
DISSERTATION

Titel der Dissertation

„Facility Location and Related Problems“

Verfasser

Dipl.-Ing. Martin Romauch

angestrebter akademischer Grad

Doktor der Sozial- und Wirtschaftswissenschaften
(Dr. rer. soc. oec.)

Wien, im November 2007

Studienkennzahl lt. Studienblatt: A 084 151

Dissertationsgebiet lt. Studienblatt: Betriebswirtschaftslehre

Betreuer: o.Univ.Prof. Dipl.-Ing. Dr. Richard F. Hartl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OTHES

https://core.ac.uk/display/11581952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Danksagung

Die vorliegende Arbeit ist das Zusammenspiel vieler Faktoren; vorausgeplant erscheint
mir im Rückblick nur eine grobe Richtung. Der Entstehungsprozess lässt sich für mich
eher als eine Suche festmachen, und viele nötige Impulse sind der richtigen Umgebung
und glücklichen Zufällen zuzuschreiben.
Während ich die Chancen und Intuitionen als Geschenk empfinde, bin ich meinem Um-
feld - der Familie, den Freunden und Kollegen - für die Unterstützung, das Verständnis
und die Anregungen dankbar.
Meinem Betreuer bin ich für den wissenschaftlichen Beistand, das Vertrauen und den
Freiraum, den ich erhalten habe, verbunden.

Keutschach, November 2007

3

4

Contents

1 Location Models 7

1.1 Continuous Models . 7

1.1.1 Fermat-Weber Problem . 7

1.1.2 Geometric Steiner Tree Problem 8

1.1.3 Covering Problems on Spatial Networks 9

1.2 Discrete Models . 9

1.2.1 Minisum Problems . 9

1.2.2 Minimax Problems . 10

1.2.3 Double Coverage Aspects . 11

1.2.4 Art Gallery Problem . 12

1.2.5 Combination with Routing Problems 13

2 Stochasticity in a Dynamic Environment 17

2.1 Stochastic Dynamic Warehouse Location Problem 17

2.2 Exact Solution Method . 20

2.2.1 Stochastic Dynamic Programming 20

2.2.2 Application to the SDFLP . 21

2.3 Heuristic Approach . 22

2.3.1 Results . 24

2.4 Conclusion and Further Research . 26

3 The Double Set Cover Problem 27

3.1 Introduction . 27

3.2 Optimization Models for the DSCP . 29

3.3 Complexity Results . 32

3.3.1 Complexity Results for the DSCP 32

3.3.2 Complexity Results for the Optimization Versions of the DSCP . . 49

3.4 Inference of Gene Regulatory Networks 58

3.4.1 Introduction . 58

3.4.2 The Gene Regulatory Network Problem 61

3.4.3 A Mixed-Integer Linear Programming Formulation 63

3.4.4 Complexity of the GRNP . 66

3.4.5 Using ACO for solving the GRNP 68

3.4.6 Computational Experience . 71

3.4.7 Randomly Generated Instances . 72

5

Contents

3.4.8 A Real World Problem . 76
3.4.9 Conclusion . 78

3.5 Art Gallery Problems . 79
3.5.1 Complexity Issues . 80
3.5.2 Bounds . 84
3.5.3 Solution Techniques . 90

A Notions from Graph Theory and Computational Geometry 93

A.1 Graph Theory . 93
A.2 Computational Geometry . 94

B NP-complete and NP-hard 97

B.1 Complexity Theory . 97
B.2 Selected Problems . 98

C Experiments and Randomly Generated Instances 101

C.1 Randomly Generated DCP Instances . 101
C.2 Experimenting on ODSCP1 and ODSCP2 101
C.3 SDWLP: Instances and Solutions . 104

6

1 Location Models

The field of location problems is wide and a lot has been done on this subject. In
general, the problem is to locate facilities by choosing from a set of possible positions
while respecting the effort (e.g.: costs) and the utility (e.g.: maintainance of a service).
If the set is finite or countable we speak of a discrete problem and if we select the
facility from a continuous set then the problem is continuous. For the discrete case
the elementary problem is the Set Cover Problem (SCP), in which a finite family of
finite sets is given. The problem is to find a subset of this family with a certain size
that covers all elements. This problem is known to be NP-hard. The uncapacitated
warehouse location problem (WLP) is a generalization of the SCP and a fundamental
location problem. Here we have a number of warehouse locations and customers. We
have to build warehouses (fixed cost) that supply the customers with a certain cost which
is proportional to the the amount and the transportation distance. Many algorithms for
solving this problem take advantage of the fact that fixing the locations leads to a simple
transportation problem - which can be solved very efficiently. In this work we summarize
mainly discrete models covered by the location theory to give an overview of the related
literature. The central part is given by 2 new extensions: One concerning stochasticity
in a dynamic environment [101] and another concerning a double Set Cover Problem
plus applications, e.g. [82].

Most of the problems presented in the next two sections can be found in books that
introduce to facility location. E.g.: [31] [27] and [41]. We will discuss minisum and
minimax problems aswell as discrete and continuous ones. We put our focus on problems
that are related to the extensions proposed in section 3 and section 2. We start with the
presentation of some continuous models:

1.1 Continuous Models

minisum problem

1.1.1 Fermat-Weber Problem

One of the earliest studied location models is the Weber Problem, where a set of cus-
tomers has to be served by a set of facilities(warehouses) while minimizing the sum of
the weighted distances between customers and locations (e.g. dij distance). For the un-
weighted case with 3 customers the problem can be solved geometrically by constructing
the so called Torricelli Point. For a nice geometric proof see [17]. The Varignon Frame
is a mechanical device to find a solution to the Weber Problem. Figure 1.1 shows the
functionality.

7

1 Location Models

Figure 1.1: Varignon frame

Weiszfeld [125] proposes a fix point iteration method to solve the problem with lin-
ear convergence. Li proposes a Newton acceleration [79] for the Weiszfeld Algorithm.
The concept is also applicable for the multi-facility location problem. I.e.: We have n

customers (position ci ∈ R2) and we want to locate m facilities (xj ∈ R2). Our aim is
minimize the weighted distances between facilities and customers. I.e:

n∑

i=1

m∑

j=1

wij ||ci − xj ||+
m∑

j=1

m∑

k=j+1

vjk||xj − xk||

The Miehle’s [87] algorithm solves this kind of problem and can be seen as a generaliza-
tion of the Weiszfeld algorithm. The paper of Rosen [102] proposes an acceleration of
Miehle’s algorithm.

Changing the distance measure from euclidean to squared euclidean makes the problem
easy since we can solve the problem analytically. For the one facility case the centroid
(physical interpretation: center of gravity) solves the problem:

S =
1

n

n∑

i=1

wici

1.1.2 Geometric Steiner Tree Problem

A generalization of this problem is the euclidean and the rectilinear Steiner tree problem
(planar Steiner tree problem). The geometric Steiner tree problem asks to connect points
P ⊂ R2 in the plane with a tree of length L or less using terminals Q ⊂ R2. In the case
of the euclidean STP we use the euclidean distance to measure the length of the tree
and in the case of the rectilinear STP the Manhattan distance is used. An interesting

8

1.2 Discrete Models

counterpart to the rectilinear STP is the Minimum Manhattan Network Problem. Instead
of minimizing the total length (with obviously results in a tree) we search for a Network
that realizes the minimum distance between all pairs, regarding the Manhattan distance.
For a approximations see [55] [6] and for an exact method based on a multi commodity
flow formulation see [5]. Another variant generalizes the problem to the space [84] which
has applications in nanotechnology. NP-completeness results for Steiner tree problems
can be found in [45] and [44]. For a discussion of exact algorithms see [124]. The
euclidean STP can be solved heuristically by using Delaunay Triangualtions.

