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1 Introduction

In this thesis we center our attention on the lot sizing problem, which is part of the
material requirements planning (MRP). In many production processes it costs money
and takes time to setup a machine for a certain product. A lot-sizing problem there-
fore identifies the optimal timing and batch size of production. More precisely, it tries
to minimize the inventory, setup, and production costs while meeting the required de-
mand. Since production decisions and costs directly affect a company’s efficiency and
competitiveness in the market, the lot sizing problem is of utmost importance for every
producing firm.

There are many different models and methods for solving various lot sizing problems.
This thesis mainly deals with the multi-level capacitated lot-sizing problem (MLCLS),
and then expands the model by adding the possibility of linking a setup state from
one period to the next. The MLCLS problem is NP-complete (see Maes and McClain,
1991, for a proof). The solution approach used for the MLCLS problems is a hybrid
algorithm from Pitakaso et al. (2006) which decomposes the given problem into multiple
smaller subproblems. These subproblems are then solved by CPLEX, a commercial
LP/MIP-Solver developed by ILOG. An Ant Colony Optimization (ACO) algorithm, a
probabilistic metaheuristic that mimics the behavior of ants, is then applied to determine
the lot-sizing sequence and to improve the decomposition. The ACO algorithm used in
this thesis is a MAX-MIN ant system (MMAS) developed by Stützle and Hoos (1997).
Our approach works very well with medium-sized problems, but is not able to compete
with the other approaches when solving large-sized test instances.

As stated before, the capacitated lot-sizing problem is then expanded by adding a
linkage property to the model. We use the same ant-based approach to solve the capac-
itated lot-sizing problem with linked lot sizes (CLSPL) which combines the characteris-
tics of big- and small-bucket models. The CLSPL is a big-bucket model that allows the
preservation of a setup state from one period to the next. We implement the CLSPL
formulation suggested by Stadtler and Suerie (2003). Since this CLSPL model exchanges
the common production variable by a simple plant location (SPL) formulation, we also
test these two formulations for effectiveness. Our approach to solve the CLSPL problem
is then tested with single-level and multi-level test instances.

The remainder of this thesis is organized as follows. Section 2 provides a detailed
literature review of the different lot-sizing problems. Furthermore, an overview of the
solution approaches for the lot-sizing problem is given. In the third Section the math-
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ematical formulation is defined while the fourth Section explains the decomposition.
Section 5 describes the MMAS algorithm and is followed by computational results for
the MLCLS problem in Section 6. The solution approach for the linkage property is
given in Section 7. Results for the CLPSL problem are presented in Section 8. Finally,
the thesis finishes with a summary and further possible research in Section 9.
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2 The Lot-Sizing Problem

2.1 Uncapacitated Lot-Sizing Problem

The first formulation of a dynamic lot-sizing problem dates back to Wagner and Whitin
(1958) who introduced a single-item uncapacitated lot-sizing problem (ULS). In order to
optimally solve the underlying problem a linear programming (LP) model is required. A
LP model tries to optimize a certain objective function subject to some linear constraints.
More precisely, the problem below is a mixed integer programming (MIP) model, which
means that not all the variables have to be integer. The MIP model is as follows:

min
T∑
t=1

(styt + htIt + cxt xt), (1)

subject to

It = It−1 + xt − Et, ∀t, (2a)

xt ≤
( T∑

τ=t

Et

)
yt ∀t, (2b)

It ≥ 0, xt ≥ 0, yt ∈ {0, 1}, ∀t. (2c)

The model contains the following variables: xt stands for the production quantity
in period t, yt is the setup variable, and It represents the inventory level in period
t. Therefore, the objective function (1) tries to minimize the overall production(cxt ),
inventory(ht), and setup (st) costs. The first constraints (2a) make sure that the external
demand Et is satisfied by either production in period t or by inventory from previous
periods. Moreover, the constraints determine how much inventory is stored for future
demands. The second constraints (2b) state that whenever production occurs a setup
has to be made. Finally, the last constraints (2c) are the usual non-negativity and binary
constraints.

Concerning the multi-item uncapacitated lot-sizing model, Wolsey (1989) for example
analyzed the problem with start-up costs, while Pochet and Wolsey (1987) examined
the problem with backlogging. Other authors for example developed simple heuristics
to minimize the average setup cost and inventory cost over several periods (see Silver
and Meal, 1973). Zangwill (1969) showed that the ULS is in effect a fixed charge network
problem.
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2.2 Capacitated Lot-Sizing Problem

A classical extension to the basic formulation is the multi-item capacitated lot-sizing
problem (CLSP) (see Figure 1 in Section 2.4) where several items can be produced on
one machine within one period over a given planning horizon. Production is therefore
limited by the capacity constraint. The CLSP is NP-hard (see Bitran and Yanasse, 1982,
for a proof). Trigeiro et al. (1989) extended the CLSP by adding setup times to the
model.

2.3 Multi-Level Problems

The multi-level lot-sizing (MLLS) model deals with production processes that use various
subassemblies and components to build a certain end item. Therefore, two kind of
demands have to be considered in the inventory constraint: the primal (external) demand
from the market place, and the secondary (internal) demand which is triggered when
the production process starts to lot-size the ordered end item. Zangwill (1966) started
with an uncapacitated multi-facility problem while Lambrecht and Vander Eecken (1978)
extended the approach by adding capacity constraints at the last level. Further research
for example was made by McClain and Thomas (1989), Tempelmeier and Helber (1994)
and Harrison and Lewis (1996). Authors like e.g. Stadtler (2003) and Tempelmeier and
Derstroff (1996) added set up times to the problem.

2.4 Small- and Big-Bucket Models

Another distinction in the literature is between small- and big-bucket models. Big-
bucket models have the assumption that several products can be produced on the same
machine in one period, while small-bucket models only allow a setup for one product on
the same machine. However, in a small-bucket model it is possible to carry over a setup
state for a certain item from one period to the next. Fleischmann (1990) proposed the
discrete lot-sizing and scheduling problem (DLSP) where the linking of a setup state
for one item is only possible if production uses the full capacity in the next period. In
contrast, Karmarkar and Schrage (1985) and Salomon (1986) analyzed the continuous
setup lot-sizing problem (CSLP) where production has not to use up the full capacity.
The following LP model represents the CSLP formulation:

min
P∑
i=1

T∑
t=1

(sizit + hiIit + cxi xit), (3)

6



subject to

Iit = Iit−1 + xit − Eit, ∀i, t, (4a)
P∑
i=1

yit ≤ 1 ∀t, (4b)

aixit ≤ Ltyit ∀i, t, (4c)

zit ≥ yit − yit−1 ∀i, t, (4d)

Iit ≥ 0, xit ≥ 0, yit, zit ∈ {0, 1}, ∀i, t. (4e)

The objective function (3) includes a new variable called start up variable zit. Every
time a machine is set up for which it was not set up in the previous period start up costs
si occur. There is no change to the inventory constraints (4a). Constraints (4b) limit
the setup per item and period to one. The next constraints (4c) restrain the production
quantity by the available capacity Lt if a setup is made in that period. Constraints (4d)
state that an item can only start up if the setup for that item in the current period is
not equal to the setup in the previous period. The last constraints (4e) are again the
usual binary and non-negativity constraints.

Note that the only difference between the DLSP and the CSLP is that in the DLSP
constraints (3c) are formulated as an equality. Furthermore, the proportional lot sizing
and scheduling problem (PLSP, see Figure 1) allows two items per period to use the same
capacity, whereas there is no restriction concerning the consumption of the capacity (cf.
Drexl and Haase, 1995.

Although the small-bucket model represents a more realistic scenario and allows for
more accurate planning, it is certainly undesirable to divide the planning horizon into a
huge number of small periods since it increases the complexity for the solution approach.
To avoid the mentioned weakness of the small-bucket model and the possibly unrealistic
simplifications of the big-bucket model, new model formulations are presented in the
literature to combine both models. Fleischmann and Meyr (1997) introduced the general
lot-sizing and scheduling problem (GLSP) where large time periods can be divided into
several smaller time buckets of variable length, and the production in these periods is
restricted to a single item. The model formulation we use in this thesis is the capacitated
lot-sizing problem with linked lot sizes (CLSPL)(see e.g. Gopalakrishnan et al., 1995,
2001; Haase, 1994; Sox and Gao, 1999; Stadtler and Suerie, 2003) which is a big-bucket
model that allows to carry-over setup states (see Figure 1).
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Figure 1: Three different formulations of the lot-sizing problem with linked lot sizes.
The Figure is taken from Stadtler and Suerie (2003).

2.5 Solution Approaches

The lot-sizing problem is well known for being hard to solve, since even the single-item
capacitated problem is NP-hard (see Florian et al., 1980, for a proof). For that reason a
lot of research has been published on how to solve the problem efficiently in an alternative
way. Since some formulations for the (mixed) integer programming problem yield to
tighter bounds, various authors proposed strong valid inequalities and/or different model
formulations. Tempelmeier and Helber (1994) analyzed a network or shortest path
formulation, while Stadtler (1996) proposed a simple plant location formulation. Other
contributions include heuristic algorithms with or without decomposition (e.g. Almada-
Lobo et al., 2007; Stadtler and Suerie, 2003; Tempelmeier and Derstroff, 1996).

More recently, the use of metaheuristic became a well-established way of solving the
underlying lot-sizing problem, such as the genetic algorithm (GA), simulated annealing
(SA), tabu search (TS), and ant colony optimization (ACO). Xie and Dong (2002) used
a GA, which belongs to the evolutionary algorithms and is based on the ideas of natural
selection and genetics, to solve the CLSP. Furthermore, Dellaert and Jeunet (2000) solved
the uncapacitated MLLS problem with a GA. Berretta and Rodrigues (2004) proposed
a memetic algorithm, which is a less constrainted method of the GA, to solve multi-level
capacitated lot-sizing problems. Their reported results for the small-sized instances could
improve the solutions obtained by Tempelmeier and Derstroff (1996). Oezdamar and
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Barbarosoglu (2000) proposed a Lagrangean relaxation-simulated annealing approach
for the multi-level capacitated lot-sizing problem. SA is a metaheuristic which comes
from annealing in metallurgy, and it is based on the heating and cooling of some material.
The controlled slow cooling of the material allows the molecules to have enough time
to restructure and build stabilized crystals with lower internal energy. Oezdamar and
Barbarosoglu (2000) could improve the results for the small-sized instances obtained by
Tempelmeier and Derstroff (1996) but not reach the results from Berretta and Rodrigues
(2004). TS is a technique which uses memory structures to set potential solution ’taboo’
so that this solution can not be visited again. Kimms (1996) for example used the TS
to solve multi-level lot-sizing and scheduling problems. The ACO algorithm is based
on the behavior of ants, which when searching for nourishment, walk randomly until
they find some food, leaving pheromone trails behind. Authors like Pitakaso et al.
(2006) and Almeder (2007) proposed ant-based algorithms to solve multi-item multi-
level capacitated lot-sizing problems. Their approaches were tested with the instances
provided by Tempelmeier and Derstroff (1996). Almeder (2007) delivers by far the best
results for the medium-ranged instances, while the approach of Pitakaso et al. (2006) is
superior to all the other approaches for the large-sized test instances. The time-oriented
decomposition heuristic from Stadtler (2003) also provides very good results for the
large-sized instances.
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3 Mathematical Formulation

3.1 Standard Formulation

This Section provides a mathematical formulation for the MLCLS problem which orig-
inates from Stadtler (1996) and was used by Pitakaso et al. (2006). The indices, pa-
rameters and decision variables as well as the model itself are taken from Pitakaso et al.
(2006).

