to 

a concentration of 200µg/ml and incubated with copper sulphate at a final 

concentration of 5μM at 37°C for 24 hours. Thereafter incubation was stopped 

and the lipoproteins were concentrated to approximately 2 mg/ml. 

Subsequently, copper oxidised LDL (CuOxLDL) were transferred in isotonic 

borate buffer by gelfiltration as described for hypochlorite-modified lipoproteins. 

CuOxLDL were always stored on ice and used within a week. 

 

2.2.6 Lipoprotein analysis 

2.2.6.1 Protein determination according to Lowry 

Lipoprotein concentrations are expressed in terms of their total protein content, 

which was analysed according to a protocol by Lowry107. 

For each probe two different dilutions of lipoproteins in PBS were prepared 

(1:20 and 1:50). 250µl of each dilution (or 250µl buffer as control) were added to 

125µl 1N sodium hydroxide and incubated for 30 minutes at room temperature. 

 Thereafter 1.25ml of Lowry solution B were added. After 10 minutes of 

incubation, probes were mixed rapidly with 125µl of 50% Folin reagent in H2O 

and incubated for another 30 minutes. The absorbance of each sample was 
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determined at 750nm and protein concentration was calculated by the following 

formula: 

d303)E-(E = c buffersampleprotein ∗∗  

cprotein ......... protein concentration in µg/ml 
Esample......... extinction of the sample  
Ebuffer ......... extinction of the buffer  
D................ dilution factor 

 

2.2.6.2 Relative electrophoretic mobility 

Electrophoretic mobility of native and modified lipoproteins was assessed by  

electrophoresis108 with 0.8% agarose gel in Hoefer buffer. Native and oxidised 

lipoproteins were adjusted for their protein concentration (1000µg/ml) by dilution 

with PBS. Thereafter 15µl of the lipoproteins were mixed with 1µl bromide 

phenol blue to increase the visibility of the probes, and some saccharose 

crystals, to weight down the probes to facilitate loading. All 16µl of the probes 

were loaded and electrophoresis performed for 3 hours at 40V and 4°C. 

Afterwards the gel was incubated overnight in fixing solution, which made 

protein bands visible.  

 

2.2.6.3 Determination of free amino groups 

Determination of free amino groups was carried out with fluorescamin (540µM 

in acetone) according to a protocol by Bohlen109. 1ml native or modified 

lipoproteins were diluted with PBS to a protein concentration of 500µg/ml.  20µl 

of lipoproteins were added to 730µl borate buffer (pH 8.5). Thereafter, 250µl 

fluorescamin was added and probes mixed immediately. After 30 minutes of 

incubation fluorescent readings at a wavelength of 390nm/475nm 

(excitation/emission) were performed.  

Free amino groups of the corresponding native lipoproteins were set as 100% 

and decrease in free amino groups by oxidation of the same charge of 

lipoproteins was calculated in relative percent. 
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2.2.6.4 Chloramine content: 

Chloramines were quantified according to a protocol by Riddles110 using  

2,‘2 dinitro-5,5‘ dithio-bibenzoic acid (DTNB), which hydrolysis to TNB2- in alkali. 

N-Cl derivatives oxidize the sulfhydryl group of TNB2- to its disulphide (DTNB), 

which can then be detected photometrically. 

DTNB was dissolved in 0.1M NaOH. After 5 minutes of exposure, it was 

centrifuged and TNB2-, the supernatant, taken off. 50µl TNB2- were diluted in 

950µl PBS and photometrically measured at a wavelength of 412nm. Thereafter 

20µl native or modified lipoproteins (which were always adjusted for their 

protein content) were added and changes in extinction before and after addition 

of lipoproteins determined. The difference between the two extinctions 

corresponds to the amount of TNB2- oxidised by the chloramines of the 

lipoprotein. Since two TNB2- are oxidised by one Cl+, the obtained value has to 

be divided by two. To determine chloramines in HDL, the following formula was 

used:  

                                       (Epre -Epost) / 2 
 Chloramines (per HDL):   ______________________ ∗R 
                                  13 600 ∗  1000 ∗1000 

 

 
Epre ........... extinction measured before addition of lipoprotein  
Epost .......... extinction after adding HDL  
R............... dilution factor of HDL 

 

2.2.7 Flow cytometric analysis of surface- and intracellular markers of 
platelet activation 

For all functional platelet studies by flow cytometry, probes were prepared in 

wells of 96 well plates. Each probe for flow cytometry was carried out in 

duplicates and means were calculated. Concentrations given in the results 

section represent always final concentrations.  
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2.2.7.1 Surface expression of P-selectin and granulophysin 

Surface exposure of P-selectin or granulophysin was determined by flow 

cytometry. Wells of a 96-well plate were filled with 30µl of washed or gel filtered 

platelets. According to the investigation question, some probes were 

preincubated with 2-10µl nHDL, 3µl mHSA (f.c.: 50µg/ml) 1µl FA6.152 

(f.c.: 3µg/ml) or 1µl polyclonal CD36 antibody (f.c.: 3µg/ml) for 10 minutes, 

whereat all probes had to be brought to the same volume again by adding PBS, 

so that each probe had the same platelet density.  

Thereafter 4-8µl of platelet agonists (see pipetting scheme in Table 1) were 

added and incubated for 5 minutes (for classical agonists) and 10 minutes (for 

modified lipoproteins). If no or less agonist was added to one probe, volume 

was balanced by addition of PBS so that the final volume of all probes 

amounted 48µl. Platelets were then fixed by adding 5µl of 10% formaldehyde 

and incubated for 15 minutes. Then the 96 well plate was centrifuged at 1700g 

for 10 minutes. The supernatant was discarded, the pellet resuspended in 30µl 

PBS and 2µl of antibody directed against CD62P (P-selectin) or CD63 

(granulophysin) were added.  

Incubation was performed for one hour at room temperature and probes were 

kept in a dark place. Thereafter probes were diluted in 470µl PBS and analysed 

immediately. PE marked CD62 was detected in FL2 and FITC labelled CD63 

detected in FL1. 10 000 events, gated for platelets according their size, were 

measured and analysed using BD CellQuest Pro and Microsoft Excel. 
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substance concentration volume added final concentration 
ADP 500µM 4µl 50µM 
ADP 50µM 4µl 5µM 
ADP 25µM 4µl 2.5µM 
ADP 10µM 4µl 1µM 
thrombin 2000U/ml 4µl 200U/ml 
thrombin 400U/ml 4µl 40U/ml 
thrombin 200U/ml 4µl 20U/ml 
thrombin 20U/ml 4µl 2U/ml 
collagen 1000µg/ml 4µl 100µg/ml 
collagen 500µg/ml 4µl 50µg/ml 
collagen 200µg/ml 4µl 20µg/ml 
collagen 13.3µg/ml 4µl 1.33µg/ml 
hypoxHDL 1000µg/ml-1300µg/ml 1µl-10µl 25µg/ml-32µg/ml -250µg/ml-325µg/ml 
hypoxLDL 1000µg/ml-1300µg/ml 1µl-10µl 25µg/ml-32µg/ml -250µg/ml-325µg/ml 

Table 1: pipetting scheme for platelet agonists 

 

2.2.7.2 CD40L surface expression 

CD40L surface expression was detected according to a protocol by Inwald111. 

10µl of whole blood, PRP or gel filtered platelets were incubated for 2 to 

10 minutes with 2µl ADP (f.c.:50µM), 2µl thrombin (f.c.:200U/ml), 2µl collagen 

(f.c.:100µg/ml), 2µl hypOxHDL (f.c.:100µg/ml) or 2µl hypOxLDL (f.c.:100µg/ml). 

For some studies, platelets were preincubated with 2µl mHSA (f.c.:100µg/ml) 

were added. Incubations were performed in a volume of 20µl. For investigations 

with fixed platelets, platelets were incubated with 2µl of 10% formaldehyde for 

15 minutes before the antibody was added.  

For studies on unfixed platelets 1µl of anti CD40L was added immediately. 

Incubation was performed for 30 minutes at room temperature in the dark. 

Thereafter unfixed platelets were fixed with 2µl of 10% formaldehyde and 

incubated for 5 minutes or analyzed immediately.  

 

2.2.7.3 Detection of activated glycoprotein IIb/IIIa  

Activated glycoprotein IIb/IIIa (GPIIb/IIIa) was determined by PAC-1 antibody. 

10µl of gel filtered platelets were incubated with 2µl ADP (f.c.:50µM), 2µl 

thrombin (f.c.:200U/ml), 2µl collagen (f.c.:100µg/ml), 2µl hypOxHDL 

(f.c.:100µg/ml) or 2µl hypOxLDL (f.c.:100µg/ml).  
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Incubations were performed in a volume of 20µl and 1µl of PAC-1 antibody was 

added to each probe. Incubation was performed in the dark for 30 minutes. 

Thereafter probes were fixed with 2µl of 10% formaldehyde and analysed 

immediately.  

 

2.2.7.4 Quantification of VASP phosphorylation 

To determine the impact of lipoproteins on VASP phosphorylation, 30µl of gel 

filtered platelets were incubated with 100µg/ml to 300µg/ml nHDL, hypOxHDL 

or hypOxLDL, which amounted to a volume between 2µl and 10µl, whereat 

volume was adjusted to 40µl in all probes by PBS. After an incubation time of 10 

minutes, 10µl of different concentrations of PGE1 (ranging between 1nM to 

100µM) were added to the probes. Platelets were incubated for exactly two 

minutes, afterwards cells were fixed by adding 5µl of 10% formaldehyde. To 

detect intracellular Ser 239 VASP phosphorylation, cells were permeabilized 

with 80µl of 0.2% triton. After 10 minutes cells were centrifuged (1700g for 

10min) and the pellet was resuspended in 50µl PBS. 5µl of anti-phospho-VASP 

antibody were added to each probe and platelets incubated for one hour in the 

dark.  

Unbound antibody was eliminated by centrifugation (1700g, 10min) and 

resuspension of platelets in 40µl PBS. Subsequently, 4µl of secondary FITC 

labelled anti-mouse antibody were added. After 20 minutes of incubation, flow 

cytometric measurement was performed and signals were acquired in FL1. 

 

2.2.7.5 Measurement of cytosolic free calcium 

Free cytosolic calcium in platelets was measured by time-dependent flow 

cytometry. 300µl of platelet-rich plasma were incubated in the dark with 1µl 

Fluo4 and 2µl Fura-Red in the dark, at room temperature for 30 minutes. 

Afterwards, platelets were isolated by gel-filtration as described for platelet 

isolation. 20µl of gel filtered platelets were diluted in 500µl PBS in a FACS tube 

and put into the flow cytometer. After acquisition of basal calcium levels for one 

minute, the probe was removed, platelet agonists (between 5 and 10µl) were 



 44 

added and put back into the cytometer immediately, so that data acquisition was 

continued as soon as practicable. Fluo-4 signals were acquired in FL1 and 

Fura Red in FL3 using BD Cell Quest Pro Software. Fluorescence ratio was 

calculated for each cell using WEASEL 2.3 Software112. 

 

2.2.8 Binding studies 

2.2.8.1 Lipoprotein labelling with Alexa 633 

Direct labelling of lipoproteins with Alexa 633 was performed with copper 

oxidised LDL (CuOxLDL) or native HDL, which were diluted in borate buffer 

(with 0.9%NaCl) to a final concentration of 1mg/ml. For labelling 500µl of the 

lipoprotein were incubated with 10µl Alexa 633 (solved in DMSO; f. c.: 10mg/ml) 

for one hour at room temperature in the dark and lipoproteins were shaken from 

time to time. After incubation, excess Alexa 633 dye was removed by size 

exclusion chromatography. Therefore the Alexa 633 lipoprotein mix was loaded 

on an Econ Pac column, equilibrated with isotonic borate buffer, and the flow-

through was collected in 500µl fractions in test tubes. Alexa 633 lipoproteins 

could be detected easily as a bright blue fraction. Alexa 633 marked CuOxLDL 

or nHDL were used within one week. To avoid possible cellular uptake of 

lipoproteins in subsequent experiments, gel filtered platelets were pre-chilled for 

at least 30 minutes and kept on ice throughout the experimental procedure.  

50µl of gel filtered platelets were put into eppendorf tubes, and lipoproteins in 

final concentrations between 5 and 325µg/ml (corresponding to a volume 

between 0.5µl and 20µl) were added. For displacement studies cells were 

coincubated with a 10- to 25-fold excess of unlabelled lipoproteins, 7µl mHSA 

(f.c.: 50µg/ml) or 1µl FA6.152 (f.c.: 3µg/ml) according to the experimental 

protocol.  

Since the maximum volume amounted 70µl, all probes which had less volume 

were filled up to ensure the same cell count per volume for all experiments.  

Incubation time ranged between two and three hours and was performed at 

4°C. Thereafter cells were fixed with 7µl 10% formaldehyde, diluted with 420µl 

PBS and analyzed immediately by flow cytometry. 
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2.2.8.2 Indirect labelling of lipoproteins with antibodies against Apo A or 
Apo B 

For indirect labelling of lipoproteins, hypOxLDL or hypOxHDL in final 

concentrations between 2.5µg/ml and 300µg/ml (ranging in volume from 0.5µl to 

20µl) were added to 30µl of pre-chilled platelets (incubation for 30 minutes on 

ice) in an eppendorf tube and kept on ice.  

To show displacement, probes were coincubated with mHSA (5µl which 

corresponds to a final concentration of 50µg/ml), FA6.152 (1µl which 

corresponds to a final concentration of 4µg/ml) or a different class of 

lipoproteins (between 5µl and 10µl, final concentrations between 100µg/ml and 

300µg/ml).  

The maximal volume of all probes amounted 50µl, therefore all probes where 

brought to a final volume of 50µl by adding PBS.  

After two hours of incubation on ice, platelets were fixed with 5µl 10% 

formaldehyde, centrifuged (2000g, 90 seconds) and resuspended in 50µl PBS. 

HypOxLDL were incubated with 1µl antibody against Apo B and hypOxHDL with 

1µl antibody against Apo A. After another hour of incubation, unbound antibody 

was removed by centrifugation (2000g, 90 seconds) and subsequent 

resuspension of platelets in 30µl PBS. Subsequently, platelets were incubated 

with 0.2µl of Alexa Fluor 488 labelled antibody against goat IgG, which binds 

anti Apo A and anti Apo B antibodies.  

After an incubation time of 30 minutes, probes were transferred into FACS 

tubes filled with 470µl PBS and analyzed immediately. Apo A or Apo B positive 

platelets were detected in FL1 using BD Cell Quest Pro Software. 

 

2.2.9 Statistical evaluation and graphics 

Results are presented as mean values plus standard deviation. Platelet 

parameters were subjected to KS test for confirming normal distribution and to 

subsequent t-tests for unpaired samples using SPSS 16.0 and Microsoft Excel 

software. An error probability of less than 0.05 was considered as statistically 

significant. 
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Graphics of the calculated data were drawn with Sigma Plot 10.0. FACS figures 

were obtained directly from BD CellQuest Pro Software and edited with Adobe 

Photoshop CS2.  

