
DISSERTATION

Titel der Dissertation

„Decomposition Strategies for Large Scale Multi Depot
Vehicle Routing Problems“

Verfasser

Mag. Alexander Ostertag

angestrebter akademischer Grad

Doktor der Sozial- und Wirtschaftswissenschaften
(Dr. rer. soc. oec.)

Wien, im Dezember 2008

Studienkennzahl lt. Studienblatt A 084 157

Dissertationsgebiet lt. Studienblatt Internationale Betriebswirtschaft

Betreuer O.Univ.Prof. Dipl.-Ing. Dr. Richard F. Hartl

Contents

1. Introduction 1

2. Multi Depot Vehicle Routing Problem with Time Windows 5

2.1. Model Formulation . 7

2.2. Related Work . 9

2.3. Real World MDVRPTW Issues . 10

3. Decomposition Strategy - POPMUSIC 13

3.1. Introduction and Literature Review 13

3.2. Basic Design of the POPMUSIC Framework 14

4. Variable Neighborhood Search 17

4.1. Introduction and Literature Review 17

4.2. Basic Design of the VNS . 20

4.2.1. Construct Initial Solution 21

4.2.2. Shaking . 23

4.2.3. Iterative Improvement . 25

4.2.4. Acceptance decision . 26

5. Memetic Algorithm 29

5.1. Introduction and Literature Review 29

5.2. Basic Design of the MA . 32

5.2.1. Initialization . 33

5.2.2. Selection . 34

5.2.3. Recombination . 35

5.2.4. Mutation . 37

5.2.5. Population Management . 37

i

Contents

6. Ant Colony Optimization 39

6.1. Introduction and Literature Review 39

6.2. Basic Design of the ACO . 41

6.2.1. Pheromone Initialization . 42

6.2.2. Solution Building Process 42

6.2.3. Pheromone Update . 43

6.3. Implementation in the MA . 44

7. Solving Strategies 47

7.1. Decomposition Strategies for Population Based Methods 47

7.1.1. Obtaining an Initial Solution by Clustering 48

7.1.2. Better Balancing Customers Between Clusters 49

7.1.3. POPMUSIC Customization 51

7.1.4. Different Strategies . 53

Strategy I (no decomposition) 53

Strategy II (fixed decomposition) 53

Strategy III (POPMUSIC) 54

7.2. Decomposition Strategies for Individual Solution Methods 54

7.2.1. Construct Initial Solution 54

7.2.2. POPMUSIC Customization 54

7.2.3. Different Decomposition Strategies / Proximity Measures . . 55

Proximity Through Sweeping 55

Proximity by Smallest Distance 58

7.3. Implications - Population Based vs. Individual Solution 62

8. Results 67

8.1. Standardized Instances . 67

8.1.1. MA without Restarts . 68

8.1.2. MA with I1 Restarts . 71

8.1.3. MA with ACO Restarts . 74

8.2. Real World Problem . 77

8.2.1. POPMUSIC MA . 78

Strategy I . 78

ii

Contents

Strategy II . 80

Strategy III . 82

Comparison of the Strategies 83

8.2.2. POPMUSIC VNS . 87

Analysis of Proximity Measure 89

9. Conclusion 99

A. Abbreviations 103

B. Notation 105

C. Acknowledgment 111

Abstract 121

Abstract in German 123

iii

Contents

iv

List of Figures

2.1. The basic problems of the VRP class and their interconnections see

Toth and Vigo (2001) . 6

2.2. VRPTW . 7

2.3. MDVRPTW . 7

2.4. Borderline-Customers in the Multi Depot Environment 8

4.1. Clark and Wright - savings routes 22

4.2. Clark and Wright - merging of routes 23

4.3. The CROSS-Exchange Operator . 25

4.4. The 3-opt Operator . 26

5.1. Basic Steps of the Memetic Algorithm 32

7.1. p-Median decomposition . 50

7.2. Zoom in on p-Median clusters . 51

7.3. Measure SI . 56

7.4. Measure SII . 57

7.5. Measure SIII . 58

7.6. Measure DI . 59

7.7. Measure DII . 59

7.8. Measure DIV . 61

7.9. Measure DV . 61

7.10. cluster distribution - population-based 63

7.11. decomposition population-based . 63

7.12. decomposition single-solution-based 64

8.1. Distribution of customers . 77

v

List of Figures

8.2. Average objective values and confidence intervals over runtime for

day 6 . 86

vi

List of Tables

4.1. Set of neighbourhood structures . 24

8.1. Standardized data set (Cordeau et al. 2001b) 68

8.2. Results MA without restarts . 69

8.3. Comparison MA without restarts 70

8.4. Results MA with I1 restarts . 72

8.5. Comparison MA with I1 restarts . 73

8.6. Comparison mean MA approaches 74

8.7. Results MA with ACO-restarts . 75

8.8. Comparison MA with ACO-restarts 76

8.9. Problems size and class definitions 78

8.10. Parameter settings for the different strategies 79

8.11. Results of Strategy I for each day 79

8.12. Results of Strategy I by class . 80

8.13. Results of Strategy II by class . 81

8.14. Results of Strategy IIIa by class 83

8.15. Results of Strategy IIIb by class 84

8.16. Comparison of the strategies . 85

8.17. Best solution values found . 87

8.18. Comparison of algorithms for the initial two depot setup 89

8.19. Average results for two depots . 90

8.20. Route length and RPD for two depots and all days 91

8.21. Results for three depots . 92

8.22. Route length and RPD for three depots and all days 94

8.23. Results for four depots . 95

8.24. Route length and RPD for four depots and all days 96

vii

List of Tables

8.25. Results averaged over all depots . 97

B.1. Multi Depot Vehicle Routing Problem with Time Windows 105

B.2. POPMUSIC framework . 106

B.3. Variable Neighborhood Search . 106

B.4. Clark and Wright Savings . 106

B.5. Evaluation Function - Acceptance decision 107

B.6. Memetic Algorithm . 107

B.7. Ant Colony Optimization . 108

B.8. p-Median formulation . 108

B.9. Decomposition Strategies . 109

viii

List of Algorithms

1. Basic POPMUSIC framework see Taillard and Voss (2001) 15

2. Basic steps of the VNS see Hansen and Mladenović (2001) 20

3. Basic design of the ACO . 41

4. ACO Insertion Heuristic . 42

5. p-Median decomposition algorithm 49

6. POPMUSIC Initialization Phase . 50

ix

List of Algorithms

x

1. Introduction

The need to transport goods from one location to another existed since the first

human civilizations have emerged. Since then, transportation has always been

one of the most important domains of social and economical activities. A society

without proper means of transport was and still is strongly hampered in growth

and efficiency. If we take a closer look on today’s economical structure, which

is centered around an international division of labor, it is obvious that efficient

methods of transportation are crucial for success. Nearly every activity we perform

in modern life, be it shopping in a store, travel to distant destinations or using a

cellular phone, is supported by some kind of logistical operation. As a result the

wealth of whole countries or economic blocks, as well as the success of individual

companies is closely tied to optimizing their transportation activities.

According to the European Union (see Eurostat 49/2008), freight transport has

increased by 5 % from 2005 to 2006 and 25 % from 2000 to 2006, reaching a

total of 2600 billion tkm over all modes of transportation in the EU-27 member

states. It is to note that road freight transport accounted for 73% of the total

freight transported, and was growing by 3% from 2000 to 2006. The recent EU

enlargements, the ongoing trend for decentralized production or other globalization

trends will continue to support a steady rise of transportational activities. Similar

figures can be seen in other economic blocks like the USA or Japan and even more

in rising economies like India or China. This figures show the huge potential that is

possible when optimizing transportation activities, especially in the field of freight

transportation on road. From an organizational standpoint, the need to optimize

distribution costs is crucial to stay competitive in highly decentralized economies.

On average, almost half of the logistic costs are distribution costs, with industries

like the food industry reaching nearly 70% of the value added costs of goods being

distribution costs (cf. Bräysy and Gendreau 2005a). This also underlines the need

1

1. Introduction

for efficient logistics for corporations.

In the recent decades, a complete range of different research field that tackle in

some way or another logistic problem over the whole Supply Chain have arisen.

Operations Research and Mathematical Programming techniques have shown to be

successful at handling the complex nature of transportation problems. Especially

in the field of Vehicle Routing Problems (VRP) that deal with the efficient routing

of vehicles between a recipient and a distributor of goods, this techniques are

frequently applied. To reflect real world applications, the field of VRP comprises

a wide range of different problems that vary in structural design or are defined by

additional constraints. Time windows, in which customers need to be visited so

that goods can be delivered or restrictions on capacity of trucks are examples for

such constraints. Serving customers from more than one depot is another possible

characteristic of the VRP.

Since VRP problems are generally NP-hard, special solution methods need to

be developed. Exact methods like Linear Programming Methods (LP) or Mixed

Integer Programming (MIP) methods are possible ways to tackle these kinds of

problems, and were successfully applied to different types of VRPs. However, solv-

ing these problems to optimality usually takes a huge computational effort with

these methods. Usually problems consisting of only a few dozen to a couple of

hundred customer can be solved efficiently. Another approach than to solve them

exactly, is to use some heuristic methods and especially metaheuristics. Meta-

heuristics can be described as general purpose methods aimed to guide an un-

derlying heuristic. Metaheuristics prove to be of practical success when solving

problems that can’t be solved by traditional exact methods. There are different

approaches developed in the field of metaheuristics that were all successfully ap-

plied to different transportation problems and especially VRPs. The most well

known and most recently successful methods are for example Simulated Anneal-

ing (SA), Tabu Search (TS) or Ant Colony Optimization Methods (ACO). Solving

strategies based on the ACO metaheuristic attempt to resemble the natural ap-

proach of ants that try to find their way from a foodsource to the nest. Another

method that was successfully applied on a broad range of problems are Genetic

Algorithms (GA) that are based on the neo-Darwinian theory of evolution, which

features three main components; selection, recombination and mutation. Variable

2

Neighborhood Search (VNS) approaches try to improve a preconstructed solution

through the use of different neighborhood structures that change over the search

process.

This thesis focuses on solving the Large Scale Multi Depot Vehicle Routing

Problem with Time Windows (MDVRPTW). The objective is to minimize the

total distance traveled by the whole available vehicle fleet under the constraints of

serving each customer exactly once in its corresponding time window. Furthermore

load capacities of the vehicles may not be violated and each tour-length of the

vehicles may not exceed a certain amount of time. Additionally, because of the

multi depot nature of the problem, each vehicle tour has to start and end at the

same depot. The MDVRPTW is a generalization of the VRP and is thus NP-hard.

It therefore cannot be solved efficiently by exact methods when the problem size

reaches a certain threshold.

The first contribution presented in this thesis is the developed Memetic Algo-

rithm for the MDVRPTW for artificial standardized instances. Additionally the

MA is hybridized with a specially developed ACO method to enhance solution

quality and we show that the developed MA/ACO approach can obtain better re-

sults than the pure MA. The developed MA approaches are then compared to the

most recent state of the art methods. We show that the results obtained are com-

petitive for the small to medium sized test instances, that were also successfully

tackled by a VNS in Polacek et al. (2004) and a TS in Cordeau et al. (2001b).

These standardized instances are however relatively small in size and may not

be big enough to resemble a typical real world scenario with a couple of thousand

customers. Because exact algorithms, as well as most developed metaheuristics

can’t handle problems of this size, decomposition approaches like POPMUSIC

were developed to handle problems of very large scale.

Another contribution of this thesis is the development of two different algorithms

that are able to solve real world MDVRPTWs of large scale. Both approaches are

based on the POPMUSIC framework by Taillard and Voss (2001). This frame-

work is a decomposition strategy that tries to overcome size restrictions, by in-

telligently splitting the problem into sub-problems and solving them separately.

With the first approach, we demonstrate that population based approaches like

MAs can successfully be integrated into the POPMUSIC framework to tackle real

3

1. Introduction

world problems of large scale. We present an efficient approach to generate sub-

problems without destroying the valuable information stored in the population so

that population based optimizer can easily be implemented. The efficiency of the

approach is demonstrated by comparing the POPMUSIC-MA (PopMA) approach

to the pure MA that tries to solve the problem without decomposition, as well as

to a 2-phase approach where the problem is at first decomposed by a p-Median

algorithm so that then each resulting sub-problem can be solved by the pure MA

in the next phase. It is shown that the PopMA can outperform the same MA

without decomposition as well as with an initial p-Median decomposition signif-

icantly. Further an accelerated version of the PopMA with tuned parameters is

presented to demonstrate its flexibility with regards to finding high quality solu-

tions in minimum time. Finalizing we compare our approach to a highly efficient

VNS, and show that it can outperform it.

The second decomposition approach focuses on the integration of a VNS as

an optimizer for the sub-problems. As the VNS only needs to manipulate one

single solution, different ways to decompose the sub-problem are developed. Eight

different approaches that use different measures how large scale MDVRPTWs

can be decomposed are presented. Each of the strategies is tested and results

are analyzed for the two depot, three depot and four depot case to further give

insight how they behave with an increasing amount of depots. It is shown that

the POPMUSIC-VNS (PopVNS) can further improve the solutions found by the

PopMA significantly.

This thesis is organized as follows. The problem is explained in detail in Chap-

ter 2. The POPMUSIC framework is described in Chapter 3. Chapters 4, 5 and

6 explain the metaheuristics used to solve the MDVRPTW. Chapter 7 presents

the two developed solving strategies for the large scale real world MDVRPTW.

In Chapter 8 the according numerical results are reported. In the same section

different decomposition strategies are also analyzed in detail. In the conclusion

(Chapter 9) we summarize the results and provide ideas for further research.

4

2. Multi Depot Vehicle Routing

Problem with Time Windows

Carrier fleet operators are facing the following routing problem as their daily busi-

ness: Goods dispatched from certain depots have to be delivered to a customer

using a given vehicle fleet in a cost-effective and timely manner. In literature the

VRP problem as well as its extensions have been studied in great detail. ”An

overview of vehicle routing problems” by Toth and Vigo (2001) is a comprehen-

sive survey, that investigates the different VRPs with all its extensions. A short

summary about the VRP classes is given in the following part of this section.

The most basic form in the VRP class is the Capacitated Vehicle Routing Prob-

lem (CVRP) where customers correspond to deliveries and have to be served a

deterministic demand, by exactly one vehicle. The more complex variants all build

on this basic concept of the CVRP, as can be seen in Figure 2.1. For a more re-

alistic approach to the real world, time windows as well as a maximum allowed

route length, are modeled as additional constraints and form the VRPTW and

DCVRP variants. Backhauling constraints focus not only on delivering goods to

a customer, but also on picking them up at certain backhaul-points. The critical

assumption in this model is, that all deliveries have to be executed before any

pickups can be made. This is in direct contrast to the VRP with mixed service

(VRPPD), where pickups and deliveries can be executed at any time. All of the

previously mentioned extensions deal only with one single depot, therefore the

field of VRP was enriched by the MDVRP class, which focuses on efficient routing

algorithms that can handle multiple depot setups. Other variants of the VRP are

the VRP with split deliveries (SVRP), where customer orders can be carried out

using more than one vehicle. The Periodic VRP (PVRP) deals with multiple peri-

ods in which customers can be served. This classification scheme divides the VRP

5

2. Multi Depot Vehicle Routing Problem with Time Windows

Figure 2.1.: The basic problems of the VRP class and their interconnections see
Toth and Vigo (2001)

class by their main characteristics, but of course all of the mentioned constraints

can be combined. This thesis focuses on the multiple depot case with the addition

of time windows (MDVRPTW), so that customers must be serviced out of several

depots, under the same constraints that apply for the VRPTW. Therefore the

vehicle routes have to be determined in a way that:

• each route starts and ends at the same depot

• all customer requirements are met exactly once by a vehicle

• the time windows for both customers and the depots are respected

• the sum of all requirements satisfied by any vehicle does not exceed its

capacity

• the total cost is minimized.

In the recent years most of the variants have been studied extensively. Especially

the CVRP and VRPTW have been studied widely and many excellent approaches

to solve them have been published in literature. The MDVRPTW however, is

relatively new in origin and therefore hasn’t attracted very much attention. Thus

6

2.1. Model Formulation

Figure 2.2.: VRPTW Figure 2.3.: MDVRPTW

many high performing algorithms have been developed for the VRPTW, that may

be the closest relative to the MDVRPTW, however if one takes a look in how

routes are build in the multi depot environment (see Figures 2.2 and 2.3), and

especially how customers are assigned from which depot they should be served,

it is obvious that approaches that fully exploit the use of multiple depots, may

yield a better performance. Especially the efficient rearrangement of borderline

customers (customers that are in between different depots) to appropriate routes

is of great importance to find highly competitive solutions. A typical MDVRPTW

solution with its according borderline customers is depicted in Figure 2.4.

2.1. Model Formulation

The presented formulation of the MDVRPTW follows the models used in Polacek

et al. (2004) and Cordeau et al. (2001b).

The MDVRPTW is defined on a complete graph G = (V, A) where

V = {v1, ..., vm, vm+1, ..., vm+n} is the vertex set and A = {(vi, vj) : vi, vj ∈ V, i 6=

j} is the arc set. Vertices vm+1 to vm+n represent the n customers. Vertices v1 to

vm accord to the m depots to conclude all possible arcs that can be traversed. To

each arc (vi, vj) a cost cij is given. To represent the constraints several weights are

assigned to each vertex vi ∈ V, i = m+1, ..., m+n. These weights are the demands

di, the service times si, as well as the time windows [ei, li]. The time windows are

defined by the earliest ei and latest li possible start times for the service. Not

7

2. Multi Depot Vehicle Routing Problem with Time Windows

Figure 2.4.: Borderline-Customers in the Multi Depot Environment

8

2.2. Related Work

only are they applied to the customers, but also to to the depots (i = 1, ..., m) so

that the opening hours of the depots can adequately be modeled. A non-negative

travel-time or cost is linked to each arc (vi, vj). In the MDVRPTW case the

vehicle fleet, consisting of K vehicles, is globally assigned to the m depots. The

fleet is homogeneous and each vehicle is characterized by a non-negative capacity

D and a non-negative maximum route duration T . The vehicle-fleet is evenly

distributed amongst the m depots. The goal is to create K vehicle routes so

that each customer i is serviced by exactly one vehicle in its corresponding time

window [ei, li]. The built routes have to start and end at the same depot and may

not violate the maximal allowed tour length T or excess the vehicle capacity D.

Routes have to be build with the objective to minimize the total time traveled c

by all vehicles.

2.2. Related Work

The VRPTW has been extensively researched in literature with both exact and

heuristic optimization approaches. An overview about exact approaches can be

seen in Desrosiers et al. (1995) and Cordeau et al. (2001a). Other work that focuses

on these exact methods in grater detail are Cook and Rich (1991) and Larsen

(1999). Figure 2.1 shows that the MDVRPTW generalizes the VRPTW and is

therefore also NP-hard. The most sophisticated exact methods for the VRPTW

are only able to solve instances of very small size, so that they may be even less

suitable to solve MDVRPTWs in reasonable time. In real world scenarios these

size restrictions usually are surpassed relatively fast and therefore the most recent

work focused mostly on developing metaheuristic approaches. Because this thesis

focuses on solving real world problems, exact approaches are of relatively small

interest and are therefor not further examined as they are by far not capable of

solving them, if at all, in reasonable time. An overview about the VRPTW in the

fields of heuristics and more sophisticated metaheuristics is presented in Bräysy

and Gendreau (2005a,b).

To date, only two papers tackle the MDVRPTW efficiently. The first one to

successfully tackle the MDVRPTW is the unified Tabu Search (TS) by Cordeau

et al. (2001b). In this approach the authors use a very simple neighborhood struc-

9

2. Multi Depot Vehicle Routing Problem with Time Windows

ture, a move of one customer from one route to another, while allowing infeasible

solutions. To guide the search from infeasible regions of the search space to feasible

parts, a penalty function that adapts to the search history is used. The proposed

TS approach was the first to be applied to the MDVRPTW, therefore the authors

generated randomized data sets on which the algorithm was tested. To verify its

general effectiveness it was tested on standardized VRPTW instances. The results

achieved by the unified TS are competitive to other state of the art approaches.

The second paper by Polacek et al. (2004) uses a VNS to further improve the so-

lutions found by Cordeau et al. (2001b). The authors used the CROSS-Exchange

operator for perturbing the solution, and a restricted 3-opt for bringing it to lo-

cal optimality. The VNS was tested on the MDVRPTW instances introduced in

Cordeau et al. (2001b), and it was shown that the results achieved outperform

the results found by the unified TS approach. Another approache that tackles

the MDVRPTW is the approach by Giosa et al. (2002), that tries to improve

the solution finding process by applying a 2-phase approach. In the first phase

customers are assigned to a certain depot through a specialized assignment algo-

rithm. After all customers have been clustered, a version of the Clark and Wright

heuristic solves the resulting single depot problems. The assignment of customers

is fixed to a certain depot, therefore no interaction between the individual single

depot VRPs is possible. This approach therefore is completely different to the

previously described approaches (VNS, unified TS) were customers can flexibly be

reassigned from one depot to another. More recently, in Tansini and Viera (2006),

the authors improved their assignment of customers to depots by introducing a

new measure of proximity. This measure not only uses distance but also the sim-

ilarity of time windows as proximity and can further improve the solution finding

process. However interaction between the different single depot VRPs is still not

possible. To our best knowledge the mentioned approaches more or less exhaust

the recent work done on MDVRPTWs.

2.3. Real World MDVRPTW Issues

Even though many different variations and extensions to the basic VRP problem

are examined in literature, the typical real world problem can still feature some

10

2.3. Real World MDVRPTW Issues

additional restrictions or constraints that are not considered so far. Split deliver-

ies, stochastic demand, varying travel times, uncertainty or traffic jams are just

some of these additional features that are hard to model, and where the resulting

problems are even harder to solve. Additionally real world problems are usually

considerably larger than the problems that are tackled in literature. In the case

of VRPs exact algorithms can only solve a couple of hundred customers, while the

state-of-the-art metaheuristic approaches are capable of handling VRP problems

of up to 1000 customers (see Homberger and Gehring 2005; Mester and Bräysy

2007, 2005; Kytöjoki et al. 2007). This thesis focuses on developing strategies to

solve the MDVRPTW in the real world. In literature however the most recent

algorithms (Cordeau et al. 2001b; Polacek et al. 2004) only solve problems of up

to 288 customers. Even though the mentioned algorithms work extremely well on

larger problems, they are not specially designed to deal with a couple of thou-

sands customers, like they can appear in the daily routine of medium sized carrier

companies. Additionally real world problems might be different in the type of

how customers and depots are distributed. In literature test instances are usually

generated randomly, but they do not necessarily resemble a real world problem.

For supraregional operators this means in detail that customers can be clustered

in cities, with a very scarce distribution of customers in the country-side, where

distances might be extraordinarily large. Even in cities where customers already

are clustered, further clustering of customers, like in business districts can occur.

Finally, a couple of customers can even be on the same spot like in shopping malls

or large business structures. Big cities that are divided by highways rivers or other

means can also be clustered. It can be seen that in the real world, instances gen-

erally are not homogenous. Algorithms that are developed to solve them should

therefore try to exploit these geographical features to their advantage. This fact,

combined with the large scale nature of real world problems lead in the direction

that intelligently decomposing huge problems into smaller problems, can make

originally impossible to solve problems feasible to solve in reasonable time. Fur-

ther it is very likely that orders are only known partly in advance with the rest

arising during the day. In this thesis however, we assume a deterministic demand

that is known in advance, so that the resulting problems can be solved on a day

to day basis. The time allowed to solve a problem is another restriction that is

11

2. Multi Depot Vehicle Routing Problem with Time Windows

given in the real world. While algorithms are allowed to run for multiple days in

a scientific setup, resources and time are limited in the real world. Especially for

solving the VRP on the operational level, the run-times allowed may often not

exceed the time between two working days, so that orders that arrive on the end

of the day can be efficiently served the next morning. All these special character-

istics of real world problems in the field of MDVRPTWs are often not accounted

for in literature. This thesis focuses on developing decomposing strategies for real

world MDVRPTWs so that they can be solved in reasonable time.

