

DIPLOMARBEIT

Stratigraphie und Sedimentpetrographie der Gesteine der Flyschzone im Lainzer Tunnel

angestrebter akademischer Grad

Magister der Naturwissenschaften (Mag. rer.nat.)

Verfasser: Matrikel-Nummer: Studienrichtung: Betreuer: Clemens Pfersmann 0103792 A 431 Geologie (Stzw.) Univ. Prof. Dr. M. Wagreich

Wien, im Jänner 2009

<u>Inhalt</u>

Zusammenfassung, Abstract	3
1. Einleitung	5
Dank	7
2. Überblick Geologie	8
2.1 Geologische Einführung	8
2.2 Geologie im Tunnelverlauf	11
2.3 Paläogeographie	12
2.4 Schichtfolge	14
2.4.1 St.Veiter Klippenzone	14
2.4.2 Kahlenberger Decke	14
3. Zuordnung der Tunnelabschnitte zu Formationen	17
3.1 Tiefere Kahlenberg-Formation	17
3.2 Hütteldorf-Formation	17
4. Gesteinsinventar	23
4.1 Kalkstein	
4.2 Kalkmergel/ Mergelkalk	23
4.3 Mergel/ Tonmergel/ Mergelton	24
4.4 Sandstein	25
4.5 Tonstein	25
4.6 Fragliche vulkanische Asche	26
5. Lithofaziesinterpretation	
6. Spezielle Gesteinsuntersuchungen und Petrographie	
6. 1 Karbonatanalyse	
6.1.1 Methodik	
6.1.2 Ergebnisse	28
6.2 Schwermineralanalyse	29
6.2.1 Methodik	29
6.2.2 Probenbeschreibung	
6.2.3 Ergebnisse	31
6.3 Dünnschliffe	31
6.3.1 Methodik	31
6.3.2 Schliffbeschreibung	32

6.4 Biostratigraphie
6.4.1 Nannofossilien
6.4.2 Mikrofauna
6.4.2.1 Methodik
6.4.2.2 Ergebnisse
6.5 Röntgendiffraktometrie
6.5.1 Methodik
6.5.2 Ergebnisse
6.6 Geochemie
6.6.1 Beschreibung42
6.6.2 Ergebnisse42
6.7 Tonmineralogie44
6.8 Ichnofossilien44
6.8.1 Beschreibung44
6.8.2 Interpretation44
7. Tunnelband45
8. Tektonik47
9. Zusammenfassung der Ergebnisse56
10. Literaturverzeichnis
11. Abbildungsnachweis59
12. Beilagen:
12.1. Beilage 1 Probenliste-Karbonatgehalt60
12.2. Beilage 2 Probenhäufigkeit / CaCO3 –Diagram 0-500m64
12.3. Beilage 3 Probenhäufigkeit / CaCO3 –Diagram 500-1000m64
12.4. Beilage 4 Daten Geochemie65
12.5. Beilage 5 Tonmineralogie66
12.6. Beilage 6 Schichtflächen Diagramme LT3367
12.7. Beilage 7 Probenliste Schichtflächen68

Zusammenfassung

Das Baulos LT33 des Lainzer Tunnels der ÖBB Infrastruktur Bau AG bildet einen Teil der Verbindungstunnelstrecke zwischen West- und Südbahn. Dieser Abschnitt, der seit März 2007 ausgebaut wird, liegt zur Gänze in den Gesteinen der Flysch- und der Klippenzone. Der bergmännisch aufgefahrene Tunnelabschnitt wird der Kahlenberger Decke und der St. Veiter Klippenzone zugeordnet, wobei sich der Flyschabschnitt in Hütteldorf-Formation und Tiefere Kahlenberg-Formation untergliedert.

Von Auhof beginnend wurden von NW gegen SE im beprobten ersten Kilometer des Tunnels ausschließlich Flyschgesteine, vorwiegend der Kahlenberg-Formation, angefahren. Die vorgefundenen Gesteine sind vorwiegend Pelite und makrofossilleer, führen aber Lebensspuren. Abschnittsweise wurden gradierte Turbititsandsteinbänke mit Rippel- und Schrägschichtung angetroffen.

Die der Tieferen Kahlenberg-Formation zugeordneten Bereiche wiesen hellgraue bis graublaue, feinkörnige, plattige bis bankige, harte Kalksandsteine, hellgraue, harte Kalkmergel und graue, graugrüne bzw. graubraune Tonmergel/ Tonsteine auf. Karbonatgehalte zwischen 50 und 70% sind typisch für die Kalkmergel der Kahlenberg-Formation, während karbonatfreie Tonsteine nur sehr untergeordnet auftreten. Nannofossilproben weisen auf ein Campanium-Alter hin, wobei zu Beginn des Tunnels Ober-Campanium mit den Nannozonen CC20-22ab nachzuweisen ist, während ab Vortriebsmeter 541,9 Unter-Campanium mit den Nannozonen CC18b-19 dominiert. Ältere Anteile konnten nicht festgestellt werden, was allerdings auch auf fehlende Karbonatgehalte in tonigen Strecken zurückzuführen sein könnte.

Die angetroffenen Gesteine, die der Hütteldorf-Formation (im allgemeinen Cenomanium-Santonium) zugeordnet wurden, bestanden überwiegend aus dunkelrot bis rotbraun, grünlich bzw. grau gefärbten Tonstein-/Tonmergel-Abfolgen. Die Tonsteine sind überwiegend karbonatfrei, nur wenige Lagen zeigen signifikante Karbonatgehalte bis ca. 20%. Weiters traten sandig gebänderte Lagen und Kalksandsteinbänke auf. Die pelitischen Bereiche waren zumeist intensiv zerschert und von Harnischflächen durchsetzt. Innerhalb der Hütteldorf-Formation konnten auch weißgraue Tuffitlagen gefunden werden.

Die Gesteine der Tieferen Kahlenberg-Formation und der Hütteldorf-Formation sind intensiv zerschert, verfaltet und miteinander verschuppt. Sprödbrüchige, härtere Gesteine erfuhren durch tektonische Prozesse eine Gefügeauflockerung bzw. eine Auflösung des Schichtverbandes in kompetentere Schollen, eingebettet in eine inkompetente, zerscherte tonige Matrix.

Abstract

Tunnel section LT33 of the Lainzer Tunnel, built by ÖBB Infrastruktur Bau AG, is one part of the new connection between western and southern rail route.

This section, build since march 2007, cuts through rocks of the Rheno-Danubian Flysch units and the Klippenzone.

More in detail, the section LT33 is divided into the Kahlenberg Nappe, consisting of Kahlenberg Formation and Hütteldorf Formation, and rocks belonging to the St.Veit Klippenzone.

In the first 1000m of the tunnel, heading towards SE,only rocks of the Flysch units, mainly Kahlenberg Formation, were found.

The rocks consisted mainly of pelites, without makrofossils, but bearing tracefossils. In some sequences graded turbiditic sandstones, showing cross-stratification, were found. Parts associated with the Kahlenberg Formation consisted of lightgrey to greyblue fine-grained, banked, hard calcareous sandstone, lightgrey hard lime marls and grey,greygreen or greybrown shale marls/ shales. Typical carbonate-contents lie between 50 to 70% (lime marls), carbonate-free shales occure very seldom.

Nannofossils found, show Campanium-ages, starting with nannozones CC20-22ab (Upper-Campanium) in the beginning of the tunnel, changing from 541,9m on to nannozones CC18b-19 (Lower-Campanium).

Older parts could not be found, but that could be caused by the low carbonate-contents in the shale-rich sections of the tunnel.

Rocks associated with the Hütteldorf Formation consisted mainly of darkred to redbrown, green or grey coloured shales/ shale marl sequences. The shales beared mainly no carbonate– contents, seldom some layers showed contents up to 20%. Additionally thin, stratified sandstone-layers and calcareous sandstones occured. The pelitic parts were mostly tectonically dissociated.

Whithin the Hütteldorf Formation some whitegrey volcanic ash-layers were found. In general the rocks of the Kahlenberg Formation and the Hütteldorf Formation wer strongly deformed, folded and partly mixed up.

1. Einleitung

Diese Diplomarbeit wurde auf Initiative und unter Betreuung von Univ. Prof. Dr. M. Wagreich am Department für Sedimentologie und Geodynamik der Universität Wien durchgeführt. Mit Beginn der Vortriebsarbeiten im Baulos LT33 im März 2007 wurden über eine Länge von 1000m Proben gewonnen Die Probennahme erfolgte durch den Verfasser dieser Arbeit in kurzen, gleichmäßigen Abständen (ca. alle 20-30m) möglichst direkt aus der Ortsbrust. Dezember 2007 endete die Probennahme bei Vortriebsmeter 1006,2. Ziel der Untersuchungen war die einmaligen Aufschlußverhältnisse im Lainzer Tunnel zu nutzen um stratigraphische und sedimentpetrographische Daten der Kahlenberg-Formation und Hütteldorf-Formation zu gewinnen.

Abb.1 Streckenkarte des Lainzertunnels

(www.oebb.at/bau/de/Servicebox/News_und_Services/Printprodukte/Streckenkarte_Lainzertu nnel.pdf)

Dank

Ich möchte meinem Mentor Univ. Prof. Dr. M. Wagreich für die ausdauernde Betreuung und Unterstützung danken. Ao. Univ.-Prof. Dr. S. Gier half mir bei der Durchführung der röntgendiffraktometrischen Untersuchungen und bei petrologischen Fragen. Ohne die Zustimmung der ÖBB wäre die Probennahme und diese Arbeit unmöglich gewesen, ich danke vor allem Dipl.-Ing. Thomas Buismann und Dipl.-Ing. Wolfgang Pistauer (ÖBB -Infrastruktur Bau AG). Die Mitarbeiter des Büros Bechthold, Mag. M. Sapp, Mag. G. Koch und Dr. B. Haunschmid haben mich in die Materie der Tunnelgeologie eingeführt und bei der Probennahme immer tatkräftig unterstützt. Ihnen allen möchte ich meinen herzlichen Dank aussprechen.

Meiner Kollegin und Freundin V. Koukal schulde ich für ihre Unterstützung sowohl auf der Baustelle als auch bei zahlreichen Arbeiten im Labor Dank.

Ich möchte aber auch meiner Mutter danken ohne deren Hilfe dieses Studium und diese Arbeit nicht möglich gewesen wäre.

2. Überblick Geologie

2.1 Geologische Einführung

Im Ablauf der Gebirgsbildung der Ostalpen entstand im Jura der Penninischen Ozean zwischen dem Mittelpenninikum und dem Unterostalpin, während die Schließung des triadischen Tethysgolfs zu Kollisionsvorgängen im Ostalpinen Raum führte. Dadurch entstand ein Sedimentationsraum, das Südpenninikum (Faupl 2000).