 

2.2.10 Calculation of results from flow cytometric binding studies 

No quantitative data are available for the fluorescence yield of the bound 

fluorescently labelled ligand. Therefore, the factor of proportionality α was 

included in the equations. 

The measured fluorescence includes specific and non-specific binding portions 

obeying the following equations used for fitting the binding curves: 

 

=∗∗+∗ tLkαα B=Fcal  specific binding (with B given in equation 2)     

+ non-specific binding 
(1) 
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 (2)  
Fcal ........ calculated fluorescence 
α............ factor correlating fluorescence yield and concentration of labelled ligand 
B........... bound ligand 
k............ constant for non-specific binding 
Lt .......... ligand concentration (bound + free) 
Bmax ...... maximal bound ligand 
Kd......... dissociation constant  
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3 Results 

 

3.1 Establishing platelet-associated techniques 

3.1.1 Platelet count 

Determination of exact platelet count is necessary for most types of 

experiments to assure precision, reproducibility and comparability of results. 

Therefore, platelets are normally counted under a microscope in a Bürker and 

Türk counting chamber. Since this method is time intensive, less time 

consuming photometric measurement of platelet count by the method of 

Walkowiak113 was implemented and evaluated for its precision and 

comparability with manual microscopical count. To do so, the number of 

platelets from ten different donors was determined by both techniques. Each 

probe was analysed in triplicate, thereafter means were calculated and the 

results compared between the two different methods. The mean platelet count 

obtained by microscopy was calculated to be 361 582 platelets/µl (± 55 400), 

while photometrical determination led to a number of 375 179 platelets/µl 

(± 64 325) (see Figure 1). No significant difference between results obtained by 

these two methods can be observed (p>0.05) and therefore photometrical 

platelet count is used in all experiments.  

 
Figure 1: Platelet count: microscopical versus photometric measurement 

Platelets from 10 different donors; means of three dilutions per donor shown for each 
method 
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3.1.2 Studies on platelet isolation 

3.1.2.1 Quality aspects of platelets isolated by different  techniques 

Isolated platelets can be obtained either by washing procedures (basing on 

sedimentation and resuspension steps) or by gel filtration. Platelets which are 

isolated by gel filtration always show similar platelet count as estimated in whole 

blood of the same donor, whereas washing method of platelets allows 

adjustment of platelet number per volume, since pelleted platelets are obtained 

that can be resuspended in a volume of choice. While preparation time is 

comparable between the two methods, washing method is less cost-intensive. 

Nevertheless, gel filtration has a big advantage over washing method, since no 

addition of platelet antagonists is necessary during the platelet isolation 

procedure. This provides a big merit, since gel filtered platelets therefore 

represent the in vivo state more accurate than washed platelets.  

To evaluate the two isolation techniques in terms of basal platelet activation and 

platelet responsiveness to agonists, washed platelets (WP) and gel filtrated 

platelets (GFP) were compared to platelets in platelet rich plasma (PRP) for 

their basal surface expression of P-selectin (an indicator for platelet activation 

status) and the surface expression of P-selectin upon activation with 50µM ADP. 

As depicted in Figure 2, washed platelets show a slightly higher basic activation 

than GFP and PRP. Nevertheless, the amount of this increase in surface 

expression of P-selectin was not significant. After addition of 50µM ADP, 

increase of P-selectin was significantly lower in washed platelets than in gel 

filtered platelets and platelet rich plasma (p<0.05), which indicates that platelets 

isolated by washing method are no longer fully responsive to ADP.   

In terms of functionality, estimated by surface expression of P-selectin in 

response to submaximal concentrations of ADP, washed platelets also show a 

significant different response to this agonist than gel filtered platelets (p<0.05). 

Surface expression of P-selectin induced by ADP concentrations between 1µM 

and 5µM is significantly decreased in WP compared to GFP (shown in Figure 3). 

Taken together, platelets isolated by gel filtration can be regarded as fully 

resting and fully functional and were therefore used for functional studies 

performed in this work. 
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Figure 2: Surface expression of P-selectin following platelet isolation 
Results of flow cytometric analysis of surface P-selectin expression in platelet rich 
plasma (PRP), gel filtered platelets (GFP) and washed platelets (WP) before and after 
addition of ADP (50µM); mean and standard deviations of results from 
10 experiments 

 

 

 

 

 

Figure 3: Influence of platelet isolation technique on surface expression of 
P-selectin 
Results of flow cytometric analysis of surface P-selectin in gel filtered platelets (GFP) 
and washed platelets (WP) after addition of submaximal concentrations of ADP; 
means and standard deviations of results from 5 experiments 
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3.1.2.2 Relevance of human serum albumin during platelet isolation 

After establishing gel filtration as the superior technique for platelet isolation, 

attempts to optimize and economise this technique were made.   

Human serum albumin (HSA), a common ingredient in isolation buffer, is time- 

and cost intensive in production, especially in the case of pure HSA that is used 

in our laboratory. To economise the costs of experiments, platelets were isolated 

in tyrode HEPES buffer containing different amounts of HSA as well as in buffer 

without HSA and the effects of buffer HSA concentration on platelet reactivity 

were evaluated. 

Tyrode HEPES buffer was used containing 0.5% HSA, 0.25% HSA or 0% HSA.  

A buffer HSA concentration of 0.25% or buffer lacking HSA led to a significant 

reduction in platelet count compared to PRP (p<0.05). At a final concentration of 

0.25% HSA in isolation buffer, platelet count was reduced to 69% (± 6.4%) of 

platelet count observed in PRP, whereas HSA free buffer led to a loss of 78% 

(± 8.7%) of platelets. Platelet count of gel filtered platelets, obtained with 

isolation buffer containing 0.5% HSA and platelet count in PRP was almost 

identical, which demonstrates the importance of the presence of HSA during 

platelet isolation. 

As the striking differences in platelet count might be a consequence of platelet 

activation occurring within the isolation column, basal platelet activation and 

platelet reactivity after isolation in the presence of different concentrations of 

HAS was determined. To do so, surface expression of P-selectin was measured 

immediately after collection of platelets and after incubation with ADP (50µM). 

Surprisingly, no significant difference, neither in basal activation state nor in 

platelet reactivity could be detected between the different platelet preparations 

isolated with different HSA concentrations in tyrode buffer (shown in Figure 4). 

As platelet activation and platelet adhesion occurring in the isolation column 

would be supposed to influence neighbouring platelets (what would be 

considered even more likely as eluted platelets are obviously in a fully functional 

state), the reasons for the observed differences in platelet count remain curious. 

In summary it can be stated that HSA seems to mediate a beneficial impact in 

the course of platelet isolation by gel filtration and should therefore be present 
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throughout the isolation procedure. As a consequence, isolation buffer 

containing 0.5% HSA, was used for the experiments performed within this work.  

 

 

Figure 4: Influence of HSA concentration in isolation buffer on platelet count, 
basal platelet activation and platelet reactivity 
A: Influence of HSA concentration in isolation buffer on platelet count 

PRP: 375 513 platelets/µl (± 63 545) 
0.5% HSA: 375 179 platelets/µl (± 55 400)  
0.25% HSA: 255 122 platelets/µl (± 16 328) 
0% HSA: 82 539 platelets/µl (± 7 180)  
Means and standard deviations of results from 10 experiments 

B: Influence of HSA concentration in isolation buffer on platelet P-selectin 
expression 

Results of flow cytometric analysis; means and standard deviations of results from 
10 experiments 
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3.1.3 Submaximal platelet activation by ADP, thrombin and collagen 

For several functional platelet studies (especially when determining the impact 

of protective agents or synergistic actions of weak agonists) it is important that 

platelet activation is induced to only a submaximal extent. Therefore, 

submaximal concentrations of classical platelet agonists (ADP, thrombin and 

collagen) were ascertained.  

Platelets from ten different donors were tested for their sensitivity towards the 

mentioned agonists, in order to determine the appropriate concentrations for 

submaximal platelet activation.  

As shown in Figure 5A, platelets start to show surface expression of P-selectin 

(indicating degranulation of α-granules as a consequence of platelet activation) 

at a concentration of 1.25µM ADP. Full platelet activation is induced by ADP 

concentrations of 15µM and above.  

Therefore, ADP concentrations between 1.25µM and 15µM were used in 

experiments where submaximal platelet activation was needed. Results of 

similar experiments obtained with thrombin are shown in Figure 5B: no 

significant platelet activation can be observed at a concentration of 0.05U/ml 

thrombin, while activation is almost fully induced at thrombin concentrations of 

20U/ml. Hence, thrombin concentrations between 0.05U/ml and 20U/ml were 

employed. Submaximal activation by collagen occurs above a concentration of 

1µg/ml and below 20µg/ml collagen (depicted in Figure 5C). 
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Figure 5: Surface expression of P-selectin induced by different agonists 
Results of flow cytometric analysis of gel filtered platelets  
A: ADP (0-40µM) 
B: thrombin (0-40U/ml) 
C: collagen (0-50µg/ml) 
Means and standard deviations of results from 10 experiments  

 

 

3.1.4 Platelet aggregation studies 

Optical platelet aggregometry is still accepted as the “gold standard” assay for 

platelet function studies in response to agonists. The basis of measurement is 

the decrease in optical density which occurs in suspension as platelets 

aggregate. This change recorded as a function of time is represented 

graphically as a platelet aggregation curve. 

Optical platelet aggregometry is usually performed in an aggregometer, in which 

platelet suspension is constantly stirred and kept at a temperature of 37°C. It 

records a dynamic measure of light transmission induced by platelet 

aggregation. Alternatively platelet aggregation can be measured using a 
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microplate reader, which also detects changes in light transmission, but instead 

of constantly stirring the platelet suspension, the whole plate is shaken. The big 

advantage of the microplate reader technique is its higher throughput rate and 

the smaller amount of platelets needed. Since platelets are treated differently in 

an aggregometer and a microplate reader, the two methods had to be evaluated 

for the comparability of their resulting aggregation curves. Therefore the effects 

of different concentrations of ADP (10µM to 50µM) on platelets were compared 

between the two methods. As shown in Figure 6, no significant difference in 

aggregation course could be detected between the two methods. Not only the 

intensity of platelet aggregation but also the time pattern show very good 

correlation between the two methods. 

 

Figure 6: Platelet aggregation: aggregometer versus microplate reader 
Aggregation curves, showing aggregation response of GFP after addition of agonists 
left side: classical aggregometer; right side: microplate reader 
A: control 
B: ADP (final concentration 10µM)  
C: ADP (final concentration 20µM)  
D: ADP (final concentration 50µM) 

 

 

http://dict.leo.org/ende?lp=ende&p=thMx..&search=comparability
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3.1.5 Quantification of CD40L on platelets  
3.1.5.1 CD40L staining in whole blood, PRP and GFP 

CD40L, an important platelet-derived mediator of immune response, is 

expressed on the cell surface upon platelet activation. Since CD40L antibody 

had not been used in our laboratory so far, detection of surface expression of 

CD40L under basal and activated conditions was compared between whole 

blood, platelet rich plasma and gel filtered platelets.  

First, basal surface expression of CD40L was compared between unfixed 

platelets in whole blood, PRP and GFP. Results of these experiments are 

depicted in Figure 7A, showing the lowest CD40L level in whole blood and the 

highest in GFP. Upon activation with ADP (50µM), significant increase of CD40L 

could be detected in platelets in all three environments, whereas GFP again 

showed the highest and whole blood the lowest signal. In Figure 7B the 

calculated relative increase after activation by ADP is shown. Basal CD40L 

expression was set for 100% and the relative increase of each fraction was 

calculated, showing no statistical difference between the three environments 

(p>0.05). Since the observed differences between resting and activated 

platelets in CD40L surface expression are statistically not significant, GFP were 

used for the following studies. 

 

Figure 7: Surface expression of CD40L of unfixed platelets in blood, PRP and gel 
filtered platelets 
A: CD40L positive platelets before and after addition of ADP (50µM) 
B: relative increase in the number of CD40L positive platelets after addition of ADP 
(50µM) 
Means and standard derivation of results from 6 experiments 
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3.1.5.2 Platelet fixation by formaldehyde abolishes CD40L antibody 
binding 

To optimize the method used for CD40L surface staining, unfixed and fixed 

platelets were compared. Cell fixation facilitates probe handling by assuring 

constant conditions, but some antibodies show far lower affinities to their 

binding sites after fixation. Therefore binding of CD40L antibody to fixed (1% 

formaldehyde) and unfixed platelets was compared.   

Platelets, freshly obtained by gel filtration, were either left untreated or fixed with 

formaldehyde (1%) for 15 minutes. Thereafter fixed and unfixed platelets were 

incubated with FITC labelled CD40L antibody. As shown in Figure 8, the 

fluorescence signal for CD40L positive cells was almost identical between fixed 

and unfixed platelets, although standard deviation was much higher in fixed 

cells. To evaluate CD40L increase induced upon activation, platelets were 

incubated with ADP (50µM) prior to fixation. As shown in Figure 8, an increase 

in fluorescence signal could only be detected in the unfixed fraction. Therefore, 

unfixed platelets were used for CD40L-related experiments performed within 

this work.  

 

Figure 8: Influence of platelet fixation with formaldehyde on anti CD40L binding 
Results from flow cytometric analysis of fixed and unfixed gel filtrated 
platelets ± ADP (50µM); Means and standard deviations of results from 6 experiments 
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3.2 Characterisation of modified lipoproteins 
 
3.2.1 Relative electrophoretic mobility 

To characterise (both chemical and oxidative) lipoprotein modification, relative 

electrophoretic mobility (REM) of native and modified lipoproteins was 

compared. Lipoproteins have a negatively charged surface and migrate to the 

anode in agarose gel electrophoresis under non denaturing conditions. 

Oxidation, by modification of amino acids, renders lipoproteins more negatively 

charged and accordingly their electrophoretic mobility increases. A measurable 

index of this is the REM, which is the ratio of migration distance of native to that 

of modified lipoproteins114. REM provides a very reliable way to quantify protein 

modification in the course of lipoprotein oxidation. Since platelet lipoprotein 

interactions seem to be mediated by apolipoprotein dependent binding, 

evaluation of modifications of the protein moiety is very important. REM was 

used to evaluate the extent of lipoprotein modification induced by different molar 

excess of oxidant hypochlorite and for studies regarding the comparability of 

lipoprotein modification by copper or hypochlorite. Although the in vivo 

relevance of copper oxidised lipoproteins is contested, this modification was 

used in binding studies with directly fluorescence labelled lipoproteins, since 

hypOxLDL bear bleaching properties and destroy the employed fluorophor. As 

shown in Figure 9, CuOxLDL and hypOxLDL (oxidised by a 300-fold molar 

excess of hypochlorite over LDL) were comparable in their REM and therefore 

used in comparative studies. 
 