12

3. Decomposition Strategy -

POPMUSIC

In this chapter a short introduction to decomposition strategies as well as the

most related work is presented. Additionally we present the basic design of the

POPMUSIC framework that was used as a decomposition strategy to solve the

large scale MDVRPTW.

3.1. Introduction and Literature Review

Optimization problems like VRPs are usually of large scale when encountered in

the real world. The need for transportation is steadily increasing, which results in

the need for carrier fleet operators to handle a large amount of goods that need

to be distributed to a huge customer-base. A couple of thousand customers to be

served by a single company results in problems of considerable size that can hardly

be solved even by the most advanced metaheuristic approaches. Decomposing

strategies try to intelligently split these huge problems into manageable parts, so

that they can be solved by efficient algorithms.

Examples for such strategies can be found in ”Parallel Iterative Search Methods

for Vehicle Routing Problems” by Taillard (1993), where two partitioning methods

are presented that are applied to large scale VRP, with the intention to speed up

the search of a TS. The first method tries to decompose into polar regions, while

the second method is based on the arborescence built from the shortest paths from

any city to the depot.

The Granular Tabu Search (GTS) by Toth and Vigo (2003) is a variant of the

well known TS approach that uses a candidate-list strategy for solving the vehicle

routing problems. The GTS works efficiently by guiding the search in a highly

13

3. Decomposition Strategy - POPMUSIC

restricted neighborhood. This granular neighborhoods somehow decompose the

problem into smaller parts, that can then be solved more efficiently by the TS.

Another example for a decomposition strategy is the D-Ants approach by Reimann

et al. (2004) which divides problems of large size into smaller parts, so that the

ants can construct solutions through a savings based procedure with reasonable

effort. The authors demonstrate that decomposing the problem through the use

of a sweep algorithm into sub-parts, and then solving these smaller parts, im-

proves the effectiveness of the solving strategy so that standardized instances can

be solved successfully.

Other approaches that successfully decompose large problems are ”A Tabu

Search Approach for Delivering Pet Food and Flour in Switzerland” by Rochat and

Semet (1994), a ”Probabilistic diversification and intensification in local search for

vehicle routing” by Rochat and Taillard (1995). An approach that uses constraint

programming as well as local search methods can be found in the work by Shaw

(1998).

Some of these mentioned algorithms try to decompose a large problem into

smaller sub-problems in a customized fashion that was specially designed for the

problem at hand. The work of Taillard and Voss (2001) tries to standardize the

procedure of decomposing a problem by introducing the POPMUSIC framework.

In Ostertag et al. (2008a,b) we adapted the POPMUSIC framework to solve the

MDVRPTW by using two different optimizers.

In the next part of this chapter the basic design of the POPMUSIC framework

is presented.

3.2. Basic Design of the POPMUSIC Framework

In ”POPMUSIC: Partial Optimization Metaheuristic Under Special Intensifica-

tion Conditions” by Taillard and Voss (2001), the authors propose a framework

for dealing with problems of large size. They defined the basic concept of the

framework as shown in Algorithm 1.

To initialize the POPMUSIC strategy, a pre-calculated solution S is getting

decomposed into parts si; i = 1, ..., p through the use of some relatedness measure.

There is no general way to define relatedness of one part to another as it highly

14

3.2. Basic Design of the POPMUSIC Framework

Algorithm 1 Basic POPMUSIC framework see Taillard and Voss (2001)

Input: Solution S composed of parts s1, ..., sp, parameter r
Set A← ∅
while A 6= {s1, ..., sp} do

Select seed part si /∈ A
Create a sub-problem Ri composed of the r parts si1 , ..., sir most related to
si

Optimize Ri

if Ri has been improved then

Update S (and corresponding parts)
Set A = A \ {si1 , ..., sir}

else

Set A← A ∪ {si}
end if

end while

depends on the problem at hand. Usually in the context of VRP the relatedness

measure is a distance based measure, taking into account travel time or travel

costs, resulting more or less into clusters of customers that are geographically close

together (see e.g. Rochat and Semet 1994; Rochat and Taillard 1995; Taillard 1993;

Shaw 1998). Other approaches like ”New measures of proximity for the assignment

algorithm in the MDVRPTW” by Tansini and Viera (2006) additionally define

relatedness of customers by their time windows. This is done in a way so that

customers are highly related to each other when they are close together based on a

distance measure and additionally also have to be serviced around the same time

of the day.

In the next step of the POPMUSIC algorithm r of these parts are aggregated

around the seed part si into a sub-problem. The parameter r therefore indirectly

defines the size of the generated sub-problems, resulting in a higher decomposition

of the problem the lower the parameter is set. The proper selection of parameter

r and the relatedness measure are crucial for a working decomposition strategy.

The better sub-problems are build that overlap and cover the whole solution S the

harder it is to get stuck in local optimum. Each sub-problem generated is then

improved with the help of an optimizer, that can be specially designed to solve

the sub-problems at hand. Finalizing, if parts and sub-problems are well defined,

15

3. Decomposition Strategy - POPMUSIC

every improvement of a sub-problem corresponds to an improvement of the whole

solution S. The creation of new parts and their optimization is repeated as long

as S can be improved.

This framework provides the guidelines for designing an efficient optimization

method but also leaves certain design issues free to the decide for the developer of

the metaheuristic. The points to can be freely decided on therefore are:

1. The definition of a part of a solution

2. The selection procedure of a part in A

3. The relatedness function between parts

4. The used sub-problem optimizer

In this thesis two different approaches to decompose a large scale MDVRPTW

are presented. The used characteristics of the four mentioned points are explained

in Chapter 7.

16

4. Variable Neighborhood Search

In the first section of this chapter we give an introduction to the VNS metaheuristic

and present the most related and recent work found in literature. The basic design

of the VNS, like it was implemented in our solving strategies, will also be presented

in this chapter.

4.1. Introduction and Literature Review

Exact approaches to solve the MDVRPTW to optimality tend to be limited to

rather small problem sizes. Additionally modern metaheuristics are often highly

efficient and can provide solutions close to optimality or even solved to optimality

in a fraction of the time. One of these highly efficient methods is the VNS which

has demonstrated to be a very flexible and easily adaptable metaheuristic for var-

ious optimization problems. It has been developed by Mladenovic and Hansen

(1997) and extended in Hansen and Mladenović (1999, 2001). The VNS they de-

veloped can be categorized as a stochastic improvement heuristic that manipulates

one single solution. The VNS itself can’t create a starting solution, therefor a so-

lution has to be fed to the VNS; for example through the use of some construction

heuristic. The not necessarily feasible solution, then functions as the starting point

for further VNS iterations. After a shaking step, that perturbs a solution, some

kind of Local Search (LS) operator then tries to enhance the resulting solution in

each iteration. Because the VNS only works with one single solution and does not

use any kind of memory system, where it can save pre-calculated solutions, it has

to be specially designed so that it can overcome getting stuck in a local optimum.

The two main parts of a VNS are therefore a working intensification phase, where

solutions are improved through LS, and a diversification phase, were solutions are

somehow randomly disturbed so that local optima can be overcome. In literature

17

4. Variable Neighborhood Search

the VNS metaheuristic has proven to be very efficient in solving complex opti-

mization problems in the field of VRP, a short overview of the most recent and

successful papers is given in the next part of this section.

In ”Scheduling Periodic Customer Visits for a Traveling Salesperson” by Po-

lacek et al. (2007), a VNS was developed for a real world scenario, a similar VNS

was then also applied to the Capacitated Arc Routing Problem with Intermedi-

ate Facilities by Polacek et al. (2008b) and for the MDVRPTW in ”A Variable

Neighborhood Search for the Multi Depot Vehicle Routing Problem with Time Win-

dows” by Polacek et al. (2004) which was then further extended in ”A Cooperative

and Adaptive Variable Neighborhood Search for the Multi Depot Vehicle Routing

Problem with Time Windows” by Polacek et al. (2008a).

The approach by Kytöjoki et al. (2007) uses a VNS to solve the large scale

CARP. The authors used a set of standard improvement heuristics that are em-

bedded and guided by the VNS. To escape local optima a strategy similar to a

guided local search metaheuristic is used. The VNS has proven to be fast and

flexible in finding high-quality solutions for problems that can reach up to 20000

customers in size.

Another successful implementation of a VNS is presented in ”A Reactive Vari-

able Neighborhood Search for the Vehicle-Routing Problem with Time Windows”

by Bräysy (2003). In this paper the VNS is used to reduce the total distance trav-

eled of the vehicles, so that new best know solutions can be found for standard

data sets ranging up to 400 customers.

Hemmelmayr et al. (2009) propose a VNS to solve the PVRP, where a plan-

ning period of several days is considered and customers must be visited more than

once. A Clark and Wright savings algorithm (see Clarke and Wright 1964) is used

to construct the initial solution that is then iteratively improved by a VNS. The

operators used in the Shaking Phase are based on the MOVE operator, where a

customer can be moved to another position, and the CROSS Exchange Operator,

where sequences of customers are switched with each other. Additionally they

introduced a CHANGE Combination Operator that randomly changes the visit

combinations for customers. A 3-opt operator (see Lin 1965) is then used to bring

the newly generated solutions into local optima. The VNS was tested on stan-

dardized data sets and is able to outperform the formerly best known approaches.

18

4.1. Introduction and Literature Review

The same authors used a similar VNS approach to solve a Real World Blood

delivery problem (see Hemmelmayr et al. 2008) in a Vendor Managed Inventory

setup.

Tricoire et al. (2007) developed a VNS for the Multi-Pile Vehicle Routing Prob-

lem (MP-VRP). The MP-VRP is a combination of two distinct problems. A pack-

ing problem, where items of certain size need to be packed in a limited amount

of space in a vehicle, and a routing problem, where these vehicles need to deliver

the items to their assigned customers at minimal cost. The VNS is applied in

the routing-part, and also uses a Cross-Exchange Operator in the Shaking-Phase

to perturb the incumbent solution so that local optima can be overcome. Their

results show that the VNS is a fast and robust algorithm, that can improve 19 out

of 21 best known solutions.

Another successful implementations of a VNS is for example found in ”Meta-

heuristics for the Team Orienteering Problem” by Archetti et al. (2007). In this

work the VNS is used to solve the Team Orienteering Problem (TOP), where a

set of potentional customers needs to be selected out of available customers and a

variable profit is collected when visiting them. The customers need to be visited

in a given time limit through the use of a fixed fleet of vehicles with the objective

to maximize profit. The paper shows that the VNS can successfully solve the TOP

and beat the already known heuristics.

Fleszar et al. (2008) show that the VNS can also be successfully applied to the

Open Vehicle Routing Problem (OVRP), were the objective is to minimize the

number of vehicles and then to minimize the total distance traveled. The au-

thors used a neighborhood structure that incorporated an exchanging of segments

between routes, as well as a reversing of selected segments of routes.

In this thesis three different VNS based on the work by Polacek et al. (2004)

are used on three occasions for different objectives. The first VNS used was

implemented so that the generated solutions by it can serve as a valid point for

comparison to other approaches. The second implementation of the VNS was

used as some kind of mutation operator in a MA and the third VNS is used as a

optimizer in a decomposing approach.

This chapter is organized as follows. The first part gives an overview about the

basic design of the VNS. In the successive sections the primary components of

19

4. Variable Neighborhood Search

the VNS, the construction of the initial solution, the shaking phase, the iterative

improvement phase and the acceptance decision are presented.

4.2. Basic Design of the VNS

The VNS used was derived from the work done by Polacek et al. (2004) as it has

been successfully applied to MDVRPTW problem instances created by Cordeau

et al. (2001b). The instances range from 48 to 288 customers that need to be

serviced by 4 to 30 vehicles from 4 or 6 depots. Additionally the data set is split

in two parts, one where customers have very tight time windows in which they

need to be served and the other where time windows are comparatively relaxed.

The authors propose that the VNS is scaling very well with regards to the amount

of customers in the problem, as runtimes are mostly dependant on the amount of

customers in a route and not in the whole problem.

The Basic Steps of the VNS are shown in Algorithm 2.

Algorithm 2 Basic steps of the VNS see Hansen and Mladenović (2001)

Initialization. Select the set of neighborhood structures Nκ(κ = 1, ..., κmax) to
be used in the search; find an initial solution x; choose a stopping condition;

Repeat the following steps until the stopping condition is met:

1. Set κ← 1;

2. Repeat the following steps until κ = κmax:

a) Shaking . Generate a random point x′ from the κth neighborhood of
x(x′ ∈ Nκ(x));

b) Iterative Improvement. Apply some iterative improvement method
with x′ as initial solution; denote by x′′ the so obtained local opti-
mum;

c) Move or not . If x′′ is better than the incumbent or some acceptance
criterion is met, accept x′′(x ← x′′) and continue the search with
N1(κ← 1); otherwise, set κ← κ + 1;

At first a Solution x is constructed, as the VNS needs an already existing so-

lutions as starting-point. Furthermore a suitable neighborhood structure Nκ(κ =

20

4.2. Basic Design of the VNS

1, ..., κmax) needs to be defined in which the VNS can perturb solutions. The VNS

then repeats the following phases until a certain stopping criterion is met. In the

shaking phase the incumbent solution x is changed at random to a solution x′ in

the κth neighborhood of x(x′ ∈ Nκ(x)). The newly generated solution x′ is brought

in to local optimum by an iterative improvement method in the second phase and

is denoted by x′′. In the third phase, it is decided if the new found solution x′′

is accepted for further calculation by some acceptance criterion. Usually better

solutions are always accepted, but to break out of local optima, other acceptance

criteria can be defined. If the new found solution is accepted it replaces x and

the search resumes using the first neighborhood N1. If no better solution can be

found and x′′ is not accepted, the search continues within the next neighborhood

Nκ+1. The evaluation of the quality of a solution is done through the use of a

fitness-function, that is explained in detail in Section 4.2.4.

4.2.1. Construct Initial Solution

The VNS is a very powerful and fast iterative improvement heuristic. Most authors

therefor do not focus on developing very sophisticated construction algorithms, as

tediously generated solutions may be found in a fraction of the time by the VNS

that starts from relatively bad constructed initial solutions. The used construction

heuristic is based on the highly efficient Clarke and Wright Savings algorithm (see

Clarke and Wright 1964) and is therefore a more sophisticated method compared

to the heuristics used for example by Polacek et al. (2004). However the devel-

oped VNS should be able to solve problems that are up to 50 times bigger than in

comparable approaches and therefore each gain in solution quality benefits the de-

composition of the respective problem into more precise sub-problems which will

be presented in Chapter 3. Because the Clark and Wright algorithm is determin-

istic we enhanced it by a stochastic feature. This feature may not be needed for

a VNS that only manipulates a single solution, but to establish a unified starting

point for other population based approaches, a flexible heuristic that generates

different solutions was needed.

In detail the Clark and Wright Savings algorithm is explained as follows; In the

first stage, the clustering stage, all n customers are assigned to their geographically

21

4. Variable Neighborhood Search

Figure 4.1.: Clark and Wright - savings routes

closest depot. We are aware that there exist more sophisticated methods for

assigning customers to depots (see e.g. Salhi and Sari 1997), however a simpler

approach was used because we didn’t want to focus on developing a construction

algorithms for the multi depot case. Afterwards routes are built with start- and

end point at their assigned depot. Therefore n routes containing one customer

only are generated. The procedure can be seen in Figure 4.1.

In the second stage, the savings stage, a list sorted according to the savings

values s is generated. The merging of two routes is realized in the order of the

greatest saving while prohibiting violations of the time-windows, route-length or

load constrains. The savings value sij is calculated as follows.

sij = ciz + czj − cij (4.1)

where i, j denotes two possible customers that should be merged, and cij gives

the travel cost from customer i to customer j. The depot is denoted with z.

The savings procedure is depicted in Figure 4.2. The stochastic feature occurs

22

4.2. Basic Design of the VNS

Figure 4.2.: Clark and Wright - merging of routes

exactly at this point, when a merging of two routes is theoretically allowed but

rejected with a probability of 0.1 so that the algorithm continues with the next

entry in the list. In the case of multi depots, customers serviced from two different

depots can also be merged if their savings value would be the next in the list. In

detail this means that the route of customer j switches the depot. In any case,

regardless if the routes are serviced from the same depot or not, feasibility of the

merging is checked. Violations of the tour-length, the time windows or the load are

therefore not allowed. The algorithm then stops when no more routes can feasibly

be merged. In the case when the number of routes exceed the maximum allowed

number of routes K, routes are merged until K routes are reached with respect

to generating the least violations of time windows, capacity or route duration

according to Equation (4.2).

In the final step a 3-opt operator is applied to each route so that the constructed

solution is the first incumbent solution within the VNS.

4.2.2. Shaking

A very important design decision for the VNS is the selection of the right neighbor-

hood structure in the shaking phase, so that the incumbent solution is sufficiently

perturbed, while at the same time retaining the good parts of the solution. The

23

4. Variable Neighborhood Search

Table 4.1.: Set of neighbourhood structures

κ Depots maximum Sequence length
1 1 min(1, Ck)
2 1 min(2, Ck)
3 1 min(3, Ck)
4 1 min(4, Ck)
5 1 min(5, Ck)
6 1 Ck

7 2 min(1, Ck)
8 2 min(2, Ck)
9 2 min(3, Ck)

10 2 min(4, Ck)
11 2 min(5, Ck)
12 2 Ck

CROSS-Exchange Operator (see Taillard et al. 1997) is know to work well perturb-

ing VRP Solutions and was used successfully in recent literature (see e.g. Tricoire

et al. 2007; Fleszar et al. 2008; Polacek et al. 2004). The special features of the

used shaking phase are explained as follows. The multi depot feature of the real

world problem is considered by defining on which routes the CROSS-Operator is

applied. Two different variants are realized depending on the active neighborhood.

In the first variant only routes belonging to the same depot may be changed. In

the second variant routes starting at different depots may be changed. In both of

the mentioned variants the maximal allowed sequence length that may be changed

by the CROSS operator depends on the active neigborhood and is defined between

one and five. An additional case is considered where the maximum allowed length

is equal to the number of customers in the route Ck with the smaller number of

customers of the two considered routes. The actual sequence length that is then

used for the CROSS-Exchange, is then randomly drawn between zero and the

maximum allowed length. To avoid unproductive iterations, only one sequence

length is allowed to be set to zero, which represents a move of a chain of cus-

tomers from one route to another. The used neighborhood structure is shown in

Table 4.1. We want to note that the two routes, on which the operator is applied,

24

4.2. Basic Design of the VNS

Figure 4.3.: The CROSS-Exchange Operator

are selected at random. However, if the selected routes are the same, the operator

is applied in a way so that it only moves sequences of customers in the route. The

CROSS-Exchange Operator is shown in Figure 4.3 and works as follows. In the

first step two edges X1, X
′

1 and Y1, Y
′

1 are removed from the first route while in the

second route the edges X2, X
′

2 and Y2, Y
′

2 are removed. Afterwards the sequences

X ′

1 − Y1 and X ′

2 − Y2 are swapped. The length of these two sequences may be

arbitrary but the orientations of the sequences are preserved, but can be reversed

on a route to route basis with a probability of piCross = 0.001.

4.2.3. Iterative Improvement

After the shaking phase each solution is improved by an iterative improvement

procedure. The used procedure is a 3-opt (see Lin 1965) that is restricted to a

maximum allowed sequence length of three customers. The 3-opt procedure is

shown in 4.4 and explained as follows.

The route is split into three segments, X1−Y1, X2−Y2 and X3−Y3 which are then

25

4. Variable Neighborhood Search

Figure 4.4.: The 3-opt Operator

reconnected in the following fashion; X1−Y1−X3− Y3−X2−Y2. The sequences

are therefore shuffled, without allowing a inversion of the customers in a sequence,

so that time-window-constraints are violated as least as possible according to

Equation (4.2). All possible sequence lengths for all three parts are then iteratively

and systematically checked if they can be interchanged so that an improvement in

the objective value occurs. We realized a first improvement strategy, which means

the algorithm accepts the current solution as new incumbent solution as soon as an

improvement is found. Afterwards the iterative improvement procedure restarts.

A special feature of real world problems is that customers are often on the same

geographic location (e. g. hospital, shopping mal, business centers,..) . For this

fact a restrictive sequence length may hinder the 3-opt operator in improving the

solution when more than the allowed amount of customers that can be shifted are

located on the same position. When this happens we therefore allow within the

3-opt procedure to shift customers on the same location without any restrictions

on the maximum allowed sequence length.

4.2.4. Acceptance decision

The fitness evaluation function of a solution S follows the implementation of Cordeau

et al. (2001b) and Polacek et al. (2004). The total travel time of the routes is de-

26

4.2. Basic Design of the VNS

noted by c(S). The values q(S), t(S) and w(S) respectively denote the total

violation of load, duration and time window constraints. The arrival time ai at

each customer i is calculated and an arrival after the end of the time window

ai > li is penalized while an arrival before the start of the time window ai < ei

is allowed but generates a waiting time. Each route is then checked for viola-

tions with respect to D and T as well as the total violation of the time window

constraints
∑n

i=1 max(0, ai − li). The fitness function is show Equation (4.2).

f(S) = c(S) + αq(S) + βt(S) + γw(S) (4.2)

We want to point out that α, β and γ are positive weights which are all set to 100

to strongly penalize infeasibility. Different values for the weights were tested, as

well as some adaptive scheme that changes the weights according to the feasibility

of the produced solutions. After some initial testing we came to the conclusion

that fixing the weights at the according values, resulted in the best solutions. To

measure the quality of a solution this evaluation function is used in all steps of

the whole VNS procedure. It is therefore used to generate a starting solution, to

improve a solution through the restricted 3-opt and in the move or not phase.

The same fitness function as depicted in Equation (4.2) was used in all further

approaches to evaluate individual solutions.

In the move or not phase, solutions x′′ that are better than the incumbent

solution x are always accepted. However this may lead to a fast convergence of

the algorithm, and it may happen that it gets stuck in local optima. To overcome

this restriction, we allow inferior solutions to get accepted as well, if both of the

following criteria are met. The first criterion defines when inferior solutions are

generally allowed to get accepted. It may not be desired to allow for deteriorating

solutions to get accepted early on in the search, as it may hinder the improvement

of the solution quality significantly. Ideally inferior solutions are only allowed to

get accepted when the local optimum is reached. Since this is very hard to identify,

we defined a number of unproductive iterations (iu = 105) as the point when we

allow for the acceptance of deteriorating solutions. Therefore after this limit is

reached, the next inferior solution is allowed to get accepted as long as it meets

the second criterion. This criterion defines a certain threshold value in which a

27

4. Variable Neighborhood Search

inferior solution needs to be located. It is defined as a ratio (pt = 5%) of the so far

best found solution to the current solution. As soon as a newly generated solution

triggers the second criterion it is accepted for further iterations and the counter

for unproductive iterations is reset, so that the convergence to better solutions is

not hindered.

28

5. Memetic Algorithm

The basic design of the MA that was developed to solve the large scale MD-

VRPTWs is presented in this chapter of the thesis. Additionally a short introduc-

tion to the field of MAs is given, with an overview about the most related work

in recent literature.

5.1. Introduction and Literature Review

The term ”Memetic Algorithm” is used to encompass a broad class of metaheuris-

tics in the field of population based search. In population based search, a set

of solutions is modified simultaneously so that individual solutions can interfere

with each other. The development of MAs to solve complex combinatorial op-

timization problems relate to fields of Evolutionary Computing (EC) (see Fogel

et al. 1966) and methods like Genetic Algorithms (GA) (see Reeves 2003; Gold-

berg 1989). The term genetic algorithm was coined by John Holland in 1975 and

his book Adaption in Natural and Artificial Systems (Holland 1975), which lay the

foundations for a flourishing field of research. Similar approaches by Rechenberg

(1973) and Schwefel (1975) called Evolutionsstrategie (ES) were developed in the

60s and 70s. Both concepts are very similar to each other and revolve around the

core of the Neo-Darwininan theory of evolution, which consists of the three main

components; selection, recombination and mutation.