Die Gesteine der Klippenzonen wurden früher als die der Flyschzone gebildet. Die basalen Sedimente der Grestener, St. Veiter- und Sulzer Klippenzone auf dem südlichen Rand des europäischen Schelfs beginnen mit Obertrias und die Schichtfolge reicht bis ins Neokom. Früheste Sedimente der Ybbsitzer Klippenzone liegen auf ozeanischer Kruste und beginnen im oberstem Mitteljura. Mit Beginn der Eoalpinen Orogenese in der Unterkreide bildete sich das Nordpenninikum mit der Rhenodanubischen Flyschzone. In Tiefseetrogsystemen kamen auch die Hüllensedimente der Ybbsitzer-, St. Veiter- und Sulzer Klippenzonen zur Ablagerung. Die Sedimente der Rhenodanubischen Flyschzone reichen von der Unterkreide bis ins unterste Obereozän. Im nördlich gelegenen Ultrahelvetikum, den Hüllen der Grestenerund Hauptklippenzone entwickelte sich eine geringmächtige Buntmergelserie, die teilweise unterhalb der CCD Grenze abgelagert wurde.

Die Flyschzone und die Klippenzonen wurden im unteren Eozän bis unterem Miozän durch die Alpidische Orogenese stark deformiert und vor den Kalkalpen hergeschoben. Mit Hilfe von Bohrungen, z.B. Berndorf 1 oder Harrersdorf 1, konnten auch Gesteine der Flyschzone unterhalb der Kalkalpen und im Untergrund des Wiener Beckens nachgewiesen werden (Wessely 2006).

Die Flyschzone des Wienerwaldes ist der östlichste Teil der WEW-ENE streichenden Rhenodanubischen Flyschzone, die sich von Vorarlberg bis Wien erstreckt. Die Flyschzone setzt sich nördlich der Donau obertags im Bereich des Bisamberg fort. Im Gegensatz zur westlichen Flyschzone, die durch die eigenständige Nordzone und die Hauptflyschdecke vertreten wird, ist die östliche Flyschzone ab der Traisen vielfältiger entwickelt und mit rund 20 km N-S Erstreckung breiter angelegt.

Die östliche Flyschzone besteht aus vier tektonischen Haupteinheiten: der Nordrandzone, der Greifensteiner Decke, der Laaber Decke und der Kahlenberger Decke mit Satzbergzug. Zusätzlich schließt sich noch die St. Veiter Klippenzone im Südosten der Kahlenberger Decke an. Die Nordrandzone wird südlich von der Greifensteiner Decke begrenzt, welche ihrerseits an die Grestener Klippenzone, welche der Hauptklippenzone entspricht, im Süden stößt. Die Kahlenberger Decke schiebt sich im östlichen Wienerwald zwischen Greifensteiner Decke und Hauptklippenzone. Die Kahlenberger Decke wird in einen nördlicheren Teil (Kahlenberg Zug genannt), mit nördlichem Kahlenberg Zug und südlichem Sieveringer Zug, und einem südlicheren Teil (Satzbergzug genannt) gegliedert. Die Laaber Decke, als geographisch südlichstes Element der Flyschzone, grenzt sowohl an die Hauptklippenzone als auch die Kahlenberger Decke mit Satzbergzug und St. Veiter Klippenzone. Die Flyschzone überlagert die subalpine Molasse und stößt an ihrer Front im Norden auf känozoische Molasseglieder (Faupl 1996).

Abb.2 Geologische Übersichtskarte des Wienerwaldes (Wessely 2006)

2.2 Geologie im Tunnelverlauf

Das Baulos LT33 des Lainzer Tunnels liegt zur Gänze in den Gesteinen der Flysch- und der Klippenzone. Dieser Bereich wird der Kahlenberger Decke und der St. Veiter Klippenzone zugeordnet, wobei sich hier die Kahlenberger Decke in Hütteldorf-Formation (Wagreich 2003) und Tiefere Kahlenberg-Formation (z.B. Tollmann 1985) untergliedert. Die Ausrichtung des Tunnels liegt NW-SE, bei 136°.

Abb.3 Streckenverlauf des Lainzer Tunnels (Baulos LT33) Strecke entspricht ca.3 km (Grundlage Geologische Karte, Blatt Baden, Schnabel 1997)

2.3 Paläogeographie

Erste paläogeographische Anordnungen wurden von Friedl (1930) und Götzinger (1954) getroffen. Sie positionierten die Kahlenberger Decke zwischen die Greifensteiner Decke und die Laaber Decke. Die St. Veiter Klippenzone wurde als südlichstes Element angesehen. Später deuteten Prey (1975, 1979, 1993), Tollmann (1985) und Schnabel(1997,1999) die St. Veiter Klippenzone als primäre Basis des Flyschs der Kahlenberger Decke. Als Argument wurden Lagerungsverhältnisse im Wienerwaldflysch angeführt.

Faupl (1996) führt Pikrite und Chromspinell in den Schwermineralspektren in MittelkreideSchichtgliedern der Kahlenberger Decke als Beleg für ein ozeanisches Liefergebiet an.
Faupl teilt die Ybbsitzer Klippenzone und die Kahlenberger Decke mit St. Veiter Klippenzone
dem Südpenninikum zu, Laaber Decke und Greifensteiner Decke werden dem
Nordpenninikum zugeteilt.

Nach dieser Vorstellung befand sich zwischen dem passiven europäischem Kontinentalrand im Norden und dem aktiven Rand des Ostalpins im Süden ein komplexes System von Teiltrögen und Schwellen, das zeitlich versetzt wirksam war (Faupl 1996).

In Bezug auf die paläogeogaphische Lage der Laaber Decke und der Greifensteiner Decke besteht Uneinigkeit. Trautwein et al. (2001) ordnen, auf Grund von Spaltspurendatierungen und zirkontypologischen Studien, die Laaber Decke nördlich der Greifensteiner Decke ein. Inkohlungsstudien (Sachsenhofer 2000) unterstützen diese Ansicht. Andererseits könnten Karbonatgerölle in der Greifensteiner Decke, zum Teil aus dem Malm in Vorlandfazies (Hösch 1985; Faupl 1996), eine nördliche Position der Greifensteiner Decke belegen. Nach Oberhauser (1995) grenzte die Laaber Decke südlich an die Buntmergeleinheit, nördlich der Greifensteiner Decke. Die paläogeographische Abfolge der östlichen Flyschzone von Norden nach Süden wäre demnach: Buntmergelbereich – Flysch-Nordzone – Laaber Becken – Hauptflysch/Greifensteiner Becken – Kahlenberger Becken.

Bei einer solchen ursprünglichen Anordnung müsste eine extreme Divertikulationstektonik stattgefunden haben (Wessely 2006).

Abb. 4: Schematische Anordung der Ablagerungsräume und hypothetischen Liefergebiete der Flyschzone des Wienerwaldes. Richtung der Materialanlieferung (Pfeile): (1) Paleozän/ Eozän-Breccien der Buntmergelserie; (2) Greifensteiner Schichten; (3) Kaumberger Schichten und Hoisschichten; (4) Agsbachschichten; (5) Sieveringer Schichten, dickbankige Fazies; (6) Chromspinell-führende Mittelkreide der Kahlenberger Decke und Sieveringer Schichten, dünnbankige Fazies; (7) Kahlenberger Schichten.

Abb.4 Paläogeographische Vorstellung nach Faupl (1996)

2.4 Schichtfolge

2.4.1 St.Veiter Klippenzone

Die Schichtfolge der St.Veiter Klippenzone (u.a. Janoschek et al. 1956) beginnt mit groben Keuperquarziten der Ober-Trias, gefolgt von fossilreichen Kalken und Mergeln der Kössen-Formation.

Im Lias treten in der Gresten-Formation Kohle führende Sandsteine, Grestener Kalke, graue Crinoidenkalke, Mergelschiefer und Mergelkalke auf.

Die Hohenauer-Wiese-Formation (Schnabel 1997) des Doggers führt siltige

Posidonienmergel, graue mergelige Sandsteine, sandige Kalke, Crinoidenkalke,

Mergelschiefer und kieselige Tone. Mit den Rotenbergschichten finden sich rote, grüne und graue Radiolarite des Malms.

Den rötlichen, weißen oder bräunlichen Aptychenkalken der Fasselgrabenschichten wird ein Tithonium-Neokom Alter zugeordnet.

2.4.2 Kahlenberger Decke

Die Bartbergschichten (Prey 1979), eine Variante des Gaultflysches (Tollmann1985), mit Ober-Albium Alter sind im Halterbachtal durch dunkelgraue, dunkelgrüne Sandsteine und schwarze oder bunte Tone vertreten. In den Tonschiefern können Inoceramensplitter, Foraminiferen (meist Sandschaler), und eine reiche Mikrofauna gefunden werden (Wessely 2006).

Die Hütteldorf-Formation (Schnabel 1997), von Cenomanium bis Santonium reichend, besteht aus geringmächtigen, teilweise sehr groben Sandsteinen, wechsellagernd mit roten, grünlichen und grauen Ton- und untergeordnetetn Mergelsteinen. Die distal abgelagerten turbiditischen Sandsteine stehen faziell dem Reiselsberger Sandstein nahe (Faupl 1996). Detritischer Chromspinell in den Schwermineralspektren charakterisiert diese Formation. Die Typusaufschlüsse der Hütteldorf-Formation befinden sich in Hütteldorf (Typusprofil: Steinbrüche Rosentalgasse).

Im Gegensatz zur Turbiditfazies, mit 0,5-3m mächtigen Sandsteinbänken, die im Typusgebiet gut aufgeschlossen sind, sind die feinkörnigen Abschnitte nur sehr selten aufgeschlossen (z.B. im Gebiet Hochrotherd, siehe dazu Wagreich (2003).

Die stratigraphische Einteilung, z.B. mit den gefundenen Foraminiferen, ist ungenau und gestaltet sich schwierig (z.B. Prey in Plöchinger und Prey 1993). In die Hütteldorf-Formation intrudierten auch Pikrite (Faupl 1996). Müller gibt die wahre Mächtigkeit der Hütteldorf-Formation mit bis zu 500m an.

Als neues Sedimentationsmodell für die Hütteldorf-Formation wird ein großräumiges, axiales Rinnensystem innerhalb einer Beckenebenenfazies diskutiert, im Gegensatz zur klassischen Interpretation als klastischer Tiefseefächer(Wagreich 2008).

Die Kahlenberg-Formation (Götzinger 1954) reicht von Santonium bis Unter-Maastrichtium und ist eine lithofaziell der Zementmergelserie (Greifensteiner Decke) nahe stehende, distale, karbonatreiche Turbiditabfolge einer Beckenebenenfazies. Synonyme Bezeichnungen für die Kahlenberg-Formation sind Purkersdorferschichten (Brix 1970) oder Inoceramenschichten (Tollmann 1985). Im Allgemeinen sind graue, feinkörnige, plattige harte Kalksandsteine, hellgraue, harte splittrig oder muschelig brechende Kalkmergel, teilweise feinsandige, blättrige Mergel und dunkle Tonmergel charakteristisch für die Kahlenberg Schichten. Basale Teile dieser Abfolge werden Tiefere Kahlenberg-Formation (Tollmann 1985 oder auch Müller 1987) oder als Wiesenfeldschichten (Götzinger 1954) bezeichnet. Diese Serie ist, im Gegensatz zur Höheren Kahlenberg-Formation, insgesamt dünnschichtiger und frei von dickeren Sandsteinbänken (Tollmann 1985). Die Sandsteine der Kahlenberg-Formation weisen meist eine hybride Zusammensetzung und wechselnden Karbonatgehalt auf, bei der Schwermineralverteilung herrscht vorrangig Granatvormacht (Müller 1987). Unterschiede in den Verteilungsspektren sind wahrscheinlich auf Korngrößeneffekte zurückzuführen. Müller konnte eine Materialanlieferung aus Osten beobachten und gliederte vier Lithofazies aus: Klassische, meist unvollständige, distale Turbidite, eigenständige, turbiditische Calcilutitbänke, weiters, meist zum Top der vorangegangenen Lithofazies gehörigen, olivgrüne Tonsteinintervalle (nichtturbiditisch) und eine Sandsteinfazies auf die die BOUMA-Abfolge nicht anwendbar ist.