 

 

 

 

Figure 9: Typical electrophoretic mobility of LDL 
               A: hypOxLDL 
               B: CuOxLDL 
               C: native LDL 
               Results of one typical experiment shown 
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In similar studies with high density lipoproteins, REM was mainly used to 

quantify the extent of modification. It could be shown that the relative 

electrophoretic mobility of HDL rose with severity of modification, whereas 

treatment of hypOxHDL with methionine (that has been reported to result in the 

elimination of protein-associated chloramines) resulted in a decrease of REM 

(shown in Table 2). These findings are in accordance with the results of further 

analysis of changes in the protein moiety of modified HDL.    

 

3.2.2 Protein analytics 

For further analysis and characterization of the protein moiety of oxidised HDL, 

the influence of oxidation by hypochlorite on the formation of chloramines and 

the number of free amino groups was determined. 

As shown in Table 2, the number of free free amino groups declined depending 

on the severity of lipoprotein modification: while a 75-fold molar excess of 

hypochlorite reduced free amino groups to 50% (± 21), a 300-fold molar excess 

of hypochlorite over HDL led to a reduction to 15% (± 5). Free amino groups 

were partly restored upon treatment of hypOxHDL with methionine (increase 

from 15% (± 5) to 55% (± 7)).  

In addition, the influence of hypochlorite modification of HDL on chloramine 

formation was determined. Number of chloramines within HDL increased dose-

dependently on hypochlorite modification and treatment of oxidised lipoproteins 

with methionine showed strong reduction of chloramine number, with a 

decrease from 62.6 (± 13.7) to 9.8 (± 5.4) chloramines per HDL. 

 

Table 2: Physico-chemical properties of HDL  
Values in squared brackets indicate the molar excess of hypochlorite over HDL; means 
and standard deviations of results from 8 experiments 
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3.3 Influence of native HDL on platelet reactivity 
 

3.3.1 Native HDL are able to impair ADP-induced platelet aggregation 

It has been demonstrated by several groups that HDL are able to influence 

platelet reactivity in that they are able to interfere with platelet activation induced 

by various agonists86. To support and extend the current knowledge on the 

action of native HDL on human platelets, the influence of HDL on platelet 

reactivity was investigated, starting with studies regarding the influence of HDL 

on platelet aggregation. Therefore gel filtered platelets were preincubated with 

nHDL and their response to ADP in concentrations which led to submaximal 

(5µM ADP) and maximal (50µM ADP) platelet aggregation was compared to 

effects seen after addition of ADP in the absence of HDL. 

As shown in Figure 10, nHDL could be proven to attenuate aggregatory effects 

of ADP on platelets. Aggregation induced by submaximal concentrations of ADP 

(5µM) was partly prevented by preincubation of platelets with nHDL. If platelet 

aggregation was induced to a maximum extent (f.c.: ADP: 50µM), nHDL showed 

no influence on intensity of aggregation. 

 
Figure 10: Influence of nHDL on platelet aggregation induced by ADP 

Aggregation curves, showing aggregation response of platelets after addition of: 
A: nHDL (260µg/ml)  
B: nHDL (260µg/ml) + ADP (final concentration 5µM) 
C: ADP (final concentration 5µM) 
D: nHDL (260µg/ml) + ADP (final concentration 50µM) 
E: ADP (final concentration 50µM) 
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3.3.2 Protective role of native HDL on ADP-induced surface expression of 
P-selectin 

Since aggregation studies revealed a protective influence of nHDL on platelet 

aggregation induced by ADP, further analyses were performed to determine the 

influence of HDL on the surface expression of several proteins specific for 

platelet activation. First, studies regarding a potential attenuation of surface 

expression of P-selectin by HDL were performed. Platelets were preincubated 

with nHDL, thereafter different amounts of ADP were added and the impact of 

ADP on surface expression of P-selectin was compared with results from 

identical experiments without nHDL. As shown in Figure 11C, surface 

expression of P-selectin induced by ADP (1µM to 5µM) was significantly 

reduced upon preincubation of platelets with native HDL. Again, at higher ADP 

concentrations nHDL showed no protective impact on platelet activation (data 

not shown). Figure 11A and Figure 11B depict FACS dot plots of a typical 

experiment, which shows the impressive protective impact of nHDL on 

P-selectin expression after addition of ADP. 

 

Figure 11: Influence of nHDL on ADP-induced surface expression of P-selectin 
Results of flow cytometric experiments with platelets stained for P-selectin (PE), 
detected in FL2; percentage of P-selectin positive cells id indicated in the lower right 
A: dot plot of a typical experiment: ADP (2.5µM)  
B: dot plot of a typical experiment: nHDL (260µg/ml) + ADP (2.5µM)  
C: means and standard deviation of results from 16 experiments 
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3.3.3 Protective role of native HDL on thrombin- and collagen- induced 
surface expression of P-selectin  

To evaluate if the protective influence of nHDL on platelet activation was limited 

to platelet activation by ADP, identical experiments were carried out with platelet 

agonists thrombin and collagen. Consistent with results of studies on 

attenuation of ADP-induced surface expression of P-selectin, nHDL were able to 

significantly impair α-granule release by both agonists, which is shown in Figure 

12 and Figure 13.  

 

Figure 12: Influence of nHDL on thrombin-induced surface expression of P-selectin 
Results of flow cytometric experiments with platelets; nHDL from 4 different donors; 
means and standard deviations of results from 9 experiments 

 

 

 

 

 

 

 

Figure 13: Influence of nHDL on collagen-induced surface expression of P-selectin 
Results of flow cytometric experiments with platelets; nHDL from 4 different donors; 
means and standard deviations of results from 9 experiments 



 62 

3.3.4 Influence of native HDL on ADP-induced surface expression of 
granulophysin  

Granulophysin represents another granule-derived protein that is expressed on 

the platelet surface only after degranulation. In contrast to P-selectin, 

granulophysin derives from dense granules and hence, an increase in 

granulophysin is associated with dense granule release. To further evaluate the 

role of nHDL on platelet function, the impact of preincubation of platelets with 

nHDL on surface expression of granulophysin was quantified in platelets that 

were then activated with submaximal concentrations of ADP.  

Gel filtered platelets were either incubated with nHDL or left untreated. 

Thereafter submaximal concentrations of ADP (1.25M to 25µM) were added 

and both platelet fractions compared for their surface expression of 

granulophysin. As shown in Figure 14, ADP dose dependently increased 

surface expression of granulophysin. After preincubation of platelets with native 

HDL, granulophysin expression was significantly lowered (p<0.05). Therefore it 

can be concluded that nHDL are not only able to impair ADP-induced α- granule 

release but also reduce dense granule release induced by this agonist. 

 

 

Figure 14: Influence of nHDL on ADP-induced surface expression of 
granulophysin 
Results of flow cytometric experiments with platelets; nHDL from 3 different donors; 
means and standard deviations of results from 12 experiments 
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3.3.5 Influence of native HDL on VASP phosphorylation 

Determination of intracellular VASP phosphorylation represents a quite novel 

test that is usually used to determine the sensitivity of platelets towards different 

agents which counteract platelet activation (NO, PGE1, PGI2). The more VASP 

protein is phosphorylated, the weaker the capability of human platelets to 

become activated. Therefore, determination of VASP phosphorylation might 

also provide additional insights into the protective effects of lipoproteins on 

platelets. By now, there are no data available on (potential) effects of nHDL on 

VASP phosphorylation. 

Since solitary nHDL failed to have an impact on serine 239 VASP 

phosphorylation (data not shown), submaximal concentrations of PGE1 were 

included in these experiments to evaluate potential summative effects of HDL 

and PGE1.  

Following preincubation of platelets with nHDL (130µg/ml or 260µg/ml), different 

concentrations of PGE1 (0.6nM-2.5nM) were added and effects on VASP 

phosphorylation were quantified and compared with results obtained with 

platelets under the same experimental conditions, but in the absence of nHDL.  

As shown in Figure 15, both employed concentrations of nHDL led to an 

increase of intracellular VASP phosphorylation (compared to control), whereat 

the higher nHDL concentration led to higher phosphorylation response.  

Although these results tend to demonstrate VASP phosphorylation by nHDL, no 

significant difference in VASP phosphorylation between platelets with nHDL and 

controls could be determined (p>0.05). In light of the high standard deviations 

resulting from these experiments, sample size might be too small to obtain 

statistically significant results.   

At higher concentrations of PGE1, no influence of nHDL on VASP 

phosphorylation could be observed.  

Notably, there was a remarkable variation in the platelet response to different 

PGE1 concentrations between different donors in terms of VASP 

phosphorylation. Some experiments were not able to show effects of minor 

concentrations of PGE1 on VASP phosphorylation and consequently no effects 

of nHDL on PGE1-induced VASP phosphorylation occurred. Moreover, not all 
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charges of nHDL were able to cause an increase in VASP phosphorylation. The 

number of experiments was too low to analyse gender or life style (smoking, 

etc.) specific effects. But further experiments, which take these factors into 

account, are planned. 

So far it can be stated that nHDL from most donors show a inhibitory effect on 

platelets by increasing PGE1-induced VASP phosphorylation, whereat the 

reasons for non-responsiveness of platelets and the ineffectiveness of nHDL 

from some donors, require further investigations.  

 

 

Figure 15: Influence of nHDL on VASP phosphorylation induced by PGE1 
Results of flow cytometric experiments with platelets ± nHDL (130µg/ml or 
260µg/ml); VASP-P stands for Ser 239 VASP phosphorylation; nHDL from 3 different 
donors; means and standard deviations of results from 8 experiments 
 

 

3.3.6 Differences in VASP phosphorylating effects between HDL2 and 
HDL3 

Since HDL subclasses HDL2 and HDL3 differ in their Apo E content, these 

lipoprotein subclasses might also differ in their potential to induce VASP 

phosphorylation, as increased levels of cGMP lead to VASP phosphorylation 

and Apo E has been reported to cause upregulation of cGMP in human 

platelets88. 
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Differences in the influence of HDL subclasses on serine 239 VASP 

phosphorylation were determined by comparing the additive effects of 

PGE1 (1nM-10nM) and both lipoprotein subclasses.  

As shown in Figure 16, coincubation of platelets with both HDL subclasses 

induced an increase of intracellular VASP phosphorylation. Surprisingly, HDL3, 

which contains less Apo E, seems to have a stronger influence on VASP 

phosphorylation than HDL2, although differences were statistically not significant 

(p>0.05). 

At higher concentrations of PGE1 (or without PGE1) neither HDL2 nor HDL3 are 

able to induce VASP phosphorylation (data not shown).  

Taken together, it can be stated that both subclasses show a tendency to favour 

VASP phosphorylation induced by PGE1, whereat the effects obviously can not 

be attributed to the Apo E content of the lipoproteins. 

 

Figure 16: Influence of nHDL-subclasses on VASP phosphorylation in the presence 
of PGE1 
Results of flow cytometric experiments with platelets ± HDL2 (100µg/ml) or 
HDL3 (100µg/ml); VASP-P stands for Ser 239 VASP phosphorylation; nHDL from 
4 different donors; means and standard deviations of results from 12 experiments 
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3.3.7 Binding of native HDL to human platelets 

To answer the question if nHDL specifically bind to human platelets, two 

different methods were used: binding of lipoproteins to platelets was 

investigated by direct labelling of nHDL with Alexa Fluor 633 dye and by indirect 

labelling of platelet bound nHDL with an antibody directed against Apo A-I.  

To make the obtained results comparable between the different experimental 

conditions, identical platelet counts used within these experiments are essential 

– therefore, platelet count was adjusted and 3.15 x 108 platelets/ml were 

employed in all experiments. 

Specific binding is no directly measurable quantity, since only total binding can 

be determined directly, which consists of specific and non-specific binding (and, 

eventually uptake of ligand). 

Specific binding implicates binding to one or more class(es) of specific 

receptor(s), whereat affinity to other binding sites is marginal. Nevertheless, 

each ligand also shows some extent of unspecific binding to biological or 

artificial material. Therefore, unspecific binding has to be evaluated and 

subducted. This is usually done by adding unlabelled ligand in high (100- to 

1000-fold) molar excess. Under these conditions, since all specific binding sites 

are occupied with the unlabelled ligand, remaining binding of the labelled ligand 

will represent its binding to unspecific sites.  

An additional characteristic of specific binding is that binding shows saturable 

binding kinetics, as only a definite number of specific receptors for binding are 

available. As a consequence, at increasing concentrations of ligand, the 

observed increase in bound ligand will reach a plateau, whereas unspecific 

binding is not saturable.   

 

3.3.7.1 Binding of Alexa Fluor 633 labelled native HDL to human platelets 

The first attempts to investigate if nHDL show specific binding to human 

platelets were made with nHDL that had been labelled with Alexa Fluor 633 dye. 

Binding studies performed with labelled ligands are more direct and reduce 

error-proneness besides less laborious study procedures compared with other 

techniques. Nevertheless, conjugation of HDL with the fluorophor and 
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incubation in the course of lipoprotein-labelling might cause distinct modification 

of the protein moiety, leading to changes in receptor specifity of the labelled 

lipoproteins.   

Binding of HDL was investigated by adding increasing concentrations of 

Alexa 633 labelled nHDL to gel filtered platelets, followed by flow cytometrical 

detection of platelet-associated fluorescence. To distinguish between unspecific 

and specific binding, platelets were additionally incubated with an excess of 

unlabelled nHDL from the same donor.  

Figure 17A shows binding of Alexa 633 labelled nHDL to human platelets. 

Fluorescence signals were successfully reduced by coincubation with nHDL 

(250µg/ml). 

 

Figure 17: Total binding of Alexa Fluor 633 dyed nHDL to gel filtered platelets  
A: means and standard deviation of results from 8 experiments; nHDL from 

2 different donors 
B: calculated total binding of data shown in A 
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Unfortunately, experimental conditions did not allow to  exceed a 12.5-fold molar 

excess of unlabelled nHDL. Therefore, only incomplete displacement of labelled 

ligand by the competitor could be achieved what prevents quantitative insight 

into non-specific binding. Therefore, unlabelled nHDL were mathematically 

treated like labelled nHDL and their (supposed) fluorescence extrapolated 

(shown in Figure 17B). These data were fitted according to equation 1, leading 

to estimates for Kd (31.2µg/ml or 3.12 x 10-10M, Bmax (0.209µg/ml) and 

k (1.63*10-3), respectively. Due to the insufficient number of data points, 

however, these results are not very reliable. Therefore, another method to 

determine nHDL binding to platelets was implemented 

 

3.3.7.2 Native HDL binding studies by indirect labelling of Apo A-I 

Another way to determine specific binding of nHDL to platelets is to label 

platelet bound nHDL with an antibody against Apo A-I, which can then be 

detected by flow cytometry. This method ensures that lipoproteins are not 

modified in the course of the labelling procedure, but does not allow 

displacement by the same class of lipoprotein. Preliminary studies revealed that 

mHSA (which was originally reported to block binding of oxidised LDL to 

scavenger receptors) is able to compete with native HDL for binding to the 

platelet surface – therefore, mHSA was used for displacement of of nHDL. 

Therefore gel filtered platelets were incubated with different concentrations of 

nHDL (in the presence or absence of mHSA) and analyzed for Apo A-I positive 

cells. 

