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„Der beste Weg, sich selbst eine Freude zu machen: zu 

versuchen, einem anderen eine Freunde zu bereiten.“ 

Mark Twain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

„Der Acker freue sich mit allem, was auf ihm wächst!  

Auch die Bäume im Wald sollen jubeln, wenn der Herr kommt.“ 

Psalm 96 Vers 12 
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Abstract 
Fungi fulfil a range of important ecological functions. However, there is poor 

understanding of soil fungal community diversity and the specific roles of individual 

phylogenetic groups present in the environment. 

Fungal diversity of four different agricultural soils (Maissau, Niederschleinz, Purkersdorf, 

Tulln) and one grassland soil (Riederberg) was examined by a culture-dependent and a 

culture-independent approach. Identification of fungi was accomplished by DNA 

sequence analysis of the ITS/LSU of the ribosomal RNA gene region. A diverse set of 61 

different species of mainly Ascomycota was cultivated, including Fusarium spp., 

Penicillium spp., Trichoderma spp., as well as previously undescribed species. In the 

course of the culture-independent approach, clone libraries were constructed followed by 

RFLP-analysis. Again, Ascomycota predominated all libraries, whereas a highly different 

list of species was obtained compared to the cultivation approach. Basidiomycota 

occured more often and were distributed over all libraries. Generally, all clone libraries 

differed in their fungal community composition from each other. Species richness 

estimator Chao2 analysis of all clone libraries revealed a good coverage of the expected 

fungal “species” richness from agricultural soils. Only 8.6 % of the identified “species” 

were detected by both methods. The majority of “species” (62.6 %) was detected by the 

culture-independent procedure, while 28.8 % were exclusively found by the culturing-

approach. The analysis clearly demonstrates that both methods are complementary 

rather than overlapping. The clone library derived from the Riederberg grassland soil 

harboured the highest diversity and exclusively contained the newly described 

ascomycetous subphylum Soil Clone Group I (SCGI), maybe suggesting a preference of 

SCGI-fungi for undisturbed sites. The Maissau clone library showed the lowest species 

richness, and other specific characteristics contrasting with the other clone libraries. The 

second part of the study dealt with the exploration of the role of fungi in N-transformation 

processes. Therefore, fungal nitrate reductase genes (niaD) were investigated by the 

generation of a set of partial niaD sequences from isolates as well as from uncultured 

soil fungi. This knowledge will facilitate the monitoring of transcriptional activities of 

fungal populations expressing the niaD gene under different environmental settings. 

Additionally, fluorescence in situ hybridisation (FISH) was performed using the model 

organism Aspergillus nidulans. During a preliminary test, the optimisation of FISH 

conditions for the detection of niaD mRNA was attempted. Our promising results form the 

basis for future studies, dedicated to the investigation of fungal niaD expression under 

different conditions. 
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Preface 

The study presented here is part of the “Nitro-Genome”-project, aiming at opening 

the microbial “Black-Box“ in respect to nitrogen (N) cycling in agricultural soils to 

finally improve N fertiliser efficiency. Soil still represents a “Black-Box“, since 

processes (in regard to N-transformation) within biotic soil components (plants, fungi 

and bacteria) and their interaction with the geochemical parameters are still under 

questions, and are targeted by an interdisciplinary team of researchers within this 

project. Accordingly, a better knowledge about these processes will provide the 

chance of a targeted manipulation of microbial communities. New insights into the 

mechanisms how N distribution and compartmentalisation are regulated will help to 

develop strategies to optimise N fertiliser efficiency in the model-plant barley. 

In order to study these relationships and processes, a diverse set of analyses is 

required. The analyses involve chemical measurements of fluxes1 and gas emissions 

as well as biological parameters like transcription of functional genes. For this, a 

variety of chemical, biochemical, genetic and molecular biological tools are applied to 

investigate the different aspects of microbes, plants, water, air and soil (organic and 

inorganic fractions) (Inselsbacher et al. 2007).  

 

The work performed in the course of this diploma thesis deals with the examination 

and comparison of fungal biodiversity in five agricultural soils representing 

contrasting textures, pH, carbon- and N contents. Furthermore, the exploration of 

fungal nitrate reductases and their transcriptional activity under certain conditions 

were of particular interest for the project. 

                                                 
1 Movements of elements and compounds within and among the biospheric, hydrospheric, 
pedospheric, atmospheric, and lithospheric fractions (for more information on biogeochemical cycles 
see Bolin and Cook 1983 or Winstanley et al. 2000) 
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1. Introduction 

1.1. The nitrogen cycle 

Nitrogen (N) can be found in nearly all of the macromolecules that are essential for 

structure and function of all living organisms. In nature, nitrogen exists in a variety of 

oxidation states. Transformations of nitrogen compounds via redox reactions are 

mainly carried out by microorganisms (Bock and Wagner 2006).  

The N-cycle is defined by the biogeochemical series of conversions of nitrogen 

compounds. The cycle mediated by the biosphere is summarised in Fig.1.1. 

 

 
 

Fig.1.1. Biological nitrogen transformations. Crucial genes and reactions are 
described in the text below. 
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1.1.1. Nitrogen reservoirs 
Dinitrogen gas (N2) is the most stable form of nitrogen due to its triple bond. It makes 

up ~78 % by volume of the earth’s atmosphere. Atmospheric N also represents the 

largest pool of N accounting for 3.9 x 1015 metric tons N (~83 % of total global N). 

Another major N reservoir is the earth’s crust (including the entire lithosphere found 

in either terrestrial or ocean environments), which contributes ~16 % of total N as 

bound, nonexchangeable ammonium (NH4
+). Neither of these reservoirs is actively 

cycled; the N in the earth’s crust is unavailable and the atmospheric N2 must be fixed 

before it is available for biological use. Other N reservoirs with minor contributions to 

the total global N pool include the organic N found in living biomass and dead organic 

matter and soluble inorganic N-salts. These small reservoirs tend to be actively 

cycled (Maier et al. 2000; Winstanley et al. 2000). 

 

1.1.2. Nitrogen fixation 
Diazotrophic bacteria are capable of nitrogen fixation, which is the reduction of 

dinitrogen to ammonia (NH3) and its further conversion into organic nitrogen. 

Nitrogen-fixing organisms can exist as independent free-living organisms or in 

association with other microbes, plants and animals. The best studied system of 

nitrogen-fixing associations is the rhizobia-legume symbiosis due to its beneficial 

effect for agricultural crop production. But also many free-living bacteria are known to 

fix nitrogen: both aerobic (Azotobacter, Beijerinckia) and anaerobic (Clostridium), as 

well as some actinomycetes and cyanobacteria (Maier et al. 2000).  

The energy-intensive reaction (16 – 40 mol of ATP per mol of dinitrogen fixed) is 

catalysed by the nitrogenase complex consisting of dinitrogenase and dinitrogenase-

reductase, which are encoded by the nif-genes.  

Since the nitrogenase enzyme is irreversibly inactivated by molecular oxygen, 

obligate aerobic diazotrophs have developed strategies to protect the nitrogenase 

enzyme: For example, by increasing respiration rate, thereby maintaining low levels 

of intracellular oxygen (Azotobacter) (Fay 1992). Furthermore, many filamentous 

cyanobacteria (like Anabaena), which produce oxygen as a byproduct of 

photosynthesis, protect their nitrogenase in differentiated cells called heterocysts 

(specialised cells that create a microoxic environment for nitrogen fixation) (Golden 

and Yoon 2003). 
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Industrial nitrogen fixation is achieved by the Haber-Bosch process, whereby 

dinitrogen is converted together with hydrogen gas (H2) into ammonia, which is the 

basis material for the production of nitrogen fertilisers.  

 
1.1.3. Nitrification   
Nitrification is the biological oxidation of ammonia to nitrite (NO2

-) and the subsequent 

oxidation of nitrite to nitrate (NO3
-). These aerobic reactions, coupled to ATP 

synthesis, are performed by two groups of nitrifying organisms: 1. ammonia-oxidising 

microorganisms (including ammonia-oxidising bacteria, AOB as well as ammonia-

oxidising archaea, AOA) and 2. nitrite-oxidising bacteria (NOB). These two types of 

nitrifiers are generally found together in the environment due to their mutual 

dependence on each other. The key enzyme involved in bacterial ammonia oxidation 

is the ammonia monooxygenase (Amo), which oxidises ammonia to hydroxylamine 

(NH2OH). The intermediate hydroxylamine is further oxidised to nitrite by 

hydroxylamine oxidoreductase (Hao). The reactions are given in Fig.1.2. So far it has 

not been shown whether ammonia or ammonium is the substrate for archeal Amo. 

Due to chemical equilibrium both compounds are present in the environment, 

whereby the equilibrium being dependent on pH and temperature (ammonia 

proportion rises with increasing pH and ascending temperature). Recent studies have 

shown that AOA are numerically abundant and transcriptionally active in terrestrial 

and marine environments (Könneke et al. 2005; Treusch et al. 2005; Leininger et al. 

2006). However, the relative contribution of AOA to nitrification is still under debate. 

 

Amo:  NH3 + O2 + 2 H+ + 2 e- → NH2OH + H2O 

Hao:  NH2OH + H2O → HNO2 + 4 H+ + 4 e- 
Fig.1.2. Reactions catalysed by Amo and Hao enzymes of AOB. 

 

Nitrite oxidation, the second step of nitrification, is catalysed by the nitrite oxido-

reductase (Nxr1) according to the equation in Fig.1.3 (Bock and Wagner 2006). Up to 

now there are no hints that archaea might be involved in this process.  

 

 

                                                 
1 In the past, the nitrite oxidoreductase enzyme has been abbreviated as NOR, an abbreviation that 
has also been used for nitric oxide reductase. To eliminate this confusion, a new abbreviation for 
nitrite oxidoreductase, NXR was proposed by Starkenburg et al. (2006). 
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Nxr:  NO2
- + H2O → NO3

- + 2 H+ + 2 e- 
Fig.1.3. Reaction catalysed by the Nxr enzyme of NOB. 

 

Chemo-lithoautotrophic1 nitrifiers use the energy produced by the oxidation of 

ammonia (e.g. Nitrosomonas) or nitrite (e.g. Nitrobacter) to fix carbon dioxide (CO2). 

In addition to autotrophic nitrifiers, various heterotrophic bacteria, fungi and algae are 

capable of heterotrophic nitrification (Bock and Wagner 2006). Heterotrophic 
nitrification is the oxidation of reduced nitrogenous compounds (either ammonium 

or organic N) while organic carbon is utilised as carbon and energy sources 

(Castignetti and Hollocher 1982; McLain and Martens 2006). Many heterotrophic 

nitrifiers also release N2O aerobically, whereby nitrite and nitrate are used as electron 

acceptors and reduced to N2O (McLain and Martens 2006). The environmental 

importance of heterotrophic nitrifiers is controversial in the literature (Bock and 

Wagner 2006).  

 

Nitrification in agricultural soil may lead to the loss of mobile soil nitrogen through 

leaching. Unlike ammonium, which adsorbs well to clay particles of soil owing to its 

positive charge, nitrate is highly mobile and transferred to the groundwater (Bock and 

Wagner 2006). 

 

1.1.4. Anammox 
Ammonium oxidation was for a long time considered a strictly aerobic process. 

Recently, the microbiology of anaerobic ammonium oxidation (anammox) was 

discovered (Strous et al. 1999). Thereby ammonium is oxidised by nitrite forming 

dinitrogen gas (Fig.1.4). This kind of chemical reaction, in which two compounds 

consisting of the same element with different oxidation states are reduced and 

oxidised, respectively, is referred to as comproportionation. Anammox is of particular 

importance in the marine environment and may be responsible for up to 50 % of the 

global removal of fixed nitrogen from the oceans. The anammox process takes place 

in a unique cell compartment, the anammoxosome, which contains ladderane lipids 

in its membrane. These lipids confer unusual impermeability to the membrane, 

therefore preventing diffusion of the reactive intermediate hydrazine from the 

anammoxosome. Anammox bacteria have been found in marine sediments and 

                                                 
1 obtain energy from the oxidation of inorganic compounds, and carbon from the fixation of CO2 
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wastewater treatment plants, including three described genera belonging to the 

Planctomycetales: Brocadia, Kuenenia and Scalindua (Dalsgaard et al. 2005; Strous 

et al. 2006). 

 

NO2
- + NH4

+ → N2 + 2 H2O  
Fig.1.4. Equation of the anammox process. 

 

1.1.5. Denitrification 
The elimination of fixed nitrogen from soil is achieved by denitrification, the reduction 

of nitrate via nitrite, nitric oxide (NO) and nitrous oxide (N2O) to dinitrogen 

maintaining the global environmental homeostasis. Denitrification is initiated by the 

nitrate reductase. In contrast to assimilatory nitrate reduction, the respiratory 

transformation of nitrate or nitrite to a gas species occurs concurrently with energy 

conservation. 

The genes for denitrification encoding functions for nitrate respiration (nar), nitrite 

respiration (nir), nitric oxide respiration (nor), and nitrous oxide respiration (nos) are 

often assembled in clusters. Of environmental importance is the constant increase of 

nitrous oxide in the atmosphere over the past few decades. In addition to other 

anthropogenic nitrous oxide sources, fertiliser denitrification is thought to contribute 

significantly to this increase (Zumft 1997; Fan and Haruo 2004; Groffman et al. 

2006). 

Until 1991, denitrification was thought to be a sole bacterial process. Nevertheless, 

over the years, many fungi of the group of Fusarium and its teleomorphs were shown 

to be capable of partial denitrification (Ferguson 1998).  

Kobayashi et al. (1996) demonstrated that nitrate respiration occurs in fungal 

mitochondria, where the reduction of nitrate via nitrite to nitric oxide is catalysed by 

the membrane-bound nitrate reductase (Nar) and nitrite reductase (Nir). These 

enzymes are distinct from assimilatory nitrate and nitrite reductases (Takaya 2002). 

Denitrification by fungi is coupled with ATP synthesis through the respiratory chain at 

low oxygen (O2) conditions (Yanai et al. 2007). Nitric oxide produced by 

mitochondrial Nir is further reduced to nitrous oxide by cytochrome P450nor. 

Depending on the P450nor isoform, this reaction is either catalysed in the 

mitochondria (P450norA) or in the cytosol (P450norB) (Takaya 2002; Zhang and 

Shoun 2008). Whereas nitrous oxide was the major product of the reduction of nitrate 

or nitrite by fungi in a number of studies (Usuda et al. 1995; Tsuruta et al. 1998; 
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Laughlin and Stevens 2002; Crenshaw et al. 2008), the formation of dinitrogen was 

also observed in some fungi species (Shoun et al. 1992; Tanimoto et al. 1992).  

Fungal denitrification is of ecological significance since nitrous oxide, which is a 

potent greenhouse gas along with carbon dioxide (CO2) and methane (CH4) (Zumft 

1997), is the dominant gaseous end product. Furthermore, due to the ability of fungi 

to perform denitrification and oxygen respiration simultaneously in a range of oxygen-

stress conditions, there is the potential for fungi to produce nitrous oxide in a wider 

range of soil aeration conditions than bacteria, which in general need anaerobic 

conditions to denitrify (Laughlin and Stevens 2002). In addition, a denitrifying 

bacterium which reduced nitrates micro-aerophilically has been reported by 

Robertson and Kuenen (1992). 

Fungi are widely distributed and often dominate the microbial biomass in soils 

(Crenshaw et al. 2008). Therefore, the potential for fungi to contribute significantly to 

the global nitrous oxide budget may not be neglected. Studies have been conducted 

to determine and compare the contributions of fungal versus bacterial communities to 

nitrous oxide production in soils and revealed a fungal dominance (Laughlin and 

Stevens 2002; Yanai et al. 2007; Crenshaw et al. 2008). 

 

Loss of P450nor in Fusarium oxysporum mutants does not effect cell growth under 

denitrifying conditions (Takaya 2002), which is striking, because the reactive nitrogen 

radical nitric oxide needs to be removed. NO diffuses across cell membranes and 

through the cytoplasm, reacting rapidly with diverse targets, particularly iron centres, 

thiols and superoxide. These toxic effects are therefore suggesting another NO 

detoxification system. Microbes have evolved a number of mechanisms for coping 

with nitrosative stress. Enzymes associated with bacterial NO detoxification have 

been reviewed by Poole, whereby the best understood mechanism for NO 

detoxification involves the enterobacterial flavohaemoglobin (Hmp) of E. coli (Poole 

2005). Recently, the fungal gene encoding flavohemoglobin denitrosylase (fhb) has 

been identified in Cryptococcus neoformans. Fhb converts NO to nitrate via a bound 

nitroxyl (NO-) intermediate across a broad range of physiological oxygen 

concentrations (de Jesus-Berrios et al. 2003). As well as there are different pathways 

for NO disappearance, there are also various ways of NO generation besides 

denitrification. For example, oxidation of L-arginine results in the formation of NO and 

L-citrulline, a reaction catalysed by nitric oxide synthase (NOS) described in fungi 
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and plants (Ninnemann and Maier 1996). Furthermore, during nitrate assimilation 

(1.1.7), when electrons and oxygen are transferred, NO can be formed as a by-

product of the enzymatic steps. The radical is then detoxified via fhb (Thorsten 

Schinko, personal communication). 

 

1.1.6. Ammonification 
Generally, ammonification refers to any chemical reaction that generates ammonia 

as an end product (or its ionic form, ammonium). In the ecological context, 

ammonification means the processes by which organic nitrogenous compounds are 

transformed during decomposition of dead organic matter, releasing ammonia and 

ammonium (mineralisation). Furthermore, the generation of ammonia/ammonium by 

respiratory nitrate (or nitrite) reduction is also termed ammonification (Simon 2002; 

Klotz and Stein 2008). In this way, an electrochemical proton potential across the 

membrane is generated to gain energy from the proton motive force. The term 

‘respiratory’ has therefore a different definition compared to ‘dissimilatory’, whereby 

the latter refers to the regeneration of reducing power without the generation of a 

proton motive force (Simon 2002).  

In contrast, assimilatory nitrate and nitrite reduction serves in the production of 

ammonia/ammonium which is incorporated into cell material thus allowing growth 

with nitrate or nitrite as a nitrogen source (Simon 2002). For detailed definitions and 

distinction between assimilatory, dissimilatory and respiratory nitrate reduction see 

(Moreno-Vivian and Ferguson 1998). 

The designated assimilatory processes are carried out under both aerobic and 

anaerobic conditions, while the respiratory and dissimilatory processes of nitrate 

reduction, nitrite ammonification and denitrification are typical anaerobic processes. 

 
 
1.1.7. Nitrate assimilation 

Nitrate assimilation is the process by which inorganic nitrogen is converted to 

ammonium, which is finally incorporated into the amino acids glutamate and 

glutamine that act as primary nitrogen donors for all subsequent biochemical 

syntheses. The process by which ammonium is incorporated into amino acids is 

called amination. 

Nitrate is a significant nitrogen source for plants and microorganisms. The initial 

reaction in nitrate reduction is catalysed by the enzyme nitrate reductase (NR). 
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Prokaryotic NRs belong to the dimethylsulfoxide reductase family with a cofactor 

distinct from eukaryotic NRs. As in eukaryotes, prokaryotic NR involved in nitrate 

assimilation (Nas) is localised in the cytoplasm. The expression of the nas-gene is 

induced by a lack of ammonium and the presence of nitrate (Stolz and Basu 2002). 

The nitrite produced by NR is further converted to ammonium, which is finally 

incorporated into biomolecules. The nitrate assimilation pathway of fungi is described 

in more detail below. 

 

1.2. The role of fungi in soil 

Fungi are ubiquitous in nature and play a major role in the re-cycling of nutrients and 

mineral weathering (Jongmans et al. 1997; Hoffland et al. 2004). They are 

heterotrophic organisms that obtain their nutrients by absorption. Moulds, which are 

the central organisms examined in this study, are filamentous fungi, consisting of 

tubular cells in long, branched structures called hyphae, which form a network 

referred to as mycelium. 

Overall, fungi often dominate in terms of soil biomass and can represent a significant 

portion of the nutrient pool, particularly in oligotrophic soils. Regarding growth rate, 

there is high variability among fungi, but as a group they are not as capable of rapid 

growth as the bacteria. However, some soil genera including Aspergillus, 

Geotrichum, and Candida have a doubling time of about one hour in pure culture 

(Maier et al. 2000). 

 

Many regulatory steps in ecosystems are controlled by fungi:  

(i) Saprotrophs are decomposers and control the rate at which complex organic 

matter is returned as simple organic and inorganic nutrients available for uptake by 

other organisms.  

(ii) Fungi act as competitors to bacteria and archaea for simple nutrients (nitrogen, 

carbon, phosphorus). 

(iii) Fungi form mutualistic associations with other organisms resulting in beneficial 

cooperations due to the exchange of resources. Interactions with algae or 

cyanobacteria are known as lichens. Symbiotic associations formed with plant roots 

are called mycorrhizae. Fungi provide nitrogenous compounds, phosphorous, 

mineral nutrients and water to plants which increases net primary productivity, 
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whereas the plant provides carbohydrates to the fungus in return. Furthermore, 

mycorrhizal plants are often more resistant to diseases and to the effects of drought. 

Mycorrhizae of different types are present in the majority of plant families in a wide 

variety of habitats including agricultural systems. 

(iv) Pathogenic fungi cause diseases and mortality affecting community composition 

and turnover. Some fungi are used for biological control of unwanted plants (e.g. 

weed), fungi or insects.   

(v) Fungi also attend biological soil crusts, meaning soil surface communities within 

or immediately on top of the uppermost millimetres of soil. Soil crusts consist of 

cyanobacteria, algae, mosses, microfungi and lichens. Microbiotic crusts have been 

found throughout the world and in most habitats. They play important roles in the 

ecosystem, including the modification of soils (influencing e.g. roughness, fertility, 

hydrology, stability). Therefore soil crusts influence soil food webs, nutrient cycling 

rates, plants and faunal components (Dighton et al. 2005). 

(vi) Finally, fungi influence soil structure and aggregation. Through hyphal inter-

connection of soil particles and extracellular polysaccharides on the surface of 

hyphae, soil particles are stabilised into aggregates (Wright and Upadhyaya 1998; 

Duiker 2006). 

 

1.3. Nutrient acquisition in fungi 

For the soil habitat the hyphal/mycelial growth form of fungi is advantageous 

compared to the unicellular body form of bacteria. Since nutrients are unevenly 

distributed in soil, fungal hyphae are better adapted to bridge nutrient-poor spots than 

bacteria. Furthermore, to gain access to recalcitrant substrates e.g. vascular plants, 

penetration is required for efficient decomposition. The hyphal growth form allows 

penetration and is therefore a crucial feature of filamentous fungi to colonise and 

utilise the well-protected organic matter (Boer et al. 2005). Moreover, owing to the 

hyphal organisation, the translocation of nutrients, including nitrogen, is facilitated 

from spatially separated soil microsites enriched in mineral nitrogen to the place of 

where it is needed (Dighton et al. 2005). 

Decomposition of litter is a major source of nutrients. Essential chemical elements 

such as nitrogen or phosphorus (P) are often limited, since free inorganic nitrogen or 

phosphorus undergoes a fast turnover in the soil. This highlights the role of 

decomposers in recycling of these elements and making them available for primary 
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producers. For example, fresh leaf litter is first colonised by microfungi, which make 

use of easily degradable carbohydrates, before decomposition is continued by 

saprotrophic basidiomycetes. They are responsible for decomposition and 

mineralisation of recalcitrant compounds. This task is achieved by the activity of a 

whole set of extracellular enzymes (Colpaert and Tichelen 1996). Since soil is an 

enzyme-hostile environment, these enzymes need to be very resistant. Proteinase K, 

for instance, derived from the mold Tritirachium album possesses a more efficient 

proteolytic activity relative to other proteases. It has a wide pH optimum and even 

works in the presence of strong detergents.  

To gain access to the more readily available nutrients inside of plant material, the 

degradation of cell walls (consisting of lignin, hemicellulose and cellulose) is 

essential, in the first place. Lignin embedded with cellulose fibrils forms a robust 

structural framework, which is both physically and chemically resistant to degradation 

even after death of the plants. In addition to their penetration abilities, fungal 

decomposers have therefore developed new pathways to degrade recalcitrant 

structural compounds and in this way gaining access to the nutrient pool waiting 

inside (Boer et al. 2005). 

 
 

1.4. Nitrogen metabolism in fungi 

Nitrogen is present in all living organisms. It is a component of proteins, nucleic acids 

and other molecules. Consequently, a constant nitrogen supply is vital and requires 

control mechanisms to ensure this. Mechanisms regarding nitrogen metabolism and 

its regulation have been studied extensively in fungi, such as Saccharomyces 

cerevisiae, Aspergillus nidulans, and Neurospora crassa (Marzluf 1997). 

Fungi can utilise a broad range of nitrogen sources, e.g. ammonium and amino 

acids, which are preferentially used (primary nitrogen sources). However, other 

compounds, e.g. nitrate, nitrite, purines, amides, most amino acids, and proteins 

(secondary nitrogen sources) can be used when primary nitrogen sources become 

limited. Is this the case, synthesis of a set of pathway-specific enzymes and 

permeases is required. The expression of genes of a particular pathway is regulated 

at the level of transcript steady state. In the presence of preferred nitrogen sources 

these genes are repressed, whereas utilisation of any of the secondary nitrogen 

sources involves de-repression and specific induction of genes encoding the 
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corresponding enzymes. The activation of a particular pathway not only requires this 

global signal, but also a pathway specific signal which indicates the presence of a 

substrate (Marzluf 1997). The mechanism of how nitrate assimilation is regulated is 

best understood in A. nidulans.  

 

1.5. The model organism Aspergillus nidulans 

The filamentous fungus A. nidulans belongs to the phylum Ascomycota which are the 

most ubiquitous fungi worldwide. A. nidulans is amenable to both classical and 

molecular genetics. A wide range of mutants suffering from alterations in metabolism, 

signalling and development is available. The relative easy to manage A. nidulans is a 

favoured model organism to study fundamental physiological processes such as pH 

regulation, regulation of secondary metabolite production (e.g. mycotoxins, 

antibiotics), regulation of the eukaryotic cell cycle, or nitrogen assimilation (Bernreiter 

2005). In addition, already five Aspergilli and one Eurotium (a close relative of 

Aspergillus) genome sequences are available. 

 

1.5.1. Nitrate assimilation in Aspergillus nidulans 
Nitrate assimilation is a key process in the global nitrogen cycle with enormous 

ecological and agricultural significance. Both nitrate and ammonium N serve as good 

N sources for the whole N assimilating soil “community” (i.e. plant roots, fungi and 

bacteria). One key problem of efficient nitrogen assimilation by plants and many soil 

microbes is the fact that ammonia represses the utilisation of nitrate leading to nitrate 

leaching and loss by volatile N compounds.  

The nitrate assimilation pathway is composed of three components: two nitrate-

specific transporters (CrnA/B), and two enzymes catalysing the step-wise reduction 

of nitrate via nitrite to ammonium (NR and NiR). 

 
Fig.1.5. The nitrate assimilation cluster in Aspergillus nidulans. The genes crnA, niiA 

and niaD are in close proximity on chromosome VIII. niiA and niaD are transcribed 
from the same promoter region (IGR) in divergent directions (Bernreiter 2005). 
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The genes which code for the components stated above are located in a gene cluster 

on chromosome VIII (Fig.1.5), except crnB (also known as nrtB) which is located 

outside of this cluster on chromosome VIII. Nitrate reductase (niaD) and nitrite 

reductase (niiA) genes are transcribed divergently from a common intergenic region 

(IGR) that serves as a promoter for both genes. The crnA/B genes are closely linked 

to the niiA and niaD genes; they have, however, their own promoter. 

Transcription is induced by the presence of nitrate itself, and de-repressed by the 

absence of a primary nitrogen source. Two functional regulatory proteins are 

responsible for the expression of crnA/B, niiA and niaD. In Aspergillus nidulans the 

gene products of these regulatory genes, NirA and AreA are both acting as positive 

transcription factors by binding defined sequences in the promoter region of their 

target genes. For further details on the function of the GATA-factor AreA and the 

nitrate-specific Zn-cluster regulator NirA see (Berger et al. 2006; Bernreiter et al. 

2007; Berger et al. 2008).  

Nitrate assimilation is well characterised in filamentous fungi. In contrast, the ability of 

nitrate and nitrite assimilation in yeast is restricted to few species (e.g. Hansenula 

polymorpha) (Siverio 2002), whereas species such as Saccharomyces cerevisiae 

and Schizosaccharomyces pombe lack the enzyme system to assimilate nitrate or 

nitrite and are therefore unable to utilise these nitrogen sources (Siverio 2002; 

Bernreiter 2005). 

 

1.6. The nitrate reductase 

Encoded by the niaD gene, the nitrate reductase (NR) catalyses the reduction of 

nitrate to nitrite via the reaction depicted in Fig.1.6. 

 

NO3
- + 2H+ + 2e- → NO2

- + H2O 

Fig.1.6 Reaction catalysed by the NR enzyme. 
 

The fungal NR obtains its reducing equivalents from reduced nicotinamide adenine 

dinucleotide phosphate (NADPH); electrons are then transferred stepwise to flavin 

adenine dinucleotide (FAD), a cytochrome and a molybdopterin cofactor (Marzluf 

1997). 

Eukaryotic NR is a multimer and occurrs in either a homodimeric or homotetrameric 

form with monomers of about 100 kDa (Stolz and Basu 2002). 
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Fig.1.7. Scheme of the domain 
structure of a nitrate reductase dimer.1  

 

The NR monomer is comprised of three functional domains: a flavin (FAD) domain, a 

heme (Fe) domain and a molybdenum cofactor (MoCo) domain. Short linker 

sequences, depicted as hinge 1 (hI) and hinge 2 (hII), separate the N-terminal Moco 

fragment from the cytochrome b5 domain and the cytochrome b5 domain from the C-

terminal FAD fragment, respectively (Fig.1.7). In the course of catalysis, electrons are 

transferred from NADPH to FAD and then shuttled via reduction of the cytochrome 

b5 heme-Fe to Moco. The reduced Mo atom in the Moco domain then transfers two 

electrons to nitrate, reducing it to nitrite and water (Eckardt 2005). 

 
Eukaryotic NR belongs to the sulfite oxidase family of mononuclear molybdenum 

enzymes, whereas prokaryotic NRs are structurally distinct and belong to the 

dimethylsulfoxide (DMSO) reductase family. Assimilatory NRs of both eukaryotes 

(NR) and prokaryotes (Nas) are localised in the cytoplasm. However, NRs involved in 

respiration (dissimilatory nitrate reduction) are membrane-bound. In prokaryotes, 

NRs are either facing into the periplasm (Nap) or into the cytoplasm (Nar) (Stolz and 

Basu 2002), while fungal nitrate respiration occurs in mitochondria (Takaya 2002).  

 

1.7. Taxonomy of fungi 

Fungi commonly reproduce via spore formation, either in an asexual or a sexual 

manner, depending on the conditions in the environment. Fungi that reproduce both 

sexually and asexually often show only one means of reproduction at a specific time 

point or under specific circumstances (pleomorphic life cycle).  

                                                 
1 http://www.uky.edu/~dhild/biochem/23/lect23.html  
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Asexual reproduction via vegetative spores (conidia, mitospores) or through 

fragmentation of a mycelium is common in many fungal species and allows more 

rapid dispersal than sexual reproduction. The asexual reproductive stage is called 

anamorph, whereas the sexual reproductive stage, which is typically a fruiting body, 

is designated as teleomorph. In sexually reproducing fungi, compatible individuals 

unite by cell fusion of vegetative hyphae leading to the process of meiosis and 

formation of meiospores. 

According to Article 59 of Chapter VI (Names of fungi with a pleomorphic life cycle) of 

the International Code of Botanical Nomenclature (McNeill et al. 2006), mycologists 

are eligible to give asexually reproducing fungi (anamorphs) separate names from 

their sexual states (teleomorphs).  

 

Primarily, fungal classification is carried out on the basis of structures associated with 

sexual reproduction, due to the characteristics of this phase of the life cycle which 

are much more stable and reliable for taxonomic purposes.   

However, many fungi reproduce only asexually and therefore are difficult to classify. 