Fossilmäßig wird die Kahlenberg-Formation durch einen Reichtum an Spurenfossilien, wie z.B. *Chondrites spp.* und *Helminthoides spp.*, gekennzeichnet. Weiters wurden Inoceramen und ein Ammonit (*Pachydiscus galicianus*) in den Kahlenberger Schichten gefunden (Brix 1970). Stratigraphisch aussagekräftiger sind hier Foraminiferen (Leitfossilien leider selten), und vorgefundene Nannofossilien. Typische Aufschlüsse finden sich am Kahlenberg bzw. Leopoldsberg. Bekanntere Lokalitäten sind hierbei: Steinbruch Bisamberg/ Rehgraben, Steinbruch Leopoldsberg/ Kuchelau, Steinbruch Exelberg-Dahaberg/ Klubschießplatz und

Steinbruch Dambachgraben. Die wahre Mächtigkeit der Kahlenberg-Formation wird von Müller auf 500-600m geschätzt. Die Häufigkeit der turbiditischen Ereignisse gibt er mit einem Ereignis alle 3500-4000 Jahre an, die Sedimentationsrate für die hemipelagischen Intervalle soll 2-3cm/1000 Jahre betragen.

Von Ober-Maastrichtium bis Paleozän erstreckt sich die Sievering-Formation, eine siliziklastikareiche Turbiditabfolge. Die Sieveringer Schichten werden als Faziesvertreter der Altlengbacher Schichten betrachtet (Müller 1987). Insgesamt betrachtet handelt es sich dabei um kalkige bis mergelige Sandsteinbänke, teilweise feinbrecciös, grobkörnige, mergelig gebundene, weiche Sandsteine, graue Mergel und dunkelgraue Tonschiefer (Müller 1987). Dickbankige Bereiche weisen durch ihren Zirkonreichtum im Schwermineralspektrum auf eine Anlieferung aus dem Norden hin. Die dünnbankigen Turbiditabfolgen enthalten granatdominiertes Material, welches aus dem Süden angeliefert wurde (Faupl et al., 1970).

3. Zuordnung der Tunnelabschnitte zu Formationen

3.1 Tiefere Kahlenberg-Formation

Aufgrund der Ergebnisse der biostratigraphischen Untersuchungen und in Übereinstimmung mit der Literatur werden die grauen Sandsteine, Kalkmergel, Mergelkalke, Mergel, die dunkelgrauen Tonmergel, Mergeltone und Tonsteine, die vorrangig im nördlicheren Bereich des Tunnels angefahren wurden, der Tieferen Kahlenberg-Formation zugeordnet. Insgesamt waren diese Abschnitte, mit Bankmächtigkeiten von wenigen mm (Tonsteine) bis mehreren dm (Kalkmergel/Mergelkalke), dickbankiger ausgebildet als die der Hütteldorf-Formation. Eine Übersichtsdarstellung der Abschnitte, die der Kahlenberg-Formation zugeordnet wurden, findet sich im Kapitel Tunnelband. Insgesamt erwies sich die Kahlenberg-Formation als signifikant karbonatreicher, zumeist mit Karbonatgehahalten über 20%, siehe dazu Abb.5.

17

Abb.6 Ortsbrust (Station 417,6m) in der Kahlenberg-Formation (Blickrichtung Südost)

Abb.7 Geologische Dokumentation der Ortsbrust (Station 417,60m) in der Kahlenberg-Formation angefertigt von Michaela Sapp (Büro Bechthold)

3.2 Hütteldorf-Formation

Die fossileeren, vorwiegend rot-rotbraunen, teilweise grüngrauen Tonstein/Tonmergelabfolgen, von deutlich reduzierten Karbonatgehalten (überwiegend unter 20%, viele Proben <1%) gekennzeichnet, wurden der Hütteldorf-Formation zugeordnet. In diesen Bereichen konnte untergeordnet ein Auftreten von feinsandig-siltig gebänderten Lagen und Kalksandsteinen festgestellt werden. Diese Lagen waren, im Gegensatz zur Tieferen Kahlenberg-Formation, zumeist nur wenige cm ausgebildet. Eine Übersichtsdarstellung der Abschnitte, die der Hütteldorf-Formation zugeordnet wurden, findet sich im Kapitel Tunnelband. Abbildung 8 stellt die deutlich geringeren Karbonatgehalte der Hütteldorf-Formation dar.

Karbonatgehalte Hütteldorf-Formation

Abb.8 Karbonatgehalte der Hütteldorf-Formation

Abb.9 Ortsbrust (Station 620,10m) in der Hütteldorf-Formation (Blickrichtung Südost)

Abb.10 Geologische Dokumentation der Ortsbrust (Station 620,10m) in der Hütteldorf-Formation angefertigt von Gerhard Koch (Büro Bechthold)

4. Gesteinsinventar

4.1 Kalkstein

Konnte nur einmal, bei Vortriebsmeter 926,3 m nachgewiesen werden: harter, spröder, splittrig bis muschelig brechender feinkörniger Kalkstein.

Die grau bis hellgrauen Schichten wiesen eine Mächtigkeit von ca. 20-60 cm auf.

Die Identifizierung erfolgte über die Karbonatanalyse, mit einem CaCO₃ –Gehalt von 96,6%.

4.2 Kalkmergel/Mergelkalk

Hartes, sprödes, splittrig bis muschelig brechendes Material.

Dünn bis dickbankige Lagen im dm-Bereich, mit charakteristischerweise grau bis hellgrauer Färbung. Typische Karbonatgehalte liegen zwischen 50% und 70%.

Abb.11 Kalkmergel Vortriebsmeter 162,3 (untere Bildkante: ca. 20cm)

4.3 Mergel/ Tonmergel/ Mergelton

Die karbonatreicheren Proben weisen eine graue Färbung auf, während Tonmergel und Mergeltone zunehmend dunklere Graufärbungen aufweisen. Mit abnehmendem Karbonatgehalt nimmt sowohl die Härte als auch die Mächtigkeit der einzelnen Bänke ab. Öfters kann Bioturbation (vorwiegend *Chondrites spp*.) beobachtet werden, seltener finden sich basale Strömungsmarken.

Mergel kommen teilweise an der Basis feinsandig laminiert vor.

Abb. 12 Tonmergel-Mergel-Wechselfolge Vortriebsmeter 457,4 Mergel feinsandig laminiert (untere Bildkante: ca. 20cm)

4.4 Sandstein

Die vorwiegend mittel- bis feinsandigen Sandsteine erreichen nur wenige dm Mächtigkeit. Die Färbung ist meistens grau, selten mit einer grünlichen oder rötlichen Nuance. Das spröde, harte Gestein ist häufig laminiert, teilweise ist Gradierung zu beobachten. An einigen Proben, z.B. bei Vortriebsmeter 470,4, tritt Rippelschichtung/Kreuzschichtung auf. Durchschnittliche Karbonatgehalte liegen bei ca. 50%, reichen aber von 0% bis 73%.

Abb. 13 Sandstein mit Kreuzschichtung Vortriebsmeter 463,9 (untere Bildkante: ca. 10cm)

4.5 Tonstein

Die Tonsteinlagen weisen sich durch eine sehr geringe Härte, geringe Mächtigkeit, zwischen 0,5 cm und 20 cm, und ein splittrig bis plättchenförmiges Bruchverhalten aus. In hochgradig zerlegten Bereichen kann auch eine größere Mächtigkeit erreicht werden, dort finden sich dann auch häufig Spiegelharnische. Die Tonsteine können dunkelgrau, graugrün, olivgrün, rotbraun oder dunkelrot auftreten.

Typischerweise weisen sie sehr geringe Karbonatgehalte von weniger als 5% CaCO₃ auf.

Abb. 14 Tonstein rot-grüne Wechselfolge Vortriebsmeter 539,3 mit anpolierter Fläche (untere Bildkante: ca. 10cm)

4.6 Fragliche vulkanische Asche

Von Vortriebsmeter 505,5 bis 573,1 wurde eine geringmächtige (wenige cm bis dm), weiß bis hellgraue Lage angetroffen, die häufig zerschert und teilweise unregelmäßig laminiert war. Das Probenmaterial zeigt eine feine, seidige Konsistenz und ist in Wasser dispergierbar. Der Karbonatgehalt variiert zwischen 0% und 11%.Weitere Untersuchungsergebnisse dazu finden sich im Kapitel Tonmineralogie.

Abb.15 vulkanische Aschelage Vortriebsmeter 548,4 (untere Bildkante: ca. 20cm)

5. Lithofazies interpretation

Es konnten vier Lithofazies im Tunnelvortrieb auf Grund ihrer Sedimentologie unterschieden werden.

Die erste Fazies umfasst klassische Turbidite, die vorwiegend mit unvollständiger BOUMA-Abfolge angetroffen wurden. Am häufigsten konnten die Bereiche C, D und E der BOUMA-Sequenz beobachtet werden. Selten wurden Partien beobachtet, die dem Abschnitt B zugeordnet werden konnten. Gröbere Bereiche wurden nicht angetroffen.

Eigenständige Calcilutitbänke wurden aufgrund der Ergebnisse der Karbonatanalyse als zweite Lithofazies ausgeschieden (siehe auch Müller 1987) und konnten nur einmal (Vortriebsmeter 926,3) nachgewiesen werden.

Als dritte Lithofazies wurden geringmächtige graue, nichtturbiditische Tonsteinintervalle innerhalb der Kahlenberg-Formation zugeordnet. Diese werden als hemipelagische, tonige Tiefwasserentwicklung des Beckennormalsediments interpretiert. Die Karbonatarmut kann durch die Ablagerungsbedingungen unterhalb der Calcitkompensationstiefe (CCD) erklärt werden (vergleiche Müller 1987).

Rote, nichtturbiditische, teilweise mächtigere, häufig stark zerscherte Tonsteinintervalle wurden als vierte Lithofazies ausgegliedert und sind vorwiegend der Hütteldorf-Formation zuzuordnen. Diese werden ebenfalls als feinstklastische Tiefwasserentwicklung unter der CCD interpretiert.

6. Spezielle Gesteinsuntersuchungen und Petrographie

6.1 Karbonatanalyse

6.1.1 Methodik

Über gasometrische CO₂ Bestimmungen (Müller-Gastner-Bombe) wurden die Karbonatgehalte ermittelt. Insgesamt wurden 137 Einzelanalysen durchgeführt(siehe Beilage 1).

Von dem getrockneten und mechanisch aufbereiteten Probenmaterial wurde ein Anteil eingewogen. Diese kleine Menge wurde dann in einer Müller-Gastner Bombe verdünnter Salzsäure ausgesetzt, um über den entstehenden Druck und mit Hilfe einer Eichtabelle dann den Karbonatgehalt errechnen zu können.