Moscato and Cotta (2003) describe the basic structure of a typical MA as sim-

ilar to the one of a GA, but that is further enriched in a way that it can exploit

all available knowledge about the problem that is under consideration. The ba-

sic structure of a MA is described as follows. To start the algorithm an initial

population of solutions is needed. In the field of VRPs usually a fast construc-

tion heuristic is used to generate the first population. In the next step some kind

29

5. Memetic Algorithm

of reproductive process is applied, which selects suitable individuals out of the

population and generates offsprings with desired features. These offsprings are

then used to update the population so that the average quality of the population

is steadily increasing. Finally the population may converge, but not necessarily

into the global optimum, as it may get stuck in a local one. Mutation operators

are then used to disturb the current solutions so that new features may enter the

population and the search can continue on another trajectory. The idea of MAs

is to find a way to manipulate the search, so that it incorporates all available

knowledge of the problem. This is usually done by adding additional operators to

the search that enhance the quality of available solutions, or manipulates them so

that solutions inherit some desired features. In literature the MA metaheuristic

or similar GA metaheuristics were successfully applied to optimization problems

in the field of VRP. An overview of the most relevant and recent work is given in

the rest of this section.

Tan et al. (2001) developed a Hybrid Genetic Algorithm to solve the VRP.

The developed GA uses a Partially Mapped Crossover (PMX) operator to recom-

bine two parent solutions into new offsprings. The authors enhance traditional

chromosome representation methods by adding information on the grouping of

customers, which also represents the individual vehicle-routes. Local search oper-

ators are then applied to this grouping operation to find better solutions. After

a grouping is fixed for a chromosome, traditional LS operators try to improve the

offspring. The author use a λ-interchange procedure (see Christofides et al. 1979)

in the LS step. The algorithm was tested on various standard benchmarks with

satisfactory success.

”A simple and effective evolutionary algorithm for the vehicle routing problem”

by Prins (2004) does not account for the constraints of time windows. However it

is a very sophisticated approach that demonstrates how powerful properly imple-

mented Evolutionary Algorithms can be. A general drawback of GAs in the field of

VRP problems is the representation of chromosomes. If recombination operators

are applied on chromosome representations without trip delimiters, the resulting

offsprings are generally not feasible and need to be repaired. The authors propose

a GA without trip delimeters that is hybridized with a local search procedure.

A chromosome can be converted into a optimal VRP solution with regards to

30

5.1. Introduction and Literature Review

the chromosome sequence at any time through the use of a specifically developed

splitting procedure. This splitting procedure uses dynamic programming methods

to find the optimal partitioning of the chromosome. An Order Crossover (OX)

operator is used for recombination, and a set of nine different LS operators are

then applied to improve the newly generated offsprings. This approach is one of

the few GAs that is able to compete with other powerful approaches like TS in

the field of VRP and especially on instances of very large size, where it was even

able to outperform the existing best known results.

Another hybrid genetic algorithm for the VRPTW was developed by Berger

and Barkaoui (2004) which focuses on the evolution on two different and parallel

populations. While one populations objective is to minimize the total cost, the

others objective is to minimize the violations. A master-slave message-passing

paradigm coordinates the parallel procedure. The authors used an insertion-based

crossover operator for recombination that was applied on a route to route basis.

However they only allowed the recombination of routes in a certain neighborhood,

which is defined as the maximum distance a centroid of a route may be away

from another route. They then applied a suite of six mutation operators that try

to modify, repair and improve the offsprings. The algorithm was tested on the

Solomon problem instances and found six new best solutions.

The work ”Active guided evolution strategies for large-scale vehicle routing prob-

lems” by Mester and Bräysy (2007) focuses especially on the development of an

efficient approach to solve problems of very large size. This metaheuristic is a

two-step procedure, where a Guided Local Search (GLS) Voudouris (see 1997)

and Voudouris and Tsang (1999)) is used to regulate a composite LS in the first

stage and the neighborhood of the evolution strategy in the second stage. The

composite LS consists of the relocate (Savelsbergh 1992), the 1-interchange (Os-

man 1993) and the 2-opt* (Potvin and Rousseau 1995) improvement heuristics.

The evolution strategy is implemented in a way so that a parent solution is purged

of some customers. Afterwards the missing customers are inserted back into the

problem by an insertion procedure. Finally, if the newly generated offspring is

better than the parent, it replaces it. The method provided the best-known solu-

tions to 86% of all of the 302 benchmark instances within reasonable computation

time.

31

5. Memetic Algorithm

Figure 5.1.: Basic Steps of the Memetic Algorithm

1. Initialization Repeat popsize times

a) Generate a solution with construction heuristic

b) Improve solution with LS

c) Insert solution in pop

2. Repeat until Stopping Criterion is met

a) Selection Select two solutions from pop for recombination

b) Recombination Generate offsprings O1, O2 through Crossover Proce-
dure

c) Improvement Step

i. improve offspring O1 and O2 with Stochastic Local Search with
probability p1

ii. improve pop with Stochastic Local Search with probability p2

d) Population Management

i. insert the best offspring into pop

ii. maintain popsize solutions in pop

e) Stopping Criterion Stop algorithm when maximum allowed time or
iterations is reached

5.2. Basic Design of the MA

The core components of every evolutionary algorithm are, selection, recombination

and mutation, however other components like the initialization of the starting pop-

ulation, the updating strategy of the population and the evaluation of the quality

of newly generated solutions are important when designing a MA for a combina-

torial optimization problem. The Basic Steps of the developed and implemented

MA can be seen in Figure 5.1 and are explained as follows.

In the Initialization Phase the population pop needs to be filled with newly

generated solutions by a fast construction heuristic until the desired size popsize

of the population is reached. Each of the individuals in the starting population is

then brought into local optimum by a local search procedure, so that high quality

32

5.2. Basic Design of the MA

solutions are at hand for the oncoming iterations of the MA. After the population

has been initialized the following steps are repeated until the algorithm is stopped

by some pre-defined criterion. At first two solutions need to be selected from

the population through the use of a selection procedure. When two of them are

selected a crossover-operator recombines them and generates two offsprings O1 and

O2. In the improvement phase both of them are modified through a stochastic

local search procedure. Additionally this procedure tries to improve the already

existing solutions in the population. In the population management step the better

of the two offsprings is allowed to enter the population. However because the size

of the population is fixed it needs to be maintained. This is done by erasing

duplicates in the population as well as by erasing one of the worst solutions in

the population. Finally through this population management, the average quality

of the population should increase, and therefore yield better offsprings in further

iterations. The algorithm stops when either a time or iteration limit is reached,

or when the population converges.

The individual parts of the MA are explained in detail in the rest of this chapter.

5.2.1. Initialization

The initial population is created through a modified I1 insertion heuristic (see

Solomon 1987) which is explained as follows. The goal is to generate a popula-

tion of size popsize with very distinct but high quality solutions. Therefore the

I1 heuristic is enhanced with a stochastic insertion criterion so that the initialy

deterministic heuristic can create different solutions. The modified I1 heuristic

is composed of two stages. In the first stage, the clustering stage, all customers

are assigned to their geographically closest depot. We are aware that there exist

more sophisticated methods for assigning customers to depots (see e. g. Salhi and

Sari 1997), however we opted for a much simpler and faster approach as we did

not want to focus on construction algorithms. It is to note that the generation

of the initial population is very fast and the MA can improve the quality of the

population relatively fast, so that the additional time spend in building it does

not necessarily improve the outcome. In the second stage, the routing stage, K

empty routes are generated. Each depot is assigned K/m routes so that the ve-

33

5. Memetic Algorithm

hicle fleet is distributed according to the problem-specification. Each customer is

then tentatively inserted into a route at each possible position, and the resulting

insertion costs are saved in a sorted list. After all customers have been tentatively

inserted, one entry in the list is chosen by the stochastic insertion criterion out

of the three highest entries in the list. The method for selecting an entry is as

follows. The first entry is chosen with a probability of 0.5 and the second and

third entry both share the remaining possibility for insertion. When a entry is

selected, the customer is definitely inserted at the according place. Customers

can be inserted at parallel in each route. A route is considered complete when no

more customers can be feasibly inserted. Highly constrained problems might leave

some customers unassigned, as they might not be inserted without generating vi-

olations. These customers are then inserted at the places where they generate the

smallest violations. The heuristic stops if all routes have been completed or all

customers have been assigned. As a final step the restricted 3-opt operator (see

Section 4.2.3) is applied to the newly generated solution. We want to point out

that the stochastic savings heuristic as described in Section 4.2.1 can also be used

to generate the initial population. However while the stochastic savings heuristic

is more efficient in generating solutions for problems of large size, the stochastic

I1 insertion heuristic does perform better at solving instances that have very tight

time windows. Therefore both initialization methods are used, depending on the

problem at hand.

5.2.2. Selection

The fitness evaluation function of a solution S follows the implementation in Sec-

tion 4.2.4. The selection procedure follows the idea of binary tournament, where

two solutions S1 and S2 are randomly selected from the population pop and are

evaluated by the fitness function. The better of the two individuals is then ac-

cepted as the first parent for the recombination. The selection procedure then

restarts, for the selection of the second recombination partner, which has to be

different to the primarily selected one.

Different methods, like a roulette-wheel selection (see Goldberg 1989), or a

completely random selection were implemented and tested as well. However the

34

5.2. Basic Design of the MA

binary tournament method proved to be the most efficient and successful method

for selecting customers. We assume that selection methods like the roulette wheel,

may not be appropriate when using Equation 4.2 for the evaluation. Using this

equation a selection would mostly resemble a random selection if all individuals in

the population are feasible, while being heavily biased towards feasible solutions if

infeasible solutions are present in the population. The binary tournament method

however always chooses the better of the two individuals, and therefore does not

have these drawbacks.

5.2.3. Recombination

The reproductive process in evolutionary algorithms is simulated trough the use

of specially designed recombination operators. In literature a couple of standard

operators were developed (for an overview see Bräysy et al. 2004) that were suc-

cessfully applied to different types of VRPs. These crossover operators usually

work by recombining two selected solutions so that the offsprings hopefully in-

herit the good attributes of both parents. Sophisticated crossover operators like

those presented by Prins (2004) are difficult and time expensive to implement due

to the large problem size as well as the extensions like time windows and multiple

depots. We therefore opted for a specially designed standard operator that is com-

putationally inexpensive. The used operator is a route based two-point crossover

operator (see Bräysy and Gendreau 2005b).

In detail the developed operator works as follows. The operator creates two

offsprings O1 and O2 by combining, one at a time b out of a maximum of B

pair of routes, R1b of parent solution S1 with R2b of parent solution S2. S1 and

S2 are selected through the binary tournament selection method explained in

Section 5.2.2. O2 is generated by interchanging S1 with S2 and applying the

crossover operator with the same parameters for a second time. The fitter of the

two offsprings is then kept for entering the population. The number of routes B

that are recombined, is randomly drawn between one and the maximum possible

combination of routes, with a bias towards small values. The probabilities for the

amount of routes selected are 0.99 for one pair of routes, 0.0075 for two pairs and

the remaining probability is equally distributed between three and the maximum

35

5. Memetic Algorithm

number of pairs. The bias for selecting only one route for recombination is set

this high so that the offsprings that are generated are not highly infeasible. The

probability to recombine two or more routes has to be existent to break out of

degenerated populations.

After the pairs of routes are chosen the recombination is executed in the follow-

ing way. The pairs of routes are randomly cut into three sequences, were the length

of the middle sequence is at most the length of the smallest route diminished by

the position of the first customer of the middle sequence. The sequence length

stays the same for R1b and R2b as well as the starting positions of the sequences.

This is done so that time window violations can be anticipatively minimized. After

the exchange of the two middle sequences in all pairs of route is done, the solution

is checked for missing or duplicated customers. The procedure then continues by

erasing duplicate customers out of the routes where they appeared before the re-

combination step. All of the remaining missing customers are then inserted at the

cheapest possible position, where cheapest is defined by the evaluation function.

They are inserted by an I1 insertion heuristic proposed by Solomon (1987).

The used crossover operator is illustrated in the following example:

R1b (1 2 | 3 4 5 | 6 7)

R2b (5 2 | 3 1 4 | 9 6 7 8)

where R1b, R2b are the chosen routes for pair b from S1 and S2 that produce the

following routes RO1b, RO2b of the offsprings O1 and O2 after swapping the middle

sequence.

RO1b (1 2 | 3 1 4 | 6 7)

RO2b (5 2 | 3 4 5 | 9 6 7 8)

The new solutions need to be repaired in a way that no double or missing customers

exist. The final routes of the offsprings can then look like this:

RO1b (5 2 | 3 1 4 | 6 7)

RO2b (2 1 | 3 4 5 | 9 6 7 8)

The best of the two offsprings is then used to update the population.

36

5.2. Basic Design of the MA

5.2.4. Mutation

A Stochastic Local Search procedure based on the VNS metaheuristic is applied

to modify existing solutions as well as newly generated ones. The goal of this pro-

cedure is to better explore the search space as well as to overcome local optima.

A reduced and much faster version of the VNS described in Chapter 4 was imple-

mented as mutation operator. In detail the utilized VNS uses CROSS-Exchange

neighborhoods in the shaking phase so that the shaking operator can swaps two

sequences of customers belonging to two different routes. This leads to the pos-

sibility of perturbing the solution and reaching more distant neighborhoods. The

maximum allowed sequence length is fixed as well as the number of depots involved

in a move. The 12 different neighborhoods used in our VNS frame (κ = 1, . . . , 12)

are shown in Table 4.1 where Ck denotes the number of customers assigned to

route k. After the swapping of the sequences, a 3-opt (see Section 4.2.3) that is

restricted to sequence length sl = 3, is used to bring the newly generated routes

into local optimum. In comparison to the VNS described in Chapter 4 only better

solutions are accepted. Another difference to the VNS described in Chapter 4 is

the prohibiting of selecting the same route for doing a CROSS exchange, which

therefore results in prohibiting intra-route moving of customers.

The described stochastic local search procedure is applied to each newly gener-

ated offspring as well as to solutions already in pop with different probabilities p1

and p2 respectively where p2 = p1/10. Because the focus of this step is a mutation

of a solution in a desired direction the VNS stopping criterion is set to a small

amount of iterations itvns = 100, where one iteration is defined as a shaking step.

Further, the mutation rate p1 = 0.1 is also set relatively low so that the whole

process is inexpensive with regard to computational time while at the same time

allows to break out of local optima.

5.2.5. Population Management

After the generation of the initial population, the algorithm starts with the selec-

tion of individual solutions for recombination. The recombination operator then

generates two offsprings, from which the better one is allowed to enter pop. This

is done by updating pop in a steady state fashion (see Whitley 1987). A new

37

5. Memetic Algorithm

solution is therefore allowed to enter pop if it is fitter than the worst solution in

pop. The population is implemented as an array of chromosomes sorted by their

fitness values. As popsize is fixed, when a new solution enters pop it has to re-

place an already existing solution. This is done by randomly replacing one of the

popsize/2 worst solutions in pop. To save computational time, fitness values for

whole solutions as well as for individual routes are stored in the chromosomes, and

need only to be re-evaluated when a change in the chromosome occurs. Clones are

detected by comparing the fitness values of the stored solutions, where identical

solutions are defined by identical fitness values.

As the updating of the solution is driven by the fitness evaluation function, it

can not be guaranteed that feasible solutions are present while the MA is running

or when the algorithm stops. Therefore every time a new feasible solution is found,

it is always saved if it is better then the previously stored one. In the case that at

the end of the calculation, the population of the MA does not contain a feasible

solution or the stored solution is better than the best solution in the population,

the last saved solution then presents the final solution. We decided for a relatively

small population (popsize = 10) to obtain a faster increase of solution quality,

with the tradeoff, of a faster degeneration of the population.

38

6. Ant Colony Optimization

In this chapter an introduction as well as a literature review is given about ACO in

the field of VRP. We also present the basic design of the ACO that was developed

to solve the MDVRPTW, as well as the implementation of the ACO into the MA

so that it can enhance the solution finding process.

6.1. Introduction and Literature Review

Ant Systems have received increasing attention by researchers since their devel-

opment by Colorni et al. (1991). Different types of systems were developed for

a broad range of different applications, spanning the fields of Graph Coloring

Problems, the Quadratic Assignment Problem, the Traveling Salesman Problem

or the Vehicle Routing Problem. The convergence proof by Gutjahr (2002) further

underlines the importance of the Ant System metaheuristics in the field of opti-

mization problems. The general principle of the Ant System approach, resembles

the behavior of real ants that are searching for food. When ants are searching

for food, they leave a certain aromatic essence called pheromone on the paths

they traverse. If no pheromone is present at a certain location, ants perform a

random walk when searching for food. However as soon as they reach a path were

pheromone is present, they are more likely to stop the random walk and follow the

pheromone trail. The tendency with which the ants decide which path to follow

is directly related to the strength of the pheromone smell on the paths. If they

now traverse on a already established path, further pheromone will be spread, so

that the probability for selecting this part further increases. Because pheromone

can vaporize, only the shortest and therefore the ones with the highest pheromone

concentration will remain and be traversed so that the path of the ants from the

food-source to the nest is minimized. In literature Ant Systems have proven to be

39

6. Ant Colony Optimization

efficient in solving different types of optimization problems.

Reimann et al. (2002a) developed an Ant System for the VRPBTW that uses

an insertion procedure to construct solutions. The main contribution of this work

was the changing of the Nearest Neighbor construction procedure (NN) as used

in traditional Ant Systems (see e. g. Bullnheimer et al. 1999) to a more powerful

insertion based procedure. The used insertion procedure is based on the Solomon

(1987) I1 insertion heuristic. Un-routed customers are inserted into a route at

all possible places and the according attractiveness values are stored. A roulette

wheel selection method (see Goldberg 1989) then chooses a customer location out

of all positive attractiveness values. After a solution is constructed a local search

procedure tries to improve each solution.

Other approaches that uses a specialized route construction procedure are ”A

Savings Based Ant System For The Vehicle Routing Problem” by Reimann et al.

(2002b). and ”D-Ants: Saving Based Ants divide and conquer the vehicle routing

problem” by Reimann et al. (2004). Both use a savings based procedure to con-

struct new solutions. The algorithms are highly competitive in solving different

standardized instances.

”An external partial permutations memory for ant colony optimization” by Acan

(2005) shows that retrieving partial solutions with good features out of a exter-

nal memory and then finalizing them through an Ant System approach results

in significant performance achievements on terms of convergence speed and solu-

tion quality. This approach was then further developed into. ”A shared-memory

ACO+GA hybrid for combinatorial optimization” by Acan and Unveren (2007).

This approach is hybridizing the search capabilities of a Genetic Algorithm with

the capabilities of ant colony optimization algorithms. The two searching strate-

gies work in parallel on two different populations of solutions and interact with

each other through the use of a shared memory. This shared memory contains

partially incomplete solutions that are of high quality. A new solution is gener-

ated by extracting a incomplete solution out of the shared memory which is then

finalized through one of the two search strategies. The interaction of this two

approaches through the use of a shared memory results in better solution quality

then by using each of the approaches on its own when applied to TSP and QAP

problems.

40

6.2. Basic Design of the ACO

In the rest of this chapter the developed Ant Colony Optimization algorithm is

described. It was applied to the standard sets of Cordeau et al. (2001b) to solve the

MDVRPTW. However because of the size of the problem instances the obtained

results could by far not compete to the TS by Cordeau et al. (2001b), and the VNS

by Polacek et al. (2004) or the developed MA approach (see Section 5) because

of high computational expenses. Nevertheless the solution building process of

the ants worked satisfyingly, and the ACO approach was therefore modified and

adapted so that it can enhance the developed MA approach (see Section 6.3).

6.2. Basic Design of the ACO

The basic design of the ACO is shown in Algorithm 3 and follows the idea of

Colorni et al. (1991).

Algorithm 3 Basic design of the ACO

Initialize pheromone information
while iterations < maxiterations and time < maxtime do

Generate u solutions by ants according to heuristic and pheromone informa-
tion
Application of a local search to each of the ants’ solutions
Update of the pheromone information

end while

To start the ACO process, the pheromone information needs to be initialized

and assigned with values. After this is done, the algorithm starts to construct

new solutions through the use of some attractiveness value η. This value inherits

the pheromone information as well as the heuristic information, which is usually a

distance measure. After the constructive heuristic has generated a solution, a local

search procedure tries to improve it. If a newly constructed solution matches some

specific criteria, like a certain solution quality, it is allowed to alter the pheromone

information. At the same time pheromone globally evaporates, so that undesirable

information eventually vanishes. Only allowing good solutions to lay pheromone,

and the steadily evaporation of information, eventually will result in a convergence

of the algorithm. Finally the algorithm stops, when a certain time or iteration

limit is reached.

41

6. Ant Colony Optimization

6.2.1. Pheromone Initialization

The pheromone information is stored in a matrix for each connection between

customers and depots and is therefore of size (n+m)×(n+m). At the beginning the

complete matrix is initialized with values of 1. The ACO algorithm was developed

to solve the MDVRPTW instances and this is accounted for by introducing one

pheromone matrix for each depot. The initial matrix is therefore copied m times

resulting in a pheromone matrix of size m × (n + m) × (n + m). The idea to

generate multiple entries for each connection between customers comes from the

fact, that there may be differences how customers are located in relation to depots.

Two customers that are well connected by being near to each other may be ideally

placed in a route starting from one certain depot, but this may not be the case if

the route starts from another depot. This is often the fact when customers have

matching time windows, where they can’t easily be shifted to other positions in a

route.

6.2.2. Solution Building Process

The work of Reimann et al. (2002b,a) clearly shows that specialized construction

algorithms should be developed to solve vehicle routing problems. The authors

mention that savings based procedures do not work very well with constraints like

time windows. We therefore adapted the idea of developing a insertion procedure

based on the I1 heuristic by Solomon (1987).

The Insertion Procedure is shown in algorithm 4.

Algorithm 4 ACO Insertion Heuristic

Initialize m×K routes with seed customer
for each un-routed customer do

Calculate attractiveness value at each possible position
end for

Roulette wheel selection of a customer/position combination by attractiveness
value
Insert the selected customer into the route

In detail the procedure works as follows. In the first step K empty routes are

initialized for each of the m depots. A roulette wheel procedure, then selects

42

6.2. Basic Design of the ACO

a customer by its attractiveness value for each empty route. The attractiveness

value η is calculated according to Equation (6.1).

ηijz = α×
1

FVnew − FVold

+ β ×
τjiz + τisjz

2× τjsjz

(6.1)

where FVold is defined as the fitness-value before the insertion of the customer i

after customer j in a route belonging to depot z, and the value of FVnew is calcu-

lated after this insertion. The fitness-values are calculated according to Equation

(4.2). α and β are weights for the heuristic and pheromone values respectively.

The heuristic value is therefor defined as the difference in distance and any penal-

ties through violations when inserting a customer. The pheromone concentration

τjiz contains the information how well the combination of a customer i and a cus-

tomer j at depot z immediately after each other was in the previous iterations.

sj represents the customer that was immediately after j before the insertion. The

second term in Equation (6.1) therefore is larger than one if the average pheromone

of the arcs to be added, is higher then the pheromone of the arcs to be deleted.

The seed customer for a empty route is chosen in a way that a the farthest yet

un-routed customer to the depot is inserted. After all attractiveness values have

been calculated, a roulette wheel procedure then randomly selects a value for the

final insertion into the route out of the 10 highest values. Applying the selection

procedure on a limited set of values guides the construction process in the direction

of a faster decline in fittnessvalue.

6.2.3. Pheromone Update

A rank based scheme (see Bullnheimer et al. 1999) with p = 3 ranks, was im-

plemented to update the pheromone information. After all u solutions have been

generated the pheromone information is updated according to Equation (6.2) (cf.

Reimann et al. 2002a).

τijz := ρτijz +
p∑

µ=1

∆τµ
ijz + σ∆τ ∗

ijz (6.2)

Here ρ is defined as the trail persistence (ρ = 0.95) and σ = p+1 which amounts

for the number of elitists. The equations shows two terms which represent the

43

6. Ant Colony Optimization

pheromone that is laid by the elitists. Where the first term is calculated as shown

in Equation (6.3) and the second as shown in Equation (6.4).

∆τµ
ijz =

p− µ + 1

FV µ
(6.3)

∆τ ∗

ijz =
1

FV ∗
(6.4)

FV ∗ is the fitnessvalue of the best solution generated by the u ants. The second

term therefor allows laying pheromone with strength σ into the pheromone matrix

of the according depot. The first term then allows to lay pheromone according to

the fitnessvalue FV µ, where µ is defined as the rank of the solution. Better solution

are therefore allowed to lay a higher pheromone concentration. Pheromone on the

arcs that are in neither of the σ solutions finally evaporates at rate 1− ρ.

6.3. Implementation in the MA

The algorithm explained in Section 6.2 was applied to the standardized instances

by Cordeau et al. (2001b). Precalculations have shown, that the developed ACO

algorithm that uses a parallel insertion method can construct solutions with rel-

atively good quality, but at extremely high computational expenses. In detail

feasible solutions could only be calculated for the smallest problem instances,

while calculation had to be aborted for the datasets containing a high number of

customers. We therefor had to conclude that the developed algorithm is by far not

competitive to the other approaches developed for the MDVRPTW. However the

ACO algorithm was used to enhance the search of the MA described in Chapter

5. This was done in the following fashion.

As soon as the MA got stuck in local optimum, which we defined as a number

of unproductive iterations itstuck = 105 the solutions of the current population

get replaced by newly generated ACO solutions. The 3-opt procedure explained

in Section 4.2.3 is then applied to each newly generated solution. To follow the

ideas of an external memory approach, pheromone information is generated by the

MA. In detail every 104 iterations of the MA the pheromone values are updated

and evaporated according to Equation (6.2) for the p = 3 ranks. After the re-

44

6.3. Implementation in the MA

initialization of the population the counter for unproductive iterations is set to

zero, and the MA continues. More than one restart of the population is allowed

until the stopping condition is meet.

45

6. Ant Colony Optimization

46

7. Solving Strategies

In Chapters 3, 4 and 5 we have described all of the basic components used in

the following two decomposition approaches. The first approach ”Popmusic for a

Real World Large Scale Vehicle Routing Problem with Time Windows” by Ostertag

et al. (2008b) is a decomposition approach for a population based method. An MA

is used as the optimizer in the POPMUSIC framework with the intention to store

as much information gathered over the iterations in the population. A special

design of the POPMUSIC framework therefore accounts for not destroying good

population structures when generating new sub-problems. In the second strategy,

”A Variable Neighborhood Search Integrated in the POPMUSIC Framework for

Solving Large Scale Vehicle Routing Problems” by Ostertag et al. (2008a) a VNS

is used as an optimizer that only manipulates a single solution. More sophisti-

cated and different methods how relatedness is defined and how sub-problems are

generated could therefore be developed and tested.

The design issues that needed to be addresses (see Section 3.2) are explained in

the rest of this chapter.

7.1. Decomposition Strategies for Population Based

Methods

For this strategies the MA algorithm as explained in Chapter 5 was used as an

optimizer in the POPMUSIC framework. The principal components and design

issues are explained in the following sections.

47

7. Solving Strategies

7.1.1. Obtaining an Initial Solution by Clustering

The effectiveness of the stochastic I1 heuristic explained in Section 5.2.1 is strongly

influenced by the size of the problem. To overcome the problem of a long solution

building process that may not yield high quality solutions, the customers are first

clustered, so that each cluster builds a much smaller MDVRPTW from which

the construction heuristic can then create an initial solution. The partitioning of

customers is achieved by solving a relaxation of a capacitated p-Median problem

(see Hakimi 1965; Taillard 2003; Waelti et al. 2002). This is done in the following

fashion.

For each cluster, the distances between customers are modified with Lagrangian

multipliers, so that routes can be built for which the overall demand is balanced.

To initialize the algorithm, all multipliers are set to 0, so that a standard p-

Median problem can be solved. In the next step, for each cluster c the overall

demand Qc is computed and compared to the global capacity Vc , where Vc is the

sum of the capacity of all vehicles assigned to cluster c. In the case of Vc < Qc, it

is not possible to deliver all customers allotted to cluster c. If this happens, the

Lagrangian multiplier λc associated to cluster c is increased by a certain amount

that depends on the ratio Qc/Vc. Then the distance cij between two customers, i

and j is modified to create a new distance measure Πij shown in Equation (7.1).

Πij = cij + λc · di ∀i, j ∈ c (7.1)

It can be seen that the new distance measure incorporates length (ci,j) and

demand (di) units, therefore the Lagrangian coefficients λc must be multiplied by

a factor that balances the influence of both units. According to Equation (7.1) all

distances are calculated so that the p-Median solver can be restarted to decompose

the problem again. The computation of new distances, and the p-Median solver

process are repeated until a feasible decomposition can be found or an iteration

limit is reached. It is to note that at this stage of the process, violations concerning

the capacity constraints can be relaxed, as routes are not determined at this point.

Customers therefore can shift between routes so that capacity constraints can be

met. The main advantage of this relaxation is that constraints other than capacity

(pick-up, time windows) can be added while using a common p-Median solver. The

48

7.1. Decomposition Strategies for Population Based Methods

basic layout of the algorithm is presented in Algorithm 5.

Algorithm 5 p-Median decomposition algorithm

Input: MDVRPTW, number of clusters p, iteration limit itdec

Build p-Median problem according to MDVRPTW customers
Allocate K/p vehicles to each cluster c and compute maximum capacity Vc

Set Qc ←∞ ∀c, λc ← 0, it← 0
while (Qc > Vc ∀c) and (it ≤ itdec) do

Solve p-Median problem with modified distances Πij (see Taillard 2003)
Compute overall capacity Qc of each cluster c
Update λc coefficients according to capacity constraint violation
Set it← it + 1

end while

7.1.2. Better Balancing Customers Between Clusters

The p-Median decomposition procedure assigned customers to clusters s1, ..., sp

in the initial phase. A typical solution of the p-Median decomposition can be

seen in Figure 7.1 as an example of our real world problem instances that will

be introduced in detail in the next chapter. Figure 7.1 gives an overview of the

whole instance, while Figure 7.2 is a close-up of a densely populated area. In

this special case the city of Vienna is shown which inhabits the major amount of

customers that need to be served. It can be seen that most of the customers are

located in a small geographic region in the center. The p-Median decomposition

procedure therefore can pack a large amount of customers into the same cluster in

highly populated regions, while only a handful of customers may be assigned to a

cluster in low-density regions like the country-side. This feature may not be the

perfect starting point for further calculations, therefore a preprocessing procedure,

as described by Algorithm 6, tries to level out the number of customers inside

clusters with the intention to destroy as less of the p-Median decomposition as

possible.

In detail, the sub-problem optimizer (MA) is applied with itini iterations on

each cluster to generate the first routes; which then build the first sub-solution.

In the next step, clusters that exceed a certain size (csize = 75) are split with

the help of a Sweep algorithm (Gillet and Miller 1974). In detail this is done in

49

7. Solving Strategies

Figure 7.1.: p-Median decomposition

the following way. The center of gravity (cf. Reimann et al. 2004) is calculated

for each route in the cluster to represent its aggregated customers. The Sweep

algorithm then splits the clusters by the centers of its routes, with the starting

point being randomly chosen. The algorithm then sequentially adds routes in a

clock-wise fashion until the amount of customers in the added routes reaches csize

customers. If the limit is reached, the routes selected by the Sweep algorithm form

a new cluster. The algorithm then restarts and tries to split the remaining cluster

Algorithm 6 POPMUSIC Initialization Phase

Assign customers to clusters by p-Median decomposition
Run itini iterations of the MA on each cluster to build initial routes
if customers in s1, ..., sp > csize then

Start splitting procedure
end if

if customers s1, ..., sp < csize then

Start leveling procedure
end if

if amount of routes higher than K ×m then

Start repair procedure
end if

50

7.1. Decomposition Strategies for Population Based Methods

Figure 7.2.: Zoom in on p-Median clusters

as long as it still contains more than csize customers. If no more clusters can be

split, the procedure stops.

The remaining clusters that were not split are then checked if they could be

merged to form new clusters with a size smaller than csize. Clusters are merged

by a greedy heuristic that uses the distance of the centers of gravity of each cluster;

meaning that close clusters are merged first if both of them together contain less

than csize customers.

When no more clusters can be merged, feasibility regarding the vehicle fleet is

checked. If the solution is not feasible, the excess routes are randomly deleted,

and the remaining customers are inserted by a I1 heuristic. Note, that the number

of available vehicles in the real world problem tackled is far sufficient to perform

the deliveries, so that the repair step was never executed over all conducted test

runs.

7.1.3. POPMUSIC Customization

This section gives an overview on how the principal components of the POP-

MUSIC framework are customized to the problem at hand. In the case of the

MDVRPTW, we defined a part as a route. The proximity measure, that puts

51

7. Solving Strategies

parts into relation to each other, is defined as the distance between the centers

of gravity of the entities. This entities can be a single route, or a set of routes

(cluster of routes). The used distance measure therefore relates to the distance of

aggregated customers. In the preceding steps, the creation of the initial solution,

the customers were first clustered by solving a capacitated p-Median problem and

are then balanced so that each cluster is around the same size. Each of them can

be considered a small and independent MDVRPTW, where each route only visits

customers that belong to the same cluster. In the POPMUSIC framework, a seed

part, in a VRP environment, would usually be defined as a single route, however

we opted to define a seep part as a cluster of routes. The center of gravity of

the routes composing the cluster is computed and the seed part is extended by

adding r new routes. Routes are chosen by their proximity to the cluster they

will be added to in a greedy fashion, meaning nearest routes first. The reason

for this modification is the possibility for using previously calculated information

that is stored in the population. When talking about seed-parts or related routes,

we always correspond to the best solution in the population. So after a seed-part

(cluster of routes) is selected the corresponding individuals of the population are

saved. Therefore when a cluster is extended by a route (related-part), this route

can simply be added to each of the individuals in the population as it will always

generate a feasible solution. In the next step, the route that left a cluster, has

not only to be removed from the best solution but from the population as well.

Since not all customers necessarily are located in the same route over all individ-

uals in the population, the removed customers need to be purged at the according

locations in the remaining individuals of the population. Reconnecting the routes

guarantees formerly feasible solution to stay feasible without the need of extensive

repair functions.

The generated sub-problem is therefore a subset of routes that can be treated

as a small, independent MDVRPTW with an attached population, which is then

solved by the optimizer. Different settings for parameter r were tested, but adding

only one route (r = 1) to the seed part, resulted in the best solutions. The used

optimizer is the MA described in Chapter 5. As shown in the results section

(see Chapter 8) it turns out that the MA could find the best known solutions for

all instances up to size 75 except one (where it only deviates by 0.08%) within

52

7.1. Decomposition Strategies for Population Based Methods

reasonable computation time.

7.1.4. Different Strategies

While some work was done on developing methods to solve large scale VRP

and VRPTW (see Homberger and Gehring 2005; Mester and Bräysy 2007, 2005;

Kytöjoki et al. 2007), to our best knowledge no related work on real world MD-

VRPTW of large scale exists in literature. Therefore no data for comparison

exists, and we decided to set up three different strategies to tackle the large real

world problem to get a feel how good our decomposing approach can handle this

type of problem. For comparison issues we used time as our stopping criterion for

the following three strategies.

Strategy I (no decomposition)

This strategy is the most basic strategy. It solves the problem as a whole through

the use of the pure MA until a certain amount of time is elapsed .

Strategy II (fixed decomposition)

This approach uses the initial clustering by the p-Median algorithm to solve the

problem. Each of the generated clusters was treated as an individual MDVRPTW

problem without further interaction between the clusters. Because the resulting

problems vary in size the time allowed ti for each problem si has to be shared in

a fair manner. We decided to make the allowed time dependent on the square of

the problem-size Csi
in relation to the total problem-size Csn

and the maximum

time tmax allowed. This should help to put some bias on solving the larger clusters

as they are significantly harder to solve. Equation (7.2) was used to calculate the

corresponding times for each sub-problem.

ti = tmax · (Csi
)2/

p∑

n=0

(Csn
)2 (7.2)

After all sub-problems have used up their time limit, the complete solution was

generated by simply merging the sub-solutions of the single clusters.

53

7. Solving Strategies

Strategy III (POPMUSIC)

This strategy was executed with two different parameter settings. The first setting

IIIa focuses on a longer search, while the second setting IIIb was tuned for an

”as-fast-as-possible” solution finding process. This was mainly done by giving

strategy IIIb less time to improve the sub-problems than in IIIa to emphasize

on a faster descent of solution quality, at the cost of a higher chance to miss the

global optimum.

7.2. Decomposition Strategies for Individual

Solution Methods

The optimizer used for this strategies, is the VNS explained in Chapter 4. The

design issues and the principal components used are described in the rest of this

section.

7.2.1. Construct Initial Solution

As an initial solution needs to be fed into the POPMUSIC framework, we used

a modified Clarke and Wright Savings algorithm (Clarke and Wright 1964) to

construct this initial solution as explained in Section 4.2.1.

7.2.2. POPMUSIC Customization

Like in the previous strategies a part (s1, ..., sp) is defined as a specific route in the

complete solution. The applied proximity measure (relation - most related to si)

therefore needs to measure the distance between two routes. As only one solution

is manipulated at a time, compared to the strategies in the previous section where

a stored population needed to be handled, more choices how sub-problems could

be build arise. We therefore examined two completely different ways to measure

proximity that will be presented in detail in the following subsection (Section

7.2.3). A sub-problem is defined as a subset of r = 10 routes, each of which can

be treated and solved like an independent MDVRPTW.

54

7.2. Decomposition Strategies for Individual Solution Methods

All resulting sub-problems are then optimized by the VNS, that terminates if a

certain iteration limit is reached. Since the resulting sub-problems depend strongly

on the selection of the seed customer or part, seed parts are chosen in a systematic

way. This means each route in the solution has to be the seed part at least once,

before another route can be chosen a second time.

7.2.3. Different Decomposition Strategies / Proximity

Measures

Two different relatedness measures for potential parts that can be added to a

seed-part were examined and compared, to see which one will result into a better

decomposition of the problem. The measures are different in the way how they

define distance. While one measures distance by travel-time, the other does so

through the use of trigonometric functions based on the Sweep idea (see Gillet

and Miller 1974). Additionally a total of eight different strategies how to apply

this measures of proximity were tested. Three of these measures are based on the

Sweep idea, while the rest of the measures are building on a distance measure by

travel-time.

Proximity Through Sweeping

This measure defines distance by the angle between the centers of two routes. The

centers of two routes are defined as the centers of gravity of all customers in the

according route. This concept of aggregating the customers was introduced in ”A

tabu search heuristic for the vehicle routing problem with soft time windows” by

(Taillard et al. 1997) and built-on in ”D-Ants: Saving Based Ants divide and con-

quer the vehicle routing problem” by Reimann et al. (2004). The Sweep algorithm

then calculates the angle α between two centers, with the pivot point always being

the depot Dseed of the seed route Rseed. The three Sweep measures are different

in how they restrict the selection of route.

sweep with no restriction (SI)

The most basic way to apply this measure is without any restriction on the se-

lection of routes that can be added to create a sub-problem. A sub-problem is

55

7. Solving Strategies

Figure 7.3.: Measure SI

therefore created by adding the routes with the smallest angle up to the maximum

allowed sub-problem size r. Any route can be selected for adding, even if most of

the customers are far away from the center of gravity concerning the travel time.

To avoid the creation of always the same sub-problems a diversification feature

is introduced for the selection of a route. With probability of 0.1 a tentatively

selected route is rejected to enter the sub-problem, and the algorithm continues

with the next route that has the smallest angle to the seed route. The procedure

is depicted in Figure 7.3.

sweep with tight restriction (SII)

This strategy resolves around the fact that even when angles between two routes

are small, they don’t necessarily have to be close to each other with regards to

travel-time especially in the case when they belong to two different depots. We

therefore restricted the selection of routes that belong to another depot than the

seed part in the following way. Routes are still added with the smallest angle to

the seed part, however they are only added when one of the two following criteria

is fulfilled.

1. The distance between the route to be added and the seed depot is smaller

than the distance between the two depots.

2. The route to be added is closer to the seed depot than to the original depot.

56

7.2. Decomposition Strategies for Individual Solution Methods

Figure 7.4.: Measure SII

The sweep procedure with a tight restriction is depicted in Figure 7.4.

sweep with loose restriction (SIII)

With this strategy we want to loosen the restriction when a route is allowed to

enter a sub-problem. We did this by relaxing the criteria of SII in a way that

routes to be added that belong to another depot may be selected when their

center of gravity does not lie behind the second depot Dadd by a certain angle

β. We therefore assume that routes in which customers lie behind another depot

than the seed depot, should also be served from this depot, and therefore may

not be closely related to the seed-part. However we did not simply prohibit the

selection of routes that are ”just-behind” the depot but allowed the selection of

routes when they are not located in a certain sector. This sector is defined as the

angle β = 135.

The whole procedure and the sector β is depicted in Figure 7.5.

57

7. Solving Strategies

Figure 7.5.: Measure SIII

Proximity by Smallest Distance

The second group of measures is different to the first one, as the travel time

between two entities is used for proximity. The entities on which distance is

measured are in this case single customers or all customers in a route. When a

group of customers forms an entity the center of gravity of these customers is used

to calculate the distance. Five different strategies were developed and tested.

They basically differentiate in the aggregation level and on how customers are

selected to join the sub-problems.

distance between aggregated customers of routes (DI)

This strategy uses entities at the highes aggregation level. They are defined as the

center of gravity for each route between which the distances are calculated in the

following way. All distances between the seed route Rseed and all possible other

routes are computed and stored in a sorted list. However like in the previous

strategies based on the Sweep criterion, a mechanism to combat the creation

of always the same sub-problems is set in place. It works in a way that only

75 % of the r routes with the shortest distance to the seed route Rseed may be

added to the sub-problem. The missing routes are then selected with a roulette

wheel procedure, where routes which are closer to the seed route have a higher

probability of being selected. This method for selecting the routes is used in all

of the remaining strategies.

58

7.2. Decomposition Strategies for Individual Solution Methods

Figure 7.6.: Measure DI

Figure 7.7.: Measure DII

The strategy is illustrated in Figure 7.6.

distance between single customers of routes (DII)

Here, both aggregation levels are low, as entities are represented as single cus-

tomers in the seed-route as well as in all remaining routes. A list containing the

distances between the customers of the seed route and all other remaining cus-

tomers is created. The customers with the smallest distance are then added to

the sub-problem, however because a part is defined as a route, we have to add

the complete route to the sub-problem. If a route enters the sub-problem the

list is updated by removing all entries from customers belonging to already added

routes. To conclude; r− 1 routes are added to the sub-problem. The procedure is

depicted in Figure 7.7.

59

7. Solving Strategies

distance between single customers of routes with restriction (DIII)

This strategy is similar to strategy DII concerning the aggregation level and the

distance measure. However it extends the approach by adding a restriction on how

customers can be selected. This is to counter the fact that strategy DII mainly

selects routes out of highly populated regions around the seed route. While this

may be at first a desirable feature, it completely prevents tours that for example

start in the city and serve customers in the hinterlands. This happens because

distances are smaller on average in cities than in the country side. Therefore as

soon as a route contains a customer in a city, the sub-problem is always extended

with customers or routes in the same region. As a result; routes with customers in

the country side cannot be combined reasonably with routes in cities. To overcome

this structural drawback the selection procedure of DII was modified.

In DIII , routes are still added by the smallest distance, however only one route

per customer in the seed route may be added until all other customers in the

seed route have added the same amount of routes. Therefore entries in the list

are momentarily faded out if they contain a seed-customer that was selected more

times than any other seed-customer. This restriction should help to minimize the

bias towards highly populated regions.

distance between aggregated customers of the seed route and a single

customer (DIV)

Here, we aggregated the customers in the seed part by calculating the center of

gravity of the route. Distances are than calculated between these center and each

remaining customer of the other routes. The aggregation level is therefore high in

the seed-part and low in the remaining route. The sub-problems are then build in

standard fashion. The procedure is depicted in Figure 7.8.

distance between a single customer in the seed route and aggregated

customers of a remaining route (DV)

Distances are calculated between a single customer in the seed route and the

aggregated center of gravity of a remaining route. It is therefore the counterpart

to DIV concerning the aggregation levels. The procedure is depicted in Figure 7.9.

60

7.2. Decomposition Strategies for Individual Solution Methods

Figure 7.8.: Measure DIV

Figure 7.9.: Measure DV

61

7. Solving Strategies

7.3. Implications - Population Based vs. Individual

Solution

In this chapter we presented two general distinct decomposition approaches, that

differentiate themselves through how the optimizer handles solutions. While the

MA works in parallel on a population of solutions, the VNS only manipulates one

solution at a time. The knowledge about the used optimizer therefore can be used

to develop different decomposing strategies, that perfectly fit the algorithm used

in the optimization step of the POPMUSIC approach. The idea of decomposing

a problem into sub-problems, is to generate smaller solvable parts that consists of

customers that are somehow close to each other. Compared to the VNS approach,

where this creation of sub-problems is very flexible, the creating of sub-problems

for the MA algorithm is slightly more complicated. Theoretically the same de-

composing ideas can be used for the MA as for the VNS, however since the MA

stores information not only in the singe-best-found solution, but also in the set of

solutions in the population, other ideas to decompose can exploit this information

so that it can be of further significance. The approach presented in the first part

of this chapter, tries to do this, by incrementally changing the parts s1, ..., sp of

the solution S. Compared to the VNS approach where a seed part is defined as

a route, the MA approach defines the seed part as a set of routes. Therefore the

major advantage of this decomposition approach is that the information stored in

the population can be reused, for the set of routes rather than dismissing it. The

drawback however is, that sub-problems are relatively similar to each other. This

may lead to a worse covering of the whole Solution space concerning the overlap-

ping of sub-problems compared to the VNS approach. Figure 7.10 shows how a

possible initial clustering can look like. It can be seen that the initial clustering

does not overlap as each customer is assigned exactly once. Each of these initial

clusters is then extended by r routes (parts) so that they can be optimized by the

MA.

Figure 7.11 shows how each of the shown clusters can possibly be extended by

related parts so that a new sub-problem can be generated. In this example there

are four possible seed parts which can be chosen. This seed part is then extended

with the most related (close) routes. This illustration shows that borderline cus-

62

7.3. Implications - Population Based vs. Individual Solution

Figure 7.10.: cluster distribution - population-based

Figure 7.11.: decomposition population-based

63

7. Solving Strategies

Figure 7.12.: decomposition single-solution-based

tomers can easily be transferred from one cluster to another so that at one time

the best possible routing can be found. It can be seen that the seed-part, which

contains a set of routes, is relatively large (we opted for a sub-problem size of

75 customers) compared to the related part, which contains r = 1 routes. The

optimizer is then applied on the region of the solution that contains both parts.

If the optimizer can improve the sub-problem, the related part enters the original

seed part to form a new seed-part (cluster), therefore the routes in the related

part need to leave another cluster. In each iteration a small portion of the region

is therefore changing between clusters. This is somehow different to the mechan-

ics of creating sub-problems for the decomposition approach for single-solution

manipulation algorithms as shown in Figure 7.12.

For the single solution approach we decided to define a seed-part as a single

route. Therefore it is obvious that more different seed-parts can be selected com-

pared to the approach that defines a seed-part as a set of routes. As no population

64

7.3. Implications - Population Based vs. Individual Solution

of solutions is existent, we are allowed to freely decompose the problem around the

seed-part without any restrictions. Figure 7.12 shows four examples of how seed

parts can be distributed among the whole problem. After a seed part is selected,

r = 9 routes that are in proximity to the seed-part are selected to form the new

sub-problem that is finally solved by the VNS-optimizer. In difference to the pop-

ulation based approach significantly more routes are added. However the resulting

sub-problems are comparable in size for both algorithms. To conclude, the struc-

tural differences between the two approaches are the following. The population

based approach tries to decompose the sub-problem in a way that information in

the population can be re-used. This is mainly done by transferring the population

of a previously optimized sub-problem to the new sub-problem and by modifying

this population so that missing or double customers are erased. The idea is that

the smaller the difference between one sub-problem to the next, the more infor-

mation is useable. The incremental changing of sub-problems, therefore guides

the search slowly around the complete problem. This is in contrast to the single

solution approach, where a seed-route is randomly chosen, and the sub-problems

are build around it. The resulting sub-problems can therefore by highly different

from one iteration to another, which translates into a very erratic search in the

complete problem.

65

7. Solving Strategies

66

8. Results

In this chapter, the results for the MA are presented for standardized instances and

compared to the results of other state-of-the-art metaheuristics in Section 8.1. The

results for the population based POPMUSIC that uses an MA as optimizer (see

Section 7.1) are explained and discussed in detail in Section 8.2.1. The outcome

of the single solution based POPMUSIC with an integrated VNS (see Section 7.2)

as optimizer are presented in Section 8.2.2. Additionally the different proximity

measures were tested, and the findings are analyzed in detail.

8.1. Standardized Instances

The data set was introduced by Cordeau et al. (2001b) and consists of 20 instances

that are different in the amount of customers that need to be served as well as how

tightly restricted the time windows to service them are distributed. Additionally

the amount of depots m as well as the number of available vehicles K are different

over the whole data set. The characteristics of the data set can be seen in Table 8.1.

The amount of customers that need to be served range between 48 and 288

customers. Only the 4 and 6 depot cases are considered, where between 8 and

30 vehicles serve the customers in the tightly restricted part of the data set, and

only between 4 and 20 in the loosely restricted set. This decrease in vehicles

should bring the second part of the data set on par concerning the difficulty to

solve them. We decided to test the MA by doing 10 independent runs on each

instance of the data set. To reflect real-world overnight calculations, each run

had an 8 hour stopping-criterion (tmax = 28800) and was started with different

seeds so that the robustness of the achieved results can be examined. To evaluate

the effectiveness of the MA approach we decided to examine three different vari-

ations of the MA. One test run was done while prohibiting any restarts when the

67

8. Results

Table 8.1.: Standardized data set (Cordeau et al. 2001b)

narrow time windows larger time windows
No. customers depot vehicles No. customers depot vehicles

1 48 4 8 11 48 4 4
2 96 4 12 12 96 4 8
3 144 4 16 13 144 4 12
4 192 4 20 14 192 4 16
5 240 4 24 15 240 4 20
6 288 4 28 16 288 4 24
7 72 6 12 17 72 6 6
8 144 6 18 18 144 6 12
9 216 6 24 19 216 6 18

10 288 6 30 20 288 6 20

population has degenerated. A degenerated population is characterized as a pop-

ulation in which no new features are introduced. For our algorithms we defined it

as a maximum amount of unproductive iterations that may happen. We set the

amount of iterations that may pass without replacing a solution in the population

to itunp = 105; where one iterations is defined by one recombination of two parent

solutions. In the next setup we allowed a restarting of the population through the

use of the modified I1 insertion procedure explained in Chapter 5.2.1. The last

and most sophisticated approach uses the ACO-procedure described in Chapter 6

to inject new solutions into the degenerated population. The pheromone informa-

tion is gathered and updated only every 104 iterations to make the whole process

computationally less expensive.

We want to note that this instances do not qualify as large scale instances like

encountered in the real world. Therefore we did not apply the decomposition

approaches to them.

8.1.1. MA without Restarts

This section shows the obtained results by the MA (Chapter 5), when restarts of

the population are prohibited.

68

8.1. Standardized Instances

Table 8.2.: Results MA without restarts

day min mean max stdev %gap

1 1,074.12 1,079.29 1,083.53 4.48 0.48%
2 1,780.63 1,811.67 1,871.48 26.49 1.74%
3 2,433.83 2,467.21 2,514.01 24.81 1.37%
4 2,900.86 2,967.01 3,035.31 45.22 2.28%
5 3,052.57 3,163.03 3,269.60 74.96 3.62%
6 3,678.24 3,887.13 4,019.45 108.55 5.68%
7 1,425.29 1,444.82 1,483.47 17.82 1.37%
8 2,142.30 2,185.64 2,232.35 25.61 2.02%
9 2,797.89 2,817.16 2,844.00 15.47 0.69%

10 3,628.35 3,678.80 3,738.01 46.04 1.39%
11 1,005.73 1,020.73 1,054.30 20.71 1.49%
12 1,524.79 1,572.39 1,641.50 32.18 3.12%
13 2,049.26 2,112.39 2,152.20 33.44 3.08%
14 2,323.86 2,379.42 2,428.87 36.98 2.39%
15 2,589.54 2,706.07 2,821.64 74.12 4.50%
16 2,961.68 3,058.03 3,159.19 64.55 3.25%
17 1,290.01 1,339.08 1,441.69 48.98 3.80%
18 1,851.68 1,946.81 2,078.28 73.03 5.14%
19 2,358.79 2,427.39 2,556.50 54.44 2.91%
20 3,246.06 3,367.96 3,545.77 89.12 3.76%

avg. 2,305.77 2,371.60 2,448.56 45.85 2.70%

Table 8.2 shows the obtained results for the 10 runs for each instance. We

report the objective-values for the best (min) the worst (max) and average (mean)

solutions found over all runs. Additionally the standard deviation is calculated

and reported in the stdev collum to gain further inside of the robustness of the

approach. We report the gap between the average found solution and the best

found solution of a run in collum %gap. In the last row of the table the averages

over all instances are reported. The results show that the standard deviation

is relatively low over all days in the majority of the cases. It can be seen that

the gap between the best and average solution is high mostly for the harder to

solve instances. Especially the results for the bigger instances (6, 15, 18) show a

comparable higher deviation than for the smaller instances. We want to point out

69

8. Results

that the average deviation for instances 1 to 10 is 2.06% and for instances 11 to 20

is 3.34% which may hint that the second part of the data set is harder to solve for

the MA. Nevertheless the mean solution values over 10 runs are on average over

all instances only 2.7% worse compared to the best found solution in these runs.

Table 8.3.: Comparison MA without restarts

day MA TS VNS RPDTS RPDV NS

1 1074.12 1074.12 1074.12 0.00% 0.00%
2 1780.63 1762.21 1762.21 1.05% 1.05%
3 2433.83 2373.65 2373.65 2.54% 2.54%
4 2900.86 2852.29 2815.48 1.70% 3.03%
5 3052.57 3029.65 2993.94 0.76% 1.96%
6 3678.24 3627.18 3629.72 1.41% 1.34%
7 1425.29 1418.22 1418.22 0.50% 0.50%
8 2142.3 2102.61 2096.73 1.89% 2.17%
9 2797.89 2737.82 2730.54 2.19% 2.47%

10 3628.35 3505.27 3499.56 3.51% 3.68%
11 1005.73 1005.73 1005.73 0.00% 0.00%
12 1524.79 1478.51 1472.76 3.13% 3.53%
13 2049.26 2011.24 2001.83 1.89% 2.37%
14 2323.86 2202.08 2215.51 5.53% 4.89%
15 2589.54 2494.57 2465.25 3.81% 5.04%
16 2961.68 2901.02 2896.03 2.09% 2.27%
17 1290.01 1236.24 1236.24 4.35% 4.35%
18 1851.68 1792.61 1796.21 3.30% 3.09%
19 2358.79 2285.10 2292.45 3.22% 2.89%
20 3246.06 3079.16 3076.37 5.42% 5.52%

avg. 2305.774 2,248.46 2,242.63 2.41% 2.63%

Table 8.3 reports the results of the MA without restarts compared to the TS

by Cordeau et al. (2001b) and the VNS by Polacek et al. (2004). We decided to

not compare our results to the parallelized VNS version by Polacek et al. (2008a),

because we wanted to focus on singe thread solution methods that can easily be

implemented into the POPMUSIC framework. For the MA and the VNS the best

found solution of the 10 runs is reported, while only one solution was obtained

by the TS. The VNS solutions reported are found after 108 while the TS was

70

8.1. Standardized Instances

executed for 105 iterations. It is to note that our stopping criterion was time

rather than iterations, but even though the authors give some insights on runtime

we can hardly compare them concerning the computational effort as runtimes vary

strongly between different hardware and implementations. The random percentage

deviation (RPD) of the MA compared to the TS and VNS are reported in columns

RPDTS and RPDV NS. It can be seen that both methods outperform the MA by

2.41% and 2.63% respectively. The MA can only find the best known results for

the smallest two instances, with higher deviation directly related to the problem

size. Additionally the random percentage deviation (RPD) of the results for the

second part of the data set (time windows with loose restriction) are generally

higher than for the first part, which resembles the assumption drawn before. The

second part is therefore relatively harder to solve even though the time windows

are not so restrictive. This is mostly due to the fact that the same amount of

customers have to be serviced by a considerable smaller amount of vehicles.

8.1.2. MA with I1 Restarts

The results obtained by the MA shown in the previous section hint that the

algorithm may get stuck in local optimum, from which it cant escape even when

enough time is given. Therefore the MA was enhanced by allowing restarts as soon

as the population might degenerate and therefore can’t escape the local optimum.

The restarting allows freshly generated solutions to enter the population so that

they can help to lead the search into another direction so that it can overcome the

local optima. The method used to generate the new solutions is the stochastic I1

heuristic presented in Section 5.2.1. Table 8.4 shows the obtained results for 10

runs on each instance when I1 restarts are allowed.

The objective-values for the best (min) the worst (max) and average (mean)

solutions found as well as the standard deviation (stdv) over all runs are reported.

The gap between the average found solution and the best found solution of a run

is shown in collum %gap. It can be seen that standard deviation is slightly smaller

compared to the MA without restarts. The gap between the best found solution

and the average solution is 2.41% and is therefore smaller than when using no

restarts. The average gap of the first part of the data set is 2.22% and 2.62% for

71

8. Results

Table 8.4.: Results MA with I1 restarts

day min mean max stdev %gap

1 1,074.12 1,084.80 1,099.68 10.00 0.99%
2 1,768.27 1,793.77 1,817.40 18.38 1.44%
3 2,402.99 2,442.05 2,509.98 31.76 1.63%
4 2,864.04 2,934.16 3,044.22 49.00 2.45%
5 3,031.80 3,147.44 3,341.93 91.41 3.81%
6 3,679.14 3,843.54 3,956.29 77.31 4.47%
7 1,425.29 1,436.38 1,459.58 13.19 0.78%
8 2,106.61 2,159.91 2,228.64 39.35 2.53%
9 2,786.82 2,840.63 2,909.03 40.17 1.93%

10 3,573.90 3,650.89 3,751.32 57.07 2.15%
11 1,005.73 1,010.89 1,045.08 12.62 0.51%
12 1,525.91 1,556.34 1,584.29 20.24 1.99%
13 2,027.48 2,084.00 2,191.56 58.01 2.79%
14 2,256.21 2,331.38 2,393.30 45.65 3.33%
15 2,600.48 2,663.77 2,742.99 41.83 2.43%
16 3,003.80 3,087.37 3,187.70 65.97 2.78%
17 1,269.09 1,318.93 1,469.03 63.28 3.93%
18 1,822.19 1,871.22 1,922.51 31.94 2.69%
19 2,346.85 2,378.02 2,405.15 20.73 1.33%
20 3,225.05 3,364.19 3,627.74 112.33 4.31%

avg. 2,289.79 2,349.98 2,434.37 45.01 2.41%

the second part respectively. Table 8.5 shows the results of the MA with I1 restarts

compared to the TS and VNS. When looking at the random percentage deviation

(RPD) of the MA compared to the TS (RPDTS) and VNS (RPDV NS) we can see

that both of the algorithms beat the approach by 1.70% and 1.92% respectively.

However the method can improve solution quality compared to using no restarts.

Only for four instances the MA without restarts can provide slightly better results.

The second part of the data set, keeps to be comparatively harder to solve which

can be explained by the higher RPD to the best known solutions. We therefore

conclude that restarting the population helps finding better solutions, however we

assume that the I1 heuristic might not be the optimal choice for new solutions to

enter the population. The I1 heuristic constructs relatively good solutions without

72

8.1. Standardized Instances

Table 8.5.: Comparison MA with I1 restarts

day MA TS VNS RPDTS RPDV NS

1 1074.12 1074.12 1074.12 0.00% 0.00%
2 1768.27 1762.21 1762.21 0.34% 0.34%
3 2402.99 2373.65 2373.65 1.24% 1.24%
4 2864.04 2852.29 2815.48 0.41% 1.72%
5 3031.8 3029.65 2993.94 0.07% 1.26%
6 3679.14 3627.18 3629.72 1.43% 1.36%
7 1425.29 1418.22 1418.22 0.50% 0.50%
8 2106.61 2102.61 2096.73 0.19% 0.47%
9 2786.82 2737.82 2730.54 1.79% 2.06%

10 3573.9 3505.27 3499.56 1.96% 2.12%
11 1005.73 1005.73 1005.73 0.00% 0.00%
12 1525.91 1478.51 1472.76 3.21% 3.61%
13 2027.48 2011.24 2001.83 0.81% 1.28%
14 2256.21 2202.08 2215.51 2.46% 1.84%
15 2600.48 2494.57 2465.25 4.25% 5.49%
16 3003.8 2901.02 2896.03 3.54% 3.72%
17 1269.09 1236.24 1236.24 2.66% 2.66%
18 1822.19 1792.61 1796.21 1.65% 1.45%
19 2346.85 2285.10 2292.45 2.70% 2.37%
20 3225.05 3079.16 3076.37 4.74% 4.83%

avg. 2289.7885 2,248.46 2,242.63 1.70% 1.92%

many violations, however compared to solutions in the degenerated population

they are worse in solution quality. While the new and poor solutions can help to

get out of local optima when they are recombined with already good solutions, a

lot of computation has to be done until the overall population reaches the quality

of the previously degenerated population. We therefore decided to use a more

sophisticated approach based on the ACO presented in Chapter 6. The results of

the ACO restarts are shown in the next section.

73

8. Results

8.1.3. MA with ACO Restarts

Table 8.7 shows the averaged obtained results when ACO solutions are injected

into the population at a restart. It can be seen that standard deviation is slightly

higher compared to the MA without restarts and the MA with I1 restarts. The gap

between the best found solution and the average solution is 3.01% and is therefore

just a little higher than for the other two approaches. The average gap of the first

part of the data set is 2.32% and 3.69% for the second part respectively.

Table 8.6.: Comparison mean MA approaches

mean RPD
no restart 2,371.60 -
I1 restart 2,349.98 -0.27%

ACO restart 2,343.57 -1.18%

Table 8.6 reports the mean and RPD of the approaches compared to the ACO

restart approach. Even though the standard deviation is highest for the ACO ap-

proach the average solution quality is lowest, with a difference of -1.18% compared

to using no restarts and -0.27% to using I1-restarts.

Table 8.8 compares the best found solutions of the MA with ACO restarts to

the MA without restarts (ACO/no), the MA with I1 restarts (ACO/I1) the TS

(ACO/TS) and the VNS (ACO/VNS). The best found solutions are reported as

well as the comparison of the ACO to all other approaches (RPD). It can be seen

that the ACO restarts improve solution quality by -1.53% and -0.87% compared to

the MA with no restarts and the MA with I1 restarts respectively. Furthermore the

average deviation of solution quality is only around 1.05% worse to the best know

solutions found by the VNS, and only 0.83% worse to the best known solutions

found by the TS. The MA can find all but one of the best known results for

instances up to size 72, with an only 0.08% worse solution for instance 17. It can

be seen that the MA is most of the time only around 1% worse compared to the

best known results, except for the biggest instances 6,10 and 20 where it deviates

around 3% to the best known solutions. The MA can improve the solutions found

by the TS by -0.05% in instance 8, but it cant improve the solutions found by the

74

8.1. Standardized Instances

Table 8.7.: Results MA with ACO-restarts

day min mean max stdev %gap

1 1,074.12 1,087.36 1,099.68 10.23 1.23%
2 1,762.21 1,800.18 1,829.26 21.33 2.15%
3 2,393.64 2,446.03 2,480.24 28.13 2.19%
4 2,867.06 2,941.21 3,020.55 49.75 2.59%
5 3,069.38 3,176.93 3,331.92 72.72 3.50%
6 3,737.61 3,861.89 4,020.23 94.70 3.33%
7 1,418.22 1,443.30 1,458.11 12.94 1.77%
8 2,101.55 2,149.35 2,189.98 28.32 2.27%
9 2,761.25 2,797.79 2,853.53 27.27 1.32%

10 3,542.05 3,644.08 3,761.36 69.04 2.88%
11 1,005.73 1,012.58 1,047.33 14.84 0.68%
12 1,483.18 1,536.76 1,613.41 41.38 3.61%
13 2,016.54 2,097.15 2,206.65 58.85 4.00%
14 2,239.63 2,338.68 2,408.67 53.87 4.42%
15 2,510.94 2,638.79 2,738.47 74.76 5.09%
16 2,937.38 3,060.05 3,156.13 61.34 4.18%
17 1,237.18 1,295.92 1,354.25 42.77 4.75%
18 1,806.74 1,858.15 1,916.30 36.44 2.85%
19 2,300.73 2,375.28 2,460.67 48.88 3.24%
20 3,178.89 3,309.91 3,456.19 81.79 4.12%

avg. 2,272.20 2,343.57 2,420.15 46.47 3.01%

VNS. The results show that the MA can compete with other approaches when the

problem size is relatively small. With the amount of customers rising, the MA is

clearly dominated by the VNS that seems to scale better. The MA is therefore

well suited to be implemented as an optimizer into the POPMUSIC framework as

sub-problem sizes can flexibly be adapted so that the MA can work in its most

efficient environment.

75

8. Results
T
ab

le
8.

8.
:
C

om
p
ar

is
on

M
A

w
it

h
A

C
O

-r
es

ta
rt

s

b
es

t
fo

u
n
d

so
lu

ti
on

s
R

P
D

D
ay

T
S

V
N

S
n
o

re
st

ar
t

I1
re

st
ar

t
A

C
O

re
st

ar
t

A
C

O
/n

o
A

C
0/

I1
A

C
O

/T
S

A
C

O
/V

N
S

1
10

74
.1

2
10

74
.1

2
10

74
.1

2
10

74
.1

2
10

74
.1

2
0.

00
%

0.
00

%
0.

00
%

0.
00

%
2

17
62

.2
1

17
62

.2
1

17
80

.6
3

17
68

.2
7

17
62

.2
1

-1
.0

3%
-0

.3
4%

0.
00

%
0.

00
%

3
23

73
.6

5
23

73
.6

5
24

33
.8

3
24

02
.9

9
23

93
.6

4
-1

.6
5%

-0
.3

9%
0.

84
%

0.
84

%
4

28
52

.2
9

28
15

.4
8

29
00

.8
6

28
64

.0
4

28
67

.0
6

-1
.1

7%
0.

11
%

0.
52

%
1.

83
%

5
30

29
.6

5
29

93
.9

4
30

52
.5

7
30

31
.8

0
30

69
.3

8
0.

55
%

1.
24

%
1.

31
%

2.
52

%
6

36
27

.1
8

36
29

.7
2

36
78

.2
4

36
79

.1
4

37
37

.6
1

1.
61

%
1.

59
%

3.
04

%
2.

97
%

7
14

18
.2

2
14

18
.2

2
14

25
.2

9
14

25
.2

9
14

18
.2

2
-0

.5
0%

-0
.5

0%
0.

00
%

0.
00

%
8

21
02

.6
1

20
96

.7
3

21
42

.3
0

21
06

.6
1

21
01

.5
5

-1
.9

0%
-0

.2
4%

-0
.0

5%
0.

23
%

9
27

37
.8

2
27

30
.5

4
27

97
.8

9
27

86
.8

2
27

61
.2

5
-1

.3
1%

-0
.9

2%
0.

86
%

1.
12

%
10

35
05

.2
7

34
99

.5
6

36
28

.3
5

35
73

.9
0

35
42

.0
5

-2
.3

8%
-0

.8
9%

1.
05

%
1.

21
%

11
10

05
.7

3
10

05
.7

3
10

05
.7

3
10

05
.7

3
10

05
.7

3
0.

00
%

0.
00

%
0.

00
%

0.
00

%
12

14
78

.5
1

14
72

.7
6

15
24

.7
9

15
25

.9
1

14
83

.1
8

-2
.7

3%
-2

.8
0%

0.
32

%
0.

71
%

13
20

11
.2

4
20

01
.8

3
20

49
.2

6
20

27
.4

8
20

16
.5

4
-1

.6
0%

-0
.5

4%
0.

26
%

0.
73

%
14

22
02

.0
8

22
15

.5
1

23
23

.8
6

22
56

.2
1

22
39

.6
3

-3
.6

2%
-0

.7
3%

1.
71

%
1.

09
%

15
24

94
.5

7
24

65
.2

5
25

89
.5

4
26

00
.4

8
25

10
.9

4
-3

.0
4%

-3
.4

4%
0.

66
%

1.
85

%
16

29
01

.0
2

28
96

.0
3

29
61

.6
8

30
03

.8
0

29
37

.3
8

-0
.8

2%
-2

.2
1%

1.
25

%
1.

43
%

17
12

36
.2

4
12

36
.2

4
12

90
.0

1
12

69
.0

9
12

37
.1

8
-4

.1
0%

-2
.5

1%
0.

08
%

0.
08

%
18

17
92

.6
1

17
96

.2
1

18
51

.6
8

18
22

.1
9

18
06

.7
4

-2
.4

3%
-0

.8
5%

0.
79

%
0.

59
%

19
22

85
.1

0
22

92
.4

5
23

58
.7

9
23

46
.8

5
23

00
.7

3
-2

.4
6%

-1
.9

7%
0.

68
%

0.
36

%
20

30
79

.1
6

30
76

.3
7

32
46

.0
6

32
42

.8
1

31
78

.8
9

-2
.0

7%
-1

.9
7%

3.
24

%
3.

33
%

av
g

22
48

.4
6

22
42

.6
3

23
05

.7
7

22
90

.6
8

22
72

.2
0

-1
.5

3%
-0

.8
7%

0.
83

%
1.

05
%

76

8.2. Real World Problem

8.2. Real World Problem

The problem considered, originates from a large real world problem of an Austrian

logistics provider that operates two distribution centers (depots) m = 2 in or near

the city of Vienna. The company serves from 700 to 2000 customers (n) every day

with a total number of K = 160 vehicles. Both depots are of equal size and the

vehicle fleet is equally split between them. The distribution of the customers that

need to be served is shown in Figure 8.1. The graphic was created with the ArcMap

software and realworld GIS data of the customers and the actual road network. It

Figure 8.1.: Distribution of customers

can be seen that the majority of customers is located in a small geographic region

(Vienna). The remaining customers are spread out in the county side, with the

occasional smaller towns and villages. Additionally the data set contained the

time window [ei, li] for each customer, the service time si and the demand di that

need to be served. The vehicle fleet is homogenous with a maximum capacity D

77

8. Results

and is evenly distributed between the amount of m depots. The maximum route

duration T is 8 hours, which represents a typical working day. We evaluated 2

weeks, each with 5 days and customers between 743 and 1848 per day. Table

8.9 shows the number of customers to be served for each day. The customers

have large time windows, in detail some customers can be served in the morning

between 8 a.m. and 12 a.m. , some customers can be served in the afternoon

between 12 a.m. and 4 p.m. or during the whole day from 8 a.m. to 4 p.m. . The

problem instances are merged into three classes (S,M,L) according to their size so

that more concise results can be presented.

Table 8.9.: Problems size and class definitions

Day 1 2 3 4 5 6 7 8 9 10
Size 1201 1180 1284 1305 1175 743 889 1095 1848 1709

Class M M M M M S S S L L

8.2.1. POPMUSIC MA

In this section the MA was used as an optimizer in the POPMUSIC framework.

As can be seen in Table 8.8, the MA can compete with the TS and VNS at problem

sizes under 75 customers. We therefore restricted the POPMUSIC framework on

constructing sub-problems around this size, so that the MA can efficiently solve

them. The three solving strategies I, II and IIIa were given tmax = 28800

seconds for each individual run, with 10 runs each. Additionally all of the eight

p-Median clusterings ranging between 16 and 80 clusters were evaluated for both

decomposing strategies. Table 8.10 shows the different parameters used for each

strategy.

Strategy I

Strategy I is the most basic one, were the MA tries to solve the problem without

any decomposition. The results achieved for each day are shown in Table 8.11. We

report the objective-values for the best (min) the worst (max) and average (mean)

78

8.2. Real World Problem

Table 8.10.: Parameter settings for the different strategies

I II IIIa IIIb
itpop ∞ ti 10 1
itini - - 200 1
tmax 28800 28800 28800 1800

Number of clusters 1 16 80 80

solutions found over all runs for each day. It can be seen that when the amount

of customers to be serviced varies strongly in real world problems, it is directly

reflected in the objective values. Therefore the vehicle fleet may be under-utilized

at weak days, and overstrained at busy days. Additionally the standard deviation

(stdev) is presented.

Table 8.11.: Results of Strategy I for each day

no decomposition
Day min mean max stdv

1 4,560.34 4,747.76 4,938.84 106.30
2 4,829.90 4,975.89 5,138.89 102.01
3 4,860.68 5,070.26 5,315.12 125.95
4 5,348.45 5,490.42 5,628.42 97.85
5 5,008.66 5,143.97 5,238.79 73.10
6 2,872.69 3,046.42 3,253.43 119.44
7 4,030.47 4,103.11 4,159.57 38.54
8 3,865.22 4,007.95 4,164.30 99.37
9 6,861.64 7,004.53 7,216.25 106.26

10 7,269.68 7,527.55 7,726.65 145.73

The results by each class are shown in Table 8.12, with the objective values for

the best found solution (min), the average solution (mean) and the worst solution

(max). Up-to-date the MA was the first algorithm applied to this real-world

problem. Therefore the results of the MA form the basis for further comparison.

79

8. Results

Table 8.12.: Results of Strategy I by class

no decomposition
min mean max Stdv

Small 10,768.38 11,157.48 11,577.30 93.82
Medium 24,608.03 25,428.30 26,260.06 243.88

Large 14,131.32 14,532.08 14,942.90 127.30

Strategy II

Strategy II focuses on solving the problem sequentially. This is done by splitting

the complete problem though the use of the p-Median procedure. Each of the

resulting clusters, is then solved for the maximum allowed time ti by the MA. As

a result there is no interaction between the clusters, so that customers initially

assigned to a cluster can never be relocated to another cluster. The complete

solution, containing all of the customers, is finally generated by merging the routes

of the sequentially generated solutions. Table 8.13 shows the results obtained for

each class by this strategy.

The minimum, mean and average objective values as well as the standard devi-

ation are calculated for each initial clustering, and are presented by class. Addi-

tionally the results for each clustering are ranked per class by their corresponding

mean values. Compared to the results presented for the standardized instances,

we mostly compare average results, as it may be more appropriate in a real-world

scenario. The obtained results show that intelligently decomposing the problem

into parts, and then solving them sequentially results in an improvement of about

-12.83% compared to using the same optimizer without any pre-decomposition

(see Table 8.16). In Table 8.13 it can be seen that with a rising amount of clusters

the solution quality decreases which is true for all problem-classes. Like explained

in Section 7.1.2 the nature of the p-Median procedure produces bigger clusters

in highly populated areas and very small ones in regions in the country side (see

Figure 7.1). As there is no interaction between clusters, the vehicle fleet can not

be efficiently distributed to the clusters and borderline customers can not move

to other better suited routes. Therefore the more the problem is decomposed

80

8.2. Real World Problem

Table 8.13.: Results of Strategy II by class

fixed decomposition

clusters min mean worst stdv rank

16 10,476.20 10,569.07 10,679.76 33.95 2
20 10,454.03 10,543.05 10,645.76 31.43 1
22 10,826.24 10,905.97 11,068.00 29.49 3

Small 26 11,061.94 11,154.92 11,231.33 34.31 4
32 11,453.13 11,546.82 11,627.81 32.36 5
40 12,133.01 12,174.46 12,236.35 14.05 6
53 13,253.88 13,328.14 13,377.80 27.40 7
80 15,489.56 15,512.81 15,564.26 12.85 8

16 21,694.29 21,923.49 22,110.66 74.94 1
20 21,759.04 21,988.95 22,305.77 73.24 2
22 22,102.60 22,217.69 22,422.36 63.66 3

Medium 26 22,410.12 22,546.74 22,799.75 72.60 4
32 23,059.11 23,196.34 23,395.94 41.09 5
40 23,900.03 24,031.28 24,160.76 36.74 6
53 26,059.15 26,216.12 26,377.68 39.17 7
80 30,452.64 30,547.83 30,653.02 25.66 8

16 11,970.13 12,067.94 12,162.91 37.03 1
20 12,165.35 12,238.52 12,343.51 36.75 2
22 12,164.28 12,244.38 12,328.99 45.04 3

Large 26 12,324.99 12,417.89 12,507.92 34.22 4
32 12,587.37 12,688.86 12,748.92 26.57 5
40 12,960.88 13,012.02 13,083.13 16.11 6
53 13,350.07 13,407.04 13,455.22 26.14 7
80 14,402.30 14,487.32 14,594.94 23.97 8

the more inefficiencies can arise which is represented by solution values increasing

with the amount of clusters. Looking at the results, one can see that there is a

difference of about 50% when comparing the 16 cluster and 80 cluster solutions

in class S, around 40% in class M and around 20% in class L. This figures show,

that the more a problem is decomposed the more inefficiencies arise when no in-

teraction between clusters is allowed. When comparing the results in tables 8.12

and 8.13 one can see that the best results obtained by strategy II for the class S

are similar to the results of strategy I while at the same time the worst clusterings

can’t compete with the simple MA approach. However with increasing problem

81

8. Results

size, the decomposition approach greatly outperforms the simple approach, which

is underlined when looking at the results of class L. It can be seen that even the

worst clustering produces solutions that are on average better than the solutions

obtained by strategy I.

Strategy III

Strategy III is the decomposing strategy based on the POPMUSIC framework.

This strategy flexibly splits the large problem into smaller sub-problems that than

can be easily solved by the MA. In contrast to strategy II this sub-problems can

interact with each other, so that borderline customers can flexibly be assigned

to the adequate sub-problems. Initially wrongly assigned customers can there-

fore easily be reassigned which should be reflected in lower solution values. The

POPMUSIC strategy was tested with two different parameter settings. Table 8.14

shows the results with long runtime (t = 28800 seconds). The longer overall run-

time coupled with a more intense search in the individual sub-problems should

help to fully exploit the feature of reassigning customers that were initially as-

signed to the wrong routes. It can be seen that nearly -20% improvement can be

achieved when using the developed decomposing strategy, compared to using a

traditional solver without decomposition (see Table 8.16). In contrast to strategy

II the initial clustering does not impact solution quality in the same way when

using the POPMUSIC framework. Because sub-problems can easily interact with

each other and are always around the size of 75 customers, the MA can operate

in an optimal environment. This is not the case in strategy II were clusters can

be far above the limit of 75 customers. Table 8.14 shows that the best results

are achieved in the higher spectrum of initial clusters. The difference in solution

quality is however relatively small (under 1%).

On the other hand Table 8.15 contains the results for the accelerated search,

that focuses on finding feasible solutions as fast as possible. This approach was

given much less time (t = 1800 seconds) to solve the problem, with reduced search

time in the individual sub-problems. As the time given to optimize a sub-problem

is highly limited in this approach, a complete cycle of optimizing all sub-problems

uses a fraction of the time compared to strategy IIIa. The first feasible and good

82

8.2. Real World Problem

Table 8.14.: Results of Strategy IIIa by class

POPMUSIC (long) (10 · 10 · 8 · 8h = 6400h)

clusters Best Mean Worst Stdv Rank

16 9,146.16 9,282.50 9,430.24 50.91 8
20 9,102.46 9,249.05 9,391.41 56.45 6
22 9,118.99 9,238.56 9,398.32 46.75 4

Small 26 9,127.43 9,266.33 9,408.25 49.89 7
32 9,122.98 9,234.82 9,349.97 37.09 3
40 9,053.41 9,218.38 9,398.19 50.84 1
53 9,129.94 9,240.59 9,404.85 61.16 5
80 9,089.32 9,227.38 9,397.18 39.62 2

16 20,437.59 20,686.65 20,993.94 104.61 8
20 20,323.06 20,540.00 20,756.90 58.35 6
22 20,268.55 20,581.12 20,848.29 85.18 7

Medium 26 20,252.23 20,472.45 20,726.84 67.86 3
32 20,221.06 20,483.68 20,770.48 92.92 4
40 20,249.71 20,497.42 20,734.10 78.27 5
53 20,269.93 20,471.12 20,810.73 102.07 2
80 20,156.41 20,429.33 20,713.18 60.57 1

16 11,532.49 11,648.60 11,759.85 50.09 7
20 11,451.16 11,599.02 11,724.41 53.92 4
22 11,525.01 11,662.78 11,763.10 54.16 8

Large 26 11,506.05 11,605.74 11,711.06 47.98 5
32 11,395.66 11,553.61 11,688.02 47.80 3
40 11,369.10 11,550.09 11,661.57 65.81 2
53 11,406.17 11,545.81 11,685.24 60.97 1
80 11,505.03 11,607.31 11,826.82 80.29 6

solutions are therefore generated much faster, at the cost of a worse exploration

of the sub-problems. Nevertheless strategy IIIa can improve the solutions found

by the MA without decomposition by -13.46% by using only a fraction of the time

(1/16).

Comparison of the Strategies

The results for three different approaches that all use the same optimizer were

presented. In this section we further compare them against each other, and addi-

tionally give some insight on the speed of the solution finding process. Table 8.16

83

8. Results

Table 8.15.: Results of Strategy IIIb by class

POPMUSIC (short) (10 · 10 · 8 · 0.5h = 400h)

clusters Best Mean Worst Stdv Rank

16 9,966.38 10,200.80 10,454.41 84.90 8
20 9,866.84 10,085.59 10,253.86 54.51 6
22 9,883.93 10,140.76 10,423.39 75.67 7

Small 26 9,830.67 10,020.04 10,228.69 78.48 5
32 9,793.71 9,990.40 10,218.84 76.80 4
40 9,651.10 9,865.66 10,098.00 72.80 1
53 9,713.36 9,932.95 10,233.72 112.97 2
80 9,687.67 9,966.59 10,289.52 112.26 3

16 22,352.24 22,743.57 23,090.57 136.76 8
20 22,085.14 22,541.87 23,017.33 104.78 7
22 22,138.83 22,514.31 22,976.41 74.45 6

Medium 26 21,888.54 22,254.29 22,662.73 110.00 5
32 21,741.50 22,100.39 22,518.78 70.69 4
40 21,610.46 22,013.68 22,418.18 132.56 3
53 21,648.42 22,003.30 22,353.57 103.83 2
80 21,450.20 21,800.15 22,237.30 76.30 1

16 12,636.64 12,829.57 13,121.98 63.39 8
20 12,575.81 12,793.70 13,035.89 97.84 7
22 12,585.25 12,784.62 12,952.19 73.43 6

Large 26 12,427.22 12,625.26 12,898.93 60.77 5
32 12,314.27 12,557.46 12,756.27 90.84 3
40 12,332.03 12,564.40 12,766.31 57.71 4
53 12,227.43 12,434.03 12,627.31 86.63 1
80 12,297.36 12,473.14 12,607.14 62.68 2

presents the obtained results of the best clustering for each strategy and class.

The random percentage deviation between strategy I and all other strategies are

presented as well as the RPD averaged over all classes.

It can be seen that solving the problem without any decomposition clearly re-

sulted in the worst solution quality. A simple decomposing of the problem into

intelligently chosen parts, like the p-Median procedure used in strategy II im-

proves the results by roughly −13% compared to the most basic strategy. The

average results obtained by strategy IIIa are nearly −20% better than without

any decomposition and prove that the POPMUSIC framework can solve problems

84

8.2. Real World Problem

Table 8.16.: Comparison of the strategies

Class RPD I/II RPD I/IIIa RPD I/IIIb
S–Small -5.27% -17.30% -10.67%

M–Medium -13.78% -19.66% -14.27%
L–Large -16.96% -20.13% -14.17%
Average -12.83% -19.28% -13.46%

of large scale efficiently. This is further underlined when looking at the results ob-

tained by Strategy IIIb Even though the algorithm has only about 6% of the time

available it outperforms the simple Strategy I by nearly -14% and the decompo-

sition Strategy II by around −0.75%. It also underlines how easy the framework

can be adapted to the needs that arise in real world applications, when relatively

good solutions are needed as fast as possible. As explained before we once again

want to note that strategy II produced better results than strategy I when us-

ing the smallest amount of p-Median clusters, but is greatly outperformed when

choosing the wrong initial clustering.

Figure 8.2 shows the objective values as well as a 95% confidence interval for

Strategies I, IIIa and IIIb over the runtime for day 6. Strategy II is not repre-

sented in these figure because clusters are solved sequentially. This figure shows,

that the MA without decomposition and the POPMUSIC long need around the

same time to find a feasible solution. However the quality of the solutions is highly

different and in favor to the POPMUSIC approach. The initial clustering by the p-

Median procedure gives the POPMUSIC approach a significant head-start, which

is then further developed by intelligently creating and solving the sub-problems.

Nevertheless the MA can steadily improve over the whole runtime but never gets

even close to the solution quality obtained early in the search by the POPMUSIC

long approach. On the other hand the descent of the POPMUSIC long approach

is not so steep, which may be a result of the already good solution quality. Look-

ing at the results of POPMUSIC short, one can see that this approach is able to

find solutions much faster then the other approaches. It can be seen that there

is a trade-off between accelerating the search and finding good quality solutions,

as strategy IIIb cannot reach the solution quality of strategy IIIa at the end of

85

8. Results

Figure 8.2.: Average objective values and confidence intervals over runtime for
day 6

10 100 1000 10000 100000
2400

2600

2800

3000

3200

3400

3600

3800

4000

Runtime [s]

A
v
er

ag
e

o
b
je

ct
iv

e
v
al

u
e

MA (I)

POPMUSIC short (IIIb)

POPMUSIC long (IIIa)

the time-limit. This finding further underlines the flexibility of the POPMUSIC

approach, as by simply tuning two parameters the search can easily be accelerated

while maintaining good solution quality. Even though we can not directly compare

strategy II concerning run-time, we want to point out that the final solution values

of strategy II are roughly of the quality that can be found early in the search of

strategy IIIb. Since both of the strategies start with the same initial clustering,

it can be seen that flexibly re-arranging customers from one sub-problem to an-

other, can yield high improvements relatively early in the search, while solving the

sub-problems without any interaction results in a stagnating search. Furthermore

we want to point out that, even though we only present a figure for day 6, similar

results can be examined for all other days.

Finally we want to present the best known solutions in Table 8.17. It is to note

that all solutions were found by strategy IIIa which further underlines the effec-

tiveness of the approach. The last column shows the initial p-Median clustering

with which the solutions were obtained.

86

8.2. Real World Problem

Table 8.17.: Best solution values found

day best # clusters
1 3,649.09 80
2 4,061.71 32
3 4,022.29 22
4 4,258.19 80
5 4,134.59 40
6 2,423.83 22
7 3,438.83 40
8 3,164.80 80
9 5,427.65 40

10 5,941.45 40

8.2.2. POPMUSIC VNS

In this section the results for the POPMUSIC that uses a VNS as optimizer are

presented. Compared to the decomposition approach that uses an MA as an op-

timizer, the integration of a VNS into the POPMUSIC framework allows for a

more flexible creation of sub-problems around a seed part. In the PopVNS ap-

proach a part is defined as a route, compared to a set of routes in the PopMA

approach. This on the one hand allows for more different combinations of creat-

ing sub-problems, as well as for more flexibility in creating the actual proximity

measure with which sub-problems can be created. The presented measures should

in practice work for every method that only manipulates a single solution. To

gain better inside of the performance of this approach, we compared it to the

results obtained by the PopMA (see Section 7.1) and the VNS itself without any

decomposition. It is to note that the results obtained in Section 8.2.1 are slightly

different compared to the results in this section. This comes mainly from the fact,

that a more recent road network was used for distance calculations, so that the

emerging distance-matrix contains the eventual difference between two customers,

compared to the original distances. Furthermore the 3-opt used in the MA was

enhanced so that it can shift customers that are on the same location without any

sequence restrictions. This was done to provide a unified basis for comparing the

87

8. Results

two algorithms only on basis of the decomposition approaches and the optimizers

used and not because of structural design differences of the two approaches. The

real-world instances include two depots from which customers need to be served

and to which the vehicle fleet is evenly distributed to. To examine also the perfor-

mance of the PopVNS approach for more than two depots, we extended the initial

data set by introducing two additional depots. The extra depots were chosen out

of 50 possible locations in the vicinity of Vienna. The possible locations were

gathered by hand and are mostly located in business-parks, commercial areas or

easily accessible areas. Two depot were selected by hand out of all the possible

locations. No special selection algorithm was used, as we did not want to focus on

the Facility Location Problem or even the Location Routing Problem (LRP). The

POPMUSIC with a VNS as optimizer was therefore tested on the two, three and

four depot case and over all instances. To gain some further insight on the perfor-

mance of the eight different proximity measures, and how they behave in varying

multi depot environments, all of them were tested on these newly generated in-

stances. To compare the obtained results the VNS without any decomposition

was applied to them as well. We decided to perform ten independent runs with

a computation time of five hours for each run. The long time limit was chosen

with the idea of possible overnight calculations, as they would be performed in the

real world. Therefore each depot and each proximity measure combination was

tested 10 times for each day for 5 hours each. These extensive calculations were

performed on all of the 4 cores of identical Intel Pentium 640 ’Prescott’ 3.2GHZ,

800MHZ FSB, 2MB L2-Cache PC’s with 4gb of memory.

Table 8.18 shows the results obtained for the two depot case. The results pro-

vided in this Table for the PopVNS are the results obtained through the use of the

best proximity measure DIV . The table presents the average costs obtained by the

POPMUSIC that uses a MA as optimizer (PopMA) as explained in Section 8.2.1

or presented in the work of Ostertag et al. (2008b). Additional results are pre-

sented for the VNS without decomposition (VNS) as explained in Chapter 4 and

the POPMUSIC that uses a VNS as optimizer with the DIV proximity measure

(PopVNS). The table reports the RPD between the PopVNS and the two other

approaches. It can be seen that the PopVNS with the DIV proximity measure,

can improve the results obtained by the PopMA by -6.17%. This is an remarkable

88

8.2. Real World Problem

Table 8.18.: Comparison of algorithms for the initial two depot setup

RPD RPD
Day PopMA VNS PopVNS PopMA / PopVns VNS / PopVns
10 3990.30 3900.22 3617.17 -9.35% -7.26%
11 4248.84 4337.41 4035.87 -5.01% -6.95%
12 4337.51 4308.20 4002.35 -7.73% -7.10%
13 4526.04 4641.33 4258.72 -5.91% -8.24%
14 4335.46 4383.96 4085.11 -5.77% -6.82%
22 2531.97 2592.75 2441.07 -3.59% -5.85%
23 3483.54 3627.22 3394.80 -2.55% -6.41%
24 3483.54 3354.47 3128.26 -10.20% -6.74%
25 6031.33 5855.59 5368.09 -11.00% -8.33%
26 5948.30 6344.28 5911.63 -0.62% -6.82%

avg. 4291.68 4334.54 4024.31 -6.17% -7.05%

improvement as the PopMA already improved solution quality around -20% com-

pared to the MA without any decomposition (see Section 8.2.1). Implementing

the VNS into the POPMUSIC framework resulted in a -7.05% decrease of solution

quality, compared to using the pure VNS without decomposition. In both cases,

MA and VNS, the decomposition approach resulted in significant efficiency im-

provements. Even though the developed MA is clearly dominated by the VNS, the

PopMA can improve the results obtained by the powerful pure VNS by roughly

-1%.

Measure DIV turned out to be the clear winner out of all the tested proximity

measures. Nevertheless the results of all proximity measures are presented and

discussed in great detail in the next section.

Analysis of Proximity Measure

In this section the results for the eight proximity measures are presented and

analyzed. Three Sweep-based measures (DI - DIII) are tested as well as five

distance-based measures (DI - DV). All of them were tested on the initial 2-depot

case as well as on the extended 3 and 4 depot case.

Table 8.19 presents the RPD to the VNS without decomposition and the rank-

89

8. Results

Table 8.19.: Average results for two depots

measure RPD to VNS Rank
SI -6.62% 5

SII -6.62% 6
SIII -6.56% 7
DI -6.87% 2

DII -6.71% 4
DIII -6.85% 3
DIV -7.05% 1
DV -6.09% 8

PopMA -0.80% 9
V NS 0.00% 10

ing of each measure for the initial 2 depot instances. It can be seen that DIV

provided the highest improvement with -7.05% compared to the VNS. The re-

maining strategies are performing at maximum only around 1% worse compared

to the best proximity measure. Generally one can see that it seems like the dis-

tance based measure work better in a two depot environment than the measures

based on the Sweep mechanic, with the only exception being measure DV which

provided by far the worst results. When looking at this table, one can see that

each of the presented proximity measures outperforms the POPMUSIC approach

that uses an MA as optimizer.

90

8.2. Real World Problem

T
ab

le
8.

20
.:

R
ou

te
le

n
gt

h
an

d
R

P
D

fo
r

tw
o

d
ep

ot
s

an
d

al
l
d
ay

s

1
2

3
4

5
6

7
8

9
10

av
g

S
I

3,
63

0.
68

4,
05

3.
56

4,
02

2.
77

4,
28

0.
37

4,
10

5.
72

2,
40

9.
96

3,
39

3.
67

3,
17

3.
86

5,
46

2.
52

5,
93

4.
92

4,
04

6.
80

S
I
I

3,
65

0.
70

4,
06

2.
70

3,
98

8.
77

4,
26

2.
64

4,
10

4.
92

2,
42

6.
27

3,
38

2.
31

3,
17

9.
13

5,
41

6.
32

5,
93

1.
18

4,
04

0.
49

S
I
I
I

3,
66

3.
69

4,
05

2.
95

4,
02

3.
78

4,
27

3.
93

4,
12

4.
61

2,
41

2.
99

3,
37

8.
98

3,
16

5.
56

5,
45

8.
83

5,
94

3.
68

4,
04

9.
90

D
I

3,
62

5.
62

4,
05

9.
36

3,
99

9.
05

4,
26

1.
26

4,
10

7.
01

2,
43

0.
87

3,
38

7.
13

3,
15

9.
87

5,
41

2.
76

5,
89

4.
32

4,
03

3.
73

D
I
I

3,
61

7.
17

4,
03

5.
87

4,
00

2.
35

4,
25

8.
72

4,
08

5.
11

2,
44

1.
07

3,
39

4.
80

3,
12

8.
26

5,
36

8.
09

5,
91

1.
63

4,
02

4.
31

D
I
I
I

3,
65

1.
46

4,
06

4.
19

4,
01

8.
03

4,
30

2.
37

4,
14

5.
65

2,
46

2.
58

3,
42

3.
51

3,
20

4.
13

5,
41

5.
27

5,
95

3.
94

4,
06

4.
11

D
I
V

3,
63

3.
18

4,
05

9.
55

4,
01

6.
49

4,
26

9.
02

4,
10

5.
01

2,
41

0.
84

3,
38

3.
56

3,
19

5.
74

5,
46

2.
92

5,
92

6.
00

4,
04

6.
23

D
V

3,
61

1.
80

4,
04

4.
66

4,
00

8.
15

4,
27

5.
16

4,
08

8.
52

2,
43

9.
19

3,
39

6.
57

3,
15

6.
02

5,
38

9.
60

5,
91

5.
36

4,
03

2.
50

P
o
p
M

A
3,

99
0.

30
4,

24
8.

84
4,

33
7.

51
4,

52
6.

04
4,

33
5.

46
2,

53
1.

97
3,

48
3.

54
3,

49
6.

30
6,

03
1.

33
5,

94
8.

30
4,

29
2.

96
V

N
S

3,
90

0.
22

4,
33

7.
41

4,
30

8.
20

4,
64

1.
33

4,
38

3.
96

2,
59

2.
75

3,
62

7.
22

3,
35

4.
47

5,
85

5.
59

6,
34

4.
28

4,
33

4.
54

S
I

-6
.9

1%
-6

.5
4%

-6
.6

3%
-7

.7
8%

-6
.3

5%
-7

.0
5%

-6
.4

4%
-5

.3
8%

-6
.7

1%
-6

.4
5%

-6
.6

2%
S

I
I

-6
.4

0%
-6

.3
3%

-7
.4

1%
-8

.1
6%

-6
.3

7%
-6

.4
2%

-6
.7

5%
-5

.2
3%

-7
.5

0%
-6

.5
1%

-6
.7

1%
S

I
I
I

-6
.0

6%
-6

.5
6%

-6
.6

0%
-7

.9
2%

-5
.9

2%
-6

.9
3%

-6
.8

4%
-5

.6
3%

-6
.7

8%
-6

.3
1%

-6
.5

6%
D

I
-7

.0
4%

-6
.4

1%
-7

.1
8%

-8
.1

9%
-6

.3
2%

-6
.2

4%
-6

.6
2%

-5
.8

0%
-7

.5
6%

-7
.0

9%
-6

.8
5%

D
I
I

-7
.2

6%
-6

.9
5%

-7
.1

0%
-8

.2
4%

-6
.8

2%
-5

.8
5%

-6
.4

1%
-6

.7
4%

-8
.3

3%
-6

.8
2%

-7
.0

5%
D

I
I
I

-6
.3

8%
-6

.3
0%

-6
.7

4%
-7

.3
0%

-5
.4

4%
-5

.0
2%

-5
.6

2%
-4

.4
8%

-7
.5

2%
-6

.1
5%

-6
.0

9%
D

I
V

-6
.8

5%
-6

.4
1%

-6
.7

7%
-8

.0
2%

-6
.3

6%
-7

.0
2%

-6
.7

2%
-4

.7
3%

-6
.7

1%
-6

.5
9%

-6
.6

2%
D

V
-7

.3
9%

-6
.7

5%
-6

.9
6%

-7
.8

9%
-6

.7
4%

-5
.9

2%
-6

.3
6%

-5
.9

2%
-7

.9
6%

-6
.7

6%
-6

.8
7%

P
o
p
M

A
2.

31
%

-2
.0

4%
0.

68
%

-2
.4

8%
-1

.1
1%

-2
.3

4%
-3

.9
6%

4.
23

%
3.

00
%

-6
.2

4%
-0

.8
0%

V
N

S
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

91

8. Results

Table 8.21.: Results for three depots

measure RPD to VNS Rank
SI -6.38% 4

SII -5.97% 7
SIII -6.45% 2
DI -6.14% 6

DII -6.17% 5
DIII -6.41% 3
DIV -6.91% 1
DV -5.70% 8

V NS 0.00% 9

Table 8.20 gives further insight on how the developed proximity measures per-

form on the individual instances. The figures in the upper part of this table are

again the average results obtained over all runs per instance, while the figures in

the lower part represent the RPD to the VNS. Foremost on may notice that the

PopMA performs at average around -0.8% better than the VNS, however it pro-

vides better solutions than the VNS only in 6 out of 10 instances. When looking

at the individual proximity measures one can see that all of them provide better

results than the VNS or PopMA for all instances, with improvements ranging be-

tween -4.48% and -8.33%. It can be seen that the smallest improvements can be

gained for instances 6,7 and 8, which are the instances with the smallest amount

of customers to be served.

Table 8.21 reports the results for the initial two-depot setup that is extended by

one additional depot. It can be seen that DIV is again the top ranking measure

with an average improvement of -6.91% compared to the VNS. The second best

ranking in the 3 depot setup was achieved by SIII closely followed by DII . When

adding one more depot the measures perform differently than in the two depot

case. It seems that Sweep based measures can close their gap on the distance

based measures, as they can more effectively assign the borderline customers to

the best depot.

Table 8.22 presents the obtained results in great detail, by reporting the average

values of ten runs, as well as the RPD to the VNS for each day and proximity

92

8.2. Real World Problem

measure combination. Like in the two depot case, all proximity measures provide

better results than the VNS approach with improvements ranging between -3.69%

and -8.09%. The observation, that the gain in solution quality is correlated to the

instance size, can be supported as the average improvements when decomposing

are relatively smaller for days 6,7 and 8 compared to the days that feature a larger

amount of customers.

93

8. Results

T
ab

le
8.

22
.:

R
ou

te
le

n
gt

h
an

d
R

P
D

fo
r

th
re

e
d
ep

ot
s

an
d

al
l
d
ay

s

1
2

3
4

5
6

7
8

9
10

av
g

S
I

3,
47

5.
91

3,
90

7.
79

3,
85

1.
27

4,
14

7.
14

3,
96

6.
47

2,
35

8.
49

3,
25

1.
19

3,
00

9.
56

5,
21

8.
71

5,
79

6.
79

3,
89

8.
33

S
I
I

3,
47

0.
65

3,
94

0.
16

3,
85

1.
23

4,
15

1.
07

3,
97

3.
47

2,
37

1.
36

3,
26

3.
31

3,
03

6.
65

5,
21

8.
05

5,
76

8.
62

3,
90

4.
46

S
I
I
I

3,
48

2.
05

3,
92

0.
49

3,
84

7.
14

4,
11

2.
11

3,
94

8.
49

2,
35

2.
23

3,
26

5.
23

3,
01

3.
22

5,
23

3.
53

5,
77

2.
76

3,
89

4.
73

D
I

3,
45

9.
60

3,
92

3.
96

3,
83

0.
19

4,
13

6.
50

3,
97

1.
80

2,
36

3.
79

3,
26

3.
64

3,
02

6.
81

5,
20

2.
14

5,
76

8.
20

3,
89

4.
66

D
I
I

3,
45

0.
54

3,
89

5.
84

3,
81

3.
91

4,
12

1.
25

3,
93

9.
82

2,
35

0.
96

3,
24

5.
18

3,
01

1.
14

5,
16

6.
37

5,
74

6.
64

3,
87

4.
17

D
I
I
I

3,
47

6.
18

3,
91

5.
61

3,
88

0.
61

4,
16

4.
33

3,
98

2.
23

2,
40

8.
56

3,
29

9.
15

3,
05

7.
57

5,
23

6.
79

5,
79

5.
13

3,
92

1.
62

D
I
V

3,
49

5.
40

3,
93

3.
00

3,
83

9.
64

4,
15

6.
29

3,
98

6.
03

2,
38

4.
97

3,
26

8.
35

3,
03

2.
60

5,
24

8.
05

5,
78

5.
24

3,
91

2.
96

D
V

3,
47

8.
42

3,
91

8.
08

3,
85

9.
07

4,
13

6.
55

3,
95

1.
95

2,
40

4.
96

3,
26

5.
83

3,
04

4.
82

5,
21

1.
95

5,
75

0.
43

3,
90

2.
21

V
N

S
3,

73
6.

92
4,

16
2.

03
4,

12
7.

34
4,

47
3.

89
4,

21
6.

16
2,

50
0.

88
3,

46
3.

28
3,

21
7.

67
5,

60
6.

79
6,

14
1.

18
4,

16
4.

61

S
I

-6
.9

8%
-6

.1
1%

-6
.6

9%
-7

.3
0%

-5
.9

2%
-5

.6
9%

-6
.1

2%
-6

.4
7%

-6
.9

2%
-5

.6
1%

-6
.3

8%
S

I
I

-7
.1

3%
-5

.3
3%

-6
.6

9%
-7

.2
2%

-5
.7

6%
-5

.1
8%

-5
.7

7%
-5

.6
3%

-6
.9

3%
-6

.0
7%

-6
.1

7%
S

I
I
I

-6
.8

2%
-5

.8
0%

-6
.7

9%
-8

.0
9%

-6
.3

5%
-5

.9
4%

-5
.7

2%
-6

.3
5%

-6
.6

6%
-6

.0
0%

-6
.4

5%
D

I
-7

.4
2%

-5
.7

2%
-7

.2
0%

-7
.5

4%
-5

.8
0%

-5
.4

8%
-5

.7
6%

-5
.9

3%
-7

.2
2%

-6
.0

7%
-6

.4
1%

D
I
I

-7
.6

6%
-6

.4
0%

-7
.5

9%
-7

.8
8%

-6
.5

5%
-5

.9
9%

-6
.3

0%
-6

.4
2%

-7
.8

6%
-6

.4
2%

-6
.9

1%
D

I
I
I

-6
.9

8%
-5

.9
2%

-5
.9

8%
-6

.9
2%

-5
.5

5%
-3

.6
9%

-4
.7

4%
-4

.9
8%

-6
.6

0%
-5

.6
3%

-5
.7

0%
D

I
V

-6
.4

6%
-5

.5
0%

-6
.9

7%
-7

.1
0%

-5
.4

6%
-4

.6
3%

-5
.6

3%
-5

.7
5%

-6
.4

0%
-5

.8
0%

-5
.9

7%
D

V
-6

.9
2%

-5
.8

6%
-6

.5
0%

-7
.5

4%
-6

.2
7%

-3
.8

4%
-5

.7
0%

-5
.3

7%
-7

.0
4%

-6
.3

6%
-6

.1
4%

V
N

S
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

94

8.2. Real World Problem

Table 8.23.: Results for four depots

measure RPD to VNS Rank
SI -5.86% 3

SII -5.17% 7
SIII -5.92% 2
DI -5.54% 5

DII -5.42% 6
DIII -5.78% 4
DIV -6.31% 1
DV -5.13% 8

V NS 0.00% 9

The results for the four depot case, the initial two depot case that was extended

by two hand picked depots, are presented in Table 8.23. The DIV measure seems

to work well in all of the different variations of depot setups, as it is again the

top performing measure with an average improvement of -6.31% compared to the

VNS. SIII is again ranked as the second best measure, and SI being the third

best. Extending the problem by an additional depot again shifts the favor of

good performing measures in the direction of the sweep-based measures. Even

though measure DIV seems generally very stable in all environments as it clearly

outperforms all other measures in all conducted test runs.

95

8. Results

T
ab

le
8.

24
.:

R
ou

te
le

n
gt

h
an

d
R

P
D

fo
r

fo
u
r

d
ep

ot
s

an
d

al
l
d
ay

s

1
2

3
4

5
6

7
8

9
10

av
g

S
I

3,
32

1.
94

3,
79

2.
64

3,
67

7.
01

4,
01

0.
82

3,
83

3.
07

2,
28

3.
22

3,
20

6.
33

2,
88

0.
67

4,
98

8.
08

5,
58

6.
67

3,
75

8.
05

S
I
I

3,
36

1.
83

3,
80

7.
29

3,
69

0.
22

4,
02

9.
92

3,
86

6.
05

2,
29

7.
28

3,
22

3.
81

2,
88

9.
37

4,
98

5.
24

5,
58

5.
99

3,
77

3.
70

S
I
I
I

3,
31

9.
43

3,
78

4.
16

3,
66

6.
63

3,
98

5.
20

3,
85

5.
93

2,
28

2.
53

3,
21

3.
52

2,
88

3.
26

4,
98

7.
66

5,
57

0.
85

3,
75

4.
92

D
I

3,
33

1.
70

3,
77

6.
63

3,
69

0.
63

4,
01

0.
75

3,
85

1.
31

2,
30

4.
72

3,
19

8.
99

2,
88

1.
65

4,
96

5.
57

5,
57

3.
47

3,
75

8.
54

D
I
I

3,
32

5.
86

3,
75

8.
09

3,
65

2.
37

3,
95

4.
13

3,
83

5.
41

2,
28

4.
43

3,
20

0.
32

2,
90

2.
07

4,
92

3.
77

5,
51

5.
34

3,
73

5.
18

D
I
I
I

3,
37

2.
07

3,
80

4.
67

3,
70

7.
23

4,
04

5.
20

3,
85

1.
46

2,
32

2.
59

3,
23

8.
17

2,
89

1.
92

5,
00

7.
57

5,
60

0.
80

3,
78

4.
17

D
I
V

3,
35

3.
62

3,
80

2.
89

3,
69

8.
50

4,
03

8.
57

3,
85

6.
44

2,
30

4.
09

3,
21

9.
94

2,
90

6.
94

5,
04

6.
17

5,
62

9.
83

3,
78

5.
70

D
V

3,
33

8.
16

3,
79

6.
25

3,
69

5.
33

4,
02

8.
09

3,
86

0.
95

2,
29

9.
14

3,
21

5.
99

2,
89

0.
60

4,
99

0.
06

5,
57

6.
39

3,
76

9.
10

V
N

S
3,

55
4.

77
4,

00
9.

16
3,

95
4.

96
4,

27
8.

35
4,

05
8.

78
2,

38
9.

15
3,

41
9.

67
3,

03
0.

56
5,

34
6.

42
5,

91
0.

37
3,

99
5.

22

S
I

-6
.5

5%
-5

.4
0%

-7
.0

3%
-6

.2
5%

-5
.5

6%
-4

.4
3%

-6
.2

4%
-4

.9
5%

-6
.7

0%
-5

.4
8%

-5
.8

6%
S

I
I

-5
.4

3%
-5

.0
4%

-6
.6

9%
-5

.8
1%

-4
.7

5%
-3

.8
5%

-5
.7

3%
-4

.6
6%

-6
.7

6%
-5

.4
9%

-5
.4

2%
S

I
I
I

-6
.6

2%
-5

.6
1%

-7
.2

9%
-6

.8
5%

-5
.0

0%
-4

.4
6%

-6
.0

3%
-4

.8
6%

-6
.7

1%
-5

.7
4%

-5
.9

2%
D

I
-6

.2
8%

-5
.8

0%
-6

.6
8%

-6
.2

5%
-5

.1
1%

-3
.5

3%
-6

.4
5%

-4
.9

1%
-7

.1
2%

-5
.7

0%
-5

.7
8%

D
I
I

-6
.4

4%
-6

.2
6%

-7
.6

5%
-7

.5
8%

-5
.5

0%
-4

.3
8%

-6
.4

1%
-4

.2
4%

-7
.9

1%
-6

.6
8%

-6
.3

1%
D

I
I
I

-5
.1

4%
-5

.1
0%

-6
.2

6%
-5

.4
5%

-5
.1

1%
-2

.7
9%

-5
.3

1%
-4

.5
7%

-6
.3

4%
-5

.2
4%

-5
.1

3%
D

I
V

-5
.6

6%
-5

.1
4%

-6
.4

8%
-5

.6
0%

-4
.9

9%
-3

.5
6%

-5
.8

4%
-4

.0
8%

-5
.6

2%
-4

.7
5%

-5
.1

7%
D

V
-6

.0
9%

-5
.3

1%
-6

.5
6%

-5
.8

5%
-4

.8
7%

-3
.7

7%
-5

.9
6%

-4
.6

2%
-6

.6
7%

-5
.6

5%
-5

.5
4%

V
N

S
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

96

8.2. Real World Problem

Table 8.25.: Results averaged over all depots

measure RPD to VNS Rank
SI -6.29% 4

SII -5.92% 7
SIII -6.31% 3
DI -6.18% 5

DII -6.10% 6
DIII -6.35% 2
DIV -6.76% 1
DV -5.64% 8

V NS 0.00% 9

Table 8.24 reports the average values of ten runs, as well as the RPD to the VNS

for each day and proximity measure combination for the four depot case. All of the

eight tested proximity measures provide better results, than the VNS approach,

with improvements between -2.79% and -7.91%, with smaller improvements for

the smaller instances.

The average results over all three depot setups are shown in Table 8.25. It can

clearly be seen that all of the tested measures perform significantly better than the

VNS without decomposition. The improvement generated by the different strate-

gies range between -5.64% and -6.76% and are therefore relatively close (around

1.12%) concerning solution quality. However measure DIV seems to be the clear

winner with an average improvement of -0.41% to the next best distance measure

DIII . DIV is also the best measure on average when looking at the detached re-

sults for the two, three and four depot case (see Tables 8.19, 8.21, 8.23), where it

is always ranked number one with always a clear lead to the second best measure.

Over all instances and depot setups, DIV provided the best results, except for the

small instances in the two depot and four depot setup. It is closely followed by

DIII which generated the second best results as can be seen in the overview in

Table 8.25.

Concerning the Sweep proximity measures SIII seems to work the best out of

all tested Sweep measures. Furthermore it is interesting to point out that SIII

seems to gain efficiency when dealing with more depots. For the three and four

97

8. Results

depot case SIII provides the second best results. As we have mentioned in Chapter

7, the major amount of customers is densely packed in a relatively small area of

the region. We therefore introduced the restriction for selecting customers in DIV

to countervail the greedy selection of customers that are very closely together to

enter the sub-problem. This restriction tries to level out the distribution around

the seed-route, so that customers that are farther away and in the country-side

do have a chance to enter the sub-problem. When looking at the results we can

assume that this idea was fruitful, especially when one is aware of the fact that

the second and third best measures (SIII and SI) also don’t allow this greedy

selections. The Sweep measures do exactly the same, by allowing customers that

are located in a beam that emits from a depot to enter the sub-problem regardless

of how far away they are in relation to the seed-route. Further we want to point

out that aggregating customers that are not in the seed route might not be a

good idea, as can be seen by looking at the results for strategy DV . This strategy

performed worst in all of the different test-setups and even more with a huge gap

to the leading measures.

98

9. Conclusion

In this thesis different solution methods for routing problems with multiple de-

pots and time windows, with special focus on large scale real word problems,

were developed. A Memetic Algorithm was developed to deal with standardized

MDVRPTW instances and compared to the most recent state of the art solving

strategies. We showed that restarting the MA can yield a noticeable improvement

of around 0.87% even when restarting with a basic I1 construction heuristic. We

also showed that restarting a population with highly competitive ACO solutions

can further increase the MA efficiency by around 0.27% resulting in the up to now

best known results obtained by an MA on the standardized test instances. When

comparing the results of the MA with ACO restarts to other approaches like the

VNS or TS the developed approach is performing relatively well. More precisely,

the results of the MA are around 0.83% worse compared to the TS and around

1.05% to the up to now best known solution method, the VNS. However the MA

can solve all small instances except one with up to 75 customers to the same so-

lution quality as the two other approaches. The results obtained show that the

MA does not scale well with regards to run times compared to the VNS. While

the efficiency of the VNS is mostly related to the average number of customers

in a route, the MA has to consider the complete problem. This special charac-

teristic becomes obvious when looking at the recombination step which more or

less resembles a shacking move in a VNS. While only two routes need to be con-

sidered in the VNS case, the complete problem needs to be analyzed when using

a recombination of routes of two different solutions. The time to carry out one

recombination is therefore directly related to the amount of customers not only in

the considered routes, but in the whole problem. We can therefore conclude that

the MA works reasonable well for problems of medium size, but loses efficiency

for problems of large scale.

99

9. Conclusion

The huge size of typical real-world problems eventually lead to developing two

decomposition approaches that were presented in this thesis. The two new de-

composition approaches are both based on the POPMUSIC framework that was

customized to the special real world requirements of MDVRPTWs. The first ap-

proach was specially designed so that population-based algorithms can be used

to solve the problem. More precisely the developed MA for the MDVRPTW,

that turned out to provide competitive results on the medium sized standardized

instances, was implemented into the POPMUSIC framework and used as an op-

timizer for the resulting sub-problems. The results presented, have shown that

a decomposition strategy that uses an MA as optimizer can be very efficient in

solving large scale MDVRPTW. We achieved an average improvement of about

-20% over all considered real world instances compared to the use of the same opti-

mizer without decomposition. This figures reflect the ability of the decomposition

approach to amplify the effectiveness of the MA approach when it can operate in

an environment of reasonable problem sizes. The drawback of approaches that are

scaling relatively bad with regards to problem size, can therefore be easily over-

come trough the help of decomposition. Compared to the powerful VNS approach

by Polacek et al. (2004) the POPMUSIC MA approach can generate solutions that

are around 1% better. The POPMUSIC framework is therefore able to automati-

cally and efficiently reassign customers that are equally distant from both depots.

We also show that the framework customized for population-based approaches,

can easily be adapted for a faster solution finding process, while at the same time

maintaining high quality solutions.

In the second decomposition approach a VNS was used as optimizer in the

POPMUSIC framework. We show that the results achieved by the population-

based MA approach can easily be improved by 6.17% and can outperform the

pure VNS approach by roughly 6.76% over all instances. The obtained results

therefore again reflect the ability of the developed decomposition approaches to

amplify the effectiveness of already good working metaheuristics like the already

high performing VNS approach.

Another contribution of this thesis is the presentation of a number of different

ways how proximity can be measured in an environment with a large amount of

customers and more than one depot so that large routing problem can intelligently

100

be decomposed into smaller problems. We analyzed eight different measures; five

of them based on relatedness concerning distance measured in travel time, and

three that use a Sweep mechanic to establish relatedness in trigonometric ways.

The results show that the distance based proximity measures provide the best

results (especially strategy DIII and DIV), while properly implemented sweep

based measures only work well when dealing with a higher number of depots

(especially strategy SIII). In the real world, were carrier fleet operators have

to service customers in highly populated regions as well as in more rural areas

the choosing of a suitable proximity measure directly affects the quality of the

resulting routing. The best performing measure DIV is exploiting exactly this

structural distribution of customers, by limiting the creation of the sub-problem

into the direction of highly populated areas. The use of this measure therefore

guides the search more or less evenly around the complete geographical region. A

good inclusion of the rural customers in routes that are also serving customers in

densely populated areas is highly important as they can have a significant impact

when minimizing total distance traveled. Nevertheless we want to point out that

using even very basic decomposing strategies can yield improvements around 5%

better than when using no decomposition at all.

We therefore conclude that decomposition improves the solution quality sig-

nificantly when tackling large scale problems with current state-of-the art meth-

ods and computers on the basis of the same runtime. Furthermore we showed

that interaction between the decomposed parts is crucial for rearranging border-

line customers, especially when dealing with restrictions like time windows. The

POPMUSIC framework has proven to be easily developed and customized for

large scale VRP instances so that sub-problem optimizers based on metaheuristic

concepts can flexibly be integrated to further improve solution quality. We can

conclude that local search based concepts that work with one incumbent solution,

e.g. VNS or TS are high performing and suitable to be used within the POPMU-

SIC framework. Even though the approaches were specially developed for dealing

with multiple depots, we assume that decomposing with the use of good proximity

measures may result in better solution qualities for other problems in the VRP

class.

101

9. Conclusion

102

A. Abbreviations

103

A. Abbreviations

Abbreviation Description

ACO Ant Colony Optimization
CVRP Capacitated Vehicle Routing Problem
DCVRP Distance-constrained Capacitated Vehicle Routing Problem
ES Evolutionsstrategie
GA Genetic Algorithm
GIS Geographic Information System
GLS Guided Local Search
GTS Granular Tabu Search
IP Integer Programming
LS Local Search
MA Memetic Algorithm
MDVRP Multi Depot Vehicle Routing Problem
MDVRPTW Multi Depot Vehicle Routing Problem with Time Windows
MIP Mixed Integer Programming
MP-VRP Multi Pile Vehicle Routing Problem
NN Nearest Neighbor
OX Order Crossover
PMX Partially Mapped Crossover
POPMUSIC Partial Optimization Metaheuristic Under Special Intensification Conditions
PopMA POPMUSIC with MA optimizer
PopVNS POPMUSIC with VNS optimizer
PVRP Periodic Vehicle Routing Problem
QAP Quadratic Assignment Problem
RPD Random Percentage Deviation
SA Simulated Annealing
STDV Standard Deviation
SVRP Split Delivery Vehicle Routing Problem
TOP Team Orienteering Problem
TS Tabu Search
TSP Traveling Salesman Problem
VNS Variable Neighborhood Search
VRP Vehicle Routing Problem
VRPB Vehicle Routing Problem with Backhauls
VRPBTW Vehicle Routing Problem with Backhauls and Time Windows
VRPPD Vehicle Routing Problem with Pickups and Deliveries
VRPPDTW Vehicle Routing Problem with Pickups and Deliveries and Time Windows
VRPTW Vehicle Routing Problem with Time Windows

104

B. Notation

Table B.1.: Multi Depot Vehicle Routing Problem with Time Windows

Symbol Description

G Graph
V Set of vertices
A Set of arcs
i Index of customers
vi Vertex of set V
n Number of customers
m Number of depots
cij Cost from customer i to customer j
qi Demand of customer i
si Service time at customer i
ei Earliest arrival time at customer i
li Latest arrival time at customer i
K Set of vehicles
D Vehicel capacity
T Maximum allowed tour duration
c(x) Total travel time of solution x

105

B. Notation

Table B.2.: POPMUSIC framework

Symbol Description

S Solution
i Index of part
si Part i of solution S
A Set of parts
Ri Sub-problem related to part i
r Number of parts to form a sub-problem

Table B.3.: Variable Neighborhood Search

Symbol Description

κ Index of a neighborhood
Nκ Neighborhood
κmax Neighborhood delimiter
x, x′, x′′ Solutions
S Solution space
X, X ′ Node of a route
Y, Y ′ Node of a route
i, k Index of a route
Ck Number of customers in route k
piCross Probability to reverse sequence orientation
itu Unproductive iterations
pt Threshold for accepting worse solutions

Table B.4.: Clark and Wright Savings

Symbol Description

i, j Customers
z Depot
ci,j Travel time from customer i to customer j
n Number of customers

106

Table B.5.: Evaluation Function - Acceptance decision

Symbol Description

S Solution
i Index of customer
ai Arrival time at customer i
f(S) Evaluation Function
l(S) Total Violation of Load of Solution x
d(S) Total Violation of Duration of Solution x
w(S) Total Violation of Time Window Constraints of Solution x
α, β, γ Penalty Parameters

Table B.6.: Memetic Algorithm

Symbol Description

pop Population
popsize Population size pop
O1, O2 Offsprings
S1, S2 Solutions for recombination
B Number of pairs of routes to be recombined
b Index of pair of routes to be recombined
R1b, R2b Routes for recombination
RO1b, RO2b Routes after recombination
p1, p2 Probabilities to apply Stochastic Local Search
itvns Iteration limit for the VNS

107

B. Notation

Table B.7.: Ant Colony Optimization

Symbol Description

i, j Customers
z Depot
sj Customer immediately after j
u Number of Solutions
η Attractiveness value
FV Fitnessvalue
α, β Weights
τ Pheromone concentration
p Number of ranks
ρ Trail persistence
σ Number of elitists
µ Rank of the Solution
itstuck Unproductive Iterations

Table B.8.: p-Median formulation

Symbol Description

p Number of Clusters
it Iteration
itdec Iteration limit p-Median
c Cluster
Vc Maximum capacity of cluster c
Qc Overall demand
λc Lagrangian coefficient
i, j Customers
cij Distance (cost) between i and j
di Demand of customer i
Πij New distance measure
itini Iteration limit for optimizer to build initial routes
csize Number of Customers

108

Table B.9.: Decomposition Strategies

Symbol Description

s Sub-problem
i Index of Sub-problem
ti Assigned time to solve i
tmax Time limit
Csi

Size of Problem si

Csn
Total problem size

p Number of Clusters
Dseed Seed depot
Dadd Depot added to sub-problem
Rseed Seed route
Radd Route added to sub-problem
α, β Angles

109

B. Notation

110

C. Acknowledgment

Financial support from the Oesterreichische Nationalbank (OENB) under grant

#11984 and from the Austrian Science Fund (FWF) under grant #P20342-N13

and #L362-N15 (Translational Research) is gratefully acknowledged.

111

C. Acknowledgment

112

Bibliography

Acan, A. (2005). An external partial permutations memory for ant colony opti-

mization. Proc. of the 5th European Conference on Evolutionary Computation

in Combinatorial Optimization, 3448:1–11.

Acan, A. and Unveren, A. (2007). A shared-memory ACO+ GA hybrid for com-

binatorial optimization. Evolutionary Computation, 2007. CEC 2007. IEEE

Congress on, pages 2078–2085.

Archetti, C., Hertz, A., and Speranza, M. (2007). Metaheuristics for the Team

Orienteering Problem. Journal of Heuristics, 13:49–76.

Berger, J. and Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the

vehicle routing problem with time windows. Computers & Operations Research,

31:2037–2053.

Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle-routing

problem with time windows. INFORMS Journal on Computing, 15:347–368.

Bräysy, O., Dullaert, W., and Gendreau, M. (2004). Evolutionary Algorithms

for the Vehicle Routing Problem with Time Windows. Journal of Heuristics,

10(6):587–611.

Bräysy, O. and Gendreau, M. (2005a). Vehicle Routing Problem with Time Win-

dows, Part I: Route Construction and Local Search Algorithms. Transportation

Science, 39:104–118.

Bräysy, O. and Gendreau, M. (2005b). Vehicle Routing Problem with Time Win-

dows, Part II: Metaheuristics. Transportation Science, 39:119–139.

113

Bibliography

Bullnheimer, B., Hartl, R., and Strauss, C. (1999). An improved Ant System algo-

rithm for theVehicle Routing Problem. Annals of Operations Research, 89:319–

328.

Christofides, N., Mingozzi, A., and Toth, P. (1979). The vehicle routing problem.

Combinatorial Optimization, 11:315–338.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot

to a number of delivery points. Operations Research, 12:568–581.

Colorni, A., Dorigo, M., Maniezzo, V., et al. (1991). Distributed optimization by

ant colonies. Proceedings of the First European Conference on Artificial Life,

142:134–142.

Cook, W. and Rich, J. L. (1991). A Parallel Cutting-Plane Algorithm for the

Vehicle Routung Problems with Time Windows. Department of Computational

and Applied Mathematics, Rice University. Technical Report TR99-04.

Cordeau, J.-F., Desrosiers, J., Solomon, M. M., and Soumis, F. (2001a). The VRP

with Time Windows. In Toth, P. and Vigo, D., editors, The Vehicle Routing

Problem, SIAM Monographs on Discrete Mathematics and Applications, pages

157–194. SIAM, Philadelphia.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001b). A unified tabu search

heuristic for the vehicle routing problems with time windows. Journal of the

Operation Research Society, 52:928–936.

Desrosiers, J., Dumas, Y., Solomon, M. M., and Soumis, F. (1995). Time Con-

strained Routing and Scheduling. In Handbooks in Operations Research and

Management Science 8: Network Routing, pages 35–139. Elsevier Publishers,

Amsterdam.

Fleszar, K., Osman, I., and Hindi, K. (2008). A variable neighbourhood search

algorithm for the open vehicle routing problem. European Journal of Operational

Research. accepted for publication.

Fogel, L., Owens, A., and Walsh, M. (1966). Artificial Intelligence Through Sim-

ulated Evolution. John Wiley & Sons Inc.

114

Bibliography

Gillet, B. and Miller, L. (1974). A heuristic algorithm for the dispatch problem.

Operations Research, 22:340–349.

Giosa, I., Tansini, I., and Viera, I. (2002). New assignment algorithms for the

multi-depot vehicle routing problem. Journal of the Operation Research Society,

53:977–984.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley Pub. Co.

Gutjahr, W. J. (2002). ACO algorithms with guaranteed convergence to the op-

timal solution. Information Processing Letters, 82:145–153.

Hakimi, S. L. (1965). Optimum distribution of switching centers in a communica-

tion network and some related graph theoretic problems. Operations Research,

13:462–475.

Hansen, P. and Mladenović, N. (1999). An introduction to variable neighborhood

search. In Voss, S., Martello, S., Osman, I. H., and Roucairol, C., editors, Meta-

Heuristics: Advances and Trends in Local Search Paradigms for Optimization,

pages 433–458. Kluwer Academic Publishers.

Hansen, P. and Mladenović, N. (2001). Variable neighborhood search: Principles

and applications. European Journal of Operational Research, 130:449–467.

Hemmelmayr, V., Doerner, K., Hartl, R., and Savelsbergh, M. (2008). Delivery

strategies for blood products supplies. OR Spectrum. accepted for publication.

Hemmelmayr, V. C., Doerner, K. F., and Hartl, R. F. (2009). A variable neigh-

borhood search heuristic for periodic routing problems. European Journal of

Operational Research, 195(3):791 – 802.

Holland, J. (1975). Adaption in Natural and Artificial Systems. University of

Michigan Press. re-issued by MIT Press (1992).

Homberger, J. and Gehring, H. (2005). A two-phase hybrid metaheuristic for the

vehicle routing problem with time windows. European Journal of Operational

Research, 162:220–238.

115

Bibliography

Kytöjoki, J., Nuortio, T., Bräysy, O., and Gendreau, M. (2007). An efficient vari-

able neighborhood search heuristic for very large scale vehicle routing problems.

Computers & Operations Research, 34:2743–2757.

Larsen, J. (1999). Paralellization of the vehicle routing problem with time win-

dows. In Ph.D. thesis. Institute of Mathematic Modelling, Technical University

of Denmark.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System

Technical Journal, 44:2245–2269.

Mester, D. and Bräysy, O. (2005). Active guided evolution strategies for large-

scale vehicle routing problems with time windows. Computers & Operations

Research, 32:1593–1614.

Mester, D. and Bräysy, O. (2007). Active-guided evolution strategies for large-

scale capacitated vehicle routing problems. Computers & Operations Research,

34:2964–2975.

Mladenovic, N. and Hansen, P. (1997). Variable neighborhood search. Computers

& Operations Research, 24:1097–1100.

Moscato, P. and Cotta, C. (2003). A gentle introduction to memetic algorithms.

In Glover, F. and Kochenberger, G., editors, Handbook of Metaheuristics, pages

105–144. Springer.

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms

for the vehicle routing problems. Annals of Operations Research, 41:421–52.

Ostertag, A., Hartl, R. F., and Doerner, K. F. (2008a). A variable neighborhood

search integrated in the popmusic framework for solving large scale vehicle rout-

ing problems. Lecture Notes in Computer Science, 5269:29–42.

Ostertag, A., Hartl, R. F., Doerner, K. F., Taillard, E. D., and Waelti, P. (2008b).

Popmusic for a real world large scale vehicle routing problem with time windows.

Journal of the Operational Research Society. to appear.

116

Bibliography

Polacek, M., , Benkner, M., Doerner, K., and Hartl, R. F. (2008a). A Coopera-

tive and Adaptive Variable Neighborhood Search for the Multi Depot Vehicle

Routing Problem with Time Windows. Business Research, 1:1–13.

Polacek, M., Doerner, K., Hartl, R. F., Kiechle, G., and Reimann, M. (2007).

Scheduling Periodic Customer Visits for a Traveling Salesperson. European

Journal of Operational Research, 179:823–837.

Polacek, M., Doerner, K., Hartl, R. F., and Maniezzo, V. (2008b). A Variable

Neigborhood Search for the Capacitated Arc Routing Problem with Intermedi-

ate Facilities. Journal of Heuristics, 14(5):405–423.

Polacek, M., Hartl, R. F., Doerner, K., and Reimann, M. (2004). A Variable

Neighborhood Search for the Multi Depot Vehicle Routing Problem with Time

Windows. Journal of Heuristics, 10:613–627.

Potvin, J. and Rousseau, J. (1995). An Exchange Heuristic for Routeing Problems

with Time Windows. Journal of the Operational Research Society, 46:1433–1446.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle

routing problem. Computers & Operations Research, 31:1985–2002.

Rechenberg, I. (1973). Evolutionsstrategie-Optimierung technischer Systeme nach

Prinzipien der biologischen Information. Freuburg: Fromann.

Reeves, C. (2003). Genetic algorithms. In Glover, F. and Kochenberger, G.,

editors, Handbook of Metaheuristics, pages 55–82. Springer.

Reimann, M., Doerner, K., and Hartl, R. (2002a). Insertion based ants for vehicle

routing problems with backhauls and time windows. Lecture Notes in Computer

Science, 2463:73–94.

Reimann, M., Doerner, K., and Hartl, R. F. (2004). D-ants: Saving based ants

divide and conquer the vehicle routing problem. Computers & Operations Re-

search, 31:563–591.

117

Bibliography

Reimann, M., Stummer, M., and Doerner, K. (2002b). A Savings Based Ant

System For The Vehicle Routing Problem. Proceedings of the Genetic and Evo-

lutionary Computation Conference table of contents, pages 1317–1326.

Rochat, Y. and Semet, F. (1994). A Tabu Search Approach for Delivering Pet

Food and Flour in Switzerland. Journal of the Operational Research Society,

45(11):1233–1246.

Rochat, Y. and Taillard, É. (1995). Probabilistic diversification and intensification

in local search for vehicle routing. Journal of Heuristics, 1(1):147–167.

Salhi, S. and Sari, M. (1997). A multi-level composite heuristic for the multi-

depot vehicle fleet mix problem. European Journal of Operational Research,

103:95–112.

Savelsbergh, M. (1992). The vehicle routing problem with time windows: mini-

mizing route duration. INFORMS Journal of Computing, 4:146–54.

Schwefel, H. (1975). Evolutionsstrategie und numerische Optimierung. PhD thesis,

Technische Universität Berlin.

Shaw, P. (1998). Using constraint programming and local search methods to solve

vehicle routing problems. Technical report, ILOG SA.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling prob-

lems with time window constraints. Operations Research, 32(2):254–265.

Taillard, E. (1993). Parallel Iterative Search Methods for Vehicle Routing Prob-

lems. Networks - New York-, 23:661–661.

Taillard, E. D. (2003). Heuristic methods for large centroid clustering problems.

Journal of Heuristics, 9:51–73.

Taillard, E. D., Badeau, P., Gendreau, M., Guertin, F., and Potvin, J. Y. (1997).

A tabu search heuristic for the vehicle routing problem with soft time windows.

Transportation Science, 31:170–186.

118

Bibliography

Taillard, E. D. and Voss, S. (2001). Popmusic: Partial optimization metaheuristic

under special intensification conditions. In Ribeiro, C. and Hansen, P., edi-

tors, Essays and surveys in metaheuristics, pages 613–629. Kluwer Academic

Publishers.

Tan, K., Lee, L., and Ou, K. (2001). Hybrid Genetic Algorithms in Solving Vehicle

Routing Problems with Time Window Constraints. Asia Pacific Journal of

Operational Research, 18(1):121–130.

Tansini, L. and Viera, O. (2006). New measures of proximit for the assignment al-

gorithm in the MDVRPTW. Journal of the Operation Research Society, 57:241–

249.

Toth, P. and Vigo, D. (2001). An overview of vehicle routing problems. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA.

Toth, P. and Vigo, D. (2003). The Granular Tabu Search and Its Application to

the Vehicle-Routing Problem. INFORMS Journal on Computing, 15(4):333.

Tricoire, F., Doerner, K., Hartl, R. F., and Iori, M. (2007). Variable neighbourhood

search for the multi-pile vehicle routing problem. Technical report, Universita

di Bologna - D.E.I.S. - Operations Research.

Voudouris, C. (1997). Guided Local Search for Combinatorial Optimisation Prob-

lems. PhD thesis, University of Essex.

Voudouris, C. and Tsang, E. (1999). Guided local search. Journal of Operations

Research, 113:80–119.

Waelti, P., Taillard, E. D., and Mautor, T. (2002). Cueillir du mimausa en écoutant

de la popmusic. Technical report, MiS-TIC Institute, HEIG-Vd.

Whitley, D. (1987). Using reprodictive evaluation to improve genetic search and

heuristic discovery. In Grefenstette, J. J., editor, Proceedings of the Second

International Conference on Genetic Algorithms and their Applications, pages

108–115. Lawrence Erlbaum Associates.

119

Bibliography

120

Abstract

The optimization of transportation activities is of high importance for companies

in today’s economy. The Vehicle Routing Problem (VRP) class is dealing with

the routing of vehicles so that the customer base of a company can be served

in the most efficient way. One of the many variants in the VRP class is the

Multi Depot Vehicle Routing Problem with Time Windows (MDVRPTW) which

extends the VRP by additional depots from which customers can be served, as

well as an individual time window for each customer in which he is allowed to

be served. Modern carrier fleet operators often encounter these MDVRPTW in

the real world, and usually they are of very large size so that exact approaches

cannot solve them efficiently. This thesis presents two different approaches how

this real world large scale MDVRPTWs can be solved. Both approaches are based

on the POPMUSIC framework, which intelligently tries to decompose the large

scale problem into much smaller sub-problems. The resulting sub-problems can

then be solved more efficiently by specialized optimizers. The first approach in

this thesis was developed for population based optimizers. A Memetic Algorithm

(MA) was developed and used as an optimizer in the framework to solve a real

world MDVPRTW from an Austrian carrier fleet operator. We show that decom-

posing the complete problem and solving the resulting sub-problems improves the

solution quality by around 20% compared to using the MA without any decom-

position. The second approach specially focuses on decomposition strategies for

single solution methods. More precisely, a Variable Neighborhood Search (VNS)

was implemented in the POPMUSIC framework to solve the real world instances.

We show that decomposing the problem can yield improvements of around 7%

compared to using the pure VNS method. Compared to the POPMUSIC MA

approach the second approach can further improve the solution quality by around

6%. Another contribution in this thesis is the development of two generally differ-

121

Abstract

ent ways to measure proximity when creating sub-problems. In detail we tested

eight different proximity measures and analyzed how good they decompose the

problem in different environments. We tested the two, three and four depot case

and present a clear winner that can outperform all other measures. Further we

demonstrate that the POPMUSIC approach can flexibly be adjusted to real world

demands, like a faster solution finding process, while at the same time maintaining

high quality solutions. We show that a decomposition strategies combined with

state of the art metaheuristic solvers are a very efficient and flexible tool to tackle

real world problems with regards to solution quality as well as runtime.

122

Abstract in German

Das Umfeld in der heutigen Wirtschaft verlangt nach immer bessern Ansätzen, um

Transportprobleme möglichst effizient zu lösen. Die Klasse der ”Vehicle Routing

Problems” (VRP) beschäftigt sich speziell mit der Optimierung von Tourenpla-

nungsproblemen in dem ein Service-Leister seine Kunden möglichst effizient be-

liefern muss. Eine der VRP-Varianten ist das ”Multi Depot Vehicle Routing Prob-

lem with Time Windows” (MDVRPTW), in dem Kunden von verschiedenen De-

pots in einem fix vorgegebenen Zeitintervall beliefert beliefert werden müssen. Das

MDVRPTW ist im realen Leben dank seiner realitätsnahen Restriktionen sehr oft

vertreten. Typische Transportprobleme, wie sie in der Wirklichkeit auftreten, sind

jedoch oftmals so groß, dass sie von optimalen Lösungsansätzen nicht zufrieden-

stellend gelöst werden können.

In der vorliegenden Dissertation werden zwei Lösungsansätze präsentiert, wie

diese riesigen, realitätsnahen Probleme zufriedenstellend bewältigt werden können.

Beide Ansätze benutzen die POPMUSIC Grundstruktur, um das Problem möglichst

intelligent zu dekomponieren. Die Dekomponierten und damit kleineren Sub-

probleme können dann von speziell entwickelten Algorithmen effizienter bear-

beitet und letztendlich gelöst werden. Mit dem ersten Ansatz präsentieren wir

eine Möglichkeit Transportprobleme zu dekomponieren, wenn populationsbasierte

Algorithmen als Problemlöser eingesetzt werden. Dazu wurde ein maßgeschnei-

derter Memetischer Algorithmus (MA) entwickelt und in das Dekompositions-

gerüst eingebaut um ein reales Problem eines österreichischen Transport-

unternehmens zu lösen. Wir zeigen, dass die Dekomponierung und Optimierung

der resultierenden Subprobleme, im Vergleich zu den Ergebnissen des MA ohne

Dekomposition, eine Verbesserung der Zielfunktion von rund 20% ermöglicht.

Der zweite Ansatz beschäftigt sich mit der Entwicklung einer Dekomponierungs-

methode für Lösungsalgorithmen, die nur an einer einzigen Lösung arbeiten. Es

123

Abstract in German

wurde ein ”Variable Neigborhood Search” (VNS) als Optimierer in das POPMU-

SIC Grundgerüst implementiert, um an das vorhandene Echtwelt-Problem her-

anzugehen. Wir zeigen, dass dieser Ansatz rund 7% bessere Ergebnisse liefert als

der pure VNS Lösungsansatz. Außerdem präsentieren wir Ergebnisse des VNS

Dekompositionsansatzes die um rund 6% besser sind als die des MA Dekomposi-

tionsansatzes.

Ein weiterer Beitrag dieser Arbeit ist das Vorstellen von zwei komplett ver-

schiedenen Ansätzen um das Problem in kleinere Sub-Probleme zu zerteilen. Dazu

wurden acht verschiedene Nähe-Maße definiert und betrachtet. Es wurde der

2,3 und 4 Depot Fall getestet und im Detail analysiert. Die Ergebnisse werden

präsentiert und wir stellen einen eindeutigen Gewinner vor, der alle Testinstanzen

am Besten lösen konnte. Wir weisen auch darauf hin, wie einfach die POP-

MUSIC Dekomponierung an reale Bedürfnisse, wie zum Beispiel eine möglichst

schnelle Ergebnisgenerierung, angepasst werden kann. Wir zeigen damit, dass

die vorgestellten Dekomponierungsstrategien sehr effizient und flexibel sind, wenn

Transportprobleme, wie sie in der realen Welt vorkommen gelöst werden müssen.

124

Alexander
Ostertag

Personal Data
date of birth April 18, 1978 in St. Pölten

address Helferstorferstr. 50, 2344 Maria Enzersdorf

email alexander.ostertag@univie.ac.at

citizenship Austrian

Education

since 2005 Ph.D. Program Business Administration, University of Vienna

2000-2005 Master Program in International Business Administration, University of Vienna

1997-1999 Master Program in International Business Administration, University of Vienna

Master thesis
Title Memetic Algorithms for the Multi Depot Vehicle Routing Problem with Time Windows

Supervisor O.Univ.Prof. Dipl.-Ing. Dr. Richard F. Hartl

Ph.D. thesis
Title Decomposition Strategies for Large Scale Multi Depot Vehicle Routing Problems

Supervisor O.Univ.Prof. Dipl.-Ing. Dr. Richard F. Hartl

Languages

German Mother tongue

English Advanced, fluent in written and spoken

Spanish Good

Computer skills

Programming C, C++

Technical Artisan, Auto Cad

ERP Navision

Interests
Research Transportation, Metaheuristics, Vehicle Routing Problems

Sports Snowboarding, Surfing, Mountainbiking

Traveling Indonesia, Spain, Portugal, France

Honors and Awards
Honor for

diploma thesis

“Prämierung ausgezeichneter Diplomarbeiten des Instituts für BWL”, University of Vi-

enna

Presentations at Conferences

June 2007 MIC 2007: The Seventh Metaheuristics International Conference, Montreal
(Canada), POPMUSIC for a Real World Large Scale Vehicle Routing Problem with

Time Windows, Ostertag, A., Doerner, K.D., Hartl, R.F., Taillard, E.D. and Waelti, P..

October 2008 HM 2008: International Workshop on Hybrid Metaheuristics, Malaga (Spain),
A Variable Neighborhood Search Integrated in the POPMUSIC Framework for Solving

Large Scale Vehicle Routing Problems, Ostertag, A., Doerner, K.D., Hartl, R.F..

Publications

A. Ostertag, R. F. Hartl, and K. F. Doerner. A variable neighborhood search integrated in the

popmusic framework for solving large scale vehicle routing problems. Lecture Notes in Computer
Science, 5269:29–42, 2008.

A. Ostertag, R. F. Hartl, K. F. Doerner, E. D. Taillard, and P. Waelti. Popmusic for a real world

large scale vehicle routing problem with time windows. Journal of the Operational Research
Society, 2008. to appear.