Fungi which lack a sexual cycle or which are not known to produce a teleomorph 

were historically classified into an artificial phylum, the Deuteromycota, also known 

as Fungi Imperfecti. 
Fungal taxonomy has undergone extensive reconstruction over the last two decades. 

Important works like Ainsworth & Bisby’s Dictionary of the Fungi (9th edition, Kirk et 

al. 2001) and The Mycota VII (McLaughlin et al. 2001a, 2001b) represented major 

advances toward a phylogenetic classification of fungi, but they are already out-

dated. Among the most important continuously revised on-line fungal taxonomies is 

that of GenBank on www.ncbi.nlm.nih.gov/Taxonomy/ (Wheeler et al. 2000) and 

Index Fungorum (www.indexfungorum.org). Due to inconsistencies and variation in 

the names between different resources like GenBank, Myconet 

(www.fieldmuseum.org/myconet), and Ainsworth & Bisby’s Dictionary of the Fungi 

(9th edn: Kirk et al. 2001) biologists considered it necessary to summarise the state 

of knowledge and to restructure higher-level classifications (Hibbett et al. 2007). 

Fig.1.8 shows the higher-level classification of fungi according to (Hibbett et al. 

2007). 
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Fig.1.8. Phylogenetic affiliation of Fungi. a) Basal fungi and Dikarya. Branch lengths 
are not proportional to genetic distances (Hibbett et al. 2007). 

 
 
Fungi are one of the most diverse organismic groups on earth. Around 100,000 

fungal species are already described; however the actual species number is 

estimated to be as high as 1.5 million (Hawksworth 2001; Hawksworth 2004). Today, 

sequences representing 24,295 fungal “species names” are available in GenBank1. 

 

                                                 
1 Data accessed 03rd August 2008. 
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1.8. The rRNA Operon 

Ribosomes are particles responsible for protein synthesis. They are composed of 

protein (40%) and a special type of RNA called ribosomal RNA (rRNA) (60%). 

Eukaryotic ribosomes have 80S1 units composed of a 40S small subunit (SSU) 

containing the 18S rRNA and a 60S large subunit (LSU) containing three rRNA 

species (the 5S, 5.8S and 28S rRNAs). The synthesis of rRNAs and the assembly of 

ribosomal subunits in eukaryotes take place in the nucleolus, a sub-compartment 

within the nucleus. The genes coding for rRNAs are arranged in the rRNA operons.  

 
1.8.1. Genomic structure of rRNA genes 
In eukaryotes, the coding region for rRNA consists of 18S, 5.8S and 28S rRNA 

genes, which are separated by internal transcribed spacers (ITS) and flanked by an 

external transcribed spacer (ETS) and a non-transcribed spacer (NTS). A section 

from one ETS to another represents a repeat unit. The structure of such a repeat unit 

or rDNA array, as it is also referred to by some authors, is shown in Fig.1.9 (Hillis and 

Dixon 1991). 

 
 
Fig.1.9. Schematic structure of the three rRNA genes and two internal transcribed spacer 

regions of the rRNA gene repeat unit (modified after (Hillis and Dixon 1991), not to 
scale). LSU, large subunit; SSU, small subunit. 

 

The region located between the 18S and 5.8S rRNA genes is called ITS1, while the 

5.8S and 28S rRNA genes are linked by ITS2 (Hillis and Dixon 1991). The whole 

section is transcribed without cessation, forming a single pre-rRNA molecule from 

which internal spacer sequences are subsequently removed by a series of endo- and 

exonucleolytic cleavage steps producing the mature 18S, 5.8S, and 25S rRNAs. 

Recent findings in the field of rRNA processing are outlined by (Granneman and 

Baserga 2005; Schneider et al. 2007; Sirri et al. 2008). 

 

                                                 
1 Svedberg units refer to the sedimentation rate in an ultra-centrifuge 
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Eukaryotic nuclear 5S rRNA genes are relatively independent of the other rRNA 

genes, concerning both transcription and genomic location. In several Ascomycota, 

like Aspergillus, Neurospora and Schizosaccharomyces, the 5S rRNA genes are 

dispersed throughout the genome in a complex manner, whereas in other fungi a 5S 

rRNA gene is embedded into the NTS of the repeat unit (Garber et al. 1988; Belkhiri 

et al. 1992). 

 

In Bacteria, genes encoding 5S, 16S, and 23S rRNAs (“5.8S rRNA” being part of the 

23S rRNA molecule) are typically organized in a single operon (Klappenbach et al. 

2000), whereby copy numbers can vary from one to 15 per bacterial genome (Rainey 

et al. 1996). 

Bacterial and archaeal sequence-regions analogous to eukaryotic ITS are usually 

named intergenic spacer regions (ISR) (Gurtler 1999; Ranjard et al. 2001), although 

some authors (Perez-Luz et al. 2002; Jones and Thies 2007) use the term ITS as 

well. 

 

1.8.2. rRNA gene cluster copy numbers in fungi 
The number of tandemly repeated copies of a eukaryotic nuclear rRNA gene repeat 

unit (i.e. transcription unit and nontranscribed spacer) can vary from only one to 

several thousands (Hillis and Dixon 1991; Prokopowich et al. 2003). rRNA gene copy 

numbers can vary from 39 to 19.300 in animals, and from 150 to 26.048 in plants 

(Prokopowich et al. 2003). Some examples for copy numbers in fungi are listed in 

Tab.1.1. 
 

Multiple copies of an rRNA unit usually evolve in concert instead of independently of 

each other. In other words, each copy of an rRNA gene repeat unit is usually very 

similar to the other copies within individuals and species, although differences among 

species accumulate rapidly in parts of the array. 

The responsible process of homogenisation appears to be unequal crossing over and 

gene conversion (Hillis and Dixon 1991; Ganley and Kobayashi 2007). 
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Tab.1.1. Copy numbers of rRNA gene repeat units in fungi. 

Fungus (taxonomy1: order) 
Copy number 
of the rRNA 

gene cluster2 
Reference 

Pneumocystis carinii f. sp. hominis 
(Pneumocystidales) 1 (Tang et al. 1998) 

Pachysolen tannophilus (Saccharomycetales) 28 (Maleszka and Clark-Walker 1993) 

Aspergillus nidulans (Eurotiales) ~ 45 (Ganley and Kobayashi 2007) 

Ashbya gossypii (Saccharomycetales) ~ 50 (Ganley and Kobayashi 2007) 

Cryptococcus neoformans (Tremellales) ~ 55 (Ganley and Kobayashi 2007) 

Kluyveromyces lactis (Saccharomycetales) 68 (Maleszka and Clark-Walker 1993) 

Kluyveromyces wickerhamii (Saccharomycetales) 72 (Maleszka and Clark-Walker 1993) 

Saccharomyces paradoxus (Saccharomycetales) ~ 90 (Ganley and Kobayashi 2007) 

Dictyostelium discoideum (cellular slime mold3) ~ 100 (Wostemeyer 1985) 

Physarum polycephalum (cellular slime mold1) ~ 100 (Wostemeyer 1985) 

Torulaspora delbrueckii (Saccharomycetales) 115 (Maleszka and Clark-Walker 1993) 

Candida glabrata (Saccharomycetales) > 115 (Maleszka and Clark-Walker 1993) 
Schizosaccharomyces pombe 
(Schizosaccharomycetales) > 115 (Maleszka and Clark-Walker 1993) 

Cochliobolus heterostrophus (Pleosporales)  130 (Garber et al. 1988)  

Saccharomyces cerevisiae (Saccharomycetales) ~ 140 (Wostemeyer 1985) 

Leptosphaeria maculans (Pleosporales) 56 to 2254 (Howlett et al. 1997) 
 

 

                                                 
1 according to Taxonomy Browser on http://www.ncbi.nlm.nih.gov/ (Feb, 2008). 
2 per haploid genome 
3 originally (Whittaker’s five-kingdom scheme of life), slime molds (Mycetozoa) were considered to be 
members of Fungi, but now they are placed directly among the domain Eukaryota (Baldauf et al. 
1997). 
4 amongst only four field isolates 
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1.8.3. ITS function 
In addition to being non-coding sequences that are physically separating the rRNA 

genes, ITS structures are thought to be involved in processing the rRNA transcript 

(Hillis and Dixon 1991; Beiggi and Piercey-Normore 2007). 

ITS secondary structures like hairpins interact with protein factors building a complex 

which functions as a chaperone for ribosome maturation in S. pombe involving a 

complex cleavage pathway (Abeyrathne and Nazar 2005). Although the processing is 

not yet fully understood in biochemical terms, it is known that the folding pattern of 

the initial RNA transcript plays a role in guiding processing (Coleman 2007). For 

further details on pre-rRNA processing, which is well characterised in yeast, see 

Venema and Tollervey (1995) and Abeyrathne and Nazar (2005).  

 

1.8.4. ITS as a target 
A breadth of applications like culture identification, phylogenetic research, direct 

detection from medical specimens or the environment, and molecular typing for 

epidemiological investigations use the fungal ITS sequences, pointing to the great 

potential as target in molecular-based assays for the characterisation and 

identification of fungi (Iwen et al. 2002). ITS sequences are ideal for species 

(sometimes even subspecies) identification with sufficient reference data. However, 

identification of sequences from previously undescribed species is almost impossible 

if only the ITS sequence is available due to its high sequence variability. As a 

consequence, a more conserved region (e.g. 18S or 28S rRNA genes) is needed for 

classification. 

 

1.8.5. rRNA genes as phylogenetic marker 
Molecules have to fulfil some requirements to serve as a suitable phylogenetic 

marker: ubiquitous distribution in the living world, functional constancy, selective 

pressure, genetic stability, sufficient information content, and a database comprising 

a wide spectrum of phylogenetically diverse organisms.  

rRNA genes turned out to be useful for phylogenetic studies. Due to the presence of 

ribosomes in all living systems (ubiquitous distribution), a high degree of functional 

constancy and different functional selective pressure resulting in both evolutionary 

conserved regions as well as highly variable regions within the same rRNA gene 

have made this molecule the target gene of choice for many applications.  
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rRNA genes are commonly used for phylogenetic classification and identification of 

organisms. Islands of highly conserved sequence regions within rRNA genes allow 

the construction of nearly “universal” primers for amplification by PCR, which in fungi 

is further facilitated by the usually high copy number of the rRNA repeat unit (Hillis 

and Dixon 1991; Miller and Huhndorf 2005).  

 
1.8.6. ITS as phylogenetic marker 
In fungi the ITS region is currently the most widely sequenced DNA locus for species 

identification. GenBank stored about 67,000 fungal ITS sequences in 2006, from 

which approximately two thirds were identified to species level, others remaining 

insufficiently identified (Nilsson et al. 2006). 

Furthermore, the ITS region is particularly valuable for systematics, because of its 

level of variation, making it suitable for phylogenetic analysis at various taxonomic 

levels within families, depending on the respective lineage (Anderson et al. 2003).  

 

Due to its species-specific sequence, ITS2 is the most commonly used ITS region 

(Fig. 1.10). It has already been applied extensively and very successfully for plants, 

some protistans and a few animals (Coleman 2007). 

 

Fig.1.10. “Diagram of the rank order 
of taxonomic categories. Brackets 
indicate the approximate range for 
which DNA sequences commonly 
utilised for phylogenetic 
comparisons apply. mtDNA, non-
coding regions of animal 
mitochondrial DNA; rbcL, the large 
subunit of the chloroplast gene 
encoding ribulose bisphosphate 
carboxylase” from (Coleman 2003). 
 

 
1.8.7. ITS secondary structure 
Already in 1991 Hillis et al. reported that the major feature of rRNA secondary 

structure is highly conserved throughout life. Although RNA secondary structure is 

dependent on its primary sequence, secondary structure maintenance occurs despite 
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the continued evolution of the primary sequence. This is due to compensatory 

mutations occurring between the paired nucleotides (Hillis and Dixon 1991). 

 

In particular ITS2 RNA transcript secondary structures have been studied (Coleman 

2007) (Fig. 1.11). She explored that, among the examined eukaryotic groups, all 

share the same ITS2 secondary structure model including the hallmark helices II and 

III. ITS2 typically has four helices: the most variable helices I and IV are specific to 

species and subspecies level, whereas the most conserved regions of primary 

structure are found in helices II and III and their adjacent single-stranded regions 

(Coleman 2007). 

 

 

Fig.1.11. Eukaryote-universal ITS2 
secondary structure. Cartoon shows with 
black fill the relatively conserved regions 
of sequence (Coleman 2007). 

 

Coleman (2007) and Beiggi and Piercey-Normore (2007) are in agreement about ITS 

regions containing specific subsequences and structures that are important for 

ribosomal RNA processing. 

 

1.8.8. Fungal identification using ITS (ITS1 and ITS2) 
Ribosomal RNA genes have a relatively conserved nucleotide sequence among 

fungi, e.g. 18S rRNA gene sequences generally are only able to resolve taxonomic 

groups to the genus level (Anderson et al. 2003). However, ITS sequences show 

variations among species, thus serving as signature regions for molecular assays 

(Iwen et al. 2002). Many fungal taxonomy studies have used ITS regions for 

resolving relationships at the species and genus level (Lumbsch 2000; Nugent and 

Saville 2004). 
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Apart from the resolution to species level, ITS was selected, because several 

established universal fungal primers are based on the conserved regions of rRNA 

genes, making it possible to obtain PCR products from most fungi. Moreover, there is 

a large number of ITS sequences available in GenBank (Nilsson et al. 2006), which 

is advantageous for similarity searches (Wu et al. 2003). 

 

Due to concerted evolution, ITS paralogues1, even when present in high copy 

numbers, show near uniformity, so that sequencing of pooled PCR products is 

enabled for many species. In fungi with divergent ITS paralogues, cloning is required, 

offering multiple estimates of organismic relationships (Baldwin et al. 1995).  

 

1.8.9. The 28S rRNA of the large subunit (LSU rRNA) 
The LSU rRNA sequence not only provides large phylogenetic information content, 

but also contains highly variable regions, called divergent (D) domains or expansion 

segments (Hwang and Kim 1999). These regions vary in size and sequence among 

highly divergent eukaryotes, whereas the secondary structures of some domains 

have remained conserved (Chilton et al. 2003). Generally, the LSU rRNA gene 

shows more variation than the SSU (18S) rRNA gene (Baroin et al. 1988; Hillis and 

Dixon 1991; Lumbsch 2000), but less variability than the ITS region (Nugent and 

Saville 2004; Sonnenberg et al. 2007). Fast evolving portions (with regard to 

insertions/deletions and substitutions) can be used for comparing species that are 

expected to be closely related, while conserved regions provide information about 

relationships at different taxonomic levels (e.g. order, family, genus, etc.) (Baroin et 

al. 1988).  

For nearly two decades, the SSU rRNA gene has been used as preferred marker to 

study eukaryote phylogeny. While the use of the SSU rRNA gene has undergone a 

magnificent boom, leading to a rich taxonomic representation, LSU rRNA sequences 

have been less popular for studying phylogeny (Van der Auwera and De Wachter 

1998; Lumbsch 2000; Moreira et al. 2007). This is due to variable areas as well as 

extreme variable expansion segments present in eukaryotic LSU rRNAs, which pose 

a problem for studying ancient phylogenies. As a result, sequencing has often been 

limited to a small conserved part of the entire gene (Van der Auwera and De Wachter 

1998).  

                                                 
1 genes that derive from the same ancestral gene after duplication (within the same genome) 
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Many molecular systematic studies on fungi, e.g. (e.g. Hansen et al. 2005; e.g. da 

Silva et al. 2006; Fernandez et al. 2006), utilise the first few hundreds of nucleotides 

of the 5′ end of LSU gene, often referred to as partial LSU (rRNA gene/rDNA). This 

part contains divergent domains (D1, D2, sometimes also D3) which are among the 

most variable regions within the whole gene (Hopple and Vilgalys 1999; Miller and 

Huhndorf 2005). 

 

1.8.10. Combination of LSU with other regions of the rRNA operon 
In recent years, numerous studies on fungal phylogeny have been carried out by 

analysing a combination of (partial) LSU and other sequences of the rRNA operon, 

mainly the SSU, e.g. (Miller and Huhndorf 2005; Aime et al. 2006; Binder and Hibbett 

2006; Schoch et al. 2006; Spatafora et al. 2006; Wang et al. 2006; White et al. 2006). 

Recently, some studies on phylogenetic inference (i.e. the estimation of history 

through the proposition and testing of phylogenetic hypotheses) as well as for 

identification purposes using the ITS and partial LSU region in particular were 

conducted (Dombrink-Kurtzman and Engberg 2006; Vega et al. 2006; Tsui et al. 

2007). Advantages of combining these evolutionary different regions within the rRNA 

operon are (i) identification to species level using ITS and/or LSU, if corresponding 

sequences are available in public databases, (ii) higher order identification with no 

highly homologous reference sequences in public databases using LSU (usage of 

Blast tree view widget might be helpful), (iii) utilisation of two molecular markers (ITS, 

LSU) and their databases, and (iv) ease of alignment generation for phylogenetic 

studies (Vega et al. 2006). An overview of parts of the rRNA gene repeat unit and 

positions of primer binding sites (of primers applied in this study) are given in 

Fig.1.12. 

 

 
 

Fig.1.12. Parts of the rRNA gene repeat unit.  
Sections can be amplified by PCR through the use of primers indicated by arrows. 
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1.9. The aims of this work 

Yet little is known about the size and components of the fungal network that 

contributes to ecological functions. Future research is needed to link diversity and 

function. There is poor understanding of the specific role of fungi in general and the 

specific roles of individual species for most ecosystem processes in which they 

participate. This is due to the fact that research often does not differentiate the 

relative contributions of fungal and bacterial communities. Therefore it is important to 

identify the individual fungal species and their responses to environmental cues 

(Dighton et al. 2005).  

Environmental conditions in respect to N supply which can be adjusted by different 

fertiliser applications and fungal responses to these different nitrogen sources are a 

main issue of the “Nitro-Genome”-project. Fungi are capable to utilise a wide range of 

nitrogen sources and therefore play an important role in the global N-cycle. 

 
1.9.1. Fungal community composition in agricultural soils 
Fungi play a central role in most ecosystems. They are important decomposers and 

take a notable place in the natural nitrogen and carbon cycles. Despite their 

relevancy, the vast majority of fungi have not yet been isolated and identified due to 

the limitations of culture-based methods. Therefore, community fingerprinting 

approaches are frequently used, providing simple and rapid methods with high 

sample throughput and the possibility of comparing different environments (Kennedy 

and Clipson 2003). However, a complete inventory of the fungal species in different 

kinds of soils is desired, resulting in high-quality data detailing fungal members of the 

environmental sample. 

The characterisation of fungal diversity in five contrasting agricultural soils represents 

the first step of an extensive investigation which is aimed at exploring the role of fungi 

in N-transformation processes. Accordingly, description of biodiversity acts as a 

precondition for the development of a functional gene (involved in nitrogen cycling) 

microarray and subsequent studies (transcriptional analysis of short-term and long-

term responses to different N-treatments). Fungal community composition in 

agricultural soils and its correlation to specific soil characteristics will provide useful 

information for environmental microbiology.  

For the investigation of fungal biodiversity two different approaches should be 

applied. On the one hand, filamentous fungi and yeasts will be cultivated, while, on 
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the other hand, a culture-independent method will be applied by extracting total soil 

DNA. Identification of fungi present in the soils will be accomplished by DNA 

sequence analysis of the fungal ITS/LSU region.  

 

1.9.2. Generation of a dataset of nitrate reductase sequences from soil fungi for 
the development of a niaD-microarray 
Knowledge on the fungal nitrate reductase (NR) activity under different fertiliser 

conditions will improve our understanding of the role of fungi in N-transformation 

processes. To screen a soil sample for its fungal NR activity it is essential to 

determine the existing NR sequences (niaD gene) of fungi present in the soil. Since 

only a few niaD gene sequences are available in public databases so far, the 

generation of an extended set of niaD sequences of known isolates as well as from 

uncultured fungi from soil should be achieved. This set of sequences serves as a 

basis for the design of specific probes. Furthermore, a chip equipped with dozens of 

different niaD probes (microarray with a limited set of probes) targeting a diverse 

group of fungal nitrate reductases will facilitate the monitoring of functional activities 

of fungal populations expressing the niaD gene under different environmental 

settings.  

It is already shown that niaD is suitable as a phylogenetic marker (Stolz and Basu 

2002). Uncultured fungal species can be assigned to phylogenetic groups from 

sequences obtained from total soil DNA by calculation of a phylogenetic niaD tree. 

Therefore, a niaD array not only could be used to obtain information regarding 

functionality, but would also allow the determination of phylogenetic affiliation of 

nitrate-reducing fungi.  

A better understanding of nitrate utilisation would provide initial stages for the 

development of strategies to improve N-fertiliser use efficiency. Increase of N-

fertiliser efficiency will result in higher yields and sustainable agriculture which are 

targeted by farmers, researchers, politicians and society. 

 

1.9.3. Fluorescence in situ hybridisation 
Fingerprinting techniques as well as the analysis of rRNA genes/ITS regions from 

environmental samples require PCR amplification of the target gene segments from 

the total gene pool (Lau and Liu 2007). However, PCR associated biases and 

variation of rRNA operon copy number in fungi complicates the quantification of 
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different fungal species in a mixed DNA pool (Anderson and Cairney 2004). For 

quantification purposes fluorescence in situ hybridisation (FISH) is a beneficial 

technique, which enables the visualisation and phylogenetic identification of microbial 

cells. Furthermore, additional detection of niaD mRNA would allow an assertion 

about the physiological status of the present fungi. In the course of this the model 

organism Aspergillus nidulans will be used to establish suitable conditions for this 

method regarding cultivation, fixation and hybridisation parameters.  
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2. Materials and Methods 

Applied chemicals and kits are listed in Tab.2.1. 
 
Tab.2.1. Chemicals and Kits used. 

Chemical Company  
2x ReddyMix™PCR Master Mix14  ABgene  
6x Loading Dye MBI Fermentas GmbH  
Acetone Lactan/Roth  
Agar-Agar Lactan/Roth  
Agarose Sigma  
Agarose high resolution Lactan/Roth, Art. K297.2  
Ampicillin Lactan/Roth  
Benomyl Sigma  
Betaine monohydrate Fluka  
Big Dye Terminator v3.1, Cycle Sequencing Kit Applied Biosystems, USA  
Boric acid (H3BO4) Pharmacia Biotech  
Buffer R Fermentas  
Chloroform Lactan/Roth  
Copper II sulphate 5-hydrate Lactan/Roth  
Di-ammonium tartrate Fluka  
Di-ethyl-pyrocarbonate (DEPC) Sigma  
Di-potassiumhydrogenphosphate (K2HPO4) Lactan/Roth  
Ethanol Lactan/Roth  
Ethidiumbromide Sigma  
Ethylene-di-amine-tetra-acetic acid (EDTA) Sigma  
Formaldehyde 37 % solution Roth  
Formamide HIDI Applied Biosystems, USA  
Gene Ruler™ 100bp DNA Ladder Fermentas  
Gene Ruler™ 1kb DNA Ladder Fermentas  
Glass beads B. Braun Biotech International  
Glucose Merck  
Glycerol Lactan/Roth  
Hydrochloric acid (HCl) Lactan/Roth  
Hydrogen peroxide (H2O2) 30% Lactan/Roth  
Hygromycin B VWR  
Isoamyl alcohol Lactan/Roth  
Isopropanol (2-propanol) Lactan/Roth  
Kanamycin Lactan/Roth  
Ligation buffer (10x) Fermentas  
Magnesium chloride (MgCl2) Finnzymes  
Magnesium sulphate (MgSO4) heptahydrate  Lactan/Roth  
Malt extract-Agar Merck  
Nickel(II) chloride (NiCl2) hexahydrate Lactan/Roth  
N,N-di-methylformamide (DMF) Sigma  
p-Amino benzoic acid (paba) Sigma  
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Tab.2.1. (continued) 

Chemical Company  
PEG4000 (Polyethylenglycol) 50 % (w/v) Fermentas  
Peptone  Lactan/Roth  
Phenol VWR  
Plasmid Mini Kit Qiagen  
plasmid vector pTZ57R/T Fermentas  
Poly-L-lysine solution Sigma  
Potassium chloride (KCl) Lactan/Roth  
Potassium-di-hydrogenphosphate (KH2PO4) Lactan/Roth  
Primers VBC  
QIAquick PCR Purification Kit Qiagen  
Restrictionenzymes (BsuRI, Hin6I) Fermentas  
Rose Bengal Sigma  
Sodium chloride (NaCl) Lactan/Roth  
Sodium di-hydrogenphosphate (NaH2PO4) Lactan/Roth  
Sodium hydroxide (NaOH) Lactan/Roth  
Sodium molybdate (Na2MoO4) dihydrate Sigma  
T4 DNA ligase 5u/µl Fermentas  
Tips, tubes, pipettes Greiner  
Tris Ultra Qualität Lactan/Roth  
Triton X-100 Lactan/Roth  
Ultra Clean Soil DNA Isolation Kit MoBio, USA  
X-Gal Lactan/Roth  
Yeast extract Lactan/Roth  
Zinc sulphate (ZnSO4) heptahydrate Lactan/Roth  
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2.1. Media, Buffers and Solutions 

Antibiotics: 

Ampicillin in H2O (stock: 100 mg/ml  1,000x) 
Benomyl in DMSO (stock: 10 mg/ml  2,000x) 
Kanamycin in H2O (stock: 50 mg/ml  1,000x) 
Rose Bengal in H2O (stock: 50 mg/ml  1,000x) 
 
Media: 

LB (Lysogeny Broth1)  
10 g/l peptone (bacto tryptone), 5 g/l yeast extract, 10 g/l NaCl, 15 g/l agar-agar 
 
Malt extract-Agar (MEA, Merck) 
48 g/l H2O 
 
Aspergillus Minimal Media (AMM) 
10 g/l glucose, 20 ml/l Aspi-Salts, 10 ml/l SL-4, 20 g/l agar-agar, 10 mM di-
ammonium tartrate, pH 6.8 
          
Salt Solution (Aspi-Salts) 
26 g/l KCl, 26 g/l MgSO4 x 7 H2O, 76 g/l KH2PO4, 2 ml/l chloroform (for sterility 
reasons) 
 
SL6 
0.1 g/l ZnSO4 x 7 H2O, 0.03 g/l MnCl2 x 4 H2O, 0.3 g/l H3BO3, 0.2 g/l CoCl2 x 6 H2O, 
0.01 g/l CuCl2 x 2 H2O, 0.02 g/l NiCl2 x 6 H2O, 0.03 g/l Na2MoO4 x 2 H2O 
 
SL-4  
100 ml/l SL6, 0.5 g/l EDTA, 0.2 g/l FeSO4 x 7 H2O 
 
TB (Terrific Broth2) 
11.8 g/l peptone, 23.6 g/l yeast extract, 9.49 g/l K2HPO4, 2.29 g/l KH2PO4   
  
SOC 
20 g/l peptone, 5 g/l yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 
MgSO4, 20 mM glucose 
 
Supplements: 

p-Amino Benzoic Acid (paba) 
200 mg/l H2O  

                                                 
1 The acronym LB actually stands for “lysogeny broth” as Bertani himself emphasised in his    
  commentary (Bertani, 2004), although the abbreviation is commonly used for Luria Bertani medium. 
2 acronym according to AppliChem GmbH 
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Buffers and Solutions: 

X-Gal in DMF (stock: 40 mg/ml  500x) 
 
PCI 
equilibrated Phenol, chloroform, and isoamyl alcohol (25:24:1, v/v) 
 
10 % Triton X-100  
100 ml/l in H2O  
 
1x TAE buffer 
4.8 g/l Tris, 0.5 M EDTA, pH 8.0 (acetic acid) 
 
10x PBS 
15.6 g/l NaH2PO4, 87.66 g/l NaCl, pH 7.5 (NaOH) 
 
1x PBS/0.1 % Triton X-100 
100 ml/l 10x PBS, 10 ml/l 10 % Triton X-100     
 
40 % Glycerol/PBS 
460 ml/l 87 % glycerol, 100 ml/l 10x PBS 
 
NTE 
40 ml/l 5 M NaCl, 50 ml/l 1 M Tris, 10 ml/l 500 mM EDTA, pH 7.5 
 
Agarose-Gel 
2 % agarose in 1x TAE buffer 
For improved separation of smaller bands (~ 50 – 250 bp) 3 % high resolution 
agarose was used. 
 
Ethidiumbromide (10 mg/ml  15 µl/l agarose gel) 
 

2.2. Soil sampling 

Soils were collected from four different agricultural fields and one grassland near 
Vienna (Austria) and subsequently stored at 4 °C. Samples from these five soils were 
assayed and are referred to as soils M, N, P, R and T (Tab.2.2). Prior to experiments 
soils were characterised according to chemical parameters (Tab.2.3). 
 

Tab.2.2. Soil sample origins and code annotation. 

Registercode Location Internal Code 
KB177/BF19 Maissau M 

KB177/BF8 Niederschleinz N 

KB9/BF6 Purkersdorf P 

KB9/BF8 Riederberg 
(grassland) R 

KB28/BF7 Tulln T 



Tab.2.3. Soil chemical analysis. 

   KB177/BF19 (M) KB177/BF8 (N) KB9/BF6 (P) KB/9/BF8 (R) KB28/BF7 (T) 
moisture content [%]  18.57 18.69 24.27 31.23 25.86 
CaCO3 [%]   0.2 8.5 0.06 2.11 0.04 
pH-KCl   6.99 7.15 5.67 6.63 6.21 
cation exchange capacity mval%1 8.87 15.38 11.17 33.23 37.93 
base saturation V % v. T 92.3 98.08 81.38 82.05 70.37 
 Ca%T % v. T 71.44 83.75 71.16 76.87 52.85 
 Mg%T % v. T 11.93 8.51 6.52 4.12 16.81 
 K%T % v. T 6.66 4.88 2.68 0.46 0.22 
AOS [%] (degradable organic matter) 2.28 3.16 2.78 8.53 5.57 
Corg [%] (organic carbon) 1.33 1.84 1.62 4.96 3.24 
Ntot [%] (total nitrogen) 0.134 0.194 0.163 0.525 0.353 
Norg [%] (organic nitrogen) 0.132 0.193 0.162 0.523 0.352 
Nmin [mg%] (mineralised nitrogen) 5.1 2.7 2.3 4.2 2.7 
C/N (carbon/nitrogen ratio) 9.9 9.5 9.9 9.4 9.2 
Ca I+II [mg/100g]  132.35 262.2 161.15 520.83 405.55 
Mg   13.61 16.2 9.06 17.07 78.56 
K   24.63 30.47 12.04 6.03 3.51 
NH4-N   2.39 0.99 1.18 1.88 1.07 
NO3-N   2.7 1.68 1.09 2.29 1.62 
Fe [mg/kg]   32.45 1.67 21.79 69.93 84.1 
Mn   0.32 0.01 0.53 0.47 0.37 
Cu   <0.05 0.06 <0.05 0.15 0.09 
Zn   0.11 <0.06 0.23 0.31 0.15 
sieving curve water supply ml/100g TM 47.15 56.6 33.66 94.55 81.23 
 2-0.63 mm % TM 9.2 0.6 2.6 2.7 1.1 
 0.63-0.25 % TM 7.2 1.1 6.5 3.2 1.6 
 0.25-0.125 % TM 6 1.4 10.6 4.3 2.3 
 0.125-0.063 % TM 7.2 4.9 13.7 7 3.6 
 0.063-0.02 % TM 63.9 67.2 56 43 32.8 
 0.02-0.006 % TM 3.4 3.6 5.3 5.7 10.6 
 0.006-0.002 % TM 3.1 3.4 3.6 5.1 4.9 
 <0.0020 mm % TM <0.1 17.7 1.7 29.1 43.2 

                                            
1 milli-equivalents (meq/100 g) 
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2.3. Plate counts & culturing of fungi 

Dilution series 
1 g soil was weighed in a 50 ml Greiner flask (polypropylen-tube), resuspended in 10 

ml PBS/0.1 % Tween and incubated at room temperature (RT) with gentle shaking 

(50 rpm) for 30 min. Dilution series (10-1 to 10-4) from the soil suspension were 

prepared in 1x PBS.  