6.1.2 Ergebnisse

Die Karbonatanalyse ermöglichte erst die genaue lithologische Beschreibung und Bezeichnung des vorwiegend karbonathältigen Gesteinsinventars.

Nach C. W. Correns (1949) können unterschieden werden: hochprozentiger Kalkstein (bis 95 % Kalk, 5 % Ton) mergeliger Kalk (bis 85 % Kalk, 15 % Ton) Mergelkalk (bis 75 % Kalk, 25 % Ton) Kalkmergel (bis 65 % Kalk, 35 % Ton) Mergel (bis 35 % Kalk, 65 % Ton) Tonmergel (bis 25 % Kalk, 75 % Ton) Mergelton (bis 15 % Kalk, 85 % Ton) mergeliger Ton (bis 5 % Kalk, 95 % Ton) hochprozentiger Ton (bis 0 % Kalk, 100 % Ton)

Auch die Fazieszuteilung, besonders im Falle der Calcilutitbänke, stützt sich auf die Karbonatanalyse.

Als durschnittlichen Karbonatgehalt für die Kahlenberg-Formation konnte 49,6 % CaCO₃, und für die Hütteldorf-Formation 17 % CaCO₃ errechnet werden. Weiters lässt sich aus den Ergebnissen eine grobe Einteilung der Formationen ableiten, wie zum Beispiel in Abb. 5 und Abb. 8 bzw. Abb. 16 ersichtlich, und im Tunnelband (Abb. 28) veranschaulicht.

Karbonatgehalt

Abb.16 Änderung des Karbonatgehalts entlang des Tunnelverlaufs

6.2 Schwermineralanalyse

6.2.1 Methodik

Die getrockneten und mit Hilfe eines Backenbrechers zerkleinerten Proben wurden durch zusetzen von 1:1 verdünnter Essigsäure dekarbonatisiert. Das Probenmaterial konnte auf diese Art nur teilweise aufgeschlossen werden, auch der Zusatz von Wasserstoffperoxid erbrachte nur eine geringe Verbesserung. Nach Ablauf dieses Vorgangs wurde die benötigte Fraktion von 0,063- 0,4 mm nass abgesiebt. Die erneut getrockneten Proben wurden daraufhin einer gravitativen Dichtetrennung in Tetrabromäthan (2,96g/cm³) unterzogen, abgetrennt und mit Aceton gewaschen. Mit der Menge an gewonnen Schwermineralien wurden Streupräparate auf Canadabalsam (n = 1,54) hergestellt. Die anschließende Bestimmung und Auszählung der Schwerminerale erfolgte mit einem Durchlichtmikroskop.

6.2.2 Probenbeschreibung

Unter den Proben, die im untersuchten Tunnelabschnitt gewonnen werden konnten, befanden sich nur sehr wenige Sandsteine. Zusätzlich stellte die vorgefundene feine Korngröße und schlechte Aufschließbarkeit ein Hindernis für eine erfolgreiche Schwermineralanalyse dar. Folgende Proben wurden auf Schwerminerale beprobt:

5,0m links 135,0m links 2 336,7m links 2 428,8m rechts 470,4m links 1 640,6m links 2 702,6m links 3 880,4m rechts

Bis auf eine einzige Probe erwiesen sich die 8 Präparate, durch ihren extrem geringen Schwermineralgehalt, als nicht auswertbar.

In der Probe 336,7m links 2 konnten folgende Minerale nachgewiesen werden, wobei allerdings die geringe Häufigkeit eine quantitative Auswertung unmöglich machte:

Apatit

Chlorit

Chloritoid

Chromspinell

Granat

Hornblende

Rutil

Turmalin

Zirkon

6.2.3 Ergebnis

Die Probe entstammt einem Bereich der grundsätzlich der tieferen Kahlenberger Formation zugeordnet wurde. In der dort angetroffenen Ortsbrust kamen nur sehr vereinzelt geringmächtige (ca.30cm) Sandsteinlagen vor, die Hauptlithologie war zu 85% Mergel. Das Auftreten von Chromspinell könnte aber im Gegensatz zur vorgenommenen Zuteilung der Formation stehen. Häufig wird der Hütteldorf-Formation (z.B. Faupl 1996) ein erhöhtes Auftreten von Chromspinell zugesprochen. Insgesamt betrachtet könnte die geringe Häufigkeit und geringe Korngröße der Sandsteine, die auf eine distale Sedimentation hinweisen, der Grund für die geringe Schwermineralführung und für die schlechte Auswertbarkeit der Proben sein.

6.3 Dünnschliffe

6.3.1 Methodik

Aus dem vorhandenen Probenmaterial wurden bevorzugt Sandsteine/Siltsteine zur Dünnschliffuntersuchung ausgewählt. Um eine bessere Identifizierung der Minerale/Zemente zu gewährleisten, wurden die Schliffe teilweise auf Karbonat (Calcit/Dolomit-Unterscheidung mit Alizarin S und Kaliumhexacyanoferrat) gefärbt.

Folgende Proben wurden für Dünnschliffe herangezogen:

5,0m li 135,0m li 2 336,7m li 2 428,8m re 470,4m li 1 640,6m li 2 702,6m li 3 880,4m re

6.3.2 Schliffbeschreibung

Quarz wurde sowohl monokristallin als auch in Form von polykristallinen Aggregaten angetroffen. Häufig kennzeichnete die einzelnen Körner eine undulöse Auslöschung. Feldspäte wurden nur sehr selten, in sehr geringen Korngrößen gefunden, wobei der Erhaltungszustand dann sehr schlecht war. Quarze, gemeinsam mit Feldspäten, wiesen häufig Verdrängungserscheinungen/ Lösungserscheinungen auf. Diese Umwandlungserscheinungen könnten im Zuge der Diagenese durch eine Calcifizierung oder Dolomitisierung stattgefunden haben.

Ebenfalls häufig angetroffen wurden detritische Schichtminerale wie Hellglimmer, Biotit und Chlorit. Bei dieser Gruppe konnte oft eine lagenweise Anreicherung und teilweise eine Deformation der einzelnen Individuen beobachtet werden.

Gesteinsbruchstücke wurden in Form von Tonschiefern, Glimmer-Quarz-Aggregaten, polykristallinen Quarzen und Glimmeraggregaten angetroffen.

Die Schliffe erwiesen sich insgesamt als fossilarm, dennoch konnten einige planktonische Foraminiferen identifiziert werden (*Marginotruncana pseudolinneiana* und *Globotruncanita elevata*). Weitere Karbonatkomponenten, die in den Schliffen angetroffen wurden, waren nicht näher identifizierbare Bioklasten von Bivalven, Echinodermen und Lithothamnien. Ooide wurden vereinzelt angetroffen, wobei gleichermaßen terrigenes Material als auch biogenes Material als Kerne erkennbar war.

Im Gegensatz zu sehr seltenen Dolomitkomponenten wurden häufig blockige, sparitische bis mikrosparitische Komponenten angetroffen. Häufig sind diese Calcitkomponenten noch auf Grund ihrer äußeren Form als Bioklasten (Echinodermen) erkennbar.

Mikritische Komponenten, intern meist strukturlos, konnten durch ihre mehr oder weniger deutliche Abgrenzung zur Grundmasse identifiziert werden und erscheinen oft zerdrückt. Glaukonit fand sich in geringen Mengen in allen Präparaten.

Zusätzlich zu opaken Mineralien konnten sehr selten Rutil und Granat festgestellt werden. In der Matrix konnte grundsätzlich zwischen toniger, calcitischer und selten dolomitischer Grundmasse unterschieden werden.

Abbildung 14 zeigt eine Aufnahme eines bei 470,4m beprobten Sandstein, mit den oben beschriebenen Eigenschaften. Die auf Grund des Maßstabs geschätzte durchschnittliche Korngröße liegt bei ca.100µm, damit kann die Probe als Feinsandstein (0,063-0,2mm) angesprochen werden.

Abb.17 Dünnschliff eines Sandsteines, Probe 470,4/li2, gekreuzte Polarisatoren, 5-fache Vergrößerung

6.4 Biostratigraphie

6.4.1 Nannofloren

Die Untersuchung der Nannofossilinhalte wurde von Univ. Prof. Dr. M. Wagreich übernommen. Die Ergebnisse sind in Abb. 21 dargestellt.

Zu Beginn des Tunnels konnten Ober-Campanium Alter mit den Nannozonen CC20-22ab nachgewiesen werden. Ab Vortriebsmeter 541,9 m wurden Unter-Campanium Alter mit den Nannozonen CC18b-19 angetroffen. Aufgrund dieser Ergebnisse wurden jene zuvor genannten Bereiche der tieferen Kahlenberg-Formation zugeteilt.

Es konnten keine älteren Anteile festgestellt werden, das könnte auf fehlende Karbonatanteile in den tonigeren Strecken zurückzuführen sein.

Beispiele angetroffener Nannofossilien:

Abb.18 *Arkhangelskiella cymbiformis* zeigt ein Campanium-Maastrichtium Alter an. Bildhöhe: ca.10 µm

Abb.19 *Eiffellithus eximius* hört mit Ende des Campaniums auf. Bildhöhe: ca.10 µm

Abb.20 Ceratolithoides aculeus tritt im Ober-Campanium erstmals auf. Bildhöhe: ca.10 µm