In Figure 18A binding of nHDL to platelets is shown together with reduction of 

nHDL binding upon coincubation with mHSA.  

Unlike in experiments with fluorescence-labelled nHDL (see 3.3.7.1), binding of 

nHDL determined by labelled anti Apo A-I does not reveal linear (i.e. non-

saturable) binding to any significant degree. One possible explanation might be 

that non-specific binding observed in experiments with directly labelled nHDL is 

mediated by distinct modification of the lipoprotein particle introduced by the 

modification process (either the fluorescence label itself, or, more likely, some 

additional oxidativr modification in the lipid or protein moiety). Accordingly, the 
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effects of maleylated human serum albumin require careful interpretation. In 

fact, mHSA successfully competes for binding of nHDL to human platelets. This 

effect is illustrated in Figure 18. Moreover, the calculated binding was fitted to 

equation 3, which allows calculation of the effects of an inhibitor (I) competing 

with ligand (L) for the same class of binding sites (shown in Figure 2B).  
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B............bound ligand 
Bmax .......maximal bound ligand 
Lt ...........ligand concentration (bound + free) 
Kd .........dissociation constant  
I .............inhibitor 
Ki ..........dissociation constant of the inhibitor 

 

Fitting the experimental data to this function, however, reveals that true 

competition obviously is not observed, since the total binding capacity for nHDL 

is reduced to about half the value in the absence of mHSA, whereas the binding 

affinity remains virtually unaffected.  

This behaviour reflects non-competitive inhibition rather than competition for 

identical sites. One explanation could be that nHDL and mHSA bind to non-

overlapping sites on the same protein on the platelet surface with mutual 

exclusion of binding of either of the two ligands after binding of the respective 

other one. From Figure 18 the dissociation constant for the mHSA-platelet 

receptor is calculated to be 2.10-5M. The reported decrease in nHDL-binding in 

the presence of mHSA might, however, also reflect some sort of “quenching”. 

Quenching effects might be generated by rearrangement in the platelet surface 

(e.g. receptor translocation into the platelet interior, either crosslinking of 

receptors or dissociation of receptor complexes into their components, or even 

degradation of receptor proteins), or a loss in cell count, which, however, can be 

ruled out in this case. 

From the binding isotherms with and without mHSA an average dissociation 

constant for nHDL-binding was calculated (21.9µg/ml). With 2.19 x 10-7M the 
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calculated Kd is only a third of the dissociation constant estimated by other 

groups115. Notably HDL show a higher affinity to platelets than oxidised LDL 

(calculated in chapter 3.6.10.2). 
 

 

Figure 18: nHDL: total binding to platelets determined by Apo A-I detection and 
displacement 
A: platelet-bound nHDL were detected by anti Apo A-I and analyzed by flow 

cytometry; displacement was performed with mHSA (500µg/ml); nHDL from 
4 different donors, means of results from 12 experiments;  

B: calculation of binding curves, assuming that mHSA blocks nHDL binding sites on 
platelets 
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3.4 Interaction of platelets and hypochlorite-modified HDL 

 

3.4.1 hypOxHDL enhance platelet activation induced by ADP, collagen 
and thrombin 

After showing the protective impact of native HDL on platelet aggregation and 

platelet activation, the effects of HDL after oxidative modification were 

investigated.  

In contrast to oxidative modification of LDL, the effects of hypOxHDL on platelet 

function are discussed controversially and far less data exist.  

To determine if hypochlorite modification alters the effects of HDL on platelet 

function, native HDL and hypOxHDL were compared for their effects on ADP-, 

thrombin- and collagen-induced platelet activation.  

Gel filtered platelets were either left untreated or preincubated with nHDL or 

hypOxHDL. Thereafter platelets were treated with classical platelet agonists 

(ADP, collagen, and thrombin) in different concentrations and surface 

expression of P-selectin was quantified by flow cytometry.  

As shown in Figure 19, hypOxHDL significantly amplify platelet degranulation 

induced by ADP, whereas nHDL from the same donor show protective effects 

on ADP-induced platelet activation.  

Experiments carried out with submaximal concentrations of thrombin (Figure 20) 

and collagen (Figure 21), show similar results: in both cases the addition of 

hypOxLDL lead to a strong increase of surface P-selectin, while nHDL are once 

again proven to have a protective impact on thrombin- and collagen-induced α-

granule release.  

Since synergistic effects of hypOxHDL with these agonists lead to such striking 

results in which dose dependency of the classical agonists seems to play a 

minor role, the question ariose, if hypOxHDL are able to trigger platelet 

activation in the absence of other agonists. 
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Figure 19: Influence of nHDL and hypOxHDL on ADP-induced surface expression 
of P-selectin on human platelets 
A, B and C show FACS dot plots of gel filtered platelets, stained for surface 

expression of P-selectin (PE), detected in FL2; percentage of P-selectin positive 
cells are indicated in the lower right of each figure 

A: ADP (1µM)   
B: ADP (1µM) + hypOxHDL (100µg/ml) 
C: ADP (1µM) + nHDL (100µg/ml) 
D: means and standard deviations of results from 10 experiments 
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Figure 20: Influence of nHDL and hypOxHDL on thrombin-induced surface 
expression of P-selectin on human platelets 
A, B and C show FACS dot plots of gel filtered platelets, stained for surface 

expression of P-selectin (PE), detected in FL2; percentage of P-selectin positive 
cells are indicated in the lower right of each figure 

A: thrombin (10U/ml)  
B: thrombin (10U/ml) + hypOxHDL (100µg/ml) 
C: thrombin (10U/ml) + nHDL (100µg/ml) 
D: means and standard deviations of results from 10 experiments 
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Figure 21: Influence of nHDL and hypOxHDL on collagen-induced surface 
expression of P-selectin on human platelets 
A, B and C show FACS dot plots of gel filtered platelets, stained for surface 

expression of P-selectin (PE), detected in FL2; percentage of P-selectin positive 
cells are indicated in the lower right of each figure 

A: collagen (2µg/ml)  
B: collagen (2µg/ml) + hypOxHDL (100µg/ml) 
C: collagen (2µg/ml) + nHDL (100µg/ml)  
D: means and standard deviations of results from 10 experiments 
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3.4.2 hypOxHDL induce surface expression of P-selectin 

Since hypOxHDL show synergistic effects with classical agonists, the question 

arose, if hypOxHDL by themselves are able to activate human platelets. 

Therefore gel filtered platelets were incubated with 260µg/ml of HDL, which had 

been modified with a 75-fold, a 150-fold or a 300-fold molar excess of 

hypochlorite. Moreover, the impact of hypOxHDL[300], treated with methionine 

(methionine-hypOxHDL), on surface expression of P-selectin was determined. 

Figure 22 shows results of a typical experiment, which reveales a modification 

dependent induction of P-selectin expression by hypOxHDL. Compared with 

these results, a decrease of α-granule release could be observed if hypOxHDL 

had been treated with methionine before they were added to the platelets.  

 

Figure 22: Surface expression of P-selectin induced by hypOxHDL 
Dot plots, showing surface expression of P-selectin (PE), detected in FL2, on gel 
filtered platelets after stimulation with hypOxHDL with different degrees of 
modification 
A: basal 
B: ADP (50µM) 
C: hypOxHDL[75] (260 µg/ml) 
D: hypOxHDL[150] (260 µg/ml)   
E: hypOxHDL[300] (260 µg/ml) 
F: methionine-hypOxHDL[300] (260 µg/ml) 
Values in squared brackets indicate molecular excess of hypochlorite over HDL; 
percentages in the lower right indicate percentage of P-selectin positive cells 
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In addition to results of a typical experiment shown in Figure 22, Figure 23 

depicts means and standard deviations out of 18 experiments, showing 

significant differences in P-selectin expression between basal platelet activation 

and activation after treatment with hypOxHDL (75-fold, 150-fold and 300-fold 

excess of hypochlorite over HDL), but no significant difference between basal 

platelet activation and activation after addition of methionine-treated hypOxHDL. 

 

Figure 23: P-selectin surface expression induced by hypOxHDL modified to a 
different degree 
* indicates statistically significant difference to controls (p<0.05); values in squared 
brackets indicate molecular excess of hypochlorite over HDL; means and standard 
deviations of results from 18 experiments 

 

 

3.4.3 hypOxHDL are able to trigger platelet aggregation 

To further determine the effects of hypOxHDL on platelet function, their effects 

on platelet aggregation were analyzed.  

Therefore, HDL, modified with different molar excess of hypochlorite over HDL, 

were added in different concentrations to resting platelets, in order to determine 

the severity of HDL modification and the concentration of hypOxHDL needed to 

eventually trigger platelet aggregation. This is of special interest to evaluate 

potential in vivo relevance of these new findings.  

Figure 24 shows the effects of hypOxHDL on platelet aggregation, revealing 

that hypOxHDL are able to trigger platelet aggregation in the absence of other 
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agonists. As shown in Figure 24A, the intensity of platelet aggregation triggered 

by hypOxHDL directly correlates with the molar excess of hypochlorite used for 

HDL modification. While nHDL did not trigger platelet aggregation, HDL 

modified with a 75-fold molar excess of hypochlorite over HDL, provoked 

platelet aggregation to a submaximal extent.  

 

Figure 24: Influence of hypOxHDL on platelet aggregation 
Aggregation curves, showing aggregation response of GFP  
A: Impact of different degrees of hypOxHDL modification 

a: nHDL added to a final concentration of 260µg/ml 
b: hypOxHDL[75] added to a final concentration of 260µg/ml 
c: hypOxHDL[150] added to a final concentration of 260µg/ml 
d: hypOxHDL[300] added to a final concentration of 260µg/ml 
e: ADP added to a final concentration of 50µM 

B: Impact of different concentrations of hypOxHDL 
a: buffer 
b: hypOxHDL[300] added to a final concentration of 26µg/ml 
c: hypOxHDL[300] added to a final concentration of 130µg/ml 
d: hypOxHDL[300] added to a final concentration of 260µg/ml 
e: ADP added to a final concentration of 50µM 

Values in squared brackets indicate molar excess of hypochlorite over HDL 
 

 

In Figure 24B, dose dependency of hypOxHDL[300] induced platelet 

aggregation is shown: even small concentrations of hypOxHDL (26µg/ml) are 

able to trigger platelet aggregation. At final concentrations of 260µg/ml 

hypOxHDL[300], the extent of the observed aggregation is comparable with 

results obtained with 50µM ADP. Moreover, platelet aggregation is totally 



 78 

inhibited upon pre-treatment of hypOxHDL[300] with methionine (aggregation 

curve virtually identical to buffer shown in Figure 24B; authentic traces for 

methionine-hypOxHDL[300] are shown in Figure 26). 

 

3.4.4 Influence of native HDL on hypOxHDL-induced platelet activation 
and aggregation 

Since a protective effect of nHDL on platelet activation and aggregation induced 

by classical agonists could be shown, the question arose if nHDL also have a 

protective influence on hypOxHDL-induced platelet activation. 

Therefore gel filtered platelets were incubated with different concentrations of 

nHDL and compared to platelets in buffer for their activation response upon 

addition of hypOxHDL. 

Figure 25 depicts the influence of nHDL on surface expression of P-selectin 

induced by hypOxHDL.  

 

Figure 25: Influence of nHDL on hypOxHDL-induced surface expression of 
P-selectin 
A-B: FACS dot plots of platelets stained for P-selectin (PE), detected in FL2; 

values in the lower right indicate percentage of P-selectin positive cells 
A: hypOxHDL (100µg/ml) 
B: nHDL (200µg/ml) + hypOxHDL (100µg/ml) 
C: means and standard deviations of results from 10 experiments; nHDL (200g/ml) 

from 4 different donors were used 
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Figure 25A and Figure 25B show dot plots of a typical flow cytometric 

experiment and Figure 25C shows means and standard deviations of 

10 experiments. Statistically significant differences in hypOxHDL-induced 

surface expression of P-selectin exist between platelets after preincubation with 

nHDL and controls (p<0.05). 

As shown in Figure 26, nHDL mediate also a protective effect on hypOxHDL-

induced platelet aggregation. The higher the nHDL concentration, the weaker is 

the aggregation response induced by hypOxHDL. Moreover, it could be shown 

that preincubation of hypOxHDL with methionine abolishes the ability of 

hypOxHDL to trigger platelet aggregation (also depicted in Figure 26). 

Whether the protective effects of nHDL on hypOxHDL-induced platelet 

activation originate from competing with hypOxHDL for binding to the same 

receptor or if these effects are based on intracellular signalling induced by nHDL 

remains to be determined.  

 

Figure 26: Influence of methionine pre-treatment and nHDL on hypOxHDL-
induced platelet aggregation 
Aggregation curves, showing aggregation response of platelets after addition of: 

a: methionine-hypOxHDL[300] (260µg/ml) 
b: nHDL (540µg/ml) + hypOxHDL[300] (260µg/ml)  
c: nHDL (260µg/ml) + hypOxHDL[300] (260µg/ml) 
d: hypOxHDL[300] (260µg/ml) 
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3.4.5 The role of scavenger receptor CD36 in hypOxHDL-induced platelet 
activation and aggregation 

To investigate the role of scavenger receptors in hypOxHDL-induced platelet 

activation, platelets were incubated with maleylated human serum albumin 

(mHSA) - an antagonist of oxidised LDL binding to scavenger receptors - or with 

FA6.152, an antibody that is directed against the oxidised LDL-binding domain 

of CD36.  

Figure 27 shows that hypOxHDL (100µg/ml) is able to induce GPIIb/IIIa 

activation. Upon coincubation with mHSA, GPIIb/IIIa activation by hypOxHDL is 

reduced to an almost basal level, which might indicate a role of specific binding 

of hypOxHDL to platelet receptors as a prerequisite for its stimulating effects. 

 

Figure 27: Influence of mHSA on hypOxHDL-induced GPIIb/IIIa activation 
(PAC-1) 
Results of flow cytometric experiments with platelets ± mHSA (50µg/ml); 
hypOxHDL (100µg/ml) from 5 different donors; means and standard deviations of 
results from 12 experiments 

 

 

The binding domain domain of mHSA on scavenger receptors obviously plays a 

major role in mediating hypOxHDL-induced surface expression of P-selectin 

(depicted in Figure 28). Besides effects of mHSA, Figure 28 also shows results 

of experiments regarding hypOxHDL-induced surface expression of P-selectin 

in the presence nHDL and FA6.152, which reveal that surface expression of 

P-selectin induced by hypOxHDL can be significantly impaired by coincubation 

with FA6.152 or nHDL. FA6.152 is a stronger inhibitor of hypOxHDL-induced 

platelet activation than nHDL or mHSA. This suggests that the binding domain 
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of oxidised LDL on CD36 also plays an important role for platelet interaction 

with hypOxHDL. It has to be mentioned, that since the Fc portion of FA6.152 is 

able to trigger platelet aggregation, platelets had to be preincubated with 

antibody AT10, which is capable of blocking the Fcγ receptor.  

