

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OTHES

https://core.ac.uk/display/11582009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DIPLOMARBEIT

Titel der Diplomarbeit

“Achieving Flexibility in Courseware Design:

Concept and Programming of a Microsoft® PowerPoint®

to eduWEAVER Plug-in Transformation Tool”

Verfasser

Ivaylo Velikovski

angestrebter akademischer Grad

Magister der Sozial- und Wirtschaftswissenschaften

(Mag. rer. soc. oec.)

Wien, im Februar 2008

Studienkennzahl lt. Studienblatt A 157

Studienrichtung lt. Studienblatt Internationale Betriebswirtschaft

Betreuer: o.Univ.-Prof. Dr. Dimitris Karagiannis

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Diplomarbeit ohne Hilfe Dritter und nur mit den

angegebenen Quellen und Hilfsmitteln angefertigt zu haben.

Alle Stellen, die den Quellen entnommen wurden, sind als solche kenntlich gemacht worden.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Wien, im Februar 2008

 Ivaylo Velikovski

To my family

i

Table of Contents

I ABBREVIATIONS iii

II LIST OF FIGURES v

III LIST OF TABLES vii

IV LIST OF CODE ix

1 Introduction 1

2 Technology Concept and Relevance 9
2.1 User Interface .. 9

2.1.1 Introduction 9
2.1.2 Understanding Human Cognition Processes 9
2.1.3 Definition of the Term “User Interface” 12
2.1.4 Usability 13
2.1.5 Designing Effective Forms 15
2.1.6 Software-engineering tools 17

2.2 Decision about the Programming Language.. 20
2.2.1 Introduction 20
2.2.2 The Component Object Model (COM) 21
2.2.3 A COM Client-Server Model 22
2.2.4 OLE Architecture and Automation 22
2.2.5 Differences between VBA and VB 24
2.2.6 VBA and the Microsoft® PowerPoint® Application Object 27

2.2.6.1 Working with the Application Object 28
2.2.6.2 Working with the Presentation Object 29
2.2.6.3 Working with the Slide Object 30
2.2.6.4 Working with the Shape Object 31
2.2.6.5 Working with TextFrame Object 31

2.3 XML – Dividing Content from Presentation .. 33
2.3.1 Introduction 33
2.3.2 XML (eXtensibleMarkup Language) 33
2.3.3 DOM and SAX 35
2.3.4 Parsing XML Data with MSXML 38

2.4 eduWEAVER Modelling Library.. 40
2.4.1 Introduction 40
2.4.2 Elements of eduWEAVER 41
2.4.3 The Metamodels of eduWEAVER 42

2.4.3.1 The Educational Metamodel of eduWEAVER 42
2.4.3.2 The Programming Metamodel of eduWEAVER 46

2.4.4 Course Modelling with eduWEAVER 48
2.4.5 ADL (ADONIS® Definition Language) 49
2.4.6 AdoScript 51

3 Development of the eduWEAVER Plug-in 53
3.1 Application Structure .. 53
3.2 Application Work Flow ... 55

4 Installation and User Manual 59
4.1 Installation... 59

ii

4.2 User Manual ..60
4.2.1 Scenario I 60
4.2.2 Scenario II 76

5 Conclusions 81

V Bibliography xi

VI Appendix xix
Abstract ...xix
Zusammenfassung ...xx
Curriculum Vitae ..xxi
import_into_model.asc...xxii
External Coupling (Modeling Library Customising)...xxiii
Program Code (PPT2ADL_one2one.exe) .. xxiv
Program Code (PPT2ADL_many2one.exe) ..xxxii
Module1.bas (the same in the both VB Projects) ...xxxix

iii

I ABBREVIATIONS

ADL Adonis definition language

API Application Programming Interface

COM Component Object Model

DOM Document Object Model

DTD Document type definition

GUI Graphical User Interface

HTML Hypertext Markup Language

IDE Integrated development environment

OLE Object Linking and Embedding

RAD Rapid application development

SAX Simple API for XML

VBA Visual Basic for Application

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformation

iv

v

II LIST OF FIGURES

Figure 1.1 Solution scenario of the eduWEAVER plug-in application4
Figure 1.2 (Type, Location, Size, MS-DOS name, Created, Modified, Accessed)....................6
Figure 1.3 (Title, Subject, Auhtor, Manager, Company, Category, Keywords, Comments,

Hyperlinkbase) ...6
Figure 1.4 Last saved by, Revision number, Total editing time, Statistics (Slides, Paragraphs,

Words, Bytes, Notes, Hidden slides, Multimedia clips, Presentation format)7
Figure 1.5 Document contents (Fonts Used, Design Template, Slide Titles)7
Figure 1.6 Custom meta data (Checked by, Client, Date completed…)8
Figure 2.1 A messy form design...16
Figure 2.2 A better design for the same form...16
COM is a strict set of rules governing basic object structure and semantics. COM is the object

model on which the OLE technologies stand. Object Linking and Embedding (OLE)
technologies are set of reach system-level services supplied by objects that adhere to
COM rules. ...21

Figure 2.3 A COM Client- Server Model...22
Figure 2.4 The mediator role of the IDispatch ...23
Figure 2.5 Microsoft® Visual Studio for VB6...25
Figure 2.6 Selecting the References option from the Project Menu...26
Figure 2.7 The References dialog...26
Figure 2.8 A relevant part of the PowerPoint® Application Object Model.............................28
Figure 2.9 Hierarchical structure of a document object (DOM) ..36
Figure 2.10 General concept of a learning object (LO)..41
Figure 2.11 The eduWEAVER use cases...43
Figure 2.12 Courses on model level 1 of eduWEAVER..43
Figure 2.13 Possible paths on modelling level 2 of eduWEAVER..44
Figure 2.14 Possible paths on modelling level 3 ..44
Figure 2.15 LOV on modelling level 4 of eduWEAVER ..45
Figure 2.16 Top-down and bottom-up approaches in eduWEAVER.......................................46
Figure 2.17 Simplified metamodel of eduWEAVER...47
Figure 2.18 Metadata indexing...48
Figure 2.19 Example for modelling level 4..49
This example shows the graphical approach of eduWEAVER in the process of course

modelling. ...49
Figure 3.1 The application structure for Scenario 1 (PPT2ADL_one2one.exe)53
Figure 3.2 The application structure Scenario 2 (PPT2ADL_many2one.exe).........................54
Figure 3.3 Program flow chart..56
Figure 4.1 Import/Export perspective of eduWEAVER ..60
Figure 4.2 The GUI of the plug-in..61
Figure 4.3 The window explorer shows the path to the PowerPoint® file62
Figure 4.4 The” Import” button turn into active state ..63
Figure 4.5 The imported PowerPoint® slides ..64
Figure 4.6 The imported PowerPoint® slides ..65
Figure 4.7 The window explorer shows the path to the output directory.................................66
Figure 4.8 The “Start” button turns into active state ..67

vi

Figure 4.9 The current transform state can be seen ... 68
Figure 4.10 The “Next” button turns into active state ... 69
Figure 4.11 Pop-up window about the ADL import .. 70
Figure 4.12 The ADL Import procedure in eduWEAVER (1) .. 71
Figure 4.13 The ADL Import procedure in eduWEAVER (2) .. 72
Figure 4.14 The ADL Import procedure in eduWEAVER (3) .. 73
Figure 4.15 The imported LOV Model in eduWEAVER.. 74
Figure 4.16 The imported LO Model in eduWEAVER... 75
Figure 4.17 A dummy LOV (Temp 1.0) is created.. 76
Figure 4.18 Ask to import the LOV... 77
Figure 4.19 All existing LOV models.. 78
Figure 4.20 Successful import of the LOV.. 79
Figure 4.21 ADL Import summary .. 80

vii

III LIST OF TABLES

Table 2.1 Different terms for usability ...15
Table 2.2 The four software layers available to build a user interface.....................................17

viii

ix

IV LIST OF CODE

Listing 2.1 Early Binding ...27
Listing 2.2 The “new” statement ..27
Listing 2.3 A new PowerPoint application...28
Listing 2.5 Open the PowerPoint.ppt presentation...30
Listing 2.6 Working with the TextEffect property of the Shape object32
Listing 2.7 Creating an DOM Object ...38
Listing 2.9 Excerpt of the ADL code ...50

x

1 Introduction

In the “Information Age” where the need for knowledge increases as the need for manual

labour decreases, lifelong learning is the only way to the continued development of modern

world1. One of the means that can help in this approach is e-Learning. A new term that

expresses one of the most modern approaches in the learning process, being strongly

dependent of modern technologies like the World Wide Web.

However, current practices in e-Learning show a desperate picture of a wide gap between the

good wishes and the reality. This means that the implementation of e-Learning solutions is

happening randomly, sporadically, and with varying degrees of success. Although everybody

recognises that e-Learning has the potential to improve greatly the learning process and

experience, there are still many others who see lots of problems in the current stage.

Plenty of discussions are held, but it still seems not to be defined how e-Learning should best

be used.

The knowledge consumers nowadays have a total different approach in a way they search,

find and adopt knowledge. Information has become easy to reach, easy to be updated and is

multimedia richer than every before. Students want to acquaint knowledge fast and easy. They

do not want to know how difficult and cost consuming it is to prepare a good piece of

courseware. At the other side the teaching community seems not to be so much enthusiastic

about developing the ultimate e-Learning material. In spite of that, an increasing number of

institutions are attempting to initiate their own style of e-Learning content production.

The generic term e-Learning or e-Education does not properly describe what is happening in

today’s teaching.”… The letter “e-“meaning using the internet and information technology for

teaching is only the technical part to be solved…”.2 Although the second term “Learning”

seems to be well known in an appropriate E-Learning concept it has a totally new meaning

and following new didactical concepts.

E-Learning can help the learning community to overcome some vital problems of the

traditional class teaching process like:

• Lack of individuality (mass universities versus individual online learning courses)

1 See Gizella (2004)
2 See Karagiannis et al. (2004).

1. Introduction

2

• Speech misunderstanding (sitting at the back of a class room and unable to hear the

speaker’s voice properly)

• Speed of knowledge transfer (some students need more time to understand the

transferred knowledge)

• Feel inconvenient to ask questions (some students do not like to ask questions when

they do not understand something at a given moment)

• Teaching material being not up-to-date3 (the teaching staff does not have the resources

to maintain up-to-date teaching materials, printed documents are more expensive than

digital ones)

• Lack of flexibility concerning lecture time arrangements (online learning is 24 hours

available)

All these problems can be overcome by a well designed and developed e-Learning platform.

Such a platform should enable the teaching staff and the learning community to collaborate

for an optimal knowledge transfer.

Before delivering content to that platform, the teaching staff has to solve at least two big

problems. A technical one, concerning teaching materials development by using their own

available resources like books, lecture notes and slides, in order to become independent of

expensive and inflexible multimedia managing solutions in the educational sector. The second

one is a didactical one, concerning the creation of new didactical models for e-Learning4, in

order to use the new aspects of information and communication technologies in the world of

instructional design.

An optional aspect can also be the simulation and optimization of educational processes

regarding times and costs, in order to measure the advantage of e-Learning regarding those

two vital components (less costs and time savings).

Teachers need a tool that integrates these supporting functionalities and helps them bridge the

gap between classroom teaching and the new e-Learning approach.

A large problem that the teaching staff is facing is that they often need to deliver educational

content in different forms (digital or print). But at the same time they want to use an already

existing one. So they are forced to rewrite or copy-paste the content from one document into

another, almost inventing the wheel every time.

3 See Meyer [Last visited 12.11.2007]
4 See Bajnai et al. (2004).

1. Introduction

3

In the time of high-end IT technology is this “waste of time = waste of money” process not

acceptable. Once created, the content of teaching materials should be easily managed and

transformed into another presentation form as quickly and easily as possible. Not the

transformation between files is what the teaching staff should be burdened with, but the

didactic problems should stay in the front. For example such a situation can be to re-concept

the teaching methods, used when transferring knowledge in an e-Learning platform

environment. Having only materials, which are created for in class teaching can bring the

teaching staff great problems. So they should have the possibility to manage the content of

those materials to suit the new tasks. Some of the possibilities, that the teaching staff will

prefer to use are to include the PowerPoint® speaker notes on a web site, warehousing the

content in a repository for further manipulation, or transport the content in CSM (Content

Management System) or LMS (Learning Management System) using a different web site

layout and many more.

This diploma thesis will take a close look at a possible scenario for the teaching staff to use

their old existing teaching materials and leverage the educational process with a new e-

Learning component. For this case an existing modelling tool named eduWEAVER modelling

library that has been created within the eduBITE project5 will be use. The eduWEAVER

modelling library is based on the meta-modelling tool ADVISOR®6. ADVISOR® is a

product of BOC Information Technologies Consulting AG7, developed within an ESPRIT8

project of the European Union from 1998 until 2000. ADVISOR®’s main feature is its

method independence. This means that, starting from the ADVISOR® meta tool level

additional new instructional modelling tools can be derived. Such tools are represented by the

so-called method libraries (for example- eduWEAVER), which allow particularly the

definition of arbitrary modelling languages without any programming effort. A close look at

eduWEAVER will be taken in chapter 2.5 eduWEAVER and ADL.

The aim of eduWEAVER will be to play a mediator role and a technology enabler between

the traditional “Class Teaching World” and the modern “E-Learning” one.

A possible scenario for solving the problem of delivering quality e-Learning instructional

materials is outlined in figure 1.1.

5 See eduBITE – Projektinformationen. [Last visited 04.05.2007]
6 See ADVISOR: Advanced instruction technology for services organisation.[Last visited 16.08.2007]
7 See BOC Information Technologies Consulting AG. [Last visited 16.08.2007]
8 See Espirit Project.[Last visited 16.08.2007]

1. Introduction

4

Figure 1.1 Solution scenario of the eduWEAVER plug-in application

The process of transferring the “Basic Knowledge” to the “Learning Community” can have

different paths. Two of them are shown in figure 1.1. The first possible knowledge

transferring path can be one of a traditional class teaching. This process involves the usage of

class teaching materials (PowerPoint® presentation on a beamer, printed .pdf or .doc files,

text books and other printed materials). The presence of an instructor and members of the

learning community is also a vital part of this educational pattern. The second possible

scenario can be the one of e-Learning. This process normally consists of the intensive usage

of personal computer for distance learning with a direct or indirect communication between

the instructor and the learning community. The e-Learning materials are mostly in a digital

form (.html, .pdf, .doc, .ppt). For the optimal usage in a modern e-Learning platform those

digital materials should be all converted into .html or .xml (plus formatting through css, xsl),

to enable search possibilities and easy update of the courseware. The two learning processes

1. Introduction

5

can be sometimes combined and in that way forming the so called “Blended learning”9

educational process.

The aim of the diploma thesis will be to show a possible scenario in form of a plug-in

application for the eduWEAVER modelling library. It should enable the easy transaction of

existing class teaching materials (mostly Microsoft® Office files and particularly

PowerPoint® presentations) into quality e-Learning materials with a minimum of manual

work. For that reason the diploma thesis will take a close look at the possibility of

transforming (through a “backloading” process) .ppt files to .html, .xml and particularly .adl

(Adonis Definition Language) files for import in eduWEAVER.

PowerPoint® presentations consist of slides, which may have pictures, tables, figures, videos

and text. For the purpose of building the plug-in an atomization process regarding a

PowerPoint® presentation object should be carried out. A possible atomization of a

PowerPoint® presentation is the dividing the presentation in slides as the little possible piece

of information regarding any kind of presentation. A further atomization down to a shape

object (each sentence, each arrow, each image or each auto shape element) will not represent

any kind of valuable information because it will be an out of the context chunk of

information. The meaning of PowerPoint® is to represent ideas through a visual union of

graphical forms and text. Out of that context are those elements only valuable for the process

of searching in an index system, where they will play a role as a reference to a slide of a

presentation.

As PowerPoint® belongs to the family of Microsoft® Office its files have meta data which is

kept invisible for other programs other than Microsoft® Office. This data is not searchable by

any other programs or web search machines until the data is not presented in the content body

of the file.

This meta data is usually represented by File >> Properties in any Microsoft® Office

application (see figure 1.2 -1.6):

9 See Grillitsch [Last visited 16.08.2007]

1. Introduction

6

Figure 1.2 (Type, Location, Size, MS-DOS name, Created, Modified, Accessed)

Figure 1.3 (Title, Subject, Auhtor, Manager, Company, Category, Keywords, Comments,

Hyperlinkbase)

1. Introduction

7

Figure 1.4 Last saved by, Revision number, Total editing time, Statistics (Slides, Paragraphs,

Words, Bytes, Notes, Hidden slides, Multimedia clips, Presentation format)

Figure 1.5 Document contents (Fonts Used, Design Template, Slide Titles)

1. Introduction

8

Figure 1.6 Custom meta data (Checked by, Client, Date completed…)

The possibility of revealing all that meta data to a different than Microsoft® Office

application will be a bigger step toward application integration, largely propagated in the

current time. This meta data will be integrated into the metaXXXX.xml files, which the plug-

in application will automatically generate and which can be further used for indexing and

searching procedures. The actual content of the PowerPoint® slide (text, speaker’s notes, and

slide title) will be integrated into the description section “Notebook” of the Learning Objects

(see figure 2.12 Meta indexing of a Learning Object). This will to some extend optimize the

manual preparing of the Learning Objects (more information in Chapter 3).

A brief review of the technological stack will be taken in Chapter 2 and then a decision will

be made, which elements of this stack will be used for building the plug-in. The actual

programming will take place in Chapter 3. Installation and user manual will be explained in

Chapter 4.

2 Technology Concept and Relevance

2.1 User Interface

2.1.1 Introduction

In this chapter, a discussion about the “face of a program”, the part that everyone sees - the

user interface, will be held. Many programmers do not invest much time in the user interface

design, meaning the code is what matters in an application and deserves the most of their

attention10. However, thoughts about fonts, screens and form elements should be made in

advance. The users do not pay much attention about the code because they do not see it. The

only thing that can catch their eyes is the user interface with all its advantages and

disadvantages. This chapter describes a set of guidelines and some examples that will help to

explain the most of the user interface paradigm.

