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Abstract 
 

The organization of emergency medical services is characterised by competing 

objectives. Besides low response times of the ambulances other aspects have to be 

considered as well. To address this problem a dynamic relocation strategy for 

ambulance vehicles is established in this work. One objective is to maximize the 

resident population reachable within a given time frame. This can be done relatively 

easy for a set number of vehicles, but whenever a vehicle is dispatched to a call the 

number of available vehicles changes and relocations may be necessary to maximize 

the population coverage. However too many relocations would be unreasonable for 

the ambulance crews. Therefore the second objective is to minimize the number of 

relocations. The problem of dynamically relocating the vehicles is resolved by an a 

priori approach which solves all possible states in advance. Each time the number of 

vehicles changes the appropriate precalculated solution is applied. The high 

computational complexity of this strategy is met by Pareto Ant Colony Optimization. 

PACO is a specialized metaheuristic for multiobjective optimisation problems 

inspired by the foraging behaviour of real ants. Different algorithm versions are 

established and programmed in MatLab in order to explore the capabilities of the 

algorithm. Variations in the pheromone structures and size of the solution space, as 

well as approaches using shifting ant numbers are tested for their influence on the 

convergence behaviour of the algorithm. Multiple solutions are the outcome of the 

algorithm. These sets of solutions are called approximation sets, as they are an 

approximation of the pareto optimal front. The presence of several optimization 

criteria prevents an objective rating of the approximation sets, but a combination of 

unary measures can be used to assess certain quality aspects. In this work the found 

solutions ratio, the average distance and the hypervolume metric are implemented. 

The knowledge of the real pareto optimal front allows for a far better evaluation of 

the performance. Therefore the algorithms are tested on a problem instance small 

enough to completely enumerate all solutions, before they are used to develop a 

relocation strategy for the NEF-system (Notarzt Einsatz Fahrzeug) of the Viennese 

ambulance service. 



Zusammenfassung 
 

In der Organisation von Rettungsdiensten ergeben sich immer wieder konkurrierende 

Ziele. Neben einer möglichst hohen Verfügbarkeit der Rettungsfahrzeuge müssen bei 

der Aufstellung der Rettungsflotte auch andere Aspekte berücksichtigt werden. Zur 

Lösung dieses Problems wird in dieser Arbeit eine dynamische Reallokations-

Strategie für Rettungs Fahrzeuge entwickelt. Eines der Ziele ist die Anzahl der 

innerhalb eines vorgegebenen Zeitraums erreichbaren Wohnbevölkerung zu 

maximieren. Für eine bestimmte Anzahl an Fahrzeugen kann eine gute Aufstellung 

relativ einfach gefunden werden, jedoch verändert sich die Anzahl der Fahrzeuge 

jedes Mal, wenn ein Fahrzeug zu Einsatz kommt. In diesem Fall müssen die 

Fahrzeuge möglicherweise neu verteilt werden, um eine maximale Abdeckung zu 

erreichen. Zu viele Fahrten allein zur Neustrukturierung sind den 

Fahrzeugbesatzungen allerdings nicht zuzumuten. Deshalb soll in einem zweiten Ziel 

die Anzahl der Neuverteilungen minimiert werden. Die dynamische Neuverteilung 

wird durch einen a priori Ansatz gelöst, bei dem im Vorhinein für alle möglichen 

Zustände eine Lösung errechnet wird. Wenn sich der Zustand ändert, kann die 

jeweilige Lösung angewandt werden. Der hohe Rechenaufwand dieser Methode wird 

mit Hilfe der Pareto Ant Colony Optimization bewältigt. PACO ist eine auf 

Mehrzieloptimierung spezialisierte Metaheuristik, dessen Prinzip durch das Verhalten 

von Ameisen bei der Futtersuche inspiriert ist. Unterschiedliche Algorithmus 

Varianten werden entwickelt und in MatLab programmiert um das Potential des 

Algorithmus zu erforschen. Variationen der Peromonstrukturen, unterschiedlich 

große Lösungsräume und ein Ansatz mit veränderlicher Ameisenanzahl werden auf 

ihren Einfluss auf den Algorithmus getestet. Der Algorithmus liefert gleich mehrere 

Lösungen als Ergebnis. Da mehrere Zielvorgaben bestehen ist es nicht möglich diese 

Lösungs-Sets objektiv zu reihen. Es können jedoch Kennzahlen errechnet werden, um 

bestimmte Aspekte der Lösungsgüte zu beschreiben. In dieser Arbeit kommen der 

Anteil der gefundenen Lösungen, die durchschnittliche Distanz und die Hypervolume 

Metrik zur Anwendung. Ist die pareto optimale Front bekannt, kann die Qualität der 

Lösungs-Sets genauer bewertet werden. Deshalb werden die Algorithmen zunächst an 

einer Probleminstanz getestet, die klein genug ist alle Lösungen zu errechnen, bevor 

sie benutzt werden, um eine Relokalisierungs-Strategie für das NEF-System (Notarzt 

Einsatz Fahrzeug) der Wiener Rettung zu entwickeln. 
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1. Introduction 
 

The organization of an ambulance service poses several interesting problems, since it 

is affected by various aspects that have to be taken into consideration. One mayor 

goal is to decrease the response times of the ambulances as the urgency of most cases 

demands a fast reaction. With higher numbers of ambulance vehicles the average 

response time can be decreased, but on the other hand budget restrictions have to be 

taken into consideration as well. Such competing objectives occur relatively often in 

practical applications. The common absence of one single optimal solution makes this 

type of problem rather difficult to solve. Instead of one optimal solution, whole sets 

of solutions with incomparable quality can be found. 

An exemplarily problem arises from the location of emergency vehicles at different 

waiting stations in order to maximize the population reachable within a given time. 

For a set number of vehicles the optimal locations can be found, but if one of these 

vehicles has to be dispatched to an emergency, the number of available vehicles 

changes. In this case the vehicles may have to be relocated in order to reach the 

highest possible coverage. Of course it is unacceptable for the crews to relocate the 

ambulances every time an emergency occurs. A reasonable compromise between high 

population coverage and small number of relocations has to be found. This problem is 

addressed by this work. 

 

In this work a bicriterial location problem for the dynamic relocation of emergency 

vehicles is established. The problem is based on the Maximum Expected Coverage 

Relocation Problem by Gendreau et al. (2006). To solve the bicriterial problem the 

Pareto Ant Colony Optimization Metaheuristic (PACO) is employed Dörner et al. 

(2002). Variations of PACO are tested to explore the capabilities of the algorithm. 

Subsequently the model is applied to the ambulance service system of Vienna. 

 

In the next chapter the different models proposed for ambulance location problems 

are explained. Chapter 3 points out the working mechanism of the Ant Colony 

Optimization and the use of Pareto Ant Colony Optimization for multicriterial 

problems. In chapter 4 the Algorithms based on the Pareto Ant Colony Optimization 

Metaheuristic and their variations are explained. The full code of an exemplary 

algorithm is given in Appendix B. All other codes used in this work can be found on 
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the enclosed CD. Many metrics have been proposed to assess the performance of 

multiobjective optimizers, because the evaluation of the solution quality is rather 

complex. The different metrics of performance used in this work are described in 

chapter 5. A comparison of the algorithm versions and the results of the Viennese 

relocation problem can be found in chapter 6. Finally I state my conclusions in 

chapter 7. 

 

 8



2. Ambulance Location Problems 
 

Various models have been developed for the emergency vehicle location problem. 

Early approaches were based on deterministic models like the Location Set Covering 

Problem (LSCP) by Toregas et al. (1971) and the Maximal Covering Location 

Problem (MCLP) by Church and ReVelle (1974). The LSCP minimizes the number 

of vehicles necessary to cover all demand, while the MCLP maximizes the covered 

demand points with a given number of emergency vehicles. Both models ignore the 

change in coverage once a vehicle is dispatched to a call. To reflect this problem 

probabilistic models have been established. They take into account that the vehicles 

are unavailable for calls while they are busy. The Maximum Expected Covering 

Location Problem (MEXCLP) proposed by Daskin (1983) is an early representative 

of these probabilistic models. A different approach is used in dynamic models. These 

models solve a static model for the number of vehicles available every time a vehicle 

is dispatched to a call. This can be problematic, as the calculations have to be done in 

short time in order to respond fast enough to the changes. Gendreau et al. (2001) 

proposed the Dynamic Double Standard Model (DDSM) that is solvable in real time. 

The necessary computational power is attained by the implementation of a tabu-

search heuristic and the use of parallel computing. Furthermore Gendreau et al. 

(2006) proposed an alternative model that precalculates the solutions for all possible 

states of the dynamic system. This model is called the Maximum Expected Coverage 

Relocation Problem (MECRP). A new model named Maximum Coverage Minimum 

Relocation Problem (MCMRP) was developed to address the ambulance relocation 

problem in the course of this work. It is based on the MECRP and extends this model 

to a bicriterial optimization problem. 
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2.1 The Maximum Expected Coverage Relocation Problem 
 

In their work Gendreau et al. formulate a mathematical model to solve the problem of 

emergency vehicle location. The MECRP is based on a dynamic model, instead of a 

static or probabilistic model. Static models neglect the change in coverage when 

emergency vehicles are dispatched to a call. Probabilistic models are one way to take 

this problem into account. The idea of dynamic models is to solve a static model for 

the relocation of vehicles each time an emergency vehicle is dispatched to a call. So 

each time the state changes a new solution has to be calculated. This is called the a 

posteriori approach. Alternatively Gendreau et al. proposed an a priori approach 

where several solutions are precomputed in order to be applied if the corresponding 

event occurs. This approach addresses the problem not to have enough time to 

calculate a new solution, if two events occur in quick succession. The MECRP 

computes a solution for every possible state that can happen in advance. So for each 

possible number of available vehicles, a solution is calculated. Unfortunately this 

method is only feasible for a relatively small number of possible states. 

The aim of the MECRP is to maximize the population reachable within a given time, 

while the number of relocations of emergency vehicles is limited. Instead of 

implementing relocation costs, the number of relocations is constrained by a fixed 

maximal value of relocations. There may be at most αk waiting sites changed, if the 

system moves from state k to k+1 (if k<=n-1). If the system moves from state k to 

state k-1 (if k>=1), at most αk+1 waiting sites may be changed. In this case at least 

one waiting site has to be changed, because a vehicle has to be dispatched to a call. 

The binary variables ujk are defined as 1 if and only if Wj∈ ceases to be a waiting 

site when the system moves from state k to state k+1 (k=1,…,n-1). In this way 

multiple counting of waiting site changes can be avoided. The population covered by 

the different numbers of available vehicles is weighted by the probability to encounter 

the corresponding number of available vehicles. The probability qk of having k 

vehicles available of a total number of n vehicles is obtained by binomial distribution: 

     ( ) knk
k pp

k
n

q −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1 ( )nk ,,0 K=    (1) 

The probability p that a vehicle is available is calculated by 
μ
λ

n
p −= 1 . Where λ is 

the arrival rate of calls, and µ is the average service rate. 
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The MECRP is designed on a directed graph ( )AWVG ,∪= . The vertex set of the 

demand points is given by V, while W is a vertex set of potential waiting sites for 

Wn ≤  emergency vehicles. A is a set of arcs defined on . Each arc 

 has a defined driving time. The demand di at vertex  is given by the 

population of the area assigned to vertex i. A vertex 

( 2WV ∪

Vi∈

)

Aji ∈),(

Vi∈  is covered by a vertex 

, if the driving time from j to i is less than r. r represents the coverage radius of 

the vehicles in driving time. Wi is the subset of vertices of W covering . The 

binary variable xjk equals 1, if and only if a vehicle is located at waiting site 

Wj∈

Vi∈

j W∈  in 

state k. The binary variable yik equals 1, if and only if demand point  is covered 

by at least one vehicle in state k. 

Vi∈

The mathematical formulation is as follows: 

 

 Maximize ∑∑        (2) 
= ∈

n

k Vi
ikki yqd

1

 subject to: ∑    
∈

≥
iWj

ikjk yx ( )nkVi ,,0, K=∈   (3) 

      ∑
∈

=
Wj

jk kx ( )nk ,,0 K=    (4) 

   jkkjjk uxx ≤− +1,   ( )1,,1, −=∈ nkWj K  (5) 

      ∑
∈

≤
Wj

kjku α ( )1,,1 −= nk K   (6) 

   { }1,0∈jkx    ( )nkWj ,,0, K=∈   (7) 

   { }1,0∈iky    ( )nkVi K,0, =∈   (8) 

   { }1,0∈iku    ( )1,,1, −=∈ nkWj K  (9) 

 

The objective function (2) maximizes the weighted population coverage. Constraint 

(3) controls that vertex  is only covered if at least one vehicle is located in Wi. 

Constraint (4) regulates the number of vehicles for each state. Constraints (5), (6) and 

(9) are used to limit the number of waiting site changes to a fixed maximal value 

Vi∈

kα  

when the system moves from state k to state k+1. While constraint (5) limits the 

number of relocations to ujk, constraint (6) assures that all ujk of state k do not exceed 

the maximal allowed number of waiting site changes kα . Constraints (7), (8) and (9) 
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simply define xjk, yik and ujk as binary values. The solution of the MECRP gives the 

locations for k emergency vehicles for every possible state k. It can be applied to a 

dynamic problem, by solving the MECRP once and using the solution values of xjk 

when the system moves to the appropriate state k.  

The formulation as an integer linear programming marks an interesting way of 

solving a dynamic relocation problem. In a clever way the covered demand is 

maximised and the number of relocations is limited while a complex multicriterial 

problem can be avoided. However the computational complexity limits the solution 

capability to problems with relatively small numbers of vehicles. In the next chapter a 

different approach to the same problematic is presented. The Maximum Coverage 

Minimum Relocation Problem MCMRP is formulated as a biobjective optimization 

problem. The increase in computational complexity will be met by the use of an 

advanced multiobjective optimization algorithm called Pareto Ant Colony 

Optimization Dörner et al. (2002). 
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2.2 The Maximum Coverage Minimum Relocation Problem 
 

Similar to the MECRP, the Maximum Coverage Minimum Relocation Problem 

(MCMRP) uses a directed graph ( )AWVG ,∪= . V represents the vertex set of 

demand points and W stands for the vertex set of potential waiting sites for Wn ≤  

emergency vehicles. A is a set of arcs defined on ( )2WV ∪ . The driving time is 

defined in minutes for each arc Aji ∈)

j

,( . The demand for the emergency service is 

assumed to be relational to the population density. Therefore the demand di at vertex 

 is given by the population of the area assigned to vertex i. A demand point 

is said to be covered by a waiting station 

Vi∈

Vi∈ W∈  if it can be reached from j 

within a driving time of r. The variable r defines the coverage radius of the 

emergency vehicles. The subset of vertices of W covering Vi∈  is defined as Wi. Like 

the MECRP the MCMRP uses an apriori approach for the dynamic model 

formulation. This means that all possible states of the model are precomputed. The 

number of states is defined by the number of available vehicles k waiting for a call 

(k=0,…,n). Whenever a vehicle is dispatched to a call the system moves from state k 

to state k-1. For each call only one vehicle is being dispatched. Emergencies requiring 

more than one vehicle are treated as a succession of calls. For each state two binary 

variables are defined. xjk=1 if a vehicle is located at Wj∈  in state k, and yik=1 if the 

demand point  is covered by at least one waiting station in state k. Vi∈

Two objective functions measure the quality of a solution. The first objective function 

maximises the expected coverage. The coverage of each state k has to be weighted by 

the probability qk of being in state k. The probabilities qk of having k vehicles 

available of a total number of n vehicles are calculated in the same way as in the 

MECRP with the use of formula (1). The first objective function is therefore stated as 

in (12). 

The second objective function minimises the expected number of relocations. If 

somebody calls, the system moves from state k to state k-1, and one of the k vehicles 

has to be dispatched to the call. In order to achieve fast response times the closest 

vehicle will be chosen. The remaining vehicles may have to be relocated, depending 

on the chosen waiting locations for k-1 vehicles, as well as on which vehicle has been 

dispatched to the call.  
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Figure 2.1 illustrates a scenario where in state k all three waiting stations are staffed 

by three emergency vehicles. If an emergency occurs in the neighbourhood of waiting 

station 1 the emergency vehicle of waiting station 1 will be dispatched to the 

emergency, and the system moves to state k-1. As the population density in the 

vicinity of waiting station 1 is relatively high, it will be beneficial to relocate an 

emergency vehicle to this location. In this case one vehicle would be relocated. If the 

emergency occurs in the neighbourhood of waiting station 3, no vehicle will have to 

be relocated. The population density in the vicinity of waiting station 3 is 

comparatively low, and a relocation of the other vehicles would not lead to a higher 

coverage. Therefore the number of relocations is dependent on the requested 

emergency vehicle. In scenarios with higher numbers of waiting stations more than 

one relocation might be necessary. In general 0 to k-2 vehicles have to be relocated, 

depending on the waiting sites chosen for state k-1 and the requested emergency 

vehicle.  

 
Figure 2.1: Relocation scenario. 

The number of relocations that have to be made if the system moves from state k to 

state k-1, and the vehicle at  is dispatched to a call is given by reljk. Where Sk is 

the subset of vertices of W chosen to be used in state k. 

kSj∈

 

   hamming distance(Sk\j,Sk-1)    (10) =jkrel

 

Equation (10) gives the number of relocations reljk as the hamming distance between 

the waiting sites chosen for state k without the dispatched vehicle at j and the waiting 

sites chosen for state k-1. 

The possibility of different numbers of relocations for each system state change 

requires the calculation of the probabilities for these different events. In state k a 

maximum of k different relocation numbers are possible, because k different vehicles 
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could be dispatched. The probability that a vehicle is dispatched from waiting station 

 in state k is said to be dependent on the population of the covered demand 

points .  is the subset of vertices of V covered by waiting station . The 

probability of the different relocation numbers can be given by equation (11). 

kSj∈

i jV∈ jV Wj∈

    
∑∑

∑

∈ ∈

∈=

k j

j

Sj Vi
i

Vi
i

rel
jk d

d
q      (11) 

Note that demand points covered by more than one waiting station are counted 

repeatedly. For a realistic representation these demand points would have to be 

assigned to a waiting station. For example the closest waiting station could be chosen. 

Unfortunately these calculations are computational intensive. Therefore the relaxed 

model of equation (11) has been implemented. Given the number of relocations reljk 

(10) and the according probability  (11) the second target function can be 

formulated as the number of vehicles to be relocated between state k=(2,…,n) and 

state k-1 according to which vehicle is being dispatched, weighted with qk summed 

over all states k (13). 

rel
jkq

The mathematic formulation of the MCMRP is as follows: 

 

 Maximize ∑∑        (12) 
= ∈

n

k Vi
kiki qyd

1

 Minimize ∑∑       (13) 
= ∈

n

k Sj
k

rel
jkjk

k

qqrel
2

 Subject to: ∑    
∈

≥
iWj

ikjk yx ),...,0,( nkVi =∈   (14) 

      ∑
∈

=
Wj

jk kx ),...,0( nk =    (15) 

   { }1,0∈jkx    ),...,0,( nkWj =∈   (16) 

   { }1,0∈iky    ),...,0,( nkVi =∈   (17) 

 

Constraint (14) assures that vertex Vi∈  is only covered if at least one vehicle is 

located in Wi. Constraint (15) regulates the number of vehicles for each state. 

Constraints (16) and (17) define xjk and yik as binary values. 

The MCMRP addresses the same problematic as the MECRP. The main difference is 

that the MCMRP uses a bicriterial approach to find a balanced solution with respect 
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to the expected coverage and the number of relocations. Being a multiobjective 

optimization problem there usually is no single optimal solution. Instead many 

solutions can be found which can not be rated because of the multiple objectives. In 

order to find these solutions a multiobjective optimization algorithm can be used. In 

this work the MCMRP was solved by the Pareto Ant Colony Optimization Algorithm 

(PACO) Dörner et al. (2002). More information about multiobjective optimization 

and PACO can be found in chapter 3. 
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3. Ant Colony Optimization 
 

The algorithm used in this work is a metaheuristic called Pareto Ant Colony 

Optimization. It is a specialised version of the Ant Colony Optimization 

metaheuristic, capable of solving multiobjective problems. The main idea of the 

mechanism of this metaheuristic is derived from the behaviour of real ants. In the 

following a brief introduction to Ant Colony Optimization and description of the 

Pareto Ant Colony Optimization Metaheuristic are given. 

 

3.1 Ants 
 

We all have already seen so-called ant streets. Ants build these streets, when they find 

a rich food source and try to bring it to their nest. Biologists have done research on 

how the ants manage to build these streets and found that some ant species are 

capable of finding the shortest path between the nest and the food source. This 

perception aroused the interest of people with a mathematical background, since the 

construction of shortest paths is an important problem with applications in many 

fields. 

A good introduction to Ant Colony Optimization was given by Dorigo and Stützle 

(2004). The main mechanism behind the self-organization of the ants is stigmergy. 

That is a way of indirect communication by modifications of the environment. The 

ants deposit pheromones while they are on their search for food. Other ants sense the 

trails of this chemical and tend to follow these trails. The more pheromone is 

deposited on a path the more likely it is that other ants will use this path. These 

simple rules allow ants to find short paths from the nest to the food source. The 

mechanism can be easily explained by an experiment that was designed by 

Deneubourg et al. (1990). In the double bridge experiment an ant nest is connected to 

a food source by bridges with two branches of varying length. By providing different 

branch lengths the pheromone laying and following behaviour of the ants was 

studied. In the first experiment a double bridge with branches of equal lengths was 

used as depicted in Figure 3.1. 
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Figure 3.1: Double bridge experiment with equal branch lengths.1 

 

When the ants cross the bridge they have to choose one of the branches. Initially they 

randomly choose each branch with equal probability, because there is no pheromone 

on the branches. Gradually more and more ants use one of the two branches, until 

eventually almost all ants use only one branch. Given that both branches are equally 

attractive, only by random fluctuation more pheromones are deposited on one of the 

branches. As following ants are attracted by higher pheromone concentrations they 

tend to choose this branch and strengthen the pheromone trail even more as they use 

this trail. Repeated experiments show that both branches are chosen with equal 

probability. 

 
Figure 3.2: Double bridge experiment with different branch lengths.2 

                                                 
1 Source: Dorigo, M., Stützle, T.: “Ant Colony Optimization”, The MIT Press, page 3, 2004 
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In the next step of the experiment the ants are confronted with different branch 

lengths as depicted in figure 3.2. The long branch is twice as long as the short branch. 

Again the ants are initially indifferent between the two branches and choose each 

branch with equal probability, because there is no pheromone. But after some time 

the majority of the ants uses the shorter branch. This happens, because the ants using 

the short branch are much faster and therefore are the first to reach the food source. 

When they return to the nest they have to decide between the two branches again. But 

this time there is more pheromone on the short branch, which leads the ants to use the 

short branch again and deposit even more pheromone on it. After some time the ants 

travelling on the short branch will have deposited much more pheromones and the 

majority of the ants will follow this pheromone trail. Interestingly even then some 

ants use the long branch. This can be interpreted as some kind of “path exploration”, 

which should enable them to find new shorter paths. 

 
Figure 3.3: Double bridge experiment with added branch.2 

 

A third step of the experiment investigated if the ants can use this “path exploration” 

behaviour to switch to a new shorter connection after convergence. The setting is 

depicted in Figure 3.3. First the ants are offered only one bridge, and after 30 minutes 

a shorter branch is added. It can be observed that the newly added branch is used only 

sporadically, and the ants do not switch to the shorter path. This is because, when the 

short branch is added, the majority of the ants is attracted by the strong pheromone 

trail and thus reinforces it. The evaporation rate of the pheromones is too slow, as to 

“forget” the path the ants have converged to. 

                                                 
2 Source: Dorigo, M., Stützle, T.: “Ant Colony Optimization”, The MIT Press, page 5, 2004 
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The observations of the ant behaviour led to algorithms that mimic the ant 

optimization capability. First ant algorithms were used to understand the mechanism 

that controls the ant behaviour and therefore simply imitated the ant behaviour. To 

successfully apply this solution strategy on more complex problems, it is necessary to 

add some more rules to the behaviour of the artificial ants. The third part of the 

double bridge experiment showed that the evaporation of the pheromones did not play 

a significant role for real ants. Artificial ants benefit from higher evaporation rates as 

they allow more exploration of the solution space, as a prerequisite to find local 

optima. The general higher complexity of the problems tackled with ant algorithms 

gives rise to more additions to the ant behaviour. On complex graphs the formation of 

loops raises a serious problem. The pheromones lead to a reinforcement of these 

loops, preventing good solutions. In order to avoid loops it is necessary to give the 

artificial ants some memory. If the ants memorize their path, the loops can be 

removed from the path before the pheromone is deposited. To further improve the 

convergence performance of ant algorithms it is possible to use global information. 

For instance the amount of pheromone that is deposited by an ant can be dependent 

on the solution quality. The best solutions can be found more quickly by using this 

information. Alternatively only the best of some simultaneously running ants can be 

allowed to deposit pheromones. These are only some of the extensions that could be 

used to build a high performing ant algorithm. The Ant Colony Optimization 

metaheuristic explained in the next section is one of the most successful examples of 

ant algorithms. 

 

3.2 Ant Colony Optimization 
 

The Ant Colony Optimization Metaheuristic is inspired by the foraging behaviour of 

real ants described in the previous chapter. It is a general pattern of a heuristic that 

can be applied to a wide range of problems. Being an approximate algorithm the loss 

of the certainty to attain optimal results is accepted in return for efficiency. This 

makes the algorithm suitable for NP-hard problems, where exact algorithms are often 

limited to small instances. The algorithm as described by Dorigo and Stützle (2004) 

mainly consists of three procedures: ConstructAntsSolutions, UpdatePheromones and 

DaemonActions. 
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3.2.1 ConstructAntSolutions 
 

The ConstructAntSolutions process controls how “ants” (agents) independently 

construct solutions. As the ants move over the problems construction graph they 

randomly build solutions. If a node has been visited it means that the solution variable 

represented by this node is included in the solution. For instance in the case of a 

Travelling Salesman Problem, a visited node represents a visited city. The movement 

of the ants is stochastically decided and influenced by heuristic and pheromone 

information. Heuristic information represents a priori information about the problem 

instance, or runtime information provided by a source different from the ants. For 

example the heuristic information can give the cost to include the next node into the 

solution. The heuristic and pheromone information is stored on the arcs connecting 

the nodes. When the ant decides what node to visit next, it “senses” the information 

on the arcs and decides randomly according to the information. Arcs with higher 

amounts of pheromone and better heuristic values have a better chance to be included 

in the solution. The final (in some cases partial) solution is then evaluated and the 

information passed to the next process UpdatePheromones. 

 

3.2.2 UpdatePheromones 
 

In the UpdatePheromones process the pheromone trails are modified. The information 

of the solution quality is used to decide where to deposit more pheromone. In addition 

a rate of pheromone evaporation is implemented. This enables the algorithm to forget 

old solutions and explore new areas of the search space to find better solutions. 

Otherwise the algorithm could converge too fast to a suboptimal solution, because the 

first randomly found solutions would have a strong influence. 

 

3.2.3 DaemonActions 
 

The DaemonActions process is optional. The converging mechanism of the ants often 

can be improved by the addition of external operations. With the help of daemon 

actions global information can be used to guide the optimization process. For instance 

only the best ants can be allowed to deposit pheromones. Or the amount of 

 21



pheromones can be dependent on the solution quality. Daemon actions can be used to 

decide when to activate local optimization procedures. 

 
________________________________________ 

procedure ACOMetaheuristic 

ScheduleActivities 
ConstructAntSolutions 

UpdatePheromones 

DaemonActions…%optional 

end-ScheduleActivities 
end-procedure 
________________________________________ 

Figure 3.4: The ACO metaheuristic in pseudo-code.3 

 

The basic framework of the Ant Colony Metaheuristic is depicted in figure 3.4. The 

ScheduleActivities construct organises the cooperation of the three parts of the Ant 

Colony Optimization algorithm. How these three processes are scheduled and 

synchronised is up to the designer, and should be adapted for the specific problem 

characteristic. 

 

3.3 Pareto Ant Colony Optimization 
 

The Pareto Ant Colony Optimization Metaheuristic is a variant of the Ant Colony 

Optimization Metaheuristic specially designed for multiobjective optimization 

problems. This metaheuristic approach has been introduced by Dörner et al. (2002) 

for a multiobjective portfolio selection problem. The challenge of multiobjective 

optimization problems is that competing objectives usually avoid the existence of one 

single optimal solution. Several solutions of undistinguishable quality may be 

possible. In order to overcome the difficulty of deciding between several solutions, it 

is possible to translate the problem under consideration into a singleobjective 

problem. By the assignment of weights to the different objectives one single objective 

function can be built. Unfortunately in most cases it is very difficult for the decision 

maker to give meaningful weights to represent his preferences. Therefore it is an 

advantage to calculate the pareto-optimal front, and then select one of these solutions. 

 
                                                 
3 Source: Dorigo, M., Stützle, T.: “Ant Colony Optimization”, The MIT Press, page 38, 2004 
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Figure 3.5: The pareto-optimal front. 

 

The pareto-optimal front as depicted in figure 3.5 consists of all non-dominated 

solutions of the solution space. A solution is said to be dominated, if there exists 

another solution that is superior in at least one objective, while not being inferior in 

the other objectives. In other words dominated solutions are inferior to solutions who 

dominate them. On that account dominated solutions can be excluded from the set of 

possible best solutions. The remaining solutions which dominate all other possible 

solutions and do not dominate each other are called efficient or pareto-optimal. The 

solutions of the pareto-optimal front provide a reasonable trade-off between the 

objectives.  

The calculation of the efficient solutions is not trivial. Larger instances of problems 

cannot be calculated by brute force within acceptable time. Therefore heuristic 

approaches like Genetic Algorithms, Simulated Annealing, Tabu Search and Pareto 

Ant Colony Optimization have been adapted for multiobjective combinatorial 

optimization problems. 

The solution finding process of PACO basically relies on the same principles as 

ACO. Ants create solutions randomly and influenced by pheromone trails. The 

pheromones are applied according to the solution quality. The ability to get good 

solutions for multiple objectives is achieved by the use of multiple pheromone trails. 

For each objective a corresponding pheromone matrix is established. These matrices 

are weighted randomly and combined into a single pheromone matrix that is then 

used for the solution creating process. The weighting of the objectives is necessary to 

enable the procedure to converge to an optimum. The constructed solutions are 

evaluated with respect to all objectives and the pheromone deposits are made 

according to the weights. After a defined number of iterations the algorithm stops the 

converging process for the set weighting and repeats the procedure with different 
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random weightings. The converging process has to be repeated with different random 

weightings in order to find a good approximation set of the pareto optimal front. 

In the next chapter the PACO Algorithm and some variants used in this work to solve 

the MCMRP are presented. 
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4. Algorithms 
 

This section gives an introduction to the different algorithms which were employed 

for the ambulance relocation problem. Chapter 4.1 presents the basic structure 

common to all variants. Different pheromone structures as well as a version featuring 

a smaller search space were used. These algorithms are presented in chapter 4.2 and 

4.3 respectively. Further enhanced versions with shifting ant numbers are described in 

chapter 4.4. 

 

4.1 Basic Structure 
 

All versions of the algorithm feature the same basic structure that follows the 

principles of the PACO Metaheuristic presented in Dörner et al. (2002). A high-level 

representation of a PACO algorithm is given in pseudo code in figure 4.1. 

 

procedure PACO 

 for Period = 1 to Π 

  SetWeights 

  InitialisePheromones 

  for Iteration =1 to M 

   for Ant = 1 to s 

    CreateSolution 

    EvaluateSolution 

   end-for 
   FindBest 

   PheromoneUpdate 

   AddSolution 

  end-for 
 end-for 
end-procedure 

Figure 4.1: The Pareto Ant Colony Optimization in pseudo-code. 

 

The SetWeights construct defines the weights of the objectives randomly and 

different for each period. In each period the problem is solved according to a fixed 
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weighting. Only the repeated calculation with different weightings allows the finding 

of a good approximation set. The pheromone structures have to be reset for each 

period by the InitializePheromones construct. The number of iterations M defines 

how long the algorithm searches with one set of weights. The CreateSolution 

construct simulates the run of the ant. As the path is constructed by the ant, the 

solution is put together. Each solution is evaluated with respect to the weightings of 

the objective by the EvaluateSolution construct. The FindBest construct compares the 

s solutions constructed in each iteration. The best solution is stored for later use with 

the PheromoneUpdate and AddSolution construct. In the PheromoneUpdate 

procedure the evaporation and deposit of pheromones is administered according to 

the found solution. The AddSolution procedure integrates the solution to the 

approximation set and sorts out the dominated solutions. The final outcome of the 

PACO procedure is a set of solutions which dominate all other found solutions but do 

not dominate each other. This set is called approximation set as it is an approximation 

of the pareto optimal front. 

 

4.2 Pheromone Structures 
 

The pheromone structures represent the directed graph on which the ants can move in 

order to build solutions. Therefore the modelling of the pheromone structures is 

determined by the way the solutions are to be constructed. The structure can be 

designed freely, but the solution construction process must be able to create all 

possible solutions. The performance of the algorithm and the information stored by 

the pheromones can be altered by the design of the pheromone structures. In the 

following two methods that were compared in this work will be presented. 
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Figure 4.2: Pheromone Graph A. 

 

Figure 4.2 depicts the pheromone structure version A. Here the ant starts on the node 

to the left. By moving on to another node the ant randomly selects one station for 

state k=1. In states where k>1 the ant subsequently adds stations to the solution until 

k stations have been selected. Note that stations can only be selected once in each 

state. Therefore the corresponding nodes of chosen stations have to be removed from 

the graph in order to avoid multiple assignments. Between the states the ant moves to 

a blank-point before it starts the selection process for the next state. The trail of the 

ant is represented by the connections between the chosen stations. As the pheromones 

have to be deposited on this trail, the pheromones can be given in matrices with the 

following structure. 
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These matrices represent the graph in figure 4.2. An interesting point of this way to 

design the pheromone structure is that each element of the matrix stores the 

information of two stations to be selected. The station the ant is coming from and the 
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station it is moving to. This gives the algorithm the ability to mark awarding 

combinations of stations. For the relocation problem at hand this feature can be 

beneficial. It is very likely that some combinations of stations persistently contribute 

to high solution quality, when they are implemented in different solutions. 

 

 
Figure 4.3: Pheromone Graph B. 

 

The second variant of the pheromone structures is depicted in Figure 4.3. Here the ant 

returns to a blank-point after each selection of a station. Again the corresponding 

nodes of already visited stations have to be removed from the graph in order to avoid 

multiple assignments in each state. In difference to the first version the trail of the ant 

is not given by the connecting arcs. Instead the trail simply consists of the “visited” 

stations. The pheromone structure can be represented by a combination of vectors. 
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Evidently this version is simpler in the way that it only stores the information of the 

used stations. But the higher information capacity of version A comes at a price. The 
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pheromone structure of version A consists of elements, while version B 

only needs  elements. The exponential growth of the number of elements of 

version A leads to a significant difference even for small instances. The problem used 

in this work to evaluate the algorithms features twelve stations (st=12) and four 

vehicles (vh=4). The numbers of elements of the pheromone structure are therefore 

876 and 120 respectively. Hence the question is whether the use of additional 

information is worth the trouble to manipulate a complex pheromone structure, or if it 

is favourable to keep the structure simple in order to speed up the calculations. 
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4.3 Search Space 
 

This chapter describes the improvement of the solution construction process. As 

illustrated in the last chapter about pheromone structures, all possible solutions can be 

built with the solution construction process. However the freedom of movement 

enables the ants to create identical solutions with the use of different paths. This 

happens because the waiting stations can be selected in different orders. But the order 

of the waiting stations is irrelevant for the solution. If all permutations of the 

solutions are treated as varying, the algorithm has to choose between far more 

solutions. This effect amplifies for higher instances of the problem. The number of 

solutions is given by , while a solution space including all permutations of the 

solutions differentiates between  solutions.  
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Take a small example with four waiting stations and three vehicles. Here four 

different solutions are possible in state k=3 (locate three vehicles). 
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As you can see the solutions are all sorted in ascending order. The idea is to build the 

solutions in ascending order during the solution creation process, and therefore 
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avoiding the permutations of the solutions. In this example three out of four solutions 

begin with station 1 and one solution with station 2. When the ant selects the first 

station it will choose randomly. The probability to select station 1 has to be risen by 

4
3  because three out of four solutions begin with station 1. Station 2 has to be 

selected with a probability of 
4
1 . Stations 3 and 4 can’t be selected in the first step. 

The selection of the second and third station can be done analogously. Figure 4.4 

shows the probabilities that have to be applied during the selection process. The 

probability to select a station is dependent on the number of solutions that can be built 

with this station on this place of the solution. All four solutions will be chosen with 

equal probability if these probabilities are used during the selection process. 

 

 
Figure 4.4: Conditional probabilities for the selection process. 

 

These probabilities are computed in advance and stored in an array ps. ps(i,j,k) gives 

the number of possible solutions if station i is chosen, for the j-th vehicle to assign, if 

k vehicles are to be assigned. In the CreateSolution process these probabilities are 

applied to the pheromone matrices to control the solution construction. 

The solution space of the problem used in this work to evaluate the algorithms (st=12, 

vh=4) could be reduced from 11880 to 495 solutions. This reduction should speed up 

the convergence behaviour, as fewer solutions have to be compared. 
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4.4 Shifting Ant Number 
 

During preliminary testing of the algorithm a common characteristic could be 

detected. While the algorithm is able to find good approximation sets of the pareto 

optimal front in a short time, the actual solutions of the pareto optimal front seem to 

be hard to find.  

 

 
Figure 4.5: Convergence of algorithm V3.0. 

 

Figure 4.5 shows a graph depicting the convergence behaviour of algorithm version 

3.0. The coloured lines show the average metric values of 20 runs of approximately 

60 seconds. Three metrics were used to measure the quality of the approximation sets. 

The found solutions ratio gives the percentage of found solutions of the pareto 

optimal front. The average distance metric measures the average distance of the 

solutions to the pareto optimal front. The hypervolume metric indicates the size of the 

region of the solution space that is weakly dominated by an approximation set. More 

information about the metrics used in this work to evaluate the solution quality can be 

found in chapter 5. Higher values of hypervolume and found solutions ratio and lower 

values of average distance indicate better approximation sets. The graph shows that 

after a runtime of 20 seconds good approximation sets have been found. The 
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hypervolume and average distance metric values can only increase slightly with 

extended runtime. The found solutions ratio increases far slower, finding less than 40 

percent of the solutions of the pareto optimal front after 60 seconds of runtime. It 

seems as the approximation set converges very fast close to the pareto optimal front, 

but the solutions of the pareto optimal front are hard to find. This does not seem to be 

a problem of local optimality, as tests with high values for the pheromone evaporation 

parameter did not lead to better results. (Confer Appendix C: Determination of the 

parameters.) A raise in the number of ants used by the algorithm helps to find more 

solutions of the pareto optimal front, but this increases the runtime directly 

proportional. 

The idea to overcome this problem was to increase the number of ants in the later 

stages of the algorithm, when the found approximation set is close to the pareto 

optimal front. This should enable the algorithm to intensify the search when better 

solutions are hard to find. The idea is transposed by linearly increasing the number of 

ants during the run of the algorithm. A minimum of three ants is used in order to 

maintain the proper functionality of the algorithm. The number of ants is determined 

for each iteration by equation 18. s is a definable parameter giving the maximum 

number of ants. M gives the number of iterations. 
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Interestingly this modification led to clearly inferior results, as will be shown in 

chapter 6.1.3. A reason for the bad performance may be the small number of ants in 

the early stages of the algorithm. With only few ants exploring the search space, 

many pheromones are deposited on relatively poor solutions misdirecting the 

algorithm. This showed that it is important to find good solutions in the early stages 

of the algorithm. The principle was therefore reversed and the algorithm modified in 

the way that the number of ants should be decreased linearly. Equation 19 shows how 

the number of ants used for algorithm version 3.2 is calculated.  
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The good results of algorithm version 3.2 confirm the assumption that intensified 

search in the early stages of the algorithm helps to direct the algorithm towards good 

solutions. A detailed evaluation of the results is given in chapter 6. 
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5. Metrics of Performance 
 

For multiobjective optimization problems it is substantially more complex to define 

the quality of approximated solutions than for single-objective optimization 

problems. The reason for this is the usual absence of a single optimal solution. 

Instead the results of multiobjective generally consist of a whole set of incomparable 

solutions, where each solution is superior to the others in some objectives and inferior 

in other objectives. These solutions which dominate all other possible solutions but 

do not dominate each other are called the pareto-optimal set. The aim of 

multiobjective optimization algorithms is to find this set or a good approximation of 

it. In order to assess multiobjective optimization algorithms some tool to rate the 

approximation sets is needed. As can be seen in figure 5.1 this task can be difficult. 

 

 
Figure 5.1: Approximation sets and the pareto optimal front. 

 

Figure 5.1 depicts a two-dimensional problem with maximization on the x-axis and 

minimization on the y-axis. So solutions to the lower right dominate those above and 

left of them. It is difficult to say whether approximation set 1 or 2 is better, because 

they both partly dominate each other. It seems to be easier to compare approximation 
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set 3 to the others, because it is dominated by them. So approximation set 3 can be 

stated as worse, jet it is not clear how much better the other sets are and in what 

aspects. 

Unfortunately there is no common agreement on standards for the quality evaluation. 

A popular solution to this problem is to calculate unary quality measures. Such 

measures assign a number that reflects a certain quality aspect of an approximation 

set. Usually some of these measures are combined in order to cover the different 

aspects. There are also binary quality measures, which assign numbers to pairs of 

approximation sets. Another solution is the attainment function approach trying to 

estimate the probability to obtain arbitrary goals in objective space from multiple 

approximation sets. Zitzler et al. (2002) showed that existing unary quality measures 

can fail in indicating whether an approximation set is better than another, even if 

several of them are used. They proposed a binary quality measure that is able to 

display which approximation set is superior according to dominance relations. But the 

better indication ability comes at the cost of additional complexity. The number of 

indicator values to be considered is quadric in the number of approximation sets as 

opposed to linear for unary indicators. 

 

According to Zitzler, Thiele and Deb (2000) the optimization goal consists of 

multiple objectives: 

• “The distance of the resulting nondominated set to the pareto-optimal front 

should be minimized. 

• A good (in most cases uniform) distribution of the solutions found is 

desirable. The assessment of this criterion might be based on a certain 

distance metric. 

• The extent of the obtained nondominated front should be maximized, i.e., for 

each objective, a wide range of values should be covered by the nondominated 

solutions.” 

 

Therefore it was decided to use a set of unary quality measures to evaluate the 

solutions of the algorithm versions. The three metrics of performance that were 

implemented in this work are described in the following. 
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5.1. Found pareto-optimal Solutions Ratio 
 

The best possible approximation of the pareto-optimal front is the pareto-optimal 

front itself. So an intuitive measure is to look at how many solutions of the pareto–

optimal front were found. This metric calculates the quotient of the amount of 

solutions of the approximation set A, which are also part of the pareto-optimal front 

P, to the total amount of solutions in P. (cf. Jaszkiewicz, 2004) 
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The value of this metric can range from 0 to 1, With 0 indicating that no solution of 

the pareto-optimal front was found, and 1 indicating that all solutions of the pareto-

optimal front were found. It can easily be seen that higher values are desirable. 

Nevertheless it is more important to pattern the distribution of the pareto-optimal 

front, instead of knowing all the solutions of the pareto-optimal front. In the end the 

decision maker has to select one of the solutions according to his weightings of the 

objective functions. 

This metric is easily interpreted and shows a small computational complexity. The 

main disadvantage is that the pareto-optimal front has to be known. So the use of this 

metric is restricted to relatively small problems. It also has a weakness in the early 

stages of an Algorithm, when typically relatively bad approximation sets are found. 

The metric does not differentiate between approximation sets without any solutions of 

the pareto-optimal front, thus giving no indication of solution quality until the late 

stages of the algorithm, when the pareto-optimal front is reached. 
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5.2. Average Distance 
 

This metric calculates the average distance from each solution a of the approximation 

set A to the closest solution p of the pareto-optimal front P. The metric is formulated 

by Zitzler et al. (2000) as following: 
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Where || · || denotes a distance metric. Different methods can be used to calculate the 

distance between two solutions. For the bidimensional case in this work the Euclidean 

distance was used. It is necessary to normalise the objective values, if the objectives 

have different ranges. Otherwise some objectives would have a bigger impact on 

solution quality than others. 

In general lower values of this metric indicate smaller distances, with a value of 0 

meaning that the approximation set equals the pareto-optimal front. But lower values 

do not necessarily mean better solutions, as even dominated solutions can have lower 

distances. Very differently distributed approximation sets may have the same distance 

value. Jaszkiewicz (2004) pointed out that regions containing many solutions have a 

bigger impact on the average distance than regions containing fewer solutions. 

Interestingly the addition of another pareto-optimal solution to an approximation set 

can result in worse distance values, although this can only lead to an improved 

approximation set. The convergence graphs in appendix D show this characteristic. 

One of the strengths of this metric is that unlike the first described metric it gives 

insight in the convergence process of an algorithm even in the early stages. The 

shortcomings of the average distance metric give rise to the need to combine this 

metric with other metrics in order to get a good estimation of solution quality. 
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Figure 5.2: The distance metric. 

 

Figure 5.2 depicts a two-dimensional problem with maximization on the x-axis and 

minimization on the y-axis. Solutions to the lower right dominate those above and left 

of them. The arrows illustrate the distances between the solutions of the 

approximation set and the closest solutions of the pareto-optimal front. 

 

5.3. Hypervolume 
 

This metric was first introduced by Zitzler and Thiele (1998). The hypervolume 

indicates the size of the region of the solution space that is weakly dominated by an 

approximation set. Each solution of the approximation set dominates a region of the 

solution space. The volume of the weakly dominated region is calculated from a 

hypercube that spans between the solution and a reference point. The volume of the 

merged hypercubes of all solutions gives the hypervolume. Nebro et al. (2006) 

defined the hypervolume in the following way: 
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Where va gives the volume of the region of the solution space that is dominated by 

solution a of the approximation set A. 

The two-dimensional case is displayed in figure 5.3. Here the objective on the x-axis 

is to be maximized and the objective on the y-axis is to be minimized. Solutions 

weakly dominate the area above and left of them. The grey area between the solutions 

of the approximation set and the reference point illustrates the hypervolume. The 

graph points out that higher hypervolume values (bigger grey area) indicate better 

solution quality. 

 

 
Figure 5.3: The hypervolume metric. 

 

The selection of the reference point is an important step, as different reference points 

can change the ordering of pairs of incomparable approximation sets. Fonseca et al. 

(2005) suggest to use the bounds of the objective space if they are known. Otherwise 

it is possible to concatenate all approximation sets and compute the nadir point. Then 

the nadir point has to be shifted in order to be strictly dominated by all points in the 

approximation set. This point can then be used as the reference point. In this work the 

worst case values of the objectives were used to build the reference point. 
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Zitzler et al. (2002) stated that hypervolume was the only unary indicator (they were 

aware of) that would hold for -compatibility and -completeness. -compatibility 

means that, if the metric indicates that solution A is better than solution B we know 

that B is not better than A according to dominance relations. > -completeness means 

that all cases where A is better than B are detected by the indicator. This is a valuable 

quality, because many unary indicators have the problem that they may evaluate 

approximation set A as better than B, even if B actually is superior according to 

dominance relations. Another strength of the hypervolume metric is the ability to 

comprise the diversity of an approximation set. The hypervolume can be calculated 

fast in the two-objective case, but large numbers of objectives implicate high 

computational cost. 

>/ > >/
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6. Comparison and Results 
 

In this chapter the different algorithms that were applied to the ambulance relocation 

problem are compared, and the results of the Viennese relocation problem are 

presented. In addition the important parts of the procedure are explained to ease the 

understanding of the results. 

 

6.1 Comparison of the Algorithms 
 

The different versions of the algorithms were already tested during the development. 

The findings of these first tests led to new ideas and even more versions. However for 

a meaningful comparison the versions have to be tested under the same 

circumstances. In this case this means that, all versions use the same runtime, and the 

optimal parameters for this runtime have to be found by a standardised procedure. 

This procedure is described in detail in appendix C. It is important to adjust the 

parameters for every version, because changed convergence characteristics can 

require different parameter settings in order to fully benefit from the changes. The 

calculations for the comparison were conducted on a model of smaller scale due to 

time constraints. In this model up to four vehicles (vh=4) have to be located on 

twelve stations (st=12) to cover the demand of 400 demand points. 

The results are illustrated in three boxplots, one for each metric. The underlying data 

was gathered in twenty runs of sixty seconds for each algorithm version. The meaning 

of the metrics is described in chapter 5. High values of the found solutions ratio and 

the hypervolume as well as low values of the average distance indicate good solution 

quality. The biggest differences can be seen in the found solutions ratio. 

Unfortunately this metric offers the lowest solution quality indication performance. 

But together with the other two metrics, which offer good solution quality indication, 

the different versions of the algorithm can be evaluated. In addition the convergence 

behaviour of the algorithms can be analysed to assess the algorithm. The graphs 

depicting the convergence behaviour of the different algorithm versions are given in 

appendix D. 
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6.1.1 Pheromone Structures 
 

Algorithm versions 1 and 2 differ in the way the pheromones are structured. Version 

1 uses a pheromone structure able to store more information, but this ability comes at 

the price of higher complexity. In Version 2 the number of elements of the 

pheromone structure is minimized reducing the complexity of the structure. This way 

only necessary information is stored. The results show that the additional information 

stored in version 1 is actually being used by the algorithm. If both versions are 

executed with the same number of iterations, algorithm version 1 can converge faster 

and leads to better results. But the higher complexity slows the process so that within 

60 seconds only ~102.900 solutions can be calculated, while algorithm version 2 is 

able to calculate 40% more solutions in the same time (~144.000 solutions). The 

boxplots in figures 6.1, 6.2 and 6.3 show that if given the same amount of cpu-time, 

algorithm version 2 can outperform algorithm version 1. So in this case it is beneficial 

to use the simple but fast approach. 

 

6.1.2 Search Space 
 

Inspired by these results the next evolution of the algorithm was altered with the aim 

to reduce the complexity even further. Algorithm versions 1 and 2 use the same 

solution construction procedure, that allows the ants to move freely in order to build 

the solutions. Unfortunately the freedom of movement allows them to create identical 

solutions over different paths. In other words this means that the algorithm has to 

choose not only between all possible solutions, but between all permutations of all 

possible solutions. In algorithm version 3 the solution space is reduced to a minimum. 

For every possible solution there exists only one path leading to that solution. Still all 

solutions can be constructed with equal probability. The necessary additional 

calculations can be done in advance, and therefore are not slowing down the 

algorithm. As assumed this modification improves the solution quality and enables 

the algorithm to converge faster to good solutions. Note that the difference in 

performance of algorithm versions 2 and 3 should increase with problem size, as the 

number of permutations rises exponentially. 
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6.1.3 Shifting Ant Number 
 

Algorithm versions 3.1 and 3.2 feature modifications of the code which caused 

unexpected results. In both versions the number of ants is not constant as it is in the 

previous versions, but is allowed to change over the runtime. In algorithm version 3.1 

the number of ants increases linearly. The intention was to enable the algorithm to 

intensify the search behaviour in the late stages of the run. Unfortunately the results 

show clearly that this measure decreases the performance. This can be explained, if 

the change in the number of ants is seen as a change in the amount of pheromones 

that are deposited. With small numbers of ants fewer calculations are done before the 

pheromones are applied. Therefore lots of pheromones are deposited on relatively 

poor solutions in the early stages of the algorithm misdirecting the converging 

process. In algorithm version 3.2 the number of ants linearly decreases. As the first 

approximation sets seem to be very important for the convergence behaviour, the 

intensified search in the early stages could improve the performance. The results 

confirm this assumption. Algorithm version 3.2 provides the best results for the 

runtime of 60 seconds. A maximum of 40 ants is used in this version. Of course this 

large number of ants would also help to find better solutions in the late stages of the 

algorithm, but the constant use of large numbers of ants would take a lot of runtime. 

Therefore the varying ant number seem to enable the algorithm to use the resources 

efficiently for the important stages of the process, while it is still possible to calculate 

enough iterations. 
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Figure 6.1: Comparison of the algorithms: Found solutions ratio. 
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Figure 6.2: Comparison of the algorithms: Average distance. 
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Figure 6.3: Comparison of the algorithms: Hypervolume. 
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6.2 Results of the Viennese Relocation Problem 
 

The Viennese ambulance service (Wiener Rettung) is a public organization 

responsible for the provision of emergency services in Vienna. To fulfil the various 

tasks a heterogeneous fleet with differently assembled staff is maintained. There are 

40 ambulances staffed with paramedics, who are able to respond to most 

emergencies. These ambulances are also used to take over non-emergency tasks like 

transportation services to hospitals. For difficult cases, where an emergency physician 

is needed, there exist 17 NEF vehicles (Notarzt Einsatz Fahrzeug), which are staffed 

with a paramedic and an emergency physician. Incoming emergency calls are 

answered centrally, so that the appropriate vehicle can be sent according to the 

criteria of the NEF-system. This system enables a higher availability of emergency 

physicians as well as an efficient use of the resources. The waiting sites of the NEF 

vehicles are distributed over Vienna in a way that each possible emergency site can 

be reached within 12 minutes after the call. 

 

 
Figure 6.4: Demand Points and Waiting Sites in Vienna4 

 
                                                 
4 Source: Dorner, T.: “Comparing Location Models for Emergency Vehicles in Vienna”, page 20, 
Vienna, 2006 
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Thanks to the work of Theresa Dorner (2006) very accurate data of the situation in 

Vienna could be implemented in this study. Her diploma thesis contains precise 

information on the waiting locations, demand points and the distances between them. 

In the following the establishment of the data applied in this work is described. The 

necessary processing of the geographic data was done with the geographic 

information system (GIS) software ArcView and its extension WIGeoNetwork. With 

the use of this software the exact waiting site locations available to the NEF system 

could be geocoded. For the establishment of the demand points the territory of Vienna 

was partitioned into 250x250m squares. The centroid of these squares was used to 

locate the demand point, while the resident population within these squares represents 

the demand. The information of the population distribution was provided by Statistik 

Austria. The total population of 1.721.987 inhabitants is allocated to 3.920 demand 

points with a population > 0. Figure 6.4 depicts the distribution of the demand points 

and waiting sites in Vienna. Squares without any resident population are left out, 

while darker squares indicate higher population density. The distances between the 

waiting stations and the demand points were calculated with data basing on real street 

data of TeleAtlas. This way the effect of different street categories and traffic rules 

could be considered. 

In order to implement the PACO Metaheuristic on the Viennese problem, the 

algorithms were adapted to the scale of the problem. The algorithm needs upper and 

lower bounds of the target functions. They are used to evaluate the solutions found 

during the run of the algorithm and consequently affect on which solution paths 

pheromones are added. Fortunately the actual best and worst values of the population 

coverage value could be found in reasonable computation time. All waiting site 

allocations were fully enumerated for each state in order to find the maximum and 

minimum population coverage of each state. Then the best and worst values were 

combined to build the upper and lower bound respectively. The values of target 

function 1 range from 1,643,477.34 to 1,721,791.81. Note that these values cannot be 

directly interpreted as the population coverage, because they give the sum of the 

population coverage of each state weighted by the probability of the state. The upper 

bound of the relocation value is given by the sum of the maximum number of 

relocations of each state multiplied by the corresponding probability: 

 

∑
=

−=
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k
kqktfworst

1

*)1(2_     (23) 
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The actual lowest possible value of target function 2 cannot be found within 

reasonable computation time. A very low relocation value was found by the 

evaluation of a solution with a hamming distance between states of zero. With this 

method a value of 0.88752 was obtained. It can be estimated that the lowest possible 

value lies slightly below 0.88752. In order not to exceed the lowest possible value the 

lower bound was set to 0. The lower and upper bounds of target function 2 are 

therefore 0 and 8.94167 respectively. The calculation of the probabilities of the states 

demands the knowledge of two characteristics: the average service rate µ and the 

arrival rate of calls λ. According to Dorner (2006) these values are µ=1.2 and λ =8.47 

and base on real data provided by the Viennese ambulance service. With the use of 

binomial distribution (Formula 1) the probabilities qk were calculated. The optimal 

parameters for the different algorithm versions were determined in a standardised 

procedure described in appendix C. Applied to the larger problem instance they lead 

to a runtime of approximately 50 minutes.  

 
Figure 6.5: Number of Solutions of the Algorithm Versions. 

 

For each algorithm version 10 approximation sets were calculated for the Viennese 

relocation problem. Because of the size of the problem a full enumeration would take 

too much computational time, so the pareto optimal front is unknown. Therefore the 
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solutions ratio and distance metric could not be used to evaluate the quality of the 

approximation sets. The number of solutions of the approximation sets is given in a 

boxplot in figure 6.5. The different versions show a uniform behaviour in this aspect. 

Relatively few pareto optimal solutions are included in the approximation sets 

compared to the total number of up to 154.000 calculated solutions in every single 

run. 

 
Figure 6.6: Hypervolume Values of the Algorithm Versions. 

 

The hypervolume metric is better qualified to compare the algorithm versions, as it 

can evaluate the quality of the approximation sets. Figure 6.6 gives a boxplot of the 

hypervolumes attained by the different algorithm versions. The results are quite 

surprising, because in two aspects they don’t reflect the previous findings. The 

performance of algorithm version 3.2 falls behind all other versions although it was 

the best performing algorithm at the test problem. It is jet unclear why the larger 

problem instance leads to this change. Further investigation would be necessary to 

explain the dissimilar impact of decreasing ant numbers on the performance of the 

algorithm. Algorithm version 1 provides the best hypervolume values. In this case the 

change can be explained by the conceptual difference. The complex pheromone 

structure of version 1 allows more information to be stored, but takes a bit more of 

cpu-time. For the small test problem it was beneficial to solve more solutions in the 

same time. The larger problem size allows algorithm version 1 to profit from the 
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conceptual advantage and makes it the best performing version. It is interesting to see 

that the problem size can have such an impact on the algorithm performance. Figure 

6.7 shows all solutions of the approximation sets of the best and worst performing 

algorithm versions 1 and 3.2. Better solutions are closer to the bottom right corner. 

With the help of this graph the superiority of algorithm version 1 is visualized, and it 

can be seen that the solutions of algorithm version 3.2 do not include any solutions of 

the pareto optimal front, as they are dominated by the solutions of algorithm version 

1. However both versions operate on a high level as they are relatively close to the 

boundaries. An arbitrary selected solution from the lower right corner achieves in 

97.6% of the time a population coverage higher than 99.9% while it meets a 

relocation value of 1.08. If the selected relocation strategy would be applied, a high 

level of population coverage could be achieved with a relatively small number of 

relocations. 

 

 
Figure 6.7: Approximation Sets of Algorithm Versions V1 and V3.2. 
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7. Conclusion 
 

Based on the Maximal Expected Coverage Relocation Problem by Gendreau et al. 

(2006) a bicriterial ambulance relocation problem has been developed. In addition to 

the extension to a bicriterial problem, the way to assess the number of relocations was 

refined. It was shown how the Pareto Ant Colony Algorithm can be used to face the 

increased computational complexity caused by the extension. 

The results of this work help to understand the mechanisms behind the Pareto Ant 

Colony Algorithm, but they also bring up new questions. One major question was 

whether to use a simple approach or to rely on a sophisticated concept even if the 

complexity slows down the algorithm. The results of the test problem clearly 

favoured the fast and simple approach, but the complex approach could employ its 

advantages when it was applied to the large problem instance. The reduction of the 

solution space improved the performance in both cases as it was expected, whereas 

the experiments with varying ant numbers generated ambiguous results. Only when 

applied to the small model the decreasing ant number could improve the performance. 

Further research is needed to understand under what circumstances a varying ant 

number can increase the performance. 

The final pareto optimal solutions proposed for the Viennese ambulance relocation 

problem show that the implementation of a relocation strategy can effect high rates of 

population coverage despite relatively few relocations. But the high values of the 

population coverage also result from the large radii of the ambulance vehicles. Even 

with only one vehicle 90% of the population can be reached within 12 minutes, if it is 

located on waiting station 14. Therefore an implementation of a relocation strategy 

could be used to maintain stricter time constraints and minimize the response times 

with the given number of NEF-vehicles.  
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Appendix: 
 

A. List of Variables 
 

best_zf1 … best possible value or upper bound of target function 1 

best_zf2 … best possible value or upper bound of target function 2 

c  … parameter for pheromone-update (deposit) 

coverage(i) … poputation reachable within r minutes from station i 

D(x,y,station) … distance array of distances between demand points and waiting 

   stations 

di(i)  … demand of demand point i given by population 

M  … number of iterations 

PI  … number of periods 

ps(i,j,k) … number of possible solutions if station i is chosen, for the j-th  

   vehicle to assign, for k vehicles 

qk(k)  … probability of being in state k 

r  … action radius of the emergency vehicles, given in minutes 

rho  … parameter for pheromone-update (evaporation) 

s  … number of ants 

SOL  … solution matrix representing the approximation set 

SOL_A … list of solutions found by the ants within one iteration 

SOL_c  … solutions of the complete enumeration 

SOL_c_s … standardised solutions of the complete enumeration 

SOLi  … best solution of solution set SOL_A 

st  … number of potential waiting stations 

tau_com … pheromone matrix of weighted combined target functions 

tau_f1  … pheromone matrix of target function 1 

tau_f2  … pheromone matrix of target function 2 

vh  … number of vehicles 

weight_f1 … weight of target function 1 

weight_f2 … weight of target function 2 

worst_zf1 … worst possible value or lower bound of target function 1 

worst_zf2 … worst possible value or lower bound of target function 2 

 54



B. Code of PACO V3.2 
 

In this section version 3.2 of the Pareto Ant Colony Algorithm is given in Matlab 

code. Matlab is a high-level technical computing language and interactive 

environment for algorithm development, data visualization, data analysis, and 

numeric computation.5 The other versions of the algorithm as well as all other codes 

used in this work are given on the enclosed CD. All calculations were performed on 

an Athlon64 3500+ PC system. A list of all variables used in this code can be found 

in appendix A. 

 
[vh,st,r,D,di,qk,coverage]=create_TESTData; 
 
PI=25 
M=308 
s=40 
rho=0.01 
c=50 
 
function SOL = PACO(PI,M,s,rho,c,D,di,vh,st,r,qk,coverage) 
%------------------------------ 
%Pareto Ant Colony Optimization 
%PI    ... number of periods (each period runs with new random weights) 
%M     ... number iterations 
%s     ... number of ants 
%rho   ... parameter for pheromone-update (evaporation) 
%c     ... parameter for pheromone-update (deposit) 
%D     ... distancearray (x,y,station) 
%di    ... demand 
%vh    ... number of vehicles 
%st    ... number of stations 
%r     ... range of vehicles 
%qk    ... probability that k vehicles are available 
%------------------------------ 
high=100000; 
SOL=zeros(1,12); SOL(1,12)=high;%create first solution 
best_zf1=[8873.546107017692;]; 
worst_zf1=[4422.241490884563;]; 
bw_zf1=best_zf1-worst_zf1; 
best_zf2=[0.546514972263641;];%!!! value calculated by complete enumeration !!! 
worst_zf2=[2.2954881516229;]; 
bw_zf2=worst_zf2-best_zf2; 
%upper and lower bounds can be used for best- and worst-values 
 
ps = create_ps(st,vh); 
  
for Periode=1:PI 
    weight_f1=rand;%assign weights for F1 and F2 randomly 
    weight_f2=1-weight_f1; 
    [tau_f1,tau_f2,tau_com]=create_tau(st,vh,weight_f1,weight_f2); 
    %create pheromone-matrices 
    for Iteration=1:M 
        AntNr=max([3 s+1-ceil(Iteration/(M/s))]); 
        %lineary decreases the number of ants, beginning with s (minimum value=3) 
        for Ant=1:AntNr 
            X=createX(tau_com,vh,st,ps);%run an ant 
            SOL_A(Ant,:)=createSOLi(X,D,di,vh,st,r,qk,coverage); 
            %calculates the target values 
        end 
        SOLi.=.findbest(SOL_A,weight_f1,weight_f2,AntNr, 
                        worst_zf1,best_zf2,bw_zf1,bw_zf2); 
        %searches for the best solution 
[tau_f1,tau_f2,tau_com]=Phero_update(rho,c,SOLi,st,vh,weight_f1,weight_f2,tau_f1, 

                                                 
5 http://www.mathworks.com (4.10.2007) 
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                                     tau_f2);%pheromone-update 
        SOL = sortfun(SOLi,SOL);% add solution 
    end 
end 
  
function ps = create_ps(st,vh) 
%----------------------------- 
%ps(i,j,k) gives the number of possile solutions if station i is chosen, 
%for the j-th vehicle to assign, for k vehicles.  
%----------------------------- 
ps=zeros(st,vh,vh); 
for i=1:vh 
    ps(i:st,i,i)=1; 
end 
for i=2:vh 
    for j=i-1:-1:1 
        for k=1:st-1 
            if ps(k+1,j+1,i)>0 
                ps(k,j,i)=sum(ps(k+1:st,j+1,i)); 
            end 
        end 
    end 
end 
  
function [tau_f1,tau_f2,tau_com]=create_tau(st,vh,weight_f1,weight_f2) 
%--------------------------------------------------------------------- 
%creates the pheromone-matrices for TF1, TF2 and weighted combined 
%--------------------------------------------------------------------- 
tau_f1=zeros(st,vh,vh); 
for i=1:vh 
    tau_f1(:,1:i,i)=1; 
end 
tau_f2=tau_f1; 
tau_com=weight_f1*tau_f1+weight_f2*tau_f2; 
  
function X = createX(tau_com,vh,st,ps) 
%-------------------------------------------------- 
%creates an solution X (run an ant) 
%-------------------------------------------------- 
  
X=zeros(st,vh);%creates blank solution-matrix X 
tau_all=tau_com.*ps; 
for i=1:vh 
    currentloc=0; 
    for j=1:i 
        randnumber = rand * sum(tau_all(currentloc+1:st,j,i)); 
        bound=0; 
        count=0; 
        while randnumber > bound 
            count=count+1; 
            bound = bound + tau_all(currentloc+count,j,i); 
        end 
        X(currentloc+count,i)=1; 
        currentloc=currentloc+count; 
    end 
end 
  
function SOLi = createSOLi(X,D,di,vh,st,r,qk,coverage) 
%--------------------------------------- 
%calculates the target values of X 
%--------------------------------------- 
  
SOLi(1,1)=find(X(:,1)); 
SOLi(1,2:3)=find(X(:,2)); 
SOLi(1,4:6)=find(X(:,3)); 
SOLi(1,7:10)=find(X(:,4)); 
SOLi(1,11)= EvaluationF1(X,D,di,vh,st,r,qk); 
SOLi(1,12)= EvaluationF2_V2(SOLi,qk,coverage); 
  
function targetvalue1 = EvaluationF1(X,D,di,vh,st,r,qk) 
%------------------------------------ 
%calculates targetvalue of F1 
%targetvalue1 = percentage of covered population, weighted with qk summed over all k. 
%------------------------------------ 
  
coverage_di=zeros(20,20,vh); 
%coverage_di(x,y,numberVehicles)...saves the demand(di) of covered demand points 
for i=1:vh 
   for j=1:st 
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      if X(j,i)==1, 
         for x=1:20 
            for y=1:20 
               if D(x,y,j)<=r, 
                  coverage_di(x,y,i)=di(x,y); 
               end 
            end 
         end 
      end 
   end 
end 
parttargetvalue=zeros(vh,1);%coverage of 1,2,...,vh available vehicles 
for i=1:vh 
    parttargetvalue(i,1)=sum(sum(coverage_di(:,:,i))); 
end 
targetvalue1=qk*parttargetvalue; 
  
function targetvalue2 = EvaluationF2_V2(SOLi,qk,coverage) 
%----------------------------------- 
%calculates the targetvalue of F2 
%targetvalue2 = The number of vehicles to be relocated between two 
%consecutive states k according to which vehicle is called (the probability 
%that a vehicle is called from station st is dependent on the covered 
%population (=coverage(st))), weighted with qk summed over all k. 
%----------------------------------- 
rel=zeros(3,4);%number of vehicles to be relocated 
q_rel=zeros(3,4);%probability that vehicle is called 
  
v2=zeros(1,2); 
v2(1)=any(SOLi(1,1)==SOLi(1,2)); 
v2(2)=any(SOLi(1,1)==SOLi(1,3)); 
for i=1:2 
    sel=ones(1,2); 
    sel(1,i)=0; 
    rel(1,i)=1-v2*sel'; 
    q_rel(1,i)=coverage(SOLi(1,i+1))/sum(coverage(SOLi(1,2:3))); 
end 
  
v3=zeros(1,3); 
v3(1)=any(SOLi(1,2:3)==SOLi(1,4)); 
v3(2)=any(SOLi(1,2:3)==SOLi(1,5)); 
v3(3)=any(SOLi(1,2:3)==SOLi(1,6)); 
for i=1:3 
    sel=ones(1,3); 
    sel(1,i)=0; 
    rel(2,i)=2-v3*sel'; 
    q_rel(2,i)=coverage(SOLi(1,i+3))/sum(coverage(SOLi(1,4:6))); 
end 
  
v4=zeros(1,4); 
v4(1)=any(SOLi(1,4:6)==SOLi(1,7)); 
v4(2)=any(SOLi(1,4:6)==SOLi(1,8)); 
v4(3)=any(SOLi(1,4:6)==SOLi(1,9)); 
v4(4)=any(SOLi(1,4:6)==SOLi(1,10)); 
for i=1:4 
    sel=ones(1,4); 
    sel(1,i)=0; 
    rel(3,i)=3-v4*sel'; 
    q_rel(3,i)=coverage(SOLi(1,i+6))/sum(coverage(SOLi(1,7:10))); 
end 
  
targetvalue2=0; 
for i=1:3 
    targetvalue2=targetvalue2+qk(1,i+1)*(rel(i,:)*q_rel(i,:)'); 
end 
  
function SOLi = 
findbest(SOL_A,weight_f1,weight_f2,AntNr,worst_zf1,best_zf2,bw_zf1,bw_zf2) 
%--------------------------------------------------------------------- 
%searches the best solution of SOL_A according to the current weighting. 
%--------------------------------------------------------------------- 
  
for i=1:AntNr 
    targetvalue(i) = weight_f1 * ((SOL_A(i,11)-worst_zf1)/bw_zf1-1)*-1 + weight_f2 * 
((SOL_A(i,12)-best_zf2)/bw_zf2); 
end 
[Min_value,Min_index] = min(targetvalue); 
SOLi=SOL_A(Min_index,:); 
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function 
[tau_f1,tau_f2,tau_com]=Phero_update(rho,c,SOLi,st,vh,weight_f1,weight_f2,tau_f1,tau_f
2) 
%------------------------------------------------------ 
%evaporation of pheromones and deposit of pheromones on the path of he best ant 
%------------------------------------------------------ 
  
incl=zeros(st,vh,vh); %incl=1 if part of best solution SOLi 
incl(SOLi(1,1),1,1)=1; 
incl(SOLi(1,2),1,2)=1; 
incl(SOLi(1,3),2,2)=1; 
incl(SOLi(1,4),1,3)=1; 
incl(SOLi(1,5),2,3)=1; 
incl(SOLi(1,6),3,3)=1; 
incl(SOLi(1,7),1,4)=1; 
incl(SOLi(1,8),2,4)=1; 
incl(SOLi(1,9),3,4)=1; 
incl(SOLi(1,10),4,4)=1; 
tau_f1  = (1-rho) * tau_f1 + rho * weight_f1 * c * incl;  
%pheromone-update for pheromonetrail of F1 
tau_f2  = (1-rho) * tau_f2 + rho * weight_f2 * c * incl;  
%pheromone-update for pheromonetrail of F2 
tau_com = weight_f1 * tau_f1 + weight_f2 * tau_f2;  
%combined weighted pheromone-matritces 
  