Dimensions and indices:

P number of products in the bill of material
T planning horizon
M number of resources
i item index in the bill of material
t period index
m resource index

Parameters:

Γ(i) set of immediate successors of item i

Γ−1(i) set of immediate predecessors of item i

si setup cost for item i

cij quantity of item i required to produce unit of item j

hi holding cost for item i

ami capacity needed on resource m for one unit of item i

bmi setup time for item i on resource m
Lmt available capacity for resource m in period t
com overtime cost of resource m
G sufficiently large number
hi holding cost for item i

Eit external demand for product i in period t
Ii0 initial inventory of item i
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Decision variables:

xit delivered quantity of item i at the beginning of period t
Iit inventory level of item i at the end of period t
Omt overtime hours used on resource m in period t
yit binary variable indicating whether item i is produced in period t (yit = 1)

or not (yit = 0)

min
P∑
i=1

T∑
t=1

(siyit + hiIit) +
T∑
t=1

M∑
m=1

comOmt, (5)

subject to

Iit = Iit−1 + xit −
∑
j∈Γ(i)

cijxjt − Eit, ∀i, t, (6a)

P∑
i=1

(amixit + bmiyit) ≤ Lmt +Omt, ∀m, t (6b)

xit −Gyit ≤ 0, ∀i, t, (6c)

Iit ≥ 0, Omt ≥ 0, xit ≥ 0, yit ∈ {0, 1}, ∀i, t. (6d)

The objective function (5) intends to minimize the total setup costs, holding costs
and overtime costs. So whenever the available capacity is not sufficient, overtime may
be used to meet the dynamic demand. The first equation (6a) in the model is the
inventory balance equation, which assures that the inventory level of item i in period t
is equal to the sum of the inventory level of the previous period, the amount produced in
period t minus the internal demand needed to produce item i and the external demand.
Constraints (6b) ensure that the available capacity and the overtime hours used are not
exceeded by the capacity used for production and setup. Whereas constraints (6c) state
that production in any period t for a certain item i is only possible if a setup is made in
that period, with G representing the sum of the remaining demand. Due to performance
reasons it is recommended to use a small value of G. The last constraints (6d) are the
common non-negativity and binary constraints.
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3.2 Simple Plant Location Formulation

The SPL formulation has been used by several authors to solve various lot-sizing prob-
lems. It was first introduced by Krarup and Bilde (1977) and then e.g. used by Rosling
(1986) for assembly product structures and then considered by Maes and McClain (1991)
for serial product structures. Here, we utilize the formulation proposed by Stadtler
(1996) and Stadtler and Suerie (2003).

To properly implement the SPL formulation a few changes have to be considered in
the LP model. First, the production variables xit are exchanged by zist respective to

xit :=
T∑
s=t

Dn
iszits, ∀i, t. (7)

The three-index production variable zits can be seen as the portion of demand of item
i produced for period s in period t. So basically a certain item i can only be produced if
a ’plant location’ has been made in period t for the present period or for any following
period s. Dn

is represents the net demand of product i in period t and it is calculated
according to Stadtler (1996):

1, . . . , P : δ = Ii0[
1, . . . , T : Dn

it = max

{
0, Eit +

i−1∑
j=1

cijD
n
jt − δ

}
,

δ = max

{
0, δ − Eit −

i−1∑
j=1

cijD
n
jt

}
.

] (8)

So Dn
it is either zero or the sum of the external and internal demand of item i in period

t minus δ, which represents the remaining inventory at the beginning of period t.

The revised mixed-integer model formulation is identical to the model from Stadtler
and Suerie (2003), except for the fact that the model below allows for overtime.

min
P∑
i=1

T−1∑
s=1

T∑
t=s

hi(t− s)zistDn
it +

P∑
i=1

T∑
t=1

siyit +
T∑
t=1

M∑
m=1

comOmt (9)
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subject to

Iit = Iit−1 +
T∑
s=t

zitsD
n
is −

∑
j∈Γ(i)

T∑
s=t

cijzjtsD
n
js − Eit, ∀i, t, (10a)

P∑
i=1

T∑
s=t

amizitsD
n
is +

P∑
i=1

bmiyit ≤ Lmt +Omt, ∀m, t, (10b)

zits ≤ yit, ∀i, t, s = t, . . . , T, (10c)
t∑

s=1

zist = 1, ∀i, t,Dn
it > 0, (10d)

Iit ≥ 0, Omt ≥ 0, yit ∈ {0, 1}, zist ≥ 0, ∀i, t, s = t, . . . , T. (10e)

The first change applies to the objective function (9), which now calculates the inven-
tory costs by multiplying the holding costs of product i and the portion of demand of
item i produced in t for s with the time difference between the period indices t and s. For
constraints (10c), it is now possible to omit the parameter G since production variables
zist will never take value above one. A new equation (10d) is needed to ensure that the
required demand in each period is satisfied. As before, constraints (10e) are the typical
non-negativity and binary constraints which in this case also assure that the variables
zist never take values below zero. Concerning the other constraints, the variables xit are
replaced by zist according to (7).
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4 Decomposition

4.1 Standard Formulation

Since obtaining an optimal solution for a MLCLS problem with real world instances is
rather time consuming, the problem is divided into various subproblems, which are then
solved exactly. In the absence of a realistic scenario this can be done by constructing
subproblems for either items or periods. But with sizes ranging between 40-100 items in
the bill of materials and 20-40 periods, it can be easily seen that the problem size would
still be too big to be solved within a reasonable time. To avoid this flaw, the underlying
approach combines both variants and splits the bill of material as well as the number of
periods into several subproblems.

Prior to the decomposition, the items in the bill of material are sorted so that the
successors of a certain item are always positioned somewhere before that item in the
list. So if we number the items in the list from 1 to P and item i is a direct successor
of item j, then i < j. This lot-sizing sequence allows us to schedule the products one
after another, which can lead to numerous variations in the presence of a general system.
Furthermore, it is advisable to introduce an overlap region for items and periods in a
subproblem to consider the interdependencies between periods and items in different
subproblems. Thus, only a certain number of items and periods are fixed after the
computation of one subproblem.

To better explain the implications of the decomposition approach consider this simple
example with five items and eight periods (see Figure 2). Every subproblem consists
of three items and five periods with an overlap of two periods and one item. The
decomposition starts with SP1 (subproblem 1), but after the calculation only region I
(periods 1-3 and items 1-2) is fixed. Then, SP2 (periods 3-8 and items 1-3) is solved
and region II is recalculated and finally fixed. This concludes the first level of the
decomposition. In the second and last level, SP3 (periods 1-5 and items 3-5) region III
and IV are solved but only III is fixed afterwards, and so on.

If we now consider a single subproblem it is crucial to assign correct capacity limits
for every subproblem. Hence, it is not possible to use the general formulation from
Section 2. By taking another look at Figure 2, it can be seen that after solving SP1 it
is not certain if the available capacity is sufficient for SP3. Since the the model allows
for infinite overtime, there are no infeasible solutions. But because overtime costs are
very high, the solution will be poor, and therefore it is necessary to include the capacity
consumption of previous subproblems. Another problem might occur if the demand
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Figure 2: Every subproblem consists of three items and five periods with an overlap of
two periods and one item. So after e.g. solving SP1 only region I (periods 1-3
and items 1-2) is fixed.

in one subproblem exceeds the available capacity in that time interval while it would
be sufficient in previous periods. As a result, the capacity consumption for setup and
production of an item have to be modified to take the capacity needs of its predecessors
into account.

This adaption of the problem will lead to additional variables and parameters which
are described below. The notation and the model with its description are again taken
from Pitakaso et al. (2006).

k index of the subproblem
T ks starting time period of subproblem k

T ke last time period of subproblem k

P k
s number of first item of subproblem k

P k
e number of last item of subproblem k

Akmi modified capacity needed for production of one unit of item i on resource m
Bk
mit modified capacity needed for setup of production of item i in period t on resource m

Skit modified setup cost for item i in period t of subproblem k

Xit lot size for product i in period t (already determined in previous subproblems)
Zist lot size for product i in period t produced in period s

(already determined in previous subproblems)
Yit binary variable indicating whether item i is scheduled to be produced in period t

15



(already determined in previous subproblems)
avCk

mt available regular capacity of resource m in period t for subproblem k

The mixed-integer problem for subproblem k is then

min

Pk
e∑

i=Pk
s

Tk
e∑

t=Tk
s

(Skityit + hiIit) +

Tk
e∑

t=Tk
s

M∑
m=1

comOmt, (11)

subject to (each constraint must hold for all i = P k
s , . . . , P

k
e , t = T ks , . . . , T

k
e , and m =

1, . . . ,M)

Iit = Iit−1 + xit −
∑
j∈Γ(i)
j<Pk

s

cijXjt −
∑
j∈Γ(i)
j≥Pk

s

cijxjt − Eit, (12a)

Pk
e∑

i=Pk
s

(amixit + bmiyit) ≤ Lmt +Omt −
Pk

s −1∑
i=1

(amiXit + bmiYit), (12b)

t∑
τ=Tk

s

Pk
e∑

i=Pk
s

(Akmixiτ +Bk
miτyiτ ) ≤

t∑
τ=Tk

s

(avCk
mτ +Omτ ), (12c)

xit −Gyit ≤ 0, (12d)

Iit ≥ 0, xit ≥ 0, Omt ≥ 0, yit ∈ {0, 1}. (12e)

Various authors have proposed numerous methods to deal with setup costs when
solving a multi-level lot-sizing problem by a series of single level lot-sizing problems (e.g.
Dellaert and Jeunet, 2003; McLaren, 1977). The method used here is a randomized
cumulative Wagner-Whitin (RCWW) method from Pitakaso et al. (2007) which is an
extension of Dellaert and Jeunet (2003). The difference between these methods is that
Pitakaso et al. (2007) use sequence-dependent time-varying setup costs (STVS), so the
modified setup costs for every product depend on the actual position in the production
sequence.