 

Figure 28: Influence of mHSA, FA6.152 and nHDL on hypOxHDL-induced 
expression of P-selectin 
FA6.152 (3µg/ml) together with AT10 (1µg/ml); mHSA (50µg/ml); hypOxHDL 
(50µg/ml) and nHDL (200µg/ml) from 5 different donors; means and standard 
deviations of results from 12 experiments 

 

 

In Figure 29 the influence of FA6.152 on hypOxHDL-induced platelet 

aggregation is depicted. Also in these experiments, preincubation of platelets 

with AT10 was necessary. To exclude unspecific inhibitory or activating effects of 

the added antibodies, ADP-induced aggregation in the presence and absence 

of AT10 and FA6.152 was compared, revealing no difference in the aggregation 

behaviour of platelets (shown in Figure 29). Taken together, platelet aggregation 

induced by hypOxHDL can be totally inhibited by blocking an epitope on CD36 

responsible for binding of oxidised LDL, indicating that interaction of hypOxHDL 

with CD36 is necessary for platelet response. 
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Figure 29: Influence FA6.152 antibody on hypOxHDL-induced platelet 
aggregation 

Aggregation curves, showing aggregation response of platelets after addition of: 
a: buffer  
b: AT10 (1µg/ml) + FA6.152 (1µg/ml) + hypOxHDL (260µg/ml)  
c: hypOxHDL (260µg/ml) 
d: AT10 (1µg/ml) + FA6.152 (1µg/ml) + ADP (50µM)  
e: ADP (50µM) 

 

 

3.4.6 Influence of hypOxHDL on intraplatelet calcium 

The measurement of intracellular free calcium levels is an elegant way to study 

the response of platelets to different agonists. In contrast to other flow 

cytometric methods, analysis is performed with unfixed and vital cells – 

therefore, the response of platelets to different agonists can be observed over 

time and changes are visualized immediately.  

As depicted in Figure 30, addition of hypOxHDL to human platelets leads to an 

immediate calcium influx, with kinetics comparable to that obtained with ADP.  In 

accordance with results obtained from aggregation experiments, antibody 

FA6.152 prevents calcium influx provoked by hypOxHDL, but does not affect 

calcium influx in response to ADP. As a consequence of the fact that platelet 

suspension was not stirred in this type of experiments, it was possible to omit 

AT10 in these experiments, since FA6.152 alone had no impact on intracellular 

free calcium levels.   
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Figure 30: Effects of hypOxHDL on intraplatelet calcium  
A: Fluo-4 fluorescence (detected in FL1) after addition of indicated agonists (ADP 

(50µM) or hypOxHDL (260µg/ml)) to GFP and GFP incubated with FA6.152 
(4µg/ml)  

B: influence of FA6.152 (4µg/ml) on sliding means (Fluo-4/Fura Red; detected in 
FL1/FL3) of calcium influx either induced by ADP (50µM) or hypOxHDL 
(260µg/ml) 

 

 

3.4.7 Impact of hypOxHDL on VASP phosphorylation 

As mentioned before, determination of VASP phosphorylation in platelets 

provides a new way to quantitate the sensitivity of platelets towards antagonists 

of platelet activation. Since platelet activating effects of hypOxHDL could be 

proven, the question arose if hypOxHDL are also able to counteract PGE1 

action on human platelets. Therefore the influence of hypOxHDL on PGE1-

induced serine 239 VASP phosphorylation was investigated. 

Gel filtered platelets were either preincubated with hypOxHDL or left untreated. 

Then submaximal concentrations of PGE1 were added (or both substances 
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were coincubated, whereat this difference in the experimental procedure was 

proven to lead to no difference in the outcome).  

Figure 31 shows FACS dot plots of a single experiment, which reveal that 

hypOxHDL is able to reduce PGE1-induced Ser 239 VASP phosphorylation.  

 

Figure 31: Influence of hypOxHDL on PGE1-induced VASP phosphorylation (1)  
Results of flow cytometric experiments with platelets stained for Ser 239 VASP 
phosphorylation (FITC), detected in FL1; values in the upper right indicate percentage 
of VASP positive cells 
A: basal 
B: PGE1 (10µM) fully induced VASP phosphorylation 
C: PGE1 (0.1µM) 
D: hypOxHDL (100µg/ml) + PGE1 (0.1µM) 

 

 

Unfortunately, outcome of individual experiments varied, so that after calculating 

of means and standard deviations of all experiments, only a tendency but no 

significant difference could be determined (p>0.05).   

In Figure 32 means and standard deviations of 24 experiments are shown. 

Differences in effectiveness of hypOxHDL, to counteract PGE1 induced VASP 

phosphorylation were not related to gender or known health status of the 
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donors. Lifestyle habits, like smoking or other sources of oxidative stress were 

not determined.   

 

Figure 32: Influence of hypOxHDL on PGE1-induced VASP phosphorylation (2)  
Results of flow cytometric experiments with platelets; VASP-P stands for Ser 239 
VASP phosphorylation; PGE1 (0.2nM-15nM); hypOxHDL (100µg/ml) from 6 donors; 
means and standard deviations of results from 24 experiments 

 

 

The variability in the outcome of these experiments led to the idea of blocking 

NO production. The rationale behind this strategy is that, as mentioned before, 

a large amount of NO is released by platelets shortly after their activation to 

prevent further aggregation. Since hypOxHDL are proven to activate platelets, 

this might lead to NO production and thereby to VASP phosphorylation.  

To exclude any influence of NO, its synthesis was inhibited by the arginine 

analogue L-NMMA.  

Surprisingly, preincubation of platelets with L-NMMA failed to show the 

proposed impact on the obtained results: As shown in Figure 33A and Figure 

33B, the PGE1 counteracting action of hypOxHDL is reduced in the presence of 

L-NMMA. The extent of the effects of hypOxHDL on PGE1-induced VASP 

phosphorylation did not increase upon preincubation with L-NMMA. Quite on 

the contrary, even reverse effects could be observed. Therefore the hypothesis 

that NO, released shortly after platelet activation (by hypOxHDL) is responsible 

for the high standard deviations and low effects on PGE1-induced VASP 
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phosphorylation can not be uphold. In Figure 33C means and standard 

deviations of results with and without L-NMMA are compared for all three 

concentrations of PGE1. 

 

Figure 33: Impact of inhibiting NO synthesis on hypOxHDL-induced reduction of 
PGE1-induced VASP phosphorylation 
Results of flow cytometric experiments with platelets; VASP-P stands for Ser 239 
VASP phosphorylation 
A,B: PGE1 (1nM-10nM) ± hypOxHDL (100µg/ml) 
A: platelets 
B: platelets preincubated with L-NMMA (50µM) 
C: means and standard deviations, preincubation of platelets ± L-NMMA (50µM);  
hypOxHDL from 4 donors; means and standard deviations  of results of 8 experiments 

 

 

3.4.8 Effects of inhibiting distinct platelet activation pathways on 
hypOxHDL-induced platelet aggregation 

To get an insight into signal transduction pathways involved in hypOxHDL-

induced platelet activation, platelets were treated with different inhibitors 

(quinacrine, ethylene diamine tetraacetic acid (EDTA) and acetylsalicylic acid 

(ASA)) in order to knock out distinct pathways. 
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Quinacrine blocks arachidonate release from human platelets and interferes 

with platelet activation and aggregation by inhibiting phosphatidylinositol-

specific phospholipase C and cyclic-GMP phosphodiesterase116. Quinacrine 

also inhibits phospholipase A2, which is important for the production of 

lysophosphatidic acid and therefore essential for thrombin-induced platelet 

aggregation117. 

EDTA, a potent chelator of Ca++, reduces ionized Ca++ levels, which leads to 

inhibition of platelet aggregation. Extracellular Ca++ is required for various 

signalling events as well as the Ca++ dependent stabilisation of GPIIb/IIIa118. 

ASA leads to an inhibition of TxA2 synthesis, resulting in inhibition of platelet 

aggregation via inhibition of Cox1119, which is an enzyme required for 

production of TxA2, a stimulator of platelet aggregation. 

To evaluate the effects of these different inhibitors on hypOxHDL-induced 

platelet aggregation, it was necessary to treat these - partly inhibited - platelets 

with classical agonists as a positive control and for comparability of results.  

As depicted in Figure 34, aggregation curves of the differently inhibited platelets 

varied between the different agonists.  

EDTA was shown to be the most potent, ASA the weakest inhibitor of ADP-

induced platelet aggregation (shown in Figure 34A). No dose dependency of 

ADP could be observed for the inhibitory action of quinacrine, EDTA or ASA.  

In Figure 34B the impact of the three inhibitors on thrombin-induced platelet 

aggregation is depicted. In these experiments inhibitory effects of ASA and 

quinacrine depended on the dosage of agonists, whereas the inhibitory effect of 

EDTA was dose independent. Depending on thrombin concentration, either 

EDTA, or in lower concentrations quinacrine was the most potent inhibitor of 

thrombin-induced platelet aggregation.  

Figure 34C demonstrates the effects of the inhibitors on collagen-induced 

platelet aggregation. All three inhibitors reduced collagen-induced platelet 

activation dose dependently. EDTA was shown to anticipate agonist-induced 

platelet aggregation more severely than the other inhibitors.  

In Figure 34D, finally, the results of hypOxHDL-induced aggregation in the 

presence of inhibitors are shown. All three inhibitors are able to block platelet 
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aggregation induced by hypOxHDL. No dose dependent effects could be 

observed nor a significant difference of the effects between the three inhibitors. 

This leads to the assumption that all inhibited pathways are involved in 

hypOxHDL-induced platelet activation. 

 

Figure 34: Effects of inhibiting distinct platelet activation pathways on platelet 
aggregation induced by different agonists 
Aggregation in the absence of inhibitors was set 100% and attenuation by 
quinacrine (20µM), EDTA (1mM) or ASA (1mM)  
calculated as relative % of these 100% 
A: ADP (1µM-10µM) 
B: thrombin (5U/ml-40U/ml) 
C: collagen (2.3µg/ml-6.7µg/ml) 
D: hypOxHDL (20µg/ml-200µg/ml) from 3 different donors; 
Means and standard deviations of results of 12 experiments 
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3.4.9 Binding of hypOxHDL to human platelets 

3.4.9.1 hypOxHDL binding studies by Apo A-I detection 

Since Apo A-I is the main apolipoprotein of HDL, detection of this apoprotein 

should consequently be utilisable to investigate hypOxHDL binding to human 

platelets. To determine characteristics of receptors involved in hypOxHDL 

binding to platelets, mHSA, polyclonal CD36 antibody and monoclonal antibody 

FA6.152 were evaluated for their ability to interfere with binding of hypOxHDL to 

human platelets. In other cell types, CD36 has been shown to bind (copper) 

oxidised HDL, therefore polyclonal CD36 antibody was used to determine the 

role of this receptor in platelets. To test if oxidised LDL and oxidised HDL might 

bind to the same domain of CD36, monoclonal antibody FA6.152, directed 

against the binding domain of oxidised LDL on CD36, was used.  

Gel filtered platelets (with or without the indicated potential binding antagonists) 

were incubated with hypOxHDL (20µg/ml–200µg/ml) and analyzed for Apo A-I 

positive cells by flow cytometry.  

As shown in Figure 35A, a dose dependent increase in Apo A-I positive cells 

after addition of increasing concentrations of hypOxHDL could be detected (total 

binding). Displacement by mHSA, CD36 antibody and FA6.152 was successful 

in all concentrations of hypOxHDL. Relative percent of inhibition of hypOxHDL 

binding to platelets is depicted in Figure 35B. FA6.152 turned out to be the 

strongest competitor, indicating the important role of the binding domain for 

oxidised LDL on CD36 for hypOxHDL binding to human platelets. Specific 

binding was calculated by means of data obtained with platelets coincubated 

with hypOxHDL and FA6.152. Binding curves were mathematically adjusted. 

Unfortunately, the quantity of data was insufficient to allow reliable calculation of 

the dissociation constant. 
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Figure 35: hypOxHDL: total binding to platelets determined by Apo A-I detection 
and displacement 
A: measured and fitted total and specific binding of hypOxHDL; specific binding was 

calculated by displacement with FA6.152 
B: displacement of hypOxHDL by mHSA (500µg/ml), FA6.152 (3µg/ml) and anti 

CD36 (=polyclonal CD36 antibody (3µg/ml)); hypOxHDL from 4 different donors; 
 means and standard deviations of results from 8 experiments; 
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3.5 Interaction of platelets and native LDL 

 

3.5.1 Native LDL impair agonist-induced surface expression of 
P-selectin 

To distinguish between lipoprotein class specific and modification dependent 

effects, the effects of native LDL and oxidatively modified LDL on platelet 

activation were investigated. The impact of native LDL on platelet function is 

discussed controversially. While some authors stated protective effects, others 

were able to show activating effects of native LDL on human platelets84. Since it 

is difficult to obtain completely unmodified LDL, these controversial results might 

arise from problems in isolation or storage of lipoproteins. LDL used for this 

work were isolated with highest precautions in order to obtain lipoproteins as 

native as possible. To evaluate if native LDL are able to interfere with platelet 

activation, platelets were activated by submaximal amounts of classical agonists 

and analyzed for changes in surface expression of P-selectin due to the 

presence of native LDL. Hence, freshly obtained gel filtered platelets, 

preincubated with native LDL or left untreated, were exposed to submaximal 

concentrations of ADP and thrombin. Results of these experiments are depicted 

in Figure 36 and show that native LDL are able to impair ADP- (Figure 36A) and 

thrombin- (Figure 36B) induced surface expression of P-selectin in a dose 

dependent way.  

 
Figure 36: Effects of nLDL on P-selectin expression induced by ADP or thrombin 

Results of flow cytometric experiments with platelets; LDL from 4 different donors; 
A: ADP 
B: thrombin  
Means and standard deviations of results from 8 experiments 
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3.5.2 Native LDL enhance PGE1-induced VASP phosphorylation 

A potential inhibitory impact of native LDL on platelet activation was further 

investigated by experiments regarding determination of platelet serine 239 

VASP phosphorylation. Since no effects on VASP phosphorylation could be 

observed upon addition of native LDL to platelets (data not shown), potential 

synergistic effects with submaximal concentrations of PGE1 were investigated.  

Gel filtered platelets were preincubated with native LDL (140µg/ml) and 

subsequently, PGE1 (2nM-10nM) was added and platelets analyzed for 

intracellular VASP phosphorylation. Means and standard deviations of results 

from 8 experiments are depicted in Figure 37: in the presence of native LDL, 

platelets show an increase in VASP phosphorylation compared to controls, 

although the difference was only significant at a concentration of 10nM PGE1 

(p<0.05). Comparable to studies with native HDL, native LDL from some donors 

failed to increase intracellular VASP phosphorylation. 

In some experiments, platelets did not respond to minor concentrations of PGE1 

and therefore the obtained results had to be excluded from evaluation. Since 

the number of experiments was not sufficient to further correlate the lack of 

protective effects with increased risk factors (e.g.: smoking) of platelet donors, 

no statement on the influence of life style habits on protective effects of native 

LDL on platelet function can be made at the moment. 