	~	4	4/li2	3/3	il/.	,5/re;	.,6/li2	,7/re2	,3/re	,8/re	;,2/li2	,9/re	,5/re	,9/re	.,6/mi	;,7/li	,3/li	,6/re	,6/re	ili	,4/re	.,2/li	,4/re	,5/re		
	18/2	31/2	43,4	73,9	187	219	242	336	394	428	452	488	505	541	562	562	578	629	687	733	750	802	880	985		
Erhaltung			SS	SS	s	s	m	s	s		s			s	SS		m			s	s		s			
Häufigkeit	0	0	1/20	1/50	5	8	15	10	1/5	0	10	0	0	8	1/20	0	15	0	0	1	5	0	5	0		
Acuturris scotus						х																				
Ahmuellerella octoradiata																	х				х					
Arkhangelskiella cymbiformis					х		х				х			х			х				х					
Braarudosphaera bigelowi					х									х			х									
Broinsonia parca constricta					х	х	х	х			х						х				х		х			
Broinsonia parca parca								х			х						х				х		х			
Biscutum constans					х		х										х									
Biscutum cf. magnum																					х					
Calculites obscurus					х	х	х				х			х			х			х	х					
Calculites ovalis					х									х							х					
Ceratolithoides aculeus					х	х	х	?																		
Chiastozygus litterarius						х	х	х						х							х		х			
Cribrosphaerella ehrenbergii							х	х						х			х				х					
Cyclagelosphaera sp.																										
Cylindralithus biarcus							х										х									
Cylindralithus serratus											х			х												
Eiffellithus eximius					х	х	х	х			х			х			х				х					
Eiffellithus turriseiffelii					х	х	х	х			х			х			х				х					
Gartnerago obliquum					х		х														х					
Hexalithus gardetiae						х																				
Kamptnerius magnificus							х																			
Lithastrinus grillii			I								х			х			х									
Lithraphidites carniolensis																	х				х					
Lucianorhabdus cayeuxii					х	х	х	х			х			х			х				х		х			
Lucianorhabdus cayeuxii B					х		х				х			х							х					
Lucianorhabdus maleformis					х		х							х												
Manivitella pemmatoidea					х		х										х						х			
Marthasterites furcatus								?									х									
Microrhabdulus decoratus																	х									
Micula decussata					х	х	х	х	х		х			х			х			х	х		х			
Monomarginatus sp.																	х									
Nannoconus truitti																	x									
Prediscosphaera cretacea					x	x	x	x			x			x			x			x	x		x			
Prediscosphaera cf. majungae													_	x												
Prediscosphaera grandis						x							-	x			x									
Prediscosphaera spinosa							x							x												
Quadrum cf. gartneri						x																				
							x																			
Quadrum (cf.) trifidum						x	x						_													
Radiolithus planus						~	~										×									
Reinhardtites anthonhorus					x	x	Y							Y			x				¥					
Rhagodiscus angustus	<u> </u>		-		~	~	~				x			~			x				~					-
Rhagodiscus reniformis			-	-				\vdash			Ĥ			x				_								-
Rucinolithus sp	-	-	-	-		v					v			^			v	_								
Stradneria crenulata	-		v		v	^	v	v			Ŷ			v			Ŷ			v	v		v			
Tranolithus minimus	-	-	<u> </u>	-	^		^	<u>^</u>			<u> </u>			^			^			^	^ ¥		^		\vdash	
Tranolithus orionatus					v	v	v							v			,			v	~					
Watznaueria barnesao			v		×	× ×	~	v						× ×	v		~			~	× ×		v			
Zeugrhabdotus emborgori	-	-	^		^	^ ~	^	^						^ ~	^		^	_		^	^	_	^	_		<u> </u>
	<u> </u>		<u> </u>			~	v				v			× ~						v	v		v			<u> </u>
		-	-	-	v		X				^			~	\vdash		~			X	×		x		\vdash	
Zygouiscus erectus			v	~	X	~	X										×			X	X				\vdash	
∠yyuuiscus sp.			×	⊢×́		X	-	\vdash			\vdash														\vdash	<u> </u>
									4		a												~			
	1		side	side	22t	q	đ	22t	ដ		0-22			-15							9-15		0-15			
CC-Nanno-Zonen			Kre	Kre	20-	22	22	18-	ab		18t			18 t			18t				18 t		18 t			
-									0					_							_		_			
					φ	n	a,	15e	5		15a			15a			·15a				·15a		·15a			
UC-Nanno-Zonon					5b-	5dé	5d¢	4a-	n q		4b			3a-			4b				4b-		4b-			
	L			L	-			-	8				-					TED								L
					0.0			υ.	-0.0		NIN															
OC-Interpretation					0.0	ANIF	AIN				L	UNTERCAMPAN														

Abb.21 Probenliste Nannofossilien, Leitformen gelb hervorgehoben (Erhaltung: ss – sehr schlecht; s – schlecht; m – mäßig; Häufigkeiten in Nannofossilien pro Gesichtsfeld(er)).
6.4.2 Mikrofauna

6.4.2.1 Methodik

Das vorzerkleinerte Material wurde gesiebt (>0.3-0.9mm), mit H₂0₂ vorbehandelt und anschließend mit REWOQUAD aufgeschlossen. Die Mikrofaunen wurden von Univ. Prof. Dr. Michael Wagreich bestimmt.

6.4.2.2 Ergebnisse

Insgesamt war das so aufbereitete Material nicht ergiebig. In Probe Nr. 219,5m/re2 konnte, abgesehen von nicht aussagekräftigen Sandschalerfaunen, *Marginotruncana pseudolinneiana* identifiziert werden. Diese Art zählt zu den gekielten Planktonforaminiferen. In den Dünnschliffpräparaten konnten auch Foraminiferen festgestellt werden. Es handelt sich dabei vorwiegend um gekielte oder ungekielte Planktonforaminiferen. Zusätzlich zu *Marginotruncana pseudolinneiana*, welche ein Turonium – Campanium Alter bestätigt, konnte *Globotruncanita elevata* (O-Santonium – Campanium Alter) gefunden werden. In Abbildung 18 (Probe 470,4/li2) liegt im gekennzeichneten Bereich eine *Globotruncana arca*, der ein Santonium-Campanium Alter zugeordnet werden kann. Der Bestimmung der Foraminiferen in den Dünnschliffen haftet, auf Grund der nicht immer optimalen Schnittlage im Präparat, eine gewisse Unsicherheit an.

Abb.22 Sandstein, Probe 470,4/li2, 5-fache Vergrößerung, gefärbt, im Allgemeinen Planktonforaminiferen, im unteren rechten Quadranten befindet sich eine *Globotruncana arca*

Abb.23 Sandstein, Probe 470,4/li2, 5-fache Vergrößerung, ungefärbt, globigerinenartige Foraminifere im gekennzeichneten Bereich

6.5. Röntgendiffraktometrie

6.5.1 Methodik

Die grob vorzerkleinerten Proben wurden gemahlen und als texturierte Pulverpräparate auf die Probenträger gepresst. Die Untersuchungen wurden mit einem Philips-Röntgendiffraktometer durchgeführt.

Um Smektit von Chlorit unterscheiden zu können wurden manche Proben mit Ethylenglykol behandelt. Dadurch wird, im Gegensatz zu Chlorit, eine Expansion der Smektite erreicht. Diese Aufweitung äußert sich durch eine Verschiebung des (001)-Smektit-Peaks von 12-15,4 Å nach 16,7-17 Å.

6.5.2 Ergebnisse

Von insgesamt 22 analysierten Proben wurden 10 Proben zusätzlich mit Ethylenglykol behandelt, wobei keinerlei Veränderung der Lage der Peaks festgestellt wurde. Es konnten folgende Minerale in signifikanten Mengen festgestellt werden:

Calcit Quarz Dolomit Feldspat Chlorit/Kaolinit

Hellglimmer

Es konnten auch hier zwei Gruppen ausgeschieden werden. Die karbonatreicheren Proben wiesen einen starken Calcit-Peak auf, der bei den tonreichen Proben fehlte, siehe dazu Abbildung 24 bzw. 25.

Abb. 24 XRD-Diagramm mit texturierten Präparaten eines Mergels [(242,6 li/2) -> rote Linie] und eines Tonsteins [(562,7 re)-> blaue Linie]

Abb.25 XRD-Diagramm mit Ethylenglycol behandelten Präparaten eines Mergels [(242,6 li/2) -> rote Linie] und eines Tonsteins [(562,7 re)-> blaue Linie]

6.6 Geochemie

6.6.1 Beschreibung

Es wurden drei Proben einer geochemischen Analyse durch Ao. Univ.-Prof. Dr. F. Koller unterzogen (RFA): 515,0; 527,6 /mi und 541,9/mi. Es handelt sich dabei um Material der fraglichen Tufflage.

6.6.2 Ergebnisse

Die Proben haben offenbar einen detritären Anteil, somit sind die Gehalte an Hauptelementen, v.a. Al, Ca, Mg, nicht oder nur sehr eingeschränkt für geochemische Unterscheidungen und Klassifikationen geeignet. Im Diagramm SiO2 gegen Na2O+K2O fallen die Proben ins Andesit-Feld (Abb.26a). In einem Zr/TiO2 - Nb/Y Diagramm (Abb.26b) plotten die drei Proben im Bereich zwischen Rhyolite, Rhyodazite/Dazite und Trachyandesite. Im Diagramm Zr gegen Zr/Y (Abb. 26c) fallen die Proben ins "Within Plate Basalts" Feld, wobei man allerdings einschränken muss, dass es sich nicht um echte Basalte handelt. Jedenfalls ergibt sich ein intermediärer Vulkanismus mit wahrscheinlicher within-plate Signatur.

Abb.26a

Nb/Y

Abb.26b

Abb.26c

6.7 Tonmineralogie

Spezielle tonmineralogische Analysen der angetroffenen Lithologien hinsichtlich geotechnischen Verhalten (Quellpotential), wurden von der Universität für Bodenkultur in Wien im Auftrag der Österreichischen Bundesbahnen durchgeführt. Unter den untersuchten Proben befand sich auch Material der vermuteten Tufflage (Vortriebsmeter 505,5). Diese Probe enthielt zu 74% Schichtsilikate, wobei davon 99% als Smektit ausgewiesen wurden. Daraus resultierte auch das extrem starke Quellvermögen dieser Probe.

6.8 Ichnofossilien

6.8.1 Beschreibung

Es wurden häufig Ichnofossilien, vorwiegend in den siltig-mergeligen Bereichen, angetroffen. Soweit identifizierbar handelte es sich dabei um *Chondrites spp*. Die wurzelförmigen Fressbauten konnten sowohl sehr fein (0.1-2mm Breite) ausgebildet vorgefunden werden, als auch in deutlich stärkeren Varianten. Bei der feinen Art könnte es sich um *Chondrites intricatus BRONGNIART*, bei der breiteren Spezies um *Chondrites furcatus STERNBERG* handeln.

6.8.2 Interpretation

Die vorgefundenen Spurenfossilien lassen, übereinstimmend mit der lithologischen Interpretation, auf einen distalen, pelitdominierten Ablagerungsraum der hier angetroffenen Sedimente schließen. Müller (1987) ordnet die Ichnofossilien der Kahlenberger Decke der *Nereites*-Fazies zu.

Abb.27 Bioturbation des *Chondrites*-Typus in Mergel Vortriebsmeter 674,6 (untere Bildkante: ca. 20cm)

7. Tunnelband

Im Zuge der geotechnischen Dokumentation wurde durch die zuständigen Baugeologen ein Tunnelband generiert. Es zeigt einen horizontalen und vertikalen Schnitt durch den untersuchten Abschnitt. Soweit möglich, wurden alle zum Zeitpunkt der Fertigstellung vorhanden relevanten Daten verwertet. In groben Zügen ist daraus, mit Hilfe der zugeordneten Lithologien und der biostratigraphischen Daten, die Lage der Formationen erkenntlich (siehe dazu Abb. 27).

Abb.28 Zuordnung zu den Formationen

8. Tektonik

Insgesamt konnte eine starke tektonische Beanspruchung der einzelnen Gesteinskörper im untersuchten Tunnelabschnitt festgestellt werden. Entsprechend dem natürlichen Verhalten der Lithologien konnte unterschiedlich geartete Deformation beobachtet werden.

In Bereichen, die der Tieferen Kahlenberg-Formation zugeordnet wurden, lag meist eine mittelgradige Zerlegung mit steil stehenden \pm E-W und \pm N-S streichenden Trennflächen vor. Parallel zu den WSW bis WNW mittelsteil einfallenden Schichtflächen, siehe dazu auch Beilage 5, war bei den kalkmergeligen Lagen eine Zerlegung mit teilweise hohem Durchtrennungsgrad anzutreffen.

Die Gesteine der Tieferen Kahlenberg-Formation waren intensiv zerschert, verfaltet und teilweise mit roten Tonsteinen bis Tonmergeln der Hütteldorf-Formation verschuppt, die durch die höhere Plastizität der Tonsteine als Bewegungshorizonte gedeutet werden könnten. Einerseits bestand über weite Bereiche eine typische Wechsellagerung zwischen den feinkörnigen Tonen bis Mergeln mit Kalksandsteinbänken. Andererseits führten die tektonischen Vorgänge zu Verfaltungen, aber auch zu starker bis extremer Deformation der Gesteine, bis zu einer tektonischen Melangebildung (Kataklasite).

Diese Deformationen hatten zur Folge, dass in den einzelnen Schichtlagen der Verfestigungsgrad sehr unterschiedlich ausgebildet war. Bei Vortriebsmeter 878,7 konnten die Schichtflächen einer großen Falte mit (319/71) und (131/82) (Azimut/Dip) ermittelt werden, siehe dazu auch Abb.35 bzw. Abb.36.

Die Gesteine der Hütteldorf-Formation mit dunkelrot bis rotbraun, sowie grünlich bzw. grau gefärbten, Tonstein-/Tonmergel-Abfolgen wiesen häufig einen höheren Zerlegungsgrad als die Gesteine der Kahlenberg-Formation auf; Dies äußerte sich durch eine geringere Stabilität der Ortsbrust, insbesondere bei ungünstiger Schicht- und Harnischlage, siehe dazu Abb.29 bzw.Abb.32 und Abb.33. Durch hochgradige tektonische Beanspruchung waren diese Gesteine zu einem großen Teil engständig von Harnischflächen durchsetzt. Neben den Schichtflächen waren besonders in den geringer zerscherten Bereichen auch Trennflächen und Klüfte, die mehr oder weniger senkrecht zu den Schichtflächen orientiert waren, an der Zerlegung des Gesteinsverbandes beteiligt.

Trennflächen	Azimut	Dip
Harnisch 1	280	50
Harnisch 2	290	65
Schichtfläche	260	10
Störung	195	30

Abb.29 Trennflächen bei Vortriebsmeter 639,6 ermittelt von Michaela Sapp (Büro Bechthold)

Abb.30 Station [m]:330,70 intensive Verfaltung in der tieferen Kahlenberg-Formation (Blickrichtung: Südost)

Abb.31 Station [m]: 626,60 kleinräumige Verfaltungen in der Hütteldorf-Formation (Blickrichtung: Südost)

Abb.32 Station [m]: 639,6 Ortsbrust in der Hütteldorf-Formation vor dem Ausbruch (Blickrichtung: Südost)

Abb.33 Station [m]: 639,6 Hütteldorf-Formation: großer Ausbruch in der Ortsbrust (siehe Abb. 32) (Blickrichtung: Südost)

Abb.34 Station [m]: 780,30 tiefere Kahlenberg-Formation: kompetenterer Gesteinskörper umgeben von stärker zerlegtem Material (Blickrichtung: Südost)

Abb.35 Station [m]: 878,70 tiefere Kahlenberg-Formation: Scharnierbereich einer großen Falte Blickrichtung: Südost)

Abb.36 Station [m]: 878,70 tiefere Kahlenberg-Formation: Scharnierbereich einer großen Falte (Blickrichtung entlang der Ortsbrust -> Südsüdwest)

9. Zusammenfassung der Ergebnisse

Im Lainzer Tunnel, einem Verbindungstunnel zwischen Südbahn und Westbahn der ÖBB AG von Auhof nach Roter Berg/St. Veit, konnten Gesteine des Baulos LT33 (NW Strecke des Tunnels) von Vortriebsmeter 0 bis 1006.2 beprobt werden. Es treten ausschließlich Gesteine der Kahlenberger Decke der Rhenodanubischen Flyschzone auf, i.w. Kahlenberg-Formation und Hütteldorf-Formation.

Die angetroffenen Lithologien die der Kahlenberg-Formation zugeordnet wurden umfassen graue Sandsteine, Kalkmergel, Mergelkalke, Mergel, dunkelgrauen Tonmergel, Mergeltone und Tonsteine, die vorrangig im nördlicheren Bereich des Tunnels angefahren wurden. Insgesamt waren diese Abschnitte, mit Bankmächtigkeiten von wenigen mm (Tonsteine) bis mehreren dm (Kalkmergel/Mergelkalke), dickbankiger ausgebildet als die der Hütteldorf-Formation.

Für die Tiefere Kahlenberg-Formation konnten, in Übereinstimmung mit der Literatur (Müller 1987; Wessely 2006) Campanium-Alter festgestellt werden. Nannofossilproben weisen auf ein Campanium-Alter hin, wobei zu Beginn des Tunnels Ober-Campanium mit den Nannozonen CC20-22ab nachzuweisen ist, während ab Vortriebsmeter 541,9 Unter-Campanium mit den Nannozonen CC18b-19 dominiert. Ältere Anteile konnten nicht festgestellt werden, was allerdings auch auf fehlende Karbonatgehalte in tonigen Strecken zurückzuführen sein könnte.

Die fossileeren, vorwiegend rot-rotbraunen, teilweise grüngrauen

Tonstein/Tonmergelabfolgen, von deutlich reduzierten Karbonatgehalten (überwiegend unter 20%, viele Proben <1%) gekennzeichnet, wurden der Hütteldorf-Formation zugeordnet. In diesen Bereichen konnte untergeordnet ein Auftreten von feinsandig-siltig gebänderten Lagen und Kalksandsteinen festgestellt werden. Diese Lagen waren, im Gegensatz zur Tieferen Kahlenberg-Formation, zumeist nur wenige cm ausgebildet. Innerhalb der Hütteldorf-Formation angetroffene weißgraue Lagen wurden als Tuffite interpretiert.

Als durschnittlichen Karbonatgehalt für die Kahlenberg-Formation konnte 49,6 % CaCO₃, für die Hütteldorf-Formation 17 % CaCO₃ errechnet werden.

Im gesamten bearbeiteten Tunnelabschnitt wurde eine starke tektonische Deformation der Gesteine registriert, wodurch es oft zu einer Auflösung des Schichtverbandes kam. Hütteldorf-Formation und Kahlenberg-Formation sind streckenweise intensiv tektonisch vermengt. Anteile der St.Veiter Klippenzone konnten nicht nachgewiesen werden.

10. Literaturverzeichnis

BRIX, F. (1970): Der Raum von Wien im Laufe der Erdgeschichte. – In: STARMÜHLNER,
F. & EHRENDORFER, F. (Eds.) :Naturgeschichte Wiens, Bd. 1, 27-190, Wien –München (Jugend und Volk).

EGGER, H., Homayoun, M. & Schnabel, W. (2002): Tectonic and climatic control of Paleogene sedimentation in the Rhenodanubian Flysch basin (Eastern Alps, Austria). – Sedimentary Geology 152, 247-262.

FAUPL, P. (1996): Exkursion A 2. Tiefwassersedimente und tektonischer Bau der Flyschzone des Wienerwaldes. – In : Exkursionsführer Sediment '96, 11. Sedimentologentreffen, 32 S., Ber. 1996, 33, Wien (Geol. B.-A.).

FAUPL, P. (2003): Historische Geologie. – 2. Aufl., 271 S., Wien (Fakultas UTB).

FRIEDL, K. (1930): Zur Tektonik der Flyschzone des östlichen Wiener Waldes. – Mitt. Geol. Ges. Wien, 23, 128-141, Wien.

GÖTZINGER, G. (1954): Die Flyschzone. – In: GRILL, R. & KÜPPER, H. (Eds.): Erläuterungen zur geologischen Karte der Umgebung von Wien. – 43-97, Wien (Geol. B.-A.).

HOFMANN, Th. (1997): Begleitende geowissenschaftliche Dokumentation und Probennahme zum Projekt Neue Bahn. – Ber. der Geol. B.-A. 36, Wien (Geol. B.-A.).

HÖSCH, K. (1985): Zur lithofaziellen Entwicklung der Greifensteiner Schichten in der Flyschzone des Wienerwaldes. – Unveröff. Diss. Formal- u. Natw. Fak. Univ. Wien, 250 S., Wien.

KÜPPER, H. (1968): Geologie der österreichischen Bundesländer in kurzgefaßten Einzeldarstellungen: Wien. –Wien (Geol. B.-A.).

JAEGER, R. (1914): Grundzüge einer stratigraphischen Gliederung der Flyschbildungen des Wienerwaldes. – Mitt. Geol. Ges. Wien, 7, 122-172, Wien.

JANOSCHEK, R., KÜPPER, H. & ZIRKL, J. (1956): Beiträge zur Geologie des
Klippenbereiches bei Wien. - Mitt. Geol. Ges. Wien, 47, 235-308, Wien.
JANOSCHEK, W. & MATURA, A. (1980): Outline of the Geology of Austria and selected
Excursions. – Abh. Geol. B.-A. (26. C.G.I.), 34, 1-325, Wien.

MÜLLER, A. (1987): Zur Lithofazies und Stratigraphie der Kahlenberger Schichten der Flyschzone des Wienerwaldes. – Diss. Formal- u. Natw. Fak. Univ. Wien, 195 S., Wien.

OBERHAUSER, R. (1995): Zur Kenntnis der Tektonik und der Paläogeographie des Ostalpenraumes zur Kreide-, Paläozän- und Eozänzeit. – Jb. Geol. B.-A., 138/2, 369-432, Wien.

PREY, S.(1975): Neue Forschungsergebnisse über den Bau und Stellung der Klippenzone des Lainzer Tiergartens in Wien (Österreich). – Verh. Geol. B.-A., 1-25, Wien.

PREY, S. (1979): Der Bau der Hauptklippenzone und der Kahlenberger Decke im Raume Purkerdorf-Wienerwaldsee (Wienerwald). – Verh. Geol. B.-A., 205-228, Wien.

PREY, S. (1993): Die Flyschzone des Wienerwaldes. – In: PLÖCHINGER, B. & PREY, S.: Der Wienerwald. – Slg. geol. Führer, 59, 1-57, Berlin – Stuttgart (Borntraeger).

SACHSENHOFER, R.F. (2000): Geodynamic controls on deposition and maturation of coal in the Eastern Alps. – Mitt. Österr. Geol. Ges., 92 (1999), 185-194, Wien.

SCHNABEL, W. [Red.] (1997): Geologische Karte der Republik Österreich 1 : 50.000, Blatt 58 Baden. – Wien (Geol. B.-A.).

SCHNABEL, W. (1999): The Flysch Zone of the Eastern Alps. – In: G. W. MANDL [Ed.]: Field trip guide FOREGS Vienna – Austria `99. – Ber. Geol. B.-A.,49, 27-35, Wien.

THENIUS, E. (1974): Niederösterreich. – Geologie der österreichischen Bundesländer in kurzgefaßten Einzeldarstellungen. – 2. erw. Aufl., Wien (Geol. B.-A.).

TOLLMANN, A. (1985): Geologie von Österreich. Band 2. – 710 S., Wien (Deuticke).

TRAUTH, F. (1930): Geologie der Klippenregion von Ober-St. Veit und des Lainzer Tiergartens. – Mitt. Geol. Ges. Wien, 21 (1928), 35-132, Wien.

TRAUTWEIN, B., DUNKL, I. & FRISCH, W. (2001): Accretionary history of the Rhenodanubian flysch zone in the Eastern Alps. – Geol. Rundsch., 90, 703-713.

WAGREICH, M. (2003): Stratigraphie und Ablagerungsbedingungen der Tiefwassersedimente der Hütteldorf-Formation: Eine Bearbeitung der Typusaufschlüsse im Stadtgebiet von Wien. – A.-Ber. zum H.-Jub.-Proj. H-555,(2003), Wien.

WAGREICH, M. (2008): Lithostratigraphic definition and depositional model of the Hütteldorf Formation (Upper Albian - Turonian, Rhenodanubian Flysch Zone, Austria). – in press.

WESSELY, G. (2006): Geologie der österreichischen Bundesländer: Niederösterreich. - Wien (Geol. B.-A.).

11. Abbildungsnachweis

Alle Ortsbrustbilder, geologischen Aufnahmeblätter, die Tonmineralanalysedaten(BOKU) und Tunnelbänder wurden durch die jeweils zuständigen Baugeologen des Büros bf:gh GmbH dem Verfasser übergeben.

Abb.1:

www.oebb.at/bau/de/Servicebox/News_und_Services/Printprodukte/Streckenkarte_Lainzertu nnel.pdf

Abb.18-20 Aufnahmen der Nannofossilien wurden von Univ. Prof. Dr. M. Wagreich angefertigt.

Alle nicht gekennzeichneten Abbildungen stammen vom Verfasser selbst.

12. Beilagen

12.1. Beilage 1 Probenliste-Karbonatgehalt

						Bezeichnung	
Vortiebsmeter	Vortiebsebene	Datum	Definition	Anmerkungen	CaCo3%	(C.W.Correns1949)	Sand/Siltstein
18,00	Kalotte	09.03.2007	nr1	grau	21	Tonmergel	
18,00	Kalotte	09.03.2007	nr2	grau	7	Mergelton	
18,00	Kalotte	09.03.2007	nr3	grau	51	Kalkmergel	
18,00	Kalotte	09.03.2007	nr4	grau,spröd	67	Mergelkalk	
18,00	Kalotte	09.03.2007	nr5	grau,spröd	64	Kalkmergel	
20,80	Kalotte	10.03.2007	li	grau	57	Kalkmergel	
20,80	Kalotte	10.03.2007	re	grau	35	Mergel	
31,00	Kalotte	13.03.2007	nr1	grau,spröd	70	Mergelkalk	
31,00	Kalotte	13.03.2007	nr2	grau,Bioturbation,spröd	30	Mergel	
31,00	Kalotte	13.03.2007	nr3	grau,spröd	59	Kalkmergel	
31,00	Kalotte	13.03.2007	nr4	grau,Bioturbation,spröd	6	Mergelton	
73,90	Kalotte	23.03.2007	nr1	grau,spröd,gradiert	31	Mergel	
73,90	Kalotte	23.03.2007	nr2	grau	37	Kalkmergel	
73,90	Kalotte	23.03.2007	nr3	grau	6	Mergelton	
5,00	Strosse	30.03.2007	re	grau,Bioturbation,spröd	37	Kalkmergel	
5,00	Strosse	30.03.2007	li	grau,	22		Sandstein
15,00	Strosse	01.04.2007	mi	grau	55	Kalkmergel	
49,20	Strosse	12.04.2007	li/1	grau,spröd	70	Mergelkalk	
49,20	Strosse	12.04.2007	li/2	grau	22	Tonmergel	
49,20	Strosse	12.04.2007	li/3	grau,spröd	33	Mergel	
89,50	Kalotte	16.04.2007	re1	grau,spröd	66	Mergelkalk	
89,50	Kalotte	16.04.2007	re2	grau	47	Kalkmergel	
112,90	Kalotte	21.04.2007	re1	grau,spröd	62	Kalkmergel	
112,90	Kalotte	21.04.2007	re2	grau,spröd	59	Kalkmergel	
112,90	Kalotte	21.04.2007	li	grau,spröd	55	Kalkmergel	
112,90	Kalotte	21.04.2007	mi	grau	48	Kalkmergel	
135,00	Kalotte	06.05.2007	re	grau,spröd	71	Mergelkalk	
135,00	Kalotte	06.05.2007	mi	grau,spröd,laminiert	45		Sandstein
135,00	Kallotte	06.05.2007	li	grau,spröd	68	Mergelkalk	
154,50	Kalotte	10.05.2007	li	grau,spröd	71	Mergelkalk	
154,50	Kalotte	10.05.2007	re	grau,spröd	57	Kalkmergel	
168,50	Kalotte	13.05.2007	li	grau,spröd	56	Kalkmergel	
168,50	Kalotte	13.05.2007	re	grau,spröd	56	Kalkmergel	
187,00	Kalotte	17.05.2007	re	grau,spröd	47	Kalkmergel	
187,00	Kalotte	17.05.2007	mi	grau,spröd	61	Kalkmergel	
187,00	Kalotte	17.05.2007	li	grau	34	Mergel	
200,00	Kalotte	20.05.2007	re	grau,spröd	48	Kalkmergel	
200,00	Kalotte	20.05.2007	li .	grau	44	Kalkmergel	
219,50	Kalotte	24.05.2007	re1	grau,spröd,Bioturbation	64	Kalkmergel	
219,50	Kalotte	24.05.2007	re2	grau	17	Tonmergel	
219,50	Kalotte	24.05.2007	11	grau,sprod	50		Sandstein
235,10	Kalotte	03.06.2007	re	grau,spröd	64	Kalkmergel	
235,10	Kalotte	03.06.2007	mi	grau,sprod	67	Mergelkalk	
235,10	Kalotte	03.06.2007	11	grau,sprod	50	Kalkmergel	0
242,60	Kalotte	11.06.2007	re	grau,sprod	65		Sandstein

242,60	Kalotte	11.06.2007	li1	grau,spröd	34		Sandstein
242,60	Kalotte	11.06.2007	li2	grau	33	Mergel	
260,20	Kalotte	16.06.2007	li	grau,spröd	58	Kalkmergel	
279,70	Kalotte	20.06.2007	nr1	grau,spröd	63		Sandstein
301,80	Kalotte	27.06.2007	re	grau,spröd	57	Kalkmergel	
301,80	Kalotte	27.06.2007	li	grau,spröd	49		Sandstein
325,70	Kalotte	02.07.2007	nr1	grau,spröd	49	Kalkmergel	
325,70	Kalotte	02.07.2007	nr2	grau,spröd	55	Kalkmergel	
336,70	Kalotte	06.07.2007	re1	grau,spröd	44	Kalkmergel	
						hochprozentiger	
336,70	Kalotte	06.07.2007	re2	grau,tonig	0	Ton	
336,70	Kalotte	06.07.2007	li1	grau,spröd,laminiert	50		Sandstein
336,70	Kalotte	06.07.2007	li2	grau,spröd	33		Sandstein
356,50	Kalotte	12.07.2007	re	grau,spröd	51	Kalkmergel	
356,50	Kalotte	12.07.2007	li	grau,spröd	67		Sandstein
379,90	Kalotte	17.07.2007	re	grau,spröd	49	Kalkmergel	
379,90	Kalotte	17.07.2007	li	grau,spröd,Bioturbation	60	Kalkmergel	
394,30	Kalotte	22.07.2007	li	grau,spröd	69	Mergelkalk	
394,40	Kalotte	22.07.2007	re1	graugrün	39	Kalkmergel	
394,40	Kalotte	22.07.2007	re2	grau,spröd	34	Mergel	
412,50	Kalotte	26.07.2007	li	grau,spröd,Bioturbation	56	Kalkmergel	
412,50	Kalotte	26.07.2007	re	grau,spröd	57	Kalkmergel	
428,80	Kalotte	29.07.2007	re	grau,spröd,laminiert,gradiert	24		Sand+Siltst.
428,80	Kalotte	29.07.2007	li	grau,spröd	73		Sandstein
						hochprozentiger	
452,20	Kalotte	02.08.2007	re	graugrün,tonig	0	Ton	
452,20	Kalotte	02.08.2007	li1	grau,laminiert	64	Kalkmergel	
452,20	Kalotte	02.08.2007	li2	graugrün,laminiert	31	Mergel	
452,20	Kalotte	02.08.2007	li3	rot,grün,tonig	6	Mergelton	
470,40	Kalotte	05.08.2007	re	grau,spröd,Kreuzschichtung	64	-	Sandstein
470,40	Kalotte	05.08.2007	li1	graugrün,laminiert	34		Sand+Siltst.
470,40	Kalotte	05.08.2007	li2	grau,spröd,Kreuzschichtung	42		Sandstein
489,90	Kalotte	09.08.2007	li	rot.grün.tonig	6	Mergelton	
489,90	Kalotte	09.08.2007	re	graugrün	13	Mergelton	
505.50	Kalotte	12.08.2007	re	rot.arün.tonia	14	Mergelton	
,						hochprozentiger	
505,50	Kalotte	12.08.2007	li	rot,grün,tonig	0	Ton	
515,00	Kalotte	13.08.2007	Halde	blau,weiß,aschig	11		
527.60	Kalotte	16.08.2007	re	grau.tonig	59	Kalkmergel	
527.60	Kalotte	16.08.2007	mi	weiß.aschig	0		
,						hochprozentiger	
527.60	Kalotte	16.08.2007	li	rot.tonia	0	Ton	
541.90	Kalotte	19.08.2007	mi	blau.weiß.aschig	3		
541.90	Kalotte	19.08.2007	re	rot.arün.tonia	7	Mergelton	
541.90	Kalotte	19.08.2007	li	laminiert.grau	38	Kalkmergel	
,00						hochprozentiger	
562.70	Kalotte	23.08.2007	re	rot.grün.tonig	0	Ton	
562.70	Kalotte	23.08.2007	li	rot.grün.tonia.laminiert	29	Mergelton	
,- 2				, , , , , , , , , , , , , , , , , , ,	-	hochprozentiaer	
578.30	Kalotte	26.08.2007	re	graugrün.tonig	0	Ton	
578.30	Kalotte	26.08.2007	li	rot.arün.tonia	11	Mergelton	
,00							

						hochprozentiger
595,50	Kalotte	30.08.2007	re	rot,tonig	0	Ton
						hochprozentiger
595,50	Kalotte	30.08.2007	li	grün,	0	Ton
611,00	Kalotte	02.09.2007	re	grün,	6	Mergelton
						hochprozentiger
611,00	Kalotte	02.09.2007	li	rot,grün,tonig	0	Ton
629,60	Kalotte	06.09.2007	re1	grau,Glanzharnisch	11	Mergelton
						hochprozentiger
629,60	Kalotte	06.09.2007	re2	rot,tonig	0	Ton
629,60	Kalotte	06.09.2007	li1	rot,grün,tonig	3	mergeliger Ton
						hochprozentiger
629,60	Kalotte	06.09.2007	li2	rot,tonig	0	Ton
				-		hochprozentiger
640,60	Kalotte	09.09.2007	re	rot,grün,tonig	0	Ton
,						hochprozentiger
640.60	Kalotte	09.09.2007	li1	arau.rot.arün.tonia	0	Ton
640.60	Kalotte	09.09.2007	li2	grau.spröd	0	
,						hochprozentiger
662.60	Kalotte	16.09.2007	re	arau.rot.tonia	0	Ton
662.60	Kalotte	16.09.2007	mi	arau.rot.grün.Bioturbation	11	Mergelton
662.60	Kalotte	16.09.2007	li	grau.spröd.Bioturbation	8	Mergelton
,				3, .	-	hochprozentiger
674.60	Kalotte	20.09.2007	re	rot grau tonig	0	Ton
					-	hochprozentiger
674.60	Kalotte	20.09.2007	li	arün.tonia	0	Ton
687.60	Kalotte	23.09.2007	re	grüngrau	17	Tonmergel
687.60	Kalotte	23.09.2007	li	grüngrau.tonig	6	Mergelton
702.60	Kalotte	27.09.2007	re	grau	33	Mergel
702.60	Kalotte	27.09.2007	li2	arünrot	17	Mergelton
702.60	Kalotte	27.09.2007	li3	graurot	60	
711.60	Kalotte	30.09.2007	re	arau	57	Kalkmergel
711.60	Kalotte	30.09.2007	li	arünrot	11	Mergelton
,				g		hochprozentiger
723.60	Kalotte	04.10.2007	li	arünrot	5	Ton
723 60	Kalotte	04 10 2007	re	grau	43	Kalkmergel
733.60	Kalotte	07 10 2007	li	grau	34	Mercel
733.60	Kalotte	07 10 2007	re	grau	65	Mergelkalk
750 40	Kalotte	12 10 2007	li	grau	31	Mergel
750.40	Kalotte	12 10 2007	" re	arüprot	q	Mergelton
764 70	Kalotte	16.07.2007	ro	arau	57	Kalkmergel
764 70	Kalotte	16 10 2007	li	arau	61	Kalkmergel
780 30	Kalotte	20 10 2007	" re	grau arau Bioturbation	63	Kalkmergel
780.30	Kalotte	20.10.2007	li	grau, Biotarbation	62	Kalkmergel
100,00	Raiotte	20.10.2007	11	grau	02	hochprozentiger
802.20	Kalotte	25 10 2007	ro	arəyarüp	0	Ton
002,20	Nalotte	25.10.2007	ie.	graugrun	0	hochprozontigor
802 20	Kalotte	25 10 2007	li	arau	л	Ton
502,20	Raiotto	20.10.2007		giuu	4	hochprozentiger
831 50	Kalotte	01 11 2007	li	arau	2	Ton
834 50	Kalotte	01 11 2007	" ro	grau	7/	Mergelkalk
004,00		01.11.2007		giuu	74	morgonain

Sand+Siltst.

Sandstein

880,40	Kalotte	10.11.2007	li	grau	70		Sandstein
880,40	Kalotte	10.11.2007	re	grau	40		Sandstein
926,30	Kalotte	16.11.2007	li	grau	71	Mergelkalk	
						hochprozentiger	
926,30	Kalotte	16.11.2007	re	grau	97	Kalkstein	
						hochprozentiger	
985,80	Kalotte	23.11.2007	re	graugrün	0	Ton	
985,80	Kalotte	23.11.2007	li	grau	67	Mergelkalk	
1006,20	Kalotte	11.12.2007	re	grau	44	Kalkmergel	
1006,20	Kalotte	11.12.2007	mi	grau	62	Kalkmergel	
1006,20	Kalotte	11.12.2007	li	grau	42	Kalkmergel	

12.2. Beilage 2

0-500m

12.3. Beilage 3

500-1000m

12.4. Beilage 4 Daten Geochemie

Sample	NB	ZR	Y	SR	RB	GA	ZN	CU	NI	CO	CR	SC	V	CE
LT-														
KA515	20,1	244,9	45,8	936,1	9,5	26,1	34,2	1,0	17,7	5,8	36,8	13,3	48,6	89,4
LT-														
KA527	27,1	284,4	49,5	559,6	17,0	17,9	53,9	1,0	27,1	8,1	21,3	22,5	64,3	184,3
LT-														
KA541	25,6	258,0	33,8	769,0	22,6	29,1	54,0	1,0	19,9	9,5	20,4	20,7	54,5	113,3
Sample	BA	LA	SiO2	TiO2	AI2O3	Fe2O3	MnO	MgO	CaO	Na2O	K2O	P2O5	LOI	Total
LT-														
KA515	197,4	29,0	57,42	0,20	16,39	1,41	0,18	1,41	9,42	1,81	0,32	0,05	11,65	<u>100,26</u>
LT-														
KA527	211,9	49,5	56,13	0,33	27,86	2,14	0,02	1,92	0,88	1,55	0,55	0,07	8,88	<u>100,33</u>
LT-														
KA541	201,3	33,4	55,79	0,24	20,84	2,80	0,13	2,25	5,47	1,55	0,56	0,05	10,30	<u>99,98</u>

Quell-potential	gem. BOKU	:	gering quellfähig		stärker quellfähig	gering quellfähig	gering quelifähig	nicht quelifähig	nicht quellfähig	nicht quellfähig	gering quelifähig	gering quellfähig	stärker quellfähig	stärker quellfähig	stärker quellfähig	gering quelifähig	stärker quellfähig	and some share							
	Smektit gesam	[%]	1		5	v V					<-1 <	< 1>	2	1,2	£	¥	1,5	3,1	1,3	1,6	1,9	2,1	Ā	1,4	
	diespergier-	barer Anteil < 2µm	24,2		77,4	9,7					9,7	17,1	42,8	31,2	14,6	8,3	51,8	43,8	44,5	38,9	31,9	42,7	43,8	28,2	
		Mixed Layer	5		0	5					4	2	4	8	5	5	9	14	9	7	11	6	4	10	
_	ent	Chlorit	14		e	7					8	7	5		5	14	5	4	7	9	8	12	11	8	
SUCHUNGEN	lyse in Proz	Kaolinit	14		13	22					8	7	14	10	11	7	13	4	7	7	8	4	9	4	
EN UNTERS	mineralana	III	67		72	66					80	84	77	82	79	74	76	78	80	80	73	75	79	78	
ALOGISCH	Tor	Vermi-kulit	0		0	0					0	0													
DER MINEF		Smektit	2,5		12	2,5					2	1	2	4	3	3	3	7	3	4	9	5	2	5	
RGEBNISSE		Pyrit	1	1	2	1	1	1	1	1	1	1													
Ξ	ozent	Dolomit	2	4	0	0	0	0	0	в	0	0	9	4	٣		2	4	۲	۲	5	ы	2	5	
	nalyse in Pr	Kalzit	44	0	4	26	33	67	34	34	37	28	٢	23	28	50	17	7	1	3	2	18	10	2	
	mtminerala	Feld-späte	2	2	۲	٢	2	1	2	9	1	1	з	3	2	٢	3	4	5	4	4	3	3	5	
	Gesa	Quarz	10	42	22	28	24	5	37	25	15	25	17	15	19	10	17	17	16	17	24	16	17	18	
		Schicht- silikalte	41	51	71	44	40	26	26	31	46	45	73	55	50	39	61	68	77	75	65	60	68	70	
		Gesteinsart	zerscherter Mergel	Tonmergel		Ton-/Kalkmergel	Tonmergel	Kalkmergel/Mergel	feinsandiger Mergel	Sandstein	Tonstein/ Tonmergel	Tonstein/ Tonmergel	Tonstein/ Tonmergel	zerscherter Mergel	Tonmergel	(zerscherter) Mergel	Tonmergel	Tonstein							
	Datum	Proben- nahme	10.07.2007	09.07.2007		08.07.2007	08.07.2007	10.07.2007	09.07.2007	09.07.2007	10.07.2007	10.07.2007	11.07.2007	13.07.2007	14.07.2007	15.07.2007	19.07.2007	01.08.2007	01.08.2007	02.08.2007	08.08.2007	09.08.2007	15.08.2007	16.08.2007	
		Vortriebsm eter	345,7	342,7		197,4	197,4	345,7	342,7	342,7	237,4	237,4	351,3	360,4	365,3	369,6	390,4	445,7	445,7	450,9	484,7	488,6	522,4	527,6	

12.5.Beilage 5

Kahlenberg-Formation Vortriebsmeter 0-440

Hütteldorf-Formation Vortriebsmeter 440-735

Übergangszone Vortriebsmeter 735-810

Kahlenberg-Formation Vortriebsmeter 810-1000

Schichtflächen der Formationen im Lainzer Tunnel (Lt33) nach Vortriebsmeter gegliedert

Schichtflächen 810-Schichtflächen 0-440m Schichtflächen 440-735m Schichtflächen 735-810m 1000m Streichen Streichen Fallen Streichen Fallen Streichen Fallen Fallen

12.7. Beilage 7 Schichtflachen LT33 0-1000m

220	5	264	41	295	25
220	8	243	19	15	15
340	10	238	20	30	15
12	20	240	25	5	15
218	10	285	35	45	11
292	26	5	10	21	21
20	15	220	25	32	16
310	40	215	20	50	10
320	30	225	15		
310	70	230	20		
342	56	250	10		
318	50	334	54		
310	62	301	45		
295	25	293	34		
297	22	304	14		
345	20	320	3		
287	19	15	48		
295	29	338	18		
335	22	314	18		
295	15	353	24		
342	21	210	20		
160	81	270	30		
321	22	200	25		
90	5	280	10		
340	25	260	20		
290	45	290	20		
305	40	270	20		
280	30	260	30		
350	80	280	30		
360	12	260	40		
350	9	225	20		
342	39	275	40		
335	36	260	30		
345	33	259	20		
335	13	350	15		
346	32	310	64		
20	73	255	25		
10	64	240	15		
22	65	230	20		
342	38	230	30		
340	45	220	30		

245	62	250	45
1	60	230	30
10	60	230	30
340	60	220	30
350	50	220	25
20	60	220	45
60	65	210	25
300	55	260	20
330	30	225	20
1	40	241	29
15	50	245	24
335	42	238	40
344	18	322	35
322	25	281	39
339	12	151	60
342	10	215	25
110	30	200	30
10	40	210	30
1	35	285	20
5	25	230	20
290	25	95	50
345	25		
305	40		
300	30		
350	40		

CURRICULUM VITAE

21. November 1980 geboren als Clemens Viktor Pfersmann in Wien
1987-1991 Besuch der Volksschule St. Rochus in Wien
1991-1993 Besuch des Gymnasiums Landstraße in Wien
1994-1995 Besuch des Adolf Bichler Realgymnasiums in Innsbruck,
1995-1997 Besuch des Realgymnasiums Lilienfeld
1997-2001 Besuch des Bundesoberstufenrealgymnasiums St. Pölten mit Ablegung der
Reifeprüfung
01. 10. 2001 Inskription an der Uni Wien, Studienrichtung Erdwissenschaften
01. 02. 2002 – 01.10.2002 Ableistung des Präsenzdienstes
02.10.2002-19.01.2006 Studium der Erdwissenschaften, 1. Abschnitt
19.01.2006 1. Diplomprüfung und Übertritt in den 2. Studienabschnitt (Studienzweig
Geologie)
10.01.2007 Übernahme des Diplomarbeitsthema "Sedimentpetrographie der Gesteine der
Flyschzone im Lainzer Tunnel"
01.03.2007 Beginn des praktischen Teils zur Diplomarbeit