The reason for using modified setup costs in the objective function (11) is due to the
fact that lot-sizing an item in a current period results in additional lot-sizes for some
predecessors in previous periods. So the setup costs of an item are adapted by a fraction
of the setup costs of all its predecessors. This leads to two cases: (i) the predecessor of
an item already has a positive demand, which results in no additional costs; (ii) there is
no positive demand for a predecessor and therefore we have to add the modified setup
costs. To calculate the modified setup cost we introduce a new variable
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Tijt is a binary variable which equals to 1 if a lot size of item i in period t leads to
a positive demand for predecessor j (j ∈ Γ−1(i)) in period t; Tijt equals to 0 if there is
already a planned lot-size for item j in period t (resulting from a different successor
of item j).

and calculate the modified setup costs as following:

Skit = si + ri
∑

j∈Γ−1(i)
j>Pk

e

T (i, j, t)
Sj
|Γ(j)|

, (13a)

where Sj is calculated recursively by

Si = si +
∑

j∈Γ−1(i)

Sj
|Γ(j)|

, (13b)

and ri by

ri = R ·
(

1 +
P − 2Φi + 1

P − 1
· u
)
, (13c)

Hence, the value of variable Tijt depends on how the products are scheduled in the
lot-sizing sequence. To avoid adding the setup costs for a single item multiple times, the
modified setup costs are divided by the immediate successors in the present subprob-
lem. This is due to the fact that not every new lot for an item also creates a positive
demand for a certain predecessor if some item with the same predecessor has already
been scheduled. The random variable ri decides how much the setup costs of the prede-
cessors influence the modified setup costs. The parameters R ∈ {0, 0.5} and u ∈ {−1, 1}
are uniformly distributed random variables, whereas Φi ∈ {1, . . . , P} is the position of
item i in the lot-sizing sequence. Thus, for the first item (= end item) scheduled in
the lot-sizing sequence we obtain ri = R(1 + u), whereas for the last item we obtain
ri = R(1− u). Therefore R determines the average value of r over all items and u is the
slope.

The inventory balance equation (12a) is slightly modified to consider the production
quantity fixed in some previous subproblems. To ensure that the available capacity is
sufficient in the current subproblem the right-hand side of capacity constraint (12b) is
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now reduced by the amount of resources already used in previous subproblems.
A cumulative capacity constraint (12c) is introduced to the model which should guar-

antee that the global solution will only use overtime if it is inevitable. The summation
term on the left-hand side contains the accumulated capacity needs for every item in the
subproblem. The idea behind the modified capacity needs Akmi and Bk

mit is that if some
item is scheduled, we also have to consider the resources needed for its predecessors in
some previous period. They are calculated recursively as follows:

Akmi = ami +
∑

j∈Γ−1(i)
j>Pk

e

Akmj, (14)

Bk
mit = bmi +

∑
j∈Γ−1(i)
j>Pk

e

T (i, j, t)
B̃mj

|Γ(j) ∩∆(i)|
, (15a)

where B̃mj is the accumulated capacity needed for setup of product i on resource m

B̃mi = bmi +
∑

j∈Γ−1(i)

B̃mj. (15b)

Note that the concept of equation (15a) is quite similar to the calculation of the time-
varying modified setup costs in (13a). The accumulated capacity needed for setup of
product i on resource m is divided by the number of immediate successors which are
located in the same group as item i. There are three groups: (i) already lot-sized items;
(ii) items in the present subproblem k; and (iii) items which are not yet scheduled.

∆(i) =


{i, . . . , P k

s − 1}, if i < P k
s ,

{P k
s , . . . , P

k
e }, if P k

s ≤ i ≤ P k
e ,

{P k
e + 1, . . . , P}, if i > P k

e .

(15c)

The available capacity avCk
mt is calculated by subtracting the already used resources
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and the yet to schedule resource consumption from the total available capacity Lmt.

avCk
mt = Lmt −

Pk
s −1∑
i=1

(AkmiXit +Bk
mitYit)−

P∑
i=Pk

e +1

Γ(i)=∅

(AkmiEit +Bk
mitY

E
it ), (16a)

where

Y E
it =

1, Eit > 0,

0, otherwise.
(16b)

Due to the fact that a single subproblem does not necessarily contain all available
periods, a demand backward shifting from Pitakaso et al. (2006) is introduced to balance
the demand in different subproblems. See also Berretta and Rodrigues (2004), Franca
et al. (1994), Trigeiro et al. (1989), and Xie and Dong (2002) for various methods for
production backward shifting. The demand shifting used here only operates between
subproblems of the same level.

/* Decomposition */
Choose the number of items Is and periods Ts included in the subproblems
Set the present level of subproblems p to 1
while p is not the last level do

Perform the capacity modifications (13a)-(16b) for every subproblem
Start the demand shifting procedure and adjust the demands for each subproblem
for each subproblem in level p do

Calculate the subproblem with the one containing the first period
Fix solution in the non-overlapping region
Utilize the solution (inventory levels) to calculate the next subproblem

end
Fix solution for each non-overlapping item
Update new demand for the next level p+ 1
p = p+ 1

end

Figure 3: Pseudo-code of the decomposition.

The procedure always starts with the last subproblem of the present level contain-
ing the last period. In order to quantify the demand for every subproblem, capacity
constraint (12c) is modified so that the external demands Eit and the internal demands
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∑
j∈Γ(i) cijXjt replace the production quantities and setups Yit. Whenever there is a

external or internal demand for item i in period t the demand shifting assumes a posi-
tive value for Yit. Starting with the first period in the subproblem, the procedure shifts
any excess demand to the closest period outside the current subproblem. The demand
shifting then continues with the previous subproblem and stops when it reaches the first
subproblem. The pseudo-code in Figure 3 summarizes the decomposition approach.

4.2 Simple Plant Location Formulation

As for the basic model in Section 3.2, the variables xit are replaced by zist according
to (7). Furthermore, the calculation of the inventory costs in the objective function is
replaced by the standard calculation taken from the model in Section 3.1.

min

Pk
e∑

i=Pk
s

Tk
e∑

t=Tk
s

(Skityit + hiIit) +

Tk
e∑

t=Tk
s

M∑
m=1

comOmt, (17)

subject to (each constraint must hold for all i = P k
s , . . . , P

k
e , t = T ks , . . . , T

k
e , and m =

1, . . . ,M)

Iit = Iit−1 +

Tk
e∑

s=t

zitsD
n
is −

∑
j∈Γ(i)
j<Pk

s

Tk
e∑

s=t

cijZjtsD
n
js −

∑
j∈Γ(i)
j≥Pk

s

Tk
e∑

s=t

cijzjtsD
n
js − Eit, (18a)

Pk
e∑

i=Pk
s

Tk
e∑

s=t

(amizitsD
n
is + bmiyit) ≤ Lmt +Omt −

Pk
s −1∑
i=1

Tk
e∑

s=t

(amiZitsD
n
is + bmiYit), (18b)

t∑
τ=Tk

s

Pk
e∑

i=Pk
s

Tk
e∑

s=τ

(AkmiziτsD
n
is +Bk

miτyiτ ) ≤
t∑

τ=Tk
s

(avCk
mτ +Omτ ), (18c)

t∑
s=Tk

s

zist = 1, if Dn
it ≥ 0, (18d)

zist ≤ yit ∀s = t, . . . , T ke , (18e)

Iit ≥ 0, Omt ≥ 0, yit ∈ {0, 1}, zist ≥ 0 ∀s = 1, . . . , T ke . (18f)

The next steps of the decomposition are equal to those of the standard formulation
in the previous Subsection. In addition, tests have shown that the standard formulation
yields to better results than the SPL formulation (see Section 6 for details).
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5 Ant Colony Algorithm

5.1 General Description

The Ant Colony Optimization (ACO) algorithm was introduced by Dorigo (1992) in
his PhD thesis to solve discrete optimization problems. It is a probabilistic technique
that was originally applied to the traveling salesman problem and the quadratic as-
signment problem. The idea is based on the behavior of ants, which when searching
for nourishment, walk randomly until they find some food. Then, on the way back to
their colony, the ants leave trails of pheromone behind. If the food is far away from
the colony, the pheromone trail evaporates quickly, while a shorter path has a higher
pheromone concentration since more ants follow this way. The concept of evaporation
prevents the algorithm to converge towards a locally optimal solution. In other words, a
lack of evaporation would attach too much importance to the first ants and bias the next
generation of ants, therefore limiting the search space. Following this real life concept,
the ACO algorithm creates a population of artificial ants which generate and improve
a solution to a certain instance of a combinatorial optimization problem. For the next
generation of ants a global memory is updated. After the initialization of the pheromone
information the framework of the ACO algorithm can be typically summarized in the
following three steps:

• Step 1: Ants construct solutions according to pheromone and heuristic information.

• Step 2: Application of local search methods to the solution of the ants.

• Step 3: Update of the pheromone information.

A detailed explanation of the ACO algorithm is now given with the example of the
traveling salesman problem (TSP). Given a number of cities (nodes) and the associated
costs of traveling from one city to another, the goal of the TSP is to minimize the total
costs under the assumption of visiting every city once and of returning to the starting
city. The TSP can therefore be represented as a complete graph. In the ACO algorithm
the desirability of visiting city j after city i in iteration m is given by the pheromone
information τij(m). This information is used in the construction phase (Step 1) and
updated in Step 3. The algorithm starts with randomly placing a number of artificial
ants on cities. In every construction step the selection of the next feasible city is bi-
ased towards a probabilistic decision. This decision includes the pheromone information
τij(m) and the visibility in the ant system framework ηij (or heuristic information). The
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inverse arc length of visiting city j after city i is a prudent choice for the visibility. So
the ant will therefore favor an arc which has a high pheromone value and where city j
is close to city i. The probability of visiting city j after city i can be mathematically
formulated by:

pkij(m) =


τij(m)ηij∑
l∈Ni

τil(m)ηil
, if j ∈ Nk

i ,

0, otherwise.
(19)

The set Nk
i includes the feasible cities that can be visited by ant k and has not yet

been visited. After the solution has been created a local search is applied to verify the
local optimality.

