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Abstract 

Ewing‟s sarcoma is the second most common bone and soft tissue cancer in children 

with an occurrence of 1-3 cases in 1 million people. Ewing‟s sarcoma are small round 

blue cell tumors that express high levels of the cell surface glycoprotein CD99 and 

carry the t(11;22) (q24;q12) translocation. This generates the EWS-FLI1 fusion gene 

which can be found in 85% of all Ewing‟s sarcoma family tumors.  

Using Affymetrix gene chip technology, our lab had analyzed the gene expression in 

six Ewing‟s sarcoma cell lines and found 73 overexpressed genes and 52 genes 

repressed by EWS-FLI1. These data indicate that EWS-FLI1 may act not only as 

transcriptional activator, but also as a transcriptional repressor. Among these 

repressed genes we found, the Notch ligand JAG1, the Notch target Hey1 and the 

cell cycle inhibitor p21. It has already been published, that p21 is directly repressed 

by EWS-FLI1 by binding to a putative Ets motif within the p21 promoter. 

p21 is a cyclin-dependent kinase inhibitor, and as a direct target of p53, it arrests the 

cell cycle in G1 after activation of p53. Several p53 and Ets binding motifs are 

distributed over 10kb of the p21 5‟ flanking sequence, but remarkably there are two 

sites where both, p53 and Ets motifs were found in a cluster. We describe here for 

the first time a gene reporter analysis of 14 reporter gene constructs which contain 

overlapping parts covering 10kb of the p21 promoter region. shRNA mediated knock 

down of EWS-FLI1 resulted in the upregulation of p21 in those two constructs which 

contain both Ets and p53 binding sites in a p53wt Ewing‟s sarcoma cell line, but not 

in a p53mut cell line. Induction of p53 via Etoposide treatment and knock down of 

EWS-FLI1 resulted in even higher induction of those two constructs in the p53wt cell 

line, whereas knock down of p53 reduced them. These data indicate strongly that 

p53 is involved in the gene expression regulation of p21 by EWS-FLI1.  

Reporter gene assays using two JAG1 constructs encoding for 1.7kb and 573bp of 

the JAG1 promoter region resulted in an induction for both constructs upon knock 

down of EWS-FLI1 in several cell lines. Our data indicate that the regulatory element 

responsible for the repression of JAG1 by EWS-FLI1 is within the 573bp. Knock 

down of EWS-FLI1 resulted in an induction of Hey1 in reporter gene assays using 

two constructs encoding for 3.9kb and 1.7kb of the Hey1 promoter region. Our data 

suggest that the 3.9kb sequence is necessary for full repression by EWS-FLI1.  

We could demonstrate here that EWS-FLI1 acts as a transcriptional repressor, not 

only for p21, but as well for the Notch pathway components JAG1 and Hey1. 
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Zusammenfassung 

Ewing-Sarkome sind die am zweithäufigsten auftretenden Knochen- und Weichteil-

tumore bei Kindern. Sie sind klein-rund-blauzellige Tumore, die hohe Spiegel des 

Zelloberflächen-Glykoproteins CD99 exprimieren und sich durch die t(11;22) 

(q24;q12) Translokation auszeichnen. Diese führt zum EWS-FLI1 Fusionsgen, 

welches in 85% aller Tumore der Ewing-Sarkom Familie gefunden werden kann. 

Mittels der Affymetrix Gen Chip Technologie analysierte unser Labor die Gen-

expression von sechs Ewing-Sarkom-Zelllinien und fand 73 überexprimierte Gene 

und 52 Gene mit verringerter Expression. Diese Daten legen nahe, dass EWS-FLI1 

nicht nur als transkriptionaler Aktivator, sondern auch als Repressor funktioniert. 

Unter den reprimierten Genen fanden wir den Notch-Liganden JAG1, das Notch-

Zielgen Hey1 und den Zellzyklus-Inhibitor p21. Die direkte Reprimierung von p21 

durch die Bindung von EWS-FLI1 an putative ETS Motive wurde bereits publiziert. 

p21 arretiert den Zellzyklus in der G1-Phase nach der Aktivierung von p53. In den 

10kb der p21-Promoter-Region sind mehrere p53 und Ets Bindungsmotive zu finden, 

aber nur an zwei Stellen beide innerhalb weniger Nukleotide. Wir beschreiben hier 

erstmalig eine Genreporteranalyse von 14 Genreporterkonstrukten, welche in 

überlappenden Fragmenten 10kb der p21-Promoter-Region abdecken. EWS-FLI1 

Knock-down resultierte in erhöhter Expression von p21 in den beiden p53 und Ets 

enthaltenden Konstrukten, in einer p53wt Ewing-Sarkom-Zelllinie, nicht aber in einer 

Zelllinie mit mutiertem p53. Induktion von p53 und Knock-down von EWS-FLI1 

erhöhte die Expression von p21 noch stärker, während ein Knock-down von p53 p21 

verringerte. Diese Daten legen nahe, dass p53 in die Genregulation von p21 durch 

EWS-FLI1 involviert ist. EWS-FLI1 Knock-down resultierte in einer erhöhten 

Expression von JAG1 in Reporter Gen Assays mit zwei JAG1-Konstrukten, die 1.7kb 

bzw. 573bp der JAG1-Promoter-Region enthalten. Unsere Daten lassen vermuten, 

dass sich das regulatorische Element für die Repression von JAG1 in den 573bp 

befindet. EWS-FLI1 Knock-down führte zu erhöhter Expression von Hey1 in Reporter 

Gen Assays mit zwei Hey1-Konstrukten, die 3.9kb bzw. 1.7kb der Hey1-Promoter-

Region beinhalten. Unsere Daten deuten darauf hin, dass für die Repression von 

Hey1 durch EWS-FLI1 die 3.9kb Sequenz notwendig ist.  

Wir konnten in dieser Arbeit zeigen, dass EWS-FLI1 als transkriptionaler Repressor, 

nicht nur p21, sondern auch die Notch-Signalübertragungsweg Komponenten JAG1 

und Hey1 reprimiert. 
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1 Introduction 

1.1 Importance of gene regulation in biological processes with an 

emphasis on transcriptional repression and its mechanisms 

The human genome comprises 30.000 to 40.000 genes, most of them encoding for 

proteins, but thousands of human genes produce non-coding RNAs as their final 

product [1]. But only a few hundred of genes show constitutive expression in all 

tissues, the so called housekeeping genes which are essential for the maintenance 

of the basal cellular functions. Such genes code for example for ribosomal proteins, 

RNA polymerases, metabolism enzymes and others [2]. Microarrays revealed that in 

a typical human cell 10.000 to 20.000 genes are expressed all the time, but the 

profile is different in each cell type. This is due to the synthesis and accumulation of 

different RNAs, and hence proteins, during the differentiation of each type of cell and 

the distinct needs of each cell. Cells are as well able to change their expression 

profile in response to changes in their environment. Such as liver cells trigger the 

expression of specific proteins, like tyrosine aminotransferase, as a response to 

glucocorticoid hormones. In contrast fat cells, exposed to glucocorticoid hormones, 

reduce tyrosine aminotransferase expression levels [3]. 

These distinct expression profiles are possible because of gene expression 

regulation, which is possible at every step of generating a mature mRNA from a 

gene. During transcription, regulation mainly occurs at the step of initiation. RNA 

processing can be regulated at the stages of modification, splicing, transport or 

stability. Translation is usually controlled at the stages of initiation and termination [4]. 

Since the focus in my thesis is on transcriptional repression mechanisms, I will 

shortly explain transcriptional activation, followed by a more closely focus on 

transcriptional repression.  

The general function of transcriptional activators, which in the majority of cases 

consist of a DNA binding domain and a transactivation domain, is to attract, position 

and modify the general transcription factors and RNA polymerase II at the promoter 

to initiate transcription [3]. Activators like CREB (cAMP response element binding 

protein), NF-κB or nuclear receptors act directly or via co-activators on the 

transcription machinery. Another way is via activators that recruit factors that change 
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the chromatin structure, like histone acetyl transferases, which loosen the chromatin 

and thereby allow greater accessibility to the underlying DNA [5]. Another mechanism 

is that the activator induces a conformational change in an inactive RNA polymerase, 

which is already bound to the promoter, thereby stimulating transcription [6]. 

Transcriptional repression may be achieved by several mechanisms (Fig.1) (A) If the 

binding sites for activator and repressor proteins are rather close to each other, or 

overlapping, these proteins compete for binding to the same regulatory DNA region. 

(B) Another possibility is, that activator and repressor are both able to bind to the 

DNA, but the repressor binds to the activation domain of the transcriptional activator 

thereby inhibiting its function. It is also possible that the repressor binds firmly to the 

activator, without binding to the DNA. (C) In the third case the repressor interacts in 

an early stage with the transcription initiation complex and blocks further binding of 

transcription factors to the complex. Some repressors act also in a later stage of 

initiation by inhibiting the release of RNA polymerase from the general transcription 

factor complex. (D) The transcriptional repressor may also attract a chromatin 

remodeling complex that induces a repressive chromatin structure over the promoter 

region. Some chromatin remodeling complexes seem to be specialized to restore the 

repressed nucleosomal state of the promoter, whereas others, which are attracted by 

activator proteins, increase the accessibility of DNA packaged in nucleosomes. (E) 

The repressor recruits histone deacetylase to the promoter, leading to tighter 

packaging of the chromatin thereby decreasing the accessibility of DNA. Another 

possibility would be the inactivation of a transcriptional activator by 

heterodimerization [3]. 

 

Fig. 1: Transcriptional repression [3] 
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1.2 Transcriptional repression in disease and cancer 

In the following I will give a few examples of diseases in which transcriptional 

repression is involved.  

BRCA1 is a tumor suppressor gene that plays an important role in the repair of DNA 

damage and surveillance of the cell cycle. After activation of BRCA1 via 

phosphorylation by the checkpoint kinase ataxia telangiectasia mutant (ATM), 

BRCA1 interacts with a p53 containing complex that leads to homologous 

recombination or non-homologous end-joining, which is of great importance in DNA 

damage repair [7].  

BRCA1 is repressed in a large portion of breast cancer patients and is associated 

with a malignant phenotype [8]. Metastasis associated tumor antigen1 (MTA1) is in 

contrast up regulated in several cancers. MTA1, a component of the nucleosome 

remodeling and deacetylating complex, was found to physically interact with an 

atypical estrogen responsive element on the BRCA1 promoter thereby repressing its 

expression. Cells with overexpressed MTA1 showed centrosome amplification which 

has long been a phenotype for BRCA1 repression. Silencing of MTA1 or treatment 

with a histone deacetylase inhibitor resulted in enhanced levels of BRCA1 supporting 

the hypothesis that MTA1 represses transcription of BRCA1 [9]. Another study 

showed that aberrant cytosine methylation, histone hypoacetylation and chromatin 

condensation act together in the BRCA1 promoter region to repress its expression 

[8]. 

The colony-stimulating-factor 1 receptor (CSF1R) is a tyrosine kinase receptor that is 

essential for macrophage differentiation thereby playing a central role in 

hematopoiesis. Changes of CSF1R expression is a hallmark of many cancers. In 

acute myeloid leukemias the t(8;21) translocation product RUNX1-ETO represses 

CSF1R by binding to the Fms intronic regulatory element (FIRE). RNAi mediated 

inactivation of RUNX1-ETO resulted in upregulation of CSFR1 expression and 

macrophage differentiation [10]. 

The Rett Syndrome is a neurodevelopmental disorder and categorized as a 

pervasive developmental disorder, like autism, Asperger syndrome and others. It is 

characterized by loss of language and directed hand movements, as well as ataxia, 

seizures, deceleration of head circumference and respiratory functions [11]. The 
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syndom mainly results from mutations in the Methyl-CpG- binding protein 2 (MECP2), 

belonging to a family of proteins binding to methylated DNA. MECP2 recruits co-

repressor complexes and turns chromatin into a repressive state. The brain derived 

neurotropic factor (BDNF) which plays a role in normal brain development and in 

learning and memory, is a downstream target of MECP2 and its deregulation in the 

absence of MECP2 seems to play a role in the neurological phenotype of Rett 

syndrome patients [12]. ID1, ID2, ID3 and ID4 are as well target genes of MECP2 

and encode for inhibitors of differentiation and inhibitors of DNA binding that block 

transcription factors, which are involved in the regulation of neuronal differentiation 

genes. The upregulation of the ID genes results from the loss of repression by 

MECP2 and may explain the arrest in postnatal neuronal maturation in Rett 

syndrome [13]. 

1.3 Cancers: brief overview of various types of cancers 

There are several classifications of cancer, like the WHO International Classification 

of Diseases for Oncology, which classifies tumors due to the organ or anatomic 

location in which they arise [14]. This conflicts with the historical and still widely used 

histological classification according to the tissue and cell of origin of a cancer type [3]. 

For example the brain contains connective tissue, as well as lymphoid tissue, 

therefore melanoma, lymphoma, myeloma, sarcoma and others, may be brain 

tumors. But the same list would be found in any other site specific classification [15]. 

Referring to the historical, histological classification the following types of cancers 

can be found:  

Carcinoma derives from epithelial cells and is the cause of 90% of all human cancers 

[3]. Subtypes of carcinoma are adenocarcinoma, which have a glandular organization 

and squamous cell carcinoma derived from stratified squamous epithelium [16]. 

Sarcoma is a neoplasm of the connective tissue formed by proliferation of 

mesenchymal cells [16, 17] and may arise anywhere in the body. Sarcoma is only 1% 

of adult cancers, but 15-20% of children‟s cancers [17]. 

Lymphoma is a neoplasm of the lymphoid tissue. Lymphoma can be divided into 

Hodgkin, non-Hodgkin and immunoproliferative small intestinal disease [16]. 
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Leukemia is the malignant proliferation of hemopoietic cells [18]. Leukemia can be 

divided into acute and chronic leukemia as well as into lymphocytic and myeloid 

leukemia. In acute leukemia cells do not mature properly and accumulate, whereas in 

chronic leukemia cells mature, but do not function correctly [16, 17]. Lymphocytic 

leukemia is characterized by a hyperplasia of the lymphoid tissues and an increased 

number of malignant lymphocytes and lymphoblasts. In myeloid leukemia the myeloid 

cell lineage proliferates uncontrolled [16]. 

Melanoma is a neoplasm of the skin, but since melanocytes derive from the neural 

crest, it is not a carcinoma. Only 6% of skin cancers are melanoma, but 75% of skin 

cancer death are due to melanoma [17]. 

Currently quite an effort is put into the development of new classifications due to 

molecular markers using microarray data [15, 19, 20].  

1.4 Ewing’s sarcoma 

Ewing‟s sarcoma is the second most common solid bone and soft tissue cancer in 

patients less than 20 years [21-23] with an occurrence of 1-3 cases in 1 million 

people [21, 24] and a 1.5:1/male:female ratio [21, 22, 25]. The frequency is much 

lower in Asian and African people [22]. James Ewing first described this kind of 

cancer in 1921 as an endothelioma of the bone, believing that the origin were blood 

vessels of bone tissue [26]. Nowadays it is assumed that it is of mesenchymal stem 

cell origin [27, 28].  

Ewing‟s sarcoma belongs to the Ewing‟s sarcoma family, which contains beside itself, 

the peripheral primitive neuroectodermal tumors and Askin tumors [21, 24]. Ewing's 

sarcoma and PNET express high levels of the cell surface glycoprotein CD99 [29] 

and carry the t(11;22) (q24;q12) translocation which generates the Ews-Fli fusion 

gene which can be found in 85% of all Ewing‟s sarcoma family tumors [23]. The 

difference has been defined so far, that PNET demonstrates neuroectodermal 

features, while Ewing sarcoma does not [30].  

Ewing's Sarcoma is a small round blue cell tumor [21-23, 25] like neuroblastoma, 

lymphoblastic lymphoma, rhabdomyosarcoma, with a high nuclear to cytoplasm ratio. 

Typically those cells have scant, faintly eosinophilic cytoplasm that contains glycogen 

appearing as periodic, acid-Schiff-positive diastase-digestible granules. As well as 
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indistinct cytoplasmic borders and round nuclei with evenly distributed chromatin and 

little mitotic activity [21, 22, 30]. 

The histological differentiation between the Ewing‟s Sarcoma family of tumors and 

the mentioned above small round blue cell tumors is according to various markers. 

Ewing‟s sarcoma and lymphoblastic lymphoma express CD99, whereas only 

lymphoblastic lymphoma expresses CD45. Both Ewing‟s sarcoma and 

Neuroblastoma express neural specific enolase and S-100, but Neuroblastoma is 

vimentin negative and neurofilament positive, unlike Ewing‟s sarcoma. Alveolar 

rhabdomyosarcoma may express CD99, but as well desmin, myogenin and MyoD1, 

unlike Ewing‟s sarcoma. The most difficult differentiation is between Ewing‟s sarcoma 

and poorly differentiated small synovial sarcoma, which may express CD99 but lack 

other histological markers [21]. Further methods like fluorescence in situ hybridization 

or polymerase chain reaction are required for a definite diagnosis [22]. 

Ewing‟s sarcomas mainly arise in bones, like the pelvic bones, the long bones of the 

lower extremities, bones of the chest walls, ribs and humerus. Primary metastasis is 

observed in 25% of patients and arises for the most part in bones, bone marrow or 

lungs [22]. In 15% the primary tumor site is within soft tissue [24]. 

Fig. 2: 15-year-old boy with Ewing 

sarcoma lesion of the proximal right 

femur [31]. 

A: Radiograph of the proximal femur: 

mild mixed sclerosis with aggressive 

„„onion skin‟‟ type periosteal reaction. 

B: Radiograph of the hemisected 

proximal femur.  

White arrow: biopsy site 

C: Resected gross pathology 

specimen: lesion with aggressive 

periosteal reaction.  

D: Photomicrograph: Typical 

features of Ewing sarcoma. [31] 
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Treatment of Ewing‟s sarcoma always involves several approaches like systemic 

chemotherapy, surgery and radiotherapy. After an initial chemotherapy a local 

treatment of the tumor by either surgery or radiotherapy is performed. Surgery 

depends on the localization of the tumor, if it is removable, and the age of the patient. 