function SOL = sortfun(SOLi,SOL) 
%--------------------------------------------------- 
%integrates solution SOLi into approximation set SOL, 
%and deletes dominated solutions in SOL 
%--------------------------------------------------- 
dominated=0; 
for i=1:size(SOL,1) 
    if SOLi(1,11)<=SOL(i,11) & SOLi(1,12)>=SOL(i,12)%new solution is dominated 
        return %abort, because new solution is dominated or already integrated 
    elseif SOLi(1,11)>=SOL(i,11) & SOLi(1,12)<=SOL(i,12) 
    %new solution dominates at least one old solution 
        dominated(end+1)=i; %list dominated solutions 
    end 
end 
SOL(dominated(1,2:end),:)=[]; %delete dominated solutions 
SOL(end+1,:)=SOLi; %integrate new solution 
 
function [vh,st,r,D,di,qk,coverage]=create_TESTData 
%------------------------------------ 
%creates data needed for calculation 
%------------------------------------ 
  
vh=4; %number of vehicles 
st=12; %number of stations 
r=4; %reach of vehicles 
S=[4 6;4 14;6 3;6 10;9 6;10 10;10 15;12 6;13 9;14 4;15 14;16 8]; %coordinates of 
stations 
  
DP=zeros(20,20); 
count=1; 
for j=1:2:40 
    for i=1:20 
        DP(i,j)=i; 
        DP(i,j+1)=count; 
    end 
    count=count+1; 
end 
  
D=zeros(20,20,st); %creates distance-array (x,y,station) 
for j=1:st 
   D(:,:,j)=abs(DP(1:20,1:2:40)-S(j,1))+abs(DP(1:20,2:2:40)-S(j,2)); 
end 
  
di=[0,0,0,10,10,10,10,10,10,10,10,10,10,10,10,10,10,0,0,0; 
    0,0,10,10,38,10,10,10,10,10,10,10,10,20,10,10,10,10,10,0; 
    0,10,10,20,38,10,10,10,10,10,10,60,60,60,20,10,10,10,10,0; 
    20,20,20,20,55,76,76,76,10,10,10,60,60,60,60,20,20,10,10,10; 
    20,20,44,55,55,76,76,76,76,88,88,60,60,60,60,20,20,10,10,10; 
    20,20,44,55,55,76,76,76,88,88,88,88,40,40,40,40,55,10,10,10; 
    20,20,44,44,55,76,76,76,88,88,88,88,70,70,70,55,55,10,10,10; 
    20,20,44,44,55,76,90,90,88,88,70,70,70,70,70,55,55,20,20,20; 
    66,66,66,80,80,90,90,90,90,100,70,70,70,70,70,55,55,20,20,20; 
    66,80,80,80,80,90,90,90,100,100,100,70,70,70,70,55,20,20,20,20; 
    10,80,80,80,70,90,90,100,100,100,88,70,70,70,70,55,20,20,20,20; 
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    10,60,70,70,95,95,95,99,100,88,88,88,70,70,70,20,20,20,20,20; 
    10,60,60,70,74,95,95,99,88,88,88,50,50,70,70,44,20,20,20,20; 
    10,60,60,60,74,74,95,99,88,88,70,70,50,50,44,38,20,20,20,20; 
    10,50,50,60,60,74,74,99,60,60,70,70,50,44,44,38,38,38,38,20; 
    10,50,50,60,60,60,74,60,60,60,50,50,44,44,44,38,38,38,38,38; 
    40,50,50,50,40,40,40,60,60,60,50,50,44,44,44,38,38,33,33,33; 
    40,50,50,50,40,40,40,40,50,50,50,30,44,44,44,33,33,33,33,33; 
    40,50,50,40,40,40,40,40,40,50,50,30,33,33,33,33,33,33,0,0; 
    40,40,40,40,40,40,40,40,40,50,50,30,33,33,33,33,33,33,0,0;]; 
  
p=1-1.03/(vh*1.46); % p=probability that vehicle is available 
qk=zeros(1,vh); % qk(1,k)=probability of having k availabe vehicles 
for k=1:vh 
    qk(1,k)=(factorial(vh)/(factorial(vh-k)*factorial(k)))*p^k*(1-p)^(vh-k); 
end 
  
E=zeros(20,20,st); 
for i=1:st 
    for j=1:20 
        for k=1:20 
            if D(j,k,i)<=r 
                E(j,k,i)=di(j,k); 
            end 
        end 
    end 
end 
for i=1:st 
    coverage(i)=sum(sum(E(:,:,i))); 
end 
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C. Determination of the Parameters 
 

The version of the PACO algorithm used in this work utilises 5 parameters (PI, M, s, 

rho and c).  

• PI adjusts how many times the algorithm will start over with new weightings.  

• M defines the number of iterations of the algorithm with one weighting.  

• s defines the number of ants within one iteration. In the case of algorithm 

version 3.1 and 3.2 s defines the maximal number of ants.  

• rho is the factor of pheromone evaporation. 

• c defines the pheromone deposit. 

The parameters PI, M and s influence the length of calculation time directly 

proportional. For each of these tree parameters a doubling of the parameter 

approximately leads to a doubling in calculation time. As PI*M*s gives the total 

number of solutions calculated during the run of the algorithm, it is easy to estimate 

the total runtime of the algorithm. After some initial testing of the algorithms it was 

decided to optimise the parameters for a total runtime of 60 seconds of cpu-time. First 

a set of different promising values for PI (PI=[15, 20, 25, 30]) and s (s=[10, 20, 30, 

40]) were chosen. Then the value of M was set in order to lead to a runtime of 

approximately 60 seconds.  
 

PI M s PI*M*s 
(calculated solutions)

estimated runtime 
(sec) 

15 1021 10 153150 60,00851097 
20 766 10 153200 60,02810239 
25 613 10 153250 60,04769381 
30 510 10 153000 59,94973672 
15 510 20 153000 59,94973672 
20 383 20 153200 60,02810239 
25 306 20 153000 59,94973672 
30 255 20 153000 59,94973672 
15 340 30 153000 59,94973672 
20 255 30 153000 59,94973672 
25 204 30 153000 59,94973672 
30 170 30 153000 59,94973672 
15 255 40 153000 59,94973672 
20 191 40 152800 59,87137105 
25 153 40 153000 59,94973672 
30 128 40 153600 60,18483373 

 
Table C.1: Values of PI, M and s. 
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The combinations of PI, M and s given in table C.1 were combined with different 

values of rho (rho=[0.01, 0.02, 0.03]) and c (c=[20, 50, 80]) leading to a total of 144 

different combinations. Then the algorithm was run with all these combinations of 

parameters and the end results were evaluated by the three metrics of performance 

described in chapter 5. This step was repeated 4 times and the mean values of the 

metrics were built. For a better evaluation quality the 10 best combinations of 

parameters were recalculated 6 times in order to get statistically firm results. The 10 

best combinations and the results are given in table C.2. 

 

 

PI M s rho c M1 ratio M2 distance M3 hypervolume weighted metric 
values 

30 255 20 0,02 80 0,39117647 0,00425771 0,99468548 0,96482707 
30 128 40 0,02 50 0,42352941 0,0047455 0,99643719 0,967437 
30 170 30 0,02 20 0,43823529 0,00417195 0,99584964 0,96796244 
30 170 30 0,03 20 0,44117647 0,00342286 0,99566027 0,96821114 
25 153 40 0,01 80 0,42941176 0,00863221 0,99628488 0,96646609 
25 153 40 0,02 80 0,35882353 0,00481677 0,99539982 0,96350603 
25 306 20 0,01 80 0,42941176 0,00398189 0,9956579 0,96745366 
25 153 40 0,02 50 0,42941176 0,00612594 0,99601658 0,96704358 
25 204 30 0,02 50 0,43529412 0,00333889 0,9966363 0,96857663 
20 383 20 0,01 50 0,45882353 0,00416691 0,99625383 0,96925609(max)

Table C.2: The 10 best combinations of parameters (10 repetitions). 

 

The quality of the results was assessed by a weighted combination of the metrics. The 

weights were set according to the indication quality of the metrics (cf. chapter 5) and 

the range of attained values. M1, M2 and M3 were weighted with 5%, 30% and 65%. 

The high weighting for M3 was chosen because hypervolume has the best indication 

quality. In addition the range of the attained values was small in comparison to the 

range of values of M1. While the values of M3 were ranging between 0.973 and 0.996, 

the values of M1 were ranging between ~0.1 and ~0.5. So the weighting of M1 had to 

be chosen comparatively small in order to limit the impact of metric M1. 

In the next step the best combination of parameters was used for further optimizations 

of the parameters rho and c. A total of 25 combinations of parameters was built with 

PI=20, M=383, s=20, rho=[0.005, 0.01, 0.015, 0.02, 0.025] and c=[30, 40, 50, 60, 

70]. Again the first run was repeated 4 times, and then the 10 best combinations were 

recalculated 6 times. According to these calculations the best combination of 

parameters for algorithm version 3 is: 
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PI=20, M=383, s=20, rho=0.01, c=60 

This procedure was repeated for all versions of the algorithm leading to the 

parameters listed in table C.3. 

 
Algorithm 
Version PI M s rho c 

V1 15 343 20 0.02 40 
V2 20 240 30 0.025 50 
V3 20 383 20 0.01 60 

V3.1 30 128 80 0.02 40 
V3.2 25 308 40 0.01 50 

 

Table C.3: List of best parameters for 60 seconds of runtime. 
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D. Convergence Graphs 
 

These graphs depict the convergence behaviour of the different algorithm versions. 

The metric values are averaged values of twenty runs of 60 seconds. Information on 

the three metrics of performance can be found in chapter 5.  

 

 

 

 

 

 
Figure D.1: Convergence Graph of Algorithm Version 1 
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Figure D.2: Convergence Graph of Algorithm Version 2 

 

 
Figure D.3: Convergence Graph of Algorithm Version 3 
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Figure D.4: Convergence Graph of Algorithm Version 3.1 

 

 
Figure D.5: Convergence Graph of Algorithm Version 3.2 
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