1.1.3 Covering Problems on Spatial Networks

Covering Problems are simplified minimax problems. E.g.: we have to put a minimum
number of centers in a way that all customers i are reachable in a maximum time si. We
allow to locate the points X anywhere in the network - e.g.: we can also put a center in
the middle of an edge. Since we define d(X, i) as the minimum distance between the set
X and the point i, the problem may be written in the following way:

min |X|

d(X, i) ≤ si.

Networks that have a tree structure are easy to solve [41]: By starting a search for
centers we select a leaf node i. Then we check if the the adjacent node j is in the reach
si. If this point is out of reach then we put a center on the edge - as far from node i as
possible. Then we reduce the graph and eliminate all points that are reachable from this
center. The graph remains a tree and we can restart the procedure. If we can reach j

within si then we update sj ← min{sj , si − d(i, j)} and eliminate i. For cyclic networks
the problem is hard to solve since it is equivalent to the discrete Set Cover Problem
problem.

1.2 Discrete Models

1.2.1 Minisum Problems

Minisum problems are motivated by the question on locating a facility in a way that it
minimizes the cost to service a set of customers. For a presentation of these problems see
[13], [27], [41] and [51]. A standard problem is the placement of facilities in a way that
the sum of transportation costs to all customers is minimized (transport). The most
simple variant is finding the median v∗ ∈ V of a weighted undirected graph G(V, E, c, b)
which minimizes the sum of weighted distances to all other vertices. The weights can
be interpreted as demands b : V → R+

0 and c : E → R+
0 can be seen as the distance of

the corresponding arc. We define d : V × V → R+
0 as the length of the shortest path

between two vertices. Then the median v∗ is defined by:

∑

v 6=v∗

bvdv∗v = min
w∈V

∑

v 6=w

bvdwv

9

1 Location Models

Hakimi[56] shows that it is not necessary to consider points located on the edges,
which is also true for the p-median problem. The p-median V ∗ ⊂ V is a subset of size
p that minimizes the sum of minimum possible weighted distances. I.e:

∑

v∈V

bv min
w∈V ∗

{dw,v} = min
W⊂V,|W |=p

∑

v∈V

bv min
w∈W
{dw,v}

Therefore the p-median provides a partition of V =
p⋃

i=1
Vi into p subsets. If the

graph has the structure of a forest, then the problem gets easy to solve by successive
decomposition into subtrees [52]. For the Warehouse Location Problem we choose from
potential locations i ∈ {1, . . . n} (yi ∈ {0, 1}) and give a transportation corresponding
plan xij ≥ 0 that satisfies the demand bj for all customers j ∈ {1 . . . m}. The costs
associated to this decisions have to be minimized. Therefore we ask for a plan that
minimizes the sum of the transportation costs

∑∑
xijcij and fixed costs

∑
fiyi. This

kind of problem can be tackled with dual-based procedures originating in the method
proposed in [33] as well as Branch & Bound and Lagrangian Relaxation. For large
instances Genetic Algorithms are efficient heuristic solution methods, see [7] and [19].

1.2.2 Minimax Problems

Given a undirected weighted graph G(V, E, c, b) with vertex weights b : V → R+
0 and

edge weights c : E → R+
0 . Let X be a set of p nodes, then our aim is to minimize the

maximum distance beween a node i ∈ V and a set of nodes X ,i.e:

min
|X|=p

max
i∈V

d(X, i)

Again, if the graph is a tree the problem is easy to solve, but in general it is NP-hard. A
simplification of the p-center problem is the Set Cover Problem SCP: In graph theoretical
terms we have a given graph G(V,E) and we need to select a subset X ⊂ V of p nodes
in such a way that each node i ∈ V is reachable within a maximum allowed distance
from at least one node of X. Or, to formulate it with sets: given a family of sets F
that covers a set S (i.e.:

⋃
F∈F F = S) we have to select a subset G ⊂ F of limited

size |G| = p that also covers S (i.e.:
⋃

G∈G G = S). In the weighted case each subset
F ∈ F has a corresponding weight wF and the restriction to pick p sets is replaced by a
capacity constraint: ∑

F∈F

wF ≤ C

Already this problem is NP-complete and there are is a lot of research related to exact
and approxiamte solution procedures. Feige [35] shows a dramatic SCP inapproxima-
bility result, although SCP is ”quite” easy in pratice. Therefore SCP subproblems are
sometimes used as subproblem in heuristic approaches for p-center problem. An opti-
mization version of the problem is the Maximum Covering Problem [107], for a heurtistic

10

1.2 Discrete Models

solution approach see [98]. If F consists of Fi ∈ F and the matrix A=(aij) is defined by
aij = 1⇔ j ∈ Fi (i ∈W , j ∈ V) then MCP can be stated as the following IP:

max
∑
j∈V

wjyj

s.t.
∑

i∈W

aijzi ≥ yj

∑
i∈W

zi = p

zi ∈ {0, 1}

yj ∈ [0, 1]

Center problems are often applied for problems in the public sector - for locating services
like ambulances or fire departments. In this examples covering should also take care
about the quality of the covering. Since the classical center problems suppose that the
problem is static and that the capacity of the centers is unlimited. It is clear that these
models need extensions to take these issues into account. In the next section we present
how problems like congestions get handled.

1.2.3 Double Coverage Aspects

Double coverage aspects ocurr naturally in location problems in various forms. The
main intend is to avoid drop outs of a service. If we think of a sercive that deals with
emergencies then the demand is usually nondeterministic. Locating fire department is
such a case: if we also suppose that the incidence of a demand (fire) is seldom, then two
simultaneous incidences are very unlikely. Therefore we are instigated to think that it
is practically impossible to have three incidences at the same time. Therefor we only
consider tree cases - no incidence, one incidence and two incidences. In the case of
Ambulance Location Problems we have to locate a fleet of p vehicles on m locations to
cover all customers in a radius R while we also want maximize the proportion of those
customers that are covered in smaller radius r ≤ R twice. The paer [49] deals with a
Tabu Search for this problem. A variant that intends to discover more balanced solutions
is described in [26]. A subproblem of the Ambulance Location Problems is the Backup
Coverage problem decribed in [60]. Here our aim is to cover a given set of nodes in a way
that all of them are covered at least once and as many as possible twice. The weighted
variant can be stated as follows:

11

1 Location Models

max
∑
j∈V

wjyj

s.t.
∑

i∈W

aijzi ≥ 1 + yj

∑
i∈W

zi = p

zi ≥ yi

yj ∈ [0, 1]

zi ∈ {0, 1}

Variants of backup covering problems can be also applied to security monitoring see [89],
which also leads us to section 1.2.4.

1.2.4 Art Gallery Problem

The task of Art Gallery Problems is to position cameras to monitor a certain area. This
problem is due to Victor Klee (in [63]) and has many different variations. We discuss
the Vertex Guard Problem and the Point Guard Problem. For other variants we refer
to [92] [112] and [121]. In the case of Vertex Guard Problems VGP we have to versions
depending on the area that has to be monitored:

• select vertices (corner points or vertex guards) from a polygonal region (gallery)
in such a way that each point on the boundary of the polygon is visible from at
least one of the selected vertices.

• select vertices in such a way that each point of the polygon is visible from at least
one of the selected vertices.

If we allow to position the guards anywhere we speak of a Point Guard Problem. Again,
dependent on the area that has to be monitored we get two version. If a selection of
vertices solves the VGP then we also speak of a Vertex Guard Covering.

For these problems we get a sharp bound by applying polygon triangulation [40]. I.e.:
every triangulation is a 3-coloring of the vertices and therefore each color gives a feasible
solution. Since it is impossible to have more than n

3 nodes in each color at least one
color has less or equal n

3 nodes. That shows the that at least ⌊n
3 ⌋ vertices are needed

and this result is known as Chvátal’s Art Gallery Theorem.
We emphasize that covering every point of the polygon is not equivalent to covering

the whole border. The example given in Figure 1.2 shows that. Here we need to use 3
corner points to cover the border, but as we can see there is still a triangle in the middle
that we can’t reach. therefore we conclude that at least four corner points are needed
to cover the whole area. By changing the example a bit (make the alcoves a bit more
narrow) we can also see that this observation remains true if we allow to position the
camera at any point of the polygon.