This is followed by a second systemic therapy for treatment of microscopic residual 

disease [31]. In the past when chemotherapeutics were not administered fewer than 

10% Ewing‟s sarcoma patients survived [22], now using the multimodal therapy 

approximately 50% survive at five years. Patients with localized disease have a much 

better prognosis with >60% long term survival, while patients who present metastasis 

can be cured in less than 25% of cases. [21].  

1.5 EWS-FLI1 

The main characteristic of Ewing‟s Sarcoma is a translocation leading to a fusion 

gene between EWS and a member of the ETS family of transcription factors. In 85% 

of Ewing‟s Sarcoma the t(11;22) (q24;q12) translocation generating the EWS-FLI1 

fusion gene is present [21-24]. EWS encodes a 656 amino acid protein containing a 

glutamine, threonine and proline rich amino terminal domain, with 40% homology to 

CTD-polII, three arginine, glycin and proline rich domains and most interestingly a 

central RNA binding domain [32]. 

FLI-1 (Friend leukemia integration 1 transcription factor) contains two Ets domains in 

the 5‟ and the 3‟ portion. Together the 5‟ conserved and the FLI-1 domain constitute 

the amino terminal transcriptional activation domain. The 3‟ region contains an 89-

amino acid carboxyterminal domain contributing to the transcriptional activation 

domain and a DNA binding domain [21].  

The translocation leads to the fusion of the N-terminal region of EWS and the C-

terminal region of FLI-1, resulting in the fusion protein EWS-FLI1 containing the FLI-1 

ETS DNA binding domain and the N-terminal transactivation domain of EWS [33].  
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Fig. 3: Translocation between Chromosome 11 and 22 leads to EWS-FLI1 fusion gene [22] 

The second most common translocation in Ewing‟s Sarcoma is t(21;22)(q22;q12) 

leading to the fusion product EWS-ERG (~10%). Other translocations involving EWS 

and an ETS gene are even less frequent like, EWS-ETV1, EWS-E1AF and EWS-

FEV [21-24, 33]. 

The oncogenic effect of EWS-FLI1 was revealed by transduction into NIH3T3 

resulting in the formation of colonies in soft agar and foci in cell culture [34] and the 

development of tumors in nude mice [35]. Deletion of EWS-FLI1, EWS or FLI-1 

resulted in the loss of the oncogenic effect, indicating that both regions are obligatory 

for this effect [33, 34]. 

EWS-ETS fusion proteins are in general transcription factors containing a highly 

potent transactivation domain and an ETS DNA binding domain. Due to this fact it is 

supposed that EWS-ETS fusion proteins act as transcriptional activators and lead in 

so doing to the development of Ewing‟s Sarcoma, but EWS-ETS may also act as 

transcriptional repressors [24].  

One of the transcriptionally activated target genes of EWS-FLI1 is the platelet derived 

growth factor C. It was revealed that PDGF-C is expressed in more than 60% of 
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Ewing tumors and it could be activated in murine NIH3T3 cells by EWS-ETS fusion 

proteins [36]. Another up regulated factor for cell proliferation is the transcription 

factor c-Myc, which was found to be highly expressed in several Ewing‟s Sarcoma 

cell lines [37, 38] and to be induced by EWS-FLI1 fusion proteins in pMTEF and NGP 

cells [38]. Id2, inhibitor of DNA binding 2, is as well up regulated in Ewing‟s Sarcoma 

cell lines and a direct interaction with EWS-FLI1 could be shown via chromatin 

immunoprecipitation [37, 39]. Since Id2 is an inhibitor of differentiation of cells, or 

more precise it inhibits lineage specific genes, this might explain the primitive 

morphological features of Ewing tumors [39]. Like c-Myc, CCND1 is over expressed 

in many Ewing‟s Sarcoma and both activate CDK4 [24, 40], which is essential for the 

initiation of the cell cycle [24]. Cyclin D1 overexpression is predominantly associated 

with human tumor genesis leading to deregulated cell growth and proliferation [41]. 

But not only cell cycle regulation is deregulated, another common alteration in human 

cancers could be found; telomerase activity and increased expression of telomerase 

reverse transcriptase was revealed in two Ewing‟s Sarcoma cell lines and in NIH3T3 

cells transformed by EWS/E1AF and EWS/FLI1 [42].  

Since the focus in my thesis is on transcriptional repression, I will discuss this topic in 

the following section in more detail:  

1.6 Overview of transcriptional repression targets 

Until now the best studied transcriptional repression target for EWS-FLI1 is the 

transforming growth factor-β type II receptor gene (TGF-βIIR). TGF-β in general is a 

growth inhibitory cytokine and is responsible for the control of migration, adhesion, 

differentiation, modification of the microenvironment, tissue growth and 

morphogenesis [43]. 

The TGF-β signaling pathway is induced after binding of TGF- β to the type II 

receptor, which recruits and phosphorylates the type I receptor. The type I receptor 

phosphorylates receptor associated SMAD2/3, which form dimers or trimers with 

SMAD4. This complex goes to the nucleus and interacts with DNA- binding cofactors 

and co-activators or co-repressors to modulate gene expression of TGF-β target 

genes, like c-Myc, Id2 and the cyclin dependent kinase inhibitors CDKN1A, CDKN2B. 

Therefore repression of TGF-βIIR leads to a repression of CDKN1A, CDKN2B and 

an induction of Id2 and c-Myc, which favor uncontrolled cell proliferation [43]. 
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It has been shown that mRNA and protein TGF-βIIR levels were reduced or even 

undetectable in embryonic stem cells in the presence of EWS-FLI1. Transduction of 

FLI1 alone induces TGF-βIIR promoter activity as well as antisense RNA to EWS-

FLI1 transfected into Ewing‟s sarcoma cell lines restored TGF- βIIR expression [44, 

45]. Additionally it was revealed that also the less common translocations EWS-ERG 

and EWS-ETV1 lead, when transfected into NIH-3T3 cells, to decreased mRNA and 

protein levels of TGF-βIIR [46]. 

Microarrays of siRNA against EWS-FLI1 transfected Ewing‟s Sarcoma cell line A673 

revealed a major regulator of cell proliferation and apoptosis, namely insulin-like 

growth factor binding protein 3 gene, to be a target of EWS-FLI1 [47]. 

IGFBP3 is a component of the IGF pathway consisting of cell surface receptors IGF-

IR and IGF-IIR, the ligands IGF-I and IGF-II and the IGF binding proteins. IGF-IR is a 

tyrosine kinase receptor that binds both ligands, which are regulated by the IGFBPs, 

leading to an activation of the kinase resulting in signaling through cellular pathways 

that stimulate proliferation and inhibits apoptosis [48]. 

 

Fig. 4: IGF pathway. ERK: extracellular signal-related kinase, IRS: insulin receptor substrate, 

MAPK: mitogen-acticated protein kinase, MEK: MAPK-ERK kinase, PI3K: phosphatidylinositol 

3‘ kinase, TOR: target of rapamycin [48]. 

Knockdown of EWS-FLI1 via siRNA showed an increase of IGFBP3 in microarrays 

and RT-PCR, overexpression of EWS-FLI1 in HeLa cells resulted in repression of 

IGFBP3. Luciferase gene reporter assays and Chromatin IPs confirmed this data, 
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suggesting that IGFBP3 is a direct repression target of EWS-FLI1 [47]. It has been 

reported several times, that IGFBP3 inhibits IGF-1 and thereby the anti-apoptotic 

function of the IGF pathway [49]. Repression of IGFBP3 in Ewing tumors may 

therefore lead to the suppression of apoptosis, which is one of the hallmarks of 

cancer [50]. 

1.6.1 p21, p53: 

p53 is probably the best studied tumor suppressor and is essential for cell cycle 

arrest, DNA repair and apoptosis [51-54]. As a transcription factor, p53 induces the 

expression of p21, cyclinG, Bax, GADD45 and Mdm2 [55]. Under normal 

circumstances p53 is functionally inactive due to the degradation by the ubiquitin 

ligase Mdm2. DNA damage, cell stress or oncogenic signaling leads to the stop of 

ubiquitylation and p53 accumulation [52, 53, 55]. The activation of p53 upon DNA 

damage is due to several kinases, namely ATM, ATR, Chk1 and Chk2 which 

phoyphorylate serine and threonine residues, and may acetylate, methylate, 

ubiquitylate or sumoylate lysines at the carboxy terminal domain of p53. These 

alterations result in an increase of the half live of p53 in the cell and the ability to bind 

to specific sequences and therefore promote transcription of genes regulated by this 

sequences, is improved [56]. The tumor suppressor p14ARF activates p53 upon 

oncogenic signaling and interacts with Mdm2 inhibiting p53 degradation [52, 53]. 

Recently it has been revealed that the DNA damage response of p53 is of minor 

importance for cancer protection than the oncogenic signaling response via ARF [53]. 

After its activation p53 binds to p53 responsive elements thereby activating 

transcription of target genes, which initiate either DNA repair, cell cycle arrest, or 

apoptosis [56]. For example G1 arrest is induced via binding of activated p53 to 

response elements in p21 promoter region, this leads to elevated transcription of p21 

which is a cyclin dependent kinase (cdk) inhibitor and inactivates G1/S phase type 

cdk and S phase type cdk, holding the cell cycle in G1 [3].  
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Fig. 5: DNA damage induced cell cycle arrest [3] 

The initial step for intrinsic apoptosis is the expression of genes, directly regulated by 

activated p53, like Bax, noxa, puma which enhance the release of cytochrome c into 

the cytoplasm from mitochondria. APAF-1, as well a p53 regulated gene, interacts 

with cytochrome c and initiates a protease cascade activating procaspase 9 and 

thereby caspase 3 resulting in apoptosis [56]. The extrinsic apoptotic pathway results 

in activation of procaspase 8 and caspase 3 via binding of transmembrane death 

receptors (Fas, TNF receptor, TRAIL receptor) with the corresponding ligands (FasL, 

TNF, TRAIL) [57]. p53 mediated senescence is induced when activated Ras 

oncogene is present in a normal cell [58]. 

p53 is mutated or truncated in 50% of all cancers [53], whereas it is in only 10% of 

Ewing‟s sarcoma but this subset of patients has a noticeable poor outcome [59, 60]. 

Treatment of Ewing‟s sarcoma cell lines with ionizing irradiation shows mainly normal 

DNA damage signal integration, like p53-induced cell cycle arrest and apoptosis [61].  
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As mentioned above p21/Waf1 is a cyclin-dependent kinase inhibitor and a member 

of the Cip/Kip family of cdk inhibitors [62]. p21 is a direct target of p53 and arrests the 

cell cycle in G1 after DNA damage induced activation of p53 [62, 63]. Another 

mechanism to induce cell cycle arrest is by inhibition of proliferating cell nuclear 

antigen, a processivity factor for DNA polymerase δ thereby blocking DNA synthesis 

[64]. In contrary to its inhibitor function, p21 can also stabilize interactions between 

cdk4/cdk6 and D-cyclins in that way forming active complexes. This only is true for 

low or intermediate concentrations, while at high concentrations it acts as an inhibitor 

[62, 64]. It was revealed that p21 in keratinocytes is directly induced by the C-

promoter binding factor 1 (CBF1) via Notch1 activation [65]. 

Several putative Transcription factor binding sites for p53 are located in the p21 

promoter region, additionally to the well described sites at -2,27kb and -1,38kb [66], 

there has recently been found another one at -4,5kb [67] as well as our in silico 

analysis revealed a number of new potential TFBS for p53. Ets transcription factor 

binding sites were located at -2,2kb and -1,3kb close to p53 TFBS [68]. Two further 

Ets motifs and three CBF1 motifs have been identified due to our in silico analysis. 

Furthermore six Sp1 binding sites are located between the start site and -119bp. 

STAT binding sites are at -690, -2590 and -4233bp at the p21 promoter [64]. 

 

Fig. 6: Transcription factor binding motifs in 10kb of p21 promoter region 

Due to the major role of p21 in cell cycle regulation it is not surprising that a number 

of oncogenes repress p21, but astonishingly mutations of p21 in cancers are 

extremely rare [62, 69]. Several mechanisms of p21 regulation have been discovered 

so far, but still the most important one seems to be activation by p53. For example 

phospholipase D1 or the hepatitis C virus core protein decrease p53 levels thereby 
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repressing p21. Polo like kinase 1, a M phase cell cycle regulator, or HPV type E6 

directly bind p53 and lead either to inactivation or degradation. ∆Np63, a splice 

variant of the p53 family member p63, competes with p53 for DNA binding on the p21 

promoter. c-jun may either repress the p53 promoter directly or interferes with Sp1, 

another positive regulator of p21, and thereby leads to p21 repression [62]. 

c-Myc is supposed to negatively regulate p21 via interactions of c-Myc and Sp1/Sp3 

[70] as well as via interaction of c-Myc with the initiator binding ZN-finger transcription 

factor Miz-1 associating directly with the promoter [71]. 

In some cases epigenetic silencing has been revealed to be another mechanism to 

repress p21. In Rhabdomyosarcoma tumors the STAT transcription factor binding 

site on the p21 promoter was found to be methylated, as well as CpG islands near 

the Sp1/Sp3 sites in lung cancer cell line H719. Hypermethylation of the p21 

promoter in bone marrow cells was found in 41% of lymphoblastic leukemia patients 

in a clinical study [62]. 

Direct repression of p21 by binding to the proximal promoter has been revealed for 

Tbx2, a T-box transcription factor, which has already been described as a suppressor 

of senescence via repression of p19ARF. Tbx2 binds to a T-element (AGGTGTGA) 

at position -10 on the p21 promoter and thereby represses p21 [72]. 

Evidence for a direct repression of p21 in Ewing sarcoma cell lines by binding of 

EWS-FLI1 to a putative ETS transcription factor binding site within the p21 promoter, 

was published [73], but is contrary to our finding, which strongly indicates the 

involvement of p53 in the regulation of p21 expression by EWS-FLI1 [74]. 

1.7 Notch pathway 

The notch pathway plays an essential role in many biological processes, like 

proliferation, differentiation, apoptosis, pattern formation or stem cell maintenance. It 

has the ability to function as a tumor suppressor as well as an oncogene [75-78]. 

The four Notch receptors (Notch1-4) and five ligands (Jagged1-2 and Delta like 1,3,4) 

in mammals are single-pass transmembrane proteins with large extracellular 

domains mainly consisting of epidermal growth factor like repeats [75]. After 

interaction of receptor and ligand between neighboring cells, the ADAM (A disintegrin 
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and A metalloprotease) family protease TACE (TNF-α-converting enzyme) cleaves 

the receptor, followed by a second cleavage by γ-Secretase and the release of the 

notch intracellular domain (NICD, ICD, NotchIC). NICD translocates to the nucleus 

and binds the transcription factor CBF1 (CSL, RBP-Jκ) in that way displacing co-

repressors and replaces them with transcriptional co-activators, like Mastermind or 

the histone acetyltransferase p300 and initiates the transcription of target genes such 

as Hes and Hey family of genes [76, 78]. Hes1, like Hes5 is involved in the notch 

dependent inhibition of neuronal development, but Hes1 is as well implicated in 

pancreatic development. Hey2 is involved in cardiac development and like Hey1 in 

vascular development [78]. 

 

Fig. 7: The Notch pathway; TACE: TNF-α-converting enzyme, PS: presenilin, Mam: Mastermind, 

NotchIC: Notch intracellular subunit, Co-R: co-repressors [75] 

As mentioned above Notch can either act as an oncogene or as a tumor suppressor. 

Its oncogenic function in T-ALL was discovered when the t(7;9)(q34;q34.3) 

translocation was revealed to be a fusion of Notch1 with the T-cell receptor beta, 

leading to the expression of intracellular Notch1 under the regulation of TCR-β and 
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thereby independent of ligand stimulation. Notch is in general down regulated in the 

double positive (CD4+CD8+) T-cell stage Mouse experiments showed that enforced 

expression of intracellular Notch1 leads to accumulation of cells at this stage and 

therefore blocking differentiation. The increase in the number of T-cells in the double 

positive stage favors the accumulation of additional mutations. Furthermore it has 

been revealed that t(7;9) negative T-ALLs contain point mutations in the Notch1 gene 

in more than the half of the tumors [76]. Notch4 was discovered to play a role in 

breast cancer development in mice [79]. In 50% of human mammary carcinomas 

expression of Numb, a negative regulator of Notch signaling was lost indicating the 

oncogenic effect of Notch in human breast cancers [80]. Overexpression of several 

components of the Notch pathway were found in various tumors, like 

medullablastoma, prostate cancer, renal cell carcinoma, multiple myeloma, Hodgkin‟s 

and anaplastic lymphoma [76]. So far the role of Notch remains unclear, for example 

it is supposed that Notch might act as a tumor suppressor in prostate cancer, since 

activated Notch is able to slow down the growth of prostate cancer [79]. The tumor 

suppressive function of Notch1 might be mediated by several mechanisms to induce 

cell cycle arrest and differentiation. In murine keratinocyctes Notch1 signaling 

induces the expression of early differentiation markers, like keratin1 or involucrin and 

activates NF-κB and the onset of terminal differentiation. Notch1 is also able to 

induce p21 in basal cells and thereby cause cell cycle arrest. Mice lacking Notch1 

develop basal-cell-carcinoma like tumors and human basal-cell-carcinoma have 

decreased levels of Notch1, Notch2 and Jagged1 [81]. We have recently 

demonstrated that Notch might act as a tumor suppressor in Ewing‟s sarcoma. 

Knockdown of EWS-FLI1 resulted in upregulation of Jagged1, thereby activation of 

the Notch pathway and an increase of Hey1, which down modulated MDMX and led 

to p53 accumulation [74]. 

1.7.1 Jagged1 

Jagged1 is one of five ligands for the Notch receptor. Following interaction of 

Jagged1 with a Notch receptor, the Notch pathway is initiated [75]. Mutations of 

JAG1 are associated with the Alagille syndrome, an autosomal dominant disorder 

that affects structures in the heart, eye, liver, skeleton, kidney, face and other organs 

[82]. Jagged1 is furthermore essential for vascular remodeling and endothelium 

specific JAG1 deletion causes embryonic lethality and cardiovascular disorders [83]. 
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Affymetrix array data and RT-PCR of several Ewing‟s sarcoma cell lines showed a 

significant increase of JAG1 upon knock down of EWS-FLI1. As described before, 

this may lead to the Notch dependent suppression of p53 and its target genes and 

therefore favors tumor genesis [74]. 