100 µl from dilutions 10-1 to 10-4 were plated on mycological media like MEA and 

AMM, respectively. To prevent inhibition of fungal growth due to bacterial proliferation 

the antibiotic Rose Bengal (BR) was added to the media as well as Benomyl (B), a 

biocide, which primarily represses growth of Ascomycota, therefore selecting for 

Basidiomycota. The following combinations were prepared: MEA + BR, AMM + BR 

as well as MEA + BR + B. After 5 days of incubation at 26 °C plates were regularly 

checked for the growth of fungal colonies. 

Morphologically distinct colonies (according to spore colour, colour of mycelium, 

colony morphology, colour of colony on reverse, etc.) were subcultured. 

In general, DNA was extracted from spores. DNA from non sporulating fungi was 

obtained from the mycelium. If the mycelium was impossible to detach from the 

medium, colonies had to be grown on cellophane disks to avoid media remnants, 

which possibly could hamper DNA extraction. 

 

DNA extraction was performed with Phenol/Chloroform/Isoamyl alcohol (PCI). 

Mycelium and/or spores were resuspended in 600 µl NTE and 60 µl 10 % SDS. 600 

µl of the lower, clear, organic layer of PCI (4 °C) as well as glass beads of three 

different diameters (Ø = 1 mm, 0.4 – 0.6 mm, 0.10 – 0.11 mm) were added. Tubes 

were rigorously shaken in a FastPrep120 (Bio101) for 30 sec at 6.5 m/s. After 

centrifugation for 20 min at 10,000 rpm and 4 °C the supernatant (SN) was 

transferred into a new tube. One volume CI (Chloroform:Isoamyl alcohol 24:1) was 

added, mixed and centrifuged for 10 min. The upper phase was then precipitated 

with isopropanol, washed with 70 % ethanol and dissolved in 100 µl H2O. 

 

For the strain collection the spore/mycelium suspension was combined with 40 % 

glycerol/1x PBS to achieve a final glycerol concentration of 20 % and stored at -80°C. 
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2.4. ITS/LSU-PCR 

Generally, for PCRs (Polymerase Chain Reaction) the 2x ReddyMix™PCR Master 

Mix (ABgene) and primers obtained from VBC (Tab.2.4) were used. PCR 

amplifications were carried out using the T3 Thermocycler (Biometra) or Mastercycler 

(Eppendorf); amplification steps are shown in Fig.2.1.  

For identification of cultivated fungi the ITS-region was amplified with primer pair 

ITS1/ITS4 and sequenced. For cultivation-independent identification of soil fungi the 

ITS-region and partial LSU were amplified with primer pair ITS1F/TW13, elongating 

the extension time to 3 min due to increased fragment size. The LSU region serves 

for higher order identification of fungi with no highly homologous reference 

sequences in public databases. 

Success of amplification was checked on an agarose gel. Primer binding sites are 

schematically depicted in Fig.2.3, primer sequences are listed in Tab.2.4. 

 

 
Fig.2.1. Temperature profile for ITS/LSU-PCR. 

 
 
 

 

 
 

Fig.2.2. Parts of the rRNA gene repeat unit.  
Sections can be amplified by PCR through the use of primers indicated by arrows. 
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Tab.2.4. Primers used for the amplification and sequencing of ITS/partial LSU 
sequence fragments. 

Primer Sequence (5'-3') Target organisms Gene Tm 
[°C]1 Reference 

ITS1 TCCGTAGGTGAACCTGCGG universal 
eukaryotic 18S 54 (White et al. 1990) 

ITS1F CTTGGTCATTTAGAGGAAGTAA fungi 18S 54 (Gardes and Bruns 1993) 
ITS3 GCATCGATGAAGAACGCAGC fungi 5,8S 54 (White et al. 1990) 

ITS4 TCCTCCGCTTATTGATATGC fungi 28S 54 (White et al. 1990) 

TW13 GGTCCGTGTTTCAAGACG universal 
eukaryotic LSU 54 (Taylor and Bruns 1999) 

 
 
2.5. RFLP analysis 

Restriction Fragment Length Polymorphism (RFLP) is a technique by which 

organisms may be differentiated by analysing patterns formed from cleavage of their 

DNA. 

PCR products were directly subjected to RFLP analyses to estimate the sequence 

diversity within the clone library. The reaction was performed with the restriction 

endonuclease BsuRI (Fermentas, isoschizomere of HaeIII) for 2 h at 37 °C and the 

fragments were separated on a 3 % high resolution agarose gel. Representative 

clones for each pattern were selected for sequencing. Purified PCR-product served 

as a template for a 15 µl sequencing reaction using Big Dye Terminator v3.1, Cycle 

Sequencing Kit (ABI). ITS1 and ITS4 were used in a one pmol/µl dilution, 

respectively, corresponding to one µM final concentration. The sequencing reaction 

was carried out with T3 Thermocycler (Biometra) under the following conditions: 

initial denaturation for 1 min at 96 °C, 25 cycles of 96 °C for 10 sec, 50 °C for 5 sec, 

60 °C for 4 min. Post-reaction clean up was performed by ethanol precipitation (96% 

Ethanol/NaAc/EDTA). DNA was denatured in HIDI formamide (highly deionised 

formamide, Applied Biosystems, USA) to be electrophoretically resolved in a DNA 

sequencer (ABI 3100 genetic analyzer, Pop69, BDv3.1) at the Institute of Applied 

Genetics und Cell Biology, University of Natural Resources and Applied Life 

Sciences, Vienna (Austria). Sequence files obtained in abi-format were processed as 

described in 2.7.  

Internal lab-codes for cultivates and DNA sequences derived from them are NG_01 

to 36, H01 to H18 and p01 to p53 (NG: Nitro-Genome). 

                                                 
1 applied annealing temperature of the primer 
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2.6. Direct PCR and clone libraries produced from soil samples 

Total DNA was extracted directly from soil using the Ultra Clean Soil DNA Isolation 

Kit (MoBio) according to the manufacturer's instructions. For each of the five soils 

three replicas were performed and pooled after elution. This mixture of DNA 

originating from different organisms was purified (QIAquick PCR Purification Kit, 

Qiagen) and subjected to ITS/LSU-PCR using ITS1F specific for fungi and the 

universal eukaryotic primer TW13 for 5’ LSU. 

For each soil a clone library of amplified ITS/LSU-PCR-products was constructed in 

plasmid pTZ57R/T (Fermentas). In the following, the cloning procedure is described:  

1.5 µl of untreated PCR product was mixed with 0.165 µg plasmid vector pTZ57R/T 

DNA, Ligation Buffer (10x), PEG4000 (50 µg/µl final concentration), 1 µl T4 DNA 

Ligase (5 U/µl) and water in a final 10 µl ligation reaction. After incubation at 22 °C for 

at least 1 h, transformation into competent E. coli cells took place (heat shock for 30 

sec at 42 °C in water bath, cooled on ice for 2 min, addition of 500 µl SOC medium 

and recovery for 1 h at 37 °C before plating on LB + X-Gal + Amp). Separated white 

colonies, each theoretically containing one distinct product derived from a single 

fungus, were picked. For each library 96 independent clones were picked and 

resuspended in 200 µl TB + amp in microtiter-plates. After incubation at 37 °C over 

night 5 µl bacterial suspension were mixed with 50 µl H2O and boiled for 7 min at 95 

°C to induce cell lysis. Inserts were amplified with primer pair ITS1F/TW13, the PCR 

settings are depicted in Fig.2.1. Remaining bacterial suspension was combined with 

200 µl 40% glycerol/PBS and stored at -80 °C.  
 

RFLP analyses and sequencing reactions, apart from the applied primers, were 

performed as described above for cultured fungi. Here the region between ITS1F and 

TW13 was amplified and the purified product was sequenced with ITS3 and TW13, 

respectively (Fig. 2.2). 

 

In some cases it was necessary to sequence an additional part of the rRNA coding 

region to unambiguously identify the respective fungus. This was performed using 

the primer ITS1F in an additional sequencing reaction, yielding a sequence 

consisting of part of 18S rRNA gene (SSU) and the spacer ITS1 (Fig.2.3). 
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2.7. Bioinformatic analysis 

For sequence analyses the commercial software Vector NTI Advance™ 10 for 

Windows, version 10.3.0 was used. Abi-sequence files were trimmed, contigs were 

created by assembling the two (or three) primer sequences (Fig.2.3), primer 

orientations were checked and the contig sequence was proofread.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.3. Graph pane of Vector NTI contig express showing primer orientation, lengths 

and contig structure (Vector NTI display modified). 
 
Mended contig sequences were submitted to a nucleotide BLAST Search (Basic 

Local Alignment Search Tool) at http://www.ncbi.nlm.nih.gov/BLAST/ (Altschul et al. 

1990). BLAST searches were performed systematically with parts of the sequence 

corresponding to the ITS or partial LSU region, respectively. In order to check for 

chimeric sequences, the two taxonomies were compared for consistency. 

Additionally to the whole sequence stretch, BLASTN searches for clone sequences 

were performed systematically with parts of the sequence corresponding to the ITS 

or partial LSU region, respectively. To differentiate between the two sequence parts, 

the position of the ITS4 primer was used, which is located at the 5’ end of the LSU 

region.  In order to check for chimeric sequences, the two taxonomies were 

compared for consistency. BLASTN search results for the whole sequence stretches 

were reported, but often could not be used for clear identification due to a lack of 

reference sequences in the public database which span the ITS as well as the LSU 

region. Therefore, in many cases the identification was based on the separate 

regions, where high % identity of ITS sequence (if available) was preferably used for 

species identification, whereas the partial LSU region usually served for identification 

at higher taxonomic levels. 

NG_P_A01_ITS1F: 1 » 699

NG_P_A01_ITS 3 (3): 304 » 962

NG_P_A01_TW13 (3): 379 « 1036 (complementary)

SSU      5.8S            LSU
          ITS1       ITS2 

    TW13
      
      

          ITS3       
 
 
ITS1F 
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For the determination of putative identities via BLASTN searches, the following 

threshold values were defined: For the ITS region of cultured fungi (ITS1, 5.8S and 

ITS2) as well as sole ITS2 region for clone sequences: species level > 98%, genus 

level > 97 %, class, order or family level depending on the phylogenetic classification 

of the reference organisms > 90 %. For partial LSU region of the clone sequences: 

species level > 99%, genus level > 98 %, class, order or family level depending on 

the phylogenetic classification of the reference organisms > 95 %, phylum level > 90 

%, unidentified fungi < 90 %. Matches < 80 % identity and with a query coverage < 

80 % for the ITS region and partial LSU, respectively, were regarded as below 

acceptable confidence levels and were not reported. Sequences lacking the ITS 

region were stated as not available (n/a) for the respective region and identification 

was based on the partial LSU sequence exclusively. 

Reference hits were scrutinised concerning their reliability (e.g. strain collections 

were accepted as reliable references) and position in the distance tree of results. 

In cases in which sequences could not reliably be identified to a certain taxonomic 

level, the lowest common affiliation of reliable reference sequences was taken.  

Sequences with the same BLAST % identity for different fungal species were 

reported as different species separated by the slash-symbol. 

The ITS region is currently the most widely sequenced DNA locus for species 

identification in fungi. There is general agreement, that high % identity of the ITS 

sequence is useful for species identification (see 1.8.8. Fungal identification using 

ITS). 

In addition, many molecular systematic studies on fungi utilise the 5’ part of the LSU 

gene. A combination of both regions (ITS and partial LSU) was frequently used in 

recent years not only for fungal phylogeny, but also for identification purposes (Urban 

et al. 2008). The main advantage here was the higher order identification using the 

LSU region when no highly homologous reference sequences were available in the 

public database (see 1.8.10 Combination of LSU). 

 

2.7.1. Assessment of sequences 
For the analysis of the sequences on different taxonomic levels, a database was 

created in Microsoft Access XP (2002). For this, a bunch of tables were created. The 

database design in the form of an entity-relationship model is depicted in Fig.2.4. In a 

database, an entity type is the equivalent of a table; each individual record is 
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represented as a row and an attribute as a column. The descriptions of the individual 

tables and their attributes (the bold attributes are primary keys) are documented in 

the entity-relationship model. In addition, the hierarchical structure of the respective 

classification tables (taxonomy) is illustrated. 

 

 
Fig.2.4. Entity-relationship model of the database. 

 
Afterwards a query was constructed by which the classification tables were combined 

and connected with the data of the results tables. This resulted in a new table 

consisting of OTU-No, soil, abundance, identified species as well as the 

corresponding higher taxonomic levels for the sequences of the clone libraries. The 

data constructed in this way were further analysed with the software SPSS for 

Windows, German version 15.0.1 (2006). Therefore, cases (records) were weighted 

according to their abundance and sorted by soil sample. Frequency analyses were 

conducted and the results were figured as tables. 

 

Furthermore, sample-based data were used for the calculation of estimators of 

species richness with ESTIMATES (Version 8.0.0, R. K. Colwell, 

http://purl.oclc.org/estimates). Five estimators were compared: Chao2 richness 

estimator, incidence- and abundance-based coverage estimator [incidence-based 

coverage estimator (ICE) and abundance-based coverage estimator (ACE)], first-

order Jackknife richness estimator (Jackknife 1) and Bootstrap richness estimator.  
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2.8. Construction and analysis of niaD gene libraries 

Partial fungal niaD genes were amplified from total DNA extracted from soil (Ultra 

Clean Soil DNA Isolation Kit, MoBio). 2 replicates from soils N and P from the 1st time 

point of the 2nd experiment were chosen. These 2 soils had been selected after the 

1st experiment for following experiments and are referred to as N1, N2, P1 and P2. 

Extracted total DNA was purified (QIAquick PCR Purification Kit, Qiagen) and 

subjected to niaD-PCR using primers niaD01F and niaD04R (Tab.2.5) and the 

following optimised conditions: ReddyMix™PCR Master Mix (ABgene), 750 mM 

Betaine, 1 mM MgCl2 or more, 2 µM primers. The cycling conditions were as follows: 

initial denaturation at 95 °C for 2’30’’, 35 cycles of 94 °C for 45’’, 52 °C for 45’’ and 72 

°C for 1’, and a final extension at 72 °C for 5min. Subsequently, a nested PCR was 

performed using the primer pair niaD02F and niaD03R (Tab.2.5) in a 6 µM 

concentration, conditions were as stated above.  

 
Fig.2.4. Schematic structure of the niaD gene including parts that can be amplified 
using the primer combinations niaD01F + niaD04R (orange) or niaD02F + niaD03R, 

which gives rise to the nested PCR product (green). Primer binding sites are indicated 
by arrows. The position of the intron sequence, present in some of our resulting 

sequences is indicated by the triangle. 
 
 

Tab.2.5. Newly designed primers used for the amplification and sequencing of  
nitrate reductase (niaD) sequence fragments. 

Primer Sequence (5'-3')1 Target organisms Gene Tm 
[°C] 

niaD01F GTNTGYGCNGGNAA fungi niaD 52 
niaD02F MGNMGNAARGARCARAA fungi niaD 52 
niaD03R GGNARNACNCKRTTRTC fungi niaD 52 
niaD04R GTNGGRTGYTCRAA fungi niaD 52 

 
 
Clone libraries of niaD-nested-PCR-products were constructed in plasmid pTZ57R/T 

(Fermentas). The cloning procedure was performed as described for ITS/LSU.  

N1 and P1 clone libraries contain 96 independent clones each, while N2 and P2 

contain 48 clones each. Clones were screened by niaD-PCR and positive candidates 
                                                 
1 abbreviations according to IUPAC: R=G/A, Y=T/C, M=A/C, K=G/T, N=G/A/T/C 
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were compared via RFLP analyses with BsuRI and Hin6I double digestion. 

Sequences were obtained by using the primers M13fwd and M13rev, respectively, for 

the sequencing reaction. Sequence data were edited as described for ITS/LSU 

sequences. Further sequence analyses were accomplished using the Vector NTI 

software: translation into protein sequences (exclusive flanking primers niaD02F and 

niaD03F), construction of a niaD alignment, and visualisation of a Neighbour-Joining 

tree. 

 

2.9. Fluorescence in situ hybridisation (FISH) 
Fluorescence in situ hybridization (FISH) uses fluorescently labelled nucleic acid 

probes to localise specific DNA or RNA sequences of target organisms. In the field of 

microbial ecology, FISH is widely used for identification of microorganisms, especially 

bacteria and archaea in environmental samples. In this field, the target molecule 

usually is rRNA, which has the advantage that probes specific for different taxonomic 

levels can be designed for this molecule. Moreover, visualisation of genes or 

chromosomes by this technique (“chromosomal painting”) is used for gene mapping 

and for identifying chromosomal abnormalities in eukaryotic cells e.g. (Gerr et al. 

2007). Bacterial chromosomal painting can be used for the identification of bacterial 

cells (Lanoil and Giovannoni 1997). 

Additionally, mRNA-FISH is applied to measure and localise mRNAs within cells and 

tissues e.g. (Wagner et al. 1998; Pernthaler and Amann 2004). Generally, cells are 

treated with chemical substances for cell fixation, immobilised to a slide and 

hybridised under stringent conditions. After a washing step, the hybridisation can be 

analysed by epifluorescence microscopy (Daims et al. 2005).  

 
2.9.1. Cultivation of Aspergillus nidulans for mRNA-FISH 
A. nidulans wt paba was grown as liquid culture in AMM excl. agar, 2 mg/l paba, N-

source (either 10 mM ammonium tartrate for non-induced or 10 mM NaNO3 for 

induced conditions) at 37°C for 7 h or overnight. To super-induce niaD-mRNA 

expression, culture was grown with ammonium tartrate overnight, followed by N-

starvation for 30 min and induction with NaNO3 for another 30 min. 

Samples were once washed with PBS, centrifuged, the resulting pellet resuspended 

in PBS and kept on ice. 
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2.9.2. Cell fixation with paraformaldehyde (PFA) 
4% PFA 
108.1 ml/l 37% formaldehyde solution (Roth) in 1 x PBS 
 

3 Vol 4% PFA were added to 1 Vol of sample and incubated for 2 h at 4°C. After 

incubation, the sample was centrifuged (15,000 rpm, 15 min) and the pellet was 

washed once with 1 x PBS. Finally, the pellet was resuspended in 1 Vol 1 x PBS and 

1 Vol ethanolabs. After fixation samples were stored at -20°C. 

 

2.9.3. Cell fixation with EtOH 
The sample was centrifuged to harvest the cells, washed once with 1 x PBS and the 

pellet resuspended in 1 x PBS. Afterwards, 1 Vol ethanolabs was added and samples 

were stored at -20°C. 

 

2.9.4. Oligonucleotide probes 
To select appropriate probes the online database probeBase (Loy et al. 2003) on 

http://www.microbial-ecology.net/probebase/ was used. The characteristics of 

oligonucleotide probes used are listed in Tab.2.6. 

 
Tab.2.6. Characteristics of oligonucleotide probes used for FISH analyses. 

Probe Sequence (5’-3’) Target 
molecule Specificity Label Reference 

EUK516 ACCAGACTTGCCCTCC 18S rRNA Eukarya 5’ Fluos (Amann et 
al. 1990) 

NonEUB ACTCCTACGGGAGGCAGC - control 5’ Fluos (Wallner et 
al. 1993) 

niaD_2527R CAGGCCCGCAAACCAAAACCA niaD mRNA A. nidulans 5’ Cy3 unpublished 
 

High Performance Liquid Chromatography (HPLC)-purified and lyophilized 

oligonucleotides were obtained from Thermo Electron GmbH or VBC, respectively. 

Working solutions with a final concentration of 50 ng/µl for Fluos-probes, and of 30 

ng/µl for Cy3-probes were prepared. Both stock and working solutions were stored at 

-20°C in the dark. 

 

 

2.9.5. Preparation of poly-L-lysine coated slides 
To increase cell immobilization for samples, slides were coated with poly-L-lysine, 

which is known not to exhibit auto-fluorescence under laser irradiation. 
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10 well slides (Paul Marienfeld) were washed in 1% HCl in 70% EtOH for 5 min, prior 

to coating with 0.01% poly-L-lysine solution for 5 min. Coated slides were dried for 

1.5 h at 60°C in a Heraeus T20 drying oven (Kendro Lab. Products) and stored in a 

dry and dustless box at RT. 

 

In order to minimise mRNA degradation by RNases DEPC treated MQ water, PBS 

and SSC was used, slides were incubated for 20 min in 0.3 % H2O2 and immobilized 

and dehydrated samples were subjected to DEPC-treatment prior to hybridisation. 
 

2.9.6. H2O2-treatment of coated slides 
Slides were treated with 0.3 % H2O2 in H2O for 20 min at RT, washed twice with MQ-

H2ODEPC for 1 min each and let dry. 

 

2.9.7. Immobilisation and dehydration of the sample 
10 µl sample were immobilised on wells by drying at 46°C in a hybridisation oven for 

~10 min. After liquid had dried, an increasing ethanol-series was undertaken. For 

this, slides were in succession put into 50%, 80% and 96% ethanol for 3 min each. 

 

2.9.8. Carbethoxylation and inactivation of endogenous RNases (DEPC 
treatment) 
DEPC-treatment was performed with 0.1% (v/v) freshly prepared DEPC in PBS for 12 

min at RT. Slides were washed once with PBSDEPC for 1 min and with MQ-H2ODEPC 

for 1 min. 

 

2.9.9. Probe hybridisation 
1 M Tris/HCl, pH 8.0 
10 % (w/v) SDS 
20 x SSC (Saline-Sodium Citrate)  
0.3 M Na3-Citrat, 3 M NaCl 

Hybridisation buffer1 
0.9 M NaCl, 20 mM Tris/HCl, 10 % FA, 0.01 % SDS 

Hybridisation buffer2 
SSC (0.9 M Na), 10 % FA, 0.01 % SDS 

 
 
Washbuffer1 
0.45 M NaCl, 20 mM Tris/HCl, 0.01 % SDS 
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Washbuffer2 
SSC (0.45 M Na), 0.01 % SDS 

DEPC reacts with primary amines and can therefore not be used to treat Tris buffers, 

since Tris contains an amino group. For this reason, SSC buffer, which can be 

treated with DEPC, was tested and compared with the untreated Tris buffer. 

 
Hybridisations were performed at a temperature of 46°C. Stringency was achieved by 

addition of formamide (FA) to the hybridisation buffer (HB) and the concentration of 

salts in the washing buffer (WB). Corresponding volumes are listed in Tab.2.7. 

 
Tab.2.7. Volumes of FA, NaCl and EDTA used in hybridisation and washing buffers. 

Hybridisation buffer Washing buffer 
FA [%] FA [µl] H20 [µl] NaCl [mM] 5 M NaCl [µl] 0.5 M ETDA [µl] 

0 0 800 900 9,000 - 
10 100 700 450 4,500 - 
20 200 600 225 2,150 500 
25 250 550 159 1,490 500 
30 300 500 112 1,020 500 
35 350 450 80 700 500 
40 400 400 56 460 500 
45 450 350 40 300 500 
55 550 250 20 100 500 
70 700 100 0 0 500 

 

10 µl HB and 1 µl of the respective probe were pipetted on the well and mixed gently. 

The slide was put into a 50 ml tube (Greiner Bio-One GmbH), in which a tissue, 

soaked in remaining HB had been placed. The closed tube was incubated at 46°C in 

a hybridisation oven UE500 (Memmert GmbH) for 3 hours. After hybridisation, the 

slide was washed in pre-warmed WB at 48°C for 10 min. After dipping the slide into 

ice-cold H2ODEPC it was immediately dried in an air stream. Slides were stored at -

20°C in the dark until microscopic analysis. 

 

2.9.10. Staining with 4’-6’-di-amidino-2-phenylindole (DAPI) 
Before microscopic analysis, samples were stained with 4’-6’-di-amidino-2-

phenylindole (DAPI), which preferentially stains double stranded DNA (emission 

maximum: 461 nm)  to visualise all cells for microscopic analyses. 

 

DAPI (Lactan)  
1:1,000 dilution in H2O 
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15 µl DAPI dilution were used and incubated for 7 min in the dark. DAPI was 

removed and the sample was washed with 25 µl of H2O to remove free DAPI and 

slides were dried for ~20 min (RT) in the dark. Due to the high mutagenicity of DAPI, 

particular pipettes were used. 

 

2.9.11. Detection of fluorescently labelled cells 
Samples were embedded in Citifluor AF1 (Agar Scientific Limited) to decrease 

bleaching during microscopic analysis and covered with a coverslip. Evaluation of 

hybridisations was done using a Confocal Laser Scanning Microscope LSM 510 

Meta (Zeiss) and the software included. The microscope was equipped with an Ar-

laser (430-514 nm; for excitation of the Fluos-fluorophore) and two He-Ne-lasers 

(543 nm; for excitation of Cy3). Excitation of DAPI was done via exposure to UV 

radiation (~350-365 nm) by a UV lamp. Plan-Neoflar objectives with 40x, 63x and 

100x magnification were used in combination with an 10x ocular. Documentation was 

done using the software delivered with the CLSM. 
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3. Results 
 
3.1. Plate counts & cultured fungi 

To establish a collection of fungi from agricultural soil for future laboratory studies 

with selected strains, soil suspensions were plated on different media: 

- malt extract agar (MEA) + rose bengal (BR), a nutrient rich complex growth 

medium with BR added to suppress growth of bacteria. Under illumination with 

visible light, RB produces singlet oxygen which is known to inactivate bacterial 

cells efficiently (Schäfer et al. 2000). 

- MEA + BR + Benomyl, as above but with the addition of Benomyl, which 

inhibits growth of Ascomycetes more strongly than growth of Basidiomycetes 

(Summerbell 1993) by depolymerisation of microtubules (Mini and 

Raudaskoski 1993). 

- Aspergillus minimal medium (AMM) + BR, a defined minimal medium with 

glucose as carbon source and  di-ammonium tartrate as nitrogen source  

 

100 µl from dilutions 10-1 to 10-4 of the soil suspension (1 g soil resuspended in 10 ml 

PBS/0.1 % Tween) were plated on the aforementioned mycological media. After 5 

days of incubation at 26 °C plates were regularly checked for the growth of fungal 

colonies. Colony forming units (CFU) of filamentous fungi and yeasts on plates with 

different media composition were counted (Tab.3.1). Plates with rapidly growing and 

heavily sporulating Mucorales were discarded, since colony counting and 

subculturing from such plates was hardly possible. 

 
Tab.3.1. Plate counts: numbers signify colonies of total filamentous fungi and yeasts 

counted. n.c., not countable. 
 

a) MEA + BR plates 

 dilutions 
soils 10-1 10-2 10-3 10-4 

M 14 5 0 1 
N 102 17 3 0 
P 55 4 0 0 
R 83 13 0 0 
T 34 16 0 0 
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Tab.3.1. (continued) 
 
b) MEA + BR + Benomyl plates 

 dilutions 
soils 10-1 10-2 10-3 10-4 

M 67 0 0 0 
N 3 5 0 0 
P 2 0 0 0 
R 0 0 0 0 
T 4 0 0 0 

 
c) AMM + BR plates 

 dilutions 
soils 10-1 10-2 10-3 10-4 

M n.c. 93 9 0 
N n.c. 100 6 0 
P n.c. 255 1 0 
R 542 57 44 0 
T n.c. 102 1 0 

 
 

Morphologically distinct colonies were subcultured and identified using comparative 

sequence analysis (BLAST) of the ITS region. For this, a DNA extraction of pure 

cultures was performed with Phenol/Chloroform/Isoamyl alcohol. Purified DNA 

isolated from two selected pure cultures is shown in Fig.3.1 on the right, indicated by 

1 and 2. For identification of cultivated fungi the ITS region was amplified with primer 

pair ITS1/ITS4 and sequenced using ITS1 and ITS4, respectively. ITS-PCR products 

of selected fungi, indicated by their internal lab codes (p09 – p31), are shown in 

Fig.3.1 on the left. Length variabilities of ITS regions in different organisms are 

displayed in Fig.3.2. Identification of pure cultures was carried out by sequence 

analysis of the ITS region as described in 2.7. Identified fungal cultures are listed in 

Tab.3.2 and an overview of the taxonomy is depicted in Fig.3.3. 
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Fig. 3.1. Agarose-Gel of ITS-PCR-products. Numbers indicate colony number (internal 

lab code). 1 and 2, purified DNA isolated from subcultures NG_34 and NG_35, 
respectively; M, marker; neg, negative control. 

 
 
 

 
Fig. 3.2. Agarose-Gel illustrating the length variability of ITS regions exemplified by 

ITS-PCR-products obtained from cultured fungi. 

p09  p11  p16  p18  p19   p26  p28   p29  p31   M   neg     1       2 

1031 bp 
 
500 bp 

1031 bp 
 
500 bp 
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Tab.3.2. Cultured fungi. Acc. No, Accession number of closest hit in NCBI database; 
ID, identity to closest match in NCBI database; Putative Identification, classification 

based on ITS resp. LSU sequence; phylum: A, Ascomycota; B, Basidiomycota; sp., no 
specific species identified. 