12

1.2 Discrete Models

Figure 1.2: Example where 3 cameras are sufficient to cover the border, but 4 cameras
are needed to cover the whole area

The proof presented above is due to [40] and makes use of triangulations. By giving
an example (compare Figure 1.3) we show that the choice of the triangle may change
the quality of the bound. I.e: in the first triangulation the number of nodes that have
the same color are larger than 3 for all the colors and therefore we get a bound of 3. In
the second case we obtain a better solution, which is in deed also optimal. We can see
that the quality of the upper bounds are dependent on the triangulation.

The next example from Figure 1.4 shows that putting cameras only in the corner
points is restrictive and we can see that allowing cameras somewhere on the border
leads to improvements.

The next step is allowing the camera somewhere in the room, and again it is possible to
give an example where this leads to a better solution. In the example given in Figure 1.5
we can see that putting the camera in the middle of the star gives the optimal solution.

The Minimum Vertex Guard Problem is NP-hard (see [81]) for a approximation scheme
see [53]. Inapproximability results can be found in [32]. After some preprocessing it is
possible to use a SCP formulation to solve the problem exactly. The rectilinear variant
of the problem is also NP-hard [109] and for exact method see [20].

1.2.5 Combination with Routing Problems

Suppost that we have to locate depots that serve as centers for a vehicle fleet. The
basic variant is an extension of multi depot vehicle routing problem that connects the
problem of locating a facility with routing decisions. I.e.: Location decisions affect the
transportation costs and therefore it has to be taken into accout. For a review of location-
routing problems see [90] and [88]. Especially for larger instances heuristics make use
of clustering thechniques to get reasonable starting solutions. There are various types
of location-routing problems and - just to mention a few - there exist dynamic versions
[73], stochastic variants [75] and formulations that cover planar aspects [104].

13

1 Location Models

Figure 1.3: Example of 2 different triangulations

Figure 1.4: An example where putting the camera on the wall leads to a better solution

14

1.2 Discrete Models

Figure 1.5: An example where putting the camera inside the polygon leads to a better
solution

15

1 Location Models

16

2 Stochasticity in a Dynamic

Environment

In this section we present a location model that respects dynamic and stochstic influences
- it is a joint work with R. F. Hartl [101]. The Uncapacitated Facility Location Problem
(UFLP) has been enhanced into many directions. In [91], [116] and [34] you can find
numerous approaches that consider either dynamic or stochastic aspects of location
problems. An exact solution method to an UFLP with stochastic demands is discussed
in [74]. The problem considered there could be interpreted as a two stage stochastic
programm. In [86] you can find dynamic (multi period) aspects as well as the multi
commodity aspect. The approach in [105] could be seen as the integration of stochastics
into the UFLP. In the work in hand a model will be presented, where the UFLP gets
enriched by inventory and randomness in the demand. The UFLP and its generalizations
are part of the class of NP-hard problems, where no exact efficient solution methods are
known. First of all, the aim of this work is the preparation of tools to develop and
investigate heuristics for this problem type. For this reason, an exact method for small
instances was developed. This makes possible both, to carve out the range of exact
solvability and to compare exact and heuristic solutions. A more detailed description of
the problem is now following.

2.1 Stochastic Dynamic Warehouse Location Problem

Our aim is to find the optimal decisions for production, inventory and transportation, to
serve the customers during a certain number of periods, t ∈ {1, ..., T}. Assume that the
company runs a number for the production sites i ∈ I = {1, 2, ..., n} that have limited

storage capacities, ∆
(t)
i . These production sites need not be used in all periods. When

a production site i is operated at time t, this is denoted by the binary variable δ
(t)
i = 1 .

In this case the fixed costs o
(t)
i arise. If a location is active, then the exact production

quantity u
(t)
i must be fixed. For each period, the production decision is the first stage

of the decision process. It has to be done before the demand of the customers is known.

Only the current level of inventory y
(t−1)
i as well as the demand forecasts are known in

advance.

Demand occurs at various customer locations j ∈ J = {1, 2, ..., m}. At any given
period t the demand dt

j at customer j will occur with probability pt
j , whereas customer

j will not require any delivery with probability 1− pt
j . Hence, demand can be described

17

2 Stochasticity in a Dynamic Environment

by a dichotomous random variable1 D
(τ)
j (τ ≥ t). We also assume that the random

variables D
(t)
j are stochastically independent.

P(D
(t)
j = d

(t)
j) = p

(t)
j P(D

(t)
j = 0) = 1− p

(t)
j

In the second stage, when the demand is known, we must decide upon the transporta-
tion of appropriate quantities xij (t) from the production sites i to the customers j. We
assume that the time needed for transportation can be neglected (i.e. the transporta-

tion lead time is less than one period). Stockouts (shortages) f
(t)
j are permitted and are

penalized by shortage costs p
(t)
j per unit time and per unit of the product. We assume

that backordering is not possible and that these potential sales are lost.

The periods are linked by the inventories y
(t)
j at the production sites and the usual

inventory balance equations (2.1) apply. Here η
(t)
i denotes the surplus in period t at site

i.

y
(t)
i + η

(t)
i = y

(t−1)
i + u

(t)
i −

∑

j∈J

x
(t)
ij (2.1)

In this section we assume free disposal, therefore the variable η
(t)
i can be eliminated

by turning the equality (2.1) into the inequality (2.2).

y
(t)
i ≤ y

(t−1)
i + u

(t)
i −

∑

j∈J

x
(t)
ij (2.2)

After the completion of the production and transportation decisions and after updating
the inventories, the next period can be considered. We note here, that for all periods we
have to pay attention to the capacity restrictions (2.3).

0 ≤ ut
i + y

(t−1)
i ≤ ∆

(t)
i (2.3)

In order to have a convenient notation, we introduce the concept of scenarios. A
scenario Dt ⊂ J is a subset of customers where the demand gets realized. Since the
demands of the different customers are independent, the corresponding probability of a
scenario to occur is given in formula (2.4).

P(Dt) =
∏

j∈Dt

p
(t)
j

∏

j 6∈Dt

(
1− p

(t)
j

)
(2.4)

Solving the SDFLP means finding a strategy that minimizes the expected costs. Be-
cause of the sequencing of the decisions and the uncertain demand, the solutions could
be understood as scenario dependent strategies, where the decisions are dependent on
the forecasts and the level of inventory at hand. Figures 2.1(a) and 2.1(b) illustrate the
dependency of operative planning2 and the scenarios (realization of demand).

1The embedding of stochastics is similar to the embedding of stochastics into the TSP, see [65].
2to keep the figure as simple as possible shortages and disposal are not integrated.

18

2.1 Stochastic Dynamic Warehouse Location Problem

The left hand side of Figure 2.1(a) shows the production decisions u
(t)
i and all of the

possible subsequent scenarios (8 in number). One of the scenarios is magnified in the
upper part of Figure 2.1(b). In each scenario the decisions for transportation, inventory
and shortage are necessary.

(a) Scenarios (|I| = 2, |J | = 3) (b) Transition

Figure 2.1: Sequencing of decisions

In order to complete the model formulation, we summarize the decision variables and
the corresponding costs in Table 2.1.

Table 2.1: Variables and costs

variable cost description

δ
(t)
i ∈ {0, 1} o

(t)
i operating decision and fixed costs

x
(t)
ij ∈ Z+ c

(t)
ij transportation decision and unit transportation cost

y
(t)
i ∈ Z+ s

(t)
i inventory level and unit holding cost

u
(t)
i ∈ Z+ m

(t)
i production decision and variable production cost

f
(t)
j ∈ Z+ p

(t)
j shortage (lost sales) and unit shortage cost

The decisions δ
(t)
i and u

(t)
i are linked by formula (2.5)

δ
(t)
i =

{
1 if u

(t)
i > 0

0 if u
(t)
i = 0

(2.5)

while shortages are defined as

f
(t)
j = D

(t)
j −

∑

i∈I

x
(t)
ij .