 

Figure 37: Effects of nLDL on PGE1-induced VASP phosphorylation 
Results of flow cytometric experiments with platelets ± nLDL (140µg/ml); VASP-P 
stands for Ser 239 VASP phosphorylation; PGE1 (2nM-10nM); LDL from 4 different 
donors; means and standard deviations of results from 8 experiments 
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3.6 Interaction of platelets and oxidised LDL 

It has already been shown by our group that LDL, modified with hypochlorite, 

are able to activate human platelets23. Nevertheless, investigations of platelet 

interaction with hypOxLDL performed in this work started with repeating 

aggregation experiments to confirm published findings, followed by additional 

experiments regarding platelet activation by hypOxLDL. In this regard, effects of 

coincubation time of platelets and hypOxLDL as well as dose dependency of 

hypOxLDL-induced surface expression of P-selectin have not been investigated 

so far. Moreover, the impact of hypOxLDL on platelet CD40L surface 

expression, GPIIb/IIIa activation and VASP phosphorylation was investigated for 

the first time. 

 

3.6.1 hypOxLDL trigger platelet aggregation 

According to results of prior studies, LDL, treated with a 400-fold molecular 

excess of hypochlorite were able to independently trigger platelet aggregation, 

whereas native LDL from the same donor showed no effect. To prove that 

scavenger receptors are involved in platelet activating signal transduction 

induced by hypOxLDL, gel filtered platelets were pretreated with mHSA and 

compared to platelets in buffer avoid of mHSA. Such blocking of scavenger 

receptors by mHSA led to a strong attenuation of hypOxLDL-induced platelet 

aggregation (shown in Figure 38).  
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Figure 38: Effects of hypOxLDL on platelet aggregation 
Aggregation curves, showing aggregation response of platelets after addition of: 
a: nLDL (100µg/ml) 
b: mHSA(50µg/ml) + hypOxLDL (100µg/ml) 
c: ADP (50µM) 
d: hypOxLDL (100µg/ml)  

 

 

3.6.2 hypOxLDL induce surface expression of P-selectin 

The finding that hypOxLDL are able to induce surface expression of P-selectin 

has already been shown76. Hence, to determination of the amount of hypOxLDL 

needed to induce α-granule release and the time pattern of hypOxLDL-

mediated platelet activation is of great interest.  

 

3.6.2.1 Influence of hypOxLDL concentration on surface expression of 
P-selectin 

To evaluate the in vivo relevance of platelet activation by hypOxLDL it is also 

important to know the concentration needed for platelet activation. Therefore, 

gel filtered platelets were incubated with different amounts of hypOxLDL and the 

impact of rising hypOxLDL concentrations on surface expression of P-selectin 

was determined. 

As shown in Figure 39, hypOxLDL are able to stimulate surface expression of 

P-selectin in a dose dependent mode. An increase of surface expression of 
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P-selectin could be seen at hypOxLDL concentrations as low as 5µg/ml, 

reaching peak activation at a concentration of 75µg/ml. There seems to be no 

significant difference in P-selectin expression between concentrations of 

75µg/ml and 300µg/ml. 

 

Figure 39: Concentration-dependent effects of hypOxLDL on P-selectin expression  
Results of flow cytometric experiments with platelets; hypOxLDL from 3 donors; 
means and standard deviations of results from 6 experiments 

 

 

3.6.2.2 Impact of incubation time of platelets with hypOxLDL on surface 
expression of P-selectin  

To determine the time course of hypOxLDL induced platelet activation, platelets 

were incubated with 100µg/ml hypOxLDL for 1 to 15 minutes at room 

temperature and the impact of incubation time on surface expression of 

P-selectin was evaluated.  

As depicted in Figure 40, it took about 8 minutes of coincubation of platelets 

with hypOxLDL to reach their maximal P-selectin surface expression. Between 

8 and 15 minutes, no significant further increase could be detected. This 

observation was quite surprising, since platelet aggregation is triggered 

immediately after addition of hypOxLDL and full aggregation can be observed 

only 4 to 6 minutes after addition of 100µg/ml hypOxLDL (see Figure 38). The 

fact that platelet aggregation is performed at 37°C, whereat platelets in 

experiments regarding surface expression of P-selectin are incubated at room 

temperature might explain this phenomenon. Moreover, in aggregometrical 
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studies platelets are stirred or shaken, which facilitates cell contacts and 

accelerates platelet activation. 

 

Figure 40: Time-dependent effects of hypOxLDL on surface expression of 
P-selectin 
Results of flow cytometric experiments with platelets; hypOxLDL (100g/ml) from 
2 different donors; means and standard deviations of results from 6 experiments 

 

 

3.6.3 Synergistic effects of hypOxLDL and other agonists of platelet 
activation 

Synergistic effects of hypOxLDL with ADP and thrombin were investigated to 

evaluate if submaximal concentrations of hypOxLDL synergistically increase 

surface expression of P-selectin induced by classical agonists and if, in the 

presence of hypOxLDL, less amount of other agonists is needed to induce 

platelet activation. 

Therefore, freshly obtained gel filtered platelets were incubated with 20µg/ml 

hypOxLDL, which led to submaximal activation (38.6% P-selectin positive cells, 

shown in Figure 41C). Thereafter, ADP or thrombin in different concentrations 

was added to platelets that had been preincubated with or without hypOxLDL.  

As shown in Figure 41, hypOxLDL show synergistic effects with both agonists. 

In the presence of hypOxLDL, less ADP or thrombin is needed to trigger full 

platelet activation. 



 97

 
Figure 41: Effects of hypOxLDL on surface expression of P-selectin 

A: ADP (1µM-5µM) ± hypOxLDL (20µg/ml) 
B: thrombin (5U/ml-40U/ml) ± hypOxLDL (20µg/ml)  
C: hypOxLDL (20µg/ml) 
Results of flow cytometric experiments with platelets; means and standard deviations 
of results from 6 experiments 

 

 

3.6.4 hypOxLDL induce surface expression of CD40L on platelets 

In contrast to P-selectin and granulophysin, which are stored in granules, 

CD40L is reported to be stored in the cytosol of human platelets. Platelet 

activation leads to a translocation of CD40L to the platelet surface. Due to its 

important role in immune response, determination of CD40L surface expression 

by hypOxLDL is of special interest to further characterise the atherogenic role of 

oxidised LDL. 

To investigate the impact of hypOxLDL on CD40L expression of human 

platelets, platelets were incubated with ADP, thrombin and hypOxLDL at agonist 
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concentrations which induced full platelet aggregation. Thereafter, platelets 

were stained for CD40L surface expression and analyzed by flow cytometry.  

As depicted in Figure 42, thrombin, ADP and hypOxLDL lead to a significant 

increase in CD40L surface expression, whereat hypOxLDL show the highest 

impact on CD40L expression. Strategies to block binding of hypOxLDL to 

platelets by mHSA reveal that hypOxLDL-induced CD40L surface expression is 

significantly inhibited by coincubation with mHSA (p<0.05, also shown in Figure 

42). 

 
Figure 42: Effects of hypOxLDL on CD40L expression 

Results of flow cytometric experiments with platelets; thrombin (40U/ml), ADP (50µM) and 
hypOxLDL (100µg/ml) and mHSA (50µg/ml) + hypOxLDL (100µg/ml)  
LDL from 4 different donors; means and standard deviation of results from 
11 experiments 

 

 

3.6.5 Influence of hypOxLDL on activation state of GPIIb/IIIa 

Antibody PAC-1 recognizes an epitope on the GPIIb/IIIa complex, which is only 

present on activated platelets and hence it can be used to determine platelet 

activation.  

To investigate the impact of hypOxLDL on GPIIb/IIIa activation, resting platelets 

were incubated with hypOxLDL (100µg/ml) and analyzed for binding of antibody 

PAC-1. To further determine the binding effects of hypOxLDL, scavenger 

receptor binding of oxidised lipoproteins was blocked by coincubation with 

mHSA, and effects of mHSA on hypOxLDL-induced GPIIb/IIIa activation were 

evaluated.  
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As shown in Figure 43, hypOxLDL is able to induce GPIIb/IIIa activation. This 

stimulating effect of hypOxLDL can be successfully inhibited by preincubation of 

platelets with mHSA (also shown in Figure 43).   

 

Figure 43: Influence of hypOxLDL on GPIIb/IIIa activation 
Results of flow cytometric experiments with platelets stained for PAC-1 (activated 
GPIIb/IIIa); mHSA (50µg/ml); hypOxLDL (100µg/ml) from 4 different donors;  
means and standard deviation of results of 12 experiments 

 

 

3.6.6 Attenuation of hypOxLDL-induced platelet aggregation by HDL 

Since nHDL show a protective influence on ADP-, collagen- thrombin- and 

hypOxHDL-induced platelet aggregation, the question arose if nHDL are also 

able to attenuate platelet aggregation induced by hypOxLDL.  

As shown in Figure 44, nHDL are able to impair platelet aggregation induced by 

different concentrations of hypOxLDL.  

It can not be excluded that this effect of nHDL on hypOxLDL-induced platelet 

aggregation is not (only) attributable to inhibitory pathways induced by nHDL, 

but (also) might be due to the fact that nHDL and hypOxLDL compete for 

binding to the same receptor(s). 
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Figure 44: Influence of nHDL on hypOxLDL-induced platelet aggregation 
Results of aggregometric experiments: platelets ± nHDL (200µg/ml) were compared 
in their aggregation response to hypOxLDL (18µg/ml to 145µg/ml); LDL from 
4 different donors; means and standard deviation of results from 11 experiments 

 

 

3.6.7 Influence of HDL2, HDL3 and antibody FA6.152 on hypOxLDL-
induced surface expression of P-selectin 

To further evaluate the effects of nHDL on hypOxLDL-induced platelet 

activation, differences between the HDL subclasses HDL2 and HDL3 were 

analyzed with regard to their influence on hypOxLDL-induced surface 

expression of P-selectin. Moreover, the influence of FA6.152 on hypOxLDL-

induced α-granule release was investigated. FA6.152 is an antibody, which is 

directed against the binding domain for oxidised LDL on CD36 (amino acids 

Gln155 to Lys183).  

Gel filtered platelets were preincubated with FA6.152, HDL2 or HDL3 and the 

influence of these preincubations on hypOxLDL (100µg/ml) induced surface 

expression of P-selectin was measured. Since the presence of antibody 

FA6.152 in stirred platelet suspensions leads to platelet aggregation120 unfixed 

platelets were always preincubated with AT10 before incubation with antibody 

FA6.152. 

As shown in Figure 45, blocking of OxLDL-binding site on CD36 by FA6.152 

results in a very strong inhibition of platelet activation by hypOxLDL. 
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In identical experiments, HDL2 and HDL3 also decrease the number of 

P-selectin positive cells – furthermore, these two lipoprotein classes significantly 

differ in their impact on hypOxLDL-induced platelet activation. HDL2, which 

contains more Apo E, seems to bear stronger platelet inhibiting capacities than 

HDL3.  This is in line with results of experiments on ADP induced platelet 

aggregation by other groups87, which characterised the Apo E content as the 

responsible factor for the inhibitory action of HDL on (this type of) platelet 

aggregation. 

 

Figure 45: Influence of HDL2, HDL3 and antibody FA6.152 on hypOxLDL-induced 
surface expression of P-selectin 
Out of 4 experiments - hypOxLDL (100µg/ml) induced P-selectin expression was set 
100% and relative attenuation by HDL2 (200µg/ml), HDL3 (200µg/ml) and FA6.152 
(4µg/ml + AT10 (2µg/ml)) was calculated 

 

 

3.6.8 Effects of antibody FA6.152 on hypOxLDL-induced surface 
expression of P-selectin in pre-activated platelets  

Besides CD36, another receptor candidate for oxidatively modified LDL (LOX-1) 

is reported to be present in human platelets. Since surface expression of LOX-1 

is only induced upon platelet activation79, platelets would be supposed to be 

pre-activated in order to be able to test a potential role of LOX-1 on hypOxLDL-

induced platelet activation.Therefore, the ability of antibody FA6.152 to impair 
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surface expression of P-selectin induced by hypOxLDL was investigated in 

ADP-stimulated platelets (in presence and absence of FA6.152). 

As shown in Figure 46, blocking of OxLDL binding site on CD36 leads to a 

significant reduction of P-selectin surface expression (p<0.05), revealing, once 

again, the importance of this scavenger receptor for intracellular signal 

transduction triggered by hypOxLDL. Compared to resting platelets shown in 

Figure 45, pre-activated platelets (depicted in Figure 46) do not show a reduced 

ability of FA6.152 to inhibit hypOxLDL-induced platelet activation. Antibody 

FA6.152 (for reasons outlined above in combination with antibody AT10) itself 

did not show any influence on data obtained with ADP (see Figure 46). 

 

Figure 46: Effects of antibody FA6.152 on hypOxLDL-induced P-selectin 
expression in pre-activated platelets 
Results of flow cytometric experiments with platelets; hypOxLDL (100µg/ml) from 
4 different donors; all experiments with FA6.152 (4µg/ml) were performed in the 
presence of AT10 (2µg/ml); means and standard deviations of results from 
8 experiments 

 

 

Since FA6.152 leads to such a strong reduction of degranulation induced by 

hypOxLDL, the significance for LOX-1 in hypOxLDL-induced platelet activation 

has to be doubted. 
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3.6.9 Impact of hypOxLDL on VASP phosphorylation  

The impact of oxidised LDL on VASP phosphorylation in human platelets has 

not been investigated so far. In light of platelet-stimulating effects of hypOxLDL, 

experiments concerning the impact of hypOxLDL on VASP phosphorylation 

open a new gateway to determine if hypOxLDL are also able to counteract 

PGE1 action on human platelets. 

Therefore, hypOxLDL, were tested for their ability to modulate intracellular 

VASP phosphorylation in the presence of different concentrations of PGE1. 

In Figure 47 results of 12 experiments on the influence of hypOxLDL on serine 

239 VASP phosphorylation induced by submaximal concentrations of PGE1 are 

shown. In submaximal concentrations of PGE1 significant differences between 

untreated platelets and platelets coincubated with hypOxLDL were obtained, 

whereas at high concentrations of PGE1 hypOxLDL failed to have an impact on 

VASP phosphorylation. 

 

Figure 47: Influence of hypOxLDL on PGE1-induced Ser 239 VASP 
phosphorylation 
Results of flow cytometric experiments with platelets; VASP-P stands for Ser 239 
VASP phosphorylation; PGE1 (0.1-5nM); hypOxLDL from 3 different donors; means 
and standard deviations of results from 8 experiments 

 

 

In accordance with results obtained from experiments with hypOxHDL. Again, 

platelet donors varied in their response to PGE1. Therefore results of 

experiments in which platelets did not respond to submaximal concentrations of 

PGE1 were excluded from evaluation 
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3.6.9.1 Impact of modification degree of hypOxLDL on PGE1-induced 
VASP phosphorylation 

To evaluate the in vivo relevance of attenuation of VASP phosphorylation by 

hypOxLDL it is important to determine the degree of modification necessary for 

the observed effects. As native LDL were shown to cause an increase of PGE1-

induced VASP phosphorylation, these investigations are of special interest.  