In the update phase (Step 3) the before mentioned evaporation decreases the pheromone
value by the constant factor ρ, and a number of ants with the best solution quality up-
date the pheromone information. The MAX-MIN Ant System (MMAS) by Stützle and
Hoos (1997) only allows the global best solution to update the pheromone information.
The pheromone update rule is as follows:

τij(m+ 1) = ρτij(m) + ∆τ ∗ij (20)

Note that ∆τ ∗ij = 1/f(s∗), where f(s∗) represents the cost value, if city j is visited
after i for the best ant, and 0 otherwise. The MMAS bounds the pheromone value by the
maximum and minimum limits [τmin, τmax] to avoid extreme differences in the pheromone
amounts. For a convergence proof of the ACO algorithm see Stützle and Dorigo (2002)
and Gutjahr (2003).

5.2 MAX-MIN Ant System for the MLCLS problem

In order to determine and subsequently improve the lot-sizing sequence described in the
previous Section, a MMAS algorithm is applied.

The algorithm of Pitakaso et al. (2006) uses the ideas of Evolutionary Algorithms
to find appropriate values for R and u which are used to calculate the modified setup
costs in formula (9a). This concept is now used for the number of items Is and number
of periods Ps included in one subproblem (see Pitakaso et al., 2007). The visibility in
the ant system framework ηj (or heuristic information) is based on the original setup
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costs sj (see equation (21)). As Pitakaso et al. (2006) state in their paper, they tested
various values for the heuristic information (combination of holding costs and setup
costs or no heuristic information), but the use of the original setup costs turned out
to deliver the best results. Normally, a local search would be applied to the solutions
of the ants, but since the decomposition takes a lot of time, it is not included in the
algorithm. The adapted MMAS to solve the MLCLS (called ASMLCLS) is illustrated
by the pseudo-code (taken from Pitakaso et al., 2006) in Figure 2.

Procedure ASMLCLS
/* Initialization Phase */
Generate initial Rb, ub, T bs , and Ibs
(select best solution out of 20 randomly constructed ones)
Initialize pheromone information
while (termination condition not met) do

for each ant do
/* Construction Phase (Step 1) */
Construct the production sequence according to decision rule (21)
/* Adaptation of R and u values for each ant */
Choose R randomly out of the set {Rb(1− ϑ), Rb, Rb(1 + ϑ)}
Choose u randomly from {max{−1, ub(1− ϑ)}, ub,min{1, ub(1 + ϑ)}}
Calculate ri according to (9c)
Choose Is randomly out of the set {Ibs − 1, Ibs , I

b
s + 1}

Choose Ts randomly out of the set {T bs − 1, T bs , T
b
s + 1}

(within the boundaries of Table 1)
Perform the decomposition method from Section 3 to evaluate the sequence

end
/* Pheromone update phase */ (Step 2)
Update the pheromone matrix according to (22a), update Rb, ub, T bs , Ibs

end

Figure 4: Pseudo-code of ASMLCS taken from Pitakaso et al. (2006).

The algorithm starts by randomly constructing twenty solutions and thereafter saves
the values of Rb, ub, T bs , and Ibs from the best solution. Then, the pheromone value is
initialized with the maximum pheromone value (see details below). In the next phase,
every ant generates a product sequence on which the decomposition is applied afterwards.
The pheromone encoding scheme is taken from Pitakaso et al. (2006) which originates

from Stützle (1998). In this scheme the intensity of pheromone trail (= τpj(`)) represents
the desirability of lot sizing item j on the p-th position. So the desirability of choosing
item j as the p-th item depends on how preferable it was in the previous iteration.
The probability that ant k selects product j on position p in iteration ` is calculated
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according to the decision rule (21). The descriptions about the indices, parameters and
formulas in this Section are again taken from Pitakaso et al. (2006).

pkpj(`) probability that ant k selects product j on position p in iteration `

τpj(`) intensity of pheromone trail of product j in position p at iteration `

α parameter to regulate the influence of τpj(`)

β parameter to regulate the influence of sj

Nk
p set of selectable products in position p of ant k based on the bill of materials

pkpj(`) =


[
∑p

o=1 τoj(`)]
α

[sj]
β∑

l∈Nk
p

[
∑p

o=1 τol(`)]
α

[sl]
β
, if j ∈ Nk

p ,

0, otherwise.

(21)

Note that the decision rule (21) not only considers the present pheromone value of
lot sizing item j on the p-th position but also all the pheromone values for placing item
j in all the predecessors positions of p. This so called summation decision rule was
introduced by Merkle and Middendorf (1999).

ρ ∈ [0, 1] trail persistence parameter to regulate the evaporation of τpj

∆τpj(`) total increase of trail level on edge (p, j ) which is controlled by the maximum

and minimum value along with the concept of MMAS

f(sopt) global best solution value

τpj(`+ 1) = max(τmin,min(τmax, ρτpj(`) + ∆τpj(`))), (22a)

∆τpj(`) =


1

f(sopt)
, if item j is on position p for the best ant,

0, otherwise.
(22b)
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Only the overall best ant updates the pheromone value (Step 2 in the pseudo code), but
it is bounded by [τmin = 0.01, τmax = 0.99]. The evaporation rate ρ is set to 0.95.

As already stated before the values of R, u, Ts, and Is are chosen by taking the ideas of
Evolutionary Algorithms into account. After the initialization phase the corresponding
values (Rb, ub, T bs Ibs) of the best objective are fixed. For every following iteration the
best values from the initial phase or slightly changed ones (see pseduo-code) are taken.
According to Pitakaso et al. (2007) this leads to better results than just taking the
unperturbed values of the initialization phase. In addition, tests from Pitakaso et al.
(2007) suggest a perturbation rate ϑ of 0.05.
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6 Results for the MLCLS Problem

6.1 Computational Results

The ASMLCLS algorithm is implemented in C++ using CPLEX 11.0 to calculate the
subproblems. All the instances were tested on a Pentium D 3.2GHz with 4 GB RAM
and SUSE Linux 10.1.

The limits for the subproblem sizes are set so that a solution can be found within
2 seconds (see Table 1). Due to the improvement of computer speed these limits are
higher than the bounds of Pitakaso et al. (2006). The overlapping for the items is set
to 20% and the overlapping for periods is set to 60%. Tests from Pitakaso et al. (2006)
have shown that this combination proved to be the best.

Table 1: The maximal subproblem size is set so that a solution can be found within 2
seconds. Is denotes the number of items included in the subproblem while Ts
represents the amount of period in that subproblem.

Is 1 2 3 4 5 6 7 8 9 10 11 12
Ts 20 18 15 14 13 11 10 10 9 8 8 7

Two sets of test instances from Tempelmeier and Derstroff (1996) were taken to test
the algorithm. The first group consists of 600 instances with 16 periods, 10 items and 4
resources. These instances are composed of assembly systems (A) and general systems
(G). There is a distinction between cyclic cases (C) and non-cyclic cases (NC). Cyclic
means that more than one resource is needed within the same production level. In
addition, the demand patterns vary among the instances. All the test instances from
the second group have a general system with 100 items, 16 periods, and 10 resources.
Again, there are cyclic and non-cyclic cases, and five different capacity utilizations.

An open question is which mathematical formulation leads to better results for the
ASMLCLS. For that purpose we randomly picked 200 instances from of the first group
evenly distributed between G-C, G-NC, A-C, and A-NC. This version of the ASMLCLS
does not include the demand shifting procedure. The results in Table 2 show that the
standard formulation (X-Formulation) significantly outperforms the SPL formulation (Z-
Formulation) for the ASMLCLS algorithm. A possible reason why the SPL formulation
fails to work for the ASMLCLS could be the effects of the computational overhead.

Results for the first group (see Table 3) from Tempelmeier and Derstroff (1996) show
that our ASMLCLS algorithm can beat the results from Tempelmeier and Derstroff
(1996) and Pitakaso et al. (2006), but fails to reach the results from Almeder (2007). In
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Table 2: 200 randomly chosen test instances from the first group of Tempelmeier and
Derstroff (1996) to compare the standard formulation(X-Formulation) and the
SPL representation (Z-Formulation). The number next to the name represents
the run time (in minutes) of the algorithm.

X-Formulation-10 Z-Formulation-10

Problem Mean Cost Mean Cost

G-NC 400 633 422 475
G-C 387 570 395 534
A-NC 48 370 49 871
A-C 274 923 339 972

fact, the hybrid approach of Almeder (2007) outperforms the other approaches by 86%
(17.8% for the ALMLCS algorithm). Note that the lagrangean-based heuristic from
Tempelmeier and Derstroff (1996) is very fast, but as they state in their paper, it was not
possible to improve the solutions significantly if they had added more iterations to the
heuristic. In addition, Tempelmeier and Derstroff (1996) used a computer that was 1000
times slower than the computer used here. The ASMLCLS algorithm and the approach
of Almeder (2007) were tested on the same computer. Pitakaso et al. (2006) used a
Pentium 4 2.4GHz personal computer with 1GB RAM and Microsoft Windows 2000 to
test the instances. The rather big difference between our ASMLCLS algorithm and the
one from Pitakaso et al. (2006) could be due to one of these reasons: (i) computer speed
improvement, (ii) the increase of the maximal subproblem size, or (iii) a combination of
both.

The results for the second group of instances (see Table 4) from Tempelmeier and
Derstroff (1996) provide a different picture. Since not all the results are available in
detail, only the basic results are provided in the Table 4. Our ASMLCLS algorithm
yields to very poor results and is outperformed by every other approach. Again, the
approach of Tempelmeier and Derstroff (1996) delivers fast results, but the solution
quality is poor. In contrast, the algorithms from Pitakaso et al. (2006) and Stadtler
(2003) are complex and time-consuming but the solution quality is superior to all the
other approaches. The hybrid approach of Almeder (2007) is nearly as good as the
approach of Stadtler (2003), but is unable to reach the results reported by Pitakaso
et al. (2006). Due to the problems of our approach (described in detail in the next
Subsection), it was also tested how the average of ten seeds changes the solution quality.
The results are significantly better and can almost reach the results of Tempelmeier and
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Table 3: Results for the first group of instances from Tempelmeier and Derstroff (1996).
We compare our results (ASMLCLS) with the ones of Tempelmeier and Der-
stroff (1996), Pitakaso et al. (2006) and Almeder (2007). MAPD is the mean
absolute percent deviation from the best solution and % represents the percent-
age number of best solutions found. The number next to the name represents
the run time (in minutes) of the algorithm.

T&D-0.02 Pitakaso-10

Problem MAPD % Cost MAPD % Cost Best Solution

G-NC 0.070 9.3 382 706 0.061 7.3 380 666 353 791
G-C 0.073 7.3 395 075 0.064 10.0 393 329 365 829
A-NC 0.064 6.0 47 134 0.041 10.7 46 081 44 066
A-C 0.057 4.0 45 700 0.036 11.3 44 650 43 052

Total 0.066 6.7 217 654 0.051 9.8 216 181 201 684

Almeder-9 ASMLCLS-10

Problem MAPD % Cost MAPD % Cost Best Solution

G-NC 0.001 89.3 354 185 0.021 22.0 367 204 353 791
G-C 0.002 87.3 366 289 0.024 20.6 377 891 365 829
A-NC 0.004 87.3 44 234 0.045 12.6 46 705 44 066
A-C 0.003 82.7 43 201 0.020 16.0 44 021 43 052

Total 0.003 86.7 201 977 0.027 17.8 208 955 201 684

Derstroff (1996), which is still poor. The run time equals to 300 minutes.

6.2 Criticism

A main problem of the ASMLCLS algorithm is that the solution quality is very sensitive
towards the starting solution. By randomly creating twenty solutions (see Section 5) it is
not guaranteed that the initial best solution provides a good starting point for the MAX-
MIN Ant System. An aggravating factor is the slowness of the whole approach (due to the
time-consuming decomposition). For the large-scale instances our ASMLCLS algorithm
could on average only reach ten iterations, which is very little for an ant-based algorithm.
Therefore a bad starting solution makes it next to impossible for the ant algorithm to
react and then to improve the solution considerably. Future improvements could involve
a change of the decomposition by e.g. simplifying the process of modifying the setup
costs to speed up the whole method. Furthermore, a revised method for searching a
starting solution seems necessary to avert the above mentioned weakness.
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7 Solution Approach for the Linkage Property

7.1 Model Formulation

The formulation used in this thesis to solve the CLSPL was suggested by Stadtler and
Suerie (2003), and it is based on the following assumptions:

• The fixed planning horizon T is divided into periods (1 . . . T ).

• The resource usage for any item i on a certain resource m and the assignment of
items to resources is fixed.

• Setups are causing setup times and setup costs and therefore reducing the available
capacity. Both are sequence independent.

• Only one setup state per resource can be linked from one period to the next.

• Single-item production is possible, which means that a setup state for an item can
be preserved over two consecutive bucket boundaries.

• A setup state is preserved if there is no production in the following period.

Hence, the CLSPL is a big-bucket model with the characteristic of a small-bucket
model to carry over setup states (see Section 2 for details). To implement the linkage
property into our model we introduce two new variables:

wit is a binary variable (linkage variable) which equals to 1 if the setup state of
item i is preserved from period t− 1 to period t; 0 otherwise.

qqit is a product-dependent variable which equals to 1 if item i is only produced
in period t and the setup state is linked to the preceding and the subsequent
period, so wit = wit+1 = 1; 0 otherwise.

The following constraints are added to the formulation described in Section 3:

xit −G(yit + wit) ≤ 0 ∀i, t, (23)

This alteration of the setup constraints is necessary since production is now possible
by either producing item i in period t, or carrying over the setup state of item i from
period t− 1 to period t.
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∑
i∈Rm

wit ≤ 1 ∀m, t = 2, . . . , T, (24)

Constraints (24) guarantee that only one setup state is carried over on each resource.
Rm is the set of item i produced on resource m. The next constraints (25) ensure that
there can only be a setup for item i in period t (yit = 1), a carry-over from period t− 1

to period t (wit = 1), single-item production for any item k 6= j in period t (qqkt = 1),
or neither of them.

yit + wit +
∑
j∈Rm

j 6=i

qqjt ≤ 1 ∀m, i ∈ Rm, t, (25)

Linking the setup state for item i is only possible if either a setup activity is set in the
previous period t− 1, or the setup state is already preserved from period t− 2 to t− 1,
which means single-item production of product i in period t− 1. This is guaranteed by
adding constraints (26) to the model.

wit ≤ yit−1 + qqit−1 ∀i, t = 2, . . . , T, (26)

Constraints (27) limit the range of variables qqit and constraints (28) are the usual
non-negativity and binary constraints.

qqit ≤ wis ∀i, t = 2, . . . , T − 1, s = t, . . . , t+ 1, (27)

qqit ≥ 0 (qqi1 = 0, qqiT = 0), wit ∈ {0, 1} (wi1 = 0) ∀i, t. (28)

The complete MIP-formulation for the CLSPL is as follows:

min
P∑
i=1

T∑
t=1

(siyit + hiIit) +
T∑
t=1

M∑
m=1

comOmt,

subject to
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Iit = Iit−1 + xit −
∑
j∈Γ(i)

cijxjt − Eit, ∀i, t,

P∑
i=1

(amixit + bmiyit) ≤ Lmt +Omt, ∀m, t

xit −G(yit + wit) ≤ 0 ∀i, t,∑
i∈Rm

wit ≤ 1 ∀m, t = 2, . . . , T,

yit + wit +
∑
j∈Rm

j 6=i

qqjt ≤ 1 ∀m, i ∈ Rm, t,

wit ≤ yit−1 + qqit−1 ∀i, t = 2, . . . , T,

qqit ≤ wis ∀i, t = 2, . . . , T − 1, s = t, . . . , t+ 1,

Iit ≥ 0, Omt ≥ 0, xit ≥ 0, yit ∈ {0, 1}, ∀i, t,

qqit ≥ 0 (qqi1 = 0, qqiT = 0), wit ∈ {0, 1} (wi1 = 0) ∀i, t.

7.2 Decomposition

This Subsection deals with the changes that have to be made if we solve the CLSPL with
our decomposition approach. First, the constraints (29), (30) and (31) are adjusted so
that they only hold for the items (i = P k

s , . . . , P
k
e ) and periods (t = T ks , . . . , T

k
e ) included

in the current subproblem. Since it is only possible to perform a setup in the first period
of the planning horizon, the starting time period T ks of constraints (31) is restricted to
values above 1.

xit −G(yit + wit) ≤ 0, (29)

yit + wit +

Pk
e∑

j=Pk
s

j 6=i

qqjt ≤ 1 ∀m, i ∈ Rm, t, (30)

32



wit ≤ yit−1 + qqit−1 if T ks 6= 1, (31)

In constraints (32) the original indices are exchanged by the indices of the current
subproblem.

qqit ≤ wis ∀i = P k
s , . . . , P

k
e , t = T ks , . . . , T

k
e − 1, s = t, . . . , t+ 1, (32)

Constraints (33) now have to consider linked setups that are made in previous sub-
problems. Therefore, the variable Wit stands for already determined linking decisions.

Pk
e∑

i=Pk
s

i∈Rm

wit +

Pk
s −1∑
i=1
i∈Rm

Wit ≤ 1 ∀m, t = T ks , . . . , T
k
e , if T

k
s 6= 1. (33)

Now, when calculating a subproblem, it is not possible to forecast if a linking deci-
sion in any following subproblem might be more preferable than the current one. To
circumvent this weakness we introduce a simple ’punishing scheme’ to our model. More
precisely, the objective function of a single subproblem is altered in the following way:

min

Pk
e∑

i=Pk
s

Tk
e∑

t=Tk
s

(Skityit + hiIit) +

Tk
e∑

t=Tk
s

M∑
m=1

comOmt +

Pk
e∑

i=Pk
s

i∈Rm

Tk
e∑

t=Tk
s

M∑
m=1

witc
w
it (34)

The new parameter cwit represents the maximum setup costs of any item that is located
inside a subsequent subproblem. Thus, this extension to our objective function punishes
every potential linking decision in the current subproblem. It has to make the decision
if a linkage is more preferable in the present or in any following subproblem.

The complete mixed-integer problem for a single subproblem is as follows:

min

Pk
e∑

i=Pk
s

Tk
e∑

t=Tk
s

(Skityit + hiIit) +

Tk
e∑

t=Tk
s

M∑
m=1

comOmt +

Pk
e∑

i=Pk
s

i∈Rm

Tk
e∑

t=Tk
s

M∑
m=1

witc
w
it,

subject to (if not stated otherwise each constraint must hold for all i = P k
s , . . . , P

k
e ,
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t = T ks , . . . , T
k
e , and m = 1, . . . ,M)

Iit = Iit−1 + xit −
∑
j∈Γ(i)
j<Pk

s

cijXjt −
∑
j∈Γ(i)
j≥Pk

s

cijxjt − Eit,

Pk
e∑

i=Pk
s

(amixit + bmiyit) ≤ Lmt +Omt −
Pk

s −1∑
i=1

(amiXit + bmiYit),

t∑
τ=Tk

s

Pk
e∑

i=Pk
s

(Akmixiτ +Bk
miτyiτ ) ≤

t∑
τ=Tk

s

(avCk
mτ +Omτ ),

xit −G(yit + wit) ≤ 0,

Pk
e∑

i=Pk
s

i∈Rm

wit +

Pk
s −1∑
i=1
i∈Rm

Wit ≤ 1 if T ks 6= 1,

yit + wit +

Pk
e∑

j=Pk
s

j 6=i

qqjt ≤ 1,∀i ∈ Rm,

wit ≤ yit−1 + qqit−1 if T ks 6= 1,

qqit ≤ wis ∀t = T ks , . . . , T
k
e − 1, s = t, . . . , t+ 1,

Iit ≥ 0, xit ≥ 0, Omt ≥ 0, yit ∈ {0, 1},

qqit ≥ 0 (qqi1 = 0, qqiT = 0), wit ∈ {0, 1} (wi1 = 0).
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8 Results for the CLSPL

As for the MLCLS problem, the CLSPL is implemented in C++ using CPLEX 11.0 to
calculate the subproblems. All the instances were tested on a Pentium D 3.2GHz with
4 GB RAM and SUSE Linux 10.1. No changes were made concerning the subproblem
sizes.

In total, the ant system for the capacitated lot-sizing problem with linked lot sizes
(ASCLPL) was tested with two groups of instances. Note that it is not necessary to
make any modifications to the ant system of Section 5 when solving the CLSPL. The
first group of single-level instances from Trigeiro et al. (1989) was modified by Stadtler
and Suerie (2003) by aggregating some of the items. The reason behind this modification
is that the original instances proved not to be appropriate for the CLSPL. Tests from
Stadtler and Suerie (2003) for example showed that the possibility of linking a setup state
over two consecutive bucket boundaries was never used. The modified set is divided into
three different classes:

Table 5: Classification of the first group of instances from Trigeiro et al. (1989) which
was modified by Stadtler and Suerie (2003).

Class #Items #Periods #Instances

1 4 20 180
2 6 20 180
3 8 20 180

Table 6: Results for the first group of instances. We compare our results (ASCLSPL)
with the best known solutions (BKS) and the lower bound (LB) of the best
known solutions. The number next to the class represents the number of in-
stances for which the ASCLSPL could only find solutions with an extensive use
of overtime. They are excluded from the results.

Class BKS LB ASCLSPL Gap to BKS Gap to LB

1 (-2) 25 236 23 136 27 779 6.13% 12.46%
2 (-9) 48 754 44 788 53 151 5.31% 13.90%
3 (-10) 76 798 70 406 79 922 2.56% 8.42%

Table 6 shows our results for the single-level instances compared to the best solutions
known to Stadtler and Suerie (2003). Since we were not able to verify if the lower bounds
of the best solutions known are equal to those from Stadtler and Suerie (2003), a direct

35



comparison between our approaches is not possible. For the sake of completeness we will
state the best results from their time-oriented decomposition heuristic and their Branch
and Cut (B&C) approach with valid inequalities in Table 8 at the end of the Section.
Note that for some instances (Class 1: 1; Class 2: 9; Class 3: 10) the ASCLSPL could
only find solutions with an extensive use of overtime, and they are therefore excluded
from the results. The run time for the first and the second class equals to 200 seconds,
while the third class runs for 300 seconds. Although the ASCLSPL algorithm can not
reach the best known solutions it still provides good results for the first test group.
Again, the expressed criticism in Section 6.2 also holds for the ASCLSPL.

Table 7: Results for the second group of instances. We compare our results (ASCLSPL)
with the best known solutions (BKS) and the lower bound (LB) of the best
known solutions.

Class BKS LB ASCLSPL Gap to BKS Gap to LB

B+ 82 220 65 493 87 431 6.23% 33.38%

The second group of instances was taken from Stadtler (2003) and it is called B+.
It consists of 60 instances with 10 items on 3 resources over 24 periods. Results are
provided in Table 7. Due to the multilevel case and the bigger problem size the gap to
the lower bound is higher than in the first group. Again, the ASCLSPL with a run time
of 400 seconds delivers good results, but it is unable to reach the best known solutions.

Table 8: Gap to lower bound from Stadtler and Suerie (2003) for the first and second
group of instances. The number next to the class represents the number of
instances for which the heuristic could only find infeasible solutions. They are
excluded from the results. The run time for the heuristic equals to maximal 15
seconds for the first group, and to maximal 60 seconds for the second group.
The Branch and Cut (B&C) approach has a run time of maximal 60 seconds
for the first group and of maximal 600 seconds for the second group.

Class Heuristic - Gap to LB B&C - Gap to LB

1 (-20) 9.5% 8.7%
2 (-32) 10.3% 10.2%
3 (-32) 7.1% 7.1%
B+ 29.1% 37.5%
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9 Conclusion

In this thesis, a metaheuristic that uses the ideas of MMAS and Evolutionary Strategies
combined with exact solvers for mixed-integer problems has been applied to solve multi-
level and single-level capacitated lot-sizing problems with linked lot sizes.

Two different mathematical formulations have been presented and tested for effective-
ness, whereas the standard formulation proved to be significantly better than the SPL
formulation. A possible explanation for the large gap between those formulations could
be the computational overhead when using the SPL formulation. After selecting the
formulation, the ASMLCLS algorithm has been tested on middle-sized and large-sized
multi-level test instances. While the results for the smaller test instances are among the
best, the results for the larger instances are poor.

The results reported in Section 8 for the CLSPL do not outperform the best known
solutions but nevertheless provide good results. In addition, the results show that the
bigger the problem gets, the better is the gap to the best known solutions. Since the de-
composition approach is very complex, the computational overhead causes the algorithm
to need more time to find good solutions.

As explained in Section 6.2, the algorithm is very slow and furthermore, the solution
quality is very sensitive towards the starting solution. For this reason, further research
will be necessary to improve or exchange the method of finding a starting solution, and
also reducing the complexity to speed up the algorithm.
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A Detailed Results

Solutions for the medium-sized MLCLS problems
Instance Result Instance Result Instance Result
g0061111 56016 g8065111 75312 k0029111 16492
g0061112 56197 g8065112 73752 k0029112 15877
g0061121 358345 g8065121 353643 k0029121 49555
g0061122 355334 g8065122 355594 k0029122 51316
g0061131 929494 g8065131 896371 k0029131 143289
g0061132 887565 g8065132 837173 k0029132 139801
g0061141 651433 g8065141 651855 k0029141 58367
g0061142 675723 g8065142 643590 k0029142 55623
g0061151 211240 g8065151 229990 k0029151 51197
g0061152 211987 g8065152 218631 k0029152 55996
g0061211 56000 g8065211 57040 k0029211 9750
g0061212 56000 g8065212 58095 k0029212 8495
g0061221 314808 g8065221 335125 k0029221 38470
g0061222 317937 g8065222 327465 k0029222 38403
g0061231 688459 g8065231 675894 k0029231 77118
g0061232 657348 g8065232 737856 k0029232 75106
g0061241 497584 g8065241 514437 k0029241 42757
g0061242 495777 g8065242 506407 k0029242 40673
g0061251 197171 g8065251 204601 k0029251 40826
g0061252 197283 g8065252 204897 k0029252 41065
g0061311 56000 g8065311 55990 k0029311 6323
g0061312 56000 g8065312 55970 k0029312 5782
g0061321 308103 g8065321 314409 k0029321 35114
g0061322 306028 g8065322 312609 k0029322 33695
g0061331 599267 g8065331 612550 k0029331 70537
g0061332 600874 g8065332 616927 k0029332 67067
g0061341 460938 g8065341 468022 k0029341 37984
g0061342 463021 g8065342 469746 k0029342 36175
g0061351 185605 g8065351 183596 k0029351 36518
g0061352 187611 g8065352 183877 k0029352 34760
g0061411 56016 g8065411 64984 k0029411 14188
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g0061412 56197 g8065412 64358 k0029412 12750
g0061421 310608 g8065421 329483 k0029421 41675
g0061422 314748 g8065422 329139 k0029422 40081
g0061431 616723 g8065431 666012 k0029431 78477
g0061432 614033 g8065432 655462 k0029432 81100
g0061441 463542 g8065441 494477 k0029441 44831
g0061442 465374 g8065442 490651 k0029442 42517
g0061451 199812 g8065451 210250 k0029451 45744
g0061452 200235 g8065452 211801 k0029452 42941
g0061511 56000 g8065511 61826 k0029511 11667
g0061512 56000 g8065512 63050 k0029512 11293
g0061521 353205 g8065521 349368 k0029521 42107
g0061522 344064 g8065522 342316 k0029522 40095
g0061531 900403 g8065531 743019 k0029531 86793
g0061532 877132 g8065532 815083 k0029532 84232
g0061541 637243 g8065541 587267 k0029541 46957
g0061542 627959 g8065542 582392 k0029542 43968
g0061551 203655 g8065551 209548 k0029551 44328
g0061552 202591 g8065552 205802 k0029552 43242
g0065111 77990 g8069111 77875 k8021111 7071
g0065112 74805 g8069112 102088 k8021112 7076
g0065121 361439 g8069121 390217 k8021121 46373
g0065122 360856 g8069122 396506 k8021122 46342
g0065131 842831 g8069131 884296 k8021131 115497
g0065132 826349 g8069132 887234 k8021132 115923
g0065141 672087 g8069141 637212 k8021141 51444
g0065142 613032 g8069142 663971 k8021142 52088
g0065151 227761 g8069151 234307 k8021151 53480
g0065152 219121 g8069152 239207 k8021152 51028
g0065211 58105 g8069211 58551 k8021211 7040
g0065212 57952 g8069212 69655 k8021212 7040
g0065221 317390 g8069221 325571 k8021221 40091
g0065222 318491 g8069222 331241 k8021222 40401
g0065231 642581 g8069231 645728 k8021231 86168
g0065232 622065 g8069232 659852 k8021232 85283
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g0065241 487209 g8069241 504909 k8021241 44065
g0065242 483061 g8069242 510375 k8021242 44152
g0065251 201099 g8069251 200833 k8021251 42384
g0065252 201148 g8069252 210186 k8021252 42209
g0065311 55990 g8069311 55635 k8021311 7040
g0065312 55970 g8069312 61050 k8021312 7040
g0065321 304097 g8069321 301869 k8021321 38358
g0065322 303099 g8069322 305351 k8021322 38728
g0065331 600543 g8069331 618215 k8021331 76097
g0065332 593652 g8069332 625891 k8021332 75979
g0065341 461050 g8069341 466052 k8021341 41496
g0065342 461286 g8069342 468359 k8021342 41425
g0065351 186620 g8069351 183689 k8021351 39779
g0065352 181992 g8069352 187979 k8021352 40167
g0065411 73170 g8069411 67792 k8021411 7040
g0065412 72080 g8069412 80545 k8021412 7065
g0065421 327404 g8069421 323571 k8021421 40583
g0065422 322753 g8069422 336125 k8021422 40417
g0065431 631868 g8069431 642676 k8021431 85295
g0065432 628055 g8069432 664044 k8021432 85906
g0065441 482488 g8069441 493781 k8021441 42386
g0065442 476864 g8069442 506052 k8021442 42855
g0065451 214163 g8069451 210655 k8021451 44568
g0065452 211270 g8069452 221400 k8021452 45206
g0065511 63085 g8069511 63906 k8021511 7071
g0065512 64519 g8069512 79429 k8021512 7054
g0065521 336254 g8069521 341362 k8021521 42670
g0065522 331293 g8069522 334279 k8021522 43413
g0065531 700812 g8069531 747324 k8021531 95842
g0065532 768917 g8069532 779253 k8021532 99815
g0065541 567002 g8069541 578269 k8021541 48522
g0065542 572860 g8069542 553197 k8021542 49313
g0065551 206286 g8069551 202786 k8021551 45866
g0065552 205766 g8069552 213928 k8021552 46512
g0069111 82001 k0021111 7107 k8025111 9703
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g0069112 102936 k0021112 7086 k8025112 9640
g0069121 357255 k0021121 46665 k8025121 42696
g0069122 377377 k0021122 47262 k8025122 44526
g0069131 849953 k0021131 122450 k8025131 103775
g0069132 884729 k0021132 123924 k8025132 106798
g0069141 620626 k0021141 53876 k8025141 48598
g0069142 621865 k0021142 56271 k8025142 51630
g0069151 225849 k0021151 53299 k8025151 47120
g0069152 240100 k0021152 52425 k8025152 49679
g0069211 60272 k0021211 7040 k8025211 7489
g0069212 71883 k0021212 7040 k8025212 7054
g0069221 313989 k0021221 41156 k8025221 39648
g0069222 322235 k0021222 41799 k8025222 39358
g0069231 627630 k0021231 86652 k8025231 81008
g0069232 632527 k0021232 87716 k8025232 81647
g0069241 483477 k0021241 44705 k8025241 42536
g0069242 512781 k0021242 44814 k8025242 43007
g0069251 200361 k0021251 44251 k8025251 36582
g0069252 209687 k0021252 44278 k8025252 40955
g0069311 55635 k0021311 7040 k8025311 6520
g0069312 60634 k0021312 7040 k8025312 6377
g0069321 298726 k0021321 38888 k8025321 36720
g0069322 300177 k0021322 39114 k8025322 36146
g0069331 588030 k0021331 75960 k8025331 72315
g0069332 588152 k0021332 75779 k8025332 73830
g0069341 455962 k0021341 41646 k8025341 40329
g0069342 463137 k0021342 42164 k8025342 39357
g0069351 183041 k0021351 40585 k8025351 37278
g0069352 189122 k0021352 41071 k8025352 36585
g0069411 78081 k0021411 7040 k8025411 8869
g0069412 93272 k0021412 7059 k8025412 8695
g0069421 326564 k0021421 40831 k8025421 39063
g0069422 343274 k0021422 41409 k8025422 40033
g0069431 625100 k0021431 86746 k8025431 80507
g0069432 633381 k0021432 87515 k8025432 87325
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g0069441 487314 k0021441 42389 k8025441 42700
g0069442 500051 k0021442 42765 k8025442 42979
g0069451 218009 k0021451 45331 k8025451 42725
g0069452 233051 k0021452 46236 k8025452 43133
g0069511 66166 k0021511 7079 k8025511 7866
g0069512 83135 k0021512 7058 k8025512 7609
g0069521 330792 k0021521 44977 k8025521 40691
g0069522 329270 k0021522 45081 k8025522 40769
g0069531 744915 k0021531 106075 k8025531 86967
g0069532 736678 k0021532 108836 k8025532 86917
g0069541 541660 k0021541 51316 k8025541 44523
g0069542 540127 k0021542 51683 k8025542 44748
g0069551 202728 k0021551 47385 k8025551 42768
g0069552 209626 k0021552 46796 k8025552 42451
g8061111 56000 k0025111 9936 k8029111 15032
g8061112 56058 k0025112 10006 k8029112 13858
g8061121 377577 k0025121 48700 k8029121 45232
g8061122 366866 k0025122 48451 k8029122 45020
g8061131 931253 k0025131 104751 k8029131 93003
g8061132 924958 k0025132 120663 k8029132 88451
g8061141 681869 k0025141 56135 k8029141 48444
g8061142 681629 k0025142 51951 k8029142 48900
g8061151 222524 k0025151 50786 k8029151 48571
g8061152 217949 k0025152 52868 k8029152 47227
g8061211 56000 k0025211 7536 k8029211 9310
g8061212 56000 k0025212 7120 k8029212 7939
g8061221 329324 k0025221 40828 k8029221 37587
g8061222 323329 k0025222 39047 k8029222 35679
g8061231 727329 k0025231 83185 k8029231 76086
g8061232 721501 k0025232 82221 k8029232 72683
g8061241 514507 k0025241 43393 k8029241 40791
g8061242 550984 k0025242 42197 k8029242 38756
g8061251 207422 k0025251 43056 k8029251 40072
g8061252 209877 k0025252 42816 k8029252 38298
g8061311 56000 k0025311 6557 k8029311 6300
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g8061312 56000 k0025312 6377 k8029312 5646
g8061321 309471 k0025321 37332 k8029321 33833
g8061322 309011 k0025322 37028 k8029322 31912
g8061331 608922 k0025331 73149 k8029331 67974
g8061332 622967 k0025332 74050 k8029332 65552
g8061341 469313 k0025341 40832 k8029341 38115
g8061342 469756 k0025342 40610 k8029342 35113
g8061351 188826 k0025351 38823 k8029351 35183
g8061352 187190 k0025352 38177 k8029352 33683
g8061411 56000 k0025411 9131 k8029411 12222
g8061412 56058 k0025412 8946 k8029412 11096
g8061421 320323 k0025421 40809 k8029421 39626
g8061422 319293 k0025422 40653 k8029422 38858
g8061431 666976 k0025431 84432 k8029431 77625
g8061432 662555 k0025432 85067 k8029432 75283
g8061441 486222 k0025441 42629 k8029441 42585
g8061442 491753 k0025442 43085 k8029442 41384
g8061451 207940 k0025451 43455 k8029451 43111
g8061452 207255 k0025452 45243 k8029452 41616
g8061511 56000 k0025511 8153 k8029511 10742
g8061512 56000 k0025512 7774 k8029512 9502
g8061521 361358 k0025521 42769 k8029521 39266
g8061522 361124 k0025522 41726 k8029522 37283
g8061531 859612 k0025531 93363 k8029531 80673
g8061532 845562 k0025532 97097 k8029532 74538
g8061541 658710 k0025541 48452 k8029541 42508
g8061542 642994 k0025542 48513 k8029542 40539
g8061551 213995 k0025551 45529 k8029551 42001
g8061552 211557 k0025552 44510 k8029552 39522

Solutions for the large-sized MLCLS problems
Instance Result - 1 seed Result - 10 seeds Instance Result - 1 seed Result - 10 seeds
g0151111 324640 324640 g8151111 324728 324728
g0151121 2412057 2112241 g8151121 2623737 2393311
g0151131 6221087 5580657 g8151131 7112950 6853750

47



g0151141 3973785 3426972 g8151141 4288072 3688653
g0151151 2198830 1956240 g8151151 2454455 2360971
g0151211 324640 324640 g8151211 324640 324640
g0151221 1845576 1821422 g8151221 1990441 1988476
g0151231 4162749 3915774 g8151231 5094379 4521949
g0151241 2587728 2491228 g8151241 2728997 2711466
g0151251 1727935 1714571 g8151251 1962508 1826923
g0151311 324640 324640 g8151311 324640 324640
g0151321 1798430 1757360 g8151321 1815550 1800421
g0151331 3498660 3457858 g8151331 3994728 3677158
g0151341 2326431 2311537 g8151341 2410700 2348338
g0151351 1683282 1636765 g8151351 1703724 1652322
g0151411 324640 324640 g8151411 324712 324712
g0151421 1905389 1855504 g8151421 2037115 1984026
g0151431 4268227 3953455 g8151431 4621724 4295122
g0151441 2423131 2357335 g8151441 2746450 2551180
g0151451 1833967 1760779 g8151451 1927846 1900818
g0151511 324640 324640 g8151511 324640 324640
g0151521 2036511 2036511 g8151521 2137330 2137330
g0151531 5411441 4910869 g8151531 5870806 5390320
g0151541 3534862 3301939 g8151541 3614200 3400968
g0151551 1976125 1876230 g8151551 1891916 1891916
g0155111 440258 420798 g8155111 578946 460070
g0155121 2975168 2056174 g8155121 3163066 2865117
g0155131 6439242 5232336 g8155131 8331306 8057254
g0155141 4906887 3108412 g8155141 5275715 4643210
g0155151 1913182 1860650 g8155151 2760916 2365123
g0155211 332847 331467 g8155211 335281 332360
g0155221 1810422 1758545 g8155221 1965129 1929176
g0155231 3838712 3624095 g8155231 4746236 4418319
g0155241 2489065 2382061 g8155241 2653123 2574014
g0155251 1670599 1661314 g8155251 1805575 1778032
g0155311 322302 322272 g8155311 322308 322272
g0155321 1714699 1684618 g8155321 1764061 1755831
g0155331 3438410 3416240 g8155331 3654253 3566698
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g0155341 2270238 2247645 g8155341 2322293 2310437
g0155351 1621035 1597776 g8155351 1649381 1645582
g0155411 419974 410117 g8155411 453866 414569
g0155421 1895421 1823657 g8155421 2033212 1963730
g0155431 3984437 3701499 g8155431 4577730 4188083
g0155441 2423125 2345143 g8155441 2593739 2535122
g0155451 1820397 1767308 g8155451 1933526 1887419
g0155511 364480 354425 g8155511 353918 348383
g0155521 2003944 1872251 g8155521 2070969 2043104
g0155531 4470729 4353071 g8155531 5877676 4912112
g0155541 3006449 2801734 g8155541 3306884 3126712
g0155551 1756011 1734951 g8155551 2005063 1844747
g0159111 498479 460720 g8159111 753720 539627
g0159121 2921029 2194042 g8159121 2909327 2909327
g0159131 6754113 5061799 g8159131 7139585 7139585
g0159141 4641876 3194321 g8159141 5329602 5137444
g0159151 1907314 1874292 g8159151 2681703 2679682
g0159211 348770 342592 g8159211 362938 349271
g0159221 1772907 1753132 g8159221 1958940 1903479
g0159231 3769484 3564766 g8159231 5362546 4188755
g0159241 2472312 2352394 g8159241 2659635 2605615
g0159251 1633130 1624604 g8159251 1791632 1735199
g0159311 310726 309869 g8159311 310726 309878
g0159321 1702832 1670933 g8159321 1728067 1728067
g0159331 3325102 3286648 g8159331 3577401 3482397
g0159341 2270055 2210731 g8159341 2338245 2312451
g0159351 1572171 1554541 g8159351 1623878 1600777
g0159411 461119 447999 g8159411 503131 441539
g0159421 1884554 1858711 g8159421 1957757 1938377
g0159431 3711604 3678157 g8159431 4010344 4010344
g0159441 2456334 2370705 g8159441 3334374 2490987
g0159451 1812072 1751374 g8159451 1883744 1846743
g0159511 388190 376701 g8159511 398450 386439
g0159521 1915484 1888278 g8159521 1964510 1964510
g0159531 4435322 4425501 g8159531 6051418 3064139
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g0159541 2866301 2754809 g8159541 2958048 2903970
g0159551 1737448 1674467 g8159551 1978193 1789845

Solutions for the single-level CLSPL problems
Class 1 Result Class 2 Result Class 3 Result
401 5553 581 11976 761 19469
402 5151 582 11284 762 19465
403 5963 583 10585 763 17361
404 5410 584 13407 764 16469
405 5597 585 10885 765 17911
406 5140 586 11842 766 18478
407 5550 587 11544 767 17062
408 3991 588 11767 768 18104
409 6247 589 11739 769 18024
410 6568 590 12733 770 20239
411 5597 591 12906 771 23638
412 8238 592 13332 772 21838
413 7557 593 12351 773 25973
414 5410 594 14111 774 20506
415 5576 595 13034 775 24197
416 5462 596 12073 776 16206
417 6037 597 11525 777 21970
418 6140 598 13012 778 21947
419 5413 599 10521 779 19832
420 5991 600 10981 780 17350
421 5194 601 10851 781 19564
422 6377 602 12059 782 19664
423 6425 603 11111 783 18747
424 5517 604 12208 784 18444
425 6841 605 10202 785 20131
426 7035 606 11648 786 20870
427 3939 607 10453 787 18850
428 5525 608 10650 788 18298
429 5447 609 14068 789 18868
430 5935 610 10387 790 19707
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431 20246 611 34126 791 55791
432 18937 612 38806 792 59000
433 19303 613 39398 793 58811
434 18720 614 36136 794 56946
435 20993 615 33240 795 60074
436 19302 616 42007 796 58244
437 18190 617 38388 797 68280
438 17385 618 40629 798 67601
439 17131 619 35338 799 58075
440 17505 620 37747 800 62987
441 19896 621 49451 801 73725
442 25557 622 49104 802 70615
443 25904 623 52496 803 73898
444 22043 624 51023 804 72340
445 23699 625 46403 805 71261
446 20427 626 38185 806 54744
447 20446 627 40182 807 61489
448 21425 628 35281 808 62623
449 17758 629 35337 809 68483
450 20768 630 38645 810 60475
451 20261 631 41670 811 62354
452 23423 632 39953 812 61792
453 17507 633 35845 813 60468
454 20164 634 37794 814 63395
455 22513 635 40904 815 64882
456 22513 636 49853 816 76940
457 21530 637 47355 817 71524
458 21530 638 56926 818 64816
459 24794 639 46693 819 69725
460 24575 640 56043 820 75480
461 51739 641 113944 821 143838
462 45013 642 100873 822 163709
463 48463 643 105876 823 163244
464 48463 644 96765 824 141974
465 51022 645 95858 825 152048
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466 52291 646 107274 826 162832
467 51208 647 117194 827 167635
468 51208 648 105084 828 166340
469 51969 649 99244 829 170826
470 57221 650 114509 830 169258
471 49807 651 134465 831 187127
472 49807 652 141187 832 189779
473 70701 653 124305 833 207870
474 70701 654 122728 834 194353
475 55818 655 140315 835 206333
476 52725 656 105053 836 168130
477 52936 657 105638 837 160634
478 60335 658 105675 838 173731
479 52751 659 104645 839 158588
480 47381 660 110040 840 158415
481 58811 661 111651 841 178314
482 71463 662 125840 842 192706
483 54746 663 108783 843 172891
484 69984 664 108816 844 197262
485 58626 665 155020 845 192313
486 54695 666 6252870 846 176004
487 76858 667 8808953 847 21474460
488 2225676 668 133360 848 25077588
489 80050 669 4278749 849 11236196
490 69360 670 8413667 850 10995349
491 5145 671 10483 851 19455
492 5877 672 10926 852 21115
493 5000 673 11004 853 17520
494 5337 674 10354 854 18933
495 5080 675 10892 855 19591
496 6683 676 12564 856 18592
497 5867 677 11840 857 18018
498 4871 678 10548 858 17613
499 6035 679 12422 859 19150
500 6062 680 12627 860 19534

52



501 11629 681 16494 861 41629
502 14893 682 21785 862 28323
503 9654 683 17119 863 24241
504 8531 684 17858 864 24346
505 7085 685 10516 865 25905
506 4955 686 10882 866 18047
507 5921 687 11279 867 16774
508 6086 688 11437 868 18803
509 4793 689 12112 869 18307
510 6151 690 9976 870 19201
511 5823 691 9493 871 17947
512 5007 692 10227 872 19113
513 5907 693 11553 873 16387
514 5660 694 11817 874 18417
515 4774 695 9329 875 17674
516 5541 696 12072 876 17889
517 6175 697 11875 877 18651
518 6133 698 9309 878 17931
519 4981 699 15323 879 20813
520 5439 700 12274 880 16644
521 17862 701 33153 881 52969
522 17402 702 35610 882 59666
523 21034 703 35254 883 59318
524 19662 704 39057 884 60291
525 15283 705 34196 885 62682
526 20935 706 41282 886 59118
527 17747 707 43531 887 62772
528 17550 708 38449 888 61995
529 20171 709 38045 889 57556
530 17715 710 42121 890 59516
531 31085 711 45416 891 67861
532 22235 712 52200 892 72494
533 24209 713 47948 893 70162
534 22735 714 49952 894 78976
535 22172 715 51270 895 81132
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536 16449 716 40697 896 57691
537 21093 717 38300 897 58837
538 20347 718 34593 898 58076
539 19839 719 37875 899 59992
540 16970 720 33153 900 53334
541 21225 721 34846 901 62097
542 19731 722 42312 902 60034
543 21962 723 38820 903 64989
544 17106 724 40614 904 61426
545 23218 725 38697 905 58493
546 19061 726 55558 906 64688
547 23819 727 45144 907 68354
548 2749964 728 49822 908 65048
549 30541 729 53016 909 74289
550 23127 730 51310 910 65485
551 51915 731 99038 911 148586
552 50309 732 99323 912 136091
553 46610 733 102413 913 147606
554 45969 734 108151 914 149512
555 49227 735 93064 915 165429
556 43314 736 99272 916 154602
557 51115 737 119997 917 148927
558 53042 738 114889 918 167060
559 41053 739 109881 919 160428
560 40751 740 102789 920 158435
561 58434 741 147631 921 4858481
562 92947 742 142582 922 223830
563 58814 743 139591 923 188493
564 58458 744 124326 924 201320
565 64145 745 121958 925 180148
566 50760 746 97275 926 165107
567 54543 747 115533 927 179454
568 51247 748 101814 928 145998
569 42554 749 94679 929 155435
570 49530 750 103136 930 156446
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571 58697 751 139479 931 180393
572 62169 752 118627 932 178010
573 64606 753 133150 933 184888
574 65292 754 113840 934 174386
575 60557 755 106952 935 181496
576 63436 756 15290283 936 18051286
577 64807 757 5392641 937 7209169
578 73927 758 5176258 938 27760829
579 68717 759 13104901 939 9706015
580 61884 760 4756803 940 23618397

Solutions for the multi-level CLSPL problems
Instance Result Instance Result Instance Result

1 95242 21 77930 41 81050
2 103729 22 74335 42 89080
3 95346 23 72282 43 93785
4 78429 24 73154 44 96497
5 79024 25 77471 45 100594
6 81647 26 81623 46 100889
7 74410 27 97198 47 100356
8 72748 28 88914 48 102106
9 73455 29 95306 49 84627
10 79411 30 97984 50 82219
11 81480 31 102677 51 87299
12 91575 32 103217 52 76365
13 90698 33 118521 53 73834
14 89535 34 85434 54 73177
15 101148 35 84048 55 81917
16 92420 36 84135 56 80902
17 107240 37 75647 57 89103
18 87505 38 74074 58 95704
19 77997 39 73904 59 102558
20 79428 40 82937 60 100562
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Abstract

In this thesis I focus my attention on the lot-sizing problem, which is part of the material
requirements planning (MRP). A lot-sizing problem intends to minimize the inventory,
setup, and production costs while meeting the required demand. Since producing firms
in the globalized economy more and more pay attention to production decisions and
costs the lot sizing problem is of prime importance. After a theoretical overview of the
lot-sizing problems two different types of the lot-sizing problem are covered in this the-
sis: Firstly, the multi-level capacitated lot-sizing problem (MLCLS), and secondly the
capacitated lot-sizing problem with linked lot sizes (CLSPL). The CLSPL is a big-bucket
model that allows to carry over setup states from one period to the next. Furthermore,
I test two different mathematical formulations for effectiveness. The solution approach
I use is a hybrid algorithm which decomposes the given problem into multiple smaller
subproblems. These subproblems are then solved by CPLEX. An Ant Colony Opti-
mization (ACO) algorithm is then applied to determine the lot-sizing sequence and to
improve the decomposition. My approach for the MLCLS problem works very well with
medium-sized instances, but has difficulties with respect to solution quality when solving
large-sized test instances. Good results are obtained for the CLSPL problem.



Zusammenfassung

In dieser Diplomarbeit lege ich meinen Fokus auf das Losgrößenproblem, das ein Teil
der Materialbedarfsplanung ist. Das Losgrößenproblem versucht die Lagerhaltungs-,
Rüst-, und Produktionskosten zu minimieren und dabei die notwendige Nachfrage zu
bedienen. Da jede produzierende Firma in einer globalisierten Welt immer mehr auf
Produktionsentscheidungen und Kosten achtet, ist das Losgrößenproblem von größt-
möglicher Bedeutung. Nach einem theoretischen Überblick über das Losgrößenprob-
lem werden zwei verschiedene Varianten des Losgrößenproblems abgedeckt: Erstens
das sogenannte Multi-Level Capacitated Lot-Sizing (MLCLS) Problem und zweitens
das sogennante Capacitated Lot-Sizing Problem with Linked Lot Sizes (CLSPL). Das
CLSPL ist ein Big-Bucket-Modell, das es erlaubt Rüstzustände in die nächste Periode
mitzunehmen. Desweiteren werden zwei mathematische Formulierungen auf ihre Effek-
tivität getestet. Der von mir benutzte Lösungsansatz ist ein hybrider Algorithmus der
das gegebene Problem in mehrere kleinere Subprobleme zerlegt. Dies Subprobleme wer-
den dann mit CPLEX gelöst. Eine Ant Colony Optimization(ACO)-Metaheuristik wird
dann angewendet um die Reihung der Losgrößen zu bestimmen und die Zerlegung in
Subprobleme zu verbessern. Mein Lösungsansatz funktioniert sehr gut mit mittelgroßen
Instanzen, hat aber Schwierigkeiten bezüglich der Lösungsgüte bei großen Instanzen.
Gute Resultate werden für das CLSPL erreicht.
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