The total cost F is the sum over all periods of fixed operating costs, variable production
costs,

19

2 Stochasticity in a Dynamic Environment

F = E

(
T∑

t=1

∑

i∈I

[
o
(t)
i δ

(t)
i + m

(t)
i u

(t)
i + s

(t)
i y

(t)
i

]

+
T∑

t=1

∑

i∈I

∑

j∈J

c
(t)
ij x

(t)
ij +

T∑

t=1

∑

j∈J

p
(t)
j f

(t)
j

Since all relevant information about the past is contained in the inventory levels, this
model is well suited to be solved by dynamic programming. This will be outlined in the
next section.

2.2 Exact Solution Method

2.2.1 Stochastic Dynamic Programming

The principle of dynamic programming is the recursive estimation of the value function.
This value function, henceforward denoted by F, contains the aggregate value of the
optimal costs in all remaining periods. It can be derived recursively. It is convenient
to first describe the method in general and to apply it to the problem afterwards. Let
z ∈ Rm

+ be the vector of state variables and u ∈ Rn
+ be the vector of decisions. The set

of feasible decisions in state z and period t is denoted by Ut(z). The random influence
in period t is represented by the random vector r(t) for which the corresponding distri-
bution is known. It is important to note that the random variables {r(t)} have to be
stochastically independent. The state transformation is described by

zt+1 = A(zt, ut, rt)

and depends on the current state zt, the random influence rt at time t, and the chosen
decision ut. The single period costs in period t and state z when decision u is taken and
random variable r is realized is denoted by gt(z, u, r).

The value function Ft(z) gives the minimal expected remaining costs when starting
in state z in period t. We now present a variant of the stochastic Bellman equation
(compare Schneeweiß[108] S.151 (10.25) or Bertsekas [4] S.16).

FT (z) = min
u∈UT (z)

{
E
[
gT (z, u, r(T))

]}

Ft(z) = min
u∈Ut(z)

{
E
[
gt(z, u, r(t)) + Ft+1(At(z, u, r(t)))

]}
t = T − 1, . . . , 1

(2.6)

Recursively solving the equation (2.6) we get an optimal strategy that balances the
cost for implementing the decision u and the expected resulting remaining costs.

Applying Stochastic Dynamic Programming (SDP) to the SDFLP is almost straight
forward. For solving the problem we have to iteratively calculate the functions Ft. We
will show later that for the SDFLP it is sufficient to consider integer controls.

20

2.2 Exact Solution Method

2.2.2 Application to the SDFLP

In order to apply the DP equation (2.6) to the SDFLP, we first introduce the notation
G
(
D, ystart

i , yend
i , t

)
for the sum of inventory holding costs, shortage costs, and trans-

portation costs in scenario D in period t when starting with initial inventory levels ystart
i

and where the final inventories are required to be yend
i . To every given inventory level

ystart
i and scenario D, the best possible transportation plan has to be calculated. This

can be done by solving a linear program:

G
(
D, ystart

i , yend
i , t

)
=
∑

i∈I

s
(t)
i yend

i +

min
xij ,fj

∑

j∈J

p
(t)
j fj+

∑

i∈I

∑

j∈J

c
(t)
ij xij

(2.7)

s.t.
∑

i∈I xij + fj = d
(t)
j ∀j ∈ D

∑
j∈J xij + yend

i ≤ ystart
i ∀i ∈ I

fj , xij ≥ 0.

Now the value function FT of the final period T can be computed. In G, the starting

inventory is now given by ystart
i = u

(T)
i + y

(T−1)
i while the terminal inventory must be

zero, yend
i = 0:

FT (y
(T−1)
i) = min

u
(T)
i ≥0

0≤uT
i +y

(T−1)
i ≤∆

(T)
i

{∑

i∈I

δ
(T)
i o

(T)
i +

∑

i∈I

u
(T)
i m

(T)
i +

+
∑

DT⊂J

P(DT)G
(
DT , u

(T)
i + y

(T−1)
i , 0, T

)}
(2.8)

Going back in time, we have to turn to the general case in period t < T . Now we have
to take into account the remaining costs in periods t+1, ..., T when making the decision in

period t. The starting inventory is now given by ystart
i = u

(t)
i +y

(t−1)
i while the inventory

at the end of period t is yend
i = y

(t)
i . When determining G(Dt, u

(t)
i + y

(t−1)
i , y

(t)
i , t) again

a linear program has to be solved. The recursion for the value function becomes:

Ft(y
(t−1)
i) = min

u
(t)
i ≥0

0≤u
(t)
i +y

(t−1)
i ≤∆

(t)
i

{∑

i∈I

δ
(t)
i o

(t)
i + u

(t)
i m

(t)
i +

+
∑

Dt⊂J

P(Dt) min
0≤y

(t)
i ≤∆

(t+1)
i

{
Gt

(
Dt, u

(t)
i + y

(t−1)
i , y

(t)
i , t

)
+ Ft+1(y

(t)
i)
}}

(2.9)

In the SDFLP the data and the controls are assumed to be integer. In the problem
(2.7) we therefore have to solve an integer linear program. It turns out to be a min cost

21

2 Stochasticity in a Dynamic Environment

Figure 2.2: Comparison of different solutions

flow problem and therefore it is totally unimodular, such that using the Simplex method
for solving the relaxed linear program results in integer solutions for the transportation
quantities xij and the shortages fj .

The computational effort of this exact algorithm is increasing exponentially with the
capacity at the locations and the number of customers. The additional effort that
emerges from adding additional periods to the problem is linear.

This DP formulation is only applicable for small problem instances and for larger
problem instances heuristic approaches are necessary. This is considered in the next
section.

2.3 Heuristic Approach

A heuristic designed to solve stochastic combinatorial optimization problems is the Sam-
ple Average Approximation Method (SAA); see Kleywegt et al. [71]. Our model deals
with a multi stage problem and that is the reason why this method is not directly ap-
plicable. In what follows we first present the classical SAA for solving static stochastic
combinatorial optimization problems. Afterwards, we will explain how this method can
be modified in order to be applicable to our problem.

Consider the following stochastic combinatorial optimization problem (2.10) in which
W is a random vector with known distribution P , and S is the finite set of feasible
solutions.

v⋆ = min
x∈S

g(x), g(x) := EP G(x, W) (2.10)

The main idea of the SAA method is to replace the expected value EP G(x, W) =∫
G(x, w)P (dw) (which is usually very time consuming) by the average of a sample.

22

2.3 Heuristic Approach

The following substitute problem (2.11) is an estimator of the original problem (2.10).

min
x∈S

ĝN (x), ĝN (x) :=
1

N

N∑

j=1

G(x, W j) (2.11)

The SAA method works in three steps

1. Generate a set of independent identically distributed samples: {W 1
i , . . . , WN

i }
M
i=1

of the random variable W.

2. Solve the corresponding optimization problems, i.e. optimize:

v̂i = min
x∈S

ĝi(x), ĝi(x) =
1

N

N∑

j=1

G(x, W
j
i).

3. Estimate the solution quality. This is done by first computing mean and variance
of the sample:

v̂ =
1

M

M∑

i=1

v̂i, σ̂2 =
1

M(M − 1)

M∑

i=1

(v̂i − v̂)2.

Then a solution x̃ is chosen (e.g. we can take the solution with the smallest v̂i)
and its objective value is estimated more accurately by generating a larger sample
{W 1, . . . , WN ′

} (N ′ >> N)

ṽ =
1

N ′

N ′∑

j=1

G(x̃, W j), σ̃2 =
1

N ′(N ′ − 1)

N ′∑

j=1

(G(x̃, W j)− ṽ)2.