 
Soil Code Putative Identification M* Phylum % ID Acc. No 

M p28 Beauveria tenella 1 A 100% AJ345087.1|BTE345087 
M p52 Capnodiales sp. 1 A 94% AJ972856.1 
M NG_H03 Chaetomium sp. 3 A 98% DQ093661.1 
M p44 Chaetomiaceae sp. 1 A 92% EU326205.1| 
M p37 Cordyceps bassiana 1 A 100% AJ345089.1 
M NG_28 Cryptococcus terricola 3 B 99% AF444377.1 
M NG_H16 Fusarium oxysporum 3 A 100% AY188919.1 
M p46 Sordariomycetes sp. 1 A 95% AB231012.1 
M p47 Massarina rubi 1 A 99% AF383963.1 
M p39 Oidiodendron cerealis 1 A 100% AF062788.1 
M p10 Penicillium glandicola 1 A 99% AY373916.1 
M NG_17 Penicillium sp. 1 A 98% AF033440.1 
M NG_08 Phoma cf. eupyrena 1 A 100% AJ890436.1 
M p12 Talaromyces flavus 1 A 99% AF455513.1 
M NG_H18 Trichocladium/Humicola sp. 1 A 99% AM292050.1 
M NG_05 Trichoderma koningiopsis 1 A 100% DQ379015.1 
M p45 Verticillium nigrescens 1 A 100% AJ292440.1|VNI292440 

       

N p38 Cryptococcus aerius 1 B 100% AF145324.1|AF145324 
N p40 Eurotium chevalieri 1 A 100% AY373886.1 
N NG_H04 Fusarium sp. 1 A 99% DQ452447.1 
N p31 Hypocrea lixii 1 A 100% EF442080.1 
N NG_H06 Hypocreales sp. 3 A 94% AF130140 
N NG_H14 Nectriaceae sp. 2 A 94% AY677294.1 
N p41 Onygenales sp. 1 A 97% DQ317338.1 
N NG_26 Penicillium sp. 3 A 100% DQ339570.1 
N p49 Pleosporales sp. 1 A 90% AY943061.1 
N p15 Talaromyces flavus 1 A 99% AF455513.1 
N NG_02 Trichoderma sp. 1 A 98% DQ345813.1 
N NG_01 Trichoderma velutinum 1 A 99% EF417479.1 

       

P NG_H02 Aspergillus flavipes 3 A 99% AY214443.1 
P NG_H01 Bionectria ochroleuca 3 A 100% AJ608977.1 
P p06 Chloridium sp. 1 A 100% AM262403.1 
P p07 Microascales sp. 1 A 97% EF029213.1 
P NG_H15 Fusarium oxysporum 1 A 99% DQ452451.1 
P p20 Hypocreales sp. 1 A 94% AB114223.1 
P NG_33 Penicillium chrysogenum 3 A 100% AY373903.1 
P NG_23 Penicillium janthinellum 3 A 99% AJ608945.1 
P NG_H17 Phaeosphaeriaceae sp. 2 A 90% AF181710.1|AF181710 

 
Tab.3.2. (continued) 



  3. Results 

 50 

Soil Code Identification M* Phylum % ID Acc. No 
P p50 Pseudogymnoascus roseus 1 A 100% AJ608972.1 
P NG_15 Sordariales sp. 1 A 92% EF017204.1 
P p08 Talaromyces flavus  1 A 99% AF455513.1 
P NG_22 Trichoderma rossicum 3 A 99% DQ083024.1 
P NG_13 Trichoderma viridescens 1 A 100% EU280135.1 

       

R p03 Aspergillus flavipes 1 A 99% AY214443.1 
R NG_34 Phlebia bresadolae (only ITS2) 3 B 99% AF141617.1 
R NG_H11 Bionectria ochroleuca 1 A 99% AJ608977.1 
R p11 Debaryomyces castellii 1 A 100% AB054102.1 
R p51 Microascales sp. 1 A 97% EF029213.1 
R NG_H10 Fusarium oxysporum 1 A 99% DQ459007.1 
R p01 Acremonium sp. 1 A 100% EF577238.1 
R NG_35 Helotiales sp. 1 A 95% AY188359.1 
R NG_H13 Nectria haematococca mpVI 3 A 99% AY633746.1 
R NG_H08 Penicillium atramentosum 3 A 99% AF033483 
R p02 Penicillium canescens 1 A 100% AY373901.1 
R p43 Penicillium sp. 1 A 98% AF455543.1 
R NG_25 Penicillium ochrochloron 3 A 99% DQ093695.1 
R NG_18 Penicillium sp. 1 A 99% AB274312.1 
R p53 Preussia sp. 1 A 99% AY943061.1 
R NG_16 Trichoderma atroviride 1 A 100% DQ841734.1 

       

T NG_36C Bionectriaceae sp. 3 A 98% EU552110.1 
T NG_32 Candida sp. 2 A 100% AM160629.1 
T NG_21B Cercophora/Apodus sp.  3 A 99% AF064642.1|AF064642 
T NG_09 Davidiella tassiana 1 A 99% AF297231.1|AF297231 
T NG_21A Helicodendron sp. 3 A 98% EF029238.1  
T NG_36B Helotiales sp. 3 A 94% AY188359.1 
T NG_27 Hypocrea lixii 3 A 99% EF191309.1 
T NG_06 Penicillium canescens 1 A 99% AY373901.1 
T NG_20 Penicillium sp. 3 A 98% AF178522.1|AF178522 
T NG_11 Penicillium sp. 1 A 99% EF070712.1 
T NG_10 Phoma cf. eupyrena 1 A 100% AJ890436.1 
T NG_21C Sordariomycetes sp. 3 A 90% EF027383.1 
T NG_12 Hypocreaceae sp. 1 A 98% EF417482.1 
T NG_04 Trichoderma koningiopsis 1 A 100% DQ379015.1 

       

 
 
*) M = medium, 1: MEA + BR, 2: MEA + BR + B, 3: AMM + BR 
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The fungal community, illustrated here by cultivable (under described conditions) 

fungi, of all soil samples taken together consisted of 61 different species, 4 species 

belonging to the phylum Basidiomycota and 57 species belonging to the phylum 

Ascomycota. Cultivable fungi from the Mucorales (subphylum Mucoromycotina) were 

found on plates but not further investigated (see above). Altogether, species 

belonging to 16 different families, 13 different orders, 6 different classes as well as 3 

different subphyla were found (exclusive uncertain taxonomic groups indicated as 

incertae sedis, Fig.3.3). Most of the species belong to the Pezizomycotina, which 

cover the classes Sordariomycetes (25 found species), Eurotiomycetes (15) and 

Dothideomycetes (7), and which contribute the most to the species variety. The class 

Eurotiomycetes almost exclusively consists of species, which belong to the 

Trichocomaceae (14) containing Penicillium, Talaromyces, Aspergillus and Eurotium 

species, whereas the class Sordariomycetes is mainly represented by members of 

the Hypocreales (16). The most abundant order of Dothideomycetes is Pleosporales 

(5) including Massarina and Preussia, among others. 

In total, 28 different genera were detected. The genera Penicillium and Trichoderma 

showed the highest diversity, comprising 11 different Penicillium species and 8 

different Trichoderma species (teleomorph Hypocrea), including species designated 

as Penicillium sp. or Trichoderma sp., respectively, for which the identification to the 

species level was not possible. 

 

3.2. Diversity analysis of fungal ITS/LSU sequences (clone libraries) 

To assess the fungal community of the soil samples, which were amenable to DNA 

analysis, a direct PCR approach was undertaken. For this, DNA was extracted 

directly from soil and subjected to ITS/LSU-PCR using the primer ITS1F specific for 

fungi and the universal eukaryotic primer TW13 for the 5’ LSU rRNA gene region. 

Clone libraries containing 96 clones for each soil sample were constructed in plasmid 

pTZ57R/T. Inserts were amplified with primer pair ITS1F/TW13. PCR products were 

directly subjected to RFLP analyses to estimate the sequence diversity within the 

clone libraries. The reaction was performed with the restriction endonuclease BsuRI 

(isoschizomere of HaeIII) and the fragments were separated on a 3 % high resolution 

agarose gel. Representative clones for each pattern were selected randomly for 

sequencing. 
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RFLP-patterns for each library are shown in Fig.3.4 – Fig.3.8. RFLP results are 

depicted in a subjacent table for each soil (Tab.3.3 – Tab.3.7): clones of distinct 

restriction patterns are listed in the left column. Clones which gave rise to a similar 

pattern are mentioned beside and the frequency at which a pattern occurs is shown 

in the right column. Codes of the clones refer to the position of the 96-well microtiter 

plate in which they are stored. Letters and numbers denote lines and columns of the 

microtiter plate, respectively. 

 

Clone library M (soil Maissau) 
The scheme for restriction products applied on the gels is as follows. 
A  01  02  03  04  05  06  B   01  02  03  04  05  06  C  01  02  03  04  05  06  D  01  02  03  04  05  06 
E  01  02  03  04  05  06  F   01  02  03  04  05  06  G  01  02  03  04  05  06  H  01  02  03  04  05  06 
A  07  08  09  10  11  12  B   07  08  09  10  11  12  C  07  08  09  10  11  12  D  07  08  09  10  11  12 
E  07  08  09  10  11  12  F   07  08  09  10  11  12  G  07  08  09  10  11  12  H  07  08  09  10  11  12 
       
 

 

 

 

 
Fig.3.4. RFLP-analysis of 96 clones obtained from soil sample M (left) and 

GeneRuler™ 100bp DNA Ladder (right). 
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Tab.3.3. RFLP-analysis of 96 clones obtained from soil sample M. 

Clone Identical patterns Frequency 
A01 D05            2 

A03 B01 B02 B03 C01 C11 C02 C06 C09 D01 D02 D08 A02 
  E05 F10 F11 F03 G10 G07 G08 H08 H09    

22 

A04 B05 C03           3 
A05 B06 B12 C05 C12 D03 E12 G12 G09 H12    10 
A06 A07 A10 A11 D04 E01 E03 E06 F05 F06 F07 H02 H04 13 
A08 A09 B08 B09 E07 E09        6 
B04 F12 H03           3 
B10 C10 D09 D11          4 
B11             1 
C04 G02 F04           3 
C08             1 
D06 H01            2 
D07 E10            2 
D10             1 
D12 F09 H10           3 
E02             1 
E04             1 
E08             1 
F01 H06 B07 F08          4 
F02             1 
G01 G06            2 
G03 H05            2 
G04             1 
G05 C07            2 
G11 H12            2 
H07             1 
H11                         1 
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Clone library N (soil Niederschleinz) 
A  01  02  03  04  05  06  B   01  02  03  04  05  06  C  01  02  03  04  05  06  D  01  02  03  04  05  06 
E  01  02  03  04  05  06  F   01  02  03  04  05  06  G  01  02  03  04  05  06  H  01  02  03  04  05  06 
A  07  08  09  10  11  12  B   07  08  09  10  11  12  C  07  08  09  10  11  12  D  07  08  09  10  11  12 
E  07  08  09  10  11  12  F   07  08  09  10  11  12  G  07  08  09  10  11  12  H  07  08  09  10  11  12 
 

 

 

 
Fig.3.5. RFLP-analysis of 96 clones obtained from soil sample N. 

 
 

Tab.3.4. RFLP-analysis of 96 clones obtained from soil sample N. 

Clone Identical patterns Frequency 
A02 D05 F06 G05 H01 H02 E11 G12 G07 G08 B12 11 
A03 B02 B03 B04 C03 D06      6 
A04 C06 B10 D11 F09       5 
A05           1 
A06 C10 D12 E08 F07 H05 H03     7 
A08 C11 H10         3 
A11 C12 C08 C09 G11       5 
A12 E12 H12         3 
B01 D01 G04         3 
B05 F01 F02         3 
B06 D04 G01 H04 A09 D10 G06 H06    8 
C01           1 
C02 D02          2 
C04           1 
C05 C07 B09 F12 H07       5 
D09           1 
E01 D07 F04         3 
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E02 F05 G03 A10 E05       5 
E03           1 
E04 B11          2 
E06 A07          2 
E07 G09 H11         3 
E09           1 
E10 H09          2 
F08 A08          2 
H09 E10 B07 G02               4 

 
 
Clone library P (soil Purkersdorf) 
A  01  02  03  04  05  06  07  08  09  10  11  12  01  02  03  04  05  06  07  08  09  10  11  12   B 
C  01  02  03  04  05  06  07  08  09  10  11  12  01  02  03  04  05  06  07  08  09  10  11  12   D 
E  01  02  03  04  05  06  07  08  09  10  11  12  01  02  03  04  05  06  07  08  09  10  11  12   F 
G  01  02  03  04  05  06  07  08  09  10  11  12  01  02  03  04  05  06  07  08  09  10  11  12   H 
 

 

 

 

 
Fig.3.6. RFLP-analysis of 96 clones obtained from soil sample P. 
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Tab.3.5. RFLP-analysis of 96 clones obtained from soil sample P. 

Clone Identical patterns Frequency
A01 B11 D06 D08 F10 H06 B07 F09 A09  9
A02 A08 B12        3
A03 C12 D02 D12 E09 G06 G09 C09   8
A04 B08 B09 C11 G01      5
A05 C08 E10 G03 H02      5
A06 B05 D04 E01 F04 F07 F11 H01 H04 H09 10
A07 D10 F01 G12 C07      5
A10 H03 H10        3
A11 D05 C05 E03 G11      5
A12 D11 E12 F12 G02      5
B01          1
B02 F03 F06 H05 H08 H12     6
B03 C04 E07        3
B04 E11 G05 C10       4
B06 H11         2
B10          1
C01          1
C02 D09 F05        3
C03          1
D01 G10         2
D03          1
D07          1
E02          1
E03          1
E05 F02         2
E06          1
E08          1
G04 G07         2
G08 H03 H10        3
H02          1
H07                   1

 
 
Clone library R (soil Riederberg) 
A  01  02  03  04  05  06  B   01  02  03  04  05  06  C  01  02  03  04  05  06  D  01  02  03  04  05  06 
E  01  02  03  04  05  06  F   01  02  03  04  05  06  G  01  02  03  04  05  06  H  01  02  03  04  05  06 
A  07  08  09  10  11  12  B   07  08  09  10  11  12  C  07  08  09  10  11  12  D  07  08  09  10  11  12 
E  07  08  09  10  11  12  F   07  08  09  10  11  12  G  07  08  09  10  11  12  H  07  08  09  10  11  12 
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Fig.3.7. RFLP-analysis of 96 clones obtained from soil sample R. 

 
 

Tab.3.6. RFLP-analysis of 96 clones obtained from soil sample R. 

Clone Identical patterns Frequency
B01 A06 A05 A04 A02 G09 E01         7
B04               1
B06               1
B08 H08              2
B12 A01 B07 A10 A09 H02 H03 G08 D12 C07 G07 G09 H12 F01 G03 15
C04               1
C05               1
C06 E05              2
C12               1
D01               1
D02               1
D03 D04 E06 G04            4
D06               1
D10 E03              2
E09 D05 G11 H04 C03           5
E11 F07 E04             3
F02 H07              2
F03               1
F04 G05              2
F10               1
G01 A03 B02 B05 F06 H09          6
G02 B03 G06 C09 H10 C01 E02         7
H06 H05 C02 C08 F05 F09          6
H11 G09                           2
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Clone library T (soil Tulln) 
A  01  02  03  04  05  06  B   01  02  03  04  05  06  C  01  02  03  04  05  06  D  01  02  03  04  05  06 
E  01  02  03  04  05  06  F   01  02  03  04  05  06  G  01  02  03  04  05  06  H  01  02  03  04  05  06 
A  07  08  09  10  11  12  B   07  08  09  10  11  12  C  07  08  09  10  11  12  D  07  08  09  10  11  12 
E  07  08  09  10  11  12  F   07  08  09  10  11  12  G  07  08  09  10  11  12  H  07  08  09  10  11  12 
 

 

 

 

 
Fig.3.8. RFLP-analysis of 96 clones obtained from soil sample T. 

 
 

Tab.3.7. RFLP-analysis of 96 clones obtained from soil sample T. 

Clone Identical patterns Frequency
A01       1
A03       1
A04 B02 G12 G3    4
A10       1
B11 B12 F06 C12    4
C01 E01      2
C02       1
C04 C05 F03 B10 C09 G10 A09   7
C06 H03 H04 E06    4
C07 G02 D05 C11 F12   5
C10 F10 B04 E05    4
D01       1
D03 F07      2
D07       1
D12 A08 A11 E08 F02 B03   6
E04 D09 C08     3
E09 F09 B07 E03    4
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E10 E02 F04     3 
F01       1 
F08 G06      2 
F11       1 
G01       1 
G11       1 
H01       1 
H06       1 
H07       1 
H09 H08 G09 D08 B08 B09 H05 H02 F05 E07 H12 E11 D04 B06 14 
H10 D02 D06 D10    4 
H11 G07 G08 G04 G05 E12          6 

 
 
3.2.1. Diversity screening via RFLP 
RFLP screening was done for 96 clones per each soil sample using enzyme BsuRI. 

The number of obtained patterns for cloned ITS/LSU fragments was 27 for M, 26 for 

N, 31 for P, 24 for R and 29 for T (Tab.3.8). At least one representative of each 

pattern was sequenced. The number of clones which were sequenced for each soil 

sample is given in Tab.3.8. Taken together, 201 clones were sequenced. 

 
Tab.3.8. Overview of RFLP-analyses 

soils: M N P R T 

different patterns: 27 26 31 24 29 
drop-outs (no PCR-product obtained): 0 2 2 0 4 

maximal frequency of identical patterns: 22 11 10 15 14 
number of clones sequenced: 30 48 40 48 35 

 
 
The whole set of identified fungal sequences from the cloning approach is given in 

Tab.3.9. 

After sequences have been obtained for each RFLP-pattern, RFLP-types were 

defined (Tab.3.10). This was performed manually by comparing the RFLP-pattern-

analysis with the sequencing results as well as by sequence analysis of individual 

sequences. 
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A02 M Chaetomiaceae 99 AY346305.1 98 EF192179.1 99 AY346305.1 
A03 M Trichocladium asperum 94 EU040239.1 98 AM292050.1 98 AM292051.1 

22* 

A06 M Lasiosphaeriaceae 95 EU040239.1 94 AY219880.1 99 AY780059.1 13 
A05 M Myrothecium sp. 97 AJ302002.1|MAT302002 94 AJ302005.1 99 AJ302000.1 11 
A08 M Trichocladium asperum 95 EU040239.1 98 AM292050.1 98 AM292051.1 6 
B07 M Scleroderma bovista 90 EU046005.1 98 AB211267.1 99 AF336264.1 
H06 M Scleroderma bovista 90 EU046005.1 98 AB211267.1 99 AF336264.1 

4* 

B10 M Scleroderma bovista 90 EU046005.1 98 AB099901.1 99 AF336264.1 4 
A04 M Hapsidospora/Acremonium sp. 93 AM421065.1 98 U57672.1|ACU57672 99 AF096192.1|AF096192 3 
C04 M Cercophora sp. 93 EU040239.1 99 AY999136.1 99 AY780067.1 3 
D12 M Hebeloma sp. 97 AF430291.1 99 AY311526.1 99 EF561632.1 3 
H03 M Nectria sp. 90 AJ301967.1|VCI301967 100 DQ317342.1 95 AB027379.1 3 
A01 M Myrothecium sp.1 - n/a  - n/a  97 AJ301999.1|MVE301999 2 
D07 M Lasiosphaeriaceae 90 EU040239.1 98 DQ166963.1 97 AF064642.1|AF064642 2 
G01 M Cyphellophora laciniata 99 EU035416.1 98 EU035416.1 99 EU035416.1 
G06 M Cyphellophora laciniata 98 EU035416.1 98 EU035416.1 99 EU035416.1 

2* 

G03 M Soradariales 96 EF027383.1 94 AF443851.1|AF443851 97 AY999099.1 2 
G05 M Hapsidospora/Acremonium sp. 94 AM421065.1 98 U57672.1|ACU57672 99 AF096192.1|AF096192 2 
G11 M Paecilomyces carneus 92 L07138.1|EPIRGITSH 100 AB258369.1 100 EF468843.1 2 
H01 M Minimedusa polyspora 99 DQ915476.1 98 DQ915476.1 99 DQ915476.1 2 
B11 M Myrothecium sp. 97 AJ302002.1|MAT302002 94 AJ302005.1|MIN302005  99 AJ302000.1|MLE302000 1 
C08 M Lasiosphaeriaceae 96 EF027383.1 95 AF443851.1|AF443851 97 AY999099.1 1 
D10 M Lasiosphaeriaceae 91 EU040239.1 96 AY999128.1 98 AY999106.1 1 
E02 M Lasiosphaeriaceae 90 EU040239.1 98 DQ166963.1 97 AF064642.1|AF064642 1 
E04 M Hypocreales 89 AF335453.1 98 AJ890439.1 95 AF210671.1 1 
E08 M Trichosporon dulcitum 97 AB180200.1 99 AF444428.1 100 AF075517.1|AF075517 1 
F02 M Lasiosphaeriaceae 97 AF064642.1|AF064642 97 DQ166963.1 97 AF064642.1|AF064642 1 
H07 M Pleosporales 90 DQ885897.1 99 AJ246158.1|PMA246158  99 DQ810223.1 1 

                                            
1 Identification was based on the position in the distance tree of results 
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H11 M Trichocladium asperum 94 EU040239.1 99 AM292050.1 98 AM292051.1 1 
A02 N Hypocreales 92 AJ301967.1|VCI301967 99 DQ779785.1 96 AY138481.1 
D08 N Hypocreales 91 AJ301967.1|VCI301967 99 DQ317342.1 95 AY138481.1 

12* 

B06 N Botryotinia sp. 88 AY394901.1 99 EU563125.1 99 AY544651.1 
A09 N Stachybotrys chartarum  99 AY095980.1 99 AF081468.2 

8* 

A06 N Pyrenophora tritici-repentis 95 AY154681.1 100 AY739861.1 99 DQ384097.1 7 
A03 N Sordariales 95 EU040239.1 95 DQ854987.1 97 EU040239.1 6 
A04 N Ascomycota 85 AF081480.2|AF081480 - MUC 92 AF081478.2|AF081478 5 
A11 N Tetracladium sp. 99 EU883430.1  99 EU883430.1  99 EU883430.1  
C08 N Thanatephorus cucumeris 97 AF354078.1 100 AF472512.1 99 AF354111.2 
C09 N Thanatephorus cucumeris 97 AF354078.1 99 AY684922.1 98 AF354111.2 
C12 N Mortierella alpina 90 EU428773.1 99 EU076962.1 94 DQ273794.1 
G11 N Davidiella sp. 100 EF679369.2 100 EU622923.1 100 EF679390.2 

5* 

C05 N Verticillium nigrescens 90 AJ301962.1|VCO301962 100 AJ292440.1|VNI292440 99 EF543841.1 
B09 N Fusarium incarnatum 99 AY633745.1 99 AY147368.1 99 AY213706.1 
C07 N Fusarium incarnatum 99 AY633745.1 100 AY147362.1 99 EU214561.1 

5* 

E02 N Sordariomycetes 97 AF222497   98 AM922222.1 98 EF543841.1 5 
C02 N Sordariales 96 DQ900985.1 95 AY999129.1 97 AY346271.1 
B08 N Sordariales 96 DQ900985.1 95 AY999129.1 97 AY346271.1 
D02 N Lasiosphaeriaceae 96 DQ900985.1 94 AY999129.1 97 DQ900985.1 
F03 N Basidiomycota 95 DQ915476.1 98 DQ915476.1 98 DQ457641.1 

4* 

E10 N Cyphellophora laciniata 98 EU035416.1 98 EU035416.1 99 EU035416.1 
H09 N Cyphellophora laciniata 98 EU035416.1 98 EU035416.1 98 EU035416.1 

4* 

A08 N Acremonium strictum 96 AJ558115.1|NMA558115  99 AY138848.1 100 AY138485.1 3 
A12 N Minimedusa polyspora 98 DQ915476.1 98 DQ915476.1 99 DQ915476.1 
E12 N Ascomycota 94 AY188359.1 100 DQ420923.1 98 AY188359.1 

3* 

B01 N Pleosporales 93 AY293790.1 89 EF120414.1 96 AY510387.1 3 
B05 N Stachybotrys chartarum 100 AF081468.2 100 AF081468.2 100 AF081468.2 
F01 N Xylariales 95 DQ384572.1 99 EF187912.1 99 AF452030.1 

3* 
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E01 N Lasiosphaeriaceae 87 EU040239.1 98 AY999135.1 99 AY999110.1 
D07 N Nectria mauritiicola 99 AJ558115.1|NMA558115 99 AY138846.1 100 AJ558115.1|NMA558115 

3* 

E07 N Tetracladium sp. 99 EU883430.1 99 EU883430.1 99 EU883430.1 
H11 N Tetracladium sp. 97 EU883430.1 99 DQ068996.1 94 AY204612.1 

3* 

E04 N Nectria haematococca 99 AY633746.1 99 AB305107.1 100 AY188918.1 2 
E06 N Pleosporales 98 EF590319.2 98 AM901685.1 98 DQ885894.1 2 
F08 N Thanatephorus praticola 98 AF354078.1 100 DQ355140.1 99 AF354111.2 
H08 N Cystofilobasidiales 87 AM922290.1 99 AF444418.1 100 EF551318.1 

2* 

A05 N Botryotinia sp. 88 AY394901.1 100 EU563125.1 99 AY544651.1 1 
C01 N unidentified fungus - MUC - MUC 89 DQ273789.1 1 
C04 N unidentified fungus 84 EF413029.1 86 EF434096.1 84 EF413029.1 1 
D09 N Hypocrea sp. 98 AB027384.1 98 AY857210.1 99 AF127148.1|AF127148 1 
E03 N Lasiosphaeriaceae 91 EF027383.1 98 AY999135.1 99 AY999110.1 1 
E09 N C. globosum related 97 AJ620951.1 98 AY533556.1 97 AJ746203.1 1 
F10 N Nectria mauritiicola 99 AJ558115.1|NMA558115 99 AY138846.1 99 AJ558115.1|NMA558115  1 
F11 N Chytridiomycota 92 AY546692.1 95 AF216770.1 92 AY546692.1 1 
G10 N Alternaria sp. 99 AY154712.1 100 EU326181.1 99 DQ678068.1 1 
A06 P Basidiomycota 86 AY542864.1 84 AM113462.1 95 AF506709.1 
B05 P Basidiomycota 95 AF506709.1 86 AM113462.1 95 AF506709.1 

10* 

A01 P Tetracladium sp. 96 EU883430.1 94 EU754979.1 100 EU883432.1 
B11 P Bionectriaceae 98 AF210677.1 97 EU567315.1 99 AF210690.1 
D08 P Tetracladium sp. 98 EU883432.1 96 FJ000374.1 99 EU883432.1 

9* 

A03 P Tetracladium maxilliforme 99 EU883430.1 100 DQ068996.1 99 EU883430.1 
C09 P Tetracladium sp. 99 EU883432.1 99 FJ000375.1 99 EU883432.1 

8* 

B02 P Mortierellaceae 93 EF027378.1 88 EF027378.1 95 AF157197.1|AF157197 
F03 P Pyronemataceae 88 DQ206862.1 99 AF072091.1|AF072091 96 AY544654.1 

6* 

A04 P Cryptococcus terricola 99 AM922287.1 99 EU252550.1 100 EF068204.1 5 
A05 P Helotiales 93 AF284122.1 97 EF029238.1 97 AF222454.1 
H02 P Helotiales 93 AY394907.1 97 EF029238.1 96 EU040231.1 
C08 P Helotiales 93 EU040232.1 98 AF128439S2 96 EU040231.1 

5* 
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A07 P Schizothecium sp. 89 EU040239.1 97 AY999118.1 99 AY780076.1 5 
A12 P Herpotrichiellaceae 99 AF050276.1 99 EU046043.1  100 EU046043.1 5 
A11 P Lecythophora sp. 97 AY219880.1 96 AY219880.1 98 AY219880.1| 4 
B04 P Neonectria radicicola 93 AJ301967.1|VCI301967 99 AJ279490.1|CSP279490 100 AY677313.1 
G05 P Mycosphaerellaceae 97 EU019284.1 96 EU019284.1 98 EU019257.2 

4* 

A02 P Pucciniomycotina 90 AM410637.1 82 AF444507.2 97 AF189896.1 3 
A10 P Pyronemataceae 87 DQ206862.1 90 DQ491500.1 99 AY500531.1 3 
B03 P Tetracladium maxilliforme 99 EU883430.1 100 DQ068996.1 99 EU883432.1 3 
C02 P Nectria mauritiicola 99 AJ558115.1 100 AJ558115.1|NMA558115 99 AJ558115.1|NMA558115 3 
E07 P Tetracladium maxilliforme 99 EU883430.1 100 DQ068996.1 100 EU883432.1 3 
B06 P Minimedusa polyspora 99 DQ915476.1 98 DQ915476.1 100 DQ915476.1 2 
D01 P Herpotrichiellaceae 99 AF050276.1|AF050276  98 EU046043.1 100 AB100625.1 2 
D07 P Leotiomycetes 98 EU035444.1 94 DQ317329.1 99 EU035444.1 2 
E05 P Leptodontidium orchidicola 96 EU035444.1 99 AF486133.1 98 EU035444.1 2 
G04 P Herpotrichiellaceae 99 EU046043.1 99 EU046043.1 100 EU046043.1 2 
B01 P Pyronemataceae 98 AY500531.1 87 DQ491500.1 98 AY500531.1 1 
B10 P Helotiales 94 EF596821.1 94 U57494.1|CPU57494  97 AF222478.1 1 
C01 P Sordariales 94 EU040239.1 95 EU543258.1 96 AJ620951.1 1 
C03 P Sordariomycetes 89 EU040239.1 92 EF197068.1 94 AY346300.1 1 
D03 P Leotiomycetes 97 EU035444.1 97 DQ679495.1 99 AB100621.1 1 
E02 P Chaetomiaceae 97 EU040239.1 98 AY533556.1 99 AF096186.1|AF096186 1 
E03 P Fusarium sp. 96 EF453189.1 95 AY230193.1 98 EF453189.1 1 
E06 P Boliniales 90 EU040239.1 86 DQ185070.1 96 EF154451.1 1 
E08 P Helotiales 97 AY188359.1 95 AY188359.1 98 AY188359.1 1 
G08 P Tetracladium sp. 97 EU883430.1 93 FJ000371.1 99 EU883432.1 1 
H07 P Hypocrea sp. 95 AB027384.1 100 EF601618.1 98 AB027384.1 1 
E09 P Tetracladium sp. 98 EU883432.1 97 J000374.1 99 EU883432.1 1 
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B12 R Tetracladium sp. 99 EU883430.1 97 DQ068996.1 100 EU883432.1 
G03 R Sordariomycetes 87 AB278173.1 96 AM922199.1 97 U46889.1|LCU46889 
A09 R Tetracladium sp. 99 EU883430.1 99 DQ068996.1 100 EU883432.1 
C07 R Tetracladium sp. 99 EU883430.1 100 DQ068996.1 100 EU883432.1 
H12 R Hypocreales 92 AF310976.1|AF310976 100 DQ247775.1 99 AB067706.1 

14* 

A03 R Fungi SCGI 86 EU046087.1 91 DQ182440.1 89 EU292556.1 7 
G02 R Ascomycota 88 AJ558115.1|NMA558115  85 U57671.1|ASU57671  91 AY281098.1 
C09 R Tetracladium furcatum 100 EU883432.1 100 FJ000375.1 100 EU883432.1 

7* 

B01 R Tetracladium sp.  98 EU883430.1 100 DQ068996.1 98 EU883432.1 6 
H06 R Fungi SCGI 88 EU292507.1  91 DQ182440.1  91 EU292556.1  
C02 R Fungi SCGI 87 EU292507.1 91 DQ182440.1 95 EU179598.1 

6* 

E09 R Fusarium oxysporum 99 EU214564.1 99 EU214564.1 99 EU214568.1 
D05 R Tetracladium sp.  99 EU883430.1 99 DQ068996.1 99 EU883432.1 

5* 

D03 R Lasiosphaeriaceae 99 AY780061.1 97 AY999128.1 99 AY780061.1 
D04 R Lasiosphaeriaceae 92 DQ900985.1 91 DQ166962.1 96 AY780064.1 

4* 

G01 R Fungi SCGI 86 EU292507.1 90 DQ182440.1 89 EU179995.1 
E12 R Lasiosphaeriaceae 91 EU040239.1 91 AY999128.1  98 AY780061.1 
F06 R Fungi SCGI 87 EU179598.1 91 DQ182440.1 95 EU179598.1 

4* 

C06 R Cryptococcus aerius 94 AM922287.1 99 AF145324.1|AF145324 99 AF181527.1|AF181527  
E05 R Cryptococcus aerius 92 AM922287.1 100 AF145324.1|AF145324 99 AF181544.1|AF181544 

3* 

E11 R Tetracladium sp.  99 EU883430.1 100 DQ068996.1 99 EU883432.1 3 
H11 R Phyllachoraceae 99 DQ286218.1 98 DQ779781.1 99 DQ286218.1 
G12 R Fusarium sp. 99 EU563588.1 98 AY633561.1 99 AB363765.1 

3* 

B08 R Pyronemataceae 93 EF417800.1 83 EF417800.1 97 EF417800.1 2 
B09 R Pyronemataceae 89 DQ206862.1| 97 AF072091.1|AF072091 97 DQ220322.1 2 
D06 R Ascomycota 89 AJ558115.1|NMA558115 87 U57671.1|ASU57671 93 AY281098.1 2 
D10 R unidentified fungus 84 AY239018.1 85 AY035644.1 85 DQ273788.1 
E03 R unidentified fungus - MUC 92 EU076962.1 85 DQ273788.1 

2* 

E08 R Davidiella/Cladosporium 99 EF679369.2 100 EU622923.1 99 EF679390.2 2 
F02 R unidentified fungus - MUC - MUC  82 AF506409.1 2 
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F04 R Neonectria radicicola 93 EU214559.1 100 AJ279490.1|CSP279490 100 AY677313.1| 2 
F08 R Davidiella/Cladosporium 100 EF679369.2 100 EU622923.1 100 EF679390.2 2 
A11 R Cryptococcus aerius 97 EU046047.1 100 AF145324.1|AF145324   99 AF181544.1|AF181544 1 
B04 R unidentified fungus 82 AF115333.1 85 DQ421136.1 89 DQ341997.1 1 
B06 R Ascomycota - n/a - n/a 96 AY293785.1 1 
C04 R Fungi SCGI - n/a - n/a 95 EU179598.1 1 
C05 R Hypocreales 97 AY129552.1 92 AY677294.1 97 AY281098.1 1 
C10 R Fusarium sp. 95 AF310976.1|AF310976   98 AY729072.1 97 AY097324.1 1 
C12 R Fusarium solani 99 AY633746.1 99 AY633746.1 100 AY097318.1 1 
D01 R Basidiomycota - MUC MUC 95 DQ341916.1 1 
D02 R Cryptococcus sp. 99 DQ000318.1 100 AM160648.1 99 AM160648.1 1 
D07 R Herpotrichiellaceae 97 AF050274.1|AF050274 98 DQ008140.1 99 EU046043.1 1 
D09 R Blastocladiomycota - MUC 92 AY997034.1 84 X90411.1|BEDNA28RR 1 
D11 R Tetracladium sp.  99 EU883430.1 99 DQ068996.1 99 EU883432.1 1 
F03 R Fungi SCGI 89 EU292507.1 93 DQ182440.1 91 EU292556.1 1 
F11 R Hypocreales 86 AJ301967.1|VCI301967 85 EF060655.1 91 AY281098.1 1 
H09 T Trichocladium related 94 EU040239.1 99 AM292050.1 99 AM292051.1 
B06 T Sordariales 96 EU040239.1 97 AJ390388.1|CSY390388 99 AY346305.1 
G09 T Chaetomiaceae 96 EU040239.1 97 AJ271583.1|THY271583 99 AF286412.1|AF286412 