2.1.2 Understanding Human Cognition Processes

Cognition is what goes on in the heads of people when they carry out their everyday

activities.11 It engages cognitive processes, like thinking, reading, remembering, learning,

seeing, writing and talking and many others. Norman12 explains two general modes:

experiential and reflective cognition. The experiential cognition is a state of mind in which

people observe, act, and react to events around them effectively and naturally. It requires

reaching a certain level of knowledge and commitment. Some examples include riding a

bicycle, playing a computer game or reading a book. In contrast reflective cognition involves

thinking, comparing, and decision-making. This kind of cognition is what guides to new ideas

and creativity. Examples include designing a product, composing a song, and writing a book.

Norman points out that both models are crucial for everyday life but that each involves

different kinds of technological support.

Cognition has also been explained in terms of specific kinds of processes. These include:

• Attention – the process of concentration on selected things, at a point in time, from a

range of possibilities available.

10 See Siller et al. (1998), p.410.
11 See Preece et al. (2002), p.74.
12 See Norman (1994) p.14

2. Technology Concept and Relevance

10

• Perception and recognition – describe how information is acquired from the

environment, via the different sense organs (e.g. eyes, ears, and fingers) and

transformed into experiences of tastes, sounds, objects and events.

• Memory – the process of recalling various kinds of knowledge that allow humans to

act suitably to the current situation.

• Learning – can be considered in terms of how to use teaching materials to understand

and remember a given topic.

• Reading, speaking, and listening – are forms of language processing and have both

similar and different properties.

• Problem solving, planning, reasoning, decision making – often involve conscious

processes, discussion with others and the use of various kinds of artifacts.

Those cognition processes can be of great importance when transformed in the world of user

interface design decisions and practices:

Attention:

• Information must be made outstanding when it needs attending to it.

• Techniques like animated graphics, color, underlining, ordering of items, sequencing

of different information, and spacing of items should help to achieve this.

• Cluttering the interface with too much information should be avoided. This especially

applies to the use of color, sound and graphics: there is a temptation to use lots of

them; resulting in distracting and annoying perception rather than helping the user

concentrate to relevant information.

• Interfaces that are plain in their design are easier to understand and use13.

Perception:

• Graphical elements like icons should enable users to easily differentiate their meaning.

• Sounds and audio should be distinguishable so users realize what they represent.

• Audio text should be clear and distinguishable from the background sounds14.

13 See Preece et al. (2002), p.71.
14 See Preece et al. (2002), p.68.

2. Technology Concept and Relevance

11

Memory:

• Users’ memories should not be burden with complicated procedures for execution of

tasks.

• User Interfaces should be designed to issue recognition rather than recall by using

consistently placed objects, consistently menus and icons15.

Learning:

• Use interfaces should design to encourage exploration.

• User interfaces should restrain and guide users to select appropriate actions.

• Dynamically linked representations and abstractions16.

Reading, Speaking and Listening:

• The length of the text message boxes should be kept short and easily to understand;

• The length of speech-based menus or text instruction should be kept to a minimum.

• There should be opportunities for increasing the text on a screen for people who find it

hard to read small text (e.g. the elderly generation)17.

Problem solving, planning, reasoning, decision making:

• The system should provide additional hidden information that is effortless to access

for users who wish to know more about how to carry out an activity more

affectively18.

It is important to note that many of these cognitive processes are co-dependent: several may

be mixed up for a given activity. For example, when a student tries to learn material for an

exam, she need to attend to the material, perceive, and recognize it, read it, think about it, and

try to remember it. Therefore, cognition typically involves a series of processes. It is unusual

for one to occur in isolation.

15 See Preece et al. (2002), p.70.
16 See Preece et al. (2002), p.78.
17 See Preece et al. (2002), p.78.
18 See Preece et al. (2002), p.81.

2. Technology Concept and Relevance

12

2.1.3 Definition of the Term “User Interface”

“…An interface is the way to determine what the user can do with the system and how the

system response to this interaction…”19

Or another one:

“…The user interface to an interactive product such as software can be defined as the

languages through which the user and the product communicate with one another…”20

Those simple descriptions gather the meaning of the User Interface (UI) being a mediator

between a user and a program. In one direction the user interacts through his input and the

system answers through its output. In the time of PC and particularly after the introduction of

Apple® Mac OS and Microsoft® Windows® operation systems the era of the Graphical User

Interface (GUI) has began. The paradigm of GUI is to accept input via electronic devices such

as computer keyboard and mouse and answer with a graphical output on the computer

monitor. And this is the widely spread way users interact with the computers nowadays.

Although it is a straight forward definition making a good UI is not a trivial task.

“…A user interface is well designed when the program behaves exactly how the user thought

it would…”21 or saying it more comprehensive: “…A user interface is well designed when the

program model conforms to the user model…”22

It is always preferable to know the user model first before building the program model,

because it is easer to design a program model as to teach the user a new model to interact with

a given system. It is the evolution way that has more chances of success than the revolution

path of bringing a new UI model. But how a software developer knows what the user model

looks like. As there is not only one user in this world the question should be how to know the

user model of the target user group. And the answer is easy: an open communication with

them. Only that kind of collaboration can gather this valuable knowledge at the early design

state.

19 Raskin (2001), p.18.
20 Mayhew (1999), p.1.
21 Spolsky (2001), p.8.
22 Spolsky (2001), p.8.

2. Technology Concept and Relevance

13

2.1.4 Usability

The usability is not the only property of a user interface. In the contrary it has multiple

components and is traditionally associated with following five usability attributes:23

• Learnability: A system should not demand much strength when learn it and an user

should be able to swiftly start working with the system.

• Efficiency: A system should guarantee a high level of efficiency during usage, so that

once an user has learned the system, advanced productivity is possible.

• Memorability: A system should be easy to keep in mind for a long period of time, so

that a normal user is able to work with the system after some period of time, without

having to learn it from the beginning.

• Errors: A system should be error resistant, when possible - few errors and easily

recover from them. Further, fatal errors must not occur.

• Satisfaction: A system should be overall enjoyable to use.

Later on in 2001 Nielsen introduce an enlarge set of design principles:24

• Visibility of system status – users should be informed about what is going on, through

providing appropriate feedback (i.e. status messages, percentage message of the work

been done, and so on) within reasonable time.

• Equivalence between system and the real world – it is crucial to speak the users’

language, using concepts, phrases and words familiar to the them, rather than technical

- oriented terms.

• User control and freedom – there should be always possibilities for the users to easily

come from places they unpredictably find themselves, by using clearly marked “exits

points”.

• Consistency and standards – the users should not be taken into position to speculate

whether different actions, words or situations mean the same thing.

• Error recognition, diagnose and recover – application designers should uses a simple

language to explain problems to the users and suggest ways of solving them.

• Error prevention – where possible errors should be prevented of happening if possible

at all.

23 See Nielsen (1993), p.26.
24 See Nielsen (2001).

2. Technology Concept and Relevance

14

• Recognition rather than recall – options, objects and actions should be made visible.

• Flexibility and efficiency of use – automatons processes that are invisible to

beginners, but allow the expert users to carry out task more quickly, should be

provided.

• Aesthetic und minimalist design – using information that is irrelevant or rarely needed

should be avoided.

• Help and documentation – a set of help information that can be easily searched, should

be provided and it should be in a form of concrete steps that can easily be followed.

Design and usability principles have also been refined into even more specific prescriptions

called rules.25 Those are in form of guidelines that should be followed.

The usability as a term has so many explanations that try to figure all different aspects of it.

That can be to some extend confusing. Those explanations are often used interchangeably and

in different combinations. Terms like usability design principles, usability heuristic or design

concepts can be heard often but trying to address one and the same thing. The key is in

understanding how to use the different levels of guidance (see Table 2.1). Goals refer to the

high-level usability aims of the system. Principles refer to general guidance intended to

inform the design and evaluation of the system. Rules are particular prescriptions that must be

followed. Heuristic is a general term used to refer to design and usability principles when

applied to a design problem.

Concept Level of

guidance

Also sometimes called How to use

Usability

goals

General Setting up usability criteria for assessing the acceptability

of a system (e.g. “How long does it take to perform a

task?”).

User

experience

goals

General Pleasure factors Identifying the important aspects of the user experience

(e.g. “How to make the interactive product fun and

enjoyable?”).

Design

principles

General Heuristic when used in the

practice.

Design concepts

As reminders of what to provide and what to avoid when

designing an interface (e.g. “What kind of feedback are

you going to provide at the interface?”).

Usability

principles

Specific Heuristic when used in the

practice

Assessing the acceptability of interfaces, used during

heuristic evaluations (e.g. “Does the system provide clearly

marled exits?”).

25 See Preece (2002), p.27.

2. Technology Concept and Relevance

15

Rules Specific To determine if an interface adheres to a specific rule when

being designed and evaluated (e.g. “Always provide a

backwards and forwards navigation button on a web

browser”).

Table 2.1 Different terms for usability26

Problems can arise when trying to apply more than one of the design principles in interaction

design so that trade-offs can arise between them. For example, the more a developer tries to

constrain an interface, the less visible information the user becomes. Some similar effect can

arise when trying to apply a single design principle. Consistency is another design pattern that

can be challenging to apply. Trying to design an interface to be consistent with some

principals can make it inconsistent with some others. Some time inconsistent interfaces are

actually easier to use than consistent interfaces. A trade-off, however, is that it can take longer

to learn such an interface but in the long run can make it easier to use.

2.1.5 Designing Effective Forms

Forms are the building blocks of a graphical user interface. With the help of integrated

development environment (IDE) tools like Eclipse IDE27, NetBeans28, Borland CodeGear29 or

Microsoft® Visual Studio30, designing a form is simple; doing it well is not so easy. A good

form design takes more than just inserting programming events and controls. To make a well-

designed form, the developer should understand the form’s purpose, meaning the way it is

going to be used, and its relationship with the rest of the program.

As the number of controls, situated on a form increase, the more important it is to keep them

organized. An example of a bad form design is shown in Figure 2.1.

26 Table taken from Preece (2002), p.28.
27 See Eclipse - an open development platform [Last visited 17.08.2007]
28 See NetBeans IDE [Last visited 17.08.2007]
29 See CodeGear [Last visited 17.08.2007]
30 See Visual Studio 2005 [Last visited 17.08.2007]

2. Technology Concept and Relevance

16

Figure 2.1 A messy form design31

It looks as if the controls are chaotically placed on the form. They are not labeled, lined up, or

consistently sized. Much better approach is shown in Figure 2.2. Every GUI object like labels,

frames, and lines are added to group semantically related controls.

Figure 2.2 A better design for the same form32

31 See figure in Siler et al. (1998), p.410.
32 See figure in Siler et al. (1998), p.411.

2. Technology Concept and Relevance

17

Both figures show “working” applications, but the second one has a more visually organized

overall appearance. To relieve excessive elements inconsistency many user interface

designers use bounding boxes to more strongly group subsets of the window content.

2.1.6 Software-engineering tools

Experienced programmers sometimes build user interfaces with programming languages such

as Java, C#, or C++, but this approach is giving a way to using programming tools that are

specialized in developing user interfaces or web access. Choosing among them is sometimes a

complex and confusing task, due to the lack of uniform technology used to describe the tools

and their features.33

There are a large number of tools available for building UI. Table 2.2 lists the four software

layers that can be used to build a UI and their associated interactive tools.

Software Layers Visual Tools Examples
1 Application

Model-Based Building Tools Microsoft® Access, Sybase

PowerDesigner

2 Application Framework/

Specialized Language

Conceptual Building Tools Macromedia Director, Tlc/Tk,

Microsoft® MFC

3 GUI Toolkit Interface Builder Eclipse, Borland JBuilder, Microsoft®

Visual Studio

4 Windowing System

Resources Editor Microsoft® Win32/GDI+, Apple

Quartz, X11 Windowing System

Table 2.2 The four software layers available to build a user interface34

The higher levels tools (layer-4) are interface generators, sometimes called user-interface

management systems or model-based building tools. Most if not all of the applications can be

built quickly using these visual tools. Unfortunately, these tools are currently available only

for a small class of application, such as database front-ends (Microsoft® Access35, Sybase

PowerDesigner36).

33 See Shneiderman et al. (2005), p.189.
34 Schneiderman et al. (2005), p.190.
35 Microsoft® Office [Last visited 17.08.2007]
36 PowerDesigner [Last visited 17.08.2007]

2. Technology Concept and Relevance

18

Layer-3 tools include specialized languages or application frameworks. These are software

architecture tools specially designed for building graphical user interfaces (GUIs). Compared

to layer-4 tools, they provide almost no support for the nongraphical part of the application.

At this layer, a key distinction is how extensively the software-engineering tool uses

convenient visual programming, a relatively simple scripting language (event or object

oriented), or a more powerful general-purpose programming language.

The terminology for GUI toolkits (layer-2) varies depending on the vendor. Popular terms for

these toolkits include Rapid Prototyper, Rapid Application Developer, User Interface Builder,

and User Interface Development Environment. This layer provides software libraries and

widgets as building blocks but requires extensive programming to connect these components

to each other and to the non-GUI part of the application.

The layer-1 windowing system tools require extensive programming by experienced software

engineers and offer little support from interactive tools.

Given this list of layers, the obvious recommendation is to use the highest available. Together

with the increased support through the developing tool also more constraints are coming:

automatic application generators will quickly build stereotyped applications that are cheaper

and easy to developed but offer very little variety or adaptability. Finding the right tool is a

trade-off between six main criteria:

• Part of the application built using the tool. Some tools only support building the

presentation part of the application; others also help with low-level interaction, and

some support general programming mechanism usable in other parts of the application

as well.

• Learning time. The time regarded to learn the tool varies.

• Building time. The time required to build a user interface using the tool varies.

• Methodology imposed or advised. Some tools strongly recommend a specific

methodology for building the application, such as building the visual part first and

connecting it to the remainder of the application afterwards, whereas other tools are

more flexible.

• Communication with other subsystems. Applications frequently use databases, files

located on the Web, or other resources that, when supported by the building tool,

simplify the development.

2. Technology Concept and Relevance

19

• Extensibility and modularity. Applications evolve, and new applications may want to

reuse parts of existing applications. Supporting the evolution and reuse of software

remains a challenge.

Level-4 tools and application frameworks inherently promote good software organization, but

the others usually lead to poor extensibility and modularity. It is also important to mention the

two possible scenarios that can come in a software project. High percent of all projects are to

implement additional features to existing applications and only few are for developing a

completely new piece of software. In those cases there is strong presser to use the tools that

the old application has been developed with. To some extend that makes sense but at the other

hand this is an obstacle to the know-how building of the IT industry. The one that can help is

the reengineering paradigm which also has its strong and weakness points.

In the next chapter the problem of choosing the right programming language for a given

project will be discussed.

In this chapter a brief overlook of interaction design an in particular user interface design was

introduced. It was pointed out how the idea of usability is essential to the idea of interaction

design. This was explained in some detail, describing what it is and how it is operationalized

to access the suitability, effectiveness, and quality of interactive products, in particular

software applications. A number of high-level design principles were also discussed that

present diverse forms of guidance for interaction design.

2. Technology Concept and Relevance

20

2.2 Decision about the Programming Language

2.2.1 Introduction

The choice of a programming language for building a plug-in for an existing application

depends mostly on the application itself. As eduWEAVER (respectively ADVISOR®)

installation is only available for the Windows® platform, the programming language to be

used should also come from the Microsoft® programming language family (Visual Basic,

VBA, C# etc.). The fact that an automation process (PowerPoint transformation) will be

started, speaks also for a language from the Visual Basic family, like Visual Basic for

Application (VBA).

Visual Basic for Applications (VBA) is a hosted language and part of the Visual Basic (VB)

family of development tools.37 When hosted in other applications such as Word® or

PowerPoint®, VBA is using a technology called automation, in sense of interacting with the

host application’s object model, which implements the VBA interface.

To solve the problem of customizing complex applications such as Excel®, Word®,

Access®, PowerPoint® and an increasing number of many other applications from

Microsoft® or other software firms, “…VBA allows the developer to provide solutions that

take advantage of sophisticated components that have been tried and tested…”38. The VBA is

a language that collaborates with the many different objects via the host application’s object

model. VBA makes applications extensible. Its support for OLE (see chapter 2.2.4)

automation makes VBA an outstanding tool for developing plug-ins application for already

existing ones.

In the following sub-chapters a quick discussion of the technologies and paradigms in the

world of Microsoft programming environment will take place. Terms like COM, OLE and

Microsoft® Office object model will be explained. This chapter will end with a short

summary of the differences between VB and VBA to make a bridge to the next chapter where

the Microsoft® PowerPoint® Application Object and its accessibility through VBA will be

discussed.

37 See Lomax (1998), p.3.
38 Lomax (1998), p.3.

2. Technology Concept and Relevance

21

2.2.2 The Component Object Model (COM)

The Component Object Model (COM) is Microsoft’s contribution to the object model world.

In addition it is also a Microsoft specification that describes how to create reusable objects in

the Win32 programming environment.39 COM is binary standard. That makes it possible for

any programming language (having the proper facilities) to create COM objects. It provides

the foundation for OLE (see chapter 2.2.4).

COM is also an industry standard object model that specifies the following:

• Object definition – defining the objects structure and the memory management of the

objects.

• Life cycle management – defining how objects are created and destroyed.

• Inter-object communication protocols – defining the component interoperability

mechanism, particularly how the objects communicate and expose their functionality.

COM is a strict set of rules governing basic object structure and semantics. COM is the object

model on which the OLE technologies stand. Object Linking and Embedding (OLE)

technologies are set of reach system-level services supplied by objects that adhere to COM

rules.

OLE is a set of services supplied by objects that conform to the COM specification. The

primary responsibility of the COM is to ensure that software components behave in a well-

known and consistent manner without constricting how programmers implement different

components. The COM accomplishes this by defining a binary interface for objects that is

independent of any programming language. Objects confirming to the COM are collectively

called component objects. Every feature of OLE depends on the COM to provide basic inter-

object communication.

Since OLE is built on top of COM, all of OLE’s services are supplied by objects that adhere

to this specification. When a program accesses any of OLE’s services, a communication with

a specific COM object (or set of COM objects) is carried out.

39 See Freeze (2000), p.4.

2. Technology Concept and Relevance

22

2.2.3 A COM Client-Server Model

One of the possibilities of COM is to support a simple client-server model. Objects called

servers40 provide functionality to objects called clients. In that software architecture servers

are always COM objects, i.e., they are objects that conform to the Component Object Model

(see figure 2.3).

Figure 2.3 A COM Client- Server Model41

Clients, on the contrary, have the choice to be implemented with or without the help of COM

objects. This means that some clients may be simple Java Beans, C++ objects, Visual Basic

Applications, C# objects, etc.

A COM object may be a client and a server at the same time. It only depends on the relations

between the objects under consideration.

2.2.4 OLE Architecture and Automation

Object Linking and Embedding (OLE) is an architectural framework, built on top of the

Component Object Model (COM), which supplies a set of object-based services to clients.42

OLE is also a system-level, object-based, unifying technology that helps to implement

application integration through a set of coordinating system libraries (DLLs). OLE includes

40 See Puopolo (1997), p.17.
41 Figure taken from Puopolo (1997), p.17.
42 See Puopolo (1997), p.57.

OLE Server A

OLE Server B

Visual Basic
Application

C++ Object

OLE Server X

Services

2. Technology Concept and Relevance

23

several distinct technologies that use each other’s services to provide an object-enabling

system. The real power of OLE comes from the synergy those useful services.

Automation is one of the most powerful features of OLE. It is the mechanism through which

an object exposes its methods (functionality) and properties (characteristics) to other objects

and applications. An object that exposes its functionality is called an automation server.43

An automation controller is an object or application that uses or directs the actions of the

automation server. Automation servers exist to service automation controllers’ requests and

directions. IDispatch is a standard COM interface that specifies automation functionality (see

figure 2.4).

Figure 2.4 The mediator role of the IDispatch44

Automation servers implement the IDispatch interface. 45 Automation controllers, at the other

hand, communicate with the automation server through its IDispatch interface. An

automation controller does not directly call the functions implemented by the automation

server. On the contrary, the automation controller uses member functions in the IDispatch

interface to indirectly call functions in the automation server. The IDispatch interface, like all

of Automation, was developed as part of Visual Basic so that it could be used specifically to

automate applications such as Microsoft Office family.

Automation servers46 are mostly written in C or C++, so they are usually fast, powerful

objects that supply robust functionality. Automation controllers use the services provided by

the automation servers. That is why they do not need to be as fast or robust as their associated

servers and are generally developed in languages like LotusScript and Visual Basic, where

ease of development and flexibility are most important.

43 See Puopolo (1997), p.65.
44 Figure taken from Puopolo (1997), p.65.
45 See Rogerson (1997), p.279.
46 See Puopolo (1997), p.66.

Visual Basic
Application

OLE Object

Properties
Methods IDispatch

2. Technology Concept and Relevance

24

2.2.5 Differences between VBA and VB

There are some major differences that focus on usage of both programming languages. This is

because VB is a complete Rapid application development (RAD) environment (Microsoft®

Visual Studio for Visual Basic) that features a set of user interface components and relies on

VB as its programming language.

Some cardinal differences between the two programming languages are though presented:

• VB applications are normally compiled into native code executables (*.exe), whereas

VBA applications always depend on their host application for execution and are always

interpreted.

• VBA applications are that’s way slower than VB ones because of the missing true

compiler.47

• The programs created by the two products fulfil different requirements. VB helps

creating standalone applications. On the contrary VBA is used to create applications that

enhanced the possibility of the host applications (e.g. Access® or PowerPoint®).

• Other than VB, VBA allows the programmer to write code for multiple platforms.

Versions of VBA are available not only for Windows® platforms but also for Apple

Macintosh, Alpha RISC and many others.

Taking these differences into consideration, particularly the possibility to use PowerPoint®

features from outside the Microsoft® Office environment, for building the eduWEAVER

Plug-in a pure Visual Basic environment will be used as a developing platform (Microsoft®

Visual Studio for VB6 see figure 2.5).

47 See Doberenz et al. (1999), p.60.

2. Technology Concept and Relevance

25

Figure 2.5 Microsoft® Visual Studio for VB6

The PowerPoint application objects will be communicated through VBA code embedded in

the VB application. The output will be a compiled .exe, which purpose will be to enable

eduWEAVER interact with PowerPoint® application on automation base.

The problem is that a Power Point Application should be installed on the target computer in

order for the eduWEAVER plug-in to interact with it. But that should not be a critical point as

all the teaching staff use the Microsoft® Office family and the plug-in application will be

only used to transform PowerPoint® presentations into e-Learning materials. But how the

plug-in will know this fact as it is an autonomic application. The answer is “early binding”.

The term “early binding” refers to the procedure of adding an object reference to the VB

project by using the References dialog (in a stand alone Visual Basic IDE or in a Visual Basic

Editor in any Microsoft® Office Application), which is shown in figure 2.6. The References

Dialog can be reached by selecting Project -> References option from the menu.

2. Technology Concept and Relevance

26

Figure 2.6 Selecting the References option from the Project Menu

After that all OLE Automation Servers registered on the machine are shown in the list. (See

figure 2.7)

Figure 2.7 The References dialog

After a reference is added to the project, an early bound interface can be created by using the

Private, Public, Friend, or Dim. Then the Set statement is to be used to set an object reference

to the local variable (see listing 2.1).

2. Technology Concept and Relevance

27

Dim objPres as Presentation

Set objPres = PowerPoint.Application.ActivePresentation

Listing 2.1 Early Binding

The New statement (see next chapter) can be used with the Private, Public, Friend, or Dim

statement (see listing 2.2).

Dim objPres As New Presentation

Listing 2.2 The “new” statement

Because the project has a reference to the object library in advance, binding to the object can

be arranged at “early” compilation time. That makes the developing process more comfortable

and efficient.

2.2.6 VBA and the Microsoft® PowerPoint® Application Object

As mentioned above, when a Microsoft® Visual Basic® for Applications (VBA) or pure

Visual Basic (VB) code is written to work with Microsoft® PowerPoint®, the Application

object48 is to be referenced at first. In case VBA code is written within PowerPoint®, the

Application object is automatically created. If automating PowerPoint® from some other

application via VB, a PowerPoint® Application object variable should be created and then an

instance of PowerPoint® should be started. This instance of the Application object can

include any number of open Presentation objects. Figure 2.8 shows a part of the PowerPoint®

application object that is relevant for the development of the eduWEAVER plug-in

application. This model should be used to extract all the information that is relevant in the

process of e-Learning.

48 See Microsoft Corporation (2001), p.141.

2. Technology Concept and Relevance

28

Figure 2.8 A relevant part of the PowerPoint® Application Object Model

2.2.6.1 Working with the Application Object

Like in other Microsoft® Office applications is the Application object the most important

one49. It is the place where the VB/VBA starts interacting with the whole Microsoft® Office

application family. It is so important like starting PowerPoint® or any other Microsoft®

Office application on the PC using its application icon. For example a new PowerPoint®

application can be invoked through the following code (see listing 2.3):

Dim ppApp As PowerPoint.Application

Set ppApp = New PowerPoint.Application

Listing 2.3 A new PowerPoint application

49 See Seelhofer (2003), p.465.

Application

Presentations

Presentation

Slides

DocumentProperties

Slide

Shapes

Shape

TextFrame

TextRange

BuiltInDocumentProperties

CustomDocumentProperties

NotesPage

TextEffect

2. Technology Concept and Relevance

29

Some of the properties of the application object are: ActivePresentation, ActiveWindow,

AddIns, CommandBars, FileSearch, Windows and many others.

Some of the properties are Visible, WindowState, Name, Path, Caption and so on.

Some of the important methods are Quit and Run.

One of the most important properties of the Application – Object is the Presentations - Object

which is revealed in the next chapter.

2.2.6.2 Working with the Presentation Object

The Presentation object and the slides it contains are some of the most important objects

when working with PowerPoint® object model through VB/VBA. They are the placeholder

for the content being representing through a PowerPoint® presentation. There are four ways

to access a Presentation object:50

• By referencing to an open and active presentation.

• By using the file name of an open presentation.

• By using the Caption setting of the PowerPoint® Application Window object that

contains an open presentation.

• By using the value of the index of an open presentation.

The examples below illustrate the four different ways to set a reference to an already open

presentation (see listing 2.4).

Dim prsPres As PowerPoint.Presentation

'1 referencing to an open and active presentation.

Set prsPres = ActivePresentation

'2 using the file name of an open presentation.

Set prsPres = Presentations("test.ppt")

'3 using the Caption setting of the PowerPoint® Application Window

object that contains an open presentation.

Set prsPres = Presentations("test")

'4 using the index of an opened presentation

Set prsPres =Presentations(1)

 Listing 2.4 Set a reference to an open presentation

50 See Microsoft Corporation (2001), p.141.

2. Technology Concept and Relevance

30

As shown above there are methods to reference an open presentation. There is also a method

to open a presentation already saved to disk and at the same time to create a reference to that

presentation. That is done through a Presentations collection's Open method (see listing

2.5).51
Dim ppApp As PowerPoint.Application

Dim prsPres As PowerPoint.Presentation

Set ppApp = New PowerPoint.Application

Set prsPres = ppApp.Presentations.Open("C:\test.ppt")

With prsPres

 'Some coding...

End With

Listing 2.5 Open the PowerPoint.ppt presentation

The most important property of the Presentaion object is the Presentaion.Slides property,

which will be reviewed in the next chapter.

2.2.6.3 Working with the Slide Object

Normally a PowerPoint® presentation is a set of slides. Every one of them usually contains

text followed by graphics or some other visual effects like transformation animations. The

Presentation object has a Presentation.Slides property that returns the Slides collection.52 It

can be used to access an existing slide or add new slides to a given presentation. In the

collection every individual slide is represented by a Slide object. PowerPoint® automatically

automatic naming convention follows the pattern: <Slide> X, where X is a number indicating

the location of the slide in the presentation at the time point it was added to the Slides

collection. In addition a particular name for a slide can be specified by using the

Slides(X).Name property.

There are again four possible ways to access a particular Slide object in a Slides collection:53

51 See Microsoft Corporation (2001), p.142.
52 See Microsoft Corporation (2001), p.146.
53 See Microsoft Corporation (2001), p.147.

2. Technology Concept and Relevance

31

• By using an index value, indicating the location of the slide in the Slides collection.

• By using the slide name.

• By the slide's SlideID property using Slides collection's FindBySlideID method.

• By using the SlideRange.SlideIndex property (indicating the currently selected slide).

Some of the Slide object methods are: Add(), Delete(), Cut(), Copy(), Paste() and so on. The

most important property of the Slide object are the Shapes objects, reveal in the next chapter.

2.2.6.4 Working with the Shape Object

Every slide in a presentation consists of one or more Shape objects. Every artefact like a

picture, a title, text, a table, an AutoShape, or other content, everything that can be put on the

slide is represented by a Shape object.

A Shape object on a slide can be referenced in two ways:54

• By using the shape's index in the shape’s collection.

• By using the name of the shape.

In case that many shapes on a slide have to be referenced to, a good choice is to use the

Shapes.Range method of the Shapes collection, which returns a ShapeRange object. It

consists of the shapes specified in the ShapeRange.Index method's argument. By means of not

specifying any Index, the Range method returns a collection of all the shapes on a slide.

2.2.6.5 Working with TextFrame Object

All Shape objects on a slide that support text have a TextFrame property, which can be used

to return a TextFrame object. To determine if a shape supports the use of a text frame, the

Shape.HasTextFrame property can be used. Analogically each TextFrame object has a

HasText property, which can be used to determine if the text frame contains text.

The TextFrame object has also a TextRange property, which can be used to return a

TextRange object.55 TextFrame.TextRange.Text property can be used to specify, determine

and modify the text associated with a Shape object.

54 See Microsoft Corporation (2001), p.149.

2. Technology Concept and Relevance

32

There is one Shape object that can not be referenced directly by using the TextFrame or

TextRange objects. The TextEffectFormat object is returned by TextEffect property and

contains the methods to work with WordArt shapes. To read the text in a WordArt shape, the

TextEffectFormat.Text property is to be used. For example, the following code (see listing

2.6) reads the text of an particular WordArt shape on the fifth slide of the current presentation

and put it out in a message box.

With ActivePresentation

 strExistingText =.Slides(5).TextEffect.Text

 MsgBox strExistingText

End With

Listing 2.6 Working with the TextEffect property of the Shape object

Both TextRange.Text and TextEffect.Text properties are necessary for programming the plug-

in application, as being one of its main features of extracting text from a PowerPoint®

presentation and writing it in an .xml and .adl files.

The next main chapter will reveal why and how XML can help dividing content from

presentation and at the same time wrapping the content with context (meta data).

In this chapter a brief overlook of the possible programming language for developing the

plug-in application was introduced. Technologies like COM, OLE and programming

languages like Visual Basic and Visual Basic for Application were checked about their

relevance for the developing process. The main idea of this master thesis was to program a

plug-in that should operate in Windows® environment, like eduWEAVER and PowerPoint®

do. It was a clear decision to use all technologies described above as they were developed and

maintained by the Microsoft® Corporation and fully integrated in the Windows® world.

The main subject of the next chapter will be the introduction of XML and its technological

relevance for developing the eduWEAVER plug-in application.

55 See Microsoft Corporation (2001), p.152.

2. Technology Concept and Relevance

33

2.3 XML – Dividing Content from Presentation

2.3.1 Introduction

One of the main purposes of the “backloading” process of the plug-in application will be to

extract all textual informational artefacts of a Power Point® presentation. The second process

will be to save that information in generic way not bothering about how its representation will

look like. Talking about that kind of separation is inevitable to talk about XML. The

following chapter will make a brief review of the XML standard and its implementation

possibilities.

2.3.2 XML (eXtensibleMarkup Language)

XML, the eXtensible Markup Language56, is a World Wide Web Consortium57 (W3C)

standard for document markup. It classifies a generic syntax used to mark up data with

simple, human-readable tags, in contrary to the Hyper Text Markup Language58 (HTML) of

the Internet. It provides a standard format for computer documents. XML “…is flexible

enough to be customized for domains as diverse as web sites, electronic data interchange,

vector graphics, genealogy, real estate listing, object serialization, remote procedure call,

remote procedure calls, voice-mail systems, and more…”.59

XML is also a meta markup language. “…It is a language used to describe and define other

languages…”.60 Data is included in XML documents in form of strings. The data is

surrounded by a human readable text markup, indicating the data inside the XML file. This

basic set of data and markup is defined as an element. The XML specification sets the exact

syntax the XML markup must abbey. Some of the rules determine, which elements are

delimited by tags, what these tags look like, what names are acceptable for elements, where

attributes are placed, etc. The fact that a specific grammar is being defined allows the

development of XML parsers, which can universally read any XML file. Documents that

56 See XML.[Last visited 16.08.2007]
57 See World Wide Web Consortium.[Last visited 16.08.2007]
58 See HTML 4.01 Specification.[Last visited 16.08.2007]
59 Harold (2002), p.3.
60 Moseley (2007), p.53.

2. Technology Concept and Relevance

34

satisfy the XML grammar are defined as being well-formed. Documents, witch are not well-

formed will not be accepted by any XML processors.

XML is a meta markup language, meaning it does not have a fixed set of tags like HTML

does. On contrary, XML allows developers to classify the elements they need and in this way

extend the language vocabulary. The letter X in XML stands for eXtensible. This means that

the XML language can be extended and it is not stacked to particular markup language

syntaxes. It is possible that every industry can issued its own set of mark-up which best suites

its needs.

To guarantee interoperability, organizations involved in XML business usage can agree to use

only certain set of tags, defined as XML applications. An XML application is the usage of

XML in a particular domain like financial data or vector graphics.

The XML markup in a document describes the structure of the document. It shows the

relation between the elements of the document. In a well-designed XML document, the

markup also expresses the document's semantics. For example, the markup can indicate an

element as a price or a spare part or a book title and so on. In well-designed XML

applications, the markup should not include any kind of information about how the document

should be displayed. As said before, XML is a markup language that describes the structure

and semantic of the data and not its presentation. That is why XML is the best choice when

unwrapping content from its presentation.

XML markup have the freedom to be extended, but this fact leads to some constrains. A

strong rule without compromise is that every XML document must be well-formed. Among

many others there are a number of rules, including the following: 61

• Every opening start-tag must have its matching closing end-tag.

• Elements may be nested, but can not overlap.

• There must be exactly one root element.

• Attribute values must be quoted.

• An element may not have two attributes with the same name.

61 See Harold (2002), p.24.

2. Technology Concept and Relevance

35

• Comments and processing instructions may not appear inside tags.

• Unescaped “<” or “&” signs must not occur in the character data of an element or

attribute.

Well- formedness errors should be reported by every XML parser reading an XML document.

The parser is not allowed to try to fix the document, because it can not guess what the author

of the XML document really meant. It should only return an error. It is good programming

practice, before publishing an XML document to check it for well-formedness.

An XML document instance can be documented in a schema and lately compared to that

schema. If it matches the schema it is said to be a valid XML document or respectively

invalid if it do not match the schema. So it is obviously that validity depends on the schema

on which the XML document is compared to. The validation is an option. For many purposes

it is enough for an XML document to be simply well-formed.

The mostly used schema language that is defined by the XML 1.0 specification is Document

Type Definition (DTD). A DTD is organized as a list of the entire legal markup that can be

included in a document. It also specifies where and how the XML elements (node, sub-node,

attributes) may be included. It also represents the model of the document it is attached to.

DTDs are optional in XML applicatons. These DTDs can be included in the XML document

it describes, or alternatively an XML document can referenced to it at an external URL.62

Those external DTDs can be shared by different organisations. This practice brings

advantages and disadvantages to the using of DTDs. If the DTD is being only referenced,

changes made to the original DTD are automatically available to all documents referencing to

that DTD. On the other hand, backward compatibility is not guaranteed when a DTD

modification. Incompatible changes can make XML documents invalid.

2.3.3 DOM and SAX

DOM is the standard representation for HTML and XML documents. This has been a W3C

Recommendation since 1997 and is well established. The Recommendation declares that the

DOM is an API that defines the logical structure of documents and the way a document is

62 See Harold (2001), p.211.

2. Technology Concept and Relevance

36

accessed and manipulated programmatically.63 The main idea after DOM is to define generic

API and leave the implementation to the developers of parsers. Application developers who

use those parsers will expect them to enable the access to the documents structure following

the DOM standard. DOM gives an access to the information stored in an XML document by a

hierarchical object model. That means that DOM creates a tree of nodes (based on the

structure of the XML document). The DOM standard is not limited only to XML. It can also

be used to save the structure of a HTML document.64 The information within can be then

accessed through this tree of nodes. Figure 2.9 illustrates this process.

Figure 2.9 Hierarchical structure of a document object (DOM)65

DOM creates a hierarchical tree of nodes when creating a Document object for a particular

XML document. An average DOM parser does almost everything automatically like: reading

the entire XML document in the memory. After that follows the creation of a programming

object model on top of it and then giving a reference to this object model for further

manipulation.

63 See Bates (2003), p.276.
64 See Knobloch et al. (2001), p.38.
65 Figure taken from Idris. [last visited 04.05.2007]

addressbook

person

person

name=“Muster Mann1“

email=“xml@xml-java.com“

name=“John Doe“

email=“john@doe.com“

Document Object Tree

<?xml version=“1.0“?>

XML Document

<addressbook>

</addressbook>

<person>

<name>Nazmul Idris</name>

<email>xml@xml-java.com</email>

</person>

<name>Jone Doe</name>

<email>john@doe.com</email>

<person>

</person>

2. Technology Concept and Relevance

37

Alternatives to the DOM approach are in some cases needed, particularly in cases of huge

data transfer and manipulation. This is the reason why Simple API for XML (SAX) was

developed.66 SAX was created by Dave Megginson and his fellow subscribers to an email list

called XML-DEV67. It is important to mention that SAX is neither an official standard nor a

W3C Recommendation like DOM but it has become a de facto standard since so many XML

products support it.

SAX chooses an alternative way to access the information in an XML document, not as a tree

of nodes, but as a sequence of events. SAX chooses not to create a generic programming

object model on top of an XML document (like DOM does). This makes SAX faster, but at

the same time requires extra programming like creation of an own custom object model and a

class that listen to SAX events and properly instantiating an object of that model.

DOM does not need all this extra programming, because it already creates an object model at

beginning of the XML parsing (which represents the information as a tree of nodes).

On the other hand, SAX does not depend on the parser to do much of the work. All that SAX

requires is that the parser should read the XML document, and fire a bunch of events

depending on what tags it comes across in a given XML document. SAX will fire an event for

every open and every close tag. The SAX document handler will have to interpret these

events. Additionally it must interpret the sequence in which these events are fired. SAX

allows quickly creating a handler class, which can create instances of object models based on

the data in an XML documents. An example of this approach is shown on figure 2.9. A SAX

document handler reads an XML document that contains the address book and as a result

creates the AddressBook class. The address book XML document contains <person> elements

(nodes), which contain <name> and <email> sub-elements (sub-nodes). The AddressBook

object model contains the following classes:68

• AddressBook class, capsulating the Person objects.

• Person class, capsulating the name and email String objects.

66 See Bates (2003), p.290.
67 See XML-DEV. [last visited 04.05.2007]
68 See Idris. [last visited 04.05.2007]

2. Technology Concept and Relevance

38

Following this schema, the SAX document handler is responsible for turning <person> into

Person objects, <name> and <email> elements into String objects and then storing them in an

AddressBook object. So the SAX document handler does element to object mapping.

2.3.4 Parsing XML Data with MSXML

Starting with Internet Explorer 4.01, Microsoft® have issued their own XML parser –

MSXML (a COM component).69 The MSXML library provides a set of objects that abstract

the complexity of XML.70 Most of that complexity is beyond the scope of this diploma thesis.

There are only four important objects needed for the building of the plug-in application:71

• XMLDocument object represents an entire XML document.

• IXMLDOMNode object represents a single entity in the tree.

• IXMLDOMNodeList object represents a collection of child nodes for a particular

entity.

• IXMLDOMNamedNodeMap object represents a collection of attributes for an entity.

The naming convention of those objects follows the rule - DOM stands for Document Object

Model and the "I" stands for interface (COM interface).

Adding a Microsoft® XML (2.0 - 4.0) object reference to the VB project is by using the

References dialog (in a stand alone Visual Basic IDE or in a Visual Basic Editor in any

Microsoft® Office Application), see figure 2.6. The References Dialog can be accessed by

selecting the Project Menu - > References.72 (See figure 2.7). The XML DOM objects can

than be created using the CreateObject() syntax like73 in Listing 2.7.

Dim objXmlDoc

Set objXmlDoc = CreateObject(“Microsoft.XMLDOM”)

Listing 2.7 Creating an DOM Object

69 See Gunderloy. [Last visited 04.05.2007]
70 See Gunderloy. [Last visited 04.05.2007]
71 See Gunderloy. [Last visited 04.05.2007]
72 See Geese (2001), p.68.
73 See Wilson (2000), p.79.

2. Technology Concept and Relevance

39

Lots of people nowadays use XML to save their data. Applications can also use XML to save

configurations and almost any other type of information, from chemical formulas till data

archives.74 In the case of the plug-in application the information saved in the automatic

generated .xml files can be used from other applications like search or indexing machines to

enhance the process of managing e-Learning materials.

In the next chapter a brief introduction to the eduWEAVER managing platform and the

proprietary ADONIS® Definition Language (ADL) and AdoScript language will be

presented.

74 See Ray (2001), p.279.

2. Technology Concept and Relevance

40

2.4 eduWEAVER Modelling Library

2.4.1 Introduction

The general offers of e-learning management solutions exceed to some extend the demand for

those products. This fact does not help solving the problem most of the teaching staff faces

nowadays. Using these tools to managed courses (e-learning or classroom attended) is not yet

a trivial task. Most of the pre-issuing process like: digitising and multimedializing of the

teaching materials require technical knowledge, which most of the teaching staff not yet

possess. This situation helps to explain the fact that most of the instructor staff does neglect

the possibilities an e-learning platform so-called “Learning Management Systems (LMS)”75

brings to the knowledge transfer process.

The reusing of contents is extremely important in this field, where budgets are getting tighter

every day. The development of reusable courseware is being supported by several process

models, but user tools that implement these models are still not brightly accessible.

Within the eduBITE project (Educating Business and Information Technologies)76 a

modelling tool called eduWEAVER was developed to overcome the problems mentioned

before.

eduWEAVER tool is based on the meta-modelling platform ADVISOR® and was developed

as a specific method of ADVISOR®.77 ADVISOR® itself is an open meta-modelling

platform, developed by the BOC Information Technologies Consulting GmbH78 in connection

with the ESPRIT project of the European Union between 1998 and 2000.79 ADVISOR®

additionally offers supportive features for the training of employees in an e-learning

environment. eduWEAVER serves as a learning object repository (learning object pool),

which manages metadata-indexed learning objects (LOs), which are reusable content chunks

with a high degree of cohesion.80 The thought behind this functionality of eduWEAVER is to

gather reusable multimedia content and empower the process of engineering and re-

engineering of new and old on/offline instructional courses. These LOs can then be retrieved

using metadata and reused by other members of the teaching staff. As being ADVISOR®’s,

75 Bajnai (2003) [Last visited 04.05.2007]
76 eduBITE [Last visited 16.08.2007]
77 eduWEAVER [Last visited 04.05.2007]
78 BOC Information Technologies Consulting AG [Last visited 16.08.2007]
79 See Akogrimo Consortium (2005).
80 Steinberger (2002)

2. Technology Concept and Relevance

41

the eduWEAVER modelling library inherits all of the possibilities offered by this modern

instruction process modelling tool. Teachers can use the functionality of a kind of CASE tool

that supports courseware design and generation. This process is being supported through a

graphical user interface (GUI) It helps in a graphical way combine LOs to set of lessons,

modules and courses and export the results via IMS81 packages to an LMS of choice. This

process can end with the import of those IMS packages in a Learning Management System of

choice.

2.4.2 Elements of eduWEAVER

LOs are defined as “…self-contained reusable multimedia materials describing a homogenous

chunk of content to be taught…”82. The base of eduWEAVER LO is the concept of Reusable

Learning Objects83. Normally a LO should not exceed 10 – 30 minutes instructional time and

be thought after special didactical and technical guidelines. A LO has three different

elements: Content Item, Practice Item and Assessment Item. Content Item part represents the

content of the course, Practice Item is the basis for exercises and the Assessment Item is to

examine the learning process (see figure 2.10).

Figure 2.10 General concept of a learning object (LO)84

Different multimedia authoring tools like Microsoft® Office, Dreamweaver, Macromedia

Flash, Authorware, Macromedia Director, SAP iTutor, and many others can be used in the

process of LO creating. Each ready LO (e.g. LO ‘What is an ERP?’) is finally stored in the

repository whereas special metadata have to be specified by the author (see also figure 2. 18).

81 See IMS. [Last visited 04.05.2007]
82 Bajnai (2003) [Last visited 04.05.2007]
83 See Cicso Systems Inc. (2000).
84 See Cicso Systems Inc. (2000).

Content Item

Practice Item

Assessment Item

2. Technology Concept and Relevance

42

In the role of a course designer, the teaching staff can access the eduWEAVER LO and

graphically model a group of LOs to build the demanded course. In this process of course

design the metadata of the LOs is used. This is how the LOs but also larger models (lessons,

modules) stay highly reusable using eduWEAVER.

A ready designed course can be exported via an IMS-package and can be offered online to

students via a LMS.

A member of the teaching staff can use eduWEAVER in three different ways, best situating

her/ his role:

• As a content author - to compose LOs and publish them in the LO pool.

• As a modeller - to take LOs from the pool and use them in way to compose and model

new lessons, modules and courses with the help of the eduWEAVER GUI.

As a coach - to export the LOs as IMS content packages in order to provide the instructional

courses through any IMS-compliant LMS of choice.

2.4.3 The Metamodels of eduWEAVER

2.4.3.1 The Educational Metamodel of eduWEAVER

eduWEAVER modelling tool uses on one hand a hierarchical and on the other hand a process

oriented way of course design. Those two ways reflect in the courseware modelling use case

(see figure 2.11) with three basic user roles and four interconnected model types (see figure

2.13 - 2.16).

2. Technology Concept and Relevance

43

Figure 2.11 The eduWEAVER use cases85

A LO content author can use eduWEAVER to compose multimedia LOs and referenced them

in the LO pool. In addition she/he can meta-indexing them. As course modeller she/he can

take LOs from the Learning Object Pool and use them in order to model new lessons,

modules and courses. In a role of a coach, the teacher can make use of IMS content packages

export functionality of the eduWEAVER and import the ready courses in any IMS-compliant

LMS.

The educational meta model of eduWEAVER can be defined in four modelling levels. On

modelling level-1, courses can be defined as separated and in that sense as independent units.

This is the most abstract level, where every single course has no connection to other learning

units(see figure 2.12).

Figure 2.12 Courses on model level 1 of eduWEAVER 86

85 Figure taken from Bajnai (2003).[Last visited 03.05.2007]
86 Figure taken from Bajnai (2003).[Last visited 03.05.2007]

Course 1

Course 2
Course n

2. Technology Concept and Relevance

44

On level-2, a course can be divided into modules, representing thematically united learning

units. They can follow a consequential order, building a learning transfer process with the

possibility to choose several different paths (see figure 2.13).

Figure 2.13 Possible paths on modelling level 2 of eduWEAVER 87

On level-3, a module is divided into lessons. Typical duration of a unit on that level is about

45-90 minutes of instruction time. Here the course designer can use a hierarchical or

sequential path in the knowledge transfer process. The target user previous knowledge level

determines the actual process paths like: alternative paths, loops or ones (see figure 2.14).

Figure 2.14 Possible paths on modelling level 388

The smallest possible units in the educational metamodel of eduWEAVER resides on the

modelling level-4, the level of learning object use (LOV – abbreviation from German “Lern

Objekt Verwendung”). On that level the LOs can be arrange in a chain or using parallel paths

and in that way made part (used) of the teaching process. The course designer defines

references to the (unused) learning objects, which reside in the Learning Object Pool

87 Figure taken from Bajnai (2003).[Last visited 03.05.2007]
88 Figure taken from Bajnai (2003).[Last visited 03.05.2007]

Modules
1 2 3 4 ... n

Lessons
1 2 3 4 ... n

2. Technology Concept and Relevance

45

(repository). An average lesson should approximately gather a set of about 7 learning objects

beginning with an overview part and ending with a summary (see figure 2.15).

Figure 2.15 LOV on modelling level 4 of eduWEAVER 89

Course modelling with eduWEAVER can be fulfilled in two vertical directions. The top-down

approach was already presented above. Course designers can also start a bottom-up approach

by searching for possible learning objects in the Learning Object Pool or creating new ones

using an external content creation application. They can then referenced them in a LOV

model respectively importing the new ones in a Learning Object Pool and then setting a

reference to them in the target LOV model. Next steps are grouping them into a lesson,

defining several lessons as a module and finally building a whole course. Figure 2.16

represents the both approaches.

89 See Cicso Systems Inc. (2000).

Learning Objects
Use (LOV)

7 +/- 2

S
u
m
m
a
r
y

O
v
e
r
v
i
e
w

2. Technology Concept and Relevance

46

Figure 2.16 Top-down and bottom-up approaches in eduWEAVER 90

2.4.3.2 The Programming Metamodel of eduWEAVER

The programming metamodel of eduWEAVER modelling library is based on the

metamodelling platform ADONIS®.91 ADONIS® is a generic process modelling platform

that lets the usage of newly defined modelling methods. Figure 2.17 represents the meta

model that was chosen by the developers of eduWEAVER. Some of the functionalities

implemented in the ADONIS® like the search of LOs, analysis, definition, target group

simulation, export function, etc. are fully inherit by the eduWEAVER.

90 Figure taken from Bajnai (2003).[Last visited 03.05.2007]
91 See BOC Information Technologies Ltd. [Last visited 04.05.2007]

Course 1

Course 2

Course n

Modules
1 2 3 4 ... n

Lessons
1 2 3 4 ... n

Learning Objects
7 +/- 2

S
u
m
m
a
r
y

O
v
e
r
v
i
e
w

Content Item

Practice Item

Assessment Item

Learning Object Pool

B
O
T
T
O
M
-
U
P

T
O
P
-
D
O
W
N

2. Technology Concept and Relevance

47

Figure 2.17 Simplified metamodel of eduWEAVER 92

There are four model levels: Course, Module, Lesson or Learning Object Use. The model

types are instantiated by a learning constructor and hierarchically linked to each other by

internal references. On level-4 there exist a direct link between the Learning Object Use (LOs

in a model) and the Learning Object Pool elements (LOs in a repository). The LOs in the pool

are referenced to multimedia content and are additionally meta-indexed by their authors as

shown in figure 2.18. On the Graphical User Interface of eduWEAVER all the different

metadata are represented into different tabs covering selected parts of the IMS standard .93

The meta information to a particular Learning Object are divided into General Data, Target

References, Keywords and LO Data give the user the possibility to input all the meta data that

corresponds to the IMS standard.

92 See Kühn (1999), pp.173-174.
93 See IMS. [Last visited 04.05.2007]

2. Technology Concept and Relevance

48

In chapters Content Items, Practice Items and Assessment Items, representing the concept of a

reusable learning object, the multimedia documents can be referenced. These documents can

have any of the usual multimedia formats like HTML, PDF, PowerPoint®, Flash-Movie, and

so on.

Figure 2.18 Metadata indexing94

2.4.4 Course Modelling with eduWEAVER

The process of course modelling every time begins with providing of LOs to the Learning

Object Pool. They can be referenced to self developed multimedia materials or to materials

developed by experts in multimedia design.

The short example bellow shows the bottom-up approach of course modelling with

eduWEAVER.

This exemplary lesson is represented by three LOs and the teacher can choose two different

parallel paths. The theme of the lesson is about process modelling starting with an

introductory. Then the teacher can choose to follow either with a theoretical part or a practical

example (see figure 2.19).

94 Figure taken from Bajnai (2003).[Last visited 03.05.2007]

General Data
Target References
Keywords
LO Data
Content Items
Practice Items
Assessment Items

 Name

 Description

 Owner

 Date of Creation

 Version
 Status
 In work
 To be used
 To be worked over
 To be deleted

2. Technology Concept and Relevance

49

Figure 2.19 Example for modelling level 495

This example shows the graphical approach of eduWEAVER in the process of course

modelling.

2.4.5 ADL (ADONIS® Definition Language)

The developer of ADONIS introduced a markup like language named ADL (ADONIS®

Definition Language) which purpose is to save the existing models for export in another

ADONIS instalation. Its syntax is very close to this of XML. In listing 2.9 an example of the

ADL syntax is shown. At the beginning, the TYPE<> element indicates the type of the model

and in addition includes attributes for describing the model specific information like: author

of the model, time of creation, settings for the visual representation, etc. The INSTANCE<>

elements define concrete instances of the modelling elements specified in the metamodel with

attributes specific to the ADONIS® modelling environment. With the RELATION<> element

95 Figure taken from Bajnai (2003).[Last visited 03.05.2007]

2. Technology Concept and Relevance

50

instances of the relation classes are defined including the’Is From Class’ and ’Is To Class’

relationships.96
//...

TYPE <Ebene 4 - Lernobjekte>

ATTRIBUTE <Autor>

 VALUE "tester"

 ATTRIBUTE <Angelegt am>

 VALUE "07.12.2004, 19:03"

 ATTRIBUTE <Letzte Änderung am>

 VALUE "07.12.2004, 19:48"

 ATTRIBUTE <Letzter Bearbeiter>

 VALUE "tester"

//...

INSTANCE <Introduction to Process Modelling> : <LOV (eduWEAVER)>

 ATTRIBUTE <Position>

 VALUE "NODE x:9.50cm y:4.00cm w:1.23cm h:1.45cm index:1"

//...

RELATION <Nachfolger>

 FROM <Introduction to Process Modelling> : <LOV (eduWEAVER)>

 TO <Entscheidung (eduWEAVER)-11665> : <Entscheidung (eduWEAVER)>

 //...

ATTRIBUTE <Positions>

 VALUE "EDGE 0 index:5"

//...

Listing 2.9 Excerpt of the ADL code

After this introduction of the relevant technical aspects of the plug-in application a

programming process has to be started. In the next chapter the application’s work flow is to be

determined.

96 See Fill. [Last visited 25.04.2006]

2. Technology Concept and Relevance

51

2.4.6 AdoScript

For the purpose of programming add-on or plug-in for Adonis and all its derivates a script

language AdoScript is introduced. AdoScript offers commands for interacting with the

program functionality (loading a model, selecting an object, ADL – Export), as well as

manipulation of models and definition of extra menus or menu items. These menu items can

execute an external programs or functions (DLLs) which can interact through open APIs with

the Adonis models. Exactly those possibilities will be used by the eduWEAVER plug-in,

which will implement the communication between the external plug-in execution program

and the eduWEAVER.

2. Technology Concept and Relevance

52

3 Development of the eduWEAVER Plug-in

3.1 Application Structure

The plug-in application will enable the teaching stuff to transform externally made content to

a form that can be managed by eduWEAVER. The plug-in will have two versions for the

“backloading” process.

The first version will transform every slide of the presentation into a LO of a Learning Object

Pool Model and reference them to a LOV of a Learning Object Use Model (named

“PPT2ADL_one2one.exe”). The program will then ask the user if he/she wants to import the

new generated models into eduWEAVER.

The second version will transform the whole presentation into one LO and its corresponding

LOV (named “PPT2ADL_many2one.exe”). It will again ask the user if he/she wants to

import that LOV into an existing LOV in one step.

The plug-in can have a possible application structure as follow (see figures 3.1-3.2).

Figure 3.1 The application structure for Scenario 1 (PPT2ADL_one2one.exe)

3. Development of the eduWEAVER Plug-in

54

Figure 3.2 The application structure Scenario 2 (PPT2ADL_many2one.exe)

It will operate at the Office application model level, instantiating all relevant PowerPoint®

document objects like slides, speaker’s notes, slides’ titles, texts, file properties. Through a

“backload” process all meta data and content in text form for a given slide will be exported to

a meta_X.xml (X being a sequential number) file and at the same time the text content will be

placed in the description part of the Learning Objects and saved as

name_of_the_presentation.adl file. Further more the application will use the PowerPoint®

export functionality to save the PowerPoint® presentation in a HTML file format. Each slide

(respectively all slides) will be saved as name_of_the_presentation_X.htm file and put into

folder named after the presentation’s title. The plug-in will also put a reference of each

HTML file into an automatically created eduWEAVER’s Learning Object. The user will then

import the generated .adl file for further transformation into eduWEAVER.

The generated .adl file will consist of a Learning Object Use and a Learning Object Pool meta

models. The Learning Object Use model (Scenario I) will follow the presentation slides’

sequence.

3. Development of the eduWEAVER Plug-in

55

3.2 Application Work Flow

The application workflow of the plug-in will be as follow:

• It will start within the eduWEAVER.

• It will have its own GUI (VB6 Form).

• It will import .ppt files, converting them in background to .html, .xml, naming them as

each slide’s title if one exists and if not with an ongoing number.

• At the end the user will be able to save .adl file (containing the Learning Object Usage

/ Learning Object Pool to a directory of choice.

• The user will be then able to import the generated .adl file in eduWEAVER and use

the .xml and .html for further transformation.

Figure 3.3 shows a possible program flow chart for the plug-in application.

A program flow chart is normally used to describe the flow of data through a particular

computer program, showing the exact sequence of operations performed by that program in

order to process the data. Different graphic symbols are used to represent data input and

output, decisions, branches, and subroutines.

The following table 3.1 explains the meaning of the symbols used in the program flow chart

in figure 3.3.

Symbol Meaning
 Processing activity

 Input / Output operation

 Decision to be made

 Start / End

 Flow Line

Table 3.1 Flow chart symbols explanation

3. Development of the eduWEAVER Plug-in

56

Figure 3.3 Program flow chart

START

Enter path for the
.ppt file

Run PowerPoint in background and start
backloading (Write result in meta_X.xml,
presentation_title.adl,
presentation_title _X.html)

 Is PowerPoint
installed?

Yes

END

Message Box:
“You do not have

PowerPoint installed on
your computer”

No

Enter saving path for
the .adl file

Load .ppt file

Save files to disk

Is ppt file
selected?

Yes

Message Box:
“Please select a

PowerPoint file first!”

No

Is .adl filed
named?

Yes

Message Box:
“Please select a

PowerPoint file first!”

No

 Press the
Import button

 Selecting the slides
to be imported

3. Development of the eduWEAVER Plug-in

57

The plug-in will use the PowerPoint® installed on the target desktop through the automation

that the VBA deliver. So it is important to have PowerPoint® installed there. Therefore the

program checks for that installation before running the “backload” procedure. If no

installation of PowerPoint® is presented the program will terminate after the “Start” button

being clicked, giving a message box alert that PowerPoint® is not yet installed.

The user has two input fields for selecting the PowerPoint .ppt file and for the directory of the

output files. The output button brings a “Save as” file window with already named (named

after the PowerPoint® presentation name) .adl file. As discussed in chapter 2.5.2 Elements of

eduWEAVER, the LO can be of type Content, Practice or Assessment Item. The user can

choose one of these types by clicking on the radio button of choice. The Content Item is the

default value. The user can also give a different name to the LO/LOV in the TextBox below

the type check boxes.

After that the user can start the “backloading” process by clicking the “Start” button. During

the transformation the user can stop the process by clicking on the “Stop” button and quit the

program by clicking the “Quit” button. The result will be written in different files and these

files will be saved at a position given by the user in the “Save as” file window. That will be

the end of the plug-in task in the scenario 1 (1:1) followed by the ADL Import window of the

eduWEAVER. The user can import the generated .adl file to work within eduWEAVER, and

the html and xml files for further transformation or presentation. When imported in

eduWEAVER the user will find two models – Learning Object Pool and Level 4- Learning

Objects. In chapter General Data >> Description the user will find the textual content of the

presentation slide. He/she can then reorganise the text for a more accurate description of the

LOV. The Learning Objects in the Level 4 will have the as targets the LOs from the Learning

Object Pool. The LOs in the pool will have as Entering Point in Chapter “Content Item”

(alternatively “Practice Item” or “Assessment Item”) the HTML files generated by the plug-

in.

The second scenario (N:1) will also automatically invoke the ADL import window of the

eduWEAVER but after importing it will prompt for a suggestion in which LOV it should

import the generated LOV. The user must choose one LOV that is already presented in the

eduWEAVER. The plug-in will put the new LOV in the upper left corner of the graphical

presentation of the hosting LOV. In the background the LO will also be imported in the

general models area. The LO can be than manually imported into another LO Pool.

3. Development of the eduWEAVER Plug-in

58

4 Installation and User Manual

4.1 Installation

The eduWEAVER plug-in will be distributed in form of two executables

(PPT2ADL_one2one.exe/PPT2ADL_many2one.exe) and an AdoScript import_into_model.asc

file (see source code in Appendix). The three files should be copy/paste in the main directory

of eduWEAVER. The eduWEAVER administrator should customise the layout of the

modelling library by the means of external coupling to edit the import/export perspective

menu of the eduWEAVER adding a new button (e.g. “backloading” see the Appendix for a

sample code). The user can start the plug-in from there choosing the new button article (e.g.

“Backloading”) with two sub-articles (e.g. “ADL Import n: 1”/”ADL Import 1:1”) which both

will be linked to the plug-in executables.

4. Installation and User Manual

60

4.2 User Manual

4.2.1 Scenario I

For starting the plug-in the user must go to the Import/Export perspective of eduWEAVER as

shown in figure 4.1.

Figure 4.1 Import/Export perspective of eduWEAVER

On the menu area there is an item called “Backloading” with two sub-items “PPT Import n:

1” and “PPT Import 1:1”. The user can choose one of them corresponding to scenario she

wants to use.

The steps bellow will demonstrate the Scenario I (PPT Import 1:1):

1. The plug-in application starts in an extra window as shown in figure 4.2.

4. Installation and User Manual

61

Figure 4.2 The GUI of the plug-in

2. After clicking the button in the “Import Field Area” (at the top of the

application) the plug-in opens the Windows® explorer where the user inputs

the path to the PowerPoint® file to be imported as shown in figure 4.3.

4. Installation and User Manual

62

Figure 4.3 The window explorer shows the path to the PowerPoint® file

3. The Import button turns into active state and the user can start the import of the

PowerPoint® file as shown in figure 4.4.

4. Installation and User Manual

63

Figure 4.4 The” Import” button turn into active state

4. After clicking the Import button the plug-in starts to import the PowerPoint®

application at loads all slides in the TextBox Area bellow as shown in the

figure 4.5.

4. Installation and User Manual

64

Figure 4.5 The imported PowerPoint® slides

5. The user can select all the slides or only those that he needs for the LOV/LO as

shown in the figure 4.6. (by default all slides will be selected).

4. Installation and User Manual

65

Figure 4.6 The imported PowerPoint® slides

6. After that the user can choose between three types of LO namely “Content

Item”, “Practice Item” and “Assessment Item”. (default value is “Content

Item”).

7. The user can also give a special name for the LO/LOV (default value is the

name of the presentation).

8. Now the user must give the path to the output directory (by clicking the

button) where the .adl, .xml. and .html files will be saved as shown in the

figure 4.7.

4. Installation and User Manual

66

Figure 4.7 The window explorer shows the path to the output directory

9. After that the “Start” button turns into active state as shown in the figure 4.8.

The user can now start the transforming (“backloading”) process.

4. Installation and User Manual

67

Figure 4.8 The “Start” button turns into active state

10. After starting the transforming process the “Stop” button turns also into active

state. The user can stop the process at any time. The “Exporting Progress”

shows the current progress of the transformation and the “Current Action”

shows the current PowerPoint® slide being transformed as shown in the figure

4.9.

4. Installation and User Manual

68

Figure 4.9 The current transform state can be seen

11. After finishing the transform procedure the “Next >” button turns into active

state and the user can go on with the importing into eduWEAVER as shown in

the figures 4.10-4.11.

4. Installation and User Manual

69

Figure 4.10 The “Next” button turns into active state

12. The work flow of the application starts the “ADL Import” window and the user

must show the path to the directory where the plug-in saved the .adl file as

shown in the figures 4.11-12.

4. Installation and User Manual

70

Figure 4.11 Pop-up window about the ADL import

4. Installation and User Manual

71

Figure 4.12 The ADL Import procedure in eduWEAVER (1)

13. The ADL Import follows the normal import procedure in eduWEAVER as

shown in the figures 4.13-4.14.

4. Installation and User Manual

72

Figure 4.13 The ADL Import procedure in eduWEAVER (2)

4. Installation and User Manual

73

Figure 4.14 The ADL Import procedure in eduWEAVER (3)

14. After finishing the transformation process the user can quit the program or

transform other PowerPoint® files.

The imported models will look like in the figures 4.15-4.16.

4. Installation and User Manual

74

Figure 4.15 The imported LOV Model in eduWEAVER

4. Installation and User Manual

75

Figure 4.16 The imported LO Model in eduWEAVER

This possible workflow shows how easily the teaching staff can transform their PowerPoint®

presentation into LOV/LO Models.

4. Installation and User Manual

76

4.2.2 Scenario II

The second possible scenario is that all the PowerPoint® slides will be transformed into one

LOV and corresponding LO. The steps of importing follow the same schema like steps 1-12

of the first scenario (see figure 4.1-4.12). The difference is the step 14 where another way of

ADL import is happening. As shown in the figure 4.17 a dummy LOV is created (Temp 1.0

LOV). After successful import into another model eduWEAVER will delete that dummy

LOV. If the user does not want to import the new LOV into another existing LOV she can

reject the proposal of the pop up window shown in figure 4.18. After that she can rename the

Temp 1.0 into a desired LOV name.

Figure 4.17 A dummy LOV (Temp 1.0) is created

The standard flow of the application will bring a pop-up window, asking the user if she want

to import the LOV in an already existing one as shown in the figure 4.18.

4. Installation and User Manual

77

Figure 4.18 Ask to import the LOV

The application will show a collection of all possible (existing) LOV models where the user

can import her model into (see figure 4.19).

4. Installation and User Manual

78

Figure 4.19 All existing LOV models

After the user choose the LOV model the application imports the new created LOV and put it

at the upper left corner of the chosen LOV model as shown in the figure 4.20.

4. Installation and User Manual

79

Figure 4.20 Successful import of the LOV

At the end the application prompts with the ADL import summary, which gives an overview

of the imported models (see figure 4.21).

4. Installation and User Manual

80

Figure 4.21 ADL Import summary

As shown above the second scenario and its application flow is also easy to understand and

self explaining.

5 Conclusions

E-Learning course ware developing was a domain of the software developer some years ago.

That situation changed in the recent years when the multimedia content developing

application became more accessible and easily to cope with. The organizational situation of

the teaching staff did not change a lot as only there are now expected to be up-to-date with the

new technologies. Developing excellent e-Learning materials is now taken for granted but the

extra time and strengths are not calculated. That is why the teaching staff community is

always on search of comprehensive tools for easily designing of instructional materials. The

idea of reusable high quality learning objects is one of the important prerequisites in the

process of course ware development. The eduWEAVER modelling library embraced that idea

from the very beginning by providing an open learning object pool. The teaching staff

community is now enabled to exchange or reuse their multimedia materials or to use material

created by professional authors. The export functionality of the tool helps the process of E-

Learning broadcast through the creation of IMS packages consisting of the course structure

and multimedia materials. The last step is the import of those packages in a learning

management system (compliant with the IMS standard) allowing an easy delivering of web-

based courses.

This diploma thesis shows a possible way of “backloading” procedure, meaning transforming

learning materials (such as PowerPoint® presentations) and importing them into a learning

process management system like eduWEAVER for further usage and transformation. The

plug-in application also reveals the meta data saved in every Microsoft® Office document

making the indexing and searching of content more easily. The program extracts also the

content from the PowerPoint® presentation (putting it into .xml files) and enables the user to

transform it into another presentational form.

The main idea behind every learning management system is to enable the user to cope with a

large amount of learning materials, also organize and re-organize those materials into courses.

The eduWEAVER plug-in serves exactly these main purposes. In addition, it enable a one

step automatic transforming of PowerPoint® presentations into eduWEAVER Learning

Objects saving time and efforts of the teaching staff who do not have to use many different

applications until they get their work done.

5. Conclusions

82

The application build in this diploma thesis is the ground for further following plug-ins for

eduWEAVER or other application which manage the exported XML and HTML files. On the

next level the extracted meta information in the xml files can be indexed and made ready to

search on the internet or on a university intranet. In the future when the web 3.097 (Semantic

Web98) will become reality this meta information will become a standard for publishing

content on the WWW. Another possible application can transform the content and the meta

information into PDF files for printing of teaching materials or add another layout design to

the online presentation of the Learning Objects. It is possible in the future application to have

different presentation arts for the learning content for example one in Flash, one for mobile

devices, one in plane HTML and so on. It is also possible to build a Learning Object

Repository like a Web 2.099 environment (z.B. Wikipedia100) where the teaching staff can

issue and edit Learning Objects in a team manner, which can raise the quality of the content

and the satisfaction of the knowledge consumers.

97 See Web 3.0.[Last visited 16.08.2007]

98 See Semantic Web.[Last visited 16.08.2007]
99 See Web 2.0.[Last visited 16.08.2007]
100 See Wikipedia.[Last visited 16.08.2007]

xi

V Bibliography

ADVISOR: Advanced instruction technology for services organisation.

(http://cordis.europa.eu/search/index.cfm?fuseaction=

proj.simpledocument&PJ_RCN=4014736&CFID=

2772438&CFTOKEN=53260157)

(http://www.boc.at/index.jsp?file=

WP_d5f091cc2d6dd919.dc1f04.107b31faa81.-7ff7&lg=en)

[Last visited 16.08.2007]

Akogrimo Consortium: Application Adaptation, Methods/Tools; Sixth Framework

Programme; Editors: Woitsch R.; Schwab M., 2005

Bajnai, Judit / Karagiannis, Dimitris: ADVISOR® – Meta-Modeling Tool for

 Individual Instructional Design, 2004

 (http://www.ro.feri.uni-mb.si/razno/icl2004/pdf/karagiannis.pdf)

 [Last visited 04.05.2007]

Bajnai, Judit / Steinberger, Claudia: eduWEAVER – the Web-based Courseware Design

Tool, 2003

 (http://edubite.dke.univie.ac.at/IADISInternet2003.pdf)

 [Last visited 04.05.2007]

Bates, Chris: XML in Theory and Practice, 1st edition, Wiley, Chichester, 2003

BOC Information Technologies Consulting AG

 (http://www.boc-group.com/)

 [Last visited 16.08.2007]

CodeGear

 (http://www.codegear.com)

 [Last visited 17.08.2007]

xii

 Cicso Systems Inc.: Reusable Learning Object Strategy, Definition, Creation Process and

Guidelines for Building, Version 3.1, April 22, 2000

 (http://www.reusablelearning.org/Docs/Cisco_rlo_roi_v3-1.pdf)

[Last visited 04.05.2007]

Dewath, Gizella: An Introduction to e-Learning: A Study of the Current State of e-Learning

in the United Kingdom, 2004

 (http://idp.bl.uk/downloads/e-Learning.pdf)

 [Last visited 16.08.2007]

Doberenz, Walter / Kowalski, Thomas: Visual Basic 6, 1. Auflage, Carl Hanser Verlag,

München, 1999

Eclipse - an open development platform

(http://www.eclipse.org/index.php)

[Last visited 17.08.2007]

eduBITE – Projektinformationen

 (http://edubite.dke.univie.ac.at/Downloads.htm)

 [Last visited 16.08.2007]

eduWEAVER

 (www.formatex.org/micte2006/pdf/806-810.pdf)

 [Last visited 06.05.2007]

 (http://www.eduweaver.net)

 [Last visited 25.11.2007]

Esprit Project: EU information technologies programme

 (http://cordis.europa.eu/esprit/home.html)

 [Last visited 16.08.2007]

http://idp.bl.uk/downloads/e-Learning.pdf�
http://www.eclipse.org/index.php�

xiii

Fill, Hans-Georg: UML Statechart Diagrams on the ADONIS Metamodeling Platform

 (http://tfs.cs.tu-berlin.de/grabats/Final04/fill.pdf)

[Last visited 03.05.2007]

Freeze, Wayne: Visual Basic Developer’s Guide to COM and Com+, 1st Edition, Sybex,

USA, 2000

Geese, Elmar / Heiger, Markus / Lohrer, Matthias: XML, XSLT, VB und ASP, 1.Auflage,

Galileo Computing, Bonn, 2001

Gunderloy, Mike: Parsing XML Data with MSXML

(http://msdn2.microsoft.com/en-us/library/aa163921(office.10).aspx)

[Last visited 04.05.2007]

Grillitsch, Silvia: Blended Learning

(http://elearningcenter.univie.ac.at/index.php?id=535)

[Last visited 16.08.2007]

Harold, Elliotte Rusty: XML Bible, 2nd edition, Hungry Minds, New York, 2001

Harold, Elliotte Rusty / Means, W. Scott: XML in a Nutshell, 2nd edition, O’Reilly,

Sebastopol, 2002

Haupt, Horst: Visual Basic Referenz, 1.Auflage, Francis’, Poing, 1999

HTML 4.01 Specification

(http://www.w3.org/TR/html401/)

[Last visited 16.08.2007]

Idris, Nazmul: Should I use SAX or DOM?

(http://developerlife.com/saxvsdom/default.htm)

[Last visited 04.05.2007]

xiv

IMS content packaging

 (http://www.imsproject.org)

[Last visited 04.05.2007]

Karagiannis, Dimitris / Bajnai, Judit: eduXX – The Instructional Design Platform

EISTA04 - International Conference on Education and Information Systems:

Technologies and Applications, Orlando, 2004

Kühn, H., et al.: Re-Use in Business Process Management based on Metamodelling and

Model Views. In: Bullinger, H.-J.; Vossen, P. H. (Eds.): Adjunct Conference

Proceedings of the 8th International Conference on Human-Computer

Interaction, HCI Int. '99, Munich, August 1999

Knobloch, Manfred / Kopp, Matthias: Web-Design mit XML, 1.Auflage, dpunkt.Verlag,

Heidelberg, 2001

Lomax, Paul: VB & VBA in a Nutshell: The Language, 1st Edition, O’Reilly, Sebastopol,

1998

Martin, René: VBA mit Office 2000 lernen, 2.Auflage, Addison-Wesley, München, 1999

Mayhew, Deborah: The Usability Engineering Lifecycle, 1st Edition, Morgan Kaufmann,

San Francisco, 1999

Meyer, Eric: Design Issues for Web-Based Teaching Materials

 (http://meyerweb.com/eric/talks/www6/706/POSTER706.html)
 [Last visited 12.11.2007]

Microsoft® Corporation: Microsoft® Office XP Developer's Guide, 1st Edition, Redmond,

2001

xv

Microsoft® Office

 (http://www.microsoft.com/austria/office/default.mspx)

 [Last visited 17.08.2007]

Monadjemi, Peter: Jetzt lerne ich Visual Basic, 2.Auflage, Markt und Technik Verlag, Haar

bei München, 1999

NetBeans IDE

 (http://www.netbeans.org/index.html)

 [Last visited 17.08.2007]

Nielsen, Jacob: Usability Engineering, Academic Press, 1st Edition, San Diego, 1993

Nielsen, Jacob: Ten Usability Heuristics, 2001

 (http://www.useit.com/papers/heuristic/index.html)

 [Last visited 03.05.2007]

Norman, D.: Things that makes us smart: Defending Human Attributes in the Age of the

Mashine, Addison-Wesley Publishing, New York, 1994

PowerDesigner

 (http://www.sybase.com/products/modelingmetadata/powerdesigner)

 [Last visited 17.08.2007]

Preece, Jennifer. et al.:: Interaction design: beyond human – computer interaction, 1st

Edition, John Wiley & Sons Ltd, New York, 2002

Puopolo, John P.: Writing OLE Controls, 1st edition, Prentice Hall, New Jersey, 1997

Raskin, Jef: Das intelligente Interface, 1.Auflage, Addison-Wesley Verlag, München, 2001

Ray, Erik T.: Learning XML, 1.Auflage, O’Reilly, Beijing [u.a.], 2001

http://www.interaction-design.org/references/publishers/addison-wesley_publishing.html�

xvi

Rogerson, Dale: Inside COM, 1st Edition, Microsoft Press, Redmond, 1997

Seelhofer, Martin: Microsoft® Office- Programmierung & Visual Basic for Applications,

1.Auflage, Smart Books, Kilchberg, 2003

Semantic Web

 (http://www.semantic-web.at/36.175.35.catchword.kontext.semantic-web.htm)

 [Last visited 16.08.2007]

Shneiderman, Ben / Plaisant, Catherine: Designing the User Interface, 4th Edition, Pearson

Addison Wesley, Boston, 2005

Siler, Brian / Spotts, Jeff: Using Visual Basic 6, Special edition, Que, Indianapolis, 1998

Spolsky, Joel: User Interface Design for Programmers, 1st Edition, Apress, Berkeley, 2001

Steinberger, Claudia et al.: EduBITE: Educating Business and Information Technologies,

Proceedings of e-Learn, Montreal, Canada, 2002

Visual Studio 2005

(http://www.microsoft.com/germany/msdn/vstudio/products/default.mspx)

 [Last visited 17.08.2007]

Web 2.0

(http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-

20.html?page=1)

 [Last visited 16.08.2007]

Web 3.0

(http://www.semantic-web.at/36.62.255.catchword.kontext.web-3-0.htm)

 [Last visited 16.08.2007]

javascript:open_window(%22http://aleph.ub.tuwien.ac.at:80/F/MRL3ASSJU3YBGG83IKET5QJU4Q29GNULFIUGPS1VKYJ9JDMJ1M-02718?func=service&doc_number=000350325&line_number=0021&service_type=TAG%22);�
javascript:open_window(%22http://aleph.ub.tuwien.ac.at:80/F/MRL3ASSJU3YBGG83IKET5QJU4Q29GNULFIUGPS1VKYJ9JDMJ1M-02718?func=service&doc_number=000350325&line_number=0021&service_type=TAG%22);�

xvii

Wikipedia

 (http://de.wikipedia.org/wiki/Hauptseite)

 [Last visited 16.08.2007]

Wilson, Mark / Wilson, Tracey: XML Programmierung mit VB und ASP, 1.Auflage,

Addison-Wesley Verlag, München, 2001

World Wide Web Consortium

 (http://www.w3.org/)

 [Last visited 16.08.2007]

XML

 (http://www.w3.org/XML/)

 [Last visited 16.08.2007]

XML-DEV: XML-DEV Mail List

 (http://www.xml.org/xml/xmldev.shtml)

 [Last visited 03.05.2007]

xviii

xix

VI Appendix

Abstract

At the end of the 90's E-Learning was a term with which large hopes were connected,

regarding the improvement of learning. This improvement referred to several criteria. First

one assumed the creation and management of the learning components will be simpler and

above all more economical. Furthermore one believed that the entrance possibilities would be

simplified, also in the sense that an individualized, based on the particular needs of the

learning consumer’s courseware would be issued. And finally the hope that more self

organization in the learning process will become reality, which of the other side would cut the

overall learning expenses.

All these intention did not find their full realization in the given period. The time line for this

fundamental project was largely extended because of the lack of understanding the problems

the participants were to face. One of those problems was the fact that quality courseware was

not simple to create and when once created not simple to be managed. Because of the IT

technological race it was difficult for the teaching staff to maintain their learning materials

up-to-date. It was high time to build the tool not only for creating learning materials but also

tools for their management. One such tool is eduWEAVER, an educational courseware design

tool.

The aim of the diploma thesis will be to show a possible scenario in form of a plug-in

application for the eduWEAVER. It should enable the easy transaction of existing class

teaching materials (mostly Microsoft® Office files and particularly PowerPoint®

presentations) into quality e-Learning materials with a minimum of manual work.

Keywords: eduWEAVER, E-Learning, ADONIS, Visual Basic, Visual Basic for Application,

User Interfaces, XML, ADL, Power Point

xx

Zusammenfassung

Am Ende der 90er Jahre war E-Learning ein Begriff, mit dem große Hoffnungen im Hinblick

auf die Verbesserung des Lernens verbunden waren. Diese Verbesserung hatte mehrere

Anhaltspunkte. Einer ging davon aus, dass die Entwicklung und das Management des

Lehrmaterials einfacher und vor allem günstiger werden. Ein anderer war die Ansicht, dass

eine breitere Akzeptanz geschaffen wird, in dem Sinne, dass eine individuelle, auf die

besonderen Bedürfnisse des Verbrauchers angepasste Ausbildungslösung präsentiert wird.

Und schließlich bestand die Hoffnung, dass mehr Selbstorganisation in dem Lernprozess zur

Realität wird, und sich somit auch die gesamten allgemeinen Ausbildungskosten minimieren

lassen. Alle diese Absichten wurden in der angegebenen Zeit bei weitem nicht verwirklicht.

Die Zeit für die Realisierung dieses grundlegenden Projektes wurde stark erweitert, da der

Mangel an Verständnis für die Probleme der Teilnehmer zu groß war. Ein Problem war die

Tatsache, dass qualitativ hochwertige Kursmaterialen nicht einfach zu erstellen sind und,

wenn sie einmal erstellt sind, nicht einfach zu verwalten sind.

Während der anhaltenden IT-technologischen Rennen ist es für die Lehrkräfte zunehmend

schwierig geworden, ihre Lehrmaterialien up-to-date zu halten. Es war höchste Zeit ein

Werkzeug zu präsentieren, das nicht nur für die Erstellung von Lernmaterialien, sondern auch

für deren Verwaltung geeignet ist. Ein solches Instrument ist eduWEAVER, ein

Bildungsmaterialen Design Tool.

Das Ziel der Diplomarbeit war es, eine mögliche Lösung der vorher besprochenen Probleme

in Form einer Plug-In-Anwendung für eduWEAVER zu präsentieren. Diese sollte die

Transformation der bestehenden Lehrmaterialien (meist Microsoft® Office Dateien und vor

allem PowerPoint® Präsentationen) in hoch qualitative e-Learning Materialien mit einem

Minimum an manueller Arbeit verwirklichen.

Schlüsselwörter: eduWEAVER, E-Learning, ADONIS, Visual Basic, Visual Basic for

Application, User Interfaces, XML, ADL, Power Point

xxi

Curriculum Vitae

 My name is Ivaylo Velikovski. I study International Economic at

the University of Vienna. I began my study in the year 1996.

Before that I studied for one year at the Economic University of

Sofia, Bulgaria.

My priorities lay in the subjects of Economic Computer Science

and Financial Analysis. During my study I have participate on

additional courses like “Java Programming” at the Siemens

Training Center in Vienna, “SAP Business Process Management

Junior” at the SAP Business School Vienna and many other courses at the SAP Training

Center in Vienna. Since Mai 2007 I work at IDS Scheer Austria at the department of SAP

NetWeaver Enterprice Technologies.

xxii

import_into_model.asc

CC "AdoScript" QUERYBOX "Wollen Sie den LOV importieren?" yes-no
IF (endbutton = "no") { EXIT }
CC "Core" GET_MODEL_ID modelname:("Temp 1.0") modeltype:("Ebene 4 - Lernobjekte")

CC "Modeling" OPEN modelids:(STR modelid)

CC "Core" GET_ACCESS_MODE modelid:(modelid)

CC "Modeling" SELECT_ALL
CC "Modeling" COPY_SELECTED
CC "Core" DISCARD_MODEL modelid:(modelid)
CC "Core" DELETE_MODEL modelid:(modelid)

SET mod_list: ("")

CC "Core" GET_ALL_MODEL_VERSIONS modeltype:("Ebene 4 - Lernobjekte")

SET obj:(objid)

FOR modid in:(modelversionids)
{
 CC "Core" GET_MODEL_INFO modelid:(VAL modid)
 SET mod_list:(tokunion (mod_list, modelname + "~" + ver, "@"))
}

CC "Core" GET_CLASS_ID classname:("LOV (eduWEAVER)")

CC "AdoScript" LISTBOX entries: (mod_list)
 toksep: ("@")
 selection: (token (mod_list, 0, "@"))
 title: ("Wohin soll das Objekt importiert werden?")
 boxtext: ("Modellauswahl")
 w:300
 h:300

IF (endbutton = "cancel") { EXIT }
IF ((LEN selection - 1) > search (selection,"~",0)) { SET selmod:(replall(selection,"~" ," ")) }
ELSE { SET selmod:(copy (selection,0,search (selection, "~", 0))) }

CC "Core" GET_MODEL_ID modelname:(selmod) modeltype:("Ebene 4 - Lernobjekte")
CC "Modeling" OPEN modelids:(STR modelid)
CC "Core" GET_ACCESS_MODE modelid:(modelid)
CC "Modeling" PASTE modelid x:1.00cm y:1.00cm

#make the user happy
CC "AdoScript" INFOBOX "Der Import wurde erfolgreich abgeschlossen!"

xxiii

External Coupling (Modeling Library Customising)

#---
#--BACKLOADING--#
 ON_EVENT "EndADLImport"
{
IF (successful AND plgin_ver = "all")
{
CC "AdoScript" FREAD file:"import_into_model.asc"
EXECUTE (text)
}
}
##############
ITEM "PPT Import n:1" importexport: "Backloading" pos1:5
SETG plgin_ver:"all"
CC "Application" GET_VERSION version:version

 SET b:""
 FOR i from:8 to:(LEN version -1)
 {
 SET a:(version SUB i)
 SET b:(b + a)
 }

 CC "Core" GET_CURRENT_LIBS bplib:(bplib)

SET parameter:(b + "&" + bplib)
#CC "AdoScript" INFOBOX(parameter)
SYSTEM ("PPT2ADL_many2one.exe " + parameter)
CC "AdoScript" QUERYBOX "Wollen Sie den ADL importieren?" yes-no
IF (endbutton = "no") { EXIT }
CC "ImportExport" EXEC_ADL_IMPORT_DLG

###############
ITEM "PPT Import 1:1" importexport: "Backloading" pos1:6
SETG plgin_ver:"one"
CC "Application" GET_VERSION version:version

 SET b:""
 FOR i from:8 to:(LEN version -1)
 {
 SET a:(version SUB i)

 SET b:(b + a)
 }

 CC "Core" GET_CURRENT_LIBS bplib:(bplib)

SET parameter:(b + "&" + bplib)
#CC "AdoScript" INFOBOX(parameter)
SYSTEM ("PPT2ADL_one2one.exe " + parameter)
CC "AdoScript" QUERYBOX "Wollen Sie den ADL importieren?" yes-no
IF (endbutton = "no") { EXIT }
CC "ImportExport" EXEC_ADL_IMPORT_DLG

xxiv

Program Code (PPT2ADL_one2one.exe)

Form_1to1.frm

Dim Path, pptFile, outputDir, stop_transform, item, n, version, lb_name, aprs As String

Private Sub Check1_Click()
'EventHandler for the slides selection table
If Check1.Value = vbChecked Then
 Call SendMessageLong(Slides.hwnd, LB_SETSEL, True, -1)
 Else:
 Call SendMessageLong(Slides.hwnd, LB_SETSEL, False, -1)
End If

End Sub

Private Sub Form_Load()

btnStop.Enabled = False
btnImport.Enabled = False
btnStart.Enabled = False
btnNext.Enabled = False

'reading the parameter coming from the EduWEAVER call
If Command = "" Then
 version = "3.7"
 Else:
 aprs = "&"
 b = Split(Command, aprs)
 version = b(0)
 lb_name = b(1)
End If

End Sub

Private Sub btnImport_Click()

'EventHandler for the "Import" Button

Dim oPPTPres_dummy, oPPTPres As PowerPoint.Presentation

Check1.Value = vbUnchecked

If (ppt_file.Text = "") Then
 MsgBox ("You should select a PowerPoint file first!")
 Else:
 Slides.Clear
 wait = "Please wait..."
 Slides.AddItem wait

'creat PowerPoint presentation object
 Set ppApp = CreateObject("PowerPoint.Application")

'check if PowerPoint installed on the user's computer
 If (ppApp = "") Then
 MsgBox ("You do not have PowerPoint installed on your computer. Please install PowerPoint and try again!")
 Action.Caption = ""
 Exit Sub
 End If

'open the PowerPoint presentation "behind the scene"
 Set oPPTPres = ppApp.Presentations.Open(pptFile, WithWindow:=msoFalse)
 slide_count = oPPTPres.Slides.Count
 Slides.Clear

'extract the slide titles for the selection screen
 For i = 1 To slide_count
 On Error Resume Next

 If oPPTPres.Slides(i).Shapes.HasTitle Then

xxv

 title_value = oPPTPres.Slides(i).Shapes.Title.TextFrame.TextRange.Text
 Else:
 title_value = i & " Slide"
 End If

 Slides.AddItem i & " : " & title_value
 Next i

End If
Check1.Value = vbChecked
ppApp.Quit
'Release variables
 Set oPPTPres = Nothing
 Set ppApp = Nothing

End Sub

Private Sub ppt_Click()

'EventHandler for the button "Open file" window
With CommonDlg1
 .CancelError = False
 .MaxFileSize = 2 * 1024
 .DialogTitle = "Please select a PowerPoint file!"
 .Filter = "Alle PowerPoint Präsentationen (*.ppt)|*.ppt"
 .Flags = cdlOfnOpenDefault + cdlOFNExplorer
 .ShowOpen
 FileName = .FileName
 ppt_file.Text = .FileName
 pptFile = ppt_file.Text
End With
'Import button will be activated if a PPT file was choosed
DoEvents: If (ppt_file.Text <> "") Then btnImport.Enabled = True Else btnImport.Enabled = False

End Sub

Private Sub adl_Click()

'EventHandler for the button "Save as" window
With CommonDlg

'check if PowerPoint presentation file has been selected
 If (CommonDlg1.FileName = "") Then
 MsgBox ("Please select a PowerPoint file first!")
 Exit Sub
 End If

 .CancelError = False
 .DialogTitle = "Save as"

'default name of the .adl file is the presentation name
 .FileName = Mid$(CommonDlg1.FileName, 1, Len(CommonDlg1.FileName) - 4) & ".adl"
 .Filter = "Alle ADONIS Definition Language Files(*.adl)|*.adl"
 .DefaultExt = "adl"
 .Flags = cdlOFNOverwritePrompt + cdlOFNPathMustExist
 .ShowSave
 Path = Left$(.FileName, Len(.FileName) - Len(.FileTitle))
 outPut.Text = .FileName
 outputDir = outPut.Text
End With

'Start button will be activated if a ADL file was choosed
DoEvents: If (outPut.Text <> "") Then btnStart.Enabled = True Else btnStart.Enabled = False

End Sub

Private Sub Slides_Click()

'EventHandler for the selection table
Dim d As Scripting.Dictionary
Set d = CreateObject("Scripting.Dictionary")

xxvi

For i = 0 To Slides.ListCount - 1

 If (Slides.Selected(i) = True) Then
 res = res + 1
 d.Add i, "True"
 Else:
 res = res - 1
 d.Add i, "False"
 End If

Next i
If res = Slides.ListCount Then
 Check1.Value = vbChecked
 Else:
 Check1.Value = vbUnchecked

 For i = Slides.ListIndex To Slides.ListCount - 1
 Slides.Selected(i) = d(i)
 Next i

 For i = 0 To Slides.ListIndex
 Slides.Selected(i) = d(i)
 Next i

End If
If Slides.ListIndex = 0 Then
 Slides.Selected(0) = d(0)
End If

End Sub

Private Sub btnStart_Click()

'EventHandler for the "Start" button
 ProgressBar.Value = 0

If (ppt_file.Text = "" Or outPut.Text = "") Then
 MsgBox ("You should select a PowerPoint file and output directory first!")
 Else:
 transform
End If
End Sub

Private Sub btnStop_Click()

'EventHandler for the "Stop" button
 ProgressBar.Value = 0
 Action.Caption = ""
 stop_transform = True
 btnStart.Enabled = True
 Set OutStream = Nothing

End Sub

Private Sub btnNext_Click()

'EventHandler for "Next" button
End

End Sub

Private Sub btnQuit_Click()

'EventHandler for "Quit" button
End

End Sub

Private Sub transform()

Dim name_pres As String
Dim xmlDoc As DOMDocument
Dim propertiesNode As IXMLDOMElement

xxvii

Dim propertyNode As IXMLDOMElement
Dim Index, Index1, Index2, i, n, slide_count, X, Y, X1, Y1 As Integer
Dim oPPTPres, oPPTPres_dummy As PowerPoint.Presentation
Dim FileFormat As PpSaveAsFileType
Dim propertyName, propertyValue, content, tect_effect, title_value, notes, _
content_textTable, content_notes, description, content_textEffect As String
Dim FSys As New FileSystemObject
Dim OutStream As TextStream

btnStop.Enabled = True

'choose LO Type
If (CI.Value = True) Then
 item = "CI"
 ElseIf (PI.Value = True) Then
 item = "PI"
 Else:
 item = "AI"
End If

 stop_transform = False
 Action.Caption = "Please wait..."
 Action.ForeColor = &HFF&

'creat PowerPoint presentation object
Set ppApp = CreateObject("PowerPoint.Application")

'open the PowerPoint presentation "behind the scene"
Set oPPTPres = ppApp.Presentations.Open(pptFile, WithWindow:=msoFalse)

 ProgressBar.Value = 0
 btnStart.Enabled = False
 title_1 = "<Start (eduWEAVER)> : <Start (eduWEAVER)>"

'if all slides are selected, then copy the open presentation 1 to 1 in the new dummy one
If (Slides.SelCount = oPPTPres.Slides.Count) Then
 Set oPPTPres_dummy = oPPTPres
 Else:

'if not all slides are selected, create a new dummy presentation
 Set oPPTPres_dummy = ppApp.Presentations.Add
 For f = Slides.ListCount - 1 To 0 Step -1

'copy the selected slides in the new dummy presentation
 If (Slides.Selected(f) = True) Then
 oPPTPres_dummy.Slides.InsertFromFile FileName:=pptFile, Index:=0, SlideStart:=f + 1, SlideEnd:=f + 1
 End If
 Next f

End If

slide_count_dummy = Slides.SelCount

For n = 1 To slide_count_dummy
 On Error Resume Next
 content = ""

'Creating an XML file
 Set xmlDoc = Nothing
 Set xmlDoc = CreateObject("Microsoft.XMLDOM")

'root element is <PowerPoint_document>
 xmlDoc.loadXML "<PowerPoint_document/>"
 Set titelNode = xmlDoc.documentElement.appendChild(xmlDoc.createElement("titel"))
 strFilename = Mid$(oPPTPres.Name, 1, Len(oPPTPres.Name) - 4)
 titelNode.Text = CStr(strFilename)
 Set propertiesNode = xmlDoc.documentElement.appendChild(xmlDoc.createElement("builtInProperties"))

'attaching the "BuiltInDocumentProperties" to the XML file
For Each G In oPPTPres.BuiltInDocumentProperties
 On Error Resume Next

xxviii

 If Err.Number = 0 Then
 propertyName = G.Name
 propertyValue = _
 oPPTPres.BuiltInDocumentProperties.item(propertyName).Value
 propertyName = Replace(propertyName, " ", "_")
 Set propertyNode = _
 propertiesNode.appendChild(xmlDoc.createElement(propertyName))
 propertyNode.Text = CStr(propertyValue)
 End If
 Err.Clear
Next

'attaching the "customProperties" to the XML file
Set propertiesNode = xmlDoc.documentElement.appendChild(xmlDoc.createElement("customProperties"))
For Each q In oPPTPres.CustomDocumentProperties
 On Error Resume Next

 If Err.Number = 0 Then
 propertyName = q.Name
 propertyValue = _
 oPPTPres.CustomDocumentProperties.item(propertyName).Value
 propertyName = Replace(propertyName, " ", "_")
 Set propertyNode = _
 propertiesNode.appendChild(xmlDoc.createElement(propertyName))
 propertyNode.Text = CStr(propertyValue)
 End If
 Err.Clear
Next

'attaching the slide title to the XML
Set Slide_title = xmlDoc.documentElement.appendChild(xmlDoc.createElement("slide_title"))
 If oPPTPres_dummy.Slides(n).Shapes.HasTitle Then
 title_value = oPPTPres_dummy.Slides(n).Shapes.Title.TextFrame.TextRange.Text
 Slide_title.Text = CStr(title_value)
 Else:
 title_value = n & " Slide"
 Slide_title.Text = CStr(title_value)
 End If
Set Slide = _
xmlDoc.documentElement.appendChild(xmlDoc.createElement("slide_content"))

'progress bar made visable
 ProgressBar.Visible = True
 ProgressBar.Value = ProgressBar.Value + (Round(100 \ oPPTPres_dummy.Slides.Count))
 Action.Caption = "Transforming the " & n & " of " & oPPTPres_dummy.Slides.Count & " Slides"

'attaching the content of the slides notes to the XML file
For Index = 1 To oPPTPres_dummy.Slides(n).Shapes.Count
 On Error Resume Next
 text_content = ""
 text_content = oPPTPres_dummy.Slides(n).Shapes(Index).TextFrame.TextRange.Text

'extracting the content of the slides notes
 content_notes = oPPTPres_dummy.Slides(n).NotesPage.Shapes(Index).TextFrame.TextRange.Text
 content_textEffect = ""
 content_textEffect = oPPTPres_dummy.Slides(n).Shapes(Index).textEffect.Text

'save the text into the xml file
 If (text_content <> "") Then
 Set Text = xmlDoc.documentElement.appendChild(xmlDoc.createElement("text"))
 Set text_content_CDATA = xmlDoc.documentElement.appendChild(xmlDoc.createCDATASection(text_content))
 Text.appendChild text_content_CDATA
 Slide.appendChild Text

 content = content & text_content & vbCr

'Text export when text as a text effect

 ElseIf (content_textEffect <> "") Then
 Set Text = _
 xmlDoc.documentElement.appendChild(xmlDoc.createElement("text"))

xxix

 Set content_textEffect_CDATA =
xmlDoc.documentElement.appendChild(xmlDoc.createCDATASection(content_textEffect))
 Text.appendChild content_textEffect_CDATA
 Slide.appendChild Text
 textEffect = textEffect & content_textEffect & vbCr
 End If

'Text export when text in a table

 For Index2 = 1 To oPPTPres_dummy.Slides(n).Shapes(Index).Table.rows.Count
 For Index3 = 1 To oPPTPres_dummy.Slides(n).Shapes(Index).Table.rows(Index2).cells.Count
 On Error Resume Next

 content_textTable = ""
 content_textTable = content_textTable & vbCr &
oPPTPres_dummy.Slides(n).Shapes(Index).Table.rows(Index2).cells(Index3).Shape.TextFrame.TextRange.Text

 If (content_textTable <> "") Then
 Set Text = _
 xmlDoc.documentElement.appendChild(xmlDoc.createElement("text"))
 Set text_content_CDATA = _
 xmlDoc.documentElement.appendChild(xmlDoc.createCDATASection(content_textTable))
 Text.appendChild text_content_CDATA
 Slide.appendChild Text
 content_Table = content_Table & content_textTable & vbCr
 End If
 Next Index3
 Next Index2
 Next Index

'Notes export

 If (content_notes <> "") Then
 Set notes = xmlDoc.documentElement.appendChild(xmlDoc.createElement("notes"))
 Set notes_inhalt_CDATA = _
 xmlDoc.documentElement.appendChild(xmlDoc.createCDATASection(content_notes))
 notes.appendChild notes_inhalt_CDATA
 Slide.appendChild notes
 End If

'save properties to metaX.xml
 Set PropertiesToXML = xmlDoc
 PropertiesToXML.Save Path & "meta_" & n & ".xml"

 description = content & textEffect & content_textTable & content_notes
 description = Replace(description, """", "\""")

'cleaning up the new line notation
 For i = 1 To 31
 description = Replace(description, Chr(i), Chr(13))
 Next i

'max.3700 characters in description part of the LOV and LO
 If (Len(description) > 3700) Then

'if more than 3700 characters than the description should list only the slides titles
 description = description & n & " Slide" & vbNewLine
 End If

'Graphics coordination for the LO in the ADL file
 If (slide_count_dummy Mod 4 = 0) Then
 x_end = "15"
 y_end = (slide_count_dummy \ 4) * 4 + 4
 ElseIf (slide_count_dummy Mod 4 = 1) Then
 x_end = "3"
 y_end = (slide_count_dummy \ 4) * 4 + 8
 ElseIf (slide_count_dummy Mod 4 = 2) Then
 x_end = "7"
 y_end = (slide_count_dummy \ 4) * 4 + 8

xxx

 ElseIf (slide_count_dummy Mod 4 = 3) Then
 x_end = "11"
 y_end = (slide_count_dummy \ 4) * 4 + 8
 End If

'the .adl file name take the name of the presentation (if not extra changed by the user)
 AdlFile = CommonDlg.FileName
 Set OutStream = FSys.CreateTextFile(AdlFile, True, False)

 If (n Mod 4 = 1) Then
 X1 = 3
 Else:
 X1 = X1 + 4
 End If

 If (n / 4 <= 1) Then
 Y1 = 4
 ElseIf (n / 4 > 1 And (n Mod 4) > 0 And (n Mod 4) < 4) Then
 Y1 = 4 * (n \ 4 + 1)
 ElseIf (n / 4 > 1 And (n Mod 4) = 0) Then
 Y1 = 4 * (n \ 4)
 End If

'by default the name of the LO/LOV models will be the PPT presentation name (if the name of the LO /LOV is not exctra set by
the user)
 If (LO_LOV_name.Text <> "") Then
 LO_name_model = LO_LOV_name.Text
 LOV_name_model = LO_LOV_name.Text
 Else:
 LO_name_model = Left$(CommonDlg1.FileTitle, Len(CommonDlg1.FileTitle) - 4)
 LOV_name_model = Left$(CommonDlg1.FileTitle, Len(CommonDlg1.FileTitle) - 4)
 End If

'seting the elements of the adl file
 learn_object_use_definition = vbNewLine & "VERSION <" + version + ">" _
 & vbNewLine & "BUSINESS PROCESS MODEL <" + LOV_name_model + " 1.0> : <" + lb_name + ">" _
 & vbNewLine & "VERSION <1.0>" & vbNewLine & "TYPE <Ebene 4 - Lernobjekte>" & vbNewLine & "INSTANCE <Start
(eduWEAVER)> : <Start (eduWEAVER)>" _
 & vbNewLine & "ATTRIBUTE <Position>" & vbNewLine & "VALUE ""NODE x:3cm y:1.00cm""" & vbNewLine & "INSTANCE
<Ende (eduWEAVER)> : <Ende (eduWEAVER)>" _
 & vbNewLine & "ATTRIBUTE <Position>" & vbNewLine & "VALUE ""NODE x:" & x_end & "cm y:" & y_end & "cm"""

 learn_object_use = learn_object_use & vbNewLine & "INSTANCE <" & Slide_title.Text & "> : <LOV (eduWEAVER)>" &
vbNewLine & "ATTRIBUTE <Position>" _
 & vbNewLine & "VALUE ""NODE x:" & X1 & "cm y:" & Y1 & "cm""" & vbNewLine & "ATTRIBUTE <Beschreibung>" _
 & vbNewLine & "VALUE """ & description & """" & vbNewLine & "ATTRIBUTE <Referenzobjekt>" _
 & vbNewLine & "VALUE ""REF mt:\""Lernobjektpool\"" m:\""" & LO_name_model & " 1.0" & "\"" c:\""LO (eduWEAVER)\""
i:\""" & Slide_title.Text & "\""""" & vbNewLine

 relation = relation & vbNewLine & "RELATION <Nachfolger>" & vbNewLine & "FROM " & title_1 & vbNewLine & "TO <" &
Slide_title.Text & "> : <LOV (eduWEAVER)>" & vbNewLine

 If (n Mod 4 = 1 And n <> 1) Then
 relation = relation & "ATTRIBUTE <Positions>" & vbNewLine & _
 "VALUE ""EDGE 2 x1:15.00cm y1:" & Y1 - 2 & "cm x2:3.00cm y2:" & _
 Y1 - 2 & "cm""" & vbNewLine
 End If

 title_1 = "<" & Slide_title.Text & "> : <LOV (eduWEAVER)>"

 pool_definition = "BUSINESS PROCESS MODEL <" & LO_name_model & " 1.0" & "> : <" + lb_name + ">" _
 & vbNewLine & "VERSION <1.0>" & vbNewLine & "TYPE <Lernobjektpool>" & vbNewLine
 learnobjectpool = learnobjectpool & vbNewLine & "INSTANCE <" & Slide_title.Text & "> : <LO (eduWEAVER)>" _
 & vbNewLine & "ATTRIBUTE <Position>" & "VALUE ""NODE x:" & X1 & "cm y:" & Y1 & "cm""" _
 & vbNewLine & "ATTRIBUTE <Beschreibung>" & vbNewLine & "VALUE """ _
 & description & """" & vbNewLine & "ATTRIBUTE <Einstiegspunkt (" & item & " 1)>" _
 & vbNewLine & "VALUE ""ITEM \""<automatisch>\"" param:\""" _
 & Replace(Path, "\", "\\\\") & Mid$(CommonDlg1.FileTitle, 1, Len(CommonDlg1.FileTitle) - 4) _
 & "_" & n & ".html\""""" _
 & vbNewLine

xxxi

'export of the dummy PPT presentation slides to HTML files
 With ppApp.DefaultWebOptions
 .FrameColors = ppFrameColorsWhiteTextOnBlack
 .IncludeNavigation = True
 .ResizeGraphics = True
 End With

 With oPPTPres_dummy
 .WebOptions.ResizeGraphics = True
 With .PublishObjects(1)
 .FileName = Path & Mid$(CommonDlg1.FileTitle, 1, Len(CommonDlg1.FileTitle) - 4) & _
 "_" & n & ".html"
 .SourceType = ppPublishSlideRange
 .SpeakerNotes = True
 .HTMLVersion = ppHTMLDual
 .RangeStart = n
 .RangeEnd = n
 .Publish
 End With
 End With

 DoEvents: If stop_transform Then Exit Sub
 DoEvents: If stop_transform Then ProgressBar.Value = 0

Next n

 btnStart.Enabled = True
 btnNext.Enabled = True

'closing the PPT presentations
 oPPTPres_dummy.Close
 oPPTPres.Close

'quit the PPT
 ppApp.Quit

 'write the adl file
 OutStream.WriteLine vbNewLine & learn_object_use_definition & learn_object_use
 OutStream.WriteLine vbNewLine & relation & vbNewLine & "RELATION <Nachfolger>" & vbNewLine & "FROM " & title_1 &
vbNewLine & "TO <Ende (eduWEAVER)> : <Ende (eduWEAVER)>"
 OutStream.WriteLine vbNewLine & pool_definition & learnobjectpool
 Set OutStream = Nothing
 ProgressBar.Value = 100
 Action.Caption = "Transform successfully finished."
 Action.ForeColor = &HC000&

End Sub

xxxii

Program Code (PPT2ADL_many2one.exe)

Form_Nto1.frm

Dim Path, pptFile, outputDir, stop_transform, item, n, version, lb_name, aprs As String

Private Sub Check1_Click()
'EventHandler for the slides selection table
If Check1.Value = vbChecked Then
 Call SendMessageLong(Slides.hwnd, LB_SETSEL, True, -1)
 Else:
 Call SendMessageLong(Slides.hwnd, LB_SETSEL, False, -1)
End If

End Sub

Private Sub Form_Load()

btnStop.Enabled = False
btnImport.Enabled = False
btnStart.Enabled = False
btnNext.Enabled = False

'reading the parameter coming from the EduWEAVER call
If Command = "" Then
 version = "3.7"
 Else:
 aprs = "&"
 b = Split(Command, aprs)
 version = b(0)
 lb_name = b(1)
End If

End Sub

Private Sub btnImport_Click()

'EventHandler for the "Import" Button

Dim oPPTPres_dummy, oPPTPres As PowerPoint.Presentation

Check1.Value = vbUnchecked

If (ppt_file.Text = "") Then
 MsgBox ("You should select a PowerPoint file first!")
 Else:
 Slides.Clear
 wait = "Please wait..."
 Slides.AddItem wait

'creat PowerPoint presentation object
 Set ppApp = CreateObject("PowerPoint.Application")

'check if PowerPoint installed on the user's computer
If (ppApp = "") Then
 MsgBox ("You do not have PowerPoint installed on your computer. Please install PowerPoint and try again!")
 Action.Caption = ""
 Exit Sub
End If

'open the PowerPoint presentation "behind the scene"
 Set oPPTPres = ppApp.Presentations.Open(pptFile, WithWindow:=msoFalse)
 slide_count = oPPTPres.Slides.Count
 Slides.Clear

'extract the slide titles for the selection screen
For i = 1 To slide_count
 On Error Resume Next

xxxiii

 If oPPTPres.Slides(i).Shapes.HasTitle Then
 title_value = _
 oPPTPres.Slides(i).Shapes.Title.TextFrame.TextRange.Text
 Else: title_value = i & " Slide"
 End If

 Slides.AddItem i & " : " & title_value

Next i

End If
Check1.Value = vbChecked
ppApp.Quit

'Release variables
 Set oPPTPres = Nothing
 Set ppApp = Nothing

End Sub

Private Sub ppt_Click()

'EventHandler for the button "Open file" window
With CommonDlg1
 .CancelError = False
 .MaxFileSize = 2 * 1024
 .DialogTitle = "Please select a PowerPoint file!"
 .Filter = "Alle PowerPoint Präsentationen (*.ppt)|*.ppt"
 .Flags = cdlOfnOpenDefault + cdlOFNExplorer
 .ShowOpen
 FileName = .FileName
 ppt_file.Text = .FileName
 pptFile = ppt_file.Text
End With

'Import Button will be activated if a PPT file was choosed
DoEvents: If (ppt_file.Text <> "") Then btnImport.Enabled = True Else btnImport.Enabled = False

End Sub

Private Sub adl_Click()

'EventHandler for the button "Save as" window
With CommonDlg

'check if PowerPoint presentation file has been selected
 If (CommonDlg1.FileName = "") Then
 MsgBox ("Please select a PowerPoint file first!")
 Exit Sub
 End If

 .CancelError = False
 .DialogTitle = "Save as"

'default name of the .adl file is the presentation name
 .FileName = Mid$(CommonDlg1.FileName, 1, Len(CommonDlg1.FileName) - 4) & ".adl"
 .Filter = "Alle ADONIS Definition Language Files(*.adl)|*.adl"
 .DefaultExt = "adl"
 .Flags = cdlOFNOverwritePrompt + cdlOFNPathMustExist
 .ShowSave
 Path = Left$(.FileName, Len(.FileName) - Len(.FileTitle))
 outPut.Text = .FileName
 outputDir = outPut.Text
End With
DoEvents: If (outPut.Text <> "") Then btnStart.Enabled = True Else btnStart.Enabled = False

End Sub

Private Sub Slides_Click()
'EventHandler for the selection table

xxxiv

Dim d As Scripting.Dictionary
Set d = CreateObject("Scripting.Dictionary")

For i = 0 To Slides.ListCount - 1

 If (Slides.Selected(i) = True) Then
 res = res + 1
 d.Add i, "True"
 Else:
 res = res - 1
 d.Add i, "False"
 End If

Next i
If res = Slides.ListCount Then
 Check1.Value = vbChecked
 Else:
 Check1.Value = vbUnchecked

 For i = Slides.ListIndex To Slides.ListCount - 1
 Slides.Selected(i) = d(i)
 Next i

 For i = 0 To Slides.ListIndex
 Slides.Selected(i) = d(i)
 Next i

End If
If Slides.ListIndex = 0 Then
 Slides.Selected(0) = d(0)
End If

End Sub

Private Sub btnStart_Click()
'EventHandler for the "Start" button
 ProgressBar.Value = 0

If (ppt_file.Text = "" Or outPut.Text = "") Then
 MsgBox ("You should select a PowerPoint file and output directory first!")
 Else:
 transform
End If
End Sub

Private Sub btnStop_Click()
'EventHandler for the "Stop" button
 ProgressBar.Value = 0
 Action.Caption = ""
 stop_transform = True
 btnStart.Enabled = True
 Set OutStream = Nothing

End Sub

Private Sub btnNext_Click()
'EventHandler for the "Next" button
 End

End Sub

Private Sub btnQuit_Click()
'EventHandler for the "Quit" button
 End

End Sub

Private Sub transform()

Dim name_pres As String
Dim xmlDoc As DOMDocument
Dim propertiesNode As IXMLDOMElement

xxxv

Dim propertyNode As IXMLDOMElement
Dim Index, Index1, Index2, i, n, slide_count, x, y, X1, Y1 As Integer
Dim oPPTPres, oPPTPres_dummy As PowerPoint.Presentation
Dim FileFormat As PpSaveAsFileType
Dim propertyName, propertyValue, content, tect_effect, text_content, title_value, notes, _
content_textTable, content_notes, description, content_textEffect As String
Dim FSys As New FileSystemObject
Dim OutStream As TextStream

btnStop.Enabled = True

'Choose LO Type
If (CI.Value = True) Then
 item = "CI"
 ElseIf (PI.Value = True) Then
 item = "PI"
 Else: item = "AI"
End If

 stop_transform = False
 Action.Caption = "Please wait..."
 Action.ForeColor = &HFF&

'create a PowerPoint presentation
Set ppApp = CreateObject("PowerPoint.Application")

'open the PowerPoint presentation "behind the scene"
Set oPPTPres = ppApp.Presentations.Open(pptFile, WithWindow:=msoFalse)

 ProgressBar.Value = 0
 btnStart.Enabled = False

'if all slides are selected, then copy the open presentation 1 to 1 in the new dummy one
If (Slides.SelCount = oPPTPres.Slides.Count) Then
 Set oPPTPres_dummy = oPPTPres
 Else:

'if not all slides are selected, create a new dummy presentation
 Set oPPTPres_dummy = ppApp.Presentations.Add
 For f = Slides.ListCount - 1 To 0 Step -1

 If (Slides.Selected(f) = True) Then

'copy the selected slides in the new dummy presentation
 oPPTPres_dummy.Slides.InsertFromFile FileName:=pptFile, Index:=0, SlideStart:=f + 1, SlideEnd:=f + 1
 End If
 Next f
End If

slide_count_dummy = Slides.SelCount

'Creating an XML file
Set xmlDoc = Nothing
Set xmlDoc = CreateObject("Microsoft.XMLDOM")

'root element is <PowerPoint_document>
 xmlDoc.loadXML "<PowerPoint_document/>"
Set titelNode = xmlDoc.documentElement.appendChild(xmlDoc.createElement("titel"))
 strFilename = Mid$(oPPTPres.Name, 1, Len(oPPTPres.Name) - 4)
 titelNode.Text = CStr(strFilename)
Set propertiesNode = xmlDoc.documentElement.appendChild(xmlDoc.createElement("builtInProperties"))

'attaching the "BuiltInDocumentProperties" to the XML file
For Each G In oPPTPres.BuiltInDocumentProperties
 On Error Resume Next

 If Err.Number = 0 Then
 propertyName = G.Name
 propertyValue = _
 oPPTPres.BuiltInDocumentProperties.item(propertyName).Value
 propertyName = Replace(propertyName, " ", "_")
 Set propertyNode = propertiesNode.appendChild(xmlDoc.createElement(propertyName))
 propertyNode.Text = CStr(propertyValue)

xxxvi

 End If

 Err.Clear
Next

'attaching the "customProperties" to the XML file
Set propertiesNode = xmlDoc.documentElement.appendChild(xmlDoc.createElement("customProperties"))
For Each q In oPPTPres.CustomDocumentProperties
 On Error Resume Next

 If Err.Number = 0 Then
 propertyName = q.Name
 propertyValue = _
 oPPTPres.CustomDocumentProperties.item(propertyName).Value
 propertyName = Replace(propertyName, " ", "_")
 Set propertyNode = propertiesNode.appendChild(xmlDoc.createElement(propertyName))
 propertyNode.Text = CStr(propertyValue)
 End If
 Err.Clear
Next

For n = 1 To slide_count_dummy
 On Error Resume Next

'progress bar made visable
 Action.Caption = "Transforming the " & n & " of " & slide_count_dummy & " Slides"
 ProgressBar.Value = ProgressBar.Value + (Round(100 \ slide_count_dummy))
 ProgressBar.Visible = True
 content = ""
 textEffect = ""

'attaching the slide title to the XML
 Set Slide_1 = xmlDoc.documentElement.appendChild(xmlDoc.createElement("slide"))

 Set Slide_title = xmlDoc.documentElement.appendChild(xmlDoc.createElement("slide_title"))
 If oPPTPres.Slides(n).Shapes.HasTitle Then
 title_value = _
 oPPTPres_dummy.Slides(n).Shapes.Title.TextFrame.TextRange.Text
 Slide_title.Text = CStr(title_value)
 Else: title_value = n & " Slide"
 Slide_title.Text = CStr(title_value)
 End If

 Set Slide = xmlDoc.documentElement.appendChild(xmlDoc.createElement("slide_content"))

 Slide_1.appendChild Slide_title
 Slide_1.appendChild Slide

'attaching the content of the slides to the XML file
 For Index = 1 To oPPTPres.Slides(n).Shapes.Count
 On Error Resume Next

'extracting the content of the slides text elements
 text_content = ""
 text_content = oPPTPres_dummy.Slides(n).Shapes(Index).TextFrame.TextRange.Text

'extracting the content of the slides notes
 content_notes = ""
 content_notes = oPPTPres_dummy.Slides(n).NotesPage.Shapes(Index).TextFrame.TextRange.Text

'extracting the content of the slides textEffect elemnts
 content_textEffect = ""
 content_textEffect = oPPTPres_dummy.Slides(n).Shapes(Index).textEffect.Text

'attaching the content of the slides text elements into the xml file
 If (text_content <> "") Then
 Set Text = xmlDoc.documentElement.appendChild(xmlDoc.createElement("text"))
 Set text_content_CDATA = xmlDoc.documentElement.appendChild(xmlDoc.createCDATASection(text_content))
 Text.appendChild text_content_CDATA
 Slide.appendChild Text
 content = content & text_content & vbCr

'attaching the content of the textEffect elemnts into the xml file

xxxvii

 ElseIf (content_textEffect <> "") Then
 Set Text = xmlDoc.documentElement.appendChild(xmlDoc.createElement("text"))
 Set content_textEffect_CDATA = xmlDoc.documentElement.appendChild(xmlDoc.createCDATASection(content_textEffect))
 Text.appendChild content_textEffect_CDATA
 Slide.appendChild Text
 textEffect = textEffect & content_textEffect & vbCr

 End If

'extracting the content of the slides text when situated in a table
 For Index2 = 1 To oPPTPres_dummy.Slides(n).Shapes(Index).Table.rows.Count
 For Index3 = 1 To oPPTPres_dummy.Slides(n).Shapes(Index).Table.rows(Index2).cells.Count
 On Error Resume Next

 content_textTable = ""
 content_textTable = content_textTable & vbCr &
oPPTPres_dummy.Slides(n).Shapes(Index).Table.rows(Index2).cells(Index3).Shape.TextFrame.TextRange.Text

 If (content_textTable <> "") Then

'attaching the content of the slides text when situated in a table into the xml file
 Set Text = xmlDoc.documentElement.appendChild(xmlDoc.createElement("text"))
 Set text_content_CDATA = xmlDoc.documentElement.appendChild(xmlDoc.createCDATASection(content_textTable))
 Text.appendChild text_content_CDATA
 Slide.appendChild Text
 content_Table = content_Table & content_textTable & vbCr
 End If
 Next Index3
 Next Index2
 Next Index

'attaching the content of the slides notes into the xml file
 If (content_notes <> "") Then
 Set notes = xmlDoc.documentElement.appendChild(xmlDoc.createElement("notes"))
 Set notes_inhalt_CDATA = _
 xmlDoc.documentElement.appendChild(xmlDoc.createCDATASection(content_notes))
 notes.appendChild notes_inhalt_CDATA
 Slide.appendChild notes
 End If

 description = description & n & " Slide" & vbNewLine & content & textEffect & content_textTable & content_notes & vbNewLine
 title_value_short = title_value_short & n & " Slide - " & title_value & vbNewLine

 DoEvents: If stop_transform Then Exit Sub
 DoEvents: If stop_transform Then ProgressBar.Value = 0

Next n

'cleaning up the new line notation
For i = 1 To 31
 description = Replace(description, Chr(i), Chr(13))
Next i

description = Replace(description, """", "\""")

'max.3700 characters in description part of the LOV and LO
If (Len(description) > 3700) Then

'if more than 3700 characters than the description should list only the slides titles
 description = title_value_short

End If

'the .adl file name take the name of the presentation (if not extra changed by the user)
AdlFile = CommonDlg.FileName
Set OutStream = FSys.CreateTextFile(AdlFile, True, False)

'by default the name of the LO/LOV models will be the PPT presentation name (if the name of the LO /LOV is not exctra set by the user)
If (LO_LOV_name.Text <> "") Then
 LO_name_model = LO_LOV_name.Text
 LOV_name_model = LO_LOV_name.Text

xxxviii

 Else:
 LO_name_model = Left$(CommonDlg1.FileTitle, Len(CommonDlg1.FileTitle) - 4)
 LOV_name_model = Left$(CommonDlg1.FileTitle, Len(CommonDlg1.FileTitle) - 4)
End If

'seting the elements of the adl file
 learn_object_use_definition = vbNewLine & "VERSION <" + version + ">" _
 & vbNewLine & "BUSINESS PROCESS MODEL <" & "Temp" & " 1.0> : <" + lb_name + ">" _
 & vbNewLine & "VERSION <1.0>" & vbNewLine & "TYPE <Ebene 4 - Lernobjekte>" & vbNewLine

 learn_object_use = vbNewLine & "INSTANCE <" & LOV_name_model & "> : <LOV (eduWEAVER)>" & vbNewLine &
"ATTRIBUTE <Position>" _
 & vbNewLine & "VALUE ""NODE x:3cm y:2cm""" & vbNewLine & "ATTRIBUTE <Beschreibung>" _
 & vbNewLine & "VALUE """ & description & """" & vbNewLine & "ATTRIBUTE <Referenzobjekt>" _
 & vbNewLine & "VALUE ""REF mt:\""Lernobjektpool\"" m:\""" & LO_name_model & " 1.0" & "\"" c:\""LO (eduWEAVER)\"" i:\""" &
LO_name_model & "\""""" & vbNewLine

 pool_definition = "BUSINESS PROCESS MODEL <" & LO_name_model & " 1.0" & "> : <" + lb_name + ">" _
 & vbNewLine & "VERSION <1.0>" & vbNewLine & "TYPE <Lernobjektpool>" & vbNewLine

 learnobjectpool = learnobjectpool & vbNewLine & "INSTANCE <" & LO_name_model & "> : <LO (eduWEAVER)>" _
 & vbNewLine & "ATTRIBUTE <Position>" & "VALUE ""NODE x:3cm y:2cm""" _
 & vbNewLine & "ATTRIBUTE <Beschreibung>" & vbNewLine & "VALUE """ _
 & description & """" & vbNewLine & "ATTRIBUTE <Einstiegspunkt (" & item & " 1)>" _
 & vbNewLine & "VALUE ""ITEM \""<automatisch>\"" param:\""" _
 & Replace(Path, "\", "\\\\") & Mid$(CommonDlg1.FileTitle, 1, Len(CommonDlg1.FileTitle) - 4) _
 & ".html\""""" _
 & vbNewLine

'export of the dummy PPT presentation slides to HTML files
With ppApp.DefaultWebOptions
 .FrameColors = ppFrameColorsWhiteTextOnBlack
 .IncludeNavigation = True
 .ResizeGraphics = True
End With

With oPPTPres_dummy
 .WebOptions.ResizeGraphics = True

 With .PublishObjects(1)
 .FileName = Path & Mid$(CommonDlg1.FileTitle, 1, Len(CommonDlg1.FileTitle) - 4) & ".html"
 .SourceType = ppPublishAll
 .SpeakerNotes = True
 .HTMLVersion = ppHTMLDual
 .Publish
 End With
End With

Set PropertiesToXML = xmlDoc
 PropertiesToXML.Save Path & "meta_" & Mid$(CommonDlg1.FileTitle, 1, Len(CommonDlg1.FileTitle) - 4) & ".xml"

 btnStart.Enabled = True
 btnNext.Enabled = True

'closing the PPT presentations
 oPPTPres.Close
 oPPTPres_dummy.Close

'quit the PPT
 ppApp.Quit

'write the adl file
 OutStream.WriteLine vbNewLine & learn_object_use_definition & learn_object_use
 OutStream.WriteLine vbNewLine & pool_definition & learnobjectpool
 Set OutStream = Nothing
 ProgressBar.Value = 100
 Action.Caption = "Transform successfully finished."
 Action.ForeColor = &HC000&

End Sub

xxxix

Module1.bas (the same in the both VB Projects)

Public Declare Function SendMessageLong Lib "user32" Alias "SendMessageA" _
(ByVal hwnd As Long, ByVal wMsg As Long, _
ByVal wParam As Long, ByVal lParam As Long) As Long
Public Const LB_SETSEL = &H185&

	DIPLOMARBEIT
	fertig.pdf
	I ABBREVIATIONS
	II LIST OF FIGURES
	III LIST OF TABLES
	IV LIST OF CODE
	1 Introduction
	2 Technology Concept and Relevance
	2.1 User Interface
	2.1.1 Introduction
	2.1.2 Understanding Human Cognition Processes
	2.1.3 Definition of the Term “User Interface”
	2.1.4 Usability
	2.1.5 Designing Effective Forms
	2.1.6 Software-engineering tools

	2.2 Decision about the Programming Language
	2.2.1 Introduction
	2.2.2 The Component Object Model (COM)
	2.2.3 A COM Client-Server Model
	2.2.4 OLE Architecture and Automation
	2.2.5 Differences between VBA and VB
	2.2.6 VBA and the Microsoft® PowerPoint® Application Object
	2.2.6.1 Working with the Application Object
	2.2.6.2 Working with the Presentation Object
	2.2.6.3 Working with the Slide Object
	2.2.6.4 Working with the Shape Object
	2.2.6.5 Working with TextFrame Object

	2.3 XML – Dividing Content from Presentation
	2.3.1 Introduction
	2.3.2 XML (eXtensibleMarkup Language)
	2.3.3 DOM and SAX
	2.3.4 Parsing XML Data with MSXML

	2.4 eduWEAVER Modelling Library
	2.4.1 Introduction
	2.4.2 Elements of eduWEAVER
	2.4.3 The Metamodels of eduWEAVER
	2.4.3.1 The Educational Metamodel of eduWEAVER
	2.4.3.2 The Programming Metamodel of eduWEAVER

	2.4.4 Course Modelling with eduWEAVER
	2.4.5 ADL (ADONIS® Definition Language)
	2.4.6 AdoScript

	3 Development of the eduWEAVER Plug-in
	3.1 Application Structure
	3.2 Application Work Flow

	4 Installation and User Manual
	4.1 Installation
	4.2 User Manual
	4.2.1 Scenario I
	4.2.2 Scenario II

	5 Conclusions
	V Bibliography
	 Cicso Systems Inc.: Reusable Learning Object Strategy, Definition, Creation Process and Guidelines for Building, Version 3.1, April 22, 2000 (http://www.reusablelearning.org/Docs/Cisco_rlo_roi_v3-1.pdf)[Last visited 04.05.2007]
	Meyer, Eric: Design Issues for Web-Based Teaching Materials
	VI Appendix
	Abstract
	Zusammenfassung
	Curriculum Vitae
	import_into_model.asc
	External Coupling (Modeling Library Customising)
	Program Code (PPT2ADL_one2one.exe)
	Program Code (PPT2ADL_many2one.exe)
	Module1.bas (the same in the both VB Projects)