1.7.2 Hey1 

Hey1 belongs to the superfamily of helix-loop-helix (bHLH)-type transcription factors 

and serves as a transcriptional repressor [84]. Hey1 is a target gene of the Notch 

pathway determining cell fate decisions. Hey1 is involved in proliferation, migration, 

blood vessel formation and network formation of endothelial cells. During early 

stages of angiogenesis Hey1 is down regulated thereby allowing cells to migrate and 

proliferate, but is enhanced in a later stage to repress VEGFR2 leading to tube 

formation and establishment of mature vessel phenotype [85]. It was revealed that 

Hey1 is able to transcriptionally repress MDM2 in colon carcinoma cells [84] and to 

down regulate MDMX in Ewing‟s sarcoma cells [74] and thereby lead to an 

accumulation of p53.  



24 
 

1.8 Aim of the thesis 

Using Affymetrix gene chip technology, our lab had analyzed the expression of 

14000 genes and searched for genes that are consistently overexpressed (by at least 

a factor of 2) in the presence of Ews-Fli1. We found 73 such genes but remarkably, 

we found that Ews-Fli1 also represses by two folds or more transcription of 52 genes 

in all six Ewing's sarcoma-derived cell lines tested. Whereas it is not known how 

many of the activated and of the repressed genes are direct transcriptional targets of 

Ews-Fli1, these data indicate that Ews-Fli1 may act not only as transcriptional 

activator, but also as a transcriptional repressor.  

Among these we found the cell cycle inhibitor p21, the Notch ligand Jagged1 and the 

Notch target Hey1 to be repressed by EWS-FLI1. The mechanisms of the 

transcriptional repression of p21, Jagged1 and Hey1, should be studied within this 

thesis. To study p21, 10kb of the promoter region should be amplified in 14 

overlapping fragments and cloned into pGL4.10 or pGL4.10-pTK. The activity of 

those gene reporter constructs should be studied in a p53wt and a p53mut Ewing‟s 

sarcoma cell line in the presence and absence of EWS-FLI1 and upon induction of 

p53 with etoposide or modulation of p53 with shRNA. 

Similarly JAG1 and Hey1 promoter reporter constructs should be established and 

tested for EWS-FLI1 dependent activity.  
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2 Material and Methods 

2.1 Material 

2.1.1 Media 

Luria Broth (LB): 

1% Trypton, 1% NaCl, 0,5% Yeast-extract. LB has to be sterilized in the autoclave. 

For Agar Dishes: 1% Trypton, 1% NaCl, 0,5% Yeast extract, 1,5% Agar 

Ampicillin was supplied after cooling down the autoclaved agar to 50°C.  

Pour out the solution into petri-dishes. 

 

Terrific Broth (TB): 

To 900ml H20 add 12g Tryptone, 24g Yeast-extract and 4ml Glycerol. Autoclave as 

well 100ml of 0,17M KH2PO4, 0,72M K2HPO4, afterwards mix both solutions.  

 

NZY+ Broth:  

10 g of NZ amine (casein hydrolysate) 

5 g of yeast extract 

5 g of NaCl 

pH 7.5 

per liter 

sterilization by autoclaving 

the following filer-sterilized supplements were added prior to use: 

12.5 ml of 1 M MgCl2 

12.5 ml of 1 M MgSO4 

20 ml of 20 % (w/v) glucose  
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RPMI 1640 with GlutaMAXTm-I: Invitrogen, Groningen, Netherlands 

Add 10% fetal calf serum (FCS Gold, PAA Laboratories, Linz, Austria) and 

100000 Units/l penicillin / streptomycin (PAA Laboratories, Linz, Austria) 

Opti-MEM: Invitrogen, Groningen, Netherlands 

DMEM: Invitrogen, Groningen, Netherlands 

 1000 mg/L glucose, 4mM L-glutamine and 110 mg/L sodium pyruvate 

Add 10% fetal calf serum (FCS Gold, PAA Laboratories, Linz, Austria) and 

100000 Units/l penicillin / streptomycin (PAA Laboratories, Linz, Austria) 

Trypsin / EDTA: PAA Laboratories, Linz, Austria 

Accutase: PAA Laboratories, Linz, Austria 

Puromycin: Sigma, St. Louis, USA 

Etoposide: Sigma, St. Louis, USA 

γ- secretase inhibitor: Calbiochem, Merck, Darmstadt, Germany 

Ampicillin: Biomol, Hamburg, Germany 

Doxycycline: Sigma, St. Louis, USA 

Blasticidin: Invitrogen, Groningen, Netherlands 

Zeocin: Cayla, Toulouse, France 

 

2.1.2 Buffers 

PBS: 137mM NaCl; 3mM KCl; 6,5mM Na2HPO4-2H2O; 1,5mM KH2PO4 

TBS: 50mM Tris, 150mM NaCl, pH 7,5 

TBS-T: 50mM Tris, 150mM NaCl, 0,1% Tween 20; pH 7,5 
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2x sample buffer:  

20% (v/v) glycerol 

6% ß-mercaptoethanol 

3% SDS 

125mM Tris-Cl pH 6,8 

a few bromphenol blue crystals 

Laemmli buffer: 

15,1g Tris 

72g glycine 

25ml 20% SDS 

per 1 liter 

Transfer buffer: 

14g glycine 

3g Tris 

20% methanol 

per 1 liter 

Ponceau S staining solution (10x stock): 

2g Ponceau S 

30g trichloroacetic acid 

30g 5-sulfosalicylic acid 

ad 100ml 

Loading Dye: 

4M Urea 

80mM EDTA 

10% Saccharose 

0,25% BPB 
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TBE: 

 5,4g Tris Base 

 2,75g Boric Acid 

 2ml 0,5M EDTA/pH8 

 per 1 liter 

 

Blocking solution: 

10% blocking reagent (Roche, Basel, Switzerland) in maleic acid buffer (100mM 

Maleic Acid, 150 mM NaCl, pH= 7.5, sterile). 

Heat to dissolve and autoclave. 

2.1.3 Bacterial strains 

JM109: endA1, recA1, gyrA96, thi, hsdR17 (rk
-, mk

+), relA1, supE44, ∆(lac-proAB), 

[F‟, traD36, proAB, laclqZ∆M15], (Promega, Madison, USA) 

Sure2 Supercompetent Cells: e14-(McrA-) Δ(mcrCB-hsdSMR-mrr)171 endA1 

gyrA96 thi-1 supE44 relA1 lac recB recJ sbcC umuC::Tn5 (Kanr) uvrC [F‟ 

proAB lacIqZΔM15 Tn10 (Tetr) Amy Camr], (Stratagene, La Jolla, USA) 

2.1.4 Cell lines 

SK-N-MC:  Ewing tumor cell line established by J. Biedler (Memorial Sloan-

Kettering Cancer Center, New York, USA) from a pPNET in the rib of 14 

year old female child (expresses EWS-FLI1 type 1, truncated p53) 

(ATCC: HTB-10) 

TC252:  Ewing tumor cell line established by T. Triche (Department of 

Pathology, Children‟s Hospital, Los Angeles, USA) (expresses EWS-

FLI1 type 1, p53 wild type) presumably from a female patient. 

STA-ET1: Ewing tumor cell line established at the Children‟s Cancer Research 

Institute, Vienna (expresses EWS-FLI1 type 1, p53 wild type) 
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WE68: Ewing tumor cell line established by F. Van Valen (Dept. of Pediatrics, 

University of Muenster, Germany) (expresses EWS-FLI1 type 1, p53 

wild type) 

ASP14: Ewing tumor cell line established from A673 parental cell line by Javier 

Alonso (Laboratorio de Patología Molecular de Tumores Sólidos 

Infantiles, Departamento de Biología Molecular y Celular del Cáncer, 

Instituto de Investigaciones Biomédicas, Madrid, Spain) (expresses 

Ews-Fli1 type 1, p53 mutant). Inducible cell line, Doxycycline induces 

shRNA against Ews-Fli1 

HepG2: Hepatocarcinoma cell line established from a 15 year old Caucasian 

boy. (p53 wildtype) 

2.1.5 Plasmids 

2.1.5.1 Existing plasmids 

pGL4.10 - TK-RL: TK driven mammalian expression vector encoding Renilla 

Luciferase, used as a transfection efficiency control. 

(constructed by Idriss Bennani-Baiti, CCRI, Vienna) 

pCMV:  CMV promoter based mammalian expression (constructed 

by Suzanne Baker, John‟s Hopkins, Baltimore) 

pCMV Ews-Fli type II: CMV promoter based mammalian expression vector 

encoding Ews-Fli type II. (Gift from Mark Ladani, 

Departments of Pathology, Medicine, and Surgery, and the 

Human Oncology and Pathogenesis Program, Memorial 

Sloan-Kettering Cancer Center, New York, USA) 

pSuper∆RV: pSUPER-based retroviral mammalian expression vector. 

(Gift from Reuven Agami, Division of Tumor Biology, The 

Netherlands Cancer Institute, Amsterdam, The 

Netherlands) 

pSuper∆RVsh22: mammalian expression vector encoding shRNA against 

Ews-Fli type II. (constructed by Jozef Ban, CCRI, Vienna) 
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pSuper∆RVsh30: mammalian expression vector encoding shRNA against 

Ews-Fli type I. (constructed by Jozef Ban, CCRI, Vienna) 

pSuper-shp53: mammalian expression vector encoding shRNA against 

p53. (Gift from Reuven Agami, Division of Tumor Biology, 

The Netherlands Cancer Institute, Amsterdam, The 

Netherlands) 

Pst-Neg: mammalian expression vector encoding scrambled shRNA 

(Gift from Dr. B. Kaminska, Laboratory of Transcription 

Regulation, Department of Cell Biology, Nencki Institute of 

Experimental Biology, Warsaw, Poland) 

RPCIB753F15397Q2:  p21 expressing pBACe3.6 Cosmid (RZPD German 

Resource Center for Genome Research, Berlin, Germany). 

RZPDB737F0934D6: Jag1 expressing pBACe3.6 Cosmid (RZPD German 

Resource Center for Genome Research, Berlin, Germany). 

Hey1-FL: mammalian expression vector encoding 3,9kb of the Hey1 

Promoter. (Gift from Erwin Böttinger, Department of 

Molecular Genetics and Department of Medicine, Albert 

Einstein College of Medicine, Bronx, New York, USA) 

Hey1-M5: mammalian expression vector encoding 1.7kb of the Hey1 

Promoter. (Gift from Erwin Böttinger, Department of 

Molecular Genetics and Department of Medicine, Albert 

Einstein College of Medicine, Bronx, New York, USA) 

pGL4.10-Jag1-459-1713: mammalian expression vector encoding Jagged1 Promoter 

sequence bp 459 to 1713 (constructed by Cornelia Schuh, 

CCRI, Vienna)  
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2.1.5.2 Cloning Plasmids 

pGL4.10:  Promega, Madison, USA 

 

Fig. 8: pGL4.10 

pGL4.10 - TK: TK driven mammalian expression vector encoding Firefly 

Luciferase. 

 

Fig. 9: pGL4.10-pTK 
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2.1.5.3 Plasmids established in the course of this thesis 

pGL4.10 - 146/147: p21 reporter gene construct that encodes the p21 Promoter 

Region 1- 599bp 

pGL4.10 - TK- 147/148: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 1-1144bp 

pGL4.10 - TK- 149/150: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 494- 1048bp 

pGL4.10 - TK- 151/152: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 848- 2135bp 

pGL4.10 - TK- 153/154: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 2019- 2656bp 

pGL4.10 - TK- 175/176: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 2538- 3717bp 

pGL4.10 - TK- 172/173: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 2591- 4186bp 

pGL4.10 - TK- 170/171: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 3983- 5050bp 

pGL4.10 - TK- 168/169: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 4899- 5724bp 

pGL4.10 - TK- 166/167: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 5470- 6699bp 

pGL4.10 - TK- 164/165: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 6491- 7457bp 

pGL4.10 - TK- 162/163: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 7296- 7605bp 

pGL4.10 - TK- 160/161: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 7044- 9043bp 
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pGL4.10 - TK- 158/159: TK driven p21 reporter gene construct that encodes p21 

Promoter Region 8930- 10004bp 

pGL4.10 –Jag1-573: Jag1 reporter gene construct that encodes 573bp of the 

Jag1 Promoter region. 

pGL4.10 –Jag1-1713: Jag1 reporter gene construct that encodes 1.7kb of the 

Jag1 Promoter region. 

2.1.6 Oligonucleotides 

p21- Constructs: 

p21-1- 599 and 1- 1144bp forward primer:  gggtaccCTGTGAAATAAACGGGACTGA 

p21- 1- 599 reverse primer:   ggctagccAGCGCGGCCCTGATATAC 

p21- 1- 1144 reverse primer:   gggtacccTGGGAGCGGATAGACACATC 

p21- 494- 1048 forward primer:  gggtacccATCTGCAAATGAGGGTTA 

p21- 494- 1048 reverse primer:  ggctagcCTGATCCCTCACTAGGTCA 

p21- 848- 2135 forward primer:  gggtaCCCAGGTAAACCTTAGCCTCTT  

p21- 848- 2135 reverse primer:   ggctagccTACTCCCCACATAGCCCGTA 

p21- 2019- 2656 forward primer:  gggtaccCTGCCTCTGCTCAATAATGTT 

p21- 2019- 2656 reverse primer:  ggctagcCTGACTCCCAGCACACACTC 

p21- 2538- 3717 forward primer:  gggtaccc AGGGGACCGTGTCTGGAGGA 

p21- 2538- 3717 reverse primer:  ggctagcc GGGGAGTCCCAAATAGGGGCAGT 

p21- 2591- 4186 forward primer:  gggtaccc TAGGCAGCCCCAATGCAGACA 

p21- 2591- 4186 reverse primer:  ggctagcc GCTCCCAAGAAGTGAGACCCC 

p21- 3983- 5050 forward primer:  gggtaccc TGGGAGACCGAGGCAGAC 

p21- 3983- 5050 reverse primer:  ggctagcc TCACAGAGGGGCCAGACCTA 

p21- 4899- 5724 forward primer:  gggtaccc GCCAGGCGTGGTGGTTCGT 

p21- 4899- 5724 reverse primer:  ggctagcc AGACCCCGGCTCCCGAAAC 
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p21- 5470- 6699 forward primer:  gggtaccc TCAGGTGGCCTGTGTTCA 

p21- 5470- 6699 reverse primer:  ggctagcc GGAATGCAATGGTGC 

p21- 6491- 7457 forward primer:  gggtaccc GGCTCGAGAATTTCACCTGGCCT 

p21- 6491- 7457 reverse primer:  ggctagcc CCTCGGGCAAGAGAGCTTCC 

p21-7296- 7605 forward primer:  gggtaccc TATCCCATAGAAGTTGGTGGGGC 

p21- 7296- 7605 reverse primer:  ggctagcc AAGACAGTAATGCTCAGCCA 

p21- 7044- 9043 forward primer:  gggtacccGACCTGGAGGGGGTGTCT 

p21- 7044- 9043 reverse primer:  ggctagccAGGGTCATTTTTGGCCTGTA 

p21- 8930- 10004 forward primer:  gggtacccGAACGTGGGTGGGAGATG 

p21- 8930- 10004 reverse primer:  ggctagccTCAACGATTGTGACACCTG 

 

Jag1- constructs: 

JAG1-F:     tcgaAGATCTAGGGGCGTGCCCAGGGTGAG 

JAG1-R:     tcgaAAGCTTCGCTGCGCCGCGCGCCGC 

 

Site directed mutagenesis primer: 

151/152-Ets1-mut  GGTCAGCTGCGTTAGAAAAAGAAGACTGGGCATGTCTGGG 

151/152-Ets1-mut  CCCAGACATGCCCAGTCTTCTTTTTCTAACGCAGCTGACC 

151/152-p53-mut  GAGGAAGAAGACTGGGCACCTCTGGGCAGAG 

151/152-p53-mut  CTCTGCCCAGAGGTGCCCAGTCTTCTTCCTC 

153/154-p53-mut  GGCCGTCAGGAACACCTCCCAAGGTGTTGAGCTCTGGC 

153/154-p53-mut  GCCAGAGCTCAACACCTTGGGAGGTGTTCCTGACGGCC 

153/154-p53-mut  GCCTGCTTCCCAGGAACACCCTTGGGCAGCAGGC 

153/154-p53-mut  GCCTGCTGCCCAAGGGTGTTCCTGGGAAGCAGGC 
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153/154-Ets1mut  GTTCCCAGCACTCTCTCTCCCTTCCTAGGCAGC 

153/154-Ets1mut  GCTGCCTAGGAAGGGAGAGAGAGTGCTGGGAAC 

 

MWG pGL-series Standard primers: 

pGL rev:      CTTTATGTTTTTGGCGTCTTCC 

pGL3 for:      CTAGCAAAATAGGCTGTCCC 

Self-designed pGL4-pTK sequencing primer: 

pTK rev:     CTAACCACCGCTTAAGCG 

pTK-147/148 internal:    ACTTCGTGGGGAAATGTGTC 

pTK-160/161 internal:     AGCCAGGCTTCGTGGTGTG 

pTK-172/173 internal:    GCACAATCTCAGCTCACTGC 

 

2.1.7 Antibodies 

Anti-p21 (F-5): Mouse monoclonal antibody against amino acids 1-159 

representing full length p21. (Santa Cruz Biotechnology 

Inc., Santa Cruz, USA, sc-6246).  

Dilution: 1:70 

Anti-p53 (DO-1):  Mouse monoclonal antibody against the C-terminus of p53 

(B. Vojtesek, Masaryk Memorial Cancer Institute, Brno, 

Czech Rep.) 

Dilution: 1:5 

Anti-Fli-1 (C-19): Rabbit polyclonal antibody against the C-terminus of FLI1 

(Santa Cruz Biotechnology Inc., Santa Cruz, USA, sc-

356).  