To characterise the degree of modification necessary to reduce VASP 

phosphorylation, native LDL from 3 different donors were modified with 100- to 

400-fold molar excess of hypochlorite and the impact of these oxidatively 

modified LDL on VASP phosphorylation was analyzed.  

Figure 48 shows the influence of different degrees of LDL modification by 

hypochlorite on PGE1–induced VASP phosphorylation. 

 

Figure 48: Effects of different degrees of hypOxLDL modification on PGE1-
induced VASP phosphorylation 
Values in squared brackets indicate molar excess of hypochlorite over LDL; VASP-P 
stands for Ser 239 VASP phosphorylation; LDL from 3 different donors; means and 
standard deviations of results from 12 experiments 

 

 

Unfortunately standard deviations were quite high, so that no statistically 

significant difference could be detected. It can be stated that, upon modification 

with a 100-fold molar excess of hypochlorite over LDL, hypOxLDL reduce 

PGE1–induced VASP phosphorylation. 
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Methionine treated hypOxLDL[400], lead to a minor decrease of PGE1–induced 

VASP phosphorylation than untreated hypOxLDL[400], but failed to restore the 

degree of VASP phosphorylation to values obtained with nLDL. 

 

 

3.6.9.2 Inhibition of hypochlorite oxidised LDL effects on PGE1-induced 
VASP phosphorylation 

As shown in Figure 44-46, nHDL and antibody FA6.152 are able to interfere with 

platelet activating effects of hypOxLDL. Consequently, experiments were 

performed to determine if HDL and FA6.152 are also able to interfere with the 

effects of hypOxLDL on VASP phosphorylation. In addition, hexarelin was 

included in these experiments, as hexarelin has been reported to bind to CD36 

at a binding domain that overlaps with the binding domain for oxidised LDL121. 

In Figure 49 FACS dot plots of one experiment are shown.  

 
Figure 49: Effects of hypOxLDL on Ser 239 VASP phosphorylation 

FACS dot plot of platelets, stained for serine 239 VASP phosphorylation (FL1); 
percentage of VASP phosphorylation positive cells are indicated in the upper right of 
each figure 
A: control 
B: PGE1 (0.5µM) 
C: hypOxLDL (100µg/ml) + PGE1 (0.5µM) 
D: AT10 (1µg/ml) + FA6.152 (4µg/ml) + hypOxLDL (100µg/ml) + PGE1 (0.5µM) 
E: nHDL (260µg/ml) + hypOxLDL (100µg/ml) + PGE1 (0.5µM) 
F: hexarelin (10µg/ml) + hypOxLDL (100µg/ml) + PGE1 (0.5µM) 
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PGE1, in a concentration of 0.5µM, is able to trigger Ser 239 VASP 

phosphorylation in almost all platelets (99.31%).  

Upon coincubation with hypOxLDL only a third of the cells were VASP 

phosphorylation positive (34.38%). In the presence of FA6.152, VASP 

phosphorylation was restored to a significant part (84.19%).  

Also coincubation with nHDL led to protection of VASP phosphorylation 

(75.05%). Moreover, hexarelin was proven to have a protective impact 

(62.71%). 

 

 

3.6.10 Binding of oxidised LDL to human platelets 
3.6.10.1 Binding of Alexa 633-labelled copper-oxidised LDL 

To investigate if oxidised LDL specifically bind to human platelets, oxidised LDL 

were directly labelled with Alexa Fluor 633 dye. Because hypochlorite bleaches 

all fluorophors, LDL had to be oxidised with copper (CuOxLDL). 

In Figure 50A binding of Alexa 633-labelled CuOxLDL to platelet and 

displacement with unlabelled CuOxLDL, mHSA and FA6.152 is shown. 

Since the molar excess of CuOxLDL was too low to block all saturable binding 

sites, binding was calculated assuming that unlabelled and labelled lipoproteins 

bind in an identical way to platelets and the fluorescence signal was 

extrapolated. Figure 50B shows total binding calculated by extrapolation. This 

procedure obviously leads to unreasonably high “binding”.  

The only way to explain this phenomenon is to assume that unlabelled and 

labelled lipoproteins actually do not bind in identical manner. Therefore, a 

protocol avoiding fluorescence-labelling of OxLDL was developed (cf. 1.1.3.2.). 
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Figure 50: Binding of Alexa 633 CuOxLDL to platelets  
CuOxLDL (300µg/ml), mHSA (50µg/ml) and FA6.152 (3µg/ml) 
A: means and standard deviations of 8 experiments 
B: calculated binding of the data depicted in A 

 

 

3.6.10.2 hypOxLDL binding studies by Apo B detection 

Besides the mentioned disadvantages of direct labelling, it is not the ideal tool 

to show binding anyway, since only CuOxLDL but not hypOxLDL can be 

investigated. Therefore a second protocol using anti Apo B antibody was 

implemented. Platelets were incubated with different concentrations of 

hypOxLDL and potential competitors of hypOxLDL binding to human platelets 

(nHDL, hypOxHDL, mHSA, polyclonal anti CD36 and FA6.152).  

Figure 51A shows the measured and fitted binding curves of hypOxLDL to 

platelets by Apo B detection. Since displacement with the same class of 

lipoproteins is not possible with this technique, polyclonal CD36 antibody in 

excess was employed to calculate specific binding of hypOxLDL, which is also 

depicted in Figure 51A. The dissociation constant was calculated to be 
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10.3 x 10-8M, which is in accordance with data obtained for copper oxidised LDL 

(9.6 x 10-8M)122. 

In Figure 51B displacement of hypOxLDL by other potential competitors is 

depicted. The most efficient displacement occurred in the presence of mHSA. 

Also nHDL and hypOxHDL seem to compete for binding with hypOxLDL. 

Polyclonal CD36 antibody and monoclonal CD36 antibody FA6.152, had a 

severe impact on hypOxLDL binding to platelets, but less than the before 

mentioned competitors. Since mHSA is a significantly stronger competitor for 

hypOxLDL binding to platelets than antibodies against CD36, the question 

arises if binding sites different to CD36 exist, which can be blocked by mHSA. 

Interestingly hypOxHDL, which seems to bind only to CD36 also blocks 

hypOxLDL binding more efficient than both CD36 specific antibodies.  

 
Figure 51: hypOxLDL: total binding to platelets determined by Apo B detection 

and displacement 
A: total and specific binding of hypOxLDL (10µg/ml-200µg/ml) to platelets:  

hypOxLDL from 6 different donors; means of results from 14 experiments, specific 
binding calculated by displacement with polyclonal CD36 antibody (3µg/ml) 

B: displacement of hypOxLDL (100µg/ml) binding to platelets by various 
competitors: mHSA (500µg/ml), nHDL (400µg/ml), FA6.152 (4µg/ml); anti CD36 
(=polyclonal CD36 antibody (3µg/ml)); hypOxLDL from 4 different donors; means 
and standard deviations of results of 8 experiments 
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4 Discussion 

Blood platelets are of central importance to the process of (primary) hemostasis 

and coagulation. Therefore, abnormalities in platelet function (resulting in 

thrombosis or bleeding) result in severe and potentially lethal consequences. 

Inadvertent platelet activation can be observed in diverse diseases that coincide 

with inflammation and systemic oxidative stress – for example atherosclerotic 

disease that is the major source of morbidity and mortality in the Western world. 

As platelet activation causes degranulation of platelets, resulting in the release 

of several growth factors as well as pro-inflammatory and pro-thrombotic 

mediators, platelet activation is associated with accelerated atherosclerosis and 

correlates with severity of this disease in humans.  

Lipoproteins, especially low density lipoproteins (LDL) and high density 

lipoproteins (HDL), play a crucial and ambiguous role in the development of 

atherosclerotic disease. 

A wealth of evidence indicates that high plasma concentrations of LDL favour 

the onset and propagation of atherosclerosis and thrombosis, while plasma 

concentrations of HDL are inversely correlated with the occurrence of these 

events. 

Interestingly, both LDL and HDL have been also shown to be able to directly 

influence platelet function123 and increasing evidence indicates that lipoproteins 

are able to induce different intracellular signalling pathways in platelets, 

although the entire mechanisms are still poorly understood.  

A large body of evidence supports the view that oxidative stress is closely 

related to atherogenesis and results of several studies were able to show that 

circulating markers of inflammation are predictive of both atherosclerosis and 

the clinical events associated with this disease124-128. According to the oxidative 

response to inflammation hypothesis of atherosclerosis129, inflammation is a 

primary process in atherosclerosis. Accordingly, inflammation represents the 

source of oxidative stress which in turn sets up a vicious circle by exacerbating 

inflammation. 
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Lipoproteins have been identified as preferred targets of such oxidative stress 

and MPO and oxidants generated by this enzyme seem to play a central role in 

the pathogenesis of atherosclerosis. 

Hypochlorite/hypochlorous acid (HOCl), the major strong oxidant generated by 

MPO, has been implicated in the in vivo oxidation of LDL22 and lipoproteins 

have been shown to acquire several pro-atherogenic and pro-thrombotic 

properties upon oxidative modification by hypochlorite. 

Interestingly, the influence of oxidatively modified (low density) lipoproteins on 

platelet function has been shown to depend on the underlying oxidation 

procedure: hypochlorite-oxidised LDL are able to trigger platelet aggregation 

and this can not be observed with LDL oxidised by trace metal, even when both 

OxLDL species are oxidised to a comparable extent97. Furthermore (and this 

might also serve as an explanation for these findings), hypochlorite shows a 

strong predilection for the protein moiety of lipoproteins and in contrast to the 

situation observed with one-electron oxidants, lipoprotein oxidation by 

hypochlorite does not result in the formation of lipid hydroperoxides130 or 

thiobarbituric acid reactive substances (TBARS)97. 

In light of the central importance of platelets to the atherosclerotic process, it 

was the aim of this work to investigate and characterise the impact of LDL and 

HDL – both in their native state as well as after oxidative modification – on 

several aspects of platelet function and to establish the molecular mechanisms 

that form the basis for the observed lipoprotein-mediated effects.  

 

Platelets and high density lipoproteins 

Plasma HDL cholesterol levels inversely correlate with platelet 

hyperreactivity131. Also in vitro studies were able to show an inhibitory effect of 

HDL on platelet function, although the underlying mechanism is not fully 

understood (reviewed by SURYA et al123). 

In this work shows that native HDL mediate an inhibitory effect on platelet 

aggregation and on platelet activation induced by submaximal concentrations of 

classical agonists (ADP, thrombin and collagen). Nevertheless, HDL fail to show 

an impact on platelet activation when activation induced by these agonists 
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reaches a maximum extent. This platelet inhibiting impact of native HDL 

confirms and extends previously published findings103, 131, 132. Since many 

biochemical events that are critical for platelet activation are known to be 

affected by HDL, it is difficult to identify the mechanisms by which HDL mediate 

a protective impact on submaximal but not on fully activated platelets.  

It has been shown in platelets that HDL3 induce activation of protein kinase C 

(PKC) and consequently phosphoinositide-specific phospholipase C (PI-PLC), 

an important signal transduction mediator of thrombin, collagen and (to a minor 

extent) ADP, is inhibited133. Moreover HDL interaction with platelets accounts for 

the induction of nitric oxide synthesis134. Nitric oxide (NO), amongst many other 

actions, induces phosphorylation of platelet vasodilator stimulated 

phosphoprotein (VASP) by NO dependent activation of guanylyl cyclase and 

subsequent stimulation of cGMP dependent protein kinases. In its 

phosphorylated state, VASP is important to the polymerization of actin. 

Somewhat surprisingly, HDL fail to show an impact on VASP phosphorylation in 

resting platelets. Nevertheless, upon coincubation with submaximal 

concentrations of prostaglandin E1 (PGE1), HDL enhance intracellular VASP 

phosphorylation in a dose dependent way. Since HDL have no influence on 

PGE receptor binding nor on prostaglandin stability65, direct effects of HDL on 

PGE1 seem unlikely. 

Instead, the evoked effects might reflect the fact that NO production by platelets 

is not sufficient to induce VASP phosphorylation, but is able to synergistically 

increase VASP phosphorylation in the presence of other agonists.  

Since Apo E was shown to markedly elevate platelet NO synthase activity and 

intra-platelet levels of cGMP, NO release induced by HDL is suggested to be 

mediated by Apo E88,83. Nevertheless, it could be shown that also apoE-rich 

subclass HDL2 is not able to induce VASP phosphorylation on its own. 

Surprisingly HDL3, which is reported to contain less Apo E, seems to have a 

stronger influence on VASP phosphorylation upon addition of submaximal 

concentrations of PGE1 than HDL2. Taken together, it can be stated that the 

effects of HDL on VASP phosphorylation may not be attributable to the Apo E 

content of the lipoproteins. VASP phosphorylation, which is an established 
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marker of NO-bioavailability and closely correlates with the activation of 

pathways that are responsible for inhibition of platelet function, does not 

increase upon incubation with HDL. This is especially surprising as the same 

preparations of HDL were able to augment platelet aggregation and platelet 

degranulation. To further investigate if the observed increase in VASP 

phosphorylation induced by HDL and PGE1 is NO dependent or if other 

mechanisms are involved, experiments in the presence of an inhibitor of nitric 

oxide synthesis are planned for the future. 

There is still disagreement which receptor is responsible for platelet interaction 

with native HDL. LDL receptor-related protein 8 (LRP8) has been identified on 

human platelets and has also been proven to bind Apo E particles and thereby 

HDL83. Nevertheless, it is still unknown if LRP8 is the only platelet receptor for 

native HDL, since also GPIIb/IIIa and CD36 represent potential receptor 

candidates73, 135. 

Binding studies performed within this work were able to show specific and 

saturable binding of native HDL to human platelets and it was possible to 

calculate specific binding and dissociation constant (2.4 x 10-7 M), which is fairly 

similar to results obtained by radiolabelling techniques (reviewed by KOLLER et 

al.84). It could be shown that maleylated human serum albumin (mHSA) is able 

to compete with HDL for binding to the platelet surface. This is especially 

interesting in light of the fact that mHSA has originally been shown to block 

binding of oxidatively (and chemically) modified LDL to virtually all scavenger 

receptors. Therefore, the possibility exists that HDL might mediate their effects 

on platelet function in vivo also by competing with oxidised LDL for their binding 

to platelets.  