14* 

A06 T Herpotrichiellaceae  97 AF050274 95 AF050274 100 EU046043.1 
C05 T Coprinellus sp. 91 AY228352.1 98 AY521250.1 99 AY663837.1 

8* 

D12 T Sordariales 97 AY587938.1 96 AF177155 97 DQ376251.1 6 
H11 T Fusarium sp. 99 AY188919.1 100 EU214567.1 99 EU214568.1 6 
C07 T Schizothecium vesticola 99 AY780076.1 97 AY999118.1 99 AY780076.1 5 
B11 T Pleosporales 95 DQ384105.1 90 AJ972795.1 95 DQ384105.1 4 
C06 T Sordariales 96 EU040239.1 97 AJ390388.1|CSY390388 99 AY346305.1 4 
C10 T Pezizomycotina 91 DQ227261.1 88 DQ227261.1 93 EF608074.1 4 
E09 T Mucoromycotina 92 DQ273794.1 86 EF126343.1 92 DQ273794.1 4 
H10 T Tetracladium sp.  98 EU883432.1 97 FJ000374.1 99 EU883432.1 
D06 T Phialophora sp. 94 EU035444.1 99 AY805586.1 97 EU040232.1 

4* 

 
 



 
 

Tab.3.9. (continued) 
C

lo
ne

 

so
il Identification 

%
 ID

 (I
TS

  
+ 

LS
U

) 

Acc.No.  
(ITS + LSU) 

%
 ID

 (I
TS

) 

Acc.No.  
(ITS) 

%
 ID

 (L
SU

) 

Acc.No.  
(LSU) # 

A04 T Lasiosphaeriaceae 99 AY780076.1 98 EF197082.1 99 AY780076.1 3 
E04 T Pezizales 97 AY500531.1 94 DQ491500.1 97 AY500531.1 3 
E10 T Davidiella sp. 100 EF679390.2 100 EF679390.2 100 EF679390.2 3 
C01 T Neonectria ramulariae 99 AY677333.1 99 AJ608955.1|   99 AB067706.1  2 
H06 T Sordariomycetes 83 AB031196.1 80 DQ528789.1 82 DQ470951.1 1 
D03 T Psathyrella sp. 93 AY228352.1 89 AY461837.1 98 DQ986271.1 2 
F08 T Cryptococcus aerius 94 AM922287.1 100 AF145324.1|AF145324 99 EF644448.1 2 
A01 T Lasiosphaeriaceae 96 AY587936.1 97 AY587911.1 96 AY587936.1 1 
A03 T Lasiosphaeriaceae - n/a - n/a 99 AF064642.1|AF064642  1 
B05 T Herpotrichiellaceae  97 AF050274 95 AF050274 100 EU046043.1 1 
C02 T Helotiales 91 DQ227263.1 88 DQ227260.1 94 EF608074.1 1 
C03 T Agaricomycetes 94 EU118620.1 90 EU118620.1 96 EU118620.1 1 
D01 T Hypocreales 93 AJ558115.1|NMA558115 97 AM262391.1 97 AJ558115.1|NMA558115 1 
D07 T Davidiella sp. 100 EF679390.2 100 EF679390.2 100 EF679390.2 1 
F01 T Pleosporales 96 DQ384098.1 88 AJ972795.1 96 DQ384105.1 1 
F11 T Chytridiomycota - n/a - n/a 93 DQ273776.1 1 
G01 T Chaetomiaceae 96 EU040239.1 97 EF192179.1 99 AY346305.1 1 
G03 T Lasiosphaeriaceae 88 EU040239.1 96 EF197082.1 99 AY780076.1 1 
G11 T Sordariales 97 AY587936.1 97 EF197073.1 97 AY587936.1 1 
H01 T Ascomycota 93 EU292653.1 98 AF128440.1|AF128439S2 96 EU040231.1 1 
H07 T Chaetomiaceae 96 EU040239.1 97 EF192179.1 99 AY346305.1 1 

 
Identification: classification based on ITS, LSU or both sequences 
Acc. No.: accession number of closest hit in NCBI database 
ID: identity to closest match in NCBI database 
#: frequency 
n/a: not available 
MUC: match under cutoff 
*: additional clone of an RFLP-pattern 
SCGI: Soil Clone Group I, unclassified fungal sequences, which have been postulated as a novel sub-phylum of Ascomycota by phylogenetic analyses by Porter 
and co-workers (2008). 
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Tab.3.10. Classification of sequences in OTUs. Sorting after frequency within each soil. 

soil OTU Name #  soil OTU Name # 
M 3 Trichocladium asperum 18  P 127 Basidiomycota sp.2 10 
M 6 Lasiosphaeriaceae sp.7 13  P 111 Tetracladium related 9 
M 5 Myrothecium sp.2 12  P 53 Herpotrichiellaceae sp.2 9 
M 2 Chaetomiaceae sp.1 11  P 112 Tetracladium related 8 
M 7 Scleroderma bovista 8  P 95 Schizothecium vesticola 5 
M 4 Hapsidospora/Acremonium sp. 5  P 52 Helotiales sp.2 5 
M 10 Lasiosphaeriaceae sp.9 4  P 32 Cryptococcus terricola 5 
M 20 Nectria sp. 3  P 92 Pyronemataceae sp.1 4 
M 12 Hebeloma sp.1 3  P 68 Lecythophora sp. 4 
M 8 Cercophora sp. 3  P 116 Tetracladium related 3 
M 19 Minimedusa polyspora 2  P 94 Pyronemataceae sp.2 3 
M 18 Paecilomyces carneus 2  P 90 Pucciniomycotina sp. 3 
M 17 Sordariales sp.1 2  P 79 Nectria mauritiicola 3 
M 16 Cyphellophora laciniata 2  P 74 Mortierellaceae sp. 3 
M 1 Myrothecium sp.1 2  P 69 Leotiomycetes sp. 3 
M 21 Pleosporales sp.1 1  P 81 Neonectria radicicola 2 
M 14 Trichosporon dulcitum 1  P 76 Mycosphaerellaceae sp. 2 
M 13 Hypocreales sp.1 1  P 72 Minimedusa polyspora 2 
M 11 Lasiosphaeriaceae sp.10 1  P 70 Leptodontidium orchidicola 2 
M 9 Lasiosphaeriaceae sp.8 1  P 118 Boliniales sp. 1 
     P 103 Sordariomycetes sp.2 1 

N 44 Hypocreales sp.2 12  P 98 Sordariales sp.4 1 
N 105 Stachybotrys chartarum 7  P 77 Bionectriaceae sp. 1 
N 91 Pyrenophora tritici-repentis 7  P 55 Hypocrea sp.2 1 
N 99 Sordariales sp.2 6  P 51 Helotiales sp.3 1 
N 121 Ascomycota sp.1 5  P 50 Helotiales sp.4 1 
N 116 Tetracladium related 5  P 45 Fusarium sp.1 1 
N 96 Botryotinia sp. 5  P 23 Chaetomiaceae sp.2 1 
N 16 Cyphellophora laciniata 4      
N 126 Acremonium strictum 3      
N 106 Thanatephorus cucumeris 3      
N 100 Sordariales sp.3 3      
N 86 Pleosporales sp.2 3      
N 41 Fusarium incarnatum 3      
N 107 Verticillium nigrescens 2      
N 102 Sordariomycetes sp.1 2      
N 87 Pleosporales sp.3 2      
N 78 Nectria mauritiicola 2      
N 67 Lasiosphaeriaceae sp.1 2      
N 43 Nectria haematococca 2      
N 130 Basidiomycota sp.1 1      
N 122 Ascomycota sp.2 1      
N 120 Alternaria sp. 1      
N 108 Xylariales sp. 1      
N 73 Mortierella alpina 1      
N 72 Minimedusa polyspora 1      
N 54 Hypocrea sp.1 1      
N 38 Fungi sp.1 1      
N 34 Davidiella sp.1 1      
N 33 Cystofilobasidiales sp. 1      
N 27 Chytridiomycota sp.2 1      
N 26 Chytridiomycota sp.1 1      
N 25 Chaetomium globosum related 1      
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Tab.3.10. (continued) 

soil OTU Name #  soil OTU Name # 
R 116 Tetracladium related 14  T 101 Sordariales sp.5 8 
R 36 Fungi SCGI sp. 11  T 95 Schizothecium vesticola 8 
R 115 Tetracladium related 6  T 97 Sordariales sp.6 7 
R 125 Ascomycota sp.4 5  T 48 Fusarium sp.4 6 
R 65 Lasiosphaeriaceae sp.2 4  T 88 Pleosporales sp.4 5 
R 34 Davidiella sp.2 4  T 53 Herpotrichiellaceae sp.1 5 
R 30 Cryptococcus aerius 4  T 83 Pezizomycotina sp. 4 
R 114 Tetracladium related 3  T 75 Mucoromycotina sp. 4 
R 104 Sordariomycetes sp.3 3  T 34 Davidiella sp.3 4 
R 60 Hypocreales sp.5 3  T 29 Coprinellus sp. 4 
R 94 Pyronemataceae sp.4 2  T 24 Chaetomiaceae sp.4 4 
R 93 Pyronemataceae sp.3 2  T 3 Trichocladium sp. related 4 
R 81 Neonectria radicicola 2  T 82 Pezizales sp. 3 
R 42 Fusarium oxysporum 2  T 112 Tetracladium related 2 
R 39 Fungi sp.2 2  T 89 Psathyrella sp. 2 
R 129 Basidiomycota sp.4 1  T 84 Phialophora sp. 2 
R 128 Basidiomycota sp.3 1  T 80 Neonectria ramulariae 2 
R 124 Ascomycota sp.3 1  T 30 Cryptococcus aerius 2 
R 117 Blastocladiomycota sp. 1  T 22 Chaetomiaceae sp.3 2 
R 85 Phyllachoraceae sp. 1  T 123 Ascomycota sp.5 1 
R 59 Hypocreales sp.3 1  T 119 Agaricomycetes sp. 1 
R 58 Hypocreales sp.4 1  T 71 Leptodontidium sp. 1 
R 53 Herpotrichiellaceae sp.3 1  T 66 Lasiosphaeriaceae sp.5 1 
R 47 Fusarium sp.3 1  T 64 Lasiosphaeriaceae sp.6 1 
R 46 Fusarium sp.2 1  T 62 Lasiosphaeriaceae sp.4 1 
R 43 Nectria haematococca 1  T 57 Hypocreales sp.6 1 
R 40 Fungi sp.3 1  T 49 Helotiales sp.5 1 
R 35 Eukaryote sp. 1  T 28 Chytridiomycota sp.3 1 
R 31 Cryptococcus sp. 1      
R 11 Lasiosphaeriaceae sp.3 1      

 
OTU: operational taxonomic unit 
#: frequency 
SCGI: Soil Clone Group I; unclassified fungal sequences, which have been postulated as a novel sub-
phylum of Ascomycota by phylogenetic analyses by Porter and co-workers (2008). 
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3.2.2. Diversity analysis of RFLP-types 
For the analysis of the sequences on different taxonomic levels, a database was 

created (see 2.7.1). This database contains RFLP-type data (i.e. RFLP-type-No, soil 

sample and abundance) as well as the identification result and the corresponding 

taxonomic description on each level (species, genus, family, order, class, subphylum 

and phylum) for each RFLP-type. The data constructed in this way were further 

analysed with the software SPSS by applying frequency analyses. Outputs of 

frequency analyses of cases (=RFLP-type) weighted according to their abundance 

within the respective soil for the different taxonomic levels are depicted in Tab.3.11a 

– e. Taxa of uncertain position are listed as incertae sedis. These taxa have been 

placed as species of the least inclusive level in the hierarchy to which they can be 

assigned with confidence. The term ‘basal fungal lineages’ represents early-diverging 

groups, traditionally placed within the Zygomycota and Chytridiomycota.  

 
Tab.3.11. Composition of clone libraries from different soils in %. 

a) Phylum M N P R T 
Ascomycota 88.4 89.0 75.5 85.4 83.9 
Basidiomycota 11.6 6.6 21.3 8.5 10.3 
Chytridiomycota 2.2  1.1 
Basal fungal lineages 1.1 3.2  4.6 
Fungi unidentified 1.1 3.7  
Blastocladiomycota 1.2  
Eukaryota unidentified 1.2  
Total 100.0 100.0 100.0 100.0 100.0 

 
b)              Phylum Subphylum M N P R T

Eukaryota Eukaryota i. s.  1.2 
Fungi Fungi i. s. 1.1  3.7 

Ascomycota i. s. 6.6  7.3 1.1
mitosporic Ascomycota 18.9 13.2 23.4 28.0 8.0
Pezizomycotina 69.5 69.2 52.1 36.6 74.7

Ascomycota 

SCGI  13.4 
Basidiomycota i. s. 1.1 10.6 2.4 
Agaricomycotina 11.6 5.5 7.4 6.1 10.3Basidiomycota 
Pucciniomycotina 3.2  

Chytridiomycota Chytridiomycota i. s. 2.2   1.1
Blastocladiomycota Blastocladiomycota i. s.  1.2 

Basal fungal lineage Mucoromycotina 1.1 3.2  4.6
Total 100 100 100 100 100

Basal fungal lineages: early-diverging groups, which traditionally have been placed within the Zygomycota and 
Chytridiomycota. SCGI: Soil Clone Group I; unclassified fungal sequences, which have been postulated as a 
novel sub-phylum of Ascomycota by phylogenetic analyses by Porter and co-workers (2008). 
i. s.: incertae sedis; taxa of uncertain position, which have been placed as species of the least inclusive level in 
the hierarchy to which they can be assigned with confidence. 



Tab.3.11. (continued) 

c)              Phylum Subphylum Class M N P R T
Eukaryota Eukaryota incertae sedis  1.2

Fungi Fungi incertae sedis Fungi incertae sedis 1.1 3.7
Ascomycota incertae sedis Ascomycota incertae sedis 6.6 7.3 1.1

Sordariomycetes 66.3 44.0 22.3 25.6 49.4
Eurotiomycetes 2.1 4.4 9.6 1.2 5.7
Dothideomycetes 1.1 15.4 2.1 4.9 10.3
Leotiomycetes 5.5 10.6 1.1
Pezizomycetes 7.4 4.9 3.4

Pezizomycotina 

Pezizomycotina incertae sedis 4.6
mitosporic Ascomycota mitosporic Ascomycota 18.9 13.2 23.4 28.0 8.0

Ascomycota 

SCGI SCGI not specified 13.4

Basidiomycota incertae sedis Basidiomycota incertae sedis 1.1 10.6 2.4
Agaricomycetes 10.5 4.4 2.1 8.0

Agaricomycotina 
Tremellomycetes 1.1 1.1 5.3 6.1 2.3

Basidiomycota 

Pucciniomycotina Pucciniomycotina incertae sedis 3.2
Chytridiomycota Chytridiomycota incertae sedis Chydridiomycota incertae sedis 2.2 1.1

Blastocladiomycota Blastocladiomycota incertae sedis Blastocladiomycota incertae sedis 1.2

Basal fungal lineage Mucoromycotina Mucoromycotina incertae sedis 1.1 3.2 4.6

Total
 



Tab.3.11. (continued) 

d)          Phylum Subphylum Class Order M N P R T 
Eukaryota Eukaryota i. s. Eukaryota i. s. Eukaryota i. s.    1.2   

Fungi Fungi i. s. Fungi i. s. Fungi i. s.  1.1  3.7   
Ascomycota i. s. Ascomycota i. s. Ascomycota i. s.  6.6  7.3 1.1 

Boliniales   1.1     
Coniochaetales 3.2  4.3     
Hypocreales 26.3 25.3 8.5 14.6 10.3 
Phyllachorales  2.2  1.2   
Sordariales 36.8 13.2 7.4 6.1 36.8 
Sordariomycetes i. s. 2.2 1.1 3.7 2.3 

Sordariomycetes 

Xylariales  1.1      
Eurotiomycetes Chaetothyriales 2.1 4.4 9.6 1.2 5.7 

Pleosporales 1.1 14.3    5.7 
Dothideomycetes Capnodiales 1.1 2.1 4.9 4.6 

Leotiomycetes i. s.   3.2     
Leotiomycetes Helotiales  5.5 7.4   1.1 
Pezizomycetes Pezizales   7.4 4.9 3.4 

Pezizomycotina 

Pezizomycotina i. s. Pezizomycotina i. s.      4.6 
mitosporic Ascomycota mitosporic Ascomycota mitosporic Ascomycota 18.9 13.2 23.4 28.0 8.0 

Ascomycota

SCGI SCGI not specified SCGI not specified    13.4   
Basidiomycota i. s. Basidiomycota i. s. Basidiomycota i. s.  1.1 10.6 2.4   

Agaricales      6.9 
Agaricomycetes i. s.      1.1 
Boletales 8.4       

Agaricomycetes 

Cantharellales 2.1 4.4 2.1     
Cystofilobasidiales  1.1      
Filobasidiales   5.3 6.1 2.3 

Agaricomycotina 

Tremellomycetes 
Tremellales 1.1       

Basidiomycota

Pucciniomycotina Pucciniomycotina i. s. Pucciniomycotina i. s.   3.2     
Chytridiomycota Chytridiomycota i. s. Chydridiomycota i. s. Chydridiomycota i. s.  2.2    1.1 

Blastocladiomycota Blastocladiomycota i. s. Blastocladiomycota i. s. Blastocladiomycota i. s.    1.2   
Mortierellales  1.1 3.2     Basal fungal 

lineage Mucoromycotina Mucoromycotina i. s. 
Mucoromycotina i. s.      4.6 

 
 
 



 
 

Tab.3.11. (continued) e) 

Phylum Subphylum Class Order Family M N P R T 
Eukaryota Eukaryota i. s. Eukaryota i. s. Eukaryota i. s. Eukaryota i. s.    1.2  

Fungi Fungi i. s. Fungi i. s. Fungi i. s. Fungi i. s.  1.1  3.7  
Ascomycota i. s. Ascomycota i. s. Ascomycota i. s. Ascomycota i. s.  6.6  7.3 1.1 

Boliniales Boliniales i. s.   1.1   
Cortinariaceae 3.2     

Coniochaetales 
Coniochaetaceae   4.3   
Nectriaceae 3.2 4.4 5.3 3.7 2.3 
mitosporic Hypocreales 14.7 6.6 1.1 4.9 6.9 
Hypocreales i. s. 6.3 13.2  6.1 1.1 
Hypocreaceae  1.1 1.1   
Clavicipitaceae 2.1     

Hypocreales 

Bionectriaceae   1.1   
Phyllachoraceae    1.2  

Phyllachorales 
mitosporic Phyllachorales  2.2    
Lasiosphaeriaceae 23.2 2.2 5.3 6.1 12.6 

Sordariales 
Chaetomiaceae 11.6 1.1 1.1  6.9 
Sordariomycetes i. s.  2.2 1.1 3.7  
Sordariales i. s. 2.1 9.9 1.1  17.2 Sordariomycetes i. s. 
Magnaporthaceae     2.3 

Sordariomycetes 

Xylariales Xylariales i. s.  1.1    
Eurotiomycetes Chaetothyriales Herpotrichiellaceae 2.1 4.4 9.6 1.2 5.7 

Pleosporales i. s. 1.1 5.5   5.7 
Pleosporales 

Pleosporaceae  8.8    
Mycosphaerellaceae   2.1   

Dothideomycetes 
Capnodiales 

Davidiellaceae  1.1  4.9 4.6 
Leotiomycetes i. s. Leotiomycetes i. s.   3.2   

Sclerotiniaceae  5.5    Leotiomycetes 
Helotiales 

Helotiales i. s.   7.4  1.1 
Pezizomycetes Pezizales Pyronemataceae   7.4 4.9  
Pezizomycetes Pezizales Pezizales i. s.     3.4 

Pezizomycotina 

Pezizomycotina i. s. Pezizomycotina i. s. Pezizomycotina i. s.     4.6 
mit. Ascomycota mitosporic Ascomycota mitosporic Ascomycota mitosporic Ascomycota i. s. 18.9 13.2 23.4 28.0 8.0 

A
scom

ycota 

SCGI SCGI not specified SCGI not specified SCGI not specified    13.4  



 
 
 

Tab.3.11. (continued) e) 

Phylum Subphylum Class Order Family M N P R T 
Basidiomycota i. s. Basidiomycota i. s. Basidiomycota i. s. Basidiomycota i. s.  1.1 10.6 2.4  

Agaricales Psathyrellaceae     6.9 
Agaricomycetes i. s. Agaricomycetes i. s.     1.1 
Boletales Sclerodermataceae 8.4     
Cantharellales mitosporic Cantharellales 2.1 1.1 2.1   

Agaricomycetes 

Cantharellales Ceratobasidiaceae  3.3    
Cystofilobasidiales Cystofilobasidiales i. s.  1.1    
Filobasidiales mitosporic Filobasidiales   5.3 6.1 2.3 

Agaricomycotina 

Tremellomycetes 
Tremellales Tremellales i. s. 1.1     

B
asidiom

ycota 

Pucciniomycotina Pucciniomycotina i. s. Pucciniomycotina i. s. Pucciniomycotina i. s.   3.2   
Chytridio

mycota 
Chytridiomycota  
i. s. Chydridiomycota i. s. Chydridiomycota i. s. Chytridiomycota i. s.  2.2   1.1 

Blastocla
diomycota 

Blastocladiomycota 
i. s. Blastocladiomycota i. s. Blastocladiomycota i. s. Blastocladiomycota i. s.    1.2  

Mortierellales Mortierellaceae  1.1 3.2   Basal 
fungal 

lineage 
Mucoromycotina Mucoromycotina i. s. 

Mucoromycotina i. s. Mucoromycotina i. s.     4.6 

 
Basal fungal lineages: early-diverging groups, which traditionally have been placed within the Zygomycota and Chytridiomycota. 
SCGI: Soil Clone Group I; unclassified fungal sequences, which have been postulated as a novel subphylum of Ascomycota by phylogenetic analyses by Porter 
and co-workers (2008). 
i. s.: incertae sedis; Taxa of uncertain position, which have been placed as species of the least inclusive level in the hierarchy to which they can be assigned with 
confidence. 
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The number of observed RFLP-types were 122 for all data. For the respective clone 

library we found 20 RFLP-types in M, 32 in N, 28 in P, 30 in R and 28 in T. The 

numbers of each taxonomic rank are listed in Tab.3.12. 

 
Tab.3.12. Composition of clone libraries. 

 M N P R T total* 
Genus 16 27 23 18 24 61 
Family 14 24 21 17 20 46 
Order 9 17 16 15 16 31 
Class 6 12 11 12 12 17 
Subphylum 3 8 6 9 6 11 
Phylum 2 5 3 5 4 6 

*) The total number refers to the number of different members of the respective 
taxonomic level and is not the sum of the numbers of each clone library. 

 

 

3.2.3. Species richness estimation 
Furthermore, the data obtained from the clone libraries (i.e. RFLP-types, sequence 

identification and abundance) were used for the calculation of estimators of species 

richness with ESTIMATES (see 2.7). Five estimators were compared: Chao2 richness 

estimator, incidence- and abundance-based coverage estimators [incidence-based 

coverage estimator (ICE) and abundance-based coverage estimator (ACE)], first-

order Jackknife richness estimator (Jackknife 1) and Bootstrap richness estimator. 

The estimated species richness of the clone libraries is shown in Fig.3.9 to Fig.3.14. 
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Fig.3.9. Estimators of species richness for clone library M. 

ACE, Abundance-based coverage estimator; ICE, Incidence-based coverage 

estimator; Jack 1, first-order Jackknife richness estimator; OTU, operational 

taxonomic unit, corresponding to RFLP-type; # clones, number of analysed clones of 

the clone library. 
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Fig.3.10. Estimators of species richness for clone library N.  

ACE, Abundance-based coverage estimator; ICE, Incidence-based coverage 

estimator; Jack 1, first-order Jackknife richness estimator; OTU, operational 

taxonomic unit, corresponding to RFLP-type; # clones, number of analysed clones of 

the clone library. 
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Fig.3.11. Estimators of species richness for clone library P.  

ACE, Abundance-based coverage estimator; ICE, Incidence-based coverage 

estimator; Jack 1, first-order Jackknife richness estimator; OTU, operational 

taxonomic unit, corresponding to RFLP-type; # clones, number of analysed clones of 

the clone library. 
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Fig.3.12. Estimators of species richness for clone library R.  

ACE, Abundance-based coverage estimator; ICE, Incidence-based coverage 

estimator; Jack 1, first-order Jackknife richness estimator; OTU, operational 

taxonomic unit, corresponding to RFLP-type; # clones, number of analysed clones of 

the clone library. 
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Fig.3.13. Estimators of species richness for clone library T.  

ACE, Abundance-based coverage estimator; ICE, Incidence-based coverage 

estimator; Jack 1, first-order Jackknife richness estimator; OTU, operational 

taxonomic unit, corresponding to RFLP-type; # clones, number of analysed clones of 

the clone library. 
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Fig.3.14. Rarefaction-species-accumulation curve of all clone libraries.  

OTU, operational taxonomic unit, corresponding to RFLP-type; # clones, number of 

analysed clones of the clone library. 
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3.3. Overlap of both methods 

The results of both approaches, the culturing as well as the culture-independent 

approach, were compared. The amplified sequence regions for identification varied 

between the culture-dependent and –independent approaches: For identification of 

cultivated fungi the ITS region between the primer binding sites ITS1 and ITS4 was 

sequenced (Fig.3.15). This approach therefore covered both, ITS1 and ITS2. The 

complete ITS region is ideal for species (sometimes even subspecies) identification 

with sufficient reference data. Since well characterised reference sequences were 

expected for cultured fungi in the sequence database, the complete ITS region was 

chosen. Conversely, from the culture-independent approach less well characterised 

reference sequences were expected. In this case the LSU served as a good marker 

with improved resolution at higher taxonomic levels. For the cultivation-independent 

identification of soil fungi the ITS region and partial LSU were amplified with primer 

pair ITS1F/TW13 (Fig.3.15). 

 

 
 

Fig.3.15. Parts of the rRNA gene repeat unit.  
Primer binding sites are indicated by arrows. 

 
 

The overlapping sequence from the two different approaches mainly covers the ITS2 

region (~ 300 bp), which is enough to find identical species from both methods by 

sequence analysis. Fungal species identified by both methods are listed in Tab.3.13. 

The 14 overlapping species make up for 8.6 % of all identified species by both 

methods taken together. The majority of species were detected by the culture-

independent procedure (62.6 %), while 28.8 % of all species were found by the 

culturing-approach exclusively (Fig.3.16). 

 

For many species identified by both methods, the soil origin was different between 

the two methods. In the case of 5 species, however, the sequences identified by the 

culturing and the culture-independent approach, respectively, derived from the same 

soil sample. These species include Bionectria ochroleuca, Cercophora/Apodus sp, 

Davidiella tassiana, Fusarium oxysporum and Helicodendron sp. (Tab.3.13). 
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Tab.3.13.Sequences identified by both approaches. 

Cultured fungi Clone libraries  
Code Soil origin Code Soil origin Identification Identity [%] 

NG_p38 N R_A11 R 
NG_p38 N R_E05 R 
NG_p38 N T_F08 T 
NG_p38 N R_C06 R 

Cryptococcus aerius 99 - 100

NG_28 M P_A04 P Cryptococcus terricola 99
NG_H01 P P_B11 P 
NG_36C T P_B11 P 98 - 99
NG_H11 R P_B11 P 

Bionectria ochroleuca/ 
Bionectriaceae sp. 

NG_21B T T_A03 T Cercophora/Apodus sp./ 
Lasiosphaeriaceae 100

NG_09 T T_E10 T Davidiella tassiana/Davidiella sp. 99
NG_H10 R R_E09 R 
NG_H15 P R_E09 R 
NG_H15 P T_H11 T 
NG_H10 R T_H11 T 
NG_H16 M T_H11 T 

Fusarium oxysporum 98 - 99

NG_21A T T_H01 T 
NG_21A T P_C08 P 
NG_21A T P_H02 P 
NG_21A T P_A05 P 

Helicodendron sp./Helotiales 99 - 100

NG_35 R P_E08 P 
NG_36B T P_E08 P Helotiales sp. 100

NG_p31 N P_H07 P Hypocrea lixii/Hypocrea sp. 98
NG_H13 R N_E04 N Nectria haematococca mpVI/ 

Nectria haematococca 
98

NG_p49 N R_B06 R Pleosporales sp./Ascomycota 96
NG_21C T P_E06 P Sordariomycetes sp./Boliniales 100
NG_01 N P_H07 P Trichoderma velutinum/Hypocrea 

sp. 
98

NG_p45 M N_C05 N Verticillium nigrescens 99
 
In cases of different identification names of the two methods, the identification of the molecular 
approach is stated right behind the slash-symbol.  
Sequences with the same soil origin are highlighted in blue. 
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Fig.3.16. Species found by both approaches. Identified sequences of the culturing 

approach are in the left circle. A selection of species identified with the culture-
independent approach is in the right circle. The intersection represents the overlap. 
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3.4. Construction and analysis of niaD gene libraries from soil fungi 

It was known from previous studies, that fungi such as Aspergillus nidulans, 

Cadophora finlandia and Phialocephala fortinii, which are frequently used in our 

laboratory, are able to utilise nitrate as a sole nitrogen source and as a consequence 

possess a gene encoding nitrate reductase.  

For the construction of primers amplifying the nitrate reductase gene niaD, a multiple 

protein sequence alignment was generated containing fungal full length niaD 

sequences from Genbank. Since basidiomycetous niaD sequences deviate highly 

from ascomycetous niaD sequences, it was not possible to develop primers allowing 

amplification of both, ascomycetous and basidiomycetous niaD genes. Since the 

investigated soils mainly contained Ascomycota, the focus was laid on the 

amplification of ascomycetous niaD sequences. Based on the protein alignment of 22 

ascomycetous niaD sequences degenerated niaD primers were designed for those 

sections of the alignment with the most conserved regions. The part of the protein 

alignment of the niaD region, which contains the binding sites of the niaD primers 

niaD01F, niaD02F, niaD03R and niaD04R is depicted in Fig.3.17. 

In order to optimise PCR-conditions for the amplification of the niaD gene section 

(~400 bp) using the newly designed niaD primers niaD01F/niaD04R genomic DNA of 

Cadophora finlandia and Phialocephala fortinii was used.  

For the amplification of the niaD gene fragment from soil DNA, the primers 

niaD01F/niaD04R were used. No visible amplification products were obtained. 

Therefore, a nested PCR approach was undertaken using the primer pair 

niaD02F/niaD03R. PCR-products of the nested PCR are shown in Fig.3.18. 

The soil samples N and P had been selected after the 1st time course experiment for 

following experiments. Two replicates from each soil DNA extracted from N and P 

soil samples were taken as DNA templates for the niaD PCR.  

 
In silico analysis revealed that in a portion of sequences derived from P1 and P2, the 

amplified coding region is interrupted by a single intron (Fig.3.18). Therefore, 

sequences of mainly two lengths were obtained: 367 bp without an intron and 419 or 

442 bp, respectively, containing a single intron; all sequences coding for 122 amino 

acids. Apparently, there are differences between fungal species concerning the 

presence and length of this intron. 