Dilution: 1:100 
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Anti-Jagged1 (H-114): Rabbit polyclonal antibody against amino acids 1110-1223 

of Jagged 1 (Santa Cruz Biotechnology Inc., Santa Cruz, 

USA, sc-8303).  

Dilution: 1:200 

Anti-Rabbit IgD, DyLightTM800:  Goat Anti-Rabbit antibody reacts with heavy 

chains of rabbit IgG and with light chains of most rabbit 

immunoglobulins (Pierce Biotechnology Inc., Rockford, 

USA).  

Dilution: 1:20000 

Anti-Mouse IgD, DyLightTM800:  Goat Anti-Rabbit antibody reacts with heavy 

chains of mouse IgG and with light chains of most mouse 

immunoglobulins (Pierce Biotechnology Inc., Rockford, 

USA).  

Dilution: 1:20000 

2.2 Methods 

2.2.1 DNA Methods 

2.2.1.1 Cloning of p21 constructs 

PCR was performed for 20cycles in a total volume of 50µl with 20pmol of the 

corresponding primers, 10mM dNTPs (Promega, Madison, USA), 5µl 10xPfu Buffer 

(Promega, Madison, USA), 1µl Pfu (Promega, Madison, USA) and 100ng of the 

Cosmid RPCIB753F15397Q2 were used as a template. PCR products were digested 

with KpnI and NheI (NEB, Ipswich, USA ) using Buffer1 in the presence of BSA, over 

night at 37°C. Gel purification was performed with ZymocleanTM Gel Recovery Kit 

(Zymo Research, Orange, USA). pGL4.10 and pTK were digested with KpnI and 

NheI and dephosphorylated with CIAP (NEB, Ipswich, USA) at 37°C for 30min.  

Ligation was performed overnight at RT with T4 Ligase and the provided T4 Ligase 

Buffer (Promega, Madison, USA).  
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2.2.1.2 Cloning of Jag1-573 construct 

PCR was performed for 20cycles in a total volume of 50µl with 20pmol of the 

corresponding primers, 10mM dNTPs (Promega, Madison, USA), 5µl 10xPfu Buffer 

(Promega, Madison, USA), 1µl Pfu (Promega, Madison, USA) and 100ng of the 

Cosmid RZPDB737F0934D6 were used as a template. The 573bp PCR product was 

digested with BglII and HindIII(NEB, Ipswich, USA) using Buffer 2 over night at 37°C. 

Gel purification was performed with ZymocleanTM Gel Recovery Kit (Zymo 

Research, Orange, USA). pGL4.10 was digested with BglII and HindIII and 

dephosphorylated with CIAP (NEB, Ipswich, USA) at 37°C for 30min. Ligation was 

performed overnight at RT with T4 Ligase and the provided T4 Ligase Buffer 

(Promega, Madison, USA).  

2.2.1.3 Cloning of Jag1-1713 construct 

pGL4.10-Jag1-573 and pGL4.10-Jag1-459-1713 were digested with BglII and AseI 

(NEB, Ipswich, USA) using Buffer 3 at 37°C over night. Digested pGL4.10-Jag1-573 

was dephosphorylated with CIAP (NEB, Ipswich, USA) at 37°C for 30min and, as 

well as the digested pGL4.10-Jag1-459-1713 run on an 1% Agarose Gel. Gel 

purification was performed with ZymocleanTM Gel Recovery Kit (Zymo Research, 

Orange, USA). Ligation was performed overnight at RT with T4 Ligase and the 

provided T4 Ligase Buffer (Promega, Madison, USA).  

2.2.1.4 Site directed Mutagenesis 

Site directed Mutagenesis was performed using QuikChange® II Site-Directed 

Mutagenesis Kit (Stratagene, La Jolla, USA, 200523) according to manufacturer‟s 

instructions. 

2.2.1.5 Deletion of Cbf1 transcription factor binding site in pTK-151/152 

pTK-151/152 was digested over night with KpnI and NsiI (NEB, Ipswich, USA) using 

Buffer 2 and BSA at 37°C. After gel purification using ZymocleanTM Gel Recovery 

Kit (Zymo Research, Orange, USA) ligation was performed overnight at RT with T4 

Ligase and the provided T4 Ligase Buffer (Promega, Madison, USA).  
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2.2.1.6 Transformation of competent E.coli (JM109) 

Mix DNA and 40µl of competent cells.  

Keep the mixture 30min on ice 

Heat shock the cells 60sec at 42°C.  

Keep the mixture 2min on ice. 

Add 400µl LB and keep the cells on 37°C for 30min.  

Plate the suspension on antibiotic-plates and incubate over night at 37°C. 

2.2.1.7 Transformation of competent E.coli (Sure2 Supercompetent Cells) 

Thaw 100µl of competent cells on ice.  

Add 2µl β-ME. 

Keep the mixture 10min on ice, swirl every 2min. 

Add DNA. 

Incubate on ice 30min. 

Heat shock the cells 30sec at 42°C.  

Keep the mixture 2min on ice. 

Add 900µl of preheated NZY Broth and keep the cells on 37°C for 1h.  

Plate the suspension on antibiotic-plates and incubate over night at 37°C. 

2.2.1.8 Mini Prep 

2ml of 10mg/ml ampicillin containing LB were inoculated with a single colony and 

incubated over night at 37°C shaking. For Mini Preps the Quiagen MiniPrep kit 

(Quiagen, Austin, USA) was used according to the manufacturer‟s instructions. 
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2.2.1.9 Restriction digest p21-plasmids 

500ng DNA of p21-plasmids was digested with KpnI and NheI in Buffer1 (NEB, 

Ipswich, USA) and the presence of BSA at 37°C for 4h. Restriction reactions were 

analyzed on an 1%Agarose Gel. Plasmids containing the corresponding fragment 

were sent for sequencing.  

2.2.1.10 Restriction digest jagged1 plasmids 

Jagged1 plasmids were digested with BglII and HindIII in Buffer 2 (NEB, Ipswich, 

USA) at 37°C for 4h and run on an 1%Agarose Gel. Plasmids containing the 

corresponding fragment were sent for sequencing.  

2.2.1.11 Sequencing 

Sequencing was done at MWG Biotech (Ebersberg, Germany) or VBC-Biotech 

Research GmbH (Vienna, Austria). The sequences were first blasted against the 

NCBI human genomic plus transcript database. In a further attempt the actual 

sequences were aligned in a multiple sequence alignment, with the NCBI reference 

sequence (>ref|NT_007592.14|Hs6_7749 07.01.08), the celera sequence 

(>ref|NW_923073.1|HsCraAADB02_255 Homo sapiens chromosome 6 genomic 

contig, alternate assembly based on Celera assembly), an older version oft he NCBI 

reference sequence (02.07) and the NCBI chimp p21 sequence 

(>ref|NW_001236525.1|Ptr6_WGA7082_2:1554585-1569585 Pan troglodytes 

chromosome 6 genomic contig, reference assembly (based on Pan_troglodytes-2.1) 

07.01.08) using ClustalW (www.ebi.ac.uk/tools/clustalw2/index.html).  

All alterations that could be found were analyzed with Genomatix and TFBS 

(http://www.cbrc.jp/research/db/TFSEARCH.html) see whether Transcription factor 

binding sites were lost or gained. (See also in “Appendix”) Transcription factor 

binding sites were defined to be significant, if they had a matrix similarity score 0.95 

or higher in Genomatix.  

2.2.1.12 Maxi Prep 

250ml of 10mg/ml ampicillin containing LB were inoculated with a preculture of the 

corresponding plasmid and incubated over night at 37°C shaking. For Maxi Preps the 

Quiagen Endotoxin free MaxiPrep kit (Quiagen, Austin, USA) was used according to 

the manufacturer‟s instructions. 

http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=allcontig_and_rna&na=1&gnl=ref%7CNT_007592.14%7CHs6_7749&gi=51465675&term=51465675%5Bgi%5D&taxid=9606&RID=NZJG4DD0013&QUERY_NUMBER=1
http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?maps=blast_set&db=allcontig_and_rna&na=1&gnl=ref%7CNW_923073.1%7CHsCraAADB02_255&gi=88999178&term=88999178%5Bgi%5D&taxid=9606&RID=BA4NGAW016&QUERY_NUMBER=1&log$=nuclalign
www.ebi.ac.uk/tools/clustalw2/index.html
http://www.cbrc.jp/research/db/TFSEARCH.html
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2.2.2 Protein Methods 

2.2.2.1 SDS- Polyacrylamid Gel Electrophoresis 

The SDS- polyacrylamid gel consists of two different layers of gels, the stacking gel 

which is always a 6% gel and the separating gel which varies between 6 and 12,5%. 

Separating gel: 

 6% 8,5% 12,5% 

30%Acrylamid / 0,8% Bis 1,05ml 1,4ml 2,1ml 

H2O 2,625ml 2,275ml 1,575ml 

1,5M Tris pH8,8 1,25ml 1,25ml 1,25ml 

20% SDS 25µl 25µl 25µl 

10% APS 50µl 50µl 50µl 

TEMED 6µl 6µl 6µl 

Stacking gel: 

30%Acrylamid / 0,8% Bis 415µl 

H2O 1,7ml 

1M Tris pH6,8 315µl 

20% SDS 12,5µl 

10% APS 25µl 

TEMED 2,5µl 

The cell pellet was resuspended in PBS and the same amount of 2x Sample Buffer 

was added. After boiling the samples 10min at 95°C and centrifugation they were 

loaded on the gel, which was run at 40mA till the bromophenol blue front was not 

visible any more.  
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2.2.2.2 Western Blot 

The transfer unit consisting of a sponge, three 3 pieces of 3MM paper, the gel, a 

nitrocellulose membrane, three 3 pieces of 3MM paper and a sponge (everything 

presoaked with transfer buffer), was put in the blotting stock. The transfer was run at 

400mA for 90min on ice. 

For a first staining the membrane was incubated in PonceauS solution for 5 to 10min 

and scanned afterwards. To block unspecific binding, the membrane was incubated 

in 1% blocking solution for 1 hour RT. The primary antibody was diluted in 0,5% 

blocking solution, added to the membrane and incubated over night at 4%. The 

membrane was then washed twice with TBST for 10min and once with 0,5% blocking 

solution. The secondary antibody was diluted in 0,5% blocking solution, added to the 

membrane and incubated for 1 hour RT: After washing the membrane three times 

with TBST and once with PBS for 15min each, it was scanned using the Li-cor 

Odysee Infrared Imaging System (Li-cor Biosciences, Lincoln, USA).  

2.2.3 Cell culture techniques 

Human cell lines were routinely grown in RPMI 1640 GlutaMAXTm-I medium 

(Invitrogen, Groningen, The Netherlands) supplemented with 10% fetal calf serum 

(FCS Gold, PAA Laboratories, Linz, Austria) and 100.000 U/l penicillin/streptomycin 

(PAA Laboratories, Linz, Austria) in 5% CO2 at 37°C. 

2.2.3.1 Transfection 

Cells were seeded in a 24well plate to 50-80% confluency one day before 

transfection. RPMI medium was removed and cells were incubated in Opti-MEM I at 

least one hour prior to transfection. Transfection was performed with Lipofectamine 

and Plus reagent (Invitrogen, Groningen, The Netherlands) according to the 

manufacturer‟s instructions in serum-free OptiMEM I medium (Invitrogen, Groningen, 

The Netherlands) using 50ng of the reporter gene plasmid, 50ng of pTK-RL and 

150ng of shRNA per well. After incubation for 4 hours the serum-free medium was 

replaced by supplemented RPMI medium.  
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2.2.3.2 Reporter Gene Assays 

For p21 and Hey1 experiments gene repoter assays were performed 72h after 

transfection for Jagged1 96h after transfection. Reporter Gene Assays were 

performed using the Dual-GloTM Luciferase Assay System (Promega, Madison, USA, 

E2920) according to the manufacturer‟s instructions.  

2.2.3.3 Etoposide Treatment 

Etoposide (Sigma, St. Louis, USA) was used in a final concentration of 1µM and cells 

were incubated for 16h.  
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3 Results: 

3.1 Analysis of transcriptional repression of p21 – strategy 

To analyze the repression of Ews-Fli1 on p21, 14 fragments of the p21 promoter and 

10kb upstream were cloned into a luciferase reporter vector. These p21-fragment 

containing plasmids were then transfected into TC252, a p53 wildtype and SKNMC a 

p53 mutant Ewing‟s Sarcoma cell line, in the presence and absence of Ews-Fli1 and 

tested in reporter gene assays. In further experiments, using the same setting as 

mentioned before, either p53 was induced via Etoposide treatment or knocked down 

via shp53.  

 

Fig. 10: P21 fragments, : transcription start site 

3.1.1 Cloning of p21 fragments 

As a cloning vector we chose the luciferase reporter vector pGL4.10 from Promega 

(see also “Material and Methods”). Since pGL4.10 is lacking a promoter, only the 

p21-promoter containing fragment was inserted into this vector, whereas the other 

fragments were cloned into pGL4.10-pTK using herpes simplex virus thymidine 

kinase as a promoter. TK as a promoter was chosen, because of its moderate levels 

of expression.  

In a first attempt genomic DNA was used as a template for the PCR of the fragments. 

Since it was difficult to amplify, a high cycle number was required, which resulted in 

various mutations. After this finding, we tried unsuccessfully to find a plasmid 

containing 10kb of p21 in the literature, but we found a commercially available 

cosmid containing at least 10kb of p21 5‟flanking sequence, which was then used as 

a template for PCR. We could then reduce the cycle number to 20 and used as well 

Pfu proofreading polymerase. Still sequencing revealed various mutations, but since 
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they were reproducibly found in multiple clones of given constructs, we supposed that 

this was not an amplification problem, but may constitute polymorphisms.  

3.1.2 Sequence analysis 

As mentioned before the sequences were blasted against the NCBI human genomic 

plus transcript database, but as well multiple sequence alignment using the actual 

insert sequence, the NCBI reference sequence, the celera reference sequence and 

an other older version of the NCBI reference sequence was performed (see also 

„Material and Methods“). This analysis revealed that some of the already found 

misaligned nucleotides were validated as mutations, but that others could be aligned 

to one or the other reference database sequence, indicating polymorphisms or 

sequencing misreading. To see whether these misalignments/mutations were 

evolutionary conserved we performed the same multiple alignment (see also 

“Appendix”) again, but incorporated also the chimpanzee sequence of p21. After this 

analysis we finally decided which mutations should be considered to be real 

polymerism artifacts. Nevertheless all alterations were analyzed with Genomatix and 

TFBS (see also “Material and Methods”) to see whether Transcription factor binding 

sites were lost or gained. Since no high score TFBS were changed, we decided to 

proceed to reporter gene assays with these plasmids. 

3.1.3 p21 Reporter Gene Assays 

In a first screening all 14 p21-plasmids were transfected into the p53 wildtype TC252 

and p53 mutant SKNMC Ewing Sarcoma cell line either in combination with 

pSuper∆RVsh30 to knock down Ews-Fli1, or with ShScrambled and pSuper∆RV as a 

control. As a control for transfection efficiency also pTK-RL was co-transfected. The 

reporter gene assay was done 72h after transfection: 

For normalization each of the three different counts for one reporter gene vector 

containing the corresponding p21 fragment, was divided by the corresponding counts 

of the pTK-RL plasmid, which was co transfected to measure transfection efficiency. 

The same procedure was done for pGL4.10 and pGL4.10-pTK to eliminate the 

background activities associated with these vectors. Additionally the ratio between 

the empty vector in the presence and absence of EWS-FLI1, was taken care of by 

dividing it from the normalized counts of the p21 fragments. An average, as well as a 

standard deviation was then calculated from those numbers. Fold activations were 



45 
 

calculated by dividing the normalized counts in the absence of Ews-Fli1 (sh30) by the 

normalized counts for the empty vector (∆RV and shScrambled).  

 

Fig. 11: Formula for the calculation of normalized luciferase counts. FL-P: Average of firefly 

luciferase activity coupled to p21 promoter fragment. FL-E: Average of firefly luciferase activity 

of pGL4 empty vector. RL: Average of Renilla firefly luciferase control vector activity 

To get an approximate standard deviation, the following formula was used:: 

 

Fig. 12: Formula for the calculation of standard deviations. X= normalized luciferase counts for 

knockdown of EWS-FLI1, y= normalized luciferase counts for empty vector. 

 

Fig. 13: Basal activity of the various p21 plasmids. Transfections were done in triplicates.  

pTK-151/152 and pTK-153/154 showed the highest activity in TC252, while 164/165, 

166/167 and 168/169 showed the highest basal activity in SKNMC cells. 
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Fig. 14: Fold activation of different p21-fragment-containing plasmids upon shRNA mediated 

knock down of EWS-FLI1 (∆RVsh30). Transfections were done in triplicates. 

Knock down of EWS-FLI1 in TC252 showed a fivefold induction of fragment pTK-

153/154 and a 2,3 fold induction of fragment pTK-151/152. Interestingly enough only 

in these two fragments p53 binding sites together with Ets1 binding sites are present.  

In pTK-151/152 the consensus core sequences for p53 (CATG) and Ets1 (GGAA) 

are separated from each other only by 10bp, indicating a strong possibility of 

interaction between p53 and EWS-FLI1.  

In pTK-153/154 three p53 binding sites within 65bp were found. Although three Ets1 

binding sites are present, only the closest one to the p53 cluster, had a high enough 

score (see also “Material and Methods”) to be taken in account.  

These findings together with the fact, that SKNMC cells, which are p53 mutant, do 

not show an induction upon knock down of EWS-FLI1, suggest that p53 is involved in 

the repression of p21 via EWS-FLI1. 

In parallel, cells transfected with p21-plasmids in the presence and absence of EWS-

FLI1 were treated with Etoposide 56h after transfection to induce p53, 16h later 

reporter gene assays were performed.  



47 
 

 

Fig. 15: Fold activation different p21-fragment-containing plasmids upon shRNA mediated 

knock down of EWS-FLI1 (∆RVsh30). and induction of p53 via Etoposide treatment. 

Transfections were done in triplicates. 

pTK-153/154 and pTK-151/152 have already shown a high induction of p21 after 

EWS-FLI1 knock down, which was even stronger when at the same time, p53 was 

induced. pTK-153/154 shows a seven fold induction in TC252, whereas no effect is 

visible in the p53 mutant cell line SKNMC. pTK-151/152 shows a fourfold increase in 

TC252 and a slight reduction in SKNMC. Although several other fragments contain 

p53 binding sites as well, only those two including binding sites for p53 as well as 

Ets1, show an induction upon knock down of EWS-FLI1 and p53 induction, indicating 

again a strong interaction between those two transcription factors. 

In a further experiment the most promising candidates were tested in a reporter gene 

assay in the presence and absence of EWS-FLI1 and p53, using shRNA against p53.  

Beside pTK-151/152 and pTK-153/154, which have already shown a significant 

effect, pTK-164/165 and pTK-147/148 where at least a small effect was observed, 

were tested in this assay. For more reliable results, this time the transfections were 

done in sextuplicates instead of triplicates as before.  
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Fig. 16: Activation/Repression of the p21-construct pTK-147/148 upon shRNA mediated knock 

down of EWS-FLI1 (∆RVsh30) and p53 (shp53). Transfections were done in sextuplicates. 

pTK-147/148 does not show any significant effect neither in TC252 nor SKNMC. 

 

Fig. 17: Activation/Repression of p21-construct pTK-151/152 upon shRNA mediated knock 

down of EWS-FLI1 (∆RVsh30) and p53 (shp53). Transfections were done in sextuplicates. 
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The two fold induction effect upon knock down of EWS-FLI1, which was found in the 

last experiment, was recapitulared. Repression of p53 leads to a 2,6-fold decrease of 

p21-levels using fragment pTK-151/152, whereas knock down of EWS-FLI1 and p53 

at the same time, result in a 3,5-fold reduction compared to EWS-FLI1 knock down 

alone and 1,6 fold reduction to the empty vector. The double knock down nearly 

shows the same results as the single p53 knock down, indicating that p53 is the main 

player. Additionally the p53 mutant Ewing Sarcoma cell line SKNMC does not show 

any effect.  

 

Fig. 18: Activation/Repression of p21-construct pTK-153/154 upon shRNA mediated knock 

down of EWS-FLI1 (∆RVsh30) and p53 (shp53). Transfections were done in sextuplicates. 

Unfortunately the EWS-FLI1 knock down was not as effective as in the last 

experiment. pTK-153/154 shows now only a twofold induction when EWS-FLI1 is 

repressed. Nevertheless p21 levels are decreased by 50% when p53 is repressed 

compared to ∆RV and shScrambled +pTK-153/154 in TC252 and 25% when both 

EWS-FLI1 and p53 are knocked down compared to the single knock down of EWS-

FLI1. Again there are no effects visible in SKNMC cells. 
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Fig. 19: Activation/Repression p21-construct pTK-164/165 upon shRNA mediated knock down 

of EWS-FLI1 (∆RVsh30) and p53 (shp53). Transfections were done in sextuplicates. 

pTK-164/165 does not show any notable effect neither in TC252 nor SKNMC. 

3.1.4 Future prospects 

Site directed mutagenesis and deletions of transcription factor binding sites have to 

be performed and of course tested in reporter gene assays in the presence and 

absence of EWS-FLI1, p53 and induced p53. Using the QuikChange® II Site-

Directed Mutagenesis Kit (see also „Material and Methods“) the p53 and Ets1 binding 

sites in pTK-151/152 and pTK-153/154 should be mutated. To study the involvement 

of the Notch pathway in the induction of p21, the Cbf1 binding site in pTK-151/152 

should be deleted. Additionally all possible combinations of transcription factor 

binding site mutations should be generated. So far, both the Ets1 and the p53 

binding site in pTK-151/152 were successfully mutated, as well as two p53 binding 

sites in pTK-153/154. The Cbf1 binding site in pTK-151/152 was already successfully 

deleted. These fragments should also be tested for their response to p53. Since most 

experiments were mainly done only once, they should all be repeated and protein 

extracts for Western Blots (Fli1, p53, p21 and β-actin) should be conducted. In the 

experiments presented in this Diploma thesis, reporter gene assays were performed 

without a selection step in order not to introduce additional stress to the cells. 
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Western blots, however, require an enrichment step for transfected cell (i.e. 

Puromycin selection). 

As a control p21-plasmids should be transfected into a non-Ewing Sarcoma cell line 

were EWS-FLI1 should be co transfected and expressed, so far these attempts have 

failed due to difficulties in finding an appropriate human p53 wild type cell line.  

3.2 Jagged1 

To gain a better understanding of the regulation of Jagged1, a 573bp of the Jagged1 

promoter was cloned into the luciferase reporter vector pGL4.10 via BglII/HindIII and 

fused to an already existing 1,2kb Jagged1 containing plasmid lacking the actual 

promoter sequence. Both plasmids were then analyzed in gene reporter assays in 

the presence and absence of EWS-FLI1. A time course, where reporter gene assays 

were done 48, 72 and 96h after transfection, revealed that 96h shows the best result, 

which is in line with our previous finding that Jagged1 expression upregulation by 

EWS-FLI1 knock down is rather a late event. [74] 

3.2.1 Jagged1 reporter gene assays 

 

Fig. 20: Activation of Jagged1 upon shRNA mediated knock down of EWS-FLI1 (∆RVsh30). 

JAG1- 1713 was tested only once in triplicates in TC252 and SKNMC cells. JAG1-573 was 

tested three times in WE68, five times in SKNMC and seven times in TC252.  

This assay was repeated several times, with and without Puromycin selection, at the 

beginning in triplicates, later in sextuplicates showing always around a twofold 
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induction when EWS-FLI1 was knocked down in TC252 and rather similar effects in 

SKNMC. On average a 2,3 fold increase in TC252 and 1,7 fold increase in SKNMC 

for the 573bp fragment, as well as a 2,2 fold induction in TC252 and a 2 fold 

induction in SKNMC for the 1,7kb fragment was observed. This is indicating that the 

responsive element is mostly within the first 573bp fragment. The smaller fragment 

was as well tested in the p53 wildtype Ewing‟s sarcoma cell line WE68. An average 

of three independent experiments revealed in a 4fold induction. 

3.2.2 Future prospects 

Both Jagged1 containing plasmids should be tested in ASP14 cells harboring a 

doxicyclin inducible EWS-FLI1 shRNA and in a non-Ewing Sarcoma cell line to 

establish the kinetics and ESW-FLI1 dependence of JAG1 promoter activity.  

3.3 Hey1 

The third target of our repression studies was Hey1, since the needed plasmids were 

already available in our lab, no cloning steps were involved.  

In a first step both plasmids, Hey1-FL containing 3.9kb of Hey1 promoter region and 

Hey1-M5 containing 1.7kb were tested in reporter gene assays in the presence and 

absence of EWS-FLI1. All Hey1 experiments were done in sextuplicates without 

puromycin selection. The 3.9kb and 1.7kb containing plasmids showed an 

upregulation upon knock down of EWS-FLI1.  

Knock down of EWS-FLI1 using shRNA showed in five different experiments an 

induction of Hey1-FL in TC252 and STAET-1, however, with high variability. In 

TC252 the induction was between 2 and 5,5fold and in STAET-1 between 1,5 and 5 

fold. In Three independent experiments Hey1-M5 showed an induction between 1,4 

and 2,7fold in STAET1. In TC252 the induction upon knock down of EWS-FLI1 for 

Hey1-1.7 was between 2 and 2,4fold.  
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Fig. 21: Activation of Hey1-FL and Hey1-M5 upon shRNA mediated knock down of EWS-FLI1 

(∆RVsh30). Hey1-FL was tested five times in TC252 and STAET1 in sextuplicates. Hey1-M5 was 

tested three times in TC252 and STAET1 in sextuplicates. 

Within the experiments mentioned above, the effect of γ-sectretase inhibitor (GSI) 

and numb was tested to block notch activation, which would be predicted to result in 

a down regulation of Hey1. So far, we saw some effect of GSI treatment, which was, 

however, not reproducible due to GSI toxicity to transfected cells. Since 

untransfected cells tolerate GSI very well, and no puromycin selection, to enrich for 

transfected cells, was performed, it is possible that the fraction of cells surviving until 

72h after GSI treatment contains only untransfected cells. Preliminary experiments 

using ectopic numb expression resulted in an increase in Hey1 promoter activity.  

However, since results varied significantly between experiments, they should be 

repeated under Puromycin selection, and Western Blots for EWS-FLI1 and β-actin as 

well as RT-PCR for EWS-FLI1, Hey1 and β-actin should be performed in the future.  
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4 Discussion 

In an attempt to study transcriptionally activated target genes of the EWS-FLI1 fusion 

gene transcript, nearly as much transcriptional repressed targets were discovered. 

Among them was p21, a cell cycle inhibitor leading to cell cycle arrest in a p53 

dependent manner.  

10kb of the p21 promoter region were amplified in 14 overlapping fragments and 

cloned into a reporter gene vector. However, both the use of genomic DNA as well as 

a commercial available cosmid clone resulted in multiple sequence deviations from 

the publically available reference databases. Some of these deviations were 

reproducibly found in multiple clones of given constructs. We therefore wondered if 

these might be either mutations, polymorphisms or sequencing errors in the 

reference sequence. To address this question we performed a multiple sequence 

alignment of two NCBI human reference sequences, one from February 2007 and 

one from January 2008, the Celera reference sequence, the chimpanzee reference 

sequences and the corresponding p21 construct sequence. Comparison of the 

reference sequences showed that the actual NCBI sequence is 99% identical to the 

older version and the Celera sequence, as well as 98% to the chimpanzee 

sequences, leading to a high variability within the reference sequences and a rather 

complex analysis of the found deviations. We therefore decided to consider a 

mismatch a mutation, if the corresponding nucleotide in a p21 construct varied from 

all reference sequences. A single identity with the chimpanzee is most likely a 

mutation, but could also be evolutionary conserved. If at least one human reference 

sequence showed the same nucleotide than the p21 construct, we decided to 

assume it as wildtype. Nevertheless all variations were tested for loss or gain of 

transcription factor binding sites, using Genomatix. We took a matrix similarity score 

of 0,95 or higher as a threshold. Since no high score TFBS were lost or gained, we 

decided to use these constructs, even in the case of pTK-174/175 which had several 

mutations because of the difficulties of cloning it. Only the use of Sure2 

Supercompetent cells enabled us to clone this fragment.  

An in silico transcription factor binding site analysis of the 14 different p21 constructs, 

revealed that among them were some containing Ets binding sites, a few with p53 

binding sites and only two of them contained both, Ets and p53 binding sites. To 

determine the involvement of p53 in p21 gene expression regulation by EWS-FLI1, 
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we performed reporter gene assays with all 14 fragments in a p53 wildtype and a p53 

mutant Ewings‟s sarcoma cell line in the presence and absence of EWS-FLI1. Knock 

down of EWS-FLI1 in the p53 wildtype Ewing‟s sarcoma cell line TC252, resulted in 

very little to no induction in the majority of the 14 different p21-constructs tested. 

pTK-160/161 and pTK-170/171 contain Ets binding sites, but show nearly no 

induction of p21 upon the knock down of EWS-FLI1. This findings indicated that the 

binding of EWS-FLI1 to its transcription factor binding site is not sufficient to repress 

p21 and that some other mechanism or factor has to be involved, or that these TFBS 

are not essential for the regulation of p21 and EWS-FLI1 does not bind at all to these 

sites.. Since pTK-153/154 and pTK-151/152, which contain not only Ets binding sites 

but as well p53 binding sites, showed an induction of p21, we strongly suppose that 

p53 is involved in the gene expression regulation of p21 by EWS-FLI1. Another 

strong evidence was, that none of the 14 different fragments showed an effect in the 

p53 mutant cell line SKNMC. This finding indicated again, that wildtype p53 is 

essential for the regulation of p21 by EWS-FLI1. To further test our hypothesis we 

performed reporter gene assays with all 14 fragments in TC252 and SKNMC cells in 

the presence and absence of EWS-FLI1, but at the same time induced p53 via 

Etoposide treatment. Again 12 fragments showed very little to no induction in TC252 

cells, whereas pTK-151/152 and pTK-153/154 were even more induced as with the 

knock down of EWS-FLI1 alone. In the case of pTK-153/154, etoposide treatment 

raised the induction of the reporter activity upon EWS-FLI1 knock down from fourfold 

to sevenfold. For pTK-151/152 the induction changed from 2,3 fold with shEWS-FLI1 

only to a fourfold induction of the p21 promoter when p53 was induced with EWS-

FLI1 silencing. The fact that 12 constructs, which contain different parts of the p21 

promoter region, most of them containing either a potential p53 or an Ets binding site, 

do not react at all upon a down regulation of EWS-FLI1 and etoposide treatment, 

whereas those two which carry both Ets and p53 binding sites together showed high 

induction levels in a wildtype p53 background, strongly suggests that p53 is involved 

in the regulation of p21 by EWS-FLI1. One explanation might be that EWS-FLI1 

competes with p53 for binding to the regulatory element on the DNA and therefore 

keeps p53 from binding to its TFBS thereby preventing p53 from activating p21. 

Another possibility would be, that both EWS-FLI1 and p53 are able to bind, but EWS-

FLI1 binds as well to the activation domain of p53 thereby repressing it. The 
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hypothesis that p53 is involved, is validated by gene reporter assays in the p53 

mutant cell line SKNMC, which showed no induction of p21 in all 14 constructs.  

In a next experiment we performed gene reporter assays in the presence and 

absence of EWS-FLI1 in TC252 and SKNMC, but as well in the presence and 

absence of p53. Here we tested only four constructs, pTK-151/152 and pTK-153/154 

due to their high induction upon knock down of EWS-FLI1, pTK-164/165 because it 

showed a slight upregulation in the absence of EWS-FLI1 and contains one p53 

binding site, and pTK-147/148 which showed as well only a slight upregulation upon 

knock down of EWS-FLI1, but has neither an Ets binding site nor a p53 binding site. 

Both pTK-147/148 and pTK-164/165 showed no significant effect upon knockdown of 

either EWS-FLI1, p53 or of EWS-FLI1 and p53 together in both cell lines. In contrast 

in TC252 pTK-151/152 was twofold induced in the absence of EWS-FLI1, and a 

significant reduction in p21 levels upon the double knock down of EWS-FLI1 and 

p53, was observed. The single knock down of p53 nearly showed the same results 

as the double knock down, indicating that p53 expression is limiting for p21 promoter 

induction. The lack of any effect in the mutant p53 cell line SKNMC confirmed the 

involvement of p53 in the regulation of p21 by EWS-FLI1. In TC252 cells pTK-

153/154 shows a reduction upon down regulation of p53 and EWS-FLI1, but an even 

stronger reduction upon down regulation of p53 alone. This result further supports 

the hypothesis that p53 is involved in the regulation of p21 gene expression by EWS-

FLI1, especially since the mutant p53 cell line SKNMC showed no effect.  

To sum up, p21 is induced in wildtype p53 Ewing‟s sarcoma cell line TC252 upon 

knockdown of EWS-FLI1, whereas it is not in the mutant p53 cell line SKNMC. 

Induction of p53 resulted in even higher p21 levels whereas down regulation of p53 

reduced p21 levels in TC252, again no effect was visible in SKNMC. This activity was 

exclusively seen in the two fragments, which contain both Ets and p53 binding sites 

together. Findings of our lab support the present reporter gene assay results and 

indicate as well that p53 is involved in p21 expression regulation by EWS-FLI1 [74]. 

The mechanism how EWS-FLI1 modulates p53 and thereby represses p21 

expression is not solved yet, but due to the fact that the transcription factor binding 

site for EWS-FLI1 and p53 in the p21 promoter are very close to each other (in pTK-

151/152 only 10bp apart) a physical interaction between EWS-FLI1 and the 

activation domain of p53 is possible, or they might compete for binding to DNA. 
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Another possible mechanism would be that EWS-FLI1 represses p53 and thereby 

down regulates p21, leading to the question how EWS-FLI1 represses p53. This 

might be either directly or via other factors. One possibility would be via the Notch 

pathway and will be discussed in the following. 

Affymetrix array data revealed that the Notch ligand Jagged1 is down regulated in 

several Ewing‟s sarcoma cell lines. To study the transcriptional repression of 

Jagged1, we tested a 573bp and a 1713bp fragment of the Jagged1 promoter in 

gene reporter assays. We found an upregulation of Jagged1 in wildtype p53 Ewing‟s 

sarcoma cell line TC252, as well in the p53 mutant cell line SKNMC in the absence of 

EWS-FLI1. The 573bp construct showed a 2,3fold increase in TC252, a 1,7 fold 

increase in SKNMC, and a 4fold increase in WE68 cells upon knock down of EWS-

FLI1. The 1713bp construct showed a similar induction, 2,2 fold in TC252 and 2 fold 

in SKNMC, indicating that the regulatory element responsible for the repression of 

Jagged1 by EWS-FLI1 is within the first 573bp. Since only a single, and low score 

Ets transcription factor binding site is present in this sequence it is unlikely that EWS-

FLI1 directly represses Jagged1. 

Recently our lab demonstrated that the knockdown of EWS-FLI1 resulted in 

upregulation of endogenous Jagged1, resulting in activation of the Notch pathway 

and consequently in an increase of Hey1, which down modulated MDMX and led to 

p53 accumulation [74]. Interestingly also Hey1 was found to be repressed by EWS-

FLI1 and gene reporter assays using a 3.9kb and 1.7kb promoter containing 

construct, revealed an induction of Hey1 upon knock down of EWS-FLI1. Although an 

induction was found in each experiment, the variation was quite high. In TC252 the 

induction was between 2 and 5,5fold and in STAET-1 between 1,6 and 5 fold for the 

3.9kb containing construct. The 1.7kb containing plasmid showed an induction 

between 1,4 and 2,7fold in STAET1 and in TC252 between 2 and 2,4fold. Due to the 

high variance the numbers are difficult to interpret, but one could suppose that the 

regulatory element involved in the repression of Hey1 by EWS-FLI1 is more likely 

outside the first 1.7kb of the promoter since induction levels with the 3.9kb fragment 

were higher. Most Ets binding sites and those with the highest scores are located in 

the sequence between 1.7kb and 3.9kb and therefore seem to be of special interest, 

as well as four SMAD binding sites in the same region.  
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Fig. 22: Repression of p21, Jagged1 and Hey1 by EWS-FLI1 

The actual mechanisms are still not clear and need further investigation, but it 

appears that Jagged1 is indirectly repressed by EWS-FLI1, blocking the Notch 

pathway, which regulates the expression of Hey1. In addition Hey1 itself may directly 

be repressed by EWS-FLI1. When Hey1 gets activated it induces p53 via down 

regulation of MDMX, leading to activation of p21. Therefore regulation of p21 

expression in Ewing Sarcomas may not only be the result of a direct interaction of 

EWS-FLI1 with p21 or p53, but EWS-FLI1 may as well regulate p53 and thereby p21 

via the Notch pathway.  
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Appendix 

 

p21-reporter gene constructs: 

 

pTK-146/147: 

CTGTGAAATAAACGGGACTGAAAAATCATTCTGGCCTCAAGATGCTTTGTTGGGGTGTCTAGGTGCTCCAGGTGC

TTCTGGGAGAGGTGACCTAGTGAGGGATCAGTGGGAATAGAGGTGATATTGTGGGGCTTTTCTGGAAATTGCAGA

GAGGTGCATCGTTTTTATAATTTATGAATTTTTATGTATTAATGTCATCCTCCTGATCTTTTCAGCTGCATTGGG

TAAATCCTTGCCTGCCAGAGTGGGTCAGCGGTGAGCCAGAAAGGGGGCTCATTCTAACAGTGCTGTGTCCTCCTG

GAGAGTGCCAACTCATTCTCCAAGTAAAAAAAGCCAGATTTGTGGCTCACTTCGTGGGGAAATGTGTCCAGCGCA

CCAACGCAGGCGAGGGACTGGGGGAGGAGGGAAGTGCCCTCCTGCAGCACGCGAGGTTCCGGGACCGGCTGGCCT

GCTGGAACTCGGCCAGGCTCAGCTGGCTCGGCGCTGGGCAGCCAGGAGCCTGGGCCCCGGGGAGGGCGGTCCCGG

GCGGCGCGGTGGGCCGAGCGCGGGTCCCGCCTCCTTGAGGCGGGCCCGGGCGGGGCGGTTGTATATCAGGGCCGC

GCTG 

 

pTK-147/148: 

CTGGGAGCGGATAGACACATCACTCATTTCTGTGTCTGTCAGAAGAACCAGTAGACACTTCCAGAATTGTCCTTT

ATTTATGTCATCTCCATAAACCATCTGCAAATGAGGGTTATTTGGCATTTTTGTCATTTTGGAGCCACAGAAATA

AAGGATGACAAGCAGAGAGCCCCGGGCAGGAGGCAAAAGTCCTGTGTTCCAACTATAGTCATTTCTTTGCTGCAT

GATCTGAGTTAGGTCACCAGACTTCTCTGAGCCCCCGTTTCCCCAGCAGTGTATACGGGCTATGTGGGGAGTATT

CAGGAGACAGACAACTCACTCGTCAAATCCTCCCCTTCCTGGCCAACAAAGCTGCTGCAACCACAGGGATTTCTT

CTGTTCAGGTGAGTGTAGGGTGTAGGGAGATTGGTTCAATGTCCAATTCTTCTGTTTCCCTGGAGATCAGGTTGC

CCTTTTTTGGTAGTCTCTCCAATTCCCTCCTTCCCGGAAGCATGTGACAATCAACAACTTTGTATACTTAAGTTC

AGTGGACCTCAATTTCCTCATCTGTGAAATAAACGGGACTGAAAAATCATTCTGGCCTCAAGATGCTTTGTTGGG

GTGTCTAGGTGCTCCAGGTGCTTCTGGGAGAGGTGACCTAGTGAGGGATCAGTGGGAATAGAGGTGATATTGTGG

GGCTTTTCTGGAAATTGCAGAGAGGTGCATCGTTTTTATAATTTATGAATTTTTATGTATTAATGTCATCCTCCT

GATCTTTTCAGCTGCATTGGGTAAATCCTTGCCTGCCAGAGTGGGTCAGCGGTGAGCCAGAAAGGGGGCTCATTC

TAACAGTGCTGTGTCCTCCTGGAGAGTGCCAACTCATTCTCCAAGTAAAAAAAGCCAGATTTGTGGCTCACTTCG

TGGGGAAATGTGTCCAGCGCACCAACGCAG 

Bp 261 of pTK-147/148:    C 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   A 
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Bp 369 of pTK-147/148:    A 

NCBI-human 01.08:  A 

NCBI-human 02.07:  G 

Celera:   A 

Chimp sequence:   G 

 

pTK-149/150: 

CATCTGCAAATGAGGGTTATTTGGCATTTTTGTCATTTTGGAACCACAGAAATAAAGGATGACAAGCAGAGAGCC

CCGGGCAGGAGGCAAAAGTCCTGTGTTCCAACTATAGTCATTTCTTTGCTGCATGATCTGAGTTAGGTCACCAGA

CTTCTCTGAGCCCCAGTTTCCCCAGCAGTGTATACGGGCTATGTGGGGAGTATTCAGGAGACAGACAACTCACTC

GTCAAATCCTCCCCTTCCTGGCCAACAAAGCTGCTGCAACCACAGGGGTTTCTTCTGTTCAGGTGAGTGTAGGGT

GTAGGGAGATTGGTTCAATGTCCAATTCTTCTGTTTCCCTGGAGATCAGGTTGCCCTTTTTTGGTAGTCTCTCCA

ATTCCCTCCTTCCCGGAAGCATGTGACAATCAACAACTTTGTATACTTAAGTTCAGTGGACCTCAATTTCCTCAT

CTGTGAAATAAACGGGACTGAAAAATCATTCTGGCCTCAAGATGCTTTGTTGGGGTGTCTAGGTGCTCCAGGTGC

TTCTGGGAGAGGTGACCTAGTGAGGGATCAG 

 

Bp 43 of pTK-149/150:    A 

NCBI-human 01.08:  G 

NCBI-human 02.07:  A 

Celera:   G 

Chimp sequence:   G 

 

Bp 273 of pTK-149/150:    G 

NCBI-human 01.08:  A 

NCBI-human 02.07:  G 

Celera:   A 

Chimp sequence:   G 

 

pTK-151/152: 

CAGGTAAACCTTAGCCTGTTACTCTGAACAGGGTATGTGATATGCCAGCAGATCCTTGCGACAGGGCTGGGATCT

GATGCATGTGTGCTTGTGTGAGTGTGTGCTGGGAGTCAGATTCTGTGTGTGACTTTTAACAGCCTGCTCCCTTGC

CTTCTTCAGGGCAGAGGTCCTCCCTTAGAGTGTGTCTGGGTACACATTCAAGTGCATGGTTGCAAACTTTTTTTT

TTAAAGCACTGAATAGTACTAGACACTTAGTAGGTACTTAAGAAATATTGAATGTCGTGGTGGTGGTGAGCTAGA

AGTTATAAAAAAAATTCTTTCCCAAAAACAACAACAAAAAGAATTATTTCATTGTGAAGCTCAGTACCACAAAAA
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TTTAAATAATTCATTACAAGCCTTTATTAAAAAAAATTTTCTCCCCAAAGTAAACAGACAGACAATGTCTAGTCT

ATTTGAAATGCCTGAAAGCAGAGGGGCTTCAAGGCAGTGGGAGAAGGTGCCTGTCCTCTGCTGGACATTTGACAA

CCAGCCCTTTGGATGGTTTGGATGTATAGGAGCGAAGGTGCAGACAGCAGTGGGGCTTAGAGTGGGGTCCTGAGG

CTGTGCCGTGGCCTTTCTGGGGTTTAGCCACAATCCTGGCCTGACTCCAGGGCGAGGCAGGCCAAGGGGGTCTGC

TACTGTGTCCTCCCACCCCTACCTGGGCTCCCATCCCCACAGCAGAGGAGAAAGAAGCCTGTCCTCCCCGAGGTC

AGCTGCGTTAGAGGAAGAAGACTGGGCATGTCTGGGCAGAGATTTCCAGACTCTGAGCAGCCTGAGATGTCAGTA

ATTGTAGCTGCTCCAAGCCTGGGTTCTGTTTTTCAGTGGGATTTCTGTTCAGATGAACAATCCATCCTCTGCAAT

TTTTTAAAAGCAAAACTGCAAATGTTTCAGGCACAGAAAGGAGGCAAAGGTGAAGTCCAGGGGAGGTCAGGGGTG

TGAGGTAGATGGGAGCGGATAGACACATCACTCATTTCTGTGTCTGTCAGAAGAACCAGTAGACACTTCCAGAAT

TGTCCTTTATTTATGTCATCTCCATAAACCATCTGCAAATGAGGGTTATTTGGCATTTTTGTCATTTTGGAGCCA

CAGAAATAAAGGATGACAAGCAGAGAGCCCCGGGCAGGAGGCAAAAGTCCTGTGTTCCAACTATAGTCATTTCTT

TGCTGCATGATCTGAGTTAGGTCACCAGACTTCTCTGAGCCCCCGTTTCCCCAGCAGTGTATACGGGCTATGTGG

GGAGTAG 

 

Bp 42 of pTK-151/152:    A 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 154 of pTK-151/152:    C 

NCBI-human 01.08:  T 

NCBI-human 02.07:  C 

Celera:   T 

Chimp sequence:   C 

 

Bp 166 of pTK-151/152:    G 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   G 

 

Bp 859 of pTK-151/152:    C 

NCBI-human 01.08:  T 

NCBI-human 02.07:  C 
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Celera:   T 

Chimp sequence:   T 

 

Bp 1244 of pTK-151/152:    C 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   A 

 

pTK-153/154: 

TGCCTCTGCTCAATAATGTTCTATCTTTGTTCCGCCTCTTCTCTGGGGTCTCACTTCTTGGGAGCCTGTGTGAAG

GTGAATTCCTCTGAAAGCTGACTGCCCCTATTTGGGACTCCCCAGTCTCTTTCTGAGAAATGGTGACATTGTTCC

CAGCACTTCCTCTCCCTTCCTAGGCAGCTTCTGCAGCCACCACTGAGCCTTCCTCACATCCTCCTTCTTCAGGCT

TGGGCTTTCCACCTTTCACCATTCCCCTACCCCATGCTGCTCCACCGCACTCTGGGGAGGGGGCTGGACTGGGCA

CTCTTGTCCCCCAGGCTGAGCCTCCCTCCATCCCTATGCTGCCTGCTTCCCAGGAACATGCTTGGGCAGCAGGCT

GTGGCTCTGATTGGCTTTCTGGCCGTCAGGAACATGTCCCAACATGTTGAGCTCTGGCATAGAAGAGGCTGGTGG

CTATTTTGTCCTTGGGCTGCCTGTTTTCAGGTGAGGAAGGGGATGGTAGGAGACAGGAGACCTCTAAAGACCCCA

GGTAAACCTTAGCCTGTTACTCTGAACAGGGTATGTGATCTGCCAGCAGATCCTTGCGACAGGGCTGGGATCTGA

TGCATGTGTGCTTGTGTGAGTGTGTGCTGGGAGTCA 

 

pTK-158/159: 

CGAACGTGGGTGGGAGATGATGCCAGTCCCTTCTGAGCCTGGTGTGAAGAAATGCACGTGGCTTCTTTGGCACTT

TCCCCTACCTCCAGCTGCAGTCAGAGATCATGAGGCCCCAGGGAATGGTGGAGCCACATGGTGGAAAGAACCTAA

GAACCTGAATCACCACACGGAGGGCAGCCACCGGCCCACCAGAACACCTCTATTGGATTCATATGTGAGTGAGAA

ATAAACTTGTATTTGGCTTGTCACTGAAATGTGAGAGTTTATTTATTACAGGAGCTAGTGTCGTCCTATCACTCA

CCCTGACTTTTCTTCATAAGTCCAGTCCTAAGCTGCTAGGATGGGCGTAGGAGGAGACATCAGCAATGATTCCTC

CCAGCAGATACAGGGTTGTTAGAAACCACTGAGGATAGGGAAGAGGGAGTGACATCTCCTCCCTGGCTCTGAACT

TGGCTCTAGTGTGGCCACTAGCATTTGGGGCTTGGGGGTTGCAGCTGTCGCATTCCACAGTGGCCCCGATGGCAT

TACAATTACAGATGACACTTAGAGCCACCCTAGGGAAGCAAAGGCAAGGACAAGCAGCTGATGGGAGGGGGAGCA

GAAGGGCTGCGGCCACAGCCAGAGCCCCGGATCTGCCCTGACCCTGGTCTGTGTCCCCTTAGCCGAAGCCAGCAC

TTCCTAGGGTCTCCATTTCTCTGTCTGTATAAGCGTCTAATACCCCTGCCCTGGTTGGGGGAGGGAGGAGCATGT

GGATGGTGAGGAGTGAGAGAATGGATCTGAAACCTGATGTCCCTGAGATTCCACACTGCTGTGCAATCAGAGGCC

CCGAACCCAAGCCCCTCAGCCTATGCTAGGCTTTTTCTTGGGAGGGGTTTAAAAAATATGTTAGGGAAGAAAAAA

AAATCAAAGTGCCCAATTCCTATTATTTTGGGATCATCCAGAAGGCTGTTGTGAGCTAAGGGACCTGGAGGGGGT

GTCTTGGGAGCTTTGAAGGCAGCTCACAGGACTGAATTCAGAATCTGTGGGCAGCTCCCTTTGCTGCCAAATGTC

TATTCTCAGGTGTCACAATCGTTGAG 
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pTK-160/161: 

CGACCTGGAGGGGGTGTCTTGGGAGCTTTGAAGGCAGCTCACAGGACTGAATTCAGAATCTGTGGGCAGCTCCCT

TTGCTGCCAAATGTCTATTCTCAGGTGTCACAATCGTTGAAATTCTTCCATTAGGGCTTCATTCCTTTGGATTAC

TTTTTGTTTCTACACAAAAATGCAAGCAATGATAATCCCCAATATGTGTTCAGGGCTTTAGACTTGTTCCAATAA

TCCTAAAAGACACAGACAGACAGTGAGGCCCAGATACCTGGTGTGGCTACTTCTTCAATCATGCTTCTCCTGACA

GAGTGATTATCGGGCAACTCGACTCCTAGGTATATAGCCAGAAACTCTTGCACATGTGCCCTAGAAACACGGATA

AAAATACTTATAGTAGCCCTATGTGTAATAACAAAAATTGGCGATAACCCAAACCCATTGATAGGAGAAGGAATA

ATTGGATATTTAAAAAACTGAAAATGGGCCGGGCATGGTGGCTCATGCCTGTAATCCCAAGACTTTGGGAGGTTG

AGGCTGAAGTTTGAGCTCAGGTGTTTGAGACCGCCTGGGTAACATAGGGAGACACCACCTCTATTTAAAAAAAAA

AAATTAGCCAGGCTTCGTGGTGTGCACATGTGGTTCCAGCTACTTGGGAGCTGAGGTAGGAGGATTGCTTGAGGC

TGGGAGGTCAAGGCTGCAGTGAGCCATGATCACACCACTGTACTCCAGCCTGGGCGGCAGATTGAGGCCCTGTCT

CAAAATAAATAAGTAAATAACATAGAAACCGGAAAACGATTGAATCATGTTTAAGTTACGCATTGCTGCCTAAAA

AATCATGTTAAAACACAGTGGCAACCACGATCATTTGTTTGCTCACATTCTATAATTCAGTCGGGGTTTACTGGG

GATGGCTTGTCTCTACTTCATGTGGCTCCACCTGGGGAGGTTCAACTGGAGCTGGGGGATCAACTCTCAAAATGG

TCCTCCTATGGCTGGCAAGTTGATGCTGACTGTTTGCTGGGAGGTCTGCTGGAACTCTTAGCTAGTGGGCCTTGG

TTATCCTGCGTGTGACCTCTCCACAAGACTTCTCACAGCATGATGGTCTCAGAGTAATCAAACTTCTTACATGGT

GGCTTAAGGTCTCTAAGAATACAAAAGCAGTAGAAGTTACTATACCTTTTTAAGGCTTAGGTCTGGAATGGGCAC

AGGGTTACTTCTGTCCCATTCTATTGGCTAAAAGAGTCACAAGCCAGAAATGTTCAAGGGGAGGCAACTACAAAA

CAGTGTGAATACCCAGAGGTATACCTCACTGGGAGACATTGACTTCCACAAACCACAACTACCCACAACTACATG

GATAAATATTAGGTTAGGTTATGCTTCAGTATCAAATAACCTCTACATTTCAGTGACTTCACACACAAATGGTTA

CTTTTTTCTTATATACCTATCCCATAGAAGTTGGTGGGGCACTCTGCTCCACGCATTCACTCAGGGATCCAGGCT

GATGGAGGCTCCACCATGTTGGAGTGGCACCATTGCACCACCTGGGACATGAGACCTCACCTTTGCCACAACTGT

GAAGGACAGAAAGGCTCGAGAATTTCACCTGGCCTCAGCTCTAAAGAGACAAATGTCACTTATGCTCACATTTCA

TCAGCTAGGACTAGTCGCATGATCCCATCTACACTGTAAGTGGGGCTGGAAAATGTTGGAGAACACCTGGAAAAA

TGGCTGAGCATTACTGTCTTGGCCACATGTGATAGAACTATTTAAAACAAAAAAAGTTTTACATAAGATGCAAGG

TAGTGTTCACTTTGGGGTAGGGGTGGAACACACAAGAAAGTGTCAGTGATTTGTAATATTCTAGTTTTTGGTTTG

AGCAGTGAGTGTTAATTATTTTTTAAAACAAATGAATGAATGAATGGACAAATGAATAAATAAAAGAGAGGGCTC

GAGGCAGCAGCACTGAAGCCTAACCTCACAGTACAGGCCAAAAATGACCCTG 

 

Bp 263 of pTK-160/161:    C 

NCBI-human 01.08:  T 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   T 

 

Bp 1202 of pTK-160/161:    G 

NCBI-human 01.08:  G 

NCBI-human 02.07:  G 
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Celera:   A 

Chimp sequence:   G 

 

Bp 1257 of pTK-160/161:    A 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   C 

Chimp sequence:   A 

 

pTK-162/163: 

CTATCCCATAGAAGTTGGTGGGGCACTCTGCTCCACGCATTCACTCAGGGATCCAGGCTGATGGAGGCTCCACCA

TGTTGGAGTGGCACCATTGCACCACCTGGGACATGAGACCTCACCTTTGCCACAACTGTGAAGGACAGAAAGGCT

CGAGAATTTCACCTGGCCTCAGCTCTAAAGAGACAAATGTCACTTATGCTCACATTTCATCAGCTAGGACTAGTC

GCATGATCCCATCTACACTGTAAGTGGGGCTGGAAAATGTTGGAGAACACCTGGAAAAATGGCTGAGCATTACTG

TCTTG 

 

pTK-164/165: 

CGGCTCGAGAATTTCACCTGGCCTCAGCTCTAAAGAGACAAATGTCACTTATGCTCACATTTCATCAGCTAGGAC

TAGTCGCATGATCCCATCTACACTGTAAGTGGGGCTGGAAAATGTTGGAGAACACCTGGAAAAATGGCTGAGCAT

TACTGTCTTGGCCACATGTGATAGAACTATTTAAAACAAAAAAAGTTTTACATAAGATGCAAGGTAGTGTTCACT

TTGGGGTAGGGGTGGAACACACAAGAAAGTGTCAGTGATTTGTAATATTCTAGTTTTTGGTTTGAGCAGTGAGTG

TTAATTATTTTTTAAAACAAATGAATGAATGAATGGACAAATGAATAAATAAAAGAGAGGGCTCGAGGCAGCAGC

ACTGAAGCCTAACCTCACAGTACAGGCCAAAAATGACCCTTCAATAAACATTCACTGAGTTCCCAGCTGAAGCTG

GTAGGCCTCTCCAAGGTACAAAGATGAATAAAATATGGGCTCAGCCCCTCTAAGTGCCCAGCTCAGAGGATTCAG

TAGACACATAAACCAAGCAGGAGGGCAAAGTACAGTGGAGAGTCTTGCTCAGTGGGAGCTCTGGGAGCAGAGGGA

GCCCCGAGTAGGCCTCACCCCAAGTCACATGTGTTGGGTTATGAAGAATCAATAGGAATTCAAAGGTGAAGAATG

GAGTGGAGGTGGGGCAAGTTGGTCAGGGACACTCATTTTACCAAGAGAGGAAGATTTGTGCAAAGGCACAAAGAG

GCCTTCACCCCTCAGGTGGCCTGTGTTCACAGCATTTCCTCACTGCCTTCTAGTCCCTAAATGATCTGATCAACT

TACTCCCTCTGTACTGTACCACCCAGAAGCTTCTGCAAGAGCCAGGCACTTGTCCTCCACAATGGCTGCCATGAG

TGTTGGTTGCCGATGGTTACAGCCAAGTCGTTCCTTGGCCTTAGAGGCGGAAGCTCTCTTGCCCGAGGG 

Bp 593 of pTK-164/165:    C 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 

Celera:   T 

Chimp sequence:   C 
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Bp 948 of pTK-164/165:    C 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   A 

 

pTK-166/167: 

CTCAGGTGGCCTGTGTTCACAGCATTTCCTCACTGCCTTCTAGTCCCTAAATGATCTGATCAACTTACTCCCTCT

GTACTGTACCACCCAGAAGCTTCTGCAAGAGCCAGGCACTTGTCCTCCACAATGGCTGCCATGAGTGTTGGTTGC

CGATGGTTACAGCCAAGTCGTTCCTTGGCCTTAGAGGCGGAAGCTCTCTTGCCCGAGGGCATGCACTCCCCTACT

GCAGGGGCAGCCACGTTTAGATGACTGTTTGGAAACCCAGGGTGTAAGGGCCTAGCTCTCATGCTTCAATTCAGC

GAACTCTGCAGGACCATCCCAGCTCCAGGGCTCCTGGTGGGATCAGCCAAGGCCTCTGTGGGCCTCCAGCCTCCA

TTAGTTCCCGGTTCTTCTCTCTGCCCAATTCCATTTCTTTTATATCCAGACAAGTGTTGATTGTGAATGCACTCC

CCAATAAACTTCCTTCAAGCAAAACTCTATGTCAGAATGTGTTTTCTGGGAAACCTACCTAAGATACCCACTAAA

ATATAGATAATTACTAAATTCCAAGGGATGCCTTTCCTGGGGATGTTTGTACAGCAATTATCCTCATAACTAATA

TTCATGGAGTGATTTCTATGTGCCAAGCTAAGCACTTTGCTTTTAAGATCATATTTAATGAAGAACAGAGCCTCA

CAGTAAGAATACATGTCTTTTCTTTTATTTATTTATTTATTTATTTATTTATTTATTTTGAGACAGAGTTTTGCT

CTTGTTGCCCAGGCTGGAGTGCAATGGCGCAATCTCAGCTTACTGCAACCTCCGCCTCCCGAGTTCAAGTGATTC

TCCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGGCATGCACCACCATGTCCAGCTAATTTTGTATTTTTAGTT

ATAGATTTCTTTGCTCCTTCTCCACTCCCACTGCTTCATTTAACTAGCCTTAAAAAAATTATTAAAAATAAAAAT

AAATAGGCCTGGCCAGGCGTGGTGGTTCGTGCCTGTAATCCCAGCACTTGGGAGGCTGAGGCAGGCGGATCACCT

GAGTTCTGGACTTTGAGACCAGCCTGGCCAACATGGTGAAACCCGTCTGTACTAAAAACTATTAAAAAATTAGCC

AGGCATAGTGGCAGGAGCCTGTAATCCCAGCTACTTGGGAGGCTGGGGCAGGAGAATTGCTTGAACCTGGGAGGT

GGAGGTTGCAGTGAACTGATAACGCACCATTGCATTCCG 

 

Bp 188 of pTK-166/167:    C 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   A 

 

Bp 352 of pTK-166/167:    G 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 

Celera:   T 

Chimp sequence:   G 
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Bp 377 of pTK-166/167:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 408 of pTK-166/167:    A 

NCBI-human 01.08:  G 

NCBI-human 02.07:  G 

Celera:   G 

Chimp sequence:   G 

 

Bp 461 of pTK-166/167:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   T 

Chimp sequence:   T 

 

Bp 492 of pTK-166/167:    T 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   T 

 

Bp 588 of pTK-166/167:    C 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   A 

 

Bp 703 of pTK-166/167:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 
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Celera:   T 

Chimp sequence:   T 

 

Bp 722 to 734 of pTK-166/167:   ATTTATTTATTTT 

NCBI-human 01.08:  - 

NCBI-human 02.07:  - 

Celera:   - 

Chimp sequence:   - 

 

Bp 901 of pTK-166/167:    A 

NCBI-human 01.08:  G 

NCBI-human 02.07:  G 

Celera:   G 

Chimp sequence:   A 

 

Bp 1222 of pTK-166/167:    A 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 

Celera:   T 

Chimp sequence:   T 

 

pTK-168/169: 

CGCCAGGCGTGGTGGTTCGTGCCTGTAATCCCAGCACTTGGGAGGCTGAGGCAGGCGGATCACCTGAGTTCTGGA

CTTTGAGACCAGCCTGGCCAACATGGTGAAACCCGTCTGTACTAAAAACTATTAAAAAATTAGCCAGGCATAGTG

GCAGGAGCCTGTAATCCCAGCTACTTGGGAGGCTGGGGCAGGAGAATTGCTTGAACCTGGGAGGTGGAGGTTGCA

GTGAACTGATAACGCACCATTGCATTCCGGCCTGGGCGACAGAGTGAAACTCCATCTTGAAAATAAATAAATAAA

TAAATAAATAAATAAATAAATAGGCCTGGCATGGTGGCTCACACCTGTAATCTCAGCACTTTGGGAGGCTGAGGC

AGCCAGATAATTTGAGGTCAGGAGTTCAAGACCAGCTTGGCTAACATGATGAAACATGACGAAACCCCCGTCTCT

GCTAAAAATTCAAAAATTAGCCAGTCATGGTGGTACATGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGA

AAATCGCTTGAACCTAGAAAGTGGAGGTTGCAGTGAGCTGAGATCACGCCACTGCACTCCAGCTTGGGCAACAGA

GCAAGATTCCATCTCAAAAAATATATAAAAAATAAAAATAGGCTGGGCGCAGTGGCTCACGCCTGTAATCTCAGC

ACTTTGGGAGACCGAGGCAGACAGATCAACTGAGGTCGAGGTTTGAGACCAGCCTGACCAACATAGAGAAACCCT

CTCTCTACTAAAATAC 
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Bp 237 of pTK-168/169:    A 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 

Celera:   T 

Chimp sequence:   T 

 

Bp 283 of pTK-168/169:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 319 of 322 pTK-168/169:   AATA 

NCBI-human 01.08:  - 

NCBI-human 02.07:  - 

Celera:   - 

Chimp sequence:   - 

 

Bp 389 of pTK-168/169:    G 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   G 

 

Bp 482 of pTK-168/169:    G 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 

Celera:   G 

Chimp sequence:   G 

 

pTK-170/171: 

CTGGGAGACCGAGGCAGACAGATCAACTGAGGTCGAGGTTTGAGACCAGCCTGACCAACATAGAGAAACCCTCTC

TCTACTAAAATACAAACATTGGGTGGGGCGAGTCATCGTCTGACGTCTGGCCGTGAGATGTTTCGGGAGCCGGGG

TCTCTCCGCTGCAGACATGACGAAGGGCCTTGTTTTAGGAATCTATTCCAAAGAAAAAGAAGATGATGTGCCACA



75 
 

GTTCACAAGTGCAGGAGAGAATCTTGATAAATTGATAGCTGGAAAGCTGAGAGAGACTTTGAACATATCTGGACC

ACCTCTGAAGGCAGGCAAGACTCGAACCTTTTATGGTCTGCATCAGGACTTCCCCAGTGTGGTCCTAGTTGGCC

TCGGCAAAAAGGCAGCCAGAATCGACGAACAGGAAAACTGGCAGGAAGGCAAAGAAAACATCAGAGCTGCTGTTG

CAGCAGGATGCAGGCAGATTCAAGACCTGGAGCTCTCTTCCGTGGAGGTGGATCCCTGTAGAGACGCTCAGGCTG

CTGAGGAGGGCGCGGTGCTTGGTCTCTATGAATACGATGACCTAAAGCAAAAAAAGAAGATGGCTATGTCGGCGA

AGCTCTATGGAACTGGGGATCAGGAGGCCTGGCAGAAAGGAGTCCTGTTTGCTTCTGGGCAGAACTTGGCATGAT

GGAGACGCCAGCCAGCGAGATGATGCAAACCAGATTTGCCGAAATTATTGAGAAGAATCTCAAAAGTGCTAGTAG

TAAACCGAGGTTCGTATCAGACCCAGGTCTTGGATTGAGGAACAGGCAATGGGATCATTCCTCAGTGTGGCCAAA

GGATCTGATGAGCCCTCAGTCTTCTTGGAAATTCACTACATAGGCAGCCCCAATGCAGACAAACCACCCCTTGTT

TGTTGGGAAAGGAATTACCTTTGACAGTGGTGGTATCTCCATCAAGGCTTCTGCAAATATGGACCTCATGAGGGC

TGACATGGGAGGAGCTACAACTATATGCTCAGCCATTGTGTCTGCTGCAAATCTCAGTTTGCCCATTAATATTAT

AGGTCTGGCCCCTCTGTGAG 

 

Bp 327 of pTK-170/171:    C 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   C 

Chimp sequence:   C 

 

Bp 358 of pTK-170/171:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 364 of pTK-170/171:    C 

NCBI-human 01.08:  G 

NCBI-human 02.07:  G 

Celera:   G 

Chimp sequence:   G 

 

Bp 514 of pTK-170/171:    C 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 
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Celera:   T 

Chimp sequence:   C 

 

Bp 597 of pTK-170/171:    C 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 

Celera:   T 

Chimp sequence:   T 

 

Bp 701 of pTK-170/171:    A 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 741 of pTK-170/171:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   T 

 

Bp 759 of pTK-170/171:    G 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 

Celera:   T 

Chimp sequence:   G 

 

Bp 763 of pTK-170/171:    G 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   A 
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Bp 833 of pTK-170/171:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 975 of pTK-170/171:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

pTK-172/173: 

TAGGCAGCCCCAATGCAGACAAACCACCCCTTGTTTGTTGGGAAAGGAATTACCTTTGACAGTGGTGGTATCTCC

ATCAAGGCTTCTGCAAATATGGACCTCATGAGGGCTGACATGGGAGGAGCTACAACTATATGCTCAGCCATTGTG

TCTGCTGCAAATCTCAGTTTGCCCATTAATATTATAGGTCTGGCCCCTCTGTGAAAACATGCCCAGCGGCAAGGC

CAACAAGCTGGGGGATGTTGTTAGAGCCAGGAACGGGAAGACCATCCAGGTTGGTAACACTGATGCTGAGGGGAG

GCTCATACTGGCTGATGCGCTCTGTTACGTGCACACATTTAACCCGAAGGTCATCCTCAATGCCACCACCTTAAC

AGGTGTCATAGATGTAGCTTTGGGGTCAGGTGCCACTGGGGTCTTTACCAATTCATCCTGGCTCTGGAACAAGCT

CTTCGAGGCCAGCATTGAAACAGGGGACCGTGTCTGGAGGATGCCTCTCTTCAAACATTGTACAAGACAGGTTGT

AGATTGCCAGCTGGCTGATATTAACAACATTGGAAAATATAGATCTGCGGGAGCATGTACATCTGCGGCATTCCT

GAAAGAATTCGTGACTCATCCTAAGTGGGCACATTTAGACATAGCAGGTGTGATGACCAACAAAGATGAGGTTCC

CTATTTATGGAAAGGCATGACCGGGAGGCCCAAAAGGACTCTCATAGAGTTCTTACTTCGTTTCAGTCAAGACAA

TGCTTAGTTCAGATACTCAAAAATGTCTTCACTCTATCTTAAATTGGACAGTTGAAGTTAAAAGGTTTTTGAATG

AATGGATGAAAATATTTTAAAGGAGGCAATTTATATTTAAAAATGTAGAACACAATGAAATTTTTATGCCTTGAT

TTTTTTTTCATTTTACACAAAGATTTATATGTTTTTTTTTTGAGATGGAGTCTCGCTCTGTCACCCAGGCTGGAG

TGCAG_TGGCATGATCTCAGCTCACTGCAACCTCCGCCTCCTAGGTTCAAGCGATTCTCCCACCTCAGCCACCTG

AATACCTGGGACTACAGGCGCCCACCACCATGCCCGGCTGATTTTTGTATTTTTAATGGAGACGGGGTTTCACCA

TATTGGCCAGGCTGGTCTCAAAACTCCTGACCCTGTGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACA

GGCGTAAGCCACCACGCCCGGCCAGTATATATTTTTAATTGAGAAGCAAAATTGTACTTCAGATTTGTGATGCTA

GGAACATGAGCAAACTGAAAATTACTAACCACTTGTCAGAAACAATAAATCCAACTTTTTGTGCAAAAAAAAAAA

AATACAAATATTAGCTGGGCATGGTGGTGCATGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGAATTGCTT

GAACCTGGGAGGCGGAGACTGCAGTGAGCTGAGATTGTGCTACTGCTGACTTTGTCTCAAAAAACAAAACAAAAC

AAAAAAACAAAATGAAAACAAAAAGCCAGGGCTGCCTCTGCTCAATAATGTTCTATCTTTGTTCCGCCTCTTCTC

TGGGGTCTCACTTCTTGGGAGCG 
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Bp 111 of pTK-172/173:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 260 of pTK-172/173:    G 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   G 

 

Bp 545 of pTK-172/173:    A 

NCBI-human 01.08:  G 

NCBI-human 02.07:  G 

Celera:   G 

Chimp sequence:   G 

 

Bp 680 of pTK-172/173:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 708 of pTK-172/173:    A 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 786 of pTK-172/173:    A 

NCBI-human 01.08:  A 

NCBI-human 02.07:  G 
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Celera:   A 

Chimp sequence:   G 

 

Bp 955 of pTK-172/173:    G 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   G 

 

Bp 981 of pTK-172/173:    - 

NCBI-human 01.08:  G 

NCBI-human 02.07:  G 

Celera:   G 

Chimp sequence:   - 

 

Bp 1069 of pTK-172/173:    C 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 

Celera:   T 

Chimp sequence:   T 

 

Bp 1175 of pTK-172/173:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 1208 of pTK-172/173:    G 

NCBI-human 01.08:  G 

NCBI-human 02.07:  A 

Celera:   G 

Chimp sequence:   A 
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Bp 1351-1352 of pTK-172/173:   AA 

NCBI-human 01.08:  -- 

NCBI-human 02.07:  - 

Celera:   -- 

Chimp sequence:   -- 

 

Bp 1466 of pTK-172/173:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

pTK-175/176: 

CAGGGGACCGTGTCTGGAGGATGCCTCTCTTCAAACATTGTACAAGACAGGTTGTAGATTGCCAGCTGGCTGATA
TTAACAACATTGGAAAATATAGATCTGCGGGAGCATGTACATCTGCGGCATTCCTGAAAGAATTCGTGACTCATC

CTAAGTGGGCACATTTAGACATAGCAGGTGTGATGACCAACAAAGATGAGGTTCCCTATTTATGGAAAGGCATGA

CCGGGAGGCCCAAAAGGACTCTCATAGAGTTCTTACTTCGTTTCAGTCAAGACAATGCTTAGTTCAGATACTCAA

AAATGTCTTCACTCTATCTTAAATTGGACAGTTGAAGTTAAAAGGTTTTTGAATGAATGGATGAAAATATTTTAA
AGGAGGCAATTTATATTTAAAAATGTAGAACACAATGAAATTTTTATGCCTTGATTTTTTTTTCATTTTACACAA

AGATTTATATGTTTTTTTTTTTTGAGATGGAGTCTCGCTCTGTCACCCAGGCTGGAGTGCAG_TGGCATGATCTC
AGCTCACTGCAACCTCCGCCTCCTAGGTTCAAGCGATTCTCCCACCTCAGCCACCTGAATACCTGGGACTACAGG

CGCCCACCACCATGCCCGGCTGATTTTTGTATTTTTAATGGAGACGGGGTTTCACCATATTGGCCAGGCTGGTCT

CAAAACTCCTGACCCTGTGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTAAGCCACCACGCC
CGGCCAGTATATATTTTTAATTGAGAAGCAAAATTGTACTTCAGATTTGTGATGCTAGGAACATGAGCAAACTGA

AAATTACTAACCACTTGTCAGAA_CAATAAATCCAACTTTTTGTGCAAAAAAAAAAAAAATACAAATATTAGCTG

GGCATGGTGGTGCATGCCTGTAATCCCAGCTACTCGGGAGGCTGAG_CAGAATTGCTTGAACCTGG_A_GCGGA

GACTGCAGTGAGCTGAGATTGTGCTACTGCTGACTTTGTCTCAAAAACAAGCAAACAAAAAACAAATGAAAACAA
AAAGCCAGGCTGCCTCTGCTCATATGTTCTATCTTTGTCCGCCTCTTCTCTGGGTCTGCACTCTGGGAGCTGATG

TGAGGTGAATTCTCTGAAGCTGACTGCCCTATCTGGACTCC 

 

Bp 75 of pTK-175/176:    A 

NCBI-human 01.08:  G 

NCBI-human 02.07:  G 

Celera:   G 

Chimp sequence:   G 

 

Bp 210 of pTK-175/176:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 
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Celera:   C 

Chimp sequence:   C 

 

Bp 238 of pTK-175/176:    A 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 316 of pTK-175/176:    A 

NCBI-human 01.08:  A 

NCBI-human 02.07:  G 

Celera:   A 

Chimp sequence:   G 

 

Bp 461 of pTK-175/176:    G 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   G 

 

Bp 473 of pTK-175/176:    T 

NCBI-human 01.08:  - 

NCBI-human 02.07:  - 

Celera:   - 

Chimp sequence:   - 

 

Bp 513 of pTK-175/176:    G 

NCBI-human 01.08:  - 

NCBI-human 02.07:  G 

Celera:   - 

Chimp sequence:   - 
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Bp 601 of pTK-175/176:    C 

NCBI-human 01.08:  T 

NCBI-human 02.07:  T 

Celera:   T 

Chimp sequence:   T 

 

Bp 707 of pTK-175/176:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 740 of pTK-175/176:    G 

NCBI-human 01.08:  G 

NCBI-human 02.07:  A 

Celera:   G 

Chimp sequence:   A 

 

Bp 849 of pTK-175/176:    - 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 

Celera:   A 

Chimp sequence:   A 

 

Bp 884-885 of pTK-175/176:   AA 

NCBI-human 01.08:  - 

NCBI-human 02.07:  - 

Celera:   - 

Chimp sequence:   - 

 

Bp 849 of pTK-175/176:    - 

NCBI-human 01.08:  A 

NCBI-human 02.07:  A 
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Celera:   A 

Chimp sequence:   A 

 

Bp 947 of pTK-175/176:    - 

NCBI-human 01.08:  G 

NCBI-human 02.07:  G 

Celera:   G 

Chimp sequence:   G 

 

Bp 967-969 of pTK-175/176:   -A- 

NCBI-human 01.08:  GAG 

NCBI-human 02.07:  GAG 

Celera:   GAG 

Chimp sequence:   GAG 

 

Bp 999 of pTK-175/176:    T 

NCBI-human 01.08:  C 

NCBI-human 02.07:  C 

Celera:   C 

Chimp sequence:   C 

 

Bp 1103-1165 of pTK-175/176: 

GTCTGCACTCTGGGAGCTGATGTGAGGTGAATTCTCTGAAGCTGACTGCCCTATCTGGACTCC 

NCBI-human-01.08: 

GGTCTCACTTCTTGGGAGCCTGTGTGAAGGTGAATTCCTCTGAAAGCTGACTGCCCCTATTTGGGACTCC 

NCBI-human-02.07: 

GGTCTCACTTCTTGGGAGCCTGTGTGAAGGTGAATTCCTCTGAAAGCTGACTGCCCCTATTTGGGACTCC 

Celera: 

GGTCTCACTTCTTGGGAGCCTGTGTGAAGGTGAATTCCTCTGAAAGCTGACTGCCCCTATTTGGGACTCC 

Chimp:: 

GGTCTCACTTCTTGGGAGCCTGTGTGAAGGTGAATTCCTCTGAAAGCTGACTGCCCCTATTTGGGACTCC 
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Jagged1- reporter gene constructs: 

 

pGL4.10-Jagged1-573: 

AGGGGCGTGCCCAGGGTGAGCACGCCCTCTCATGAATATTAATAAGCGCGCATGCGCCCTGCCCGGCGTGCTGGG

TAGAGGTGGCCAGCCCCGGCCGCTGCTGCCAGACGGGCTCTCCGGGTCCTTCTCCGAGAGCCGGGCGGGCACGCG

TCATTGTGTTACCTGCGGCCGGCCCGCGAGCTAGGCTGGTTTTTTTTTTTCTCCCCTCCCTCCCCCCTTTTTCCA

TGCAGCTGATCTAAAAGGGAATAAAAGGCTGCGCATAATCATAATAATAAAAGAAGGGGAGCGCGAGAGAAGGAA

AGAAAGCCGGGAGGTGGAAGAGGAGGGGGAGCGTCTCAAAGAAGCGATCAGAATAATAAAAGGAGGCCGGGCTCT

TTGCCTTCTGGAACGGGCCGCTCTTGAAAGGGCTTTTGAAAAGTGGTGTTGTTTTCCAGTCGTGCATGCTCCAAT

CGGCGGAGTATATTAGAGCCGGGACGCGGCGGCCGCAGGGGCAGCGGCGACGGCAGCACCGGCGGCAGCACCAGC

GCGAACAGCAGCGGCGGCGTCCCGAGTGCCCGCGGCGCGCGGCGCAGCG 

 

pGL4.10-Jagged1-1700: 

CAAACCGGCCGCTGAATAGTCACGCTTTTCTGCAGGACATACCTACTATTAGGGCCAAAACTTTGTCCACCCTTC

AAAGGAAGTCGATGTTTCCATATAAAGGTCCCCTCAAATGCAACAGCAAGCCCGTGGGAGAGGGGTTAGCAGAGG

CTACGGCCAGCCCACGGGCTTTCTTCGACCTTGATTATGACCAGGAGTGTAGCTGTTAATTGCGAGGCTTGCCTC

AAGGTGGAAAACAGTATCGGTTTCCACTGCCACCCCAGAGAAGGCAAGTTCCGCGGCTGGCGGTGCTGGGGACAC

GGTCCCTCCCAGGCCCATCTCTTGCCACCCAGAGAGCTGCTCGGAGGCCGCCTACAGGTGCAATCCCGGCACTGC

GGCCGGGGCGTCGGGCCGGGGAGGGCGTCCAAGCCCACCAGCATCTCCGCCGGCCCTTCCCAAAGCCTGAACAGG

GCCCCGGCGTGCCCGCCGCCTTCTACCCCCGGTTTCCCCGCGCCTCTGCCCCGGCGCGGTTTGGATAGGAAGCTG

GGAGCCCTCCCAGGCTCCGCAGACTCGGATTTGGGAGGGGGTGGGACGCGGCCGAGGCTTCCCCTCGAATCTGCG

GCAAGCCTGGCTCCAGGAAAGTTTTTCAAAGTTCCCAGCAGCGTCTGCCCAGGTCGCCTCCGCGGGGCGAGCAGA

CGGCGGCAAGCGCGCCAGCCTCGCCGCCGCCTCTGCCGCCAGCAGAGCGCTCTGGGCGGCTCGCTCGCGGGAAGC

GGGCCGAACTCCCGGCGGGCAGGCAGGCCCTCCTCCCGGGGCGAAAGCCGCAGCTGACGCAGGCGGTTCGGAAGG

CGGAAGCTGCCCCGCTCCGACCGCTCAGTCAGCGCCGCGGCGCCTACACCTGGGGCCCCGACGCGCGGGCAAAGG

CGCACGGCCCGGGGCGCCCGAGGGGGCGGTCCCCGCTGGGGGCCTCCAGGCGTCCCTGAGCAACGATCCCTTCCA

AGTACCTCCCCGCACTCTCCCTTCCCTCCTGGCCCGAAGCTCCCGAGGGCGGGGGTTGGTGTGGGGCCCTGGTTC

TTCTACGCCGCCCTGAGCATCCCGCTGCCCCCAACCCCTTCCAAGTTCCTCCTCGCACTACCCCCTCCCCAGCAA

CGTGAAGGGGAGGGGCGTGCCCAGGGTGAGCACGCCCTCTCATGAATATTAATAAGCGCGCATGCGCCCTGCCCG

GCGTGCTGGGTAGAGGTGGCCAGCCCCGGCCGCTGCTGCCAGACGGGCTCTCCGGGTCCTTCTCCGAGAGCCGGG

CGGGCACGCGTCATTGTGTTACCTGCGGCCGGCCCGCGAGCTAGGCTGGTTTTTTTTTTTCTCCCCTCCCTCCCC

CCTTTTTCCATGCAGCTGATCTAAAAGGGAATAAAAGGCTGCGCATAATCATAATAATAAAAGAAGGGGAGCGCG

AGAGAAGGAAAGAAAGCCGGGAGGTGGAAGAGGAGGGGGAGCGTCTCAAAGAAGCGATCAGAATAATAAAAGGAG

GCCGGGCTCTTTGCCTTCTGGAACGGGCCGCTCTTGAAAGGGCTTTTGAAAAGTGGTGTTGTTTTCCAGTCGTGC

ATGCTCCAATCGGCGGAGTATATTAGAGCCGGGACGCGGCGGCCGCAGGGGCAGCGGCGACGGCAGCACCGGCGG

CAGCACCAGCGCGAACAGCAGCGGCGGCGTCCCGAGTGCCCGCGGCGCGCGGCGCAGCG 
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pGL4.10-TK-FL: 

GGCCTAACTGGCCGGTACCTGAGCTCGCTAGCCTCGAGGATATCAAGATCTAAATGAGTCTTCGGACCTCGCGGG

GGCCGCTTAAGCGGTGGTTAGGGTTTGTCTGACGCGGGGGGAGGGGGAAGGAACGAAACACTCTCATTCGGAGGC

GGCTCGGGGTTTGGTCTTGGTGGCCACGGGCACGCAGAAGAGCGCCGCGATCCTCTTAAGCACCCCCCCGCCCTC

CGTGGAGGCGGGGGTTTGGTCGGCGGGTGGTAACTGGCGGGCCGCTGACTCGGGCGGGTCGCGCGCCCCAGAGTG

TGACCTTTTCGGTCTGCTCGCAGACCCCCGGGCGGCGCCGCCGCGGCGGCGACGGGCTCGCTGGGTCCTAGGCTC

CATGGGGACCGTATACGTGGACAGGCTCTGGAGCATCCGCACGACTGCGGTGATATTACCGGAGACCTTCTGCGG

GACGAGCCGGGTCACGCGGCTGACGCGGAGCGTCCGTTGGGCGACAAACACCAGGACGGGGCACAGGTACACTAT

CTTGTCACCCGGAGGCGCGAGGGACTGCAGGAGCTTCAGGGAGTGGCGCAGCTGCTTCATCCCCGTGGCCCGTTG

CTCGCGTTTGCTGGCGGTGTCCCCGGAAGAAATATATTTGCATGTCTTTAGTTCTATGATGACACAAACCCCGCC

CAGCGTCTTGTCATTGGCGAATTCGAACACGCAGATGCAGTCGGGGCGGCGCGGTCCCAGGTCCACTTCGCATAT

TAAGGTGACGCGTGTGGCCTCGAACACCGAGCGACCCTGCAGCGACCCGCTTAAAAGCTTGGCAATCCGGTACTG

TTGGTAAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGCCCAGCGCCATTCTACCCACTCGAAGACGGGA

CCGCCGGCGAGCAGCTGCACAAAGCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTTACCGACGCAC

ATATCGAGGTGGACATTACCTACGCCGAGTACTTCGAGATGAGCGTTCGGCTGGCAGAAGCTATGAAGCGCTATG

GGCTGAATACAAACCATCGGATCGTGGTGTGCAGCGAGAATAGCTTGCAGTTCTTCATGCCCGTGTTGGGTGCCC

TGTTCATCGGTGTGGCTGTGGCCCCAGCTAACGACATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCA

GCCAGCCCACCGTCGTATTCGTGAGCAAGAAAGGGCTGCAAAAGATCCTCAACGTGCAAAAGAAGCTACCGATCA

TACAAAAGATCATCATCATGGATAGCAAGACCGACTACCAGGGCTTCCAAAGCATGTACACCTTCGTGACTTCCC

ATTTGCCACCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAGCTTCGACCGGGACAAAACCATCGCCCTGATCA

TGAACAGTAGTGGCAGTACCGGATTGCCCAAGGGCGTAGCCCTACCGCACCGCACCGCTTGTGTCCGATTCAGTC

ATGCCCGCGACCCCATCTTCGGCAACCAGATCATCCCCGACACCGCTATCCTCAGCGTGGTGCCATTTCACCACG

GCTTCGGCATGTTCACCACGCTGGGCTACTTGATCTGCGGCTTTCGGGTCGTGCTCATGTACCGCTTCGAGGAGG

AGCTATTCTTGCGCAGCTTGCAAGACTATAAGATTCAATCTGCCCTGCTGGTGCCCACACTATTTAGCTTCTTCG

CTAAGAGCACTCTCATCGACAAGTACGACCTAAGCAACTTGCACGAGATCGCCAGCGGCGGGGCGCCGCTCAGCA

AGGAGGTAGGTGAGGCCGTGGCCAAACGCTTCCACCTACCAGGCATCCGCCAGGGCTACGGCCTGACAGAAACAA

CCAGCGCCATTCTGATCACCCCCGAAGGGGACGACAAGCCTGGCGCAGTAGGCAAGGTGGTGCCCTTCTTCGAGG

CTAAGGTGGTGGACTTGGACACCGGTAAGACACTGGGTGTGAACCAGCGCGGCGAGCTGTGCGTCCGTGGCCCCA

TGATCATGAGCGGCTACGTTAACAACCCCGAGGCTACAAACGCTCTCATCGACAAGGACGGCTGGCTGCACAGCG

GCGACATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGACCGGCTGAAGAGCCTGATCAAATACAAGG

GCTACCAGGTAGCCCCAGCCGAACTGGAGAGCATCCTGCTGCAACACCCCAACATCTTCGACGCCGGGGTCGCCG

GCCTGCCCGACGACGATGCCGGCGAGCTGCCCGCCGCAGTCGTCGTGCTGGAACACGGTAAAACCATGACCGAGA

AGGAGATCGTGGACTATGTGGCCAGCCAGGTTACAACCGCCAAGAAGCTGCGCGGTGGTGTTGTGTTCGTGGACG

AGGTGCCTAAAGGACTGACCGGCAAGTTGGACGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCG

GCAAGATCGCCGTGTAATAATTCTAGAGTCGGGGCGGCCGGCCGCTTCGAGCAGACATGATAAGATACATTGATG

AGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTAT

TTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGG

AGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTAAAATCGATAAGGATCCGTCGACCGATG

CCCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCACTTATGACT

GTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCG

CTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGA
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TAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTT

TTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGG

ACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGG

ATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT

GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAA

CTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAG

AGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATT

TGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCAC

CGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT

GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAA

AAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTG

GTCTGACAGCGGCCGCAAATGCTAAACCACTGCAGTGGTTACCAGTGCTTGATCAGTGAGGCACCGATCTCAGCG

ATCTGCCTATTTCGTTCGTCCATAGTGGCCTGACTCCCCGTCGTGTAGATCACTACGATTCGTGAGGGCTTACCA

TCAGGCCCCAGCGCAGCAATGATGCCGCGAGAGCCGCGTTCACCGGCCCCCGATTTGTCAGCAATGAACCAGCCA

GCAGGGAGGGCCGAGCGAAGAAGTGGTCCTGCTACTTTGTCCGCCTCCATCCAGTCTATGAGCTGCTGTCGTGAT

GCTAGAGTAAGAAGTTCGCCAGTGAGTAGTTTCCGAAGAGTTGTGGCCATTGCTACTGGCATCGTGGTATCACGC

TCGTCGTTCGGTATGGCTTCGTTCAACTCTGGTTCCCAGCGGTCAAGCCGGGTCACATGATCACCCATATTATGA

AGAAATGCAGTCAGCTCCTTAGGGCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCGGTGTTGTCGCTCATGGTA

ATGGCAGCACTACACAATTCTCTTACCGTCATGCCATCCGTAAGATGCTTTTCCGTGACCGGCGAGTACTCAACC

AAGTCGTTTTGTGAGTAGTGTATACGGCGACCAAGCTGCTCTTGCCCGGCGTCTATACGGGACAACACCGCGCCA

CATAGCAGTACTTTGAAAGTGCTCATCATCGGGAATCGTTCTTCGGGGCGGAAAGACTCAAGGATCTTGCCGCTA

TTGAGATCCAGTTCGATATAGCCCACTCTTGCACCCAGTTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCG

GGGTGTGCAAAAACAGGCAAGCAAAATGCCGCAAAGAAGGGAATGAGTGCGACACGAAAATGTTGGATGCTCATA

CTCGTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTACTAGTACGTCTCTCAAGGATAAGTAAGTAATATT

AAGGTACGGGAGGTATTGGACAGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTG

TGAATCGATAGTACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCC

CAGTGCAAGTGCAGGTGCCAGAACATTTCTCT 
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