As oxidative stress originating from inflammation is of central importance to 

atherogenesis and as platelets represent redox-sensitive cells, it is of special 

interest that HDL also possess anti-oxidative and anti-inflammatory properties 

that are only in part attributable to enzymatic activities residing within the 

lipoprotein particle136. Due to their antioxidative exertion, HDL become 

unavoidably oxidised themselves and since they represent an easier target for 

oxidation than LDL, they are even more likely to get oxidised137. 
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Given its accepted protective functions, oxidative modification of HDL is mainly 

seen as an unavoidable side-effect of its function to protect other targets 

(e.g., LDL) from oxidative damage. Nevertheless, recent literature has provided 

compelling evidence that upon oxidative modification of HDL, these lipoproteins 

not only lose important protective functions, but also acquire severe pro-

inflammatory and pro-thrombotic properties. In detail, it could be shown that 

oxidatively modified HDL interfere with reverse cholesterol transport, activate 

mitogen-activated protein kinase and upregulate the expression of 

cyclooxygenase-2, plasminogen activator inhibitor-1 and matrix-degrading 

proteases in endothelial cells (reviewed by ANSELL et al.138) 

In light of the redox-sensitive nature of platelet function and as there are only 

very limited data concerning the impact of oxidatively modified HDL on platelets, 

it was the main aim of this work to also ascertain the effects of hypochlorite 

oxidised HDL on platelet function. 

This work shows that upon oxidative modification HDL not only lose their 

platelet-inhibitory properties but even gain platelet activating properties. 

Hypochlorite-modified HDL significantly amplify degranulation induced by 

classical agonists (ADP, thrombin, collagen), whereas nHDL from the same 

donor display augmenting effects on agonist-induced platelet activation. 

Subsequently it could be shown that hypOxHDL per se are able to trigger 

platelet aggregation and platelet activation in a dose- and modification-

dependent way. 

HDL modification with a 75-fold molar excess of hypochlorite over HDL is 

sufficient to invert their protective impact on platelet activation. 

Upon oxidation by hypochlorite, HDL are able to induce GPIIb/IIIa activation and 

immediate intraplatelet calcium influx as well as platelet aggregation and 

degranulation (proven by surface expression of P-selectin and granulophysin). 

Moreover, hypOxHDL are able to reduce the amount of PGE1-induced Ser 239 

VASP phosphorylation.  

All these platelet activating effects induced by hypOxLDL can be impaired by 

native HDL or by elimination of chloramines in hypOxHDL by means of 

methionine treatment. Furthermore, maleylated human serum albumin that also 
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interferes with binding of hypOxHDL to the platelet surface strongly augments 

the ability of hypOxHDL to induce platelet activation. 

In line with these findings that strongly argue for a role of specific (and 

presumably chloramine-mediated) binding in the observed platelet-stimulating 

effects it could also be shown that platelet aggregation as well as activation 

induced by hypOxHDL can be totally inhibited by blocking an epitope on CD36 

responsible for binding of oxidised LDL, indicating that interaction of hypOxHDL 

with CD36 is necessary for platelet activation. 

In line with results of binding studies performed in other cell types where CD36 

has been shown to bind (copper) oxidised HDL139, preliminary results of binding 

studies in platelets suggest that CD36 might be the only binding site for 

hypOxHDL. Moreover, oxidised HDL seem to bind to the same domain of CD36 

as oxidised LDL. 

Taken together it can be stated that native HDL have a protective impact on 

platelet aggregation and activation. These effects invert upon oxidative 

modification of HDL and oxidised HDL per se are able to trigger platelet 

aggregation and activation. 

The finding that oxidation by the in vivo occurring oxidant hypochlorite converts 

HDL into a strong platelet agonist represents an important finding. 

Myeloperoxidase and myeloperoxidase-derived hypochlorite play a central role 

in atherosclerosis and (other forms of) systemic inflammation and these 

diseases coincide with enhanced platelet reactivity. Local concentrations of 

hypochlorite at sites of acute inflammation have been calculated to be 340µM 

and higher140. Therefore, the extent of oxidative modification of hyp-OxHDL 

used in this study would be estimated to be roughly comparable to the degree 

of (subendothelial) HDL modification that might occur in vivo. 

The in vivo formation of oxidised HDL might contribute to platelet hyperreactivity 

observed in conditions of systemic oxidative stress and might also play an 

important role in thrombus formation upon atherosclerotic plaque rupture. 
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Platelets and low density lipoproteins 

It has been known for many years that platelets from hyperlipidemic patients are 

hyperreactive141 and that LDL from patients with homozygous familial 

hypercholesterolemia show enhanced susceptibility to oxidative modification142.  

The fact that oxidative modification renders LDL atherogenic is undoubted but 

the role of native LDL is still unacknowledged. In vitro studies with human 

platelets revealed controversial results of the actions of native LDL. Therefore, 

their actions remain still unclear.  

The results demonstrated in this work show that LDL are able to impair platelet 

activation induced by submaximal concentrations of classical agonists in a dose 

dependent way. Moreover, in the presence of nLDL, platelets show an increase 

in PGE1-induced VASP phosphorylation. These results suggest that unmodified 

LDL do not bear any platelet activating properties, in contrast even inhibiting 

actions on human platelets could be ascertained.  

Upon oxidative modification LDL are able to trigger platelet activation per se. 

Amounts as little as 5µg/ml of oxidised LDL are able to activate platelets and a 

100-fold molar excess of hypochlorite over LDL is sufficient to invert their 

protective function and stimulate platelets. 

Our findings that hypOxLDL independently trigger platelet aggregation and 

induce P-selectin surface expression is in line with other reports23, 77, 99. 

Moreover, hypochlorite-modified LDL elicit GPIIb/IIIa activation and induce 

surface expression of CD40L in human platelets. Furthermore, oxidised LDL are 

also able to counteract PGE1–induced VASP phosphorylation. 

Upon treatment with methionine or coincubation with native HDL the platelet 

activating properties of hypOxLDL are strongly reduced, whereat HDL2, which 

contains more Apo E, seems to bear stronger platelet inhibiting capacities than 

HDL3.  This is in line with results of experiments on ADP induced platelet 

aggregation by other groups87, which characterised the Apo E content as the 

responsible factor for the inhibitory action of HDL on ADP-induced platelet 

aggregation.   

Moreover the effects of hypOxLDL could be inhibited by blocking binding of 

hypOxLDL to the platelet surface by means of mHSA. Furthermore, blocking of 
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amino acids Gln155 to Lys183 on CD36 by monoclonal antibody FA6.152 

inhibits the actions of hypOxLDL, which reveals the importance of this 

scavenger receptor for intracellular signal transduction triggered by hypOxLDL.  

Also in pre-activated platelets which are reported to express LOX-179, another 

potential receptor candidate for oxidised LDL, an essential role of CD36 in the 

process of hypOxLDL induced platelet activation is without controversy.  

Moreover binding characteristics of oxidised LDL to human platelets were 

investigated.  

The dissociation constant of hypOxLDL binding to human platelets was 

calculated to be 10.3 x 10-8M, what represents a virtually identical affinity as that 

reported for copper oxidised LDL (9.6 x 10-8M)122. 

Binding of oxidised LDL to human platelets could be successfully displaced by 

native HDL, mHSA and polyclonal anti CD36 antibody as well as a monoclonal 

antibody directed against the domain of amino acids 155-183 of CD36. Our 

results clearly argue for a central role of CD36 for the interaction of platelets 

with OxLDL. 

Taken together these observations suggest that LDL generate platelet activating 

properties only upon oxidative modification. In their native form LDL are able to 

inhibit platelet activation, while oxidised LDL act as strong platelet agonists by 

inducing activation, granule secretion and platelet aggregation. The fact that 

hypOxLDL upregulate platelet CD40L expression is of special interest since 

CD40L is a powerful stimulus for oxidative stress143. Our findings further 

underline the central importance of platelets and (hypochlorite) oxidised LDL to 

atherogenesis, as CD40L is able to elicit inflammatory and pro-thrombotic 

responses which favour and accelerate atherosclerotic progression144.  
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5 Summary 

Besides their important function in primary haemostasis and coagulation, 

platelets and their activation state play a pivotal role in the initiation and 

progression of atherosclerotic disease. The haem-enzyme myeloperoxidase 

and the myeloperoxidase-derived oxidant hypochlorite play a central role in 

atherosclerosis and in (other forms of) systemic inflammation that coincide with 

enhanced platelet reactivity. Once activated, platelets elicit inflammation as well 

as thrombus formation and subsequent occlusion of blood vessels. 

A wealth of evidence indicates that lipoproteins, especially low density 

lipoproteins (LDL) and high density lipoproteins (HDL), directly influence the 

activity state of platelets. It is generally accepted that high plasma levels of HDL 

inversely correlate with platelet hyperreactivity, whereat plasma levels of LDL 

show the opposite effect. Since hypercholesterolemic patients also show 

enhanced susceptibility to oxidative lipoprotein modification, it remains unclear if 

the underlying mechanism of platelet activation in these patients is a 

consequence of lipoprotein oxidation. In vitro studies on the effects of native 

LDL on platelet function revealed inconsistent results, while oxidised LDL are 

accredited platelet activating functions. 

Results of this study indicate that not only native HDL but also native LDL have 

inhibitory effects on platelet activation. Both classes of lipoproteins are able to 

impair agonist-induced platelet aggregation and degranulation. Moreover they 

render platelets more sensitive towards prostaglandins that impede platelet 

function, proven by enhanced PGE1-induced VASP phosphorylation. Upon 

oxidative modification of lipoproteins, which was performed by the in vivo 

occurring oxidant hypochlorite, not only LDL but also HDL invert their function 

and acquire the ability to independently trigger platelet aggregation, 

degranulation, GPIIb/IIIa activation and decrease of VASP phosphorylation. 

Moreover, hypochlorite-oxidised LDL upregulate expression of platelet CD40L. 

The latter is of special interest since (soluble) CD40L elicits inflammatory and 

pro-thrombotic responses that favour and accelerate the progression of 

atherosclerosis.  
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The results shown within this work clearly argue for a central role of scavenger 

receptor CD36 in the interaction of platelets with oxidised lipoproteins, since 

blocking of this receptor leads to a strong attenuation of all platelet-activating 

effects. Amino acids 155-183 of CD36 seem to be the responsible domain for 

these effects. Moreover, specific binding of these oxidised lipoproteins could be 

demonstrated, which seems prerequisite for subsequent signal transduction. 

These novel findings further support the model that oxidative stress is closely 

related to potentially atherogenic events and that the interaction of platelets and 

lipoproteins might therefore play a pivotal role in the progression of these 

events. Notably, local concentrations of hypochlorite at sites of acute 

inflammation have been calculated to be 340µM and higher. Therefore, the 

extent of oxidative modification of the lipoproteins used in this study would be 

estimated to be roughly comparable to the degree of (subendothelial) 

lipoprotein modification that might occur in vivo. 
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6 Zusammenfassung 

Neben ihrer zentralen physiologischen Bedeutung für die primäre Hämostase 

und die plasmatische Blutgerinnung spielen Thrombozyten und ihr 

Aktivierungszustand eine entscheidende Rolle in der Entstehung und dem 

Fortschreiten atherosklerotischer Erkrankungen. 

Das Enzym Myeloperoxidase und das von diesem Enzym gebildete starke 

Oxidans Hypochlorit spielen eine zentrale Rolle in der Genese der 

Atherosklerose und anderer Formen inflammatorischer Erkrankungen, welche 

auch mit einer erhöhten Thrombozytenreaktivität einhergehen. Dies ist vor 

allem insofern interessant, als aktivierte Thrombozyten selbst 

Entzündungsreaktionen hervorrufen können. 

Eine Vielzahl an Befunden weist darauf hin, dass Lipoproteine - speziell LDL 

und HDL – imstande sind, die Thrombozytenaktivierung direkt zu beeinflussen. 

Hohe Plasmakonzentrationen von HDL gehen mit einer verminderten 

Thrombozytenreaktivität einher, während erhöhte Plasmakonzentrationen von 

LDL eng mit Thrombozytenhyperreaktivität korrelieren.  

Da jedoch Lipoproteine von hypercholesterinämischen Patienten eine erhöhte 

Anfälligkeit für oxidative Modifizierung zeigen bleibt unklar, ob die in diesen 

Patienten zu beobachtende Thrombozytenaktivierung primär eine Folge der 

erhöhten LDL Konzentrationen oder eine Konsequenz der Lipoproteinoxidation 

ist.  

In vitro Studien zeigten bislang widersprüchliche Effekte von nativen LDL auf 

die Thrombozytenfunktion, während für oxidierte LDL eindeutig thrombozyten-

aktivierende Wirkungen nachgewiesen werden konnten. 

In dieser Arbeit konnte gezeigt werden, dass nicht nur native HDL sondern auch 

native LDL einen inhibierenden Effekt auf Thrombozyten ausüben. Beide 

Lipoproteinklassen sind im Stande die durch verschiedene Agonisten 

verursachte Thrombozytenaggregation und Degranulierung abzuschwächen. 

Darüber hinaus verstärken native Lipoproteine die Thrombozyten-hemmende 

Wirkung von Prostaglandin, was durch Steigerung der PGE1-induzierte VASP 

Phosphorylierung nachgewiesen werden konnte.  
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Nach Oxidation der Lipoproteine durch das in vivo vorkommende Oxidans 

Hypochlorit verlieren sowohl LDL als auch HDL ihren hemmenden Einfluss auf 

die Thrombozytenfunktion und entwickeln die Fähigkeit unabhängig von 

anderen Agonisten Thrombozytenaggregation, Degranulierung und GPIIb/IIIa 

Aktivierung hervorzurufen, wie auch die intrazelluläre VASP Phosphorylierung 

zu reduzieren. Darüber hinaus sind Hypochlorit-oxidierte LDL im Stande, die 

Expression von CD40L an der Thrombozytenoberfläche zu induzieren. Dieser 

Befund ist auch insofern von großem Interesse, als CD40L Entzündungen und 

prothrombotische Antworten hervorruft, welche für das Fortschreiten von 

atherosklerotischen Geschehnissen mitverantwortlich sind.  

Die in dieser Arbeit präsentierten Daten weisen darauf hin, dass oxidierte 

Lipoproteine eine spezifische und sättigbare Bindung an die Thrombozyten-

oberfläche zeigen und dies dürfte die Grundlage für die beobachtete 

Signaltransduktion darstellen. Der Scavenger Rezeptors CD36 spielt 

offensichtlich eine zentrale Rolle in der Interaktion von Thrombozyten mit 

oxidierten Lipoproteinen, da das Blocken dieses Rezeptors zu einer starken 

Abschwächung der biologischen Wirkung oxidierter Lipoproteine auf die 

Thrombozyten führt. Konkret konnte eine Domäne auf CD36 (Aminosäuren 155 

bis 183) identifiziert werden, welche für den Bindungsvorgang und daran 

anschließende Signaltransduktion essentiell ist. 

Die hier vorgestellten Befunde unterstützen das Modell, dass oxidativer Stress 

in engem Zusammenhang mit (potentiell) pro-thrombotischen und pro-

inflammatorischen Folgereaktionen steht und dass hierbei Thrombozyten wie 

auch Lipoproteine eine entscheidende Rolle einnehmen. 

Vor dem Hintergrund von Berechnungen der lokalen Konzentrationen von 

Hypochlorit an Orten akuter Entzündung (340µM und höher) ist festzuhalten, 

dass das Ausmaß der Modifizierung der in dieser Arbeit verwendeten oxidierten 

Lipoproteine im Bereich des sich aus diesen Berechnungen für in vivo 

Verhältnisse ergebenden (subendothelialen) Modifikationsgrades liegt.  
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