 



                                                                   
                                                                 niaD01F niaD02F 
                        201             |                           ---->----->                                          300 
      A. nidulans   (107) HVRDEDIPNWELRIEGLVEKPITLSFKQILQN--YDQITAPITLVCAGNRRKEQNTVRKSKGFSWGSAALSTALFTGPMMADIIKSAKPLR--------- 
         A. niger   (109) LVKDEDIPNWEISIEGLVEKPLVLNFRDILQQ--YDQITAPITLVCAGNRRKEQNVVRKTKGFSWGSAGLSTALWTGPMMADILRSAKPLR--------- 
      L. maculans   (127) EVQDEECLDWEFSIEGMVANPLKITLRQLLEE--YENVTYPVTLVCAGNRRKEQNVVRKSKGFAWGAAGVSTALFTGVVMKDVIERAKPLR--------- 
H. cylindrosporum   (127) IINQDKADEWTLKLHGLCSNPTTLSLADLRTM-FRVVTVP-VTLVCAGNRRKEQNVVQKSLGFSWGPGGISTALFTGVYLADVLDFVQPAR--------- 
        U. maydis    (72) RVTREQAENWKLKVHGLVEQEVELSIKDLKEK-FSYSHPQTITLVCAGNRRKEQNMVAKGLGFNWGAAGVSTGLFTGVYLADILDYCKPKNPLLSSFPSY 
       P. angusta    (94) YVPDENILDWEVSIEGMVETPYKIKLSDIMEQ--FDIYSTPVTMVCAGNRRKEQNMVKKGAGFNWGAAGTSTSLWTGCMLGDVIGKARPSK--------- 
      C. bassiana   (126) HCPDDESLNWTFTVDGLVEKPFTIAVRDLIQK--YDQFTYPVTLVCAGNRRKEQNVVRKSKGFSWGAAGLSTALWTGVPIGALLRMAKPKR--------- 
     F. oxysporum   (136) RCEDDDILDWEFEISGLVENPIKMNVRDLIND--YQQLTYPVTFVCAGNRRKEQNIVRKTKGFSWGPAGLSTALWTGVAIGDLLSAAKPKR--------- 
        N. crassa   (195) KEEDDSLLNWEFTVEGLVEHPLKISVRELMDASKWDNVTYPVTLVCAGNRRKEQNVLRKSKGFSWGAGGLSTALWTGVGLSEILARAKPLTKKGG----- 
 
                                                                                                                    niaD03R 
                        301                |                                                                        <-----|400 
      A. nidulans   (196) ------RAKYVCMEGADNLPNGNYGTSIKLNWAMDPNRGIMLAHKMNGEDLRPDHGRPLRAVVPGQIGGRSVKWLKKLIITDAPSDNWYHIYDNRVLPTM 
         A. niger   (198) ------KAKYVCMEGADKLPNGYYGTSIKLNWAMDPNRGIMLAHKMNGEDLRPDHGRPLRAVVPGQIGGRSVKWLKKLILTDAPSDNWYHIYDNRVLPTM 
      L. maculans   (216) ------KAKYVCMEGADKLPNGYYGTSVKLNWVMDPNRGIMLAHKMNGENLSLDHGKPLRAVVPGQIGGRSVKWLKKLIVTAEPSDNWYHIYDNRVLPTM 
H. cylindrosporum   (216) ------QAKHVVFEGSDDLPNGPYGTSQLTSWARDKRKGMMLAWAMNGLPLEPDHGFPLRLVVPSQIGGRSVKWLSRIELSAIESQHHLHFHDNKVLPMP 
        U. maydis   (171) DVAVLDRARHVVFEGADELPKGKYGTSQRLNWALDRCKGMLIAWGLNGEDLSPDHGYPLRLVVPGQISGRMVKWLERIEVSDRESQHHLHFHDNQVLPTE 
       P. angusta   (183) ------RARFVWMEGADNPANGAYRTCIRLSWCMDPERCIMIAYQQNGEWLHPDHGKPLRVVIPGVIGGRSVKWLKKLVVSDRPSENWYHYFDNRVLPTM 
      C. bassiana   (215) ------AAKYVCFEGADKLPNGYYGTSVKLNWCMDENRGIMVAHKMNGQSLHPDHGKPVRIIIPGQIGGRSVKWLKKITITSEPSDNWYHIYDNRVLPTT 
     F. oxysporum   (225) ------GARYVCFEGADKLPNGYYGTSIKLNWCMDPNRGVMVAHKMNGNPLPPDHGKPVRIVIPGQIGGRSIKWLKKITITQEPSDNWYHIYDNRVLPTM 
        N. crassa   (290) ------GARYVCFEGADQLPNGTYGTSVKLAWAMDPNKGIMVAHKMNGENLHPDHGRPVRVVVPGQIGGRSVKWLKRIVVTKGPSENWYHVFDNRVLPTT 
 
                        401                                                                             |                500 
      A. nidulans   (290) VTPDMS----SQNPSWWRDERYAIYDLNVNSAAVYPQHKETLDLAA--A-RPFYTAKGYAYAGGGRRITRVEISLDKGKSWRLARIEYAEDKYRDFEG-- 
         A. niger   (292) VSPEMS----SSDPNWWRDDRYAIYDLNVNSSVVYPEHKEVLDLAS--A-GPSYNVKGYAYAGGGRRITRVEISLDKGKSWRLANISYAEDKYRDFEG-- 
      L. maculans   (310) VDPDEA----AKNPKWWMDERYAIYDLSPNSAIAFPAHEEKVVLAS--A-ENSYNVRGYAYSGGGRRITRCEVSLNKGKNWRLANIDYAEDKYRDFEGR- 
H. cylindrosporum   (310) LGPDQAR----AEKQWWYDPRYIIRDLNANSAIASPDHDEILDTT-KSAPNATYTVKGYAYAGGGRRVTRVEVSSDNGDSWKLANISYPEDLFREV-AHF 
        U. maydis   (271) VTADQAR----SEMHWWYDPKYIINDLNVNSAICSPDHDQVVMLPNHLRPVEMLPLEGYAYTGGGRVSTRVEISLDDGRSWKCASIHYPEDLYRMYPIQG 
       P. angusta   (277) VTPEMA----KSDDRWWKDERYAIYDLNLQTIICKPENQQVIKIS-----EDEYEIAGFGYNGGGVRIGRIEVSLDKGKSWKLADIDYPEDRYREAGY-F 
      C. bassiana   (309) ISPDAS----ANLPDVWKDEKYAIYDLNANSAICYPRHDERLVLA--TA-PDTYKVRGYAYGGGGKRITRLEVTLNKGKSWLLAGIHYPEDDYRRAPDGD 
     F. oxysporum   (319) ISPEES----ANLPEVWKDEKYAIYDLSTNSAICYPAHEEKVPFT--DA-PASYKVRGYAYSGGGRRITRVEVTLDKGKSWRLANIRYPEDDYRNAPEGD 
        N. crassa   (384) VGPEESGEKTEEMERVWRDERYAIYDLNVNSVICEPGHGEVVSLRGDEG-AGTYRLRGYAYAGGGRRVTRLEVTLDQGKSWRLAGIEYPEDRYREAQDGE 
 
                                                                                                   niaD04R 
                        501                                                                    <----          600 
      A. nidulans   (381) TLYGGRVDMAWREACFCWSFWSLDIPVSE---LASSDALLVRAMDEALSLQPKDMYWSVLGMMNNPWFRVKITNENGR--LLFEHPTDITGS-----SGW 
         A. niger   (383) DLFGGRVHMSWRETCFCWCFWSLDIAIPE---LENTDAILVRAMDEALALQPRDMYWSVLGMMNNPWFRVTITKENGT--LRFEHPTDPTGP-----GGW 
      L. maculans   (402) ELFGARLDMDWRETSFCWCFWNLDIATAE---LRDANDILVRAMDEAMCIQPRDMYWSVLGMMNNPWYRITIHHEGDV--LRFEHPTQPALIP----GGW 
H. cylindrosporum   (404) DPIYGDLDMTDSDACFCWCFWSFDIDISA---LKASRAIMVRCMDESLALQPRDMYWNATGMMNNWWFRVCIHQLDGG-KLRFEHPTSKFPLAGTQPGGW 
        U. maydis   (367) HEYFGTLDLSATEMSFSWCFWRLDVDVEADIIAKDVKVISVRALDEVLATQPRDMYWNATSMMNSWWFRVCIAKARTATKIRFEHPTS---P--QCPGGW 
       P. angusta   (367) RLFGGLVNVCDRMSCLCWCFWKLKVPLSE---LARSKDILIRGMDERMMVQPRTMYWNVTSMLNNWWYRVAIIREGES--LRFEHPVVANKP-----GGW 
      C. bassiana   (402) LLYGGSTDMWWRETCFCWCFWEIDIPVAD---LSAADDIMIRAMDEGMMVQPRDMYWSVLGMMNNPWFRVVIHKEDGA--LRFEHPTQPALMP----GGW 
     F. oxysporum   (412) TLYGGRVDMWWRETSFCWCFWDLDIPLDE---LKSADDIMMRAMDESMNVQPRDMYWSVLGMMNNPWFRIVIHKEDHA--LRFEHPTHATLKI----KGW 
        N. crassa   (483) ELFGGRLDVSWRESCFCWCFWDLEIPLSE---LRKAKDVCIRAMDESLALQPKEMYWSVLGMMNNPWFRVVIHHEGDT--LRFEHPTQPMLTS----DGW 

 
Fig.3.17. Multiple protein sequence alignment of the part of the niaD gene where the primer binding sites are located. 
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PCR products of the nested niaD-PCR were cloned in plasmid pTZ57R/T. N1 and P1 

clone libraries contain 96 independent clones each, while N2 and P2 contain 48 

clones each. Clones were screened by niaD-PCR and positive candidates were 

compared via RFLP analyses with BsuRI and Hin6I double digestion (see 2.8). 

Restriction patterns of each niaD-gene-library are depicted in Fig.3.19. - 3.23. Codes 

of the clones refer to the position of the 96-well microtiter plate in which they are 

stored.  
 
 

N1    N2     P1    P2     M    neg  

1031 bp 
 
 
 
500 bp niaD with intron 

niaD without intron 

Fig.3.18. PCR products of  
a nested niaD-PCR on an 
agarose-gel. M, marker;  
neg, negative control. 
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A  01  02  03  04  05  06  07  08  09  10  11  12  01  02  03  04  05  06  07  08  09  10  11  12   B 
C  01  02  03  04  05  06  07  08  09  10  11  12  01  02  03  04  05  06  07  08  09  10  11  12   D 
E  01  02  03  04  05  06  07  08  09  10  11  12  01  02  03  04  05  06  07  08  09  10  11  12   F 
G  01  02  03  04  05  06  07  08  09  10  11  12  01  02  03  04  05  06  07  08  09  10  11  12   H 
 

 

 

 

 
Fig.3.19. RFLP-analysis using BsuRI & Hin6I of 96 clones obtained from sample N1. 
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Fig.3.20. RFLP-analysis using BsuRI & Hin6I of 48 clones obtained from sample N2. 
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Fig.3.21. RFLP-analysis using BsuRI & Hin6I of 48 clones obtained from sample P1. 
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Fig.3.22. RFLP-analysis using BsuRI & MboI of 48 clones obtained from sample P1. 
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Fig.3.23. RFLP-analysis using BsuRI & Hin6I of 48 clones obtained from sample P2. 
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One representative of each pattern was sequenced. Sequences were assembled and 

edited using the Vector NTI software (check for orientation, remove flanking niaD 

primers). Furthermore, the sequences were screened for introns carrying the 

conserved splice sites GT and YAG and marked by adding the respective sequence 

feature for exons and introns. The nucleotide sequences were subsequently 

translated into protein sequences using splicing, whereby reference sequences 

served as templates to find the correct open reading frame.  

The set of nitrate reductase sequences (deriving from known isolates as well as 

direct PCR approaches) is continuously increasing and protein sequences will be 

used for phylogenetic analyses. 

 

3.5. Fluorescence in situ hybridisation (FISH) 
Fingerprinting techniques as well as the analysis of rRNA genes/ITS regions from 

environmental samples require PCR amplification of the target gene segments from 

the total gene pool. However, PCR associated biases complicate the quantification of 

different fungal species in a mixed DNA pool. As a result, an additional method, 

independent from PCR, was required. 

For quantification purposes fluorescence in situ hybridisation (FISH) is a beneficial 

technique, which enables the visualisation and phylogenetic identification of microbial 

cells. Furthermore, additional detection of niaD mRNA would allow an assertion 

about the physiological status of the identified fungi.  

 

3.5.1. rRNA-FISH 
The FISH experiment was performed to test the method on filamentous fungi. In this 

case a pure culture of the model organism Aspergillus nidulans was used. 

To establish suitable conditions for this method, parameters like culture conditions, 

the sample fixation method, treatment of slides as well as hybridisation and washing 

buffer compositions were tested initially using the 18S rRNA-targeted probes 

EUK516-Fluos (rRNA-FISH). Overnight cultures of the filamentous fungus A. 

nidulans scraped off from an AMM-plate were subjected to rRNA-FISH (see 2.9).  

The formaledhyde-fixed sample hybridised with the EUK516-Fluos probe is depicted 

in Fig.3.24. A bright fluorescence signal was detected. Ribosomes are evenly 

distributed throughout the hyphae, whereas nuclei are clearly delimited (Fig.3.24). 
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Fig.3.24. FISH analysis of A. nidulans with EUK516-Fluos probe at 10 % formamide. 

The ribosome-rich cytoplasma can be easily distinguished from nuclei (arrows). 
 
In the course of the pre-experiment (rRNA-FISH) it turned out that uncoated, H2O2-

treated slides can be used. formaledhyde-fixed samples appeared to work better 

than ethanol-fixed ones, and a 10 % formamide concentration seemed to be suitable 

for hybridisation. Hybridisation worked with both buffers, Tris- and SSC-buffer. 

No enzymatic treatment prior to hybridisation was needed for Aspergillus nidulans in 

order to yield a strong, clear and specific signal. 

 
 
3.5.2. niaD mRNA-FISH 
Suitable conditions from the pre-experiment (usage of H2O2-treated slides, 

formaldehyde as fixative, 10 % formamide and SSC-buffer for hybridisation) were 

then selected for the actual mRNA FISH using the probe for niaD mRNA. In order to 

avoid mRNA degradation by endogenous and exogenous RNases several 

precautions were taken (e.g. DEPC treatment, see 2.9.8).  

 

It is known, that niaD gene expression is repressed in the presence of ammonium. 

Induction of niaD transcription requires the presence of nitrate itself, and the de-

repression by the absence of a primary nitrogen source such as ammonium.  

Transcription of niaD can be even more induced by a nitrate induction after a period 

of N-starvation (super induction). For a super-induced niaD-mRNA expression, the 

culture was grown overnight with ammonium tartrate, followed by N-starvation for 30 

min and induction with NaNO3 for another 30 min. 
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A. nidulans cultures at different growth stages grown on ammonium tartrate 

(uninduced) are depicted in Fig.3.25–28. Generally, the EUK516-Fluos signal is 

displayed in green and the signal of the niaD-Cy3 probe in red. The co-localisation of 

both signals appears yellow. 

 A. nidulans cultures, which have been induced by nitrate are shown in Fig.3.25. The 

super-induced culture (nitrate induction after N-starvation) is depicted in Fig.3.26. 

The two induced conditions appeared to give higher fluorescence intensity for the 

niaD-targeted probe as compared with the uninduced condition, using the same 

microscopic settings. Interestingly, the induced sample appeared brighter than the 

super-induced sample. However, the intensity of the signal was not quantified. 

 

  
Fig.3.25. A. nidulans overnight culture grown on ammonia (uninduced). Overlay of  
EUK516-Fluos (green) and niaD-Cy3 (red) signals. Colocalisation of both signals 

appear yellow. 
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Fig.3.26. A. nidulans overnight culture (left) and 7 h culture (right) grown on ammonia 
(uninduced). Overlay of EUK516-Fluos (green) and niaD-Cy3 (red) signals. Left picture 

together with transmitted light.  
 
 
 

 

 
Fig.3.27. A. nidulans overnight culture grown on nitrate (induced). Overlay of EUK516-

Fluos (green) and niaD-Cy3 (red) signals. 
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Fig.3.28. A. nidulans overnight culture grown on ammonia followed by N-starvation 
and induction of niaD expression by addition of nitrate (super-induced). Overlay of 

EUK516-Fluos (green) and niaD-Cy3 (red) signals. 
 

NonEUB served as a control probe and no unspecific signal was detected. However, 

additional control experiments are needed to verify the niaD signals even in 

uninduced cultures: Instead of NonEUB, the reverse complement to the antisense 

niaD probe (targeting DNA of the niaD gene) can be used to show the specificity of 

the niaD probe. Additionally, a nonsense probe can serve as a control for unspecific 

probe binding. Furthermore, RNase treatment prior to hybridisation can serve as an 

additional confirmation of absence of unspecific probe binding. 

The specificity of the niaD probe under induced and noninduced conditions may be 

further evaluated by using an additional strain lacking the niaD gene which should 

not result in any niaD signal. 

In any case, the actual experiment was intended to act as a preliminary experiment 

for the establishment of the method. Future experiments are needed and will include 

the mentioned controls for result verification as well as a formamide series for the 

determination of a suitable formamide concentration.  
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4. Discussion 

Fungi fulfil a range of important ecological functions. Nevertheless, there is poor 

understanding of soil fungal community diversity and the specific roles of individual 

phylogenetic groups present in the environment. In order to address the most 

fundamental questions of environmental microbiology (who are there? what are they 

doing?) it is important to establish a diversity census of fungal species present in 

soils. Subsequently, ecological questions can be addressed: responses of the fungal 

community or certain functional groups to environmental conditions (e.g. fertilisation, 

disturbances), interactions among species and ecological processes such as nutrient 

retention and cycling (functional diversity).  

 

4.1. Fungal community composition in agricultural soils 

To study fungal diversity in soil, several methods are available, which broadly can be 

divided into culture-based and culture-independent methods. Every method suffers 

from various limitations. No single method reflects “the true” diversity or species 

composition due to different aspects of diversity or community structure displayed by 

each method. 

Our culture-based approach of assessing fungal diversity is not a classical method in 

the proper sense, because species identification was achieved by molecular methods 

rather than by morphological characters. Moreover, it represents an inventory of 

spores and mycelia present in the soil, which are able to germinate and grow under 

certain cultivation conditions. The main advantage here is that the cultures are later 

available for further investigations (e.g. analysis of functional genes). Notable 

disadvantages of culture-based methods are that only cultivable organisms can be 

detected and fast growing organisms are favoured most of the time. It is well 

accepted, that only a small proportion of soil bacteria grow on agar plates (0.1 – 10 

%) (Torsvik et al. 1998), which may also apply to fungi. Many fungi, in particular the 

obligate biotrophic arbuscular mycorrhizal fungi, cannot be cultured using current 

culturing techniques (van Elsas et al. 2000). Despite the cultivation-inherent bias, i.e. 

the selectivity of media, pure cultures are still of great importance for the study of 

functional aspects  and interactions of and between fungi and other microorganisms 

(Hagn et al. 2003). 
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In order to study functional aspects in microbial ecology, specifically nutrient cycling 

in agricultural soils as addressed here, cultures of individual species provide the 

possibility to clone functional genes. 

 

To overcome the limitations imposed by culturability we additionally performed a 

molecular approach, whereby total soil ITS/LSU amplicons were cloned and 

identified. The rapid profiling technique ITS/LSU-PCR-RFLP produced a first picture 

of fungal sequence diversity in ITS/LSU-libraries obtained from different soils. 

Furthermore, it served as a screening tool for subsequent sequencing reactions. 

Molecular tools allow detection of all fungal life stages without the need for 

cultivation, whereby diverse new taxa throughout the Fungi could be uncovered in 

the last years (Koufopanou et al. 2001; Schadt et al. 2003). Nevertheless, variation in 

gene copy numbers as well as experimental baises like varying DNA extraction 

efficiency, PCR biases and artefacts (Becker et al. 2000; Kanagawa 2003) require 

special attention with regard to data interpretation, in particular quantification. 

Keeping that in mind, we were able to create a list of fungal species specifically 

present in the agricultural soils studied in the project. The frequency of an identified 

fungus only reflects the frequency of a certain RFLP-pattern in the clone library. 

Therefore, drawing a conclusion from our pattern-frequency to the real abundance of 

organisms in the soil is not possible (due to the biases mentioned before) and is not 

discussed here. 

 

4.1.1. Species identification using public databases 
Fungal species identification of both methods presented here was performed by DNA 

sequence comparison, a process known as barcoding. For this purpose, fungal 

ITS/LSU sequences were subjected to BLAST searches at the International 

Nucleotide Sequence Database (INSD: GenBank, EMBL, and DDBJ) which is the 

most widely used sequence repository in the field (Nilsson et al. 2006). The way of 

sequence-mediated species identification is valuable as it simplifies and standardises 

the identification of organisms, particularly those with limited morphological 

characteristics. Nevertheless, a major limitation may be a lack of reference 

sequences in the database (Anderson et al. 2003). This is especially true for fungal 

diversity studies of environmental samples, for which it is likely that more diversity is 
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hidden and new species will still be discovered. In this study, for more than half of the 

sequences it was only possible to identify them above the genus level. 

Identification of sequences from previously undescribed fungal species is almost 

impossible if only the ITS sequence is available due to its high sequence variability. 

As a consequence, a more conserved region, in our case the partial LSU, is needed 

for classification. But still, sequences which allowed no further assignment than to a 

phylum were encountered. These sequences probably represent novel taxa, which 

may form additional species, genera or even families in the future. 

Another concern regarding barcoding is the problem of insufficiently or even wrongly 

identified sequences in the database. Nilsson et al. (2006) suggested that about 

20 % of the entries of fungal DNA sequences in the INSD may be incorrectly 

identified to species level, and that the majority of entries lack descriptive and up-to-

date annotations. In the course of the sequence analysis we encountered at least 2 

sequences, which were obviously incorrectly identified. 

 

4.1.2. Potential biases and concerns 
Direct characterisation of microbial diversity from environmental samples typically 

involves PCR amplification of, most commonly, ribosomal RNA genes. Therefore, by 

using fingerprinting methods such as denaturing gradient gel electrophoresis 

(DGGE), terminal restriction fragment length polymorphism (T-RFLP) or the 

construction of clone libraries require special attention with regard to data 

interpretation, in particular quantification. 

A number of factors exist, which may distort the actual picture of diversity:  

- PCR biases result from the heterogeneity of template sequences, limited 

specificity of PCR primers, formation of secondary structures of the template, 

formation of chimeric molecules during PCR as well as amplification competition 

of different templates (Becker et al. 2000; Kanagawa 2003). 

- variation in gene copy numbers, 

- PCR errors  

- as well as experimental errors like varying DNA extraction efficiency. Especially 

when fungi are investigated, differences in extraction efficiency of mycelium vs. 

spores may lead to uncertainties whether spores remain intact by using a soft 

extraction method or released DNA of e.g. easily cracked yeast cells may be 

crushed by tough extraction protocols. However, preliminary results from our lab 
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show that there is no big error occurring regarding extraction efficiency of 

mycelium vs. spores (Markus Gorfer, personal communication). 

- Another question concerns free DNA available in soil or mycelium of dead fungi, 

which may or may not be degraded in time.  

Potential biases associated with cloning were analysed by Taylor and colleagues 

(2007) by using two contrasting methods: the Invitrogen TOPO-TA system and the 

Lucigen PCR-SMART system. After comparison of the two clone libraries, which 

were not significantly different, they concluded, that there is no bias due to TA 

cloning (Taylor et al. 2007).  

A further constraint is the so called primer bias, which means the possible 

discrepancies in primer specificity towards certain taxonomic groups (Anderson and 

Cairney 2004). Hereby, variation of primer affinities for the heterogeneous template 

molecules during PCR results in a selective amplification. For example, primer ITS1F 

was suggested to amplify Ascomycota, Basidiomycota and Zygomycota, but not 

Chytridiomycota (Manter and Vivanco 2007). However, 3 sequences affiliated to the 

phylum Chytridiomycota were discovered by the direct PCR approach. 

 

At this point I would like to emphasise on the distinction concerning quantification 

between clone libraries versus soils. The interpretation of our clone library results are 

applied on the clone libraries themselves, but are not directly transferable to the soils 

due to the aforementioned biases. 

 

4.1.3. Cultured fungi from soils 
The cultivation approach addressed mainly two issues: 1. How many different and 

what kind of fungal species present in all five soil samples can be cultivated using the 

cultivation conditions described for this approach? How different is the cultivated 

fungal diversity in comparison with the results obtained by the culture-independent 

approach and is there any overlap? 2. As it turned out that there is a range of 

different fungal species, which were isolated from all soil samples together, these 

species were used to build up a strain collection of soil fungi. For this, the primary 

aim was the generation of a soil fungi collection of as many different cultures of 

individual species as possible. These isolates are then of particular interest for further 

investigations regarding functional genes. For example, several nitrate reductase 
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(NR) sequences were obtained from various kinds of fungi. This vastly enriched the 

already deposited collection of fungal NR sequences.   

 

In this study, the fungal community of all cultured (under described conditions) fungi 

of all soil samples consisted of 61 different species.  

Fusarium spp., Penicillium spp., Trichoderma spp. as well as Verticillium spp. were 

frequently isolated, which is in good accordance to Hagn et al. (2003) and references 

therein. Besides those, a diverse set of mainly Ascomycota from the orders 

Capnodiales, Eurotiales, Helotiales, Hypocreales, Saccharomycetales and 

Sordariales as well as some less abundant orders were isolated including previously 

undescribed species. Accordingly, de Castro et al. revealed by a culture-based 

analysis of Cerrado (a savanna-like region) soils that most of the identified fungi were 

Ascomycota, pointing at the importance of this phylum in anthropogenic modified 

areas (de Castro et al. 2008).  

 

As stated by Donnison et al. (2000), fungal community compositions in hay meadows 

seem to differ from those of arable soils. Meadow soil R from our study, however, did 

not show significant differences to the other soils by comparing isolated genera, 

which most probably is due to our pre-selection of fungal colonies.  

In addition to filamentous fungi, we were able to identify yeasts in our cultivation-

based approach. Yeasts can be found in a broad range of soils, including tropical as 

well as Antarctic soils (Slavikova and Vadkertiova 2003). They are assumed to be 

primarily degraders and utilise simple sugars, although their function in soil 

ecosystems is still unclear (Connell et al. 2008). The fermentative ascomycetous 

yeast Candida sp. as well as two Cryptococcus species (basidiomycetous 

encapsulated yeast) were isolated. These yeast genera have also been detected in 

agricultural soils by other groups (Slavikova and Vadkertiova 2003; Vishniac 2006). 

 

4.1.4. Molecular sequences vs. morphology 
Traditional methods for fungal identification and classification are based on 

morphological characters. The hierarchical classification of fungi experienced many 

changes over the last decade. Due to molecular phylogenetic studies based on 

nucleic acid sequences new insights into an overall fungal classification was 

achieved. As a consequence, diverse traditional ideas regarding fungal relationships 
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had to be given up. Organisms which originally have been considered to be fungi 

were omitted from the kingdom Fungi as well as the other way around. Orders and 

families as well as genera went through a remodelling process and it became clear, 

that many fungal “species” are several and not one. Examples for such “cryptic” 

species are Armillaria mellea s. lat. containing at least eight species in Europe, or 

Fusarium graminearum, within which nine species have been recognised. 

Despite this currently ongoing fundamental reassessment of traditional systematics, 

molecular approaches are also contributing to our knowledge of unexplored fungal 

diversity. Species recognition is facilitated by molecular tools, particular when fungi 

are not sporulating or uncultured. Therefore, this issue is not so much one of 

“molecules versus morphology”, but “molecules plus morphology”. Hence, co-

operation of taxonomists and specialists experienced in molecular phylogenetic 

approaches is becoming the norm (Hawksworth 2006).  

 

4.1.5. Culture-independent assessment of soil fungal diversity 
Clone libraries derived from the five soil samples were analysed according to their 

species composition. Although relative abundances and numbers are very difficult to 

interpret due to the RFLP approach (difficulties are discussed above), the results 

from the frequency analyses of the clone libraries (not the soils themselves) are 

presented here.  

 

Our culture-independent approach yielded a highly different list of species. In total, a 

number of 122 different RFLP-types were observed for all data.  

Among the uncovered species many affiliated to the Ascomycota. This phylum 

predominates (> 75%) in all soils in comparison with Basidiomycota, while members 

of other fungal phyla were recovered at much lower frequencies or were not detected 

at all. However, investigations on fungal diversity in forest soils gave rise to equal 

proportions of Basidiomycota and Ascomycota (O'Brien et al. 2005). This is due to 

the different sampling sites: ectomycorrhizal fungi are mostly found in forest 

ecosystems and many ectomycorrhizae belong to Basidiomycota. 

That Ascomycota was clearly the dominant phylum in the clone libraries of soils from 

a savanna-like region in Brazil has been shown by de Castro and colleagues (2008). 

Furthermore, the assessment of a sandy lawn soil microbial community structure 

revealed that within the Fungi, the phylum Ascomycota accounted for two thirds of 
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the ribo-tags (Urich et al. 2008). Ecologically, Ascomycota function as primary 

decomposers of plant materials, but they also are important as plant and human 

pathogens. 

 

Generally, Basidiomycota species were distributed over all libraries, including seven 

different species like Cryptococcus spp., Coprinellus sp., Hebeloma sp., Minimedusa 

polyspora, Psathyrella sp., Scleroderma bovista, Thanatephorus cucumeris and 

Trichosporon dulcitum. 

Basidiomycota could be identified more often by the culture-independent method 

than in the cultivation approach. Interestingly, the two methods seem to supplement 

each other in a nice way as far as Cryptococcus species are concerned. While those 

species were isolated from soils M and N, they were detected by direct PCR from P, 

R and T. Reasons for the complementary rather than overlapping effect of both 

approaches are discussed below. 

 

Even the more archaic phylum Chytridiomycota could be discovered by the molecular 

method, which was surprising, because of our primer selection for this approach. The 

primer ITS1F was suggested to amplify all higher fungal species, covering most 

species of Ascomycota, Basidiomycota and Zygomycota, however, it was not 

expected to address Chytridiomycota (Manter and Vivanco 2007). Chytridiomycota 

are the most primitive, mainly aquatic fungi and belong to the phylogenetically oldest 

group of fungi.  

In the clone libraries N, P and T we found taxa belonging to Zygomycota, a traditional 

phylum, which has long been recognized to be polyphyletic based on molecular 

analyses. Hibbett et al. (2007) proposed a comprehensive phylogenetic classification 

of the kingdom Fungi, which also included a rearrangement of clades that have 

traditionally been placed within the Zygomycota. Due to pending resolution of 

relationships among the clades, a deconstruction of the Zygomycota and distribution 

among Glomeromycota and several subphyla incertae sedis 

(Entomophthoromycotina, Kickxellomycotina, Mucoromycotina, Zoopagomycotina) 

has been conceptualized (Hibbett et al. 2007). 

Our sequences formerly assigned to Zygomyctoa turned out to inclusively belong to 

Mucoromycotina, whereby half of the sequences can be further classified as 

members of the Mortierellaceae family. 
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Already at subphylum level the R library stands out, because it not only harbours the 

highest diversity on this level compared to the other libraries, but it also contains a 

newly described subphylum to an extent of 13.4 % of all detected RFLP-types. This 

subphylum is termed Soil Clone Group I (SCGI) by Porter and co-workers (2008), 

who postulated this novel subphylum of Ascomycota by phylogenetic analyses of 

unclassified fungal sequences. These sequences from soils of diverse origin (forests 

as well as grassland) could be combined in a well-supported clade at the base of the 

Ascomycota. SCGI currently represents the only major fungal lineage known 

exclusively from sequence data. The presence of SCGI in soil R, which derives from 

a grassland, but its absence from agricultural soils M, N, P and T suggests a 

preference of SCGI-fungi for undisturbed sites. Presence or absence of SCGI-fungi 

may in the future be used as an indicator for soil disturbance in a manner similar to 

the use of indicator organisms for the assessment of water quality (Markus Gorfer, 

personal communication).  

 

On the class level, all clone libraries have in common that they include ascomycetous 

species assigned to Sordariomycetes, Eurotiomycetes and Dothideomycetes as well 

as the basidiomycetous class Tremellomycetes.  

At the next taxonomic level, it can be shown, that the Sordariales and Hypocreales 

are the major orders present in all libraries. The order Boletales is unique to M, which 

contributes 8.4 % to the diversity of M and is composed of Scleroderma bovista. 

Alternatively, the order Agaricales is only present in T, which makes up for 6.9 % 

including the genera Coprinellus and Psathyrella.  

Again outstanding, M holds the largest amount of Lasiosphaeriaceae species 

compared to the other libraries. This family takes 23.2 % of M consisting of species, 

which could not be further identified than to this level. Another family, which was 

exclusively detected in M, is Cortinariaceae, which is represented by a Hebeloma 

species.  

 

Furthermore, the PCR-based method revealed that different RFLP patterns resulted 

in the same sequence, which was designated as Tetracladium-related (96 to 97% 

sequence identity). In both clone libraries P and R approximately one quarter of each 

96 clones inspected led to this result, additionally Tetracladium was detected in N 
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and T to a minor extent, while the sequence could never be detected in M. 

Tetracladium is an aquatic hyphomycete and has often been isolated from soils 

(Ronhede et al. 2005). Unfortunately, very little information on Tetracladium is 

available at the moment.  

 

Of all clone libraries M displays some conspicuous characteristics: it has the maximal 

frequency of identical patterns from RFLP analysis, its diversity encompasses only 2 

different phyla and generally it holds the lowest values at all taxonomic levels 

(Tab.3.12). Furthermore, Scleroderma bovista as well as Hebeloma sp. exclusively 

occur in M. Also notable is the fact that M shows the lowest species richness 

compared to the other libraries (Fig.3.13). Reasons for the outstanding 

characteristics of M are difficult to find. The presence of mycorrhizae like 

Scleroderma and Hebeloma species indicates a forest close to the sampling site, and 

indeed there are trees located around the field. The low species richness may also 

be connected with the location of the sampling site, the soil characteristics or the 

growing of certain crops. 

 

In general, while most sequences could be attributed to a species or a higher level of 

taxonomic rank, some could only be assigned to a phylum, which is simply a result of 

a lack of reference sequences, which is either due to the fact, that no sequences of 

already existing cultures are available in databases yet, or the sequences represent 

novel lineages. 

 
Since the primers applied in this study do not target Glomeromycota species, this 

phylum was not detected by our approach. However, this group of fungi play 

significant functional roles in soil. Mycorrhizal fungi (Glomeromycota) are specialised 

to form close associations with plant roots and act as an extension of the plant root 

system. This aids in the uptake of almost all plant nutrients and is particularly 

important in the uptake of phosphates. Phosphates typically have low solubility in the 

soil solution and therefore exist at low concentrations. Mycorrhizal fungi are endemic 

in most soils and form extensive networks of fungal hyphae that can connect different 

plant species. Arbuscular mycorrhizae (AM fungi) penetrate the cortical cells of plant 

roots and form unique structures (arbuscules). In agroecosystems they play 

important roles: AM fungi are known to stabilise soil aggregates and provide soil 



  4. Discussion 

 105 

nutrients, particularly phosphorus, to the plant. Mycorrhizae are a well described 

group of fungi (Dighton et al. 2005).  

 

There is only limited information in the literature on the ecological function, especially 

regarding nitrogen cycling, of fungal communities in soils. In general, soil fungal 

communities are understudied in agricultural sciences.  

Recent developments in understanding the roles of fungi in nitrogen transformation 

have been reviewed by Hayatsu et al. (2008). Fungi were shown to be involved in 

both nitrification and denitrification. Denitrifying activity occurs in various fungal phyla, 

including Ascomycota such as Cylindrocarpon tonkinense and Gibberella fujikuroii as 

well as the basidiomycetous Trichosporon cutaneum. In soils, denitrifying fungi may 

contribute significantly to the N2O and N2 production under both aerobic and 

anaerobic conditions. For example, in forest soils, grasslands (Laughlin and Stevens 

2002) and semiarid regions (McLain and Martens 2006) fungi have been found to be 

the dominant denitrifiers. While bacterial denitrification activity is suppressed by 

excess of oxygen, denitrification activity by fungi is induced in the presence of nitrate 

or nitrite and significant amounts of oxygen, but not in oxygen excess (Hayatsu et al. 

2008).   

Furthermore, Fusarium solani and C. tonkinense produced N2 in the presence of 

amino acids by co-denitrification. Hereby nitrogen atoms from nitrite and other 

nitrogen compounds (co-substrates) such as azide and ammonium are combined 

under denitrifying conditions. In Fusarium oxysporum the denitrification enzyme 

P450nor was shown to catalyse the co-denitrifcation reaction without an electron 

donor such as NADH. To distinguish between denitrification and co-denitrification 
15N-labeling experiments are required. In grassland soil, the relative contribution of 

fungal co-denitrification and denitrification was estimated to be ~92 % (for co-

denitrification) (Hayatsu et al. 2008).  

 

Also, nitrification (oxidation of nitrite to nitrate) has been revealed in fungal species, 

including Aspergillus wentii and Penicillium spp. The contribution of heterotrophic 

microorganisms to nitrification has been recognised in soil. Especially, fungal 

nitrification has been observed in acidic soils such as forest soils, but the biochemical 

mechanisms remain unclear (Hayatsu et al. 2008). 
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4.1.5.1 Analysis of species richness  
Species diversity is defined as the number of species within a community as well as 

the relative abundance of individuals in that community. Species richness is the 

simplest diversity index to interpret. Due to differences in collection size, it is hard to 

compare different samples. Rarefaction is a procedure which addresses the problem 

of comparing the species richness of different habitats. Thereby the expected 

species richness based on random subsamples of individuals is calculated. In this 

way, a large rarefied sample can be directly compared with smaller collections, 

because the species richness of both collections is then based on an identical 

number of individuals (Gotelli and Graves 1996).  

 

By comparing the rarefaction-species-accumulation curves of our different clone 

libraries, M shows the lowest species richness, while the other libraries reached a 

higher range, N and R with the highest species richness (Fig.3.14). The same trend 

can be observed by viewing the richness estimator Chao2. This estimator is 

especially advantageous for mycological studies, because it does not require precise 

information on the number of individuals per sample. Chao2 is an incidence-based 

estimator, which relies on the number of unique units and duplicates and not on the 

number of singletons and doubletons. Units refer to species found in only one and 

two sample units, whereas singletons and doubletons mean species present with one 

and two individuals (or sequences) (Unterseher et al. 2008). Regarding our data, all 

Chao2 curves continued to rise, whereby M being an exception with an alternating 

curve (Fig.3.9 – Fig.3.13). Additionally, the estimated species richness using Chao2 

was the lowest for M (22 ± 2). T and P were located in the middle (33 ± 5 and 35 ± 6), 

while N (43 ± 8) and R (47 ± 12) reached the highest species richness estimated with 

Chao2. These data show once again that M possesses unique characteristics 

compared to the other libraries. 

 

Generally, we can expect that the species richness calculated by the different 

estimators represent an underestimation. This is due to the fact that the estimation 

relied on the RFLP analysis, which itself was an underestimation of diversity as we 

found out that some RFLP patterns turned out to comprise more than one species. 

To circumvent this particular problem it is advisable to analyse the sequences of all 

available clones. Nevertheless, the low estimated species richness was surprising, 
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but the numbers also seem realistic, when compared with species richness of highly 

diverse forest soils (Taylor et al. 2007).  

 

Furthermore, the observed diversity of RFLP-types ranges from 64 to 91 % of the 

estimated species richness in the respective library (Tab.4.1). One would expect that 

the observed species richness of a library harbouring the lowest diversity is closer to 

its estimated species richness than as it would be for a library with a higher diversity. 

And precisely this is, what the ratios between observed and estimated species 

richness show (Tab.4.1): M has the lowest diversity and 91 % of the expected 

species have already been recovered. This is further reflected by the rarefaction 

species-accumulation curve, which reaches an asymptote.  

For the other libraries the ratio is lower, whereas the library with the highest 

estimated species richness (R) has the lowest value (64 %). Therefore, increasing 

the sampling effort, (reflected by the number of clones in the library), would result in a 

better ratio of recovered to expected species.  

All in all, our data show that we were able to capture most of the expected fungal 

organisms from agricultural soils by the culture-independent approach. 

 

 
Tab.4.1 Estimated and observed species richness in clone libraries. 

Clone library Estimated species 
richness (Chao2) 

Observed RFLP-
types 

Observation/ 
estimation ratio [%] 

M 22 20 91 
N 43 32 74 
P 35 28 80 
R 47 30 64 
T 33 28 85 

 

 

4.1.6. Overlap of culture-dependent and -independent approaches 
The amplified sequence regions for identification varied between the culture-

dependent and –independent approaches: For identification of cultured fungi the ITS-

region covering both, ITS1 and ITS2 region was sequenced. Well characterised 

reference sequences were expected for cultured fungi in the INSD. The complete 

ITS-region is ideal for species (sometimes even subspecies) identification with 

sufficient reference data. Conversely, from the culture-independent approach less 

well characterised reference sequences were expected. In this case the LSU served 
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as a good marker with improved resolution at higher taxonomic levels. Therefore, the 

overlapping sequence from the two different approaches mainly covers the ITS2 

region (~ 300 bp), which is enough to find identical species from both methods by 

sequence analysis. 

Altogether, the overlapping set of sequences of both approaches within the same soil 

was diminutive. Only 5 sequences uncovered by both methods, actually derived from 

the same soil sample. These are Fusarium oxysporum (clone library derived from soil 

R), Helicodendron sp. (T), Davidiella tassiana (T), Cercophora/Apodus sp. (T) and 

Bionectria ochroleuca (P). Still, some other species, e.g. Cryptococcus aerius, also 

show up to 100 % identity within the overlapping sequence region, but originate from 

different soil samples. This is due to our culture-based approach, which was 

performed to obtain a picture of the diversity of cultivable fungi from all soil samples 

together. The results of this approach therefore should be seen on the whole and 

should not be differentiated into the individual soil samples. 

 

Interestingly, Aspergillus, Penicillium and Trichoderma species which were frequently 

isolated from all soil samples could not be found in the culture independent 

approach. Furthermore, plates with rapidly growing and heavy sporulating Mucorales 

were discarded from our culturing approach, since subculturing from such plates was 

hardly possible. 

 

It is expected that increasing both, the culturing effort and the number of sequenced 

clones from clone libraries would result in a higher number of species found by both 

approaches. Thus, the overlap of species found by both approaches may be larger in 

reality than only 5. In total, we counted 14 different species, which possess an 

overlap of more than 98 % sequence identity, although a comparison is not totally 

correct due to different soil origins. Nevertheless, apart from the difference in soil 

origins, the overlapping 14 species make up for only 8.6 % of identified species by 

both methods taken together. The majority of species were detected by the culture-

independent procedure (62.6 %), while 28.8 % of all species were found by the 

culturing-approach exclusively. It is surprising, that more than a quarter of all species 

was cultivated under our conditions, but never detected by the cloning technique. 

This means, that either these organisms occurred in a very low amount, and might 

thus have escaped detection in the clone libraries, or these fungi were present as 
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spores, which were able to germinate, but withstood our DNA extraction procedure. 

On top of that, the possibility of undersampling should be taken into account. 

 

The analysis clearly demonstrates that both methods are complementary rather than 

overlapping. Therefore, to cover fungal diversity more broadly, both approaches, 

displaying different features of diversity or community structure, are needed. 

However, even using multiple techniques we may be far from reaching the true 

magnitude of fungal diversity. 

 

4.2. Nitrate reductase sequences from soil fungi 
 
Nitrate is a significant nitrogen source for plants and microorganisms. Nitrate 

assimilation is a key process in the global nitrogen cycle, whereby nitrate is reduced 

via nitrite to ammonium which is incorporated into cell material (see 1.1.7. Nitrate 

assimilation). 

To gain insight into specific contribution of fungi in soil N-cycling and possible fluxes 

of nitrogen between the different members of the soil microbial community, nitrate 

reductase (NR) encoding genes (henceforward called niaD in analogy to the gene 

from Aspergillus nidulans (Garrett and Cove 1976)) from soil fungi were studied. 

From many studies with different fungi it is well established that NR is under 

transcriptional control (Marzluf 1997). Ammonia and glutamine repress the 

expression of NR, whereas nitrate is necessary for induction. However, there are 

some exceptions: Gibberella fujikuroi (Fusarium fujikuroi) seems to be independent 

of nitrate induction (Mihlan et al. 2003). In addition, NR expression of some 

ectomycorrhizal fungi is de-repressed when N becomes limited without additional 

induction by nitrate. 

It is assumed that detection of fungal niaD-mRNA in soil would be indicative of nitrate 

uptake and utilisation by soil fungi. Sequencing of soil niaD-mRNA would additionally 

provide information about the identity of the fungal species utilising the nitrate. 

Since the investigated soils mainly contained Ascomycota, the focus was laid on the 

amplification of ascomycetous niaD sequences from soil. Basidiomycetous niaD 

sequences deviate highly from ascomycetous niaD sequences so that the 

development of degenerate primers allowing amplification of both, ascomycetous and 

basidiomycetous niaD genes, is hardly possible. Trichoderma species seem to have 

obtained their niaD genes by horizontal gene transfer from a basidiomycetous host 
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(Slot and Hibbett 2007). Trichoderma niaD-genes can therefore only be amplified 

with Basidiomycota-specific PCR-primers.  

On the basis of 29 Ascomycota of which full length niaD sequences were available in 

Genbank, a multiple alignment of protein sequences was generated to design a set 

of primers for the amplification of a ~ 400 bp long stretch of the niaD gene. Due to the 

diverse range of organisms included in the alignment we gained a good coverage of 

mainly Pezizomycotina within the Ascomycota, whereas the Saccharomycotina were 

excluded. This is because the ability of nitrate assimilation in Saccharomycotina is 

restricted to only a few species (e.g. Hansenula polymorpha) (Siverio 2002). No niaD 

sequences from the Taphrinomycotina are known.  

The primers were preliminary tested with two laboratory strains known to contain 

nitrate reductase by growth tests on minimal medium with nitrate as the only nitrogen 

source. In this way, PCR conditions were optimised. However, it became apparent 

that niaD amplification was more challenging when the heterogeneous soil DNA was 

used. After adaptation of PCR conditions (higher primer concentrations, addition of 

enhancers like Betaine, etc.) a nested PCR gave rise to strong bands for all 4 

samples. As the results of our niaD clone libraries indicate, degeneracy of primers 

did not lead to loss of specificity, since almost every insert could be assigned to 

fungal niaD. 

In silico analysis revealed that in a portion of sequences derived from P1 and P2, the 

amplified coding region is interrupted by a single intron. Therefore, sequences of 

mainly two lengths were obtained: 367 bp without an intron and 419 or 442 bp, 

respectively, containing a single intron; all sequences coding for 122 amino acids.  

The size of the whole nitrate reductase protein may vary from 864 amino acids for 

Penicillium chrysogenum to 982 amino acids for Neurospora crassa. It is known that 

the numbers and positions of introns can differ between species. Furthermore, 

similarities regarding intron organisation within the gene is associated with taxonomic 

relationships (Cutler et al. 1998). In fact, the nitrate reductase gene displays 

substantial sequence similarity between fungi, algae and higher plants, which offers 

the utilisation of niaD as a classification tool. Moreover, phylogenetic trees based on 

niaD correspond well with the phylogeny of the organisms determined from 

alternative molecular studies and systematics (Zhou and Kleinhofs 1996). Indeed, the 

development of diagnostic kits for the detection of certain Verticillium fungicola 

strains by usage of nitrate reductase sequence data was proposed by Amey et al. 
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(2007). Furthermore, phylogenetic analysis of the nitrate reductase protein sequence 

revealed that the fungal group of eukaryotic nitrate reductases were arranged 

following taxonomic classification: fungi appeared to be divided into 2 distinct 

subclades with Ascomycota and yeast forming one, and the Basidiomycota the other  

(Stolz and Basu 2002). Due to its conservation and the correlation to taxonomic lines, 

the eukaryotic nitrate reductase represents a valuable phylogenetic marker. 

However, all the aforementioned studies rely onto data not including the niaD 

sequence of Trichoderma reesei (Hypocrea jecorina), an ascomycetous mold. 

According to Slot and Hibbett (2007) T. reesei obtained the nitrate assimilation 

cluster, which consists of a high affinity nitrate transporter, a nitrate reductase and a 

ferredoxin-independent assimilatory nitrite reductase, by horizontal gene transfer 

from a basidiomycete. This may have corresponded to a change in nutritional mode, 

improving the fitness of T. reesei in a new niche. Supported by phylogenetic studies, 

the horizontal transmission is a plausible scenario since some Trichoderma species 

are intracellular parasites of basidiomycetes (Slot and Hibbett 2007). 

Sequence analysis of our own data in combination with niaD sequences available at 

Genbank as well as partial niaD sequences obtained from several isolated fungi from 

our strain collection give a similar picture, whereby sequences obtained from 

Trichoderma species cluster together with Basidiomycota. Our results therefore 

confirm the observations of Slot and Hibbett (2007). This is an interesting finding, 

because horizontal gene transfer shatters the tendency of niaD acting as a molecular 

marker for phylogeny, although niaD sequences of many other Ascomycota still 

substantiates a taxonomic classification in accordance to rRNA genes/ITS 

phylogeny. 

Nevertheless, owing to our still increasing niaD sequence collection, it became 

possible to group many of our clone library-derived sequences close to cultivated 

species. For example, one of the sequences obtained from the niaD library was 

identical with a Verticillium nigrescens niaD sequence. Other unknown sequences 

clustered together with Plectopshaerella cucumerina or Acremonium sp., 

respectively. Furthermore, there are some niaD sequences derived solely from the 

soil P clustering together with species from the order Pezizales. Interestingly, our 

diversity study detected Pezizales species only in the P clone library, not in N. 
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Although many niaD sequences are available from Aspergillus and Penicillium 

species, no niaD sequence from our libraries groups within the cluster of 

Eurotiomycetidae.   

Generally, for the majority of fungi a more accurate assignment is not possible at the 

moment. This is due to the shortness of the amplified niaD sequence stretch, which 

does not contain enough variability. Therefore, a new set of primers was designed, 

amplifying a longer fragment of the niaD gene. For future studies the assignment of 

certain niaD sequences to the corresponding species is of particular interest. For 

example, soil samples treated with different fertiliser conditions can then be analysed 

at the activity level by quantifying niaD mRNA. This may give us information about 

the actual induction of the fungal nitrate reductase, and furthermore may identify the 

active species. A niaD microarray containing several dozens of niaD probes targeting 

a diverse group of fungi would provide a means for simultaneous analysis of gene 

expression of many species revealing who is active up to what extent, under which 

condition and at what time. Furthermore, a combination with pool measurements of 
15N labelled substrates would allow an estimation of fungal nitrate assimilation 

activity. How fungi compete with bacteria and plants in terms of nitrate assimilation as 

well as dissimilatory activities under diverse conditions are important questions 

addressed by the “Nitro-Genome”-project. 

 

 
4.3. Fluorescence in situ hybridisation 

The determination of diversity and functional capability of microbial communities in 

the environment is facilitated by molecular techniques. PCR-based fingerprinting 

techniques, such as denaturing- or temperature-gradient gel electrophoresis (DGGE 

or TGGE) or terminal restriction fragment length polymorphism (T-RFLP) are 

commonly used to rapidly profile fungal populations in an ecosystem (Kennedy and 

Clipson 2003). However, fingerprinting techniques generally lack sensitivity and, 

even more important, harbour a number of problems associated with preceding PCR. 

Due to over- or under-amplification of particular sequences, PCR-based techniques 

are therefore not suitable for quantitative data interpretation (Kennedy and Clipson 

2003; Lau and Liu 2007). Since the construction of clone libraries is also based on 

PCR, our diversity analysis acts more like a demonstration what kind of species can 

be found by the methods we applied. Also, the quantification we performed for our 
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different soil clone libraries is always referred to the clone libraries themselves, not 

directly to the soils. As a result, an additional method, independent from PCR, is 

required. 

 

Fluorescence in situ hybridisation (FISH) not only enables visualisation and 

phylogenetic identification of single cells, but also the direct quantification of 

microorganisms. If mRNA is targeted, the question of linking function to diversity can 

be addressed. 

The FISH experiment was performed to test the method on filamentous fungi; in our 

case a pure culture of the model organism Aspergillus nidulans was used. There are 

not many protocols for the application of FISH on filamentous fungi in the literature; 

occasionally a permeabilisation of the cell wall with lysing enzymes is suggested 

(Sterflinger et al. 1998; Teertstra et al. 2004). For A. nidulans no enzymatic treatment 

prior to hybridisation was required to yield strong fluorescence signals. Initially, 

parameters like culture conditions, the sample fixation method, treatment of slides as 

well as hybridisation and washing buffer compositions were tested using the 18S 

rRNA-targeted probes EUK516-Fluos.  

These pre-experiments of rRNA-FISH were performed using an overnight culture 

grown on an AMM-plate. Two fixatives were tested: formaldehyde-fixed samples 

appeared to work better than ethanol-fixed ones. Uncoated slides were sufficient and 

H2O2-treatment did not negatively affect the outcome. Furthermore, a 10 % 

formamide concentration seemed to be suitable for hybridisation and both buffers, 

Tris- and SSC-buffer, worked well. 

The most suitable conditions (i.e. highest signal intensity) were then selected for the 

actual mRNA FISH using the probe which locates niaD mRNA. In order to avoid 

mRNA degradation by endogenous and exogenous RNases several precautions 

were taken (e.g. DEPC treatment).  

It could be shown that no enzymatic treatment prior to hybridisation is needed for 

Aspergillus nidulans in order to yield a strong, clear and specific signal for the 

detection of rRNA as well as niaD mRNA. While rRNA appeared to be evenly 

distributed in the cytoplasm, niaD mRNA were unevenly distributed in the cells.  

It is known, that niaD gene expression can either be induced by nitrate (NO3
-) or 

repressed by ammonium tartrate. Subsequent to a short N-starvation period after 

germination followed by induction with nitrate, the expression level of niaD can even 
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be more induced (“super-induced”) than without preceding N-starvation (Todd et al. 

2005). 

Using the same microscopic settings, induced and super-induced A. nidulans 

cultures as compared to the uninduced ones generated a higher fluorescence 

intensity for the niaD-targeted probe. Interestingly, the induced sample appeared 

brighter than the super-induced sample. However, the intensity of the signal was not 

quantified. 

In the course of these experiments, we initially focused on the establishment of the 

FISH protocol applied for Aspergillus nidulans as a proof of principle. Furthermore, 

during this preliminary test, the optimisation of FISH conditions for the detection of 

niaD mRNA was attempted. Fortunately, our results look promising and form the 

basis of future studies, dedicated to the investigation of fungal niaD under different 

conditions; first studied in pure cultures which can then be expanded to fungi in 

environmental samples.  

 

4.4. Summary and perspectives 

Fungi fulfil a range of important ecological functions. There is poor understanding of 

soil fungal community diversity and the specific roles of individual phylogenetic 

groups present in the environment. 

Molecular techniques open new possibilities to obtain information on fungal diversity 

and the importance of fungi in ecosystems (Hawksworth 2006).  

By the determination of fungal diversity in agricultural soils as well as one grassland 

soil using two different approaches, we gained a picture of a diverse range of fungal 

species. This inventory, connected with physiological information, will allow spanning 

a bridge between community structure and functional activities. Besides the 

phylogenetic marker ITS/LSU for community description, we focused on the 

functional gene niaD, coding for fungal nitrate reductase. This enzyme catalyses the 

reduction of nitrate to nitrite, which is the first reaction in nitrate assimilation. 

Investigation of the niaD gene allows the determination of diversity and functional 

potential, meaning the simple detection of fungi containing the gene without knowing 

their activity status. Quantification on the DNA level thus only allows counting 

population numbers, or more precisely gene copy numbers. This is particularly 

interesting if environmental changes cause a variation in the microbial population 

numbers (Saleh-Lakha et al. 2005). However, environmental changes that affect the 
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gene expression in the same microbial population may be even more important. 

Exploration of the actual transcriptional activity of a functional gene is achieved by 

the analysis of the respective mRNA. A functional gene array containing niaD probes 

could be used to monitor the physiological status and functional activity of the niaD 

expressing fungal community. Although, the most sensitive method for the detection 

of low abundance mRNA is real-time PCR (Saleh-Lakha et al. 2005). Despite the 

precision and accuracy of real-time PCR, which has already been successfully 

applied in quantifying the abundance of a gene in environmental samples, both 

techniques, real-time PCR as well as microarrays, are limited by the low mRNA 

extraction efficiencies from environmental samples (Saleh-Lakha et al. 2005).  

In the course of the “Nitro-Genome”-project time experiments with barley and 

different fertiliser treatments were conducted. Meanwhile, protocols for RNA 

extraction were performed and between 0.5 and 2.5 µg RNA per g dry weight soil can 

now routinely be obtained. The quantity and quality of RNA appeared to be sufficient 

for reverse transcription and an optimised protocol for this reaction was developed. 

So far, we have got all the tools available to characterise and quantify the niaD 

expressing population. Future studies will therefore focus on real-time PCR 

experiments and the development of a niaD microarray. 

 
Linking biodiversity with function is an important issue when soil ecosystems are 

investigated. Therefore, experimental approaches for simultaneous identification of 

taxa within a community and the functional processes performed by them are 

valuable. Analysis of the total RNA pool of a community using highly parallel 

sequencing provides the opportunity to study mRNA and rRNA molecules 

simultaneously from the same sample. The ‘‘double-RNA’’ approach by (Urich et al. 

2008) yielded qualitative and quantitative information on both structure and function 

of a soil community. However, pyrosequencing is very costly and produces only short 

reads of around 100 bp.  

 

Fluorescence in situ hybridisation (FISH) additionally enables the visualisation of 

single microbial cells directly in the environmental sample. Furthermore, the 

phylogenetic identification of cells combined with detection of mRNA addresses the 

question of linking function and diversity. 

PCR-based fingerprinting techniques, such as D/TGGE or T-RFLP offer the 

determination of diversity and functional capability of microbial communities in the 
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environment. These techniques are commonly used to rapidly profile fungal 

populations in an ecosystem (Kennedy and Clipson 2003). T-RFLP analysis of the 

niaD gene, for example, allows the recognition of shifts in soil fungal community 

structure in response to different fertiliser treatments.   

 

There is a variety of research possibilities for the future by applying additional 

methods as well as refinements of already performed techniques, which lead to an 

increased understanding of the diversity and structure of fungal communities. 

Furthermore, this may contribute to an improvement of methods for sustainable 

agriculture and restoration of ecosystems at disturbed sites (Midgley et al. 2007), as 

well as to the enhancement of nitrogen fertiliser efficiency as the final aim of this 

investigation, which would be for the benefit of ecologists, agronomists, industry and 

the whole environment. 

 



  5. References  

117 

5. References 

Abeyrathne, P. D. and R. N. Nazar (2005). "Parallels in rRNA Processing: Conserved 
Features in the Processing of the Internal Transcribed Spacer 1 in the Pre-rRNA from 
Schizosaccharomyces pombe." Biochemistry 44(51): 16977-16987. 

Aime, M. C., P. B. Matheny, D. A. Henk, E. M. Frieders, et al. (2006). "An overview of the 
higher level classification of Pucciniomycotina based on combined analyses of 
nuclear large and small subunit rDNA sequences." Mycologia 98(6): 896-905. 

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, et al. (1990). "Basic local alignment search 
tool." Journal of Molecular Biology 215(3): 403-10. 

Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, et al. (1990). "Combination of 16S 
rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed 
microbial populations." Appl Environ Microbiol 56(6): 1919-25. 

Amey, R. C., A. Athey-Pollard, P. R. Mills, G. D. Foster, et al. (2007). "Investigations into the 
taxonomy of the mushroom pathogen Verticillium fungicola and its relatives based on 
sequence analysis of nitrate reductase and ITS regions." Mikrobiologiia 76(6): 853-
64. 

Anderson, I. C. and J. W. Cairney (2004). "Diversity and ecology of soil fungal communities: 
increased understanding through the application of molecular techniques." Environ 
Microbiol 6(8): 769-79. 

Anderson, I. C., C. D. Campbell and J. I. Prosser (2003). "Potential bias of fungal 18S rDNA 
and internal transcribed spacer polymerase chain reaction primers for estimating 
fungal biodiversity in soil." Environ Microbiol 5(1): 36-47. 

Baldwin, B. G., M. J. Sanderson, J. M. Porter and C. S. C. Martin F. Wojciechowski, Michael 
J. Donoghue (1995). "The ITS Region of Nuclear Ribosomal DNA: A Valuable Source 
of Evidence on Angiosperm Phylogeny." Annals of the Missouri Botanical Garden. 

Baroin, A., R. Perasso, L.-H. Qu, G. Brugerolle, et al. (1988). "Partial Phylogeny of the 
Unicellular Eukaryotes Based on Rapid Sequencing of a Portion of 28S Ribosomal 
RNA." Proceedings of the National Academy of Sciences 85(10): 3474-3478. 

Becker, S., P. Boger, R. Oehlmann and A. Ernst (2000). "PCR bias in ecological analysis: a 
case study for quantitative Taq nuclease assays in analyses of microbial 
communities." Appl Environ Microbiol 66(11): 4945-53. 

Beiggi, S. and M. D. Piercey-Normore (2007). "Evolution of ITS ribosomal RNA secondary 
structures in fungal and algal symbionts of selected species of Cladonia sect. 
Cladonia (Cladoniaceae, Ascomycotina)." J Mol Evol 64(5): 528-42. 

Belkhiri, A., J. Buchko and G. R. Klassen (1992). "The 5S ribosomal RNA gene in Pythium 
species: two different genomic locations." Mol Biol Evol 9(6): 1089-102. 

Berger, H., A. Basheer, S. Böck, R.-D. Y, et al. (2008). "Dissecting individual steps of 
nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster." 
Molecular Microbiology; Accepted. 

Berger, H., R. Pachlinger, I. Morozov, S. Goller, et al. (2006). "The GATA factor AreA 
regulates localization and in vivo binding site occupancy of the nitrate activator NirA." 
Molecular Microbiology 59(2): 433-446. 

Bernreiter, A. (2005). Isolation and characterization of a nuclear pore protein involved in the 
regulated transport of the nitrate assimilation cluster specific transcription factor NirA. 
Department für Angewandte Pflanzenwissenschaften und Pflanzenbiotechnologie. 
Wien, Universität für Bodenkultur Wien. PhD-Thesis. 

Bernreiter, A., A. Ramon, J. Fernandez-Martinez, H. Berger, et al. (2007). "Nuclear export of 
the transcription factor NirA is a regulatory checkpoint for nitrate induction in 
Aspergillus nidulans." Mol Cell Biol 27(3): 791-802. 

Binder, M. and D. S. Hibbett (2006). "Molecular systematics and biological diversification of 
Boletales." Mycologia 98(6): 971-981. 

Bock, E. and M. Wagner (2006). Oxidation of Inorganic Nitrogen Compounds as an Energy 
Source. The Prokaryotes: 457-495. 



  5. References   

118 

Boer, W., L. B. Folman, R. C. Summerbell and L. Boddy (2005). "Living in a fungal world: 
impact of fungi on soil bacterial niche development." FEMS Microbiol Rev 29(4): 795-
811. 

Castignetti, D. and T. C. Hollocher (1982). "Nitrogen Redox Metabolism of a Heterotrophic, 
Nitrifying-Denitrifying Alcaligenes sp. from Soil." Appl Environ Microbiol 44(4): 923-
928. 

Chilton, N. B., F. Huby-Chilton and R. B. Gasser (2003). "First complete large subunit 
ribosomal RNA sequence and secondary structure for a parasitic nematode: 
phylogenetic and diagnostic implications." Molecular and Cellular Probes 17(1): 33-
39. 

Coleman, A. W. (2003). "ITS2 is a double-edged tool for eukaryote evolutionary 
comparisons." Trends Genet 19(7): 370-5. 

Coleman, A. W. (2007). "Pan-eukaryote ITS2 homologies revealed by RNA secondary 
structure." Nucleic Acids Res 35(10): 3322-9. 

Colpaert, J. V. and K. K. Tichelen (1996). "Decomposition, nitrogen and phosphorus 
mineralization from beech leaf litter colonized by ectomycorrhizal or litter-
decomposing basidiomycetes." New Phytologist 134(1): 123-132. 

Connell, L., R. Redman, S. Craig, G. Scorzetti, et al. (2008). "Diversity of Soil Yeasts Isolated 
from South Victoria Land, Antarctica." Microb Ecol. 

Crenshaw, C., C. Lauber, R. Sinsabaugh and L. Stavely (2008). "Fungal control of nitrous 
oxide production in semiarid grassland." Biogeochemistry 87(1): 17-27. 

Cutler, S. B., R. N. Cooley and C. E. Caten (1998). "Cloning of the nitrate reductase gene of 
Stagonospora (Septoria) nodorum and its use as a selectable marker for targeted 
transformation." Curr Genet 34(2): 128-37. 

da Silva, G., E. Lumini, L. Maia, P. Bonfante, et al. (2006). "Phylogenetic analysis of 
Glomeromycota by partial LSU rDNA sequences." Mycorrhiza 16(3): 183-189. 

Daims, H., K. Stoecker and M. Wagner (2005). Fluorescence in situ hybridization for the 
detection of prokaryotes. Molecular Microbial Ecology. A. M. Osborn and C. J. Smith. 
Abingdon, Bios Advanced Methods: 213-239. 

Dalsgaard, T., B. Thamdrup and D. E. Canfield (2005). "Anaerobic ammonium oxidation 
(anammox) in the marine environment." Res Microbiol 156(4): 457-64. 

de Castro, A. P., B. F. Quirino, G. Pappas, Jr., A. S. Kurokawa, et al. (2008). "Diversity of soil 
fungal communities of Cerrado and its closely surrounding agriculture fields." Arch 
Microbiol 190(2): 129-39. 

de Jesus-Berrios, M., L. Liu, J. C. Nussbaum, G. M. Cox, et al. (2003). "Enzymes that 
counteract nitrosative stress promote fungal virulence." Curr Biol 13(22): 1963-8. 

Dighton, J., J. F. White Jr. and P. Oudemans (2005). The Fungal Community: Its 
Organization and Role in the Ecosystem, Third Edition., CRC. 

Dombrink-Kurtzman, M. A. and A. E. Engberg (2006). "Byssochlamys nivea with patulin-
producing capability has an isoepoxydon dehydrogenase gene (idh) with sequence 
homology to Penicillium expansum and P. griseofulvum." Mycological Research 
110(9): 1111-1118. 

Donnison, L. M., G. S. Griffith, J. Hedger, P. J. Hobbs, et al. (2000). "Management influences 
on soil microbial communities and their function in botanically diverse haymeadows of 
northern England and Wales." Soil Biology & Biochemistry 32(2): 253-263. 

Duiker, S. W. (2006). Aggregation. Encyclopedia of Soil Science. R. Lal, Taylor & Francis: 
49-51. 

Eckardt, N. A. (2005). "Moco Mojo: Crystal Structure Reveals Essential Features of 
Eukaryotic Assimilatory Nitrate Reduction." Plant Cell 17(4): 1029-1031. 

Fan, X. H. and T. Haruo (2004). "N2O emissions from a cultivated Andisol after application of 
nitrogen fertilizers with or without nitrification inhibitor under soil moisture regime." J 
Environ Sci (China) 16(5): 735-7. 

Fay, P. (1992). "Oxygen relations of nitrogen fixation in cyanobacteria." Microbiol Rev 56(2): 
340-73. 

Ferguson, S. J. (1998). "Nitrogen cycle enzymology." Current Opinion in Chemical Biology 
2(2): 182. 



  5. References  

119 

Fernandez, F. A., A. N. Miller, S. M. Huhndorf, F. M. Lutzoni, et al. (2006). "Systematics of 
the genus Chaetosphaeria and its allied genera: morphological and phylogenetic 
diversity in north temperate and neotropical taxa." Mycologia 98(1): 121-130. 

Ganley, A. R. and T. Kobayashi (2007). "Highly efficient concerted evolution in the ribosomal 
DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun 
sequence data." Genome Res 17(2): 184-91. 

Garber, R. C., B. G. Turgeon, E. U. Selker and O. C. Yoder (1988). "Organization of 
ribosomal RNA genes in the fungus Cochliobolus heterostrophus." Curr Genet 14(6): 
573-82. 

Gardes, M. and T. D. Bruns (1993). "ITS primers with enhanced specificity for 
basidiomycetes-application to the identification of mycorrhizae and rusts." Mol Ecol 
2(2): 113-8. 

Garrett, R. H. and D. J. Cove (1976). "Formation of NADPH-nitrate reductase activity in vitro 
from Aspergillus nidulans niaD and cnx mutants." Mol Gen Genet 149(2): 179-86. 

Gerr, H. D., M. L. Nassin, E. M. Davis, N. Jayathilaka, et al. (2007). "Cytogenetic and 
molecular study of the PRDX4 gene in a t(X;18)(p22;q23): a cautionary tale." Cancer 
Genetics and Cytogenetics 176(2): 131-136. 

Golden, J. W. and H. S. Yoon (2003). "Heterocyst development in Anabaena." Curr Opin 
Microbiol 6(6): 557-63. 

Gotelli, N. J. and G. R. Graves (1996). Species diversity. Null models in ecology. Washington 
and London, Smithsonian Institution Press. 

Granneman, S. and S. J. Baserga (2005). "Crosstalk in gene expression: coupling and co-
regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing." 
Curr Opin Cell Biol 17(3): 281-6. 

Groffman, P. M., M. A. Altabet, J. K. Bohlke, K. Butterbach-Bahl, et al. (2006). "Methods for 
measuring denitrification: diverse approaches to a difficult problem." Ecol Appl 16(6): 
2091-122. 

Gurtler, V. (1999). "The role of recombination and mutation in 16S-23S rDNA spacer 
rearrangements." Gene 238(1): 241-252. 

Hagn, A., K. Pritsch, M. Schloter and J. C. Munch (2003). "Fungal diversity in agricultural soil 
under different farming management systems, with special reference to biocontrol 
strains of Trichoderma spp." Biology and Fertility of Soils 38(4): 236-244. 

Hansen, K., K. F. LoBuglio and D. H. Pfister (2005). "Evolutionary relationships of the cup-
fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, 
[beta]-tubulin, and LSU rDNA." Molecular Phylogenetics and Evolution 36(1): 1-23. 

Hawksworth, D. L. (2001). "The magnitude of fungal diversity: the 1.5 million species 
estimate revisited." Mycological Research 105: 1422-1432. 

Hawksworth, D. L. (2004). "Fungal diversity and its implications for genetic resource 
collections." Studies in Mycology(50): 9-17. 

Hawksworth, D. L. (2006). "Pandora's mycological box: molecular sequences vs. morphology 
in understanding fungal relationships and biodiversity." Rev Iberoam Micol 23(3): 127-
33. 

Hayatsu, M., K. Tago and M. Saito (2008). "Various players in the nitrogen cycle: Diversity 
and functions of the microorganisms involved in nitrification and denitrification." Soil 
Science & Plant Nutrition 54(1): 33-45. 

Hibbett, D. S., M. Binder, J. F. Bischoff, M. Blackwell, et al. (2007). "A higher-level 
phylogenetic classification of the Fungi." Mycol Res 111(Pt 5): 509-47. 

Hillis, D. M. and M. T. Dixon (1991). "Ribosomal DNA: molecular evolution and phylogenetic 
inference." Q Rev Biol 66(4): 411-53. 

Hoffland, E., T. W. Kuyper, H. Wallander, C. Plassard, et al. (2004). "The role of fungi in 
weathering." Frontiers in Ecology and the Environment 2(5): 258-264. 

Hopple, J. S., Jr. and R. Vilgalys (1999). "Phylogenetic relationships in the mushroom genus 
Coprinus and dark-spored allies based on sequence data from the nuclear gene 
coding for the large ribosomal subunit RNA: divergent domains, outgroups, and 
monophyly." Mol Phylogenet Evol 13(1): 1-19. 



  5. References   

120 

Howlett, B. J., B. D. Rolls and A. J. Cozijnsen (1997). "Organisation of ribosomal DNA in the 
ascomycete Leptosphaeria maculans." Microbiol Res 152(3): 261-7. 

Hwang, U. W. and W. Kim (1999). "General properties and phylogenetic utilities of nuclear 
ribosomal DNA and mitochondrial DNA commonly used in molecular systematics." 
Korean J Parasitol 37(4): 215-28. 

Inselsbacher, E., E. Hackl, S. Klaubauf, K. Ripka, et al. (2007). “NITROGENOM” – A 
standardized microcosm system to study nitrogen pathways and soil-plant-microbe 
relationships in agricultural soils. The 4th International Nitrogen Conference, Costa do 
Sauípe, Brazil. 

Iwen, P. C., S. H. Hinrichs and M. E. Rupp (2002). "Utilization of the internal transcribed 
spacer regions as molecular targets to detect and identify human fungal pathogens." 
Med Mycol 40(1): 87-109. 

Jones, C. M. and J. E. Thies (2007). "Soil microbial community analysis using two-
dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal 
transcribed spacer regions." Journal of Microbiological Methods 69(2): 256-267. 

Jongmans, A. G., N. vanBreemen, U. Lundstrom, P. A. W. vanHees, et al. (1997). "Rock-
eating fungi." Nature 389(6652): 682-683. 

Kanagawa, T. (2003). "Bias and artifacts in multitemplate polymerase chain reactions 
(PCR)." J Biosci Bioeng 96(4): 317-23. 

Kennedy, N. and N. Clipson (2003). "Fingerprinting the fungal community." Mycologist 17: 
158-164. 

Klappenbach, J. A., J. M. Dunbar and T. M. Schmidt (2000). "rRNA operon copy number 
reflects ecological strategies of bacteria." Appl Environ Microbiol 66(4): 1328-33. 

Klotz, M. G. and L. Y. Stein (2008). "Nitrifier genomics and evolution of the nitrogen cycle." 
FEMS Microbiol Lett 278(2): 146-56. 

Kobayashi, M., Y. Matsuo, A. Takimoto, S. Suzuki, et al. (1996). "Denitrification, a novel type 
of respiratory metabolism in fungal mitochondrion." J Biol Chem 271(27): 16263-7. 

Könneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, et al. (2005). "Isolation of an 
autotrophic ammonia-oxidizing marine archaeon." Nature 437(7058): 543-546. 

Koufopanou, V., A. Burt, T. Szaro and J. W. Taylor (2001). "Gene genealogies, cryptic 
species, and molecular evolution in the human pathogen Coccidioides immitis and 
relatives (Ascomycota, Onygenales)." Mol Biol Evol 18(7): 1246-58. 

Lanoil, B. D. and S. J. Giovannoni (1997). "Identification of bacterial cells by chromosomal 
painting." Appl. Environ. Microbiol. 63(3): 1118-1123. 

Lau, S. C. and W. T. Liu (2007). "Recent advances in molecular techniques for the detection 
of phylogenetic markers and functional genes in microbial communities." FEMS 
Microbiol Lett 275(2): 183-90. 

Laughlin, R. J. and R. J. Stevens (2002). "Evidence for Fungal Dominance of Denitrification 
and Codenitrification in a Grassland Soil." Soil Sci Soc Am J 66(5): 1540-1548. 

Leininger, S., T. Urich, M. Schloter, L. Schwark, et al. (2006). "Archaea predominate among 
ammonia-oxidizing prokaryotes in soils." Nature 442(7104): 806-809. 

Loy, A., M. Horn and M. Wagner (2003). "probeBase: an online resource for rRNA-targeted 
oligonucleotide probes." Nucleic Acids Res 31(1): 514-6. 

Lumbsch, H. T. (2000). "Phylogeny of filamentous ascomycetes." Naturwissenschaften 87(8): 
335-42. 

Maier, R. M., I. L. Pepper and C. P. Gerba (2000). Environmental Microbiology. San Diego, 
Academic Press. 

Maleszka, R. and G. D. Clark-Walker (1993). "Yeasts have a four-fold variation in ribosomal 
DNA copy number." Yeast 9(1): 53-58. 

Manter, D. K. and J. M. Vivanco (2007). "Use of the ITS primers, ITS1F and ITS4, to 
characterize fungal abundance and diversity in mixed-template samples by qPCR 
and length heterogeneity analysis." Journal of Microbiological Methods 71(1): 7-14. 

Marzluf, G. A. (1997). "Genetic regulation of nitrogen metabolism in the fungi." Microbiol Mol 
Biol Rev 61(1): 17-32. 

McLain, J. E. T. and D. A. Martens (2006). "N2O production by heterotrophic N 
transformations in a semiarid soil." Applied Soil Ecology 32(2): 253-263. 



  5. References  

121 

McNeill, J., F. R. Barrie, H. M. Burdet, V. Demoulin, et al. (2006). International Code of 
Botanical Nomenclature (Vienna Code) adopted by the Seventh International 
Botanical Congress Vienna, Austria, July 2005. Ruggell, Liechtenstein, A.R.G. 
Gantner Verlag. 

Midgley, D. J., J. A. Saleeba, M. I. Stewart, A. E. Simpson, et al. (2007). "Molecular diversity 
of soil basidiomycete communities in northern-central New South Wales, Australia." 
Mycological Research 111(3): 370-378. 

Mihlan, M., V. Homann, T. W. Liu and B. Tudzynski (2003). "AREA directly mediates nitrogen 
regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not 
affected by NMR." Mol Microbiol 47(4): 975-91. 

Miller, A. N. and S. M. Huhndorf (2005). "Multi-gene phylogenies indicate ascomal wall 
morphology is a better predictor of phylogenetic relationships than ascospore 
morphology in the Sordariales (Ascomycota, Fungi)." Molecular Phylogenetics and 
Evolution 35(1): 60-75. 

Mini, S. S. and M. Raudaskoski (1993). "Response of ectomycorrhizal fungi to benomyl and 
nocodazole: growth inhibition and microtubule depolymerization." Mycorrhiza 3(2): 
83-91. 

Moreira, D., S. von der Heyden, D. Bass, P. Lopez-Garcia, et al. (2007). "Global eukaryote 
phylogeny: Combined small- and large-subunit ribosomal DNA trees support 
monophyly of Rhizaria, Retaria and Excavata." Molecular Phylogenetics and 
Evolution 44(1): 255-266. 

Moreno-Vivian, C. and S. J. Ferguson (1998). "Definition and distinction between 
assimilatory, dissimilatory and respiratory pathways." Molecular Microbiology 29: 664-
666. 

Nilsson, R. H., M. Ryberg, E. Kristiansson, K. Abarenkov, et al. (2006). "Taxonomic 
Reliability of DNA Sequences in Public Sequence Databases: A Fungal Perspective." 
PLoS ONE 1(1): e59. 

Ninnemann, H. and J. Maier (1996). "Indications for the Occurrence of Nitric Oxide 
Synthases in Fungi and Plants and the Involvement in Photoconidiation of 
Neurospora crassa." Photochemistry and Photobiology 64(2): 393-398. 

Nugent, K. G. and B. J. Saville (2004). "Forensic analysis of hallucinogenic fungi: a DNA-
based approach." Forensic Sci Int 140(2-3): 147-57. 

O'Brien, H. E., J. L. Parrent, J. A. Jackson, J. M. Moncalvo, et al. (2005). "Fungal community 
analysis by large-scale sequencing of environmental samples." Appl Environ 
Microbiol 71(9): 5544-50. 

Perez-Luz, S., J. Fernandez, F. Rodriguez-Valera, L. Pascual, et al. (2002). "Sequence 
Diversity of the Internal Transcribed Spacer (ITS) Region of the rRNA Operons 
Among Different Serogroups of Legionella pneumophila Isolates." Systematic and 
Applied Microbiology 25(2): 212-219. 

Pernthaler, A. and R. Amann (2004). "Simultaneous Fluorescence In Situ Hybridization of 
mRNA and rRNA in Environmental Bacteria." Appl. Environ. Microbiol. 70(9): 5426-
5433. 

Poole, R. K. (2005). "Nitric oxide and nitrosative stress tolerance in bacteria." Biochem Soc 
Trans 33(Pt 1): 176-80. 

Porter, T. M., C. W. Schadt, L. Rizvi, A. P. Martin, et al. (2008). "Widespread occurrence and 
phylogenetic placement of a soil clone group adds a prominent new branch to the 
fungal tree of life." Mol Phylogenet Evol 46(2): 635-44. 

Prokopowich, C. D., T. R. Gregory and T. J. Crease (2003). "The correlation between rDNA 
copy number and genome size in eukaryotes." Genome 46(1): 48-50. 

Rainey, F. A., N. L. Ward-Rainey, P. H. Janssen, H. Hippe, et al. (1996). "Clostridium 
paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous 
intervening sequences." Microbiology 142: 2087-95. 

Ranjard, L., F. Poly, J. C. Lata, C. Mougel, et al. (2001). "Characterization of bacterial and 
fungal soil communities by automated ribosomal intergenic spacer analysis 
fingerprints: biological and methodological variability." Appl Environ Microbiol 67(10): 
4479-87. 



  5. References   

122 

Robertson, L. A. and J. G. Kuenen (1992). Nitrogen removal from water and waste, Society 
for General Microbiology Ltd. 

Ronhede, S., B. Jensen, S. Rosendahl, B. B. Kragelund, et al. (2005). "Hydroxylation of the 
herbicide isoproturon by fungi isolated from agricultural soil." Appl Environ Microbiol 
71(12): 7927-32. 

Saleh-Lakha, S., M. Miller, R. G. Campbell, K. Schneider, et al. (2005). "Microbial gene 
expression in soil: methods, applications and challenges." J Microbiol Methods 63(1): 
1-19. 

Schadt, C. W., A. P. Martin, D. A. Lipson and S. K. Schmidt (2003). "Seasonal dynamics of 
previously unknown fungal lineages in tundra soils." Science 301(5638): 1359-61. 

Schäfer, M., C. Schmitz, R. Facius, G. Horneck, et al. (2000). "Systematic Study of 
Parameters Influencing the Action of Rose Bengal with Visible Light on Bacterial 
Cells: Comparison Between the Biological Effect and Singlet-Oxygen Production." 
Photochemistry and Photobiology 71(5): 514-523. 

Schneider, D. A., A. Michel, M. L. Sikes, L. Vu, et al. (2007). "Transcription elongation by 
RNA polymerase I is linked to efficient rRNA processing and ribosome assembly." 
Mol Cell 26(2): 217-29. 

Schoch, C. L., R. A. Shoemaker, K. A. Seifert, S. Hambleton, et al. (2006). "A multigene 
phylogeny of the Dothideomycetes using four nuclear loci." Mycologia 98(6): 1041-
1052. 

Shoun, H., D. H. Kim, H. Uchiyama and J. Sugiyama (1992). "Denitrification by fungi." FEMS 
Microbiol Lett 73(3): 277-81. 

Simon, J. (2002). "Enzymology and bioenergetics of respiratory nitrite ammonification." 
FEMS Microbiol Rev 26(3): 285-309. 

Sirri, V., S. Urcuqui-Inchima, P. Roussel and D. Hernandez-Verdun (2008). "Nucleolus: the 
fascinating nuclear body." Histochem Cell Biol 129(1): 13-31. 

Siverio, J. M. (2002). "Assimilation of nitrate by yeasts." FEMS Microbiology Reviews 26(3): 
277-284. 

Slavikova, E. and R. Vadkertiova (2003). "The diversity of yeasts in the agricultural soil." J 
Basic Microbiol 43(5): 430-6. 

Slot, J. C. and D. S. Hibbett (2007). "Horizontal transfer of a nitrate assimilation gene cluster 
and ecological transitions in fungi: a phylogenetic study." PLoS ONE 2(10): e1097. 

Sonnenberg, R., A. Nolte and D. Tautz (2007). "An evaluation of LSU rDNA D1-D2 
sequences for their use in species identification." Frontiers in Zoology 4(1): 6. 

Spatafora, J. W., G. H. Sung, D. Johnson, C. Hesse, et al. (2006). "A five-gene phylogeny of 
Pezizomycotina." Mycologia 98(6): 1018-1028. 

Sterflinger, K., W. E. Krumbein and A. Schwiertz (1998). "A protocol for PCR in situ 
hybridization of hyphomycetes." Int Microbiol 1(3): 217-20. 

Stolz, J. F. and P. Basu (2002). "Evolution of Nitrate Reductase: Molecular and Structural 
Variations on a Common Function." ChemBioChem 3(2-3): 198-206. 

Strous, M., J. A. Fuerst, E. H. Kramer, S. Logemann, et al. (1999). "Missing lithotroph 
identified as new planctomycete." Nature 400(6743): 446-9. 

Strous, M., E. Pelletier, S. Mangenot, T. Rattei, et al. (2006). "Deciphering the evolution and 
metabolism of an anammox bacterium from a community genome." Nature 
440(7085): 790-794. 

Summerbell, R. C. (1993). "The benomyl test as a fundamental diagnostic method for 
medical mycology." J. Clin. Microbiol. 31(3): 572-577. 

Takaya, N. (2002). "Dissimilatory nitrate reduction metabolisms and their control in fungi." J 
Biosci Bioeng 94(6): 506-10. 

Tang, X., M. S. Bartlett, J. W. Smith, J. J. Lu, et al. (1998). "Determination of copy number of 
rRNA genes in Pneumocystis carinii f. sp. hominis." J Clin Microbiol 36(9): 2491-4. 

Tanimoto, T., K.-i. Hatano, D.-h. Kim, H. Uchiyama, et al. (1992). "Co-denitrification by the 
denitrifying system of the fungus Fusarium oxysporum." FEMS Microbiology Letters 
93(2): 177-180. 



  5. References  

123 

Taylor, D. L. and T. D. Bruns (1999). "Community structure of ectomycorrhizal fungi in a 
Pinus muricata forest: minimal overlap between the mature forest and resistant 
propagule communities." Mol Ecol 8(11): 1837-50. 

Taylor, D. L., I. C. Herriott, J. Long and K. O'Neill (2007). "TOPO TA is A-OK: a test of 
phylogenetic bias in fungal environmental clone library construction." Environ 
Microbiol 9(5): 1329-34. 

Teertstra, W. R., L. G. Lugones and H. A. Wosten (2004). "In situ hybridisation in filamentous 
fungi using peptide nucleic acid probes." Fungal Genet Biol 41(12): 1099-1103. 

Todd, R. B., J. A. Fraser, K. H. Wong, M. A. Davis, et al. (2005). "Nuclear Accumulation of 
the GATA Factor AreA in Response to Complete Nitrogen Starvation by Regulation of 
Nuclear Export." Eukaryotic Cell 4(10): 1646-1653. 

Torsvik, V., F. L. Daae, R.-A. Sandaa, Oslash, et al. (1998). "Novel techniques for analysing 
microbial diversity in natural and perturbed environments." Journal of Biotechnology 
64(1): 53-62. 

Treusch, A. H., S. Leininger, A. Kletzin, S. C. Schuster, et al. (2005). "Novel genes for nitrite 
reductase and Amo-related proteins indicate a role of uncultivated mesophilic 
crenarchaeota in nitrogen cycling." Environ Microbiol 7(12): 1985-1995. 

Tsui, C. K. M., S. Sivichai, A. Y. Rossman and M. L. Berbee (2007). "Tubeufia asiana, the 
teleomorph of Aquaphila albicans in the Tubeufiaceae, Pleosporales, based on 
cultural and molecular data." Mycologia 99(6): 884-894. 

Tsuruta, S., N. Takaya, L. Zhang, H. Shoun, et al. (1998). "Denitrification by yeasts and 
occurrence of cytochrome P450nor in Trichosporon cutaneum." FEMS Microbiol Lett 
168(1): 105-10. 

Unterseher, M., M. Schnittler, C. Dormann and A. Sickert (2008). "Application of species 
richness estimators for the assessment of fungal diversity." FEMS Microbiology 
Letters 282(2): 205-213. 

Urban, A., M. Puschenreiter, J. Strauss and M. Gorfer (2008). "Diversity and structure of 
ectomycorrhizal and co-associated fungal communities in a serpentine soil." 
Mycorrhiza 18(6-7): 339-54. 

Urich, T., A. Lanzen, J. Qi, D. H. Huson, et al. (2008). "Simultaneous assessment of soil 
microbial community structure and function through analysis of the meta-
transcriptome." PLoS ONE 3(6): e2527. 

Usuda, K., N. Toritsuka, Y. Matsuo, D. H. Kim, et al. (1995). "Denitrification by the fungus 
Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of 
cytochrome P-450nor." Appl Environ Microbiol 61(3): 883-9. 

Van der Auwera, G. and R. De Wachter (1998). "Structure of the large subunit rDNA from a 
diatom, and comparison between small and large subunit ribosomal RNA for studying 
stramenopile evolution." J Eukaryot Microbiol 45(5): 521-7. 

van Elsas, J. D., G. F. Duarte, A. Keijzer-Wolters and E. Smit (2000). "Analysis of the 
dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed 
by denaturing gradient gel electrophoresis." Journal of Microbiological Methods 43(2): 
133-151. 

Vega, F. E., F. Posada, S. W. Peterson, T. J. Gianfagna, et al. (2006). "Penicillium species 
endophytic in coffee plants and ochratoxin A production." Mycologia 98(1): 31-42. 

Venema, J. and D. Tollervey (1995). "Processing of pre-ribosomal RNA in Saccharomyces 
cerevisiae." Yeast 11(16): 1629-1650. 

Vishniac, H. S. (2006). "A multivariate analysis of soil yeasts isolated from a latitudinal 
gradient." Microb Ecol 52(1): 90-103. 

Wagner, M., M. Schmid, S. Juretschko, T. Karl-Heinz, et al. (1998). "In situ detection of a 
virulence factor mRNA and 16S rRNA in Listeria monocytogenes." FEMS 
Microbiology Letters 160(1): 159-168. 

Wallner, G., R. Amann and W. Beisker (1993). "Optimizing fluorescent in situ hybridization 
with rRNA-targeted oligonucleotide probes for flow cytometric identification of 
microorganisms." Cytometry 14(2): 136-43. 



  5. References   

124 

Wang, Z., P. R. Johnston, S. Takamatsu, J. W. Spatafora, et al. (2006). "Toward a 
phylogenetic classification of the leotiomycetes based on rDNA data." Mycologia 
98(6): 1065-75. 

Wheeler, D. L., C. Chappey, A. E. Lash, D. D. Leipe, et al. (2000). "Database resources of 
the National Center for Biotechnology Information." Nucleic Acids Res 28(1): 10-4. 

White, M. M., T. Y. James, K. O'Donnell, M. J. Cafaro, et al. (2006). "Phylogeny of the 
Zygomycota based on nuclear ribosomal sequence data." Mycologia 98(6): 872-84. 

White, T., T. Bruns, S. Lee and J. Taylor (1990). Amplification and direct sequencing of 
fungal ribosomal RNA genes for phylogenetics. In: PCR Protocol: A Guide to 
Methods and Applications. Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. 
(eds). San Diego, CA, USA. Academic Press. 

Winstanley, D., M. Demissie and S. E. Hollinger (2000). "Nitrogen Cycles Project." 
http://www.sws.uiuc.edu/nitro/. 

Wostemeyer, J. (1985). "Strain-dependent variation in ribosomal DNA arrangement in 
Absidia glauca." Eur J Biochem 146(2): 443-8. 

Wright, S. F. and A. Upadhyaya (1998). "A survey of soils for aggregate stability and 
glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi." Plant 
and Soil 198(1): 97-107. 

Wu, Z., Y. Tsumura, G. Blomquist and X. R. Wang (2003). "18S rRNA gene variation among 
common airborne fungi, and development of specific oligonucleotide probes for the 
detection of fungal isolates." Appl Environ Microbiol 69(9): 5389-97. 

Yanai, Y., K. Toyota, T. Morishita, F. Takakai, et al. (2007). "Fungal N2O production in an 
arable peat soil in Central Kalimantan, Indonesia." Soil Science and Plant Nutrition 
53: 806-811. 

Zhang, L. and H. Shoun (2008). "Purification and functional analysis of fungal nitric oxide 
reductase cytochrome P450nor." Methods Enzymol 437: 117-33. 

Zhou, J. and A. Kleinhofs (1996). "Molecular Evolution of Nitrate Reductase Genes." Journal 
of Molecular Evolution 42(4): 432-442. 

Zumft, W. G. (1997). "Cell biology and molecular basis of denitrification." Microbiol Mol Biol 
Rev 61(4): 533-616. 

 
 



Zusammenfassung 
Pilze spielen eine zentrale Rolle im Ökosystem Erde. Dennoch ist nach wie vor wenig 

über die Pilzdiversität in Böden und die spezifischen Funktionen einzelner 

phylogenetischer Gruppen bekannt. 

Vier verschiedene Ackerböden (Maissau, Niederschleinz, Purkersdorf, Tulln) sowie 

eine Graslanderde (Riederberg) wurden auf ihre Pilzdiversität untersucht. Hierfür 

wurden ein Kultivierungsansatz sowie eine direkte molekularbiologische Methode 

verwendet. Die Pilze wurden aufgrund ihrer DNS-Sequenz der ITS/LSU ribosomalen 

RNS Genregion identifiziert. Es wurden 61 verschiedene Pilzarten isoliert, die 

hauptsächlich zum Phylum Ascomycota gehören, darunter zB Fusarium spp., 

Penicillium spp., Trichoderma spp., sowie bislang unbeschriebene Arten. Im Rahmen 

des kultivierungsunabhängigen Ansatzes wurde eine Klon-Bibliothek erstellt. Danach 

wurde eine RFLP-Analyse durchgeführt. Auch hier dominierten Spezies der 

Ascomycota, die Artenzusammensetzung unterschied sich jedoch erheblich vom 

Kultivierungsansatz. Vertreter der Basidiomycota traten hierbei öfter und in allen fünf 

Bibliotheken auf. Die Zusammensetzung der Pilzgemeinschaften wies deutliche 

Unterschiede innerhalb der einzelnen Klon-Bibliotheken auf. Die Artenzahl (species 

richness) wurde mit verschiedenen Methoden berechnet. Chao2 zeigte für die 

untersuchten Böden eine gute Abdeckung der erwarteten Pilz-Artenzahl.  

Lediglich 8,6% der identifizierten Arten konnten mit beiden Verfahren detektiert 

werden. Die Mehrzahl der Arten (62,6%) wurde mittels des kultivierungs-

unabhängigen Verfahrens ermittelt, während 28,8% ausschließlich mit Hilfe des 

Kultivierungsansatzes identifiziert wurden. Hierdurch wird deutlich, dass beide 

Methoden sich vielmehr ergänzen, als überlappen. Die vom Grasland Riederberg 

entstammende Klon-Bibliothek enthielt die größte Diversität und wies als einzige das 

neu beschriebene Ascomycota Subphylum Soil Clone Group I (SCGI) auf, was 

eventuell darauf hindeuten könnte, dass SCGI-Pilze bevorzugt an unberührten 

Standorten vorkommen. Die Maissau Klon-Bibliothek zeigte den geringsten 

Artenreichtum und auch andere spezifische Eigenschaften grenzen diesen Standort 

von den anderen ab. 

Der zweite Teil dieser Studie befasste sich mit der Erforschung der Rolle von Pilzen 

in N-Transformationsprozessen. Hierfür wurden die Gene, welche für die pilzliche 

Nitratreduktase kodieren (niaD) untersucht. Dabei stand die Erstellung eines 

Sequenz-Sets im Vordergrund, welches partielle niaD Sequenzen von Isolaten sowie 

unkultivierten Pilzen enthält. Auf Grund dieser Erkenntnis soll es möglich werden, 



transkriptionelle Aktivitäten von Pilz-Populationen, welche dieses Gen exprimieren, 

unter verschiedenen Umweltbedingungen zu beobachten. Zusätzlich wurde 

Fluoreszenz in situ Hybridisierung (FISH) mit dem Modelorganismus Aspergillus 

nidulans durchgeführt. Im Rahmen eines Vorversuchs wurden die FISH Parameter 

optimiert und die Detektion der niaD mRNA angestrebt. Unsere viel versprechenden 

Ergebnisse stellen die Basis für zukünftige Studien dar, welche die Expression der 

Pilz-Nitratreduktase unter verschiedenen Umweltbedingungen erforschen sollen. 
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 „Es ist wichtiger, dass sich jemand über eine Rosenblüte 

freut, als dass er ihre Wurzeln unter das Mikroskop legt.“ 

Oscar Wilde 

 