Calculate the value gap and σ2
gap:

gap = ṽ − v̂, σ2
gap = σ̃2 + σ̂2

Since E(v̂) ≤ v⋆ ≤ E(ṽ) the values ṽ and v̂ can be interpreted as bounds on v⋆: let
x⋆ ∈ S denote an optimal solutions of (2.10) then the first inequality E(v̂) ≤ v⋆ comes
from taking the expected value on the following inequality:

v̂i ≤ ĝi(x
⋆)

which results in

E(v̂i) ≤ E(ĝi(x
⋆)) = v⋆.

After completing Step 3, we have to inspect the values of gap and σ2
gap. If these values

are too large, one must repeat the procedure with increased values of N , M and N ′.

23

2 Stochasticity in a Dynamic Environment

In [105] this method is applied for a Supply-Chain Management problem that includes
location decisions.

Because of the multi-period structure of the SDFLP, the above SAA procedure has to
be adapted. In particular, one must pay special attention to the way how the sampling
is done. The sampling is done independently in every stage and every state of the SDP
and we simply modifying formulas (2.8) and (2.9), where for every period and inventory
level we only take the sum over a small randomly chosen sets of scenarios. To be more
specific, the expected value in formula (2.9) passes over into (2.12) where {Di} denotes

the sample chosen in stage t and state y
(t)
i .

1

N

N∑

i=1

min
0≤y

(t)
i ≤∆

(t+1)
i

{
Gt

(
Di, u

(t)
i + y

(t−1)
i , y

(t)
i , t

)
+ Ft+1(y

(t)
i)
}}

(2.12)

2.3.1 Results

The implementation was done in C++ and an additional library from the GNU Lin-
ear Programming Kit (GLPK) [83] was used. For small examples where the product∏

i∈I ∆
(t)
i is small enough (say ≤ 50) it is possible to find the exact solution using the

dynamic programming approach described in Section 3. In Figure 2.2, we can see the
cost distributions for the exact and the heuristc approach in a small example (3 periods,
3 customers, 2 facilities and capacity = 3). For more information about the instance
see section C.3. Here one can see that the shapes are quite different. The instance
considered has very uncertain demand (every customer has probability 50%). Hence the
two peaks in the optimal solution are not very surprising. It is interesting to observe
that the heuristic solution does not show these twin peaks.

This second peak diminishes if the probability is close to 0 or 1. An experiment was
made where the probability for the demand varied from 0 to 1 for all customers, i.e.:

(p
(t)
j = p ∈ {0, 0.01, 0.02, . . . , 1}). The result is depicted in Figure 2.3 where grey areas

represent positive probabilities that these cost values occur. Every vertical line (p fixed)
corresponds to a distribution function. For instance, at p = 0.1 five peaks occur. When
the probability p increases, the number of peaks in the distribution function decreases.

The key decision to make the heuristic work well is to choose the right sample size
N and the right number of samples M . In Figure 2.4 the statistical lower bound v̂

(calculated in step 3) is depicted for different values of N and M . Choosing a sample
size N that is large enough seems to be more important than a large number of samples.
In Figure 2.4(b) the region N > 70 of Figure 2.4) is magnified to see the effect of a
choosing the number of samples more clearly. One also can see that the statistical gap
stays positive if at least 11 samples of size 71 are chosen. It is also interesting to note
that for small values of N and sufficient large M the corresponding bounds are quite
good, although the corresponding individual solutions are quite bad. This situation is
depicted in Figure 2.5.

24

2.3 Heuristic Approach

Figure 2.3: Distributions of the optimal solution to instances with different levels of

probability (p
(t)
j = p ∈ {0, 0.01, 0.02, . . . , 1})

sample size (N)

0 10 20 30 40 50 60 70 80 90 100

sol

M=1

M=81

M=101

optimal

M=61

co
st

s

8

9

10

11

12

13

14

15

16

17

(a) (b) Detail

Figure 2.4: Choice of sample size N and the number of samples M .

25

2 Stochasticity in a Dynamic Environment

states

co
st

s

opt

SAA (N=5, M=7) ... average of 7 solutions

SAA (N=5) ... evaluation of one solution

Figure 2.5: Expected costs to different levels of inventory y (1 : [0, 0]; 2 : [0, 1]; ...;
4 : [0, 3]; 5 : [1, 0]; ...; 12 : [2, 3]).

2.4 Conclusion and Further Research

In this section a stochastic dynamic facility location problem was proposed and exact
and heuristic solution methods were presented. The examples that can be solved to
optimality are quite small and therefore of minor practical interest. But the comparison
of the SAA results and the exact solution method shows the applicability of the proposed
method for larger instances of the SDFLP. To get more insight into this method, it will
be necessary to make a transfer of the theoretical results known for the SAA method (see
[71] for statistical bounds). For comparison purposes it would be interesting to adopt
metaheuristic concepts: e.g. by using the variable-sample approach (for references see
[62]). In our further research we also want to consider other exact solution techniques
considering the SDFLP as a multistage stochastic program.

26

3 The Double Set Cover Problem

In this chapter we formulate the Double Set Cover Problem (DSCP). The DSCP is an
extension of the SCP. Instead of one service, the DSCP intends to offer two different
services that ”compete” for possible centers. We will present applications of the DSCP
and we investigate the complexity, i.e.: we search for the limit where DSCP changes from
a NP-complete problem to an polynomially solvable one. Two different optimization
versions of the DSCP will be given and a heuristic is developed to solve large instances.
We give a real world application to resolve gene regulatory networks and we continue the
discussing with a double cover variant of the Vertex Guard Problem for Art Galleries.
Before we start to formalize the DSCP we state the following problem: suppose that
we have to maintain 2 services (e.g.: police departments, fire departments) in a sparsely
populated region. And we have to locate facilities to implement that. There is a couple
of places that may serve as a center, but dependent on the site it will only cover a certain
region. Additionally we assume that these regions are not only dependent on the site,
but also on the service. Furthermore, we want to choose at most k locations and we
want to avoid to locate two facilities in one and the same location.

The examined DSCP is a generalization of the SCP and refers to the following problem:

• Given: a set S, a family F = {(S
(1)
i , S

(2)
i)|S

(1)
i , S

(2)
i ⊂ S ∧ i = 1 . . .m} and an

integer k.

• Find selections Λ1, Λ2 ⊂ {1 . . .m} such that:

|Λ1 ∪ Λ2| ≤ k (3.1)

Λ1 ∩ Λ2 = φ (3.2)⋃

i∈Λ1

S
(1)
i = S (3.3)

⋃

i∈Λ2

S
(2)
i = S (3.4)

3.1 Introduction

To motivate the problem we give a short example. Again, we suppose that we have a
couple of villages in a given area and we have to locate police and a fire departments to
serve all the villages. Furthermore we suppose that each village has to be reached from a
police department within a given maximum time and similarly each village also has to be
reached by the firefighters within another given time limit. For instance 20 minutes for
the police and 15 minutes for the fire department. In Figure 3.1 we can see a rectangular

27

3 The Double Set Cover Problem

��������

�
�����
�
�

��������	�
���

���������	�
���

Figure 3.1: Example for a road network

road network showing with a feasible solution, where only two fire departments and one
police department are used.

In this context the problem extends the classical center problem since it concerns two
types of services that ”compete” for the locations. The exclusive usage of locations may
have different reasons:

• safety and convenience: it may also be unconvenient or even dangerous to combine
facilities in the same place. E.g: land fill, recreation area, airport etc.

• security and utility : overlapping duties or services. police, firefighters, ambulance,
shops. positive effect: each service covers the whole region and we additionally get
a double coverage of the intersecting services.

• fairness: villages may compete for the facilities.

• space: there may simply be insufficient space to build both facilities at the same
place

For many real world problems it is necessary to add a budget constraint which intu-
itively generalizes the DSCP to the Weighted Double Set Cover Problem WDSCP. Here,
every i ∈ {1 . . . m} has two different weights w1

i and w2
i that correspond to the service.

I.e.: if we select i ∈ Λ1 then it costs w1
i and if we select i ∈ Λ2 then it costs w2

i . Therefore
we only replace (3.1) by ∑

i∈Λ1

w1
i +

∑

i∈Λ2

w2
i ≤ k

and we get the formulation for WDSCP. WE note that the MIP formualtions and many
of the results will be presented that are also applicable to the WDSCP.

We continue with discussing the unweighted version and give another interpretation of
the DSCP that is motiveated by Art Gallery Problems(see setion 1.2.4). More precisely,

28

3.2 Optimization Models for the DSCP

Figure 3.2: Polygon with two independent surveillance systems

it is an extension of the Vertex Guard Problem for art galleries: Suppose that we want
to install two independent surveillance systems for an art gallery. I.e.: the art gallery is
again represented as a polygon and the cameras are installed in the corners of the room.
The aim is to observe the whole border of the polygon. Both systems have to cover
all edges and in one corner there is only space for one camera. We will show that this
variant is NP-complete and we will give an upper bound for the number of cameras.

As a third application we consider a special kind of stratification problem. I.e: we
deal with a two-shift production with n process types and m supervisors that control
operations or in case react to occurring problems. Every process needs special knowledge
to respond properly, therefore S are the tasks and for each supervisor i a set of permissible

tasks Si = S
(1)
i = S

(2)
i is given. Since we don’t allow working in two consecutive shifts

we are searching for a double covering of the operation types. If the operation types
in shift one S(1) differ from shift two S(2), we may also transform the problem into a

DSCP, by adapting S, S
(1)
i and S

(2)
i . I.e.:

S = S(1) ∪ S(2)

S
(1)
i ← S

(1)
i ∪ (S(2) \ S(1)) S

(2)
i ← S

(2)
i ∪ (S(1) \ S(2))

Now we formulate two optimization versions of the DSCP:

3.2 Optimization Models for the DSCP

We consider the optimization versions by penalizing infeasibilities. I.e.: we discuss the
following two:

•
⋃

i∈Λ1
S

(1)
i 6= S

•
⋃

i∈Λ2
S

(2)
i 6= S

29

3 The Double Set Cover Problem

while the following condition holds:

•
⋃

i∈Λ1
S

(1)
i ∪

⋃
i∈Λ2

S
(2)
i = S

The aim is to maximize the number of nodes that get serviced regularly. I.e.:

max |
⋃

i∈Λ1

S
(1)
i ∩

⋃

i∈Λ2

S
(2)
i |

or equivalently, to minimize the number of nodes that get serviced by only one type of
facility. I.e.:

min |
⋃

i∈Λ1

S
(1)
i △

⋃

i∈Λ2

S
(2)
i |

Now, we will derive a linear model ODSCP1 for this kind of problem that uses the
following decision variables that indicate the solution Λ1 and Λ2:

z
(1)
i =

{
1 if i ∈ Λ1,
0 otherwise.

z
(2)
i =

{
1 if i ∈ Λ2,
0 otherwise.

the auxiliary variables δ(1) indicate the set
⋃

i∈Λ1
S

(1)
i while δ(2) indicates the set

⋃
i∈Λ2

S
(2)
i .

δ
(1)
j =

{
1 if j ∈

⋃
i∈Λ1

S
(1)
i

0 otherwise.

δ
(2)
j =

{
1 if j ∈

⋃
i∈Λ2

S
(2)
i

0 otherwise.

Additionally we represent F by the two matrices A1 = (a
(1)
ij) and A2 = (a

(2)
ij), where:

a
(1)
ij =

{
1 if j ∈ S

(1)
i

0 otherwise.
(3.5)

a
(2)
ij =

{
1 if j ∈ S

(2)
i

0 otherwise.
(3.6)

The model as a whole can be stated as a MIP in the following way:

min
z,δ

∑

i∈S

(1− δ
(1)
i) + (1− δ

(2)
i)

fODSCP1:=

30

3.2 Optimization Models for the DSCP

s.t.
∑

i∈S a
(1)
ij z

(1)
i ≥ δ

(1)
j ∀j ∈ S (3.7)

∑
i∈S a

(2)
ij z

(2)
i ≥ δ

(2)
j ∀j ∈ S (3.8)

z
(1)
i + z

(2)
i ≤ 1 ∀i ∈ S (3.9)

∑
i∈S z

(1)
i + z

(2)
i ≤ k (3.10)

∑
i∈S a

(1)
ij (z

(1)
i + z

(2)
i) ≥ 1 ∀j ∈ S (3.11)

∑
i∈S a

(2)
ij (z

(1)
i + z

(2)
i) ≥ 1 ∀j ∈ S (3.12)

z
(1)
i , z

(2)
i ∈ {0, 1} ∀i ∈ S (3.13)

δ
(1)
i , δ

(2)
i ∈ {0, 1} ∀i ∈ S (3.14)

It is easy to see that:
∑

i∈S(1−δ
(1)
i) = |S\

⋃
i∈Λ1

S
(1)
i | and

∑
i∈S(1−δ

(2)
i) = |S\

⋃
i∈Λ2

S
(2)
i |

and therefore fODSCP1 = |
⋃

i∈Λ1
S

(1)
i △

⋃
i∈Λ2

S
(2)
i |. We also note that the variables δ

(1)
i

and δ
(2)
i may be relaxed, without loosing integrality in the optimal solution:

δ
(1)
i , δ

(2)
i ∈ [0, 1] ∀i ∈ S (3.15)

Another intuitive way to derive an optimization version is to penalize infeasibilities where
Λ1 ∩ Λ2 6= φ, i.e.: we minimize:

min |Λ1 ∩ Λ2|.

To formulate the corresponding MIP ODSCP2 we tie in with the formulation of ODSCP1.
The difference of the formulations is the meaning of δ:

δi =

{
1 if i ∈ Λ1 ∩ Λ2

0 otherwise.

Summing up, the formulation gets the following simple form:

min
z,δ

∑

i∈S

δi

fODSCP2:=

s.t.
∑

i∈S a
(1)
ij z

(1)
i ≥ 1 ∀j ∈ S (3.16)

∑
i∈S a

(2)
ij z

(2)
i ≥ 1 ∀j ∈ S (3.17)

z
(1)
i + z

(2)
i ≤ 1 + δi ∀i ∈ S (3.18)

∑
i∈S z

(1)
i + z

(2)
i ≤ k (3.19)

z
(1)
i , z

(2)
i ∈ {0, 1} ∀i ∈ S (3.20)

δi ∈ {0, 1} ∀i ∈ S (3.21)

This formulation (refODSCP2::MIP) may be regarded as a node-formulation while the
second one is more like an edge-formulation (refODSCP1::MIP). Computational exper-
iments (compare section C.2) give reason to believe that the edge version leads to LP

31

3 The Double Set Cover Problem

models that are easier to solve by LP solvers like CPLEX. One reason may be that
finding solutions is an easier task. Let XODSCP1 denote the solution space of ODSCP1
and XODSCP2 the solution space of ODSCP2 then the following Lemma holds:

Lemma 3.2.1. XODSCP2 (XODSCP1.

Proof. Let z = (z(1), z(2)) ∈ XODSCP2 be a feasible solution for ODSCP2 and suppose

that z
(1)
i + z

(2)
i = 2, then i is a facility that holds both types of services. To make i

feasible for ODSCP1 we set z
(2)
i = 0. Therefore we have to take care of the nodes j that

were exclusively serviced by facility i and service type 2. To generate a feasible solution
for ODSCP1 we set δj = 0 for exactly those nodes, while the others are set to one. To
show that generally XODSCP2 6= XODSCP1, it is sufficient to give an example. Therefore
we set k = 1 and define A1 = A2 = A and:

A :=

(
1 1
0 1

)

For ODSCP1 we get a feasible solution if we set z
(1)
1 = 1 and δ

(2)
1 = δ

(2)
2 = 0. In the

case of ODSCP2 we are only allowed to label at most one node with exactly one of the
services. So we can only provide one of the services and therefore it is impossible to
construct a feasible solution.

3.3 Complexity Results

In this section we present complexity results for DSCP and the optimization versions
ODSCP1 and ODSCP2. These results incorporate information about the underlying
structure of F and the density of A1, A2 respectively. First, we will simply show that
the problem is NP complete and then we will continue with more detailed complexity
results.

3.3.1 Complexity Results for the DSCP

Since the SCP is NP-complete and because of the relatedness of DSCP and SCP it seems
obvious that also the DSCP is NP-complete - which is certainly true, but it is interesting
to notice that the ”double” aspect makes the problem harder to solve. In fact, we will
show that the DSCP may still be hard to solve although the corresponding uncoupled
SCPs for A1 and A2 are easy to solve. First, we will define the SCP and then we will
proof that DSCP is NP-complete.

Definition Set Cover Problem (SCP). Given a finite set S = {1 . . .n} and a collection
of subsets of S, namely F = {Si ⊂ S|i = 1 . . .m }. Does F contain a cover of S of size
k? Or equivalently, does a subset Λ ⊂ {1 . . .m} of size k exist such that S =

⋃
i∈Λ Si?

Theorem 3.3.1. DSCP is NP-complete.

32

3.3 Complexity Results

Figure 3.3: Example of a transformation of F = {({2}, {2}), ({1, 3}, {1}), ({1, 2}, {1, 2}),
({2, 3}, {1, 2}), ({1}, {3}), ({3}, {1, 2})}

Proof. Given an instance of SCP F = {Si ⊂ S|i = 1 . . .m } with a certain k (k ≤ |S|),

we will construct an instance F̃ = {(S̃
(1)
i , S̃

(2)
i)|i = 1 . . .m} of DSCP:

S̃
(1)
i = Si S̃

(2)
i = S k̃ = k + 1

If F̃ contains a feasible double covering (Λ1, Λ2), then |Λ2| 6= φ and |Λ2| ≤ k. Therefore
Λ := Lambda1 solves the SCP. On the other hand, if Λ is a feasible set covering, then we
define Λ1 := Λ and Λ2 := {i′} (any i′ ∈ S \ Λ). Obviously (Λ1, Λ2) is a feasible double
covering.

Before we go on with more restrictive variants of the DSCP we note that any DSCP
instance F can be characterized by the number k and the two zero-one matrices A1

and A2, compare (3.5) and (3.6). Furthermore, we point out that a zero-one matrix
A ∈ {0, 1}m×n (m ≤ n) may be interpreted as an adjacency matrix of a directed graph
G(V, E) since we may set: V = {1, . . . , n} and an arc (i,j) ∈ E exists if and only if
aij = 1.

Definition Density. We let A ∈ {A1, A2} and in accordance to the interpretation of
a zero-one matrix A as a graph we define the row and the column density for DSCP
instances.

d+
A(i) :=

n∑

j=1

aij

d−A(j) :=
m∑

i=1

aij

Additionally we define:

d+
A := max{d+

A(i)} d−A := max{d−A(i)}

33

3 The Double Set Cover Problem

dA := max{d+
A, d−A}

d+ := max{d+
A1

, d+
A2
} d− := max{d−A1

, d−A2
}

For the sake of completeness we also put a note on the case m > n:

Remark 3.3.2. It is always possible to interpret a double set cover problem as a network
G(V, E1, E2) with two arc sets, similar to the example depicted in 3.1 where we interpret
E1, E2 as the catchment areas of the facilities. If m ≤ n the set F contains can be
interpreted as a list of the neighbors, more precisely:

NE1(i) = S
(1)
i NE2(i) = S

(2)
i

If F defines a matrix that has m > n we need to add auxiliary nodes in S and also
elements in F to construct an equivalent F ′ that has a corresponding square matrices
A′

1 and A′
2. Since m > n the instance F = {({2}, {2}), ({1, 3}, {1}), ({1, 2}, {1, 2}),

({2, 3}, {1, 2}), ({1}, {3}), ({3}, {1, 2})} suits as an example. The graph G(V, E1, E2) of
F is depicted in Figure 3.3. The shaded nodes denote S = {1, 2, 3}. The set to cover
by F ′ is S′ = {1, 2, 3, 4, 5, 6, 4′, 5′, 6′, 4′′, 5′′, 6′′} and it augments S by 3(m− n) = 6 new
vertices. The vertices {4, 5, 6} correspond to the overplus in F , namely: {({2, 3}, {1, 2}),
({1}, {3}), ({3}, {1, 2})}. And since {4, 5, 6} also need to be doubly covered we add
{4′, 5′, 6′} for service 1 and {4′′, 5′′, 6′′} for the service 2. The network on the left hand

side corresponds to A1 (S
(1)
i) and the one on right hand side corresponds to A2(S

(2)
i).

We can see that {4′, 5′, 6′} as well as {4′′, 5′′, 6′′} have to be selected in Λ1 and Λ2,
respectively. Therefore the corresponding double set cover problem F ′ plus defining
k′ = k + 2(m− n) completes the transformation.

We will proof NP-completeness under low-key requirements to the density of A1 and
A2, and we will use a reduction of the 3-SAT problem [18]:

Definition 3-SATISFIABILITY (3-SAT).
INSTANCE: Set U of variables, collection of clauses over U such that each clause c ∈ C

has at most 3 literals (|c| ≤ 3) QUESTION: Is there a truth assignment for U that
simultaneously satisfies all clauses?

Proposition 3.3.3. 3-SAT is NP-complete, even if every variable u appears in at most
5 different clauses, either as u or ¬u. [80]

Remark 3.3.4. If d− ≤ 2 then we can interpret an instance of DSCP as a Double Vertex

Cover Problem. First we will give the arguments for the first service S
(1)
i , since the

arguments also apply for the second one. Focusing on the first service, every node in

DSCP may be interpreted as an edge and the sets S
(1)
i as vertices:

• If the node j is element of two sets S
(1)
i1

and S
(1)
i2

, then j is an edge that connects

the vertices S
(1)
i1

and S
(1)
i1

. Therefore a vertex cover will contain at least one of
them.

34

3.3 Complexity Results

• If the node j is element of exactly one S
(1)
i then j can be interpreted as a loop and

the vertex S
(1)
i has to be selected.

• If the node is not element of any S
(1)
i then the instance is infeasible. Therefore we

can neglect this case.

The same arguments hold for the second service S
(2)
i . Therefore we can conclude that

the problem is a variant of the following independent set vertex cover problem:

Definition Independent Set Vertex Cover Problem(ISVCP). Given a graph G(V1, V2, E)
find a subset Λ ⊂ V . We define:

Λ1 := Λ ∩ V2 Λ1 := Λ ∩ V2

E1 := {[i, j] ∈ E : i, j ∈ V1} E2 := {[i, j] ∈ E : i, j ∈ V2}

and finally the bridges

E1,2 := {[i, j] ∈ E : i ∈ V1 ∧ j ∈ V2}

Then Λ has to have the following properties:

• Λ1 is a vertex cover for (V, E \ E12), or

– Λ1 is a vertex cover for (V1, E1).

– Λ2 is a vertex cover for (V2, E2).

• Λ is an independent set for (V, E12).

Another problem that is related to the DSCP with d− ≤ 2 may be called:

Definition Peaceful Vertex Cover Problem (PVCP): Given a graph G(V, E) and a con-
flict set W ⊂ V × V . We want to find a subset Λ ⊂ V such that:

• Λ is a vertex cover for (V, E).

• (i, j) ∈W ⇒ ¬ ({i, j} ⊂ Λ).

Remark 3.3.5. Coming back to the the interpretation of the DSCP with d− ≤ 2 as IVCP
we give a detailed description of the interpretation:

• V1 := {vi : S
(1)
i 6= φ}

• V2 := {wi : S
(2)
i 6= φ}

• E1 := {e1, . . . , en}

• E2 := {f1, . . . , fn}

• E1,2 := {[vi, wi] : vi ∈ V1 ∧ wi ∈ V2}

35

3 The Double Set Cover Problem

If there are 2 possible sets S
(1)
i1

and S
(1)
i2

that may cover j ∈ S then fj = [vi1 , vi2]. If
there is only one possible set then fj = [vi, vi]. E2 is constructed analogously.

Theorem 3.3.6. DSCP is NP-complete if dA1 , dA1 ≤ 2.

Proof. Since 3-SAT is NP-complete also if , we can show NP-completeness by polynomi-
ally reducing 3-SAT (where each variable appears at most 5 times in a different clause)
to DSCP. Suppose a number of variables U = {x1, . . . , xn} (xi and i ∈ {1 . . . n}) and
a collection of clauses C = {c1, . . . , cm} (cj and j ∈ {n + 1 . . . n + m}) with at most
3 literals is given. Some variables xi are linked to some clauses cj by (S1

r , S2
r) where

r = il = j
l̂
. I.e: we will construct an instance of DSCP with dA1 ≤ 2 and dA1 ≤ 2 and

for the variables and clauses we construct circular gadgets regarding the first, and the

second service. Using the analogy to the ISVCP the sets S
(1)
i and S

(2)
i can be interpreted

as nodes and the set S can be interpreted as edges.

S :=

n⋃

i=1

10⋃

l=1

{il} ∪
m+n⋃

j=n+1

9⋃

l=1

{jl}

The key idea is, to represent each variables xi ∈ U as an even circle with 10 nodes T 1
il

(l = 1 . . . 10) and to represent each clause cj ∈ C as an odd cycle with 9 nodes T 2
jl

(l = 1 . . . 9):

T 1
il

= {il, i1+(l mod 10)}

T 2
jl

= {jl, j1+(l mod 9)}

Suppose that the variables {xj1 , xj2 , xj3} are contained in cj ∈ C. For technical reasons,
we define the rank rk1 of a clause cj for xi and ¬xi:

rk1 : (C ∪ ¬C)× U 7→ {1 . . . 10}

rk1(xi, cj) = |{j′|j′ ≤ j ∧ xi ∈ cj ∧ xi ∈ cj′}|

rk1(¬xi, cj) = |j′|j′ ≤ j ∧ ¬xi ∈ cj ∧ ¬xi ∈ cj′}|

and we also define the rank rk2of literal in a clause:

rk2 : {1 . . . n} × U 7→ {1 . . . 3}

rk2(i, cj) = |{i′|i′ ≤ i ∧ xi,¬xi, xi′ ,¬xi′ ∈ cj}|

Now we are ready to define F :

• For each literal xi (¬xi) in cj we add the following pair of sets to F :

xi ∈ cj ⇒ F ← F ∪ {(T 1
i2rk1(xi,cj)

, T 2
j3rk2(xi,cj)−2

)}

¬xi ∈ cj ⇒ F ← F ∪ {(T 1
i2rk1(xi,cj)−1

, T 2
j3rk2(xi,cj)−2

)}

36

3.3 Complexity Results

• For those sets T 1
il
, T 2

jl
that have not been used in the last step we set:

F ← F ∪ {(T 1
il
, φ)}

F ← F ∪ {(φ, T 2
jl
)}

• To complete the instance we have to add:

∀n
i=1∀

10
l=1 F ← F ∪ {(φ, {il, i1+(l mod 10)})}

∀n+m
i=n+1∀

9
l=1 F ← F ∪ {({jl, j1+(l mod 9)}, φ)}

Since the mentioned odd cycles and mentioned even cycles need at least 5 nodes to be
covered (for each service type) we can conclude that the absolute minimum number to
cover all circles is 10 (|U |+ |C|). Now we will show that this is possible to achieve if and
only if the clauses C are satisfiable. To illustrate the construction we give an example
for the clause cj = {¬x1,¬x2, x3}. The circular configuration for xi and cj are depicted
on the left and respectively on the right side of figure 3.4. The linkage between these
items is illustrated in figure 3.5. Since x1 is negated in the clause an odd node of it’s
configuration is used. For x3 which is not negated an even node is used. The circles for
xi are connected with the circle for the clause in a way that there are always 2 nodes
left between. Each circle for a xi has two minimal configurations, called the ”true”- and
the ”false”- configuration. If all the odd nodes are selected then we say ”xi = true”,
else ”xi=false”. Now we show that it is possible to find a covering that uses only 5
sets if cj =true , whereas if cj =false it’s not. we investigate the following assignments
according to the example:

• If cj =false then all literals are false, therefore x1 = x2=true and x3=false. That
means that T 2

j1
, T 2

j4
and T 2

j7
cannot be selected. Therefore we can only reach

a covering with 6 sets. Figure 3.6 shows this situation - the nodes that appear
together in F are the elements that are combined in the same dashed ellipse.

• If cj =true then at least one of the literals is true: i.e.: x1 =false, x2 =false or
x3 =true. therefore we have three cases:

– If all literals are true, then we are free to choose, therefore it we can realize
any covering that uses 5 sets.

– If two literals are true, then we cannot choose one of the sets and it’s neighbors
have to be chosen. We can start on one of the sides and then we leave out
every second note until we reach a feasible solution that uses 5 sets.

– If only one literal is true, then we cannot choose two of the sets. We notice that
there are 2 sets between them, and both have to be chosen. We again start
selecting on one of the sides and we leave out every second. This situation is
depicted in Figure 3.7.

37

3 The Double Set Cover Problem

Figure 3.4: Transformation of literal i and clause j into circular configurations

If C is satisfiable we directly get a solution with the minimum number of 10 (|U |+ |C|).
On the other hand: If we get a minimal solution of the derived problem that only chooses
10 (|U |+ |C|) sets, then the sets in the even circles (variables) are alternately selected
and deselected (xi is ”true” or ”false”). Furthermore each odd circle (clause), there is
at least one of the positions 1, 4 or 7 that has to be deselected. Otherwise we have to
choose all the sets between them - and that means 6 sets. So, one of the sets is selected
and therefore the corresponding clause has a certain value, ”true” or ”false”. In other
words, each clause realizes at least one literal and each variable can only hold either the
value ”true” or ”false”. Therefore by extracting the values of the even circles we get a
solution to the original problem.

Corollary 3.3.7. As a direct consequence the ISVCP is NP-complete, also if E1 and
E2 only consist of disjoint paths and circles and where E1,2 consists of disjoint edges.

Corollary 3.3.8. Similarly we can see that the PVCP is NP-complete, also if E only
consist of disjoint paths and circles and if for each node there exists at most one conflict.

In the next investigations we will use a property that guarantees the existence of
integral solutions for systems of linear equations. We present the definition of total
unimodularity and a sufficient criterion.

Definition totally unimodular (TUM): A given matrix is called total unimodular if the
determinants of all square submatrices (minors) are element of {−1, 0, 1}.

Proposition 3.3.9. A matrix A is totally unimodular if and only if At is totally uni-
modular.

38

3.3 Complexity Results

� � �
���

� ��
���

� � �
���

� ��
���

� � 	
���

� �

���

� � �
��� � ��

���

� �
���

�

�

	

�

�

�

�

��

��

�� � �������� � �������

��

�

�

	

�

�

�

�

��

�

�

	

�

�

�

�

��

��

Figure 3.5: Example of a clause cj in tree variables x1 x2 x3

�

�

�

�
�

�

�

�

�	

������

�� � �������� � �������

������

�

�

�

�
�

�

�

�

�	

�

�

�

�
�

�

�

�

�	

��������

� � �
���

� ��
���

� ��
���

� � �
���

� ��
���

� � �
��� � