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Nothing in biology makes sense except in the light of evolution.

Theodosius Dobzhansky (1900-1975)

Biologists must constantly keep in mind that what they see was not designed,

but rather evolved.

Francis Crick (What Mad Pursuit, 1988)
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Abstract

Conservation genetics is an emerging discipline that aims at employing genetic methods

to questions in biodiversity conservation. One main achievement of the field is the

application of phylogenetic trees to assess the diversity of species (Vane-Wright et al.,

1991). Phylogenetic diversity (PD) is a quantitative measure proposed by Faith (1992)

that assigns to a set of species the sum of the lengths of the branches connecting the

species of interest. If the branch lengths reflect evolutionary distances, PD will be

equivalent to the amount of phylogenetic information accumulated by these species. PD

therefore aims at preserving as much “evolutionary history” of species as possible.

In this thesis I achieve two main results. Firstly, I develop a novel measure called split

diversity (SD). SD is motivated by the fact that PD relies on having a reliable estimate

of the underlying phylogenetic tree. However, conflicting phylogenetic signals are often

observed in the data. For example, different genomic regions can provide different trees

with different genetic distances. Trees can also differ among reconstruction methods.

Given the (possibly incongruent) collection of trees for a fixed set of taxa, how does

one evaluate the diversity of a taxon subset? In this context, split diversity is defined

as the average of PD values computed for each tree. It has been shown that SD can

be equivalently computed on the union split system of all given trees (Spillner et al.,

2008). Hence, various source trees (inferred by different data, e.g., morphological data

or genetic data) can be treated simultaneously under the SD framework.

Secondly, I develop a new tool called Phylogenetic Diversity Analyzer (PDA) to solve

several conservation problems. The most simple problem is taxon selection: For a fixed

number k, find k taxa that maximizes the PD or SD over all set of k taxa. The

resulting maximal set may be considered as of importance for conservation. Under PD ,

I propose two efficient algorithms gPDA and pPDA based on the greedy strategy that

was shown to guarantee an optimal solution (Steel, 2005; Pardi and Goldman, 2005).

Under SD , I present an efficient dynamic programming algorithm (SDA) that computes

the optimal SD set when the underlying split system is circular (that is reconstructed by
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e.g., the Neighbor-net method). The more realistic problem is budgeted taxon selection.

Given that conserving each taxon comes at a specific cost but we are given only a

limited budget. We look for a taxon set that maximizes PD (or SD) over all sets which

are affordable within the allotted budget. I will show that the SDA algorithm can be

extended to cope adequately with budget constraints.

Moreover, I demonstrate the SD approach with two datasets. One dataset contains

fours genes and the other consists of one gene from bacteria where horizontal gene trans-

fer was detected. The analysis results show some discrepancies between the PD-based

and SD-based taxon selection. This should be taken into account because when such

non-treelike events are apparent in the data, considering a single tree for conservation

comes at the loss of phylogenetic information. Since non-treelikeness is a major topic

in evolutionary biology, it will also be an issue in conservation decision projects. Thus,

our proposed method helps close this gap.

PDA is a contribution to the field since it implements all presented algorithms and

aided softwares for conservation biologists still remain sparse. Until recently, DIVER-

SITY, MESA, and WORLDMAP have been the only tools available. Furthermore, the

split diversity approach opens some interesting optimization problems. For example,

how can one solve the taxon selection under arbitrary split systems? For the extended

reserve selection problem, how can one find an optimal collection of k areas with maximal

SD? In the concept of SD alone, it is also interesting to investigate how other combi-

nation functions are related to the average of PDs as defined above. Answering such

questions would further advance the field of “computational biodiversity conservation”.

Parts of this thesis have been published in the following articles:

1. B.Q. Minh, S. Klaere, and A. von Haeseler (2006) Phylogenetic Diversity within

Seconds. Systematic Biology, 55, 769-773.

2. B.Q. Minh, S. Klaere, and A. von Haeseler (2008) Taxon selection under split

diversity. Submitted to Systematic Biology.

3. B.Q. Minh, F. Pardi, S. Klaere, and A. von Haeseler (2008) Budgeted Phyloge-

netic Diversity on Circular Split Systems. Accepted, to appear in IEEE/ACM

Transactions on Computational Biology and Bioinformatics.

The PDA (Phylogenetic Diversity Analyzer) package including developments pre-

sented in this thesis is freely available from http://www.cibiv.at/software/pda.

http://www.cibiv.at/software/pda
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Chapter 1

Overview

1.1 Motivation

With the ever looming thread of loss of biodiversity, the localization of biodiversity

hotspots and the subsequent establishment of a conservation zone find increased inter-

est among scientists from various disciplines (Wilson, 1997; Myers, 1988, 1990; Myers

et al., 2000). Globally, 25 biodiversity hotspots were identified using the endemic species

richness and the habitat loss (Myers et al., 2000). Species richness assigns to an area

the number of species living there (see Gaston and Spicer, 2004, and citations therein),

whereas endemic species richness only counts the species that are endemic to the area.

Therefore, conservation efforts using (endemic) species richness aim at preserving as

many (endemic) species as possible.

One weakness of species richness is the implicit assumption that all species are equal.

Such an equal treatment is not justifiable, e.g., “Is the panda equal to one species of rat?”

(Vane-Wright et al., 1991). Biodiversity should therefore be evaluated using evolution-

ary relationships among the species (Vane-Wright et al., 1991). Faith (1992) extended

Vane-Wright et al.’s approach and introduced the so-called phylogenetic diversity (PD)

measure. Given a phylogenetic tree of a set of the species, the phylogenetic diversity of

a subset of taxa is computed as the sum of the branch lengths of the minimal subtree

connecting the species present in that set. Recently, Forest et al. (2007) used the flora

on a hotspot, the Cape of South Africa, to compare the effect of PD and species richness

on prioritizing the areas inside the Cape. This study showed that PD gives alternative

suggestions and should therefore be decoupled from species richness on such dataset.

1



2 Chapter 1 Overview

In bioinformatics, phylogenetic diversity has attracted interest because various con-

servation questions using PD involve typical optimization problems. The most simple

problem, the taxon selection, asks for a taxon set of a fixed size which maximizes the

PD over all sets of that size. Such an optimal taxon set can be of important values for

conservation. Recently, Steel (2005) and independently Pardi and Goldman (2005) have

proven that the taxon selection problem can be solved employing a simple greedy strat-

egy. Taxon selection was furthermore generalized to address more biologically relevant

scenarios including a selection of areas instead of taxa (Moulton et al., 2007; Bordewich

and Semple, 2008), an introduction of budget constraints (Hartmann and Steel, 2006,

2007; Pardi and Goldman, 2007), an introduction of multiple phylogenetic trees (Minh

et al., 2006, 2008a,b), or an introduction of food webs and thus dependencies between

species (Moulton et al., 2007). All these scenarios lead to computational challenges.

However, efficient algorithms and state of the art implementations remain sparse. Un-

til recently, the packages Diversity (Faith and Walker, 1994), MeSA (Crozier et al.,

2005), and Worldmap (Williams and Humphries, 1996) have been the only tools avail-

able.

In April 2002, the participants of the Convention on Biological Diversity committed

themselves to “achieve by 2010 a significant reduction of the current rate of biodiversity

loss at the global, regional and national level as a contribution to poverty alleviation and

to the benefit of all life on Earth” (Balmford et al., 2005). During the Evolution 2007

conference in Christchurch, New Zealand an SSB Symposium on Phylogenetic Diversity

was held uniting most of the authors previously cited. Our conclusion from this meeting

is that even though biologists were interested in the scenarios above, the lack of aided

software tools tarnishes the application of the theoretical findings. Hence, one important

goal is the development of efficient algorithms and softwares to include more relevant

scenarios.

1.2 Contributions

We have solved a number of conservation optimization problems. To this end, efficient

algorithms have been developed and implemented in a software tool called Phylogenetic

Diversity Analyzer (PDA). The results are presented in the subsequent chapters.



1.2 Contributions 3

Chapter 2 gives a brief introduction to computational biodiversity conservation, phy-

logenetic diversity, and typical scenarios for optimizing PD.

Chapter 3: presents efficient greedy algorithms (gPDA, pPDA) for the taxon selection

on single trees (see also Chapter 2, Problem 1). The algorithm computes an optimal

PD set of k taxa for a million-taxon tree within a few seconds. This chapter was

published in:

B.Q. Minh, S. Klaere, and A. von Haeseler (2006) Phylogenetic Diversity within

Seconds. Systematic Biology, 55, 769-773.

Chapter 4: introduces the concept of split diversity when evolutionary relationships

are better represented in split systems rather than phylogenetic trees. A dynamic

programming algorithm (SDA) for the taxon selection on circular split systems

is presented. Real-data analyses show its usefulness compared to phylogenetic

diversity. This chapter was published in:

B.Q. Minh, S. Klaere, and A. von Haeseler (2008) Taxon selection under split

diversity. Submitted to Systematic Biology.

Chapter 5: extends the SDA algorithm to find the optimal taxon set for circular split

systems under budget constraints. This chapter was published in:

B.Q. Minh, F. Pardi, S. Klaere, and A. von Haeseler (2008) Budgeted Phyloge-

netic Diversity on Circular Split Systems. Accepted, to appear in IEEE/ACM

Transactions on Computational Biology and Bioinformatics.

Chapter 6: gives a brief summary of the results obtained in the thesis.
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Chapter 2

Computational Biodiversity

Conservation

2.1 Biodiversity Conservation

Biodiversity embraces the variety of life from plants to animals, from micro- to macro-

organisms, from genes to genomes and ecosystems (Wilson, 1997). Human extensive

activities are damaging the surrounding environment, thus indirectly causing the extinc-

tion of various organisms (Wilson, 1997). This projected loss of biodiversity motivates

the applied discipline of conservation biology.

To evaluate the severity of this loss, one needs a quantitative measure of biodiversity.

Thus, it is not surprising that hundreds of such measures have been proposed in the

past since the concept of biodiversity is so broad that it is not obvious how to assign

a single number to a species, a genus, or a geographical region (Gaston and Spicer,

2004; Avise, 2005). Wrong diversity assignments would in effect guide policy makers

to disastrous conservation decisions. It is therefore of tremendous importance that the

impact of measures are evaluated.

The most basic measure of the diversity of an area is species richness, the number of

species present in the considered area (Gaston and Spicer, 2004). However, since the

definition of a species is not clear (Agapow et al., 2004) and since the population size

of a species plays an integral part in its survival, more sophisticated measures like the

Simpson-Index and the Shannon-Index are more commonly used as they incorporate the

population size into the calculations (see Gaston and Spicer, 2004, and citations therein).

5



6 Chapter 2 Computational Biodiversity Conservation

Such measures exhibit an intuitive interpretation of biodiversity and are the most simple

but widely used currency for biodiversity assessment. It is apparent that these measures

evaluate species solely on their population size and not on their ancestral relationship,

e.g. for these measures it is irrelevant whether an area contains 50 chimpanzees and

20 lions or 50 gazelles and 20 elephants. However, due to the lack of other information

species richness and its related indices are still considered the first criterion to look at

(Gaston and Spicer, 2004).

2.2 Phylogenetic Diversity (PD)

The previously introduced diversity measures are based solely on population size and

number of species present. However, the last 20 years have seen a boom in phylogenetic

analysis among various organisms (Swofford et al., 1996; Felsenstein, 2004). We are even

trying to reconstruct the tree of life (e.g, Maddison and Schulz, 2007). The presence

of evolutionary relationships among species, so-called phylogenetic trees, adds another

important concept to biodiversity measures. The biodiversity assessment should take

phylogenies into account (e.g. Vane-Wright et al., 1991).

Consequently, Faith (1992) suggested phylogenetic diversity (PD) as an alternative

biodiversity measure. Given a phylogenetic tree of all species of interest, the PD of an

area is computed as the total sum of lengths of all branches connecting the species living

in the given area. Figure 1 illustrates the basic concept. Branch lengths of the tree

can be measured by the evolutionary time between two nodes (or number of mutations,

or any other dissimilarity measures). If the branch lengths are not present or hard to

estimate (i.e., only the tree topology is available), then by assigning each branch a length

of 1, the PD score is then interpreted as cladistic diversity (Vane-Wright et al., 1991;

Crozier, 1997). Recent studies suggested that PD should be decoupled from species

richness when sufficient genetic data are available (Forest et al., 2007) or when the tree

is unbalanced (Rodrigues et al., 2005).

PD has been thoroughly examined and other measures such as genetic diversity

(Crozier, 1992) also use phylogenetic trees as their basis and are more or less related to

PD. In the following, we will only focus on PD due to its wide-spread use after species

richness. Moreover, species richness can also be seen as a special case of PD assuming

a star tree with equal unit branch lengths. Hence, all the computational approaches
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Chimpanzee

Gorilla

Mouse

Rat

Tiger

Cat

Dog

Wolf

Zebra

Ostrich

Figure 2.1: An example computation of phylogenetic diversity on a tree with ten species.

The PD score of the set {Chimpanzee, Mouse, Rat, Cat, Dog, Wolf} is the

sum of the lengths of the blue branches, whereas the red branches contribute

to the PD of {Chimpanzee, Tiger, Zebra, Ostrich}. The first set is more

diverse in terms of species richness. However, the second set shows larger

phylogenetic diversity.

for PD presented here will also apply to species richness. For a discussion of various

measures readers are advised to refer to Purvis et al. (2005).

PD with respect to algorithmic details has recently gained interest through a cluster

of papers (Steel, 2005; Pardi and Goldman, 2005, 2007; Hartmann and Steel, 2006,

2007; Minh et al., 2006, 2008a,b; Moulton et al., 2007; Spillner et al., 2008; Bordewich

and Semple, 2008; Bordewich et al., 2008). All authors discuss the following basic

optimization, which we call the taxon selection problem. Assuming that our resources

can only support a fraction of all taxa, the survival of which taxa will maximize the

phylogenetic diversity? Or more formally:
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Problem 1. (Taxon selection with PD) For a given set X of taxa and its

connecting phylogenetic tree, find a subset of k taxa which maximizes the

PD over all taxon subsets of size k.

Steel (2005) and Pardi and Goldman (2005) showed that this problem can be solved

by employing a greedy strategy. This is surprising since the simple greedy strategy often

comes up with a suboptimal solution. However, the proof, that relied on the theory of

greedoids, did not automatically lead to an efficient algorithm to compute a solution.

In Chapter 3 we proposed a very efficient implementation of the greedy algorithm. Our

efficient algorithm computes the PD score for a tree with one million taxa within a

few seconds. Moulton et al. (2007) proposed several extensions of problem 1, tested

the applicability of the greedy algorithm, and analyzed the computational complexity

of these scenarios.

2.3 Extended Scenarios for Maximizing Diversity

In this section we introduce three more realistic scenarios that extend Problem 1. For the

time being, we use the PD score as the objective function in the optimization problem,

although it should be noted that other biodiversity measures can also be applied with

the same methodology. We will also use the general “taxa” that, depending on the

questions, can be interpreted as species, genus, population, etc.

2.3.1 Budget Constraints

The simple model of taxon selection (Problem 1) implicitly assumes that each taxon

requires the same amount of resource for conservation. In fact, people would like to

invest more money to svae pandas or polar bears than to monkeys. Therefore, a more

realistic scenario is to suppose that preserving each taxon comes at a specific cost. Which

selection of taxa will maximize PD such that the total costs do not exceed an allotted

budget? The costs and the budget need not only refer to money but also to any other

quantifiable human effort such as an affordable size of habitat. This is called the budgeted

taxon selection problem:

Problem 2. (Budgeted taxon selection with PD) For a given set X of taxa

and its connecting phylogenetic tree, non-negative costs cs for every taxon
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s ∈ X and a total non-negative budget B, find a subset S of taxa to maximize

PD(S) subject to
∑

s∈S cs ≤ B.

If cs = 1 and B = k, this formulation will turn out to be Problem 1, and thus is a

generalization of Problem 1.

Under budget constraints, the greedy algorithm no longer guarantees an optimal solu-

tion. Recently, Pardi and Goldman (2007) introduced a dynamic programming algorithm

which ensures to obtain the optimal PD set if the costs and budget can be expressed or

approximated as integers. The restriction to integral costs and budget is normally not

a limitation. For example, people usually mention how many dollars they can afford or

how many square kilometers a particular taxon needs for its survival.

2.3.2 Reserve Selection

Usually, measures of diversity are employed to identify geographical regions with high

biodiversity. This is also known as the reserve selection problem. Again, we are given

a set X of taxa of interest. The natural habitat of the taxa is divided into several

geographical areas. We call A the set of these areas. In subsequent descriptions we will

identify an area with a subset of taxa. Based on the phylogenetic tree connecting the

taxa in X, the PD score of an area is defined as the PD score of the set of taxa living in

this area. Accordingly, the PD score of a collection S of areas is equal to the PD score

of the set of all taxa living in those areas:

PD(S) = PD

(⋃
A∈S

A

)
. (2.1)

Note, that due to the possibility of overlapping taxon sets for a set of areas, this is not

equal to the sum of PD scores of the areas considered.

The simplest form of the reserve selection problem is:

Problem 3. (Reserve selection with PD) For a given set X of taxa, its

connecting phylogenetic tree, a set A of areas, and a number k, find k areas

such that the PD score is maximized over all collections of k areas.

Note that with the prioritization of a set of areas all taxa living in these areas benefit

from a possible conservation effort, which means that Problem 3 does not restrict the
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number of taxa. In particular, this scenario can result in the conservation of all taxa

considered without prioritizing all areas. Problem 3 will be reduced to Problem 1 when

each area contains exactly one taxon.

The problem is called optimizing diversity via regions and proven to be NP-hard in

Moulton et al. (2007). However, it should be noted that this problem was shown to

be equivalent to the maximal covering location problem (MCLP; Church et al., 1996;

Rodrigues and Gaston, 2002) that had been proven NP-hard long before (Church and

ReVelle, 1974).

One way to find the optimal solution to Problem 3 is to compute the PD score of all

possible subsets of areas, which will result in a runtime of O(2m), where m is the number

of areas. This is of course not feasible for large m. With m = 20 there are already more

than one million subsets to look at. So heuristic approaches are needed.

A simple greedy strategy is based on the complementarity principle (Vane-Wright

et al., 1991; Faith et al., 2004). First, one selects an area A1 with maximal PD. Second,

one determines another area A2 which adds the most “extra” PD to A1. We call this

amount the PD complementarity of A2 given A1 (Faith et al., 2004), formally defined

as:

PD(A2|A1) = PD(A2 ∪ A1)− PD(A1). (2.2)

Subsequently, we identify the area A3 which maximize PD(A3|A1 ∪ A2) and so on and

so forth, until we found k areas.

This greedy algorithm does not guarantee an optimal collection of areas even though it

has been usually applied in conservation planning (see Underhill, 1994, for a discussion).

An open question is whether the greedy strategy still works if the areas are disjoint.

Another strategy to obtain an exact solution is to transform Problem 3 into an integer

linear programming problem (Cormen et al., 2001) and then use an available tool such as

C-Plex to solve the resulting ILP problem (Rodrigues and Gaston, 2002). This technique

was shown to find an optimal collection of k areas efficiently in many cases.

2.3.3 Conflicting Phylogenetic Information

The phylogenetic tree is the basis for the concept of PD. However, it is well known

that phylogeny reconstruction methods are subject to uncertainties when inferring the
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tree topology as well as the branch lengths. Methods such as bootstrap and Bayesian

sampling are thus often used to assess the reliability of the tree (Felsenstein, 2004). At

a genomic level, different genes can give rise to different trees due to varying rates of

evolution, genetic recombination, and ancestral polymorphism (Graur and Li, 2000; Nei,

1987). In Minh et al. (2006), we introduced this issue and demonstrated it on a simple

case with two four-taxon trees.

A way to incorporate the information from more than one tree is to consider the

sum of PD over all trees. Let X be a taxon set and T a collection of m phylogenetic

trees T1, T2, . . . , Tm connecting the taxa in X. For a taxon set S we define PDT (S) =

PDT1(S)+ . . .+PDTm(S), where PDTi(S) is the PD score of the set S computed on the

tree Ti. The optimization is now guided by PDT (S). Spillner et al. (2008) showed that

for a taxon set S, PDT (S) is equal to “phylogenetic diversity” of S on a split system

(Bandelt and Dress, 1992a) formed of all splits existing in at least one tree in T . Each

split weight is assigned to the sum of the corresponding branch lengths of the trees in

T . We call the diversity measure on split systems split diversity (SD) (see Chapter 4

for the detailed transformation). Under split diversity, Problem 1 is now restated as:

Problem 4. (Taxon selection with SD) For a given set X of taxa and a split

system of X, find k taxa which maximizes the SD over all taxon subsets of

size k.

Problem 4 opens some interesting computational challenges. Spillner et al. (2008)

have shown that this problem is in fact NP-hard when T contains more than two trees.

For two trees Bordewich et al. (2008) have recently shown that Problem 4 can be solved

in polynomial time by reducing it to the minimum-cost maximum-flow network problem

(Cormen et al., 2001).

Due to the computational difficulty of Problem 4, we propose an approximation in

Chapter 4 by reconstructing the neighbor-net split system (Bryant, 2004) from the com-

bined tree-distance matrices and subsequently inferring the PD set from this split system.

The neighbor-net produces circular split systems (Bandelt and Dress, 1992b) in which a

dynamic programming algorithm, SDA, ensures to obtain the optimal PD set. Recently,

an attempt to reduce the complexity of the SDA algorithm was suggested in Spillner

et al. (2008) and another efficient algorithm was further presented for affine split systems

(Bryant and Dress, 2007).
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Apart from maximizing the sum of PD across trees, one can more generally apply any

other kinds of objective functions (see also Moulton et al., 2007). One simple extension

is the weighted sum of PD where each tree has a different weight regarding how much

one believes in this tree. This situation is equivalent to re-scaling each tree’s branch

lengths with the corresponding weight and subsequently solving Problem 4 across the

re-scaled trees (Bordewich et al., 2008). It would be interesting to investigate how other

functions are related to Problem 4.

2.4 Combination of the Scenarios

Section 2.3 introduced three possible ways to extend Problem 1 to cope adequately with

real-life situations. It is then natural to combine these extensions into more complex

models. Theoretically one can combine any two of the variants resulting in three com-

bined scenarios or unify all three into the most general problem. We will go through

them in this section and mention their recent computational results.

Problem 3 regards all areas with the same chance to be selected. This is in reality

not always true. For example, some areas are difficult to conserve due to degradation by

nearby roads, industrial factories or even human populations causing pollution, hunting

down animals, or cutting down trees. Hence, the conservation effort for different areas

comes at different costs. However, we are given only a limited budget. How can we divide

the alloted budget to select several areas such that the total PD score is maximized?

This scenario can be seen as a combination of Problem 2 and 3:

Problem 5. (Budgeted reserve selection with PD) For a given set X of taxa,

its phylogenetic tree, a set of areas A, a cost function c(A) that describes

the expenses to conserve an area A ∈ A, and a total budget B, find a subset

S of areas so as to maximize PD(S) subject to
∑

A∈S c(A) ≤ B.

Here we notice three things. First of all, Problem 5 is NP-hard since Problem 3 is

a special case and already NP-hard. Secondly, using a similar technique as described

before, one can also transform Problem 5 into an ILP. Finally, the type of Problem 5 was

mentioned several times in the literature (Church et al., 1996; Pardi and Goldman, 2007)

but was often ignored among conservation biologists (Faith and Baker, 2006; Hartmann

and Steel, 2006).
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Bordewich and Semple (2008) have recently described a greedy algorithm based on

the cost-effective complementarity principle and proved that the resulting PD score will

always be within a (1−1/e) fraction of the optimal score. This works by scanning through

all feasible subsets of three areas and greedily adding another area Aj maximizing the

ratio between the PD complementarity of Ai given the chosen areas and c(Aj). The

addition Aj must of course fulfill the budget constraint. This procedure is repeated

until no further area is included. The resulting collection of areas will then be compared

with the optimal set of at most two areas to determine the final optimal area set.

The second extension combines Problems 2 and 4:

Problem 6. (Budgeted taxon selection with SD) For a given set X of taxa

and a split system of X, conservation cost cs for every taxon s ∈ X and a

total budget B, find a subset S of taxa which maximizes SD(S), subject to∑
s∈S cs ≤ B.

Problem 6 is of course NP-hard as the special case Problem 4 is already NP-hard.

If we apply the approximation using the neighbor-net method as described in Section

2.3.3, then an extension of the algorithm given in Chapter 4 will guarantee an optimal

set S. We will present this extended algorithm in Chapter 5.

In a similar way, the combination of Problems 3 and 4 is:

Problem 7. (Reserve selection with SD) For a given set X of taxa and a

split system of X, a set of areas A, and a number k, find a collection S of k

areas which maximizes the SD(S) over all collections of k areas.

Here SD(S) is defined in a similar way to eq. (2.1):

SD(S) = SD

(⋃
A∈S

A

)
. (2.3)

The most general form is the union of all three extensions:

Problem 8. (Budgeted reserve selection with SD) For a given set X of

taxa and a split system of X, a set of areas A, conservation cost c(A) for

every area A ∈ A and a total budget B, find a collection S of areas which

maximizes the SD(S), subject to
∑

A∈S c(A) ≤ B.

Problem 8 is of course NP-hard. So considerable computer science expertises are required

to tackle this unifying problem.
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Chapter 3

Phylogenetic Diversity within Seconds

3.1 Introduction

Recently Steel (2005) and Pardi and Goldman (2005) have shown that being greedy

works if one is interested in selecting k taxa from a phylogenetic tree that maximize

the phylogenetic diversity. The term phylogenetic diversity (PD) was coined by Faith

(1992) to provide an effective measure of the diversity of a group of taxa. The optimal

PD describes the amount of diversity embraced by a properly chosen subset of taxa.

Faith (1992) applied PD to place conservation priorities on different taxa, where the

taxa to protect reflect a certain value of taxonomic diversity. Thus, some measurable

indicator of biodiversity defined on different scales (taxa, group of taxa, ecosystems etc.)

is assigned to the corresponding systematic categories. With the advent of molecular

genetics, evolutionary divergence on the genomic level may also serve this purpose (Pardi

and Goldman, 2005).

For the following, the precise nature of the measure of phylogenetic diversity is not

relevant (cf. Humphries et al., 1995; Williams and Araujo, 2002, for a discussion on

diversity measures). Phylogenetic diversity should simply describe the overall value of a

group of taxa either in terms of genetic diversity, regional diversity, or social diversity.

Moreover, it is required that these measures can be mapped onto a phylogenetic tree in

a way that the branches of the tree receive non-negative weights.

The problem is then as follows: From a tree with n taxa one wants to identify k taxa

that retain the maximal phylogenetic diversity, therefore taking into account the fact

that due to restricted resources only a certain percentage of the taxa can be sustained.

15
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Steel (2005) and independently Pardi and Goldman (2005) have proven that a greedy

approach yields the optimal set with respect to PD . The greedy strategy repeatedly

selects the taxon that adds the most divergence to the already chosen set of taxa. The

procedure is repeated until k taxa are found. Both proofs apply – directly or indirectly

– the theory of weighted matroids and greedy algorithms (Korte et al., 1991). From this

theory it follows that an algorithm with time complexity O(n log n) is possible.

In the following, we will suggest a time efficient greedy phylogenetic diversity algo-

rithm (gPDA). Moreover, a different but easier to implement algorithm, the pruning

phylogenetic diversity algorithm (pPDA) will be introduced. Both algorithms compute

the optimal k-set for large phylogenies within seconds.

3.2 Notation

Following Steel (2005) we call T an unrooted phylogenetic X-tree, that is, a tree with

leaf set X of taxa and whose remaining interior nodes are of degree at least three. V
denotes the set of all nodes of T and E the collection of edges or branches. λ denotes

the edge-weight function that assigns to each edge e = (v, w), (v, w ∈ V) of T a (non-

negative) branch length λ(v, w) ≥ 0.

A path P(a, b) denotes the collection of distinct nodes a = v0, v1, . . . , vm+1 = b in a

tree such that vi, vi+1 are adjacent, i.e., connected by an edge. The sum of the edge

weights of all edges along the path between two nodes a and b denotes their distance

d(a, b) in the tree.

To describe the algorithms, it will be handy to root T at a node r. Then the remaining

leaves are descendents from r. Thus, for each node v ∈ V the set Lmax(v) is well defined

and denotes the descendent(s) farthest away from v. For the sake of clarity we abbreviate

the distance d(v, Lmax(v)) as dmax(v) .

For a subset W of X, we consider T |W , the induced phylogenetic W -tree, that con-

nects all taxa in W according to T . Finally, λW assigns to each edge e of T |W , the sum

of the λ(e) values over those edges in T along the path that corresponds to the new edge

e. The phylogenetic diversity of W , denoted PD(W ), is then

PD(W ) =
∑

e

λW (e),
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where the summation is over all edges e in the tree T |W (see Steel, 2005).

3.3 The Time-Efficient Greedy Algorithm: gPDA

We briefly describe the implementation of gPDA. The phylogenetic tree T together

with its weight-function and the size of k define the input of the algorithm. We want to

determine the collection W of k taxa with maximal phylogenetic diversity. In the follow-

ing, we describe the algorithm for trees with interior nodes of degree three. However, the

implementation works for trees with finite interior node degree of at least three. gPDA

splits in two steps.

The initial step starts with the computation of the longest path in T . This can be

achieved in O(n) time by applying a depth-first search (DFS) (cf. Cormen et al., 2001,

chap.22). The algorithm starts at an arbitrary leaf c and determines the leaf a furthest

away from c in T . It is easy to show, that a is one of the endpoints of the longest path

in T . We root the tree at a and based on this root compute for all interior nodes vi the

distance dmax(vi) and the associated set Lmax(vi). This is again a DFS procedure, i.e.,

has complexity O(n). Figure 3.1A displays the result of this procedure for a tree with

five taxa. The longest path in the tree has distance 20. Thus, the set W is equal to

{a, b}.

To extend W , we note that for each leaf c in V−W exactly one node vi, (i = 1, . . . ,m)

in P(a, b) acts as ancestor, i.e. vi is the node where the paths P(a, c) and P(a, b) split.

One selects the leaf that is farthest away from its ancestor in P(a, b). To this end,

we generate an ordered list S with respect to dmax that contains at most k − 2 nodes

v1, v2, . . . , vk−2 from the path set P(a, b). In S the nodes are ordered in descending order

according to dmax, i.e., the following holds

dmax(vi1) ≥ dmax(vi2) ≥ . . . ≥ dmax(vik−2
).

Before generating S, we must update for each vi on P(a, b) the set Lmax(vi) and dmax(vi)

by choosing a leaf c with maximal distance to vi such that P(vi, c) does not have an edge

in common with the path P(a, b). For each node vi this update can be done in constant

time. If P(a, b) contains more than k− 2 nodes and S has already k− 2 elements, then

a new node v from P(a, b) is only added to S if dmax(v) > dmax(vik−2
). The node vik−2
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Figure 3.1: Example for the gPDA. dmax(vi) denotes the longest distance between vi

and its descending taxa, and Lmax(vi) denotes the set of taxa with distance

dmax(vi) to vi. (A) Result of the greedy strategy after selecting the longest

path (bold lines). (B) Updating nodes on the longest path in the initial step.

(C) Adding leaf c to W and updating the nodes on the partial tree.
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is subsequently deleted from S and v is inserted at its appropriate position in S. This

step takes O(n log k) time in the worst case.

Figure 3.1B displays the result of this update for the five taxon tree. Here, we obtain

S = (v1, v3), because dmax(v1) = 5 > 2 = dmax(v3). This update procedure will be

invoked repeatedly in the following step of gPDA.

Having defined W and a sorted list S we can enter the core of the algorithm, the

greedy step.

We add a leaf c from Lmax(vi1) to W and delete vi1 from S. Then we update the

maximal distances and leaves for all nodes on the path P(vi1 , c) as described for the

path P(a, b). No updates are necessary for interior nodes already in S. Figure 3.1C

illustrates this second update for the example tree with W = {a, b, c} and S = {v3}. v1

and v2 are updated whereas v3 remains unchanged.

Subsequently, the elements w of the path P(vi1 , c) are inserted into the ordered list

S according to their distance dmax(w) if dmax(w) ≥ dmax(vik−2
). In the sample tree v2

is added and thus S = {v3, v2}. This completes the greedy step. The greedy step is

repeated until W contains k taxa.

To determine the complexity of gPDA recall that computing the longest path and

identifying taxa a and b in the initial step consumes O(n) time. The time requirement

to generate and update S is more subtle to establish. Since W will eventually contain

k taxa the cardinality of S is never larger than k − 2. At any time, the k − 2 nodes

in S are the most promising for T |W . An insertion of an interior node into S requires

O(log k) time, because S is implemented as a red-black search tree data structure (e.g.,

Cormen et al., 2001, chap. 13). Each interior node is inserted in S at most once during

the k − 2 greedy steps. Because a bifurcating tree with n taxa has n− 2 interior nodes

generating and updating S takes O(n log k) time. Therefore, the overall worst case time

complexity of gPDA is O(n log k).

3.4 An Efficient Pruning Algorithm: pPDA

Easier to implement is the pruning phylogenetic diversity algorithm (pPDA), a special

application of the so-called worst-out greedy algorithm (Korte et al., 1991, p. 161). Here,

we start with the full tree of n taxa. Based on the length λ(v, x) of an exterior edge
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leading to a leaf x ∈ X, we compute a sorted list S of the taxa, arranged in ascending

order. This completes the initial step of the algorithm.

In the following n−k iterations (pruning steps), the first taxon s1 in the list is deleted

from S. The degree of the node v that forms the branch (v, s1) is decreased by one. If

the new degree of v equals two, then the incident edges of v are joined and the branch

length of the new edge is the sum of the lengths of the joined edges. Moreover, if the

new edge is connected to a leaf, the branch length of the leaf is updated. Subsequently,

the leaf is put at its appropriate position in S.

After n− k pruning steps S contains k taxa that constitute the set W with maximal

phylogenetic diversity. It is straightforward to prove that pPDA provides trees with

maximal phylogenetic diversity. Its optimality follows immediately from the “strong

exchange” property of PD (Steel, 2005). This algorithm is so simple that it can be

carried out on a piece of paper. We conclude the section with the discussion of its

complexity.

At each pruning step at most one taxon must be repositioned in S. We also note that

the new position of the taxon is always further down the sorted list, because the length

of an incident branch always increases. Thus to complete n− k pruning steps, S needs

to store in the worst case 2(n − k) taxa. Therefore in the initial step, the selection of

those taxa can be done in O(n) time (e.g., Cormen et al., 2001, chap. 10). Then we only

have to sort the selected taxa in O((n− k) log(n− k)) time, because S is implemented

as a red-black search tree (e.g., Cormen et al., 2001, chap. 13). Finally, repositioning

a taxon in the pruning step needs at most O(log(n − k)) steps. Thus, the complexity

of the n− k pruning steps amounts to O((n− k) log(n− k)). This results in an overall

complexity of pPDA of O(n+ (n− k) log(n− k)).

3.5 Runtime Analysis

We conducted computer simulations to test the wall-clock computing time of gPDA and

pPDA. Simulations were performed on a 2GHz AMD Opteron 246 with 2GByte RAM.

Both algorithms were so fast, that only for huge trees with more than 100,000 taxa a

substantial difference in the performance was observed. Therefore we will only compare

the results for n = 100, 000 and 1,000,000 taxa, respectively. The computing times (in
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Figure 3.2: Comparison of computing times of gPDA and pPDA. Each point represents

the average runtime from 100 runs for n = 100, 000 (A) and n = 1, 000, 000

taxa (B), respectively. Subset sizes ranging from k = 5%·n, . . . , 95%·n.

seconds) in Figure 3.2 are based on average times from 100 random trees generated

under the Yule-Harding model (Harding, 1971) for each combination of the pair (n, k).

The branch lengths are randomly drawn from the interval (0, 1). The size k of W was

varied from 5% to 95% of the n taxa in the tree.

For the n = 105 taxa tree all runs of both algorithms needed less than one second to

compute a subtree with maximal PD . In our simulations, gPDA never consumed more

than 8 seconds to achieve the subset of maximal phylogenetic diversity in the one million

taxa trees, while the longest run for the one million taxa tree with pPDA amounts to 17

seconds. It should be noted that an implementation of the näıve version of the greedy

algorithm (as derived from Steel, 2005) needs more than 30 minutes for n = 105 taxa

(data not shown). In our simulations gPDA is faster than pPDA if k ≤ 70% of the

taxa, otherwise pPDA outperforms gPDA.

Typical applications do not deal with millions of taxa. But recently, Lewis and Lewis

(2005) calculated PD for thousands of small trees of 150 taxa. We applied our algorithms

to 10,000 trees generated from their data using MrBayes (Ronquist and Huelsenbeck,

2003). Both algorithms took less than 1.5 seconds to extract optimal PD subtrees for all

generated trees. Hence, gPDA and pPDA may serve as subroutines in such applications.
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Figure 3.3: For the taxa 1, 2, 3 and 4 two different gene trees are observed, that lead

to two different PD2 sets {1, 3} and {1, 4}, respectively (A). In contrast,

the resulting split graph generated by the sum of pairwise distances between

taxa in T1 and T2 (B) or the least square fit tree (C) have the PD2 set {3, 4}.
Bold lines visualize the subgraphs formed by the respective PD2 sets.

In addition, this example resulted in a different discriminative point of k = 40% at which

pPDA starts outperforming gPDA. Thus the superiority of one algorithm over the other

crucially depends on the tree shape.

3.6 Discussion

We have presented two versions of the greedy approach, gPDA and pPDA. They pro-

vide an efficient implementation to compute a subtree of given size k with maximal

phylogenetic diversity. Thus gPDA and pPDA may serve as convenient tools to com-
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pute subtrees for different sizes of k. The gain in speed is due to the trick that S does

not contain all the interior nodes or taxa. Therefore both algorithms exhibit a worst

case performance less than O(n log n). Our simulations indicated that the tree shape

influences the wall clock computing time and the efficiency of the algorithms differently.

Steel (2005) proposed an extension of the PD score to accommodate the need to in-

corporate different measures of diversity, in which each taxon receives a weight depicting

its estimated importance. This can be easily integrated into the algorithm by increasing

the terminal branches with the weight of the corresponding taxa (Pardi and Goldman,

2005).

Pardi and Goldman also suggested another approach, namely to start with a user

defined initial set W . This permits the extension of W to a maximally divergent set

starting with a non-optimal seed W . This application may be handy in comparative

genomics where one has already some species sequenced and must decide which species

to be sequenced next. We included this option in both algorithms.

While the determination of one subset W of X with maximal PD is computationally

efficient, it would be certainly worthwhile to explore the possibility of different sets

W1,W2, . . . with the same maximal PD . The number of such sets can theoretically

increase dramatically. In view of this theoretically combinatorial explosion the question

how to measure phylogenetic diversity becomes important. For the algorithms the precise

nature of this measure is irrelevant as long as it can be mapped on the tree relating the

taxa under consideration. Combining different measures of diversity may lead to more

discriminative branch lengths and therefore reduce the hazard of multiple optimal sets.

In this context confining the measure to genetic distances between the taxa may be

helpful (Pardi and Goldman, 2005). However, then different problems arise. Presently,

it is not at all clear how to adjust the algorithms for conflicting trees derived from the

same set of taxa. It is well known, that different regions of the genome provide trees

with drastically different phylogenetic diversities due to violations of the molecular clock

or due to varying rates of molecular evolution (Graur and Li, 2000). Sometimes trees

derived from different regions may be different due to ancestral polymorphisms (Nei,

1987, pp. 288). The artificial example in Figure 3.3 illustrates the problem. For k = 2

we compute W1 = {1, 3}, W2 = {1, 4} for trees T1 and T2, respectively. If we compute

the pairwise distance between taxa as the sum of the pairwise distances in both trees,

then the set W3 = {3, 4} displays the largest “cumulative” phylogenetic diversity. We
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also obtain W3, if the tree is selected that provides the best least square fit to the

distance sum (cf. Felsenstein, 2004, p. 148-153). The crucial point is the fact that W3

is neither maximal in T1 nor in T2. Thus if we construct trees from different genomic

regions and combine them näıvely, then the resulting tree and its derived optimal subtree

with maximal diversity may not be the representative of the true underlying diversity.

One way to address this would be to assign different weights to the different trees and

then maximize the weighted average of the PDs calculated for different trees. In the

subsequent chapters we will present more sophisticated algorithms to address this issue.



Chapter 4

Taxon Selection under Split Diversity

4.1 Introduction

Practical biodiversity conservation normally focuses on preserving as many species as

possible. This is known as the species richness concept (Wilson, 1997; Gaston and

Spicer, 2004). Despite being widely used due to its easy application, such an approach

poses the major problem of treating all species equally (May, 1990). This is not ade-

quate in some respects. For example, “Is the panda equivalent to one species of rat?”

(Vane-Wright et al., 1991). Consequently, Vane-Wright et al. (1991) suggested the so-

called taxic diversity that exclusively uses a taxonomic tree connecting the species under

consideration for diversity evaluation. Faith (1992) further extended this approach by

taking the branch lengths of the tree into account, and introduced phylogenetic diversity

(PD) in the context of “feature” diversity. Given a set of features (attributes) where

each taxon exposes a number of features. The feature diversity of a set of taxa is the

number of features that are represented by at least one taxon in the set. Assume that

the set of features could be mapped perfectly onto a rooted phylogenetic tree where the

branch length depicts the number of features uniquely shared by all descending taxa

below this branch. Then the feature diversity (or phylogenetic diversity) can be alter-

natively computed as the sum of the branch lengths of the minimal subtree connecting

the taxa of interest with the root. Faith (1992) also pointed out that other measures of

branch lengths could be used too, for example, evolutionary distances estimated from

molecular data.

Using PD, Faith proposed a taxon selection problem. Given a phylogenetic tree of n

25
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taxa, identify the set of k taxa which maximizes the PD where k < n. Such an optimal

set could be employed to identify taxa important for conservation or to prioritize taxa

under sequencing projects (Pardi and Goldman, 2005). Recently, Steel (2005) and in-

dependently Pardi and Goldman (2005) proved that a greedy algorithm is sufficient to

determine an optimal set of a given size k on a phylogenetic tree. Minh et al. (2006) pre-

sented an efficient implementation, the greedy phylogenetic diversity algorithm (gPDA),

capable of handling trees with millions of taxa.

One limitation of PD acknowledged by Faith is that “the predictive value of PD

depends on having a cladogram that is a reliable estimate of the phylogenetic relation-

ships among the taxa” (Faith, 1992, p. 8-9). However, such a reliable estimate of the

phylogenetic tree is in many cases difficult to obtain due to a number of reasons:

(i) At the genetic level, tree reconstruction methods often face statistical uncertainties.

(ii) At the genomic level, it is well known that different regions of the genome pro-

vide trees with different genetic distances between taxa due to violations of the

molecular clock or due to varying rates of molecular evolution (e.g., Graur and Li,

2000).

(iii) Sometimes, different regions of the genome lead to distinct trees due to ancestral

polymorphisms (e.g., Nei, 1987).

The issue of (possibly conflicting) different trees from the same set of taxa has recently

been formalized in Minh et al. (2006). Given a collection of trees connecting n taxa

of interest and a weight for each tree (e.g., the importance of the tree), one needs

to identify a subset of k taxa with the maximal weighted average of the phylogenetic

diversity calculated for each tree. The PD computed in such a way has been proven to be

equivalent to computing diversity on a split system (Bandelt and Dress, 1992a) formed

of all splits existing in at least one tree (Spillner et al., 2008). Split systems generalize

phylogenetic trees by allowing for conflicting phylogenetic signals (see the next section

for the definition). We call the diversity based on a split system split diversity (SD). A

formal definition of SD is given in the next section.

The taxon selection with SD is not as easy as with PD because the simple greedy

algorithm no longer guarantees a set of k taxa with maximal SD on split systems (Minh

et al., 2006; Moulton et al., 2007). In fact, deriving an optimal k-set from arbitrary split

systems is NP-hard (Spillner et al., 2008). Here, we present a dynamic programming
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algorithm (SDA) that computes the optimal SD set when the underlying split system

is circular (Bandelt and Dress, 1992a). Circular split systems are reconstructed by the

neighbor-net method (Bryant and Moulton, 2004) which has been applied in various

phylogenetic analyses (e.g., Sullivan et al., 2006; Henz et al., 2005; de las Rivas et al.,

2004; Hertel et al., 2006).

As an illustration we conduct two case studies, on a freshwater crayfish Euastacus

dataset (Shull et al., 2005) and a bacteria dataset (Sullivan et al., 2006). We compare

and contrast the optimal taxon sets when inferred from the neighbor-net split system

using SD rather than from the tree derived from the same dataset with PD . The result

of such a comparison may serve as an additional source of information regarding the

selection of taxa for conservation.

4.2 Split Systems

This section provides a brief introduction to the concept of split systems. For detailed

definitions we refer to Huber and Moulton (2005) or Huson and Bryant (2006). We will

use the general term “taxon” that, depending on the question, can be interpreted as

species, genus, population, etc.

Let X denote a finite set of n taxa. A split A|B is a bipartition of the taxon set, i.e.,

A,B 6= ∅, A ∩ B = ∅, and A ∪ B = X. Two splits A|B and C|D are compatible if one

of the following intersections is empty: A ∩C, A ∩D, B ∩C, or B ∩D. A phylogenetic

tree connecting X consists of at most 2n−3 pairwise compatible splits. Every split A|B
corresponds to a branch or edge in the tree whose removal will separate A from B. A

split system Σ is simply a collection of splits of X. The split system Σ is called weighted

if every split A|B ∈ Σ is assigned a weight λ(A|B). Split systems are visualized as splits

graph, where each split is represented by one edge or several parallel edges. Fig. 4.2

depicts an example of a splits graph for five taxa.

Of particular interest are circular split systems. A split system is called circular

if there exists a way to enumerate the taxa from 1 to n such that all splits are of

the form {i, i + 1, . . . , j} X \ {i, i + 1, . . . , j}, 1 ≤ i ≤ j ≤ n (Bandelt and Dress,

1992a). (1, 2, . . . , n) is called the circular order of the taxa. Circular split systems

can be represented by the so-called outer-labeled plane splits graphs (Dress and Huson,
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Figure 4.1: Two gene trees with species 1, 2, 3, 4, 5. Based on tree T1, PD2 contains the

single taxon set {1, 4} and PD3 = {{1, 3, 4}, {1, 4, 5}}. However, the tree T2

gives an alternative suggestion: {3, 5} for PD2 and {3, 4, 5} for PD3.

2004). The graph in Fig. 4.2 has a circular taxon order (1, 2, 3, 4, 5). In the graph

representation one can draw a circle passing through the taxa in that order, and each

split can be depicted by a line bisecting the circle. Note that trees are a special case of

circular split systems (Semple and Steel, 2003, Thm. 3.7.1).

4.3 A Measure of Split Diversity

Given an (unrooted) phylogenetic tree, the phylogenetic diversity of a taxon subset

S ⊂ X, denoted by pd(S), is defined as the sum of the lengths of those branches

connecting the taxa in S. Using the one-to-one relation between branches and splits in

a tree, pd(S) is equivalently restated as the sum of the weights of those splits separating

the taxa of S. This reformulation naturally extends to split systems. Formally, given a

weighted split system Σ with a split-weight function λ, the split diversity of a taxon set

S, sd(S), is given by:

sd(S) =
∑

A|B∈Σ:
A∩S 6=∅
B∩S 6=∅

λ(A|B). (4.1)

This definition of split diversity coincides with the concept of feature diversity (Faith,

1992). Each feature can be assigned to a split A|B by proposing that the taxa in A show
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Split Weight

1|2345 3

2|1345 2

3|1245 4

4|1235 5

5|1234 4

12|345 6

23|145 4

45|123 4

15|234 2

Figure 4.2: The splits graph which “unifies” the two trees from Figure 4.1 and its

corresponding split system. The circle connecting the taxa of the graph

indicates the circular order. SD2 contains {2, 5}, and SD3 contains only

{1, 3, 4}.

the feature and the taxa in B do not. In that case the weight of the split is equal to the

number of features agreeing with the split. In general, split weights are not restricted to

the number of features but can be infered by any distance measure. Further, with this

approach we relax the assumption made by Faith that the set of splits are mapped onto

a tree excluding incompatible splits.

Consider the two incongruent trees T1, T2 of five taxa depicted in Figure 4.1. The

taxon selection with phylogenetic diversity on either T1 or T2 return different optimal

taxon sets. How does one evaluate this result?

A simple solution is to maximize the average of the phylogenetic diversity computed

from each tree, i.e., set S will be assigned a score of 1
2

(
pdT1(S) + pdT2(S)

)
(Minh et al.,

2006). This problem is equivalent to maximizing split diversity on the split system in

Figure 4.2 (Spillner et al., 2008). This split system summarizes T1 and T2 by including

all splits from the two trees and assigning to each split A|B a weight of λ(A|B) =
1
2

(λ1(A|B) + λ2(A|B)), where λ1 and λ2 are the split-weight functions of T1 and T2,

respectively. If a split does not appear in a tree, its weight in this tree is equal to

0. This particular example demonstrates that one interpretation of split systems is to
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represent multiple trees (Huson and Bryant, 2006).

Note again that the features exclusively observed in the taxa of A but not in the taxa

of B are mapped to the split A|B. On the other hand, there can be features exclusively

observed in the taxa of B. Since A|B and B|A represent the same split, introducing

an “outgroup” taxon ρ that has no features will help distinguish these two groups of

features. The features exclusively observed in the taxa of A are assigned to A|B ∪ {ρ}
whereas the features exclusively observed in the taxa of B are A ∪ {ρ}|B. Thus for the

computation of sd(S), one should include ρ in S. This treatment coincides with the

original definition of phylogenetic diversity (Faith, 1992) which requires a rooted tree

and includes the length of the branches connecting the taxa in S with the root. Split

systems are unrooted by definition. Hence, if converting a set of rooted trees into a split

system, one should add an outgroup taxon ρ corresponding to the root. In the resulting

split system ρ is always included in the set S. Thus the shared evolutionary history of

the taxa in S contributes to sd(S).

4.3.1 Taxon Selection under Split Diversity

As with phylogenetic diversity one is interested in selecting a subset of k taxa which

maximizes split diversity on a given weighted split system. To this end, we introduce

the maximal split diversity

sdmax(k) = max
S⊆X,|S|=k

sd(S)

and the collection of all maximal k-sets:

SDk = {S ⊆ X, |S| = k : sd(S) = sdmax(k)} .

If the split system corresponds to a tree, one employs a greedy strategy to obtain sdmax(k)

and an element of SDk (Steel, 2005; Pardi and Goldman, 2005). The greedy algorithm

works by determining an optimal set of two taxa and sequentially adding k − 2 taxa

which contribute the most divergence to the already chosen set. However, if the split

system does not represent a tree, the greedy algorithm no longer guarantees an optimal

solution (Minh et al., 2006; Moulton et al., 2007). For example, the split system in

Figure 4.2 has {2, 5} as the only element of SD2 and {1, 3, 4} is the only element of SD3.

As already noted, the taxon selection with split diversity on general split systems falls

into the class of NP-hard problems (Spillner et al., 2008).
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4.3.2 Computing Split Diversity for Circular Split Systems

For simplicity we define the split diversity of the set of two taxa {u, v} the split-distance

between them, denoted by duv:

duv = sd({u, v}) =
∑

A|B∈Σ
u∈A,v∈B or
v∈A,u∈B

λ(A|B). (4.2)

Based on split-distances, a key property of circular split systems with the circular taxon

order (1, 2, . . . , n) is that for any subset S = {s1, s2, . . . , sk} ⊂ X where s1 < s2 <

. . . < sk, sd(S) can be alternatively computed employing a circular tour (Korostensky

and Gonnet, 2000). A circular tour visits every taxon 1, 2, . . . , n and returns to taxon 1

while taking the shortest path connecting taxon i and taxon i + 1 in the split system.

Since each split bisects the circle, a circular tour traverses each split exactly twice. Thus

the sum of the weights of all edges encountered during a circular tour equals twice the

sum of the weight of all splits. Since circularity is retained for subsets of circular split

systems, we have

sd(S) =
1

2

(
ds1sk

+
k−1∑
i=1

dsisi+1

)
. (4.3)

4.4 SDA: An Efficient Algorithm to Obtain an Element

of SDk for Circular Split Systems

We introduce an efficient algorithm to select a set of k taxa that maximizes the split

diversity over all possible sets of k taxa in a circular split system Σ. We then illustrate

the algorithm with a small example and show a modification to the algorithm when Σ

has an outgroup taxon.

Eq. (4.3) permits a direct computation of sd(S) for any taxon set S from a split-

distance matrix without considering the detailed structure of the underlying splits graph.

Based on this observation, the computation of an element of SDk reduces to the following

task:

Given n taxa indexed by the circular order (1, 2, . . . , n) and pairwise split-

distances (duv) for all u, v ∈ {1, 2, . . . , n}. Find the longest circular k-

tour, that is the longest circular tour with k taxa.
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For the description of the algorithm we introduce the following notations. An ordered

k-path from a taxon u to a taxon v is a sequence of k taxa (u = s1, s2, . . . , sk = v) which

follow the circular order, s1 < s2 < · · · < sk. Let L(s1, s2, . . . , sk) =
∑k−1

i=1 dsisi+1
denote

length of the ordered k-path (s1, s2, . . . , sk). For two taxa u < v, let Lk
uv denote the

length of the longest ordered k-path from u to v,

Lk
uv = max

u<s2<···<sk−1<v
L(u, s2, . . . , sk−1, v).

It is worth noting that a circular k-tour is attained if we add the starting taxon sk+1 = s1.

Therefore, every circular k-tour is uniquely represented by an ordered k-path and vice

versa. We will now present a method to obtain sdmax(k) and an element of SDk by

computing all entries of Li
uv for i = 2, . . . , k.

The key property of the algorithm is that if (s1, s2, . . . , sk, s1) is the longest circular

k-tour then (s1, s2, . . . , sk) is the longest ordered k-path from s1 to sk. It then follows

that (s1, s2, . . . , sk−1) is the longest ordered (k − 1)-path from s1 to sk−1. Generally,

(s1, . . . , si) for i = 2, . . . , k is the longest ordered i-path between s1 and si. Proofs

of these propositions are provided in the appendix 4.7.1. The problem exhibits an

optimal sub-structure (Cormen et al., 2001) for which a dynamic programming technique

is applicable. As a result, the length `kmax of the longest circular k-tour will be obtained

by solving the following iterative maximization:

Li
uv =

{
duv, if i = 2,

maxu<s<v{Li−1
us + dsv}, if 3 ≤ i ≤ k,

(4.4)

`kmax = max
1≤u<v≤n

{Lk
uv + duv}. (4.5)

To resolve these equations we first compute L2
uv, L

3
uv, . . . , L

k
uv for all pairs of taxa u < v

by eq. (4.4), and then calculate `kmax using eq. (4.5).

Based on eq. (4.3), the optimal score is sdmax(k) = `kmax/2. To construct an element

S ∈ SDk, we trace back the two taxa u and v which maximize the sum on the right-hand

side of eq. (4.5) and then the taxon s from eq. (4.4) with decreasing i = k, . . . , 3. In

the appendix 4.7.2 we show that the computational complexity of the SDA algorithm is

O(kn3).
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4.4.1 An Example

Let us consider the circular split system in Figure 4.2 with the circular taxon order

of (1, 2, 3, 4, 5). We will construct an optimal 3-set. Eq. (4.2) leads to the pairwise

split-distance matrix:

(duv) =



0 11 19 20 17

11 0 12 21 22

19 12 0 17 18

20 21 17 0 11

17 22 18 11 0


With eq. (4.4) the length of the longest ordered 2-path L2

uv equals duv and therefore:

(L2
uv) =



− 11 19 20 17

− 12 21 22

− 17 18

− 11

−


From L2

uv we derive L3
uv as described in eq. (4.4):

(L3
uv) =



− − 23 36 37

− − 29 32

− − 28

− −
−


where the secondary diagonal entries are omitted since there is no ordered 3-path between

two neighboring taxa. To trace back the optimal 3-path, we define the index matrix

(α3
uv):

(α3
uv) =



− − 2 3 3

− − 3 4

− − 4

− −
−


,
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where αi
uv denotes the next to last taxon on the longest ordered i-path between taxon u

and v. Thus the longest ordered 3-path from taxon 1 to taxon 3 contains taxon 2, and

the longest ordered 3-path from taxon 2 to taxon 5 contains taxon 4, etc.

Finally we calculate the lengths of all longest circular 3-tours by eq. (4.5):

(L3
uv + duv) =



− − 42 56 54

− − 50 54

− − 46

− −
−


.

From a maximal entry of this matrix we construct an optimal 3-set. The maximal score

is sdmax(3) = 56/2 = 28. The taxa 1 and 4 span the longest circular 3-tour. The stored

index α3
14 indicates that taxon 3 is on the longest ordered 3-path from 1 to 4. Therefore,

the set {1, 3, 4} is one element of SD3 and has an SD score of 28.

4.4.2 Modification for Split Systems with an Outgroup

The above approach will not include the evolutionary history shared by a taxon set.

As proposed before, the introduction of an outgroup taxon will help solve this problem.

The following modification of SDA will ensure its inclusion in the optimal set.

We simply label the outgroup as taxon 1. Then we re-index the remaining taxa

according to the circular order of the underlying split system. The computation of

sdmax(k) and an element of SDk containing the outgroup is accomplished by considering

only the ordered k-paths starting at taxon 1. The algorithm proceeds in the same way

as before by fixing u = 1 in eq.s (4.4) and (4.5). The computational complexity is thus

reduced to O(kn2) (see the appendix 4.7.2).

4.5 Case Studies

In the following we illustrate the proposed method with two datasets. The first dataset

contains four different genes from the freshwater crayfish (Shull et al., 2005). The sec-

ond dataset consists of one gene from marine cyanobacteria and cyanophages where

horizontal gene transfer and recombination are detected (Sullivan et al., 2006).
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4.5.1 Freshwater Crayfish of Australia
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Figure 4.3: The maximum likelihood tree of the 15 threatened crayfish Euastacus. The

tree is rooted on the branch leading to E.robertsi and E.fleckeri as suggested

(Shull et al., 2005). Branch lengths depict the number of substitution per

site.

Freshwater crayfish Euastacus of the eastern coast of Australia have been studied with

respect to their phylogenetic relationship, biogeographical distribution and conservation

status (Whiting et al., 2000; Shull et al., 2005). Euastacus are greatly threatened due to

various human activities (Alicia Toon, personal communication). 43 Euastacus species

have been identified so far, of which 16 species were classified as either endangered or
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Figure 4.4: The splits graph built by Neighbor-net of 15 endangered or vulnerable cray-

fish Euastacus. Splits with weights smaller than 0.001 are excluded.

vulnerable according to the IUCN Red List (IUCN, 2001).

The conservation priorities for Euastacus using PD were solely based on the 16S rDNA

gene and a subset of 35 Euastacus species (Whiting et al., 2000). Recently, Shull et al.

(2005) extended the data to 40 Euastacus species and to four genes: the mitochondrial

16S rDNA, 12S rDNA, COI genes, and the nuclear 28S gene. We use the data from

Shull et al. (2005) and only focus on 15 threatened Euastacus species (E.neodiversus,

the 16th threatened taxon, is missing due to the lack of data). The species names, IUCN

categories and sample IDs are given in Table 4.1. Our aim is to study which species

should be selected according to PD and SD.

A maximum likelihood (ML) tree was reconstructed from the concatenated gene se-

quences using IQPNNI version 3.2 (Minh et al., 2005) under the GTR+I+Γ model

(Felsenstein, 2004). On the other hand, the pairwise genetic distances between se-

quences, computed by IQPNNI, were used to reconstruct a neighbor-net split system

(NNet) (Bryant and Moulton, 2004) using SplitsTree version 4.6 (Huson and Bryant,

2006). The resulting ML tree and NNet are shown in Fig. 4.3 and 4.4, respectively. The

ML tree is mainly in agreement with the tree published in Shull et al. (2005), whereas
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the NNet shows several incompatible splits. To compare the PD scores computed on

the ML tree and the SD scores from the NNet, we scaled the split weights of the NNet

such that the total sum of split weights equals the length of the ML tree.

Species Status Sample
Tree NNet

Rank pdmax Rank sdmax

E.robertsi EN 2669 1 - 14 1.39

E.hystricosus VU 2672 2 0.45 3 0.53

E.crassus EN 2649 3 0.57 10 1.17

E.yigara EN 2664 4 0.68 7 0.94

E.maidae EN 2658 5 0.78 4 0.64

E.urospinosus EN 2767 6 0.87 6 0.84

E.bindal EN 2690 7 0.96 9 1.10

E.monteithorum EN 2765 8 1.04 2 0.40

E.jagara EN 2763 9 1.12 8 1.02

E.eungella VU 2663 10 1.19 12 1.31

E.diversus EN 2773 11 1.26 11 1.24

E.bispinosus VU 0631 12 1.32 5 0.75

E.fleckeri VU 2668 13 1.35 1 -

E.setosus VU 2693 14 1.38 13 1.35

E.armatus VU 2653 15 1.40 15 1.40

Table 4.1: List of 15 threatened Euastacus species from Shull et al. (2005). The second

column is the IUCN red list status: EN = Endangered; VU = Vulnerable.

Each species was sampled at several locations. Here we use one sample per

species. The species sample IDs are depicted in the third column. Remaining

columns display the taxa priorities according to the optimal PD sets from

the ML tree and the optimal SD sets from the NNet. The fourth column

shows the ranking based on the tree, the fifth column shows the corresponding

optimal score pdmax. The sixth and seventh column contain the analogous

values computed from the NNet. Numbers in bold-face in the sixth column

indicate the SD-based rankings which are different by at least 6 from the

corresponding PD-based ones.
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Afterwards we applied the gPDA (Minh et al., 2006) on the ML tree and the SDA

algorithm on the NNet to compute the maximal k-sets for k = 2, . . . , 14. First, we

observe that only one single optimal set exists for each k on both the ML tree and the

NNet. Moreover, since the gPDA is a greedy algorithm, we can rank the taxa in the

order of their selection by gPDA. This ranking is shown in Table 4.1. We also observed

that in this particular example, the optimal k-sets from SDA are nested with increasing

k. Hence, the taxa can also be ranked (Table 4.1).

Most notable is the ranking for E.robertsi and E.fleckeri. E.robertsi is ranked 1st by

gPDA but 14th by SDA. E.fleckeri takes 1st place by SDA but only the 13th by gPDA.

Looking at the clade containing these taxa in the tree (Figure 4.3), we see that the length

of the external branch leading to E.robertsi (0.037) is slightly greater than that leading to

E.fleckeri (0.034). On the other hand, the NNet (Figure 4.4) shows the opposite. Thus

selecting E.robertsi will exclude E.fleckeri and vice versa. The rankings for E.crasus and

E.bispinosus can be explained similarly if one looks at the clade containing E.crasus,

E.bispinosus, and E.armatus. On the ML tree the distances from the root of the clade

to E.crasus and E.bispinosus are 0.069 and 0.061, respectively. On the NNet they are

0.073 and 0.080. E.crasus is therefore more preferred by the gPDA than the SDA.

These observations indicate that the outcome depends strongly on variations in either

branch-length or split-weight estimates.

The rankings for E.monteithorum are also considerably different (Table 4.1): it is 2nd

according to SDA but 8th by gPDA. This is because the NNet displays conflicting splits

separating E.monteithorum from the first ranked species compared to the tree. These

splits, although having small weights, accumulate the larger SD “contribution” from

E.monteithorum on the NNet than on the tree.

4.5.2 Cyanobacteria and Cyanophages

The two marine cyanophage genera Prochlorococcus and Synechococcus were known as

horizontal gene transfer agents for the photosynthesis genes among the host cyanobac-

teria (Sullivan et al., 2006). Specifically, the two core photosystem genes psbA and psbD

are transferred from cyanobacteria to cyanophages and between phages. Moreover, in-

tragenic recombinations among them were detected. Here the conservation of bacteria

or phages is not of interest. We rather want to study what impact such incompatible
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Figure 4.5: The neighbor-joining tree of the CYANO data with taxa in the union of the

optimal SNJ and SNNet of size 20. The blue taxa appear in both sets. The

red taxa occur exclusively in SNJ. The green taxa are in SNNet and not in

SNJ.
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Figure 4.6: The NNet graph of the CYANO data with taxa in the union of SNJ and

SNNet. The taxon colors are coded in the same way as in Figure 4.5.

phylogenetic signals have on the taxon selection. To this end, we use the psbA gene from

these bacteria and phages (Sullivan et al., 2006) to select taxa according to PD and SD.

A total of 112 psbA gene sequences were retrieved from the NCBI GenBank (Benson
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et al., 2006). The sequences were aligned with ClustalW (Thompson et al., 1994) result-

ing in an alignment with 729 sites. The pairwise ML distances were computed from the

alignment using IQPNNI under the HKY+Γ model of substitution (Felsenstein, 2004).

The substitution model parameters were estimated from the ML tree reconstructed by

IQPNNI. This model was also used in Sullivan et al. (2006). For the resulting distance

matrix we inferred the neighbor-joining (NJ) tree (Saitou and Nei, 1987) and the NNet

using the SplitsTree program. Finally, we applied the gPDA on the NJ tree and the

SDA on the NNet to compute the maximal SNJ and SNNet sets of size 20, respectively.

Thus, we conserve slightly less than 20% of the taxa.

Fig. 4.5 and 4.6 show the NJ tree and the NNet restricted to the taxa that occur

at least once in SNJ or SNNet. The blue taxa appear in both sets. The red taxa occur

exclusively in SNJ, whereas the green taxa occur exclusively in SNNet. First of all, we

notice that the structure of the NNet (Figure 4.6) shows a number of incompatible

phylogenetic signals. However, the main taxon groupings of the NJ tree and the NNet

do agree. The circular orders of the taxon labels are similar in both “phylogenies”,

except for the taxon 25m 12. The corresponding SNJ and SNNet overlap in 12 taxa (core

taxa), and eight taxa occur exclusively in one or the other set. Thus the discrepancy of

the taxa represented in the two sets is considerable. However, the disagreement is not

evenly distributed. Most remarkably, group B (Figure 4.5) is not represented by a blue

core taxon. In such a case, the decision depends on the reconstruction method.

Group C in Figure 4.6 nicely displays the influence of the NNet on displaying genetic

relatedness. Taxon 75m 27 is included in SNNet but not in SNJ. However, looking at

the corresponding position in the NNet it is obvious that 75m 27 occupies a more inter-

mediate position between group B and group C. Because of this intermediate position

it considerably contributes to the split diversity and should be included in the data.

The overall results from the two case studies show that the taxon rankings and the

optimal taxon sets based on PD and SD are largely different. In other words, different

ways to summarize diversity influence the selection of the taxa. Therefore, for such cases

more investigation is needed before an informed conservation decision can be made.

We also measured the performance of the SDA algorithm on a big dataset based on the

rbcL gene containing 736 flora (Forest et al., 2007). We repeated the same procedure as

described above. On a 2.2GHz CPU computer, the SDA consumed less than 25 seconds

to compute all optimal SD sets for k = 2, . . . , 736. The SDA algorithm is therefore
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suitable for applications with hundreds of taxa.

4.6 Discussion

It is well-known that genes can have different evolutionary histories. Even one gene

can exhibit conflicting phylogenetic signals due to horizontal gene transfers or other

non-treelike evolutionary events. Therefore, considering single phylogenetic trees for

conservation studies comes at the loss of phylogenetic information. We present an alter-

native approach to incorporate incompatible phylogenetic information into the analysis.

The concept of split diversity presented here is the first attempt to model the diversity

when phylogenetic relationships cannot be adequately represented in a tree, but in a

split system. SD will be equivalent to PD when the underlying split system corresponds

to a tree and therefore consistently generalizes PD. Since non-treelikeness is a major

topic in evolutionary biology, it will also be an issue in conservation decision projects.

Thus, our proposed method helps close this gap.

Split diversity relies on having a meaningful weighted split system. There are at least

three ways to obtain a split system and split weights based on the data at hand:

(i) For a set of features (Faith, 1992), a feature can be seen as a split dividing the

taxon set into two groups: one group shows the feature and the other does not.

Hence, split weights can depict the number of features exhibiting the same split.

(ii) For a collection of trees, a union split system can be constructed from the trees

as described previously. If the branch lengths of the trees represent the expected

numbers of substitutions, the split weights in the resulting split system can be seen

as the average numbers of substitutions across trees. Another way is to combine

different tree-distance matrices and then construct a split system from the resulting

mixture of distance matrices by methods such as neighbor-net. Note that any

distance-combining function other than the weighted average can be applied.

(iii) For molecular data, pairwise genetic distances between molecular sequences can be

estimated. Then a weighted split system can be derived from the distance matrix

by e.g. neighbor-net. Note that since a phylogenetic tree can also be built from the

data, an SD analysis only makes sense if the inferred split system is significantly
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not treelike. Huson and Bryant (2006) provided a good guideline of when a split

system should be considered.

The SDA algorithm provides an exact solution to the taxon selection problem when the

split system is circular. If it is not circular, one can use the pairwise split-distance matrix

to infer a circular split system with neighbor-net. An optimal taxon set on this circular

split system is an approximation of the best set from the original split system. More

complex or even heuristic algorithms are required to deal with arbitrary split systems.

We tested our approach on two datasets, one dataset consisting of multiple genes (Shull

et al., 2005), and one dataset where non-treelike events have been verified (Sullivan et al.,

2006) as a demonstration. In both cases, the SDA returned alternative choices of taxa

compared to gPDA. We gave some phylogenetic interpretations for this observation and

concluded that in terms of taxon selection applying both methods provides a larger set

of candidate taxa for conservation.

Split systems and the corresponding splits graphs provide an implicit picture of evo-

lution that simply indicates incompatible phylogenetic signals in the data (Huson and

Bryant, 2006). Reticulograms (Legendre and Makarenkov, 2002) and level-k networks

(Gusfield et al., 2004) are alternative types of phylogenetic networks that explicitly rep-

resent reticulate events. These networks are easier to interpret. It is therefore interesting

to define diversity measures on such networks.

Recently, budget constraints as described in the Noah’s Ark Problem (Weitzman,

1998) receive an increased interest (Hartmann and Steel, 2006; Pardi and Goldman,

2007; Hartmann and Steel, 2007). Here, an overall budget is prescribed to signify the

conservation effort. For each taxon a sub-budget is assigned as the requirement for its

survival. We now look for a taxon collection whose preservation costs do not exceed the

allotted budget. Such a model is clearly not restricted to trees but can also be extended

to split systems.

Regarding PD alone, Faith (1992, p.10) stated that “PD evaluations based on a single

cladogram are sensitive to the quality of the branch length and topology estimation”.

It would thus be interesting to investigate how the conservation decision based on the

optimal PD set differs when the tree is reconstructed by different methods or when

the tree changes slightly. Crozier and Kusmierski (1994) and Crozier et al. (1999) have

studied the stability of the genetic diversity (GD) measure (Crozier, 1992). They used
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the non-parametric bootstrap to estimate the mean and the confidence interval of GD for

different areas. These values were then used to suggest conservation areas. In principle,

an analogous study for taxon selection under GD, PD, or SD can be applied. In this

context, one is more interested in the stability of the taxon set, i.e., which taxa are in the

optimal set of all bootstrap trees, which taxa are frequently observed, and which taxa

are never selected. That way, one could identify stable sets of taxa for conservation.

4.7 Appendix

4.7.1 Correctness of the SDA Algorithm

A crucial part of the SDA is the application of the dynamic programming strategy. We

prove the correctness of the dynamic programming in the following two propositions.

Proposition 1. Let (s1, s2, . . . , sk, s1) be the longest circular k-tour. Then (s1, s2, . . . , sk)

is the longest ordered k-path from s1 to sk.

Proof. Suppose that (s1, s2, . . . , sk) is not the longest ordered k-path from s1 to sk. Then

there exists a longer ordered k-path (s1, s
′
2, . . . , s

′
k−1, sk) from s1 to sk. Then

L(s1, s
′
2, . . . , s

′
k−1, sk) + ds1sk

> L(s1, s2, . . . , sk) + ds1sk
.

Therefore, the circular k-tour (s1, s
′
2, . . . , s

′
k−1, sk, s1) is longer than (s1, s2, . . . , sk, s1).

That contradicts the assumption.

Proposition 2. Let (s1, s2, . . . , sk) be the longest ordered k-path from s1 to sk. Then

(s1, s2, . . . , sk−1) is the longest ordered (k − 1)-path from s1 to sk−1.

Proof. Similar to the proof of Prop. 1.

4.7.2 Complexity of the SDA Algorithm

Proposition 3. The SDA algorithm has a time complexity of O(kn3) and a memory

complexity of O(kn). If an outgroup is specified, the time complexity is reduced to O(kn2).
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Proof. For the computation of the matrices (Li
uv) and (αi

uv) one needs to regard all

possible combinations of (i, u, v), where i ∈ {2, . . . , k} and u, v ∈ {1, . . . , n}. Each entry

of (Li
uv) is computed in O(n) time according to eq. (4.4). We get the cumulative time

complexity of O(kn3). The computation of the optimal k-set requires O(n2) time for

the determination of the two taxa u and v maximizing eq. (4.5) and O(k) time for

identifying the k−2 remaining taxa. In total, the computational complexity of the SDA

is O(kn3). For the case with an outgroup u is fixed as the outgroup taxon. Therefore,

the time complexity is reduced to O(kn2).

Considering memory requirement, one observes the following property of eq. (4.4).

Each row of the matrix (Li
uv) is computed using only the same row of (Li−1

uv ) and the

split-distance matrix (duv). Hence, one can compute the first rows (Li
1v) and (αi

1v) and

infer the longest circular k-tour originating at taxon 1. Subsequently, one can re-use the

memory space to calculate the longest k-tour starting at taxon u, u = 2, . . . , n− k + 1.

With this trick, the memory requirement for the non-outgroup and the outgroup case is

O(kn).



46 Chapter 4 Taxon Selection under Split Diversity



Chapter 5

Budgeted Phylogenetic Diversity on

Circular Split Systems

5.1 Introduction

In recent years, biodiversity conservation at a theoretical level has attracted a lot of

interest with respect to three issues. The first issue is to decide, among a variety of

biodiversity measures, which are best in assessing the diversity of a set of taxa (Wilson,

1997). The traditional taxonomic richness concept (Gaston and Spicer, 2004) has been

criticized for treating all taxa equally. Since some taxa attain more biological and eco-

logical values and some are facing severe threats of extinction due to damaging human

activities, the equal treatment of each taxon may not be adequate (May, 1990; Vane-

Wright et al., 1991). In 1991, Vane-Wright et al. (1991) pointed out the importance

of considering biodiversity based on the evolutionary relationship among taxa and pro-

posed a taxonomy-based measure. Shortly after, Faith (1992) refined it to the so-called

phylogenetic diversity (PD): Given a phylogenetic tree, the PD of a given set of taxa is

the sum of the lengths of the branches connecting them, which takes into account not

only the tree topology but also evolutionary distances. Other measures such as genetic

diversity (Crozier, 1992) also use phylogenetic trees as their basis and are more or less

related to PD (Crozier, 1997). Throughout this study we will focus on PD due to its

widespread use. For a discussion of various measures readers are advised to refer to

Purvis et al. (2005).

The second issue is that due to limited resources only a fraction of taxa can be pre-

47
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served. Which taxa should be selected? One simple scenario is to assume that only k

taxa can be conserved. Thus, one selects those k taxa having maximal PD among all

possible k subsets of taxa (Faith, 1992). This problem can be efficiently solved by a

greedy strategy (Steel, 2005; Pardi and Goldman, 2005) and efficient algorithms were

presented in Minh et al. (2006) and Spillner et al. (2008). A more general and realistic

scenario is that conserving each taxon comes at a specific cost (e.g. an amount of money,

the size of the habitat or any other quantifiable human effort) but we are given only a

limited budget. We need to find a subset of taxa with maximal PD such that the total

conservation costs do not exceed the allotted budget (Pardi and Goldman, 2007). For-

mally, given a phylogenetic tree, a function which assigns to each taxon s a non-negative

integer cost cs to preserve it and a total non-negative integer budget B, we aim to

find a subset S of taxa

to maximize PD(S)

subject to
∑

s∈S cs ≤ B.

The restriction to integral costs and budget is not a limitation since these values are

often expressed in integers. Under budget constraints, the greedy algorithm no longer

guarantees an optimal solution, but a dynamic programming algorithm, PD-BUDGET,

works (Pardi and Goldman, 2007). The PD-BUDGET can be further applied to solve a

subset of the Noah’s Ark Problem (Weitzman, 1998; Hartmann and Steel, 2006), when

the taxon risk of extinction is also accounted for (Pardi and Goldman, 2007).

The last issue involves the basis for PD : the tree. It is well known that different

genomic regions can give rise to different trees due to varying rates of evolution, genetic

recombination or ancestral polymorphism (Graur and Li, 2000; Nei, 1987). Minh et al.

(2006) demonstrated a simple case with two four-taxon trees and showed that the two

optimal PD sets of size 2 inferred from the two trees are different. A way to incorporate

the information is to determine the set of taxa maximizing the weighted sum of PD

over all trees. This problem was shown to be NP-hard and equivalent to determining

the set with maximal split diversity (SD) (Minh et al., 2008a) on the union split system

formed of all splits existing in at least one tree (Spillner et al., 2008). Hence, Minh

et al. (2007) proposed an approximation by reconstructing a Neighbor-net (Bryant and

Moulton, 2004) from the combined tree-distance matrices and subsequently inferring the

optimal SD set from this split system. The Neighbor-net falls into the group of circular
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split systems in which another dynamic programming algorithm, SDA, ensures to obtain

an optimal SD set (Minh et al., 2007). A Neighbor-net can also be constructed from

genetic distances between molecular sequences and the SDA algorithm can be applied.

An attempt to reduce the complexity of the SDA algorithm was suggested in Spillner

et al. (2008).

In this paper, we will consider a combination of the last two issues: computing an

optimal SD set for cicular split systems under budget constraints. The formalism is

similar to the problem described for the budget constraints except that the underlying

structure is not a tree but a circular split system. Following the work in Minh et al.

(2007), we will show that the SDA algorithm can be extended to cope adequately with

budget constraints. The resulting algorithm, SDA-BUDGET, can also be applied to the

Noah’s Ark Problem in the same manner as illustrated for the PD-BUDGET algorithm

(Pardi and Goldman, 2007).

5.2 Notations

Following Minh et al. (2007), we denote by X the set of n taxa. A split A|B is a

bipartition of X into two non-empty disjoint sets A and B, i.e., A∩B = ∅ and A∪B = X.

A split system Σ is any collection of splits of X. A tree is a special case of a split system

where only compatible splits are permitted (Semple and Steel, 2003, pp. 43-44) and each

split corresponds to a single branch of the tree. A split system is visualized as a split

network, where each split is presented by one or more parallel edges. Fig. 5.1 displays

a six-taxon split network and its corresponding split system consisting of 11 splits.

A split system is called circular if there exists a way to number the taxa from 1 to n

such that all splits are of the form {i, i+ 1, . . . , j} X − {i, i+ 1, . . . , j}, 1 ≤ i ≤ j ≤ n

(Bandelt and Dress, 1992b). (1, 2, . . . , n) is then called a circular order of the taxa. The

split network in Fig. 5.1 shows an example of a circular split network where one can

visually place all taxa onto a circle and each split can be depicted as a line bisecting

the circle. Note that a tree is also a special case of circular split system and that

the Neighbor-net method (Bryant and Moulton, 2004) always produces a circular split

system.

Given a split weight function λ that assigns to each split A|B ∈ Σ a non-negative
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1|23456 4

2|13456 2

3|12456 2

4|12356 2

5|12346 4

6|12345 5

12|3456 7

234|156 6

34|1256 1

345|126 3

56|1234 4

Figure 5.1: A sample split network and its corresponding split system consisting of 11

splits with their split weights. Each split is depicted by a single edge or

several parallel edges. For example, the split 12|3456 is depicted by two

parallel edges. The circle connecting the taxa of the network indicates the

circular order (1, 2, 3, 4, 5, 6).

weight λ(A|B), the split diversity (SD) of a taxon set S is defined as the sum of the

weights of all splits separating the taxa of S:

sd(S) =
∑

A|B∈Σ:
A∩S 6=∅
B∩S 6=∅

λ(A|B). (5.1)

For any two taxa u and v, we define duv = sd({u, v}) as the split-distance between these

two taxa.

For a circular split system with circular taxon order (1, 2, . . . , n), we define a circular

tour as a sequence of taxa (s1, s2, . . . , sk, sk+1) such that 1 ≤ s1 < s2 < . . . < sk ≤ n and

sk+1 = s1 (returning to the first taxon). Minh et al. (2007) have shown that on a circular

split system, for any subset S = {s1, s2, . . . , sk} with 1 ≤ s1 < s2 < . . . < sk ≤ n, the

SD score of S is equal to one half of the length of the circular tour (s1, . . . , sk, s1):

sd(S) =
1

2

(
ds1sk

+
k−1∑
i=1

dsisi+1

)
. (5.2)
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This crucial property of circular split systems acts as the foundation for the SDA

algorithm (Minh et al., 2007) as follows. Due to Eq. (5.2) the determination of a subset

S of size k with maximum SD in a circular split system can be transformed into finding

the longest circular k-tour, i.e., the longest among those circular tours traversing k

taxa. To this end, we define an ordered k-path from a taxon u to another taxon v as a

sequence of k taxa (u = s1, s2, . . . , sk = v) following the circular order, i.e., satisfying

1 ≤ s1 < s2 < . . . < sk ≤ n. Note that a circular k-tour is attained by adding a

taxon sk+1 = s1. Let Lk
uv denote the length of the longest ordered k-path from u to

v and `kmax the length of the longest circular k-tour. The SDA iteratively computes

Li
uv between all pairs of taxa u and v for i = 2, 3, . . . , k and subsequently `kmax by the

dynamic programming equations (4) and (5) in Minh et al. (2006). Finally, the maximal

SD score will be simply `kmax/2 and an optimal set S can be constructed using Li
uv.

5.3 SDA-BUDGET Algorithm

We now explain the core of the SDA-BUDGET algorithm, an extension of the SDA

(SDA-BUDGET is essentially SDA if every taxon has unit cost and the budget is equal to

k). We are given a weighted circular split system, non-negative integer taxon-associated

costs cs and a non-negative integer budget B. We want to identify a taxon subset S with

maximal SD satisfying the budget constraint
∑

s∈S cs ≤ B. Like the SDA algorithm,

Eq. 5.2 turns this problem into:

Given n taxa, their circular order (1, 2, . . . , n), pairwise split-distances (duv),

a taxon preservation cost cs for each taxon s, and a total budget B. Find the

longest circular B-tour, i.e. the longest among those circular tours whose

sum of taxon costs does not exceed B.

We adapt the notations previously used for the SDA algorithm as follows. The term or-

dered k-path is changed to ordered b-path (s1, s2, . . . , si) satisfying
∑i

j=1 csj
≤ b. Hence,

there is no condition on the number of taxa along the path, rather the sum of taxon

costs on the path should not exceed the allotted budget b. Also, the term circular k-tour

is replaced by circular b-tour, i.e., a tour (s1, s2, . . . , si, s1) such that
∑i

j=1 csj
≤ b. Due

to these modifications, Lb
uv denotes the length of the longest ordered b-path from u to v

and `bmax the length of the longest circular b-tour.
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The dynamic programming strategy still works: if (s1, s2, . . . , si, s1) is the longest

circular B-tour then (s1, s2, . . . , si) must be the longest ordered B-path from s1 to

si. Similarly, if (s1, s2, . . . , si) is the longest ordered B-path from s1 to si then also

(s1, s2, . . . , si−1) is the longest ordered {B − csi
}-path from s1 to si−1. As a result,

the length `Bmax of the longest circular B-tour will be obtained by solving the following

iterative maximization:

Lb
uv =


−∞, if b < cu + cv,

duv, if b ≥ cu + cv and @s with u < s < v

and b ≥ cs + cu + cv,

maxu<s<v{Lb−cv
us + dsv}, otherwise,

(5.3)

`Bmax = max
1≤u<v≤n

{LB
uv + duv}. (5.4)

The interpretation is principally as follows. The first line in Eq. 5.3 states that if the

costs to conserve only u and v already exceed the budget b, then there exists no ordered

b-path from u to v. The second line in Eq. 5.3 states that if b ≥ cu + cv, but the budget

b cannot afford any additional taxon s between u and v, then there is a single ordered

b-path only containing the two end-point taxa u and v. The third case allows us to

include some taxon s in addition to u and v. Then we can invest a budget of b− cv into

the path from u to s, which is reflected in the third line of Eq. 5.3. Finally, Eq. 5.4

simply scans through all the longest ordered B-paths to obtain the length of the longest

circular B-tour.

Note that if cv = 0, the third line in Eq. 5.3 becomes Lb
uv = max{Lb

us + dsv}. In such

cases, Lb
uv is not totally determined by L0

uv, . . . , L
b−1
uv , and thus we cannot iteratively

compute L0
uv, L

1
uv, . . . , L

B
uv. However, the following simple modification works: compute,

for all b, Lb
12, L

b
13, . . . , L

b
1n, L

b
23, . . . , L

b
(n−1)n, i.e., iterate on the index of the taxon u, then

on v and b.

The last step is analogous to the SDA algorithm. The maximal SD score is `Bmax/2.

To construct an optimal set S, one first determines two taxa maximizing the sum on

Eq. 5.4, then traces back the series of taxa s in the third line of Eq. 5.3.

5.3.1 An Example

To illustrate how the SDA-BUDGET algorithm proceeds, we use the circular split system

in Figure 5.1. The taxon costs are: c1 = 3, c2 = 1, c3 = 2, c4 = 4, c5 = 2, c6 = 1. We
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want to identify an optimal SD set with budget B = 7. The first step is to determine

the pairwise split-distance matrix:

(duv) =



− 12 23 23 22 20

12 − 15 15 26 24

23 15 − 4 17 21

23 15 4 − 17 21

22 26 17 17 − 12

20 24 21 21 12 −


0 1 2 3 4 5 6 7 Luv

7 +duv

L12
b 12 12 12 12 24

L13
b 23 27

(2)
27
(2)

50

L14
b 23 46

L15
b 22 38

(2)
40
(3)

62

L16
b 20 36

(2)
44
(3)

50
(5)

70

L23
b 15 15 15 15 15 30

L24
b 15 15 19

(3)
34

L25
b 26 26 32

(3)
32
(3)

32
(3)

58

L26
b 24 24 38

(5)
38
(5)

44
(5)

44
(5)

68

L34
b 4 4 8

L35
b 17 17 17 17 34

L36
b 21 21 29

(5)
29
(5)

29
(5)

50

L45
b 17 17 34

L46
b 21 21 29

(5)
50

L56
b 12 12 12 12 12 24

Figure 5.2: Solution table of SDA-BUDGET algorithm. See the main text for explana-

tion.

Now we come to the core part of the algorithm. The actual procedure is summarized

in Figure 5.2. As noted before, SDA-BUDGET iterates through Lb
12, L

b
13, . . . , L

b
(n−1)n,

as reflected on each row of the table. The columns are for b = 0, . . . , 7. The number

to the right of each row is equal to L7
uv + duv, the length of the longest circular 7-tour

containing the corresponding two end-points. Basically, one fills out this table from the
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top row to the bottom row, one row at a time, and from the left column to the right

column. We will demonstrate the computation for the first four rows of the table.

The first row regards Lb
12. Since c1 + c2 = 4, all entries with b < 4 are equal to −∞,

which is here denoted by an empty cell. Otherwise, when b ≥ 4 the entries are equal to

d12 = 12. So the longest circular 7-tour associated with taxa 1 and 2 has the length of

L7
12 + d12 = 12 + 12 = 24.

The second row is for Lb
13. Because c1 + c3 = 5, Lb

13 = −∞ if b < 5. For b = 5 the

path can only afford the taxa 1 and 3, thus L5
13 = d13 = 23. Now if b = 6, we see that

it can additionally afford the taxon 2, so based on the third line of Eq. 5.3, we have

L6
13 = L6−c3

12 + d23 = 12 + 15 = 27, which uses the entry L4
12 in the upper row. At the

same time, we record that the taxon 2 contributes to this sum and write it down in the

parenthesis on the entry. The same applies for L7
13. So L7

13 + d13 = 27 + 23 = 50.

The computation for the third row is easy and ignored here. We continue with the

fourth row: Lb
15. For b < c1 + c5 = 5, Lb

15 = −∞. For b = 5: L5
15 = d15 = 22. For b = 6

the path from 1 to 4 can afford the taxon 2 in addition, so L6
15 = L6−2

12 +d25 = 12+26 = 38

and we record the contributing taxon 2. For b = 7 we see that the path can cover either

taxon 2 or 3. By going through the taxon 2, we have the same score of 38. If one goes

through taxon 3: L7−2
13 +d35 = 23+17 = 40 which is greater than passing through taxon

2. So L7
15 = 40 and we memorize taxon 3. Finally, L7

15 + d15 = 40 + 22 = 62.

The procedure is continued until all the entries of the table are computed. At last,

the maximum entry in the right most column will provide us with the longest circular

B-tour. In our example, the tour has length 70 and is associated with the longest 7-path

from taxon 1 to taxon 6. So the maximal SD score is 70/2 = 35. To recover all taxa

in the optimal set, first look at the entry L7
16, which is associated with taking taxon 5.

Then look at L7−c6
15 = L6

15 and we see that taxon 2 was recorded for this entry. Then if

we look at L6−c5
12 = L4

12 we see no other taxon. Therefore an optimal SD set is {1, 2, 5, 6}.

5.3.2 Modification for circular split systems with an outgroup

Like the SDA algorithm we can modify SDA-BUDGET to compute the best set if an

outgroup is given that should always be included in the set (Minh et al., 2007). To

this end, we reindex the taxa such that the outgroup taxon is 1. It is easy to see that

the SDA-BUDGET algorithm now only needs to calculate Lb
12, L

b
13, . . . , L

b
1n, i.e., the first
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n−1 rows of the solution table as the rows below do not account for paths going through

the outgroup taxon 1.

5.3.3 Complexity

The solution table contains n(n − 1)/2 rows and B + 1 columns, where each entry is

computed in at most O(n) time (Eq. 5.3). The backtracking of the optimal set needs

O(n) time. So the time-complexity of the SDA-BUDGET algorithm is O(Bn3). For

the case with an outgroup, only the first n− 1 rows of the table need to be computed.

Therefore the time-complexity is reduced by a factor of n, i.e., O(Bn2).

A trivial implementation would store the whole table, resulting in a memory space

requirement of O(Bn2). However, there is a simple and more efficient way to reduce the

memory. We observe that the computation of Lb
uv is not related to any values of Lb

wv

where w ∈ {1, . . . , u − 1}. Hence, we first allocate the memory for the first n − 1 rows

and compute Lb
12, L

b
13, . . . , L

b
1n. The longest circular B-tour originating at the taxon

1 is then constructed and recorded. Subsequently, we reuse the allocated memory to

compute the next n− 2 rows, then construct the longest circular B-tour originating at

the taxon 2 and compare it to the one previously recorded. If it is longer, the longest

B-tour will be updated. We repeat this until the last row. The memory-complexity is

therefore reduced to O(Bn).

5.4 Conclusion

We have presented a dynamic programming algorithm SDA-BUDGET to compute an

optimal SD set under budget constraints on circular split sytems. SDA-BUDGET is

derived from the SDA algorithm (Minh et al., 2007) and has the time-complexity of

O(Bn3), where B is the total budget and n is the number of taxa. If an outgroup taxon

or a taxon that must be preserved is identifed, the complexity decreases to O(Bn2).

Therefore, users are advised to specify the outgroup/root or the included taxon when it

is known in advance.



56 Chapter 5 Budgeted Phylogenetic Diversity on Circular Split Systems



Chapter 6

Summary

In this doctoral thesis we have proposed the concept of split diversity to measure the

diversity of taxa in the presence of incongurent phylogenetic trees or conflicting evolu-

tionary signals. Split diversity considers split systems (Bandelt and Dress, 1992a) as the

underlying structure. When the split system corresponds to a tree, split diversity will be

equivalent to phylogenetic diversity (Faith, 1992) and therefore consistently generalizes

phylogenetic diversity.

Moreover, we have developed a number of (efficient) algorithms to solve various con-

servation questions listed in Chapter 2 under the concepts of phylogenetic diversity and

split diversity. These algorithms are ranging from simple greedy algorithms (Chapter 3

to dynamic programming algorithms (Chapters 4 and 5). The current progress of the

field “Computational Biodiversity Conservation” is summarized in Table 6.1. During

the course of the development, improved algorithms for the taxon selection on trees and

circular split systems (Spillner et al., 2008) and for the budgeted taxon selection on trees

(Minh et al., 2008b) were introduced (Table 6.1). Most of the proposed algorithms are

implemented in the PDA software (Section 6.1).

6.1 The PDA software

The software tool Phylogenetic Diversity Analyzer (PDA) that implements the proposed

methods is freely available at

http://www.cibiv.at/software/pda/.
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Problem Algorithm’s authors Complexity

Taxon selection Minh et al. (2006), Chap. 3 O(n log k)

on single trees Spillner et al. (2008) O(n)

Taxon selection
Bordewich et al. (2008)

O(n3 log2 n)

across two trees O(n2 log2 n)1

Budgeted taxon selection Pardi and Goldman (2007) O(B2n)

on single trees
Minh et al. (2008b)

O(Bn2 log n)

O(Bn log n)1

Taxon selection Minh et al. (2008a), Chap. 4 O(kn3), O(kn2)1

on circular split systems Spillner et al. (2008) O(kn+ n log n)

Taxon selection
Spillner et al. (2008) O(kn3)

on affine split systems

Budgeted taxon selection
Minh et al. (2008b), Chap. 5 O(Bn3), O(Bn2)1

on circular split systems

Reserve selection
Rodrigues and Gaston (2002) -

2

on single trees

Table 6.1: Recently developed algorithms for various conservation problems and their

computational complexity for unrooted trees or split systems. n - the number

of taxa, k - the number of taxa to preserve, B - the total budget. 1The time-

complexity when the tree is rooted or an outgroup is provided for the tree or

the split system.2The complexity is exponential in the worst-case.

A user-friendly web-interface developed by Tung Lam Nguyen is also available online at

http://www.cibiv.at/software/pda/web-pda/.

The major features of the program include:

• Accepting an input split system in NEXUS format (e.g., as produced by SplitsTree

(Huson and Bryant, 2006)), collection of trees in NEXUS format (e.g., as produced

by MrBayes (Ronquist and Huelsenbeck, 2003)), and a tree(s) file in NEWICK

format.

• (Taxon selection) Determining the maximal taxon set of a given size k or under

budget constraints on trees and general split systems.

http://www.cibiv.at/software/pda/web-pda/
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• (Reserve selection) Determining the maximal area collection of a given size k or

under budget constraints on trees and general split systems.

• Determining the mimimal taxon set on trees and circular split systems.

• Identifying multiple optimal taxon sets on trees and circular split systems.

• Supporting unrooted/rooted trees, trees and split systems with an outgroup.

• Specifying the set of taxa/areas to always include into the optimal set.

• (Area analysis) Computing PD and SD scores of user-defined taxon sets; exclusive

PD , endemic PD , and complementary PD of an area.

PDA is written in C++ using the standard template library and runs on all popular

platforms (Linux, Windows, MacOS). PDA integrates the NEXUS class library (Lewis,

2003) for parsing the NEXUS file and the LP SOLVE library (http://sourceforge.

net/projects/lpsolve) for solving (integer) linear programming. Further details about

PDA can be found in the online user-manual

http://www.cibiv.at/software/pda/pda-manual/.

http://sourceforge.net/projects/lpsolve
http://sourceforge.net/projects/lpsolve
http://www.cibiv.at/software/pda/pda-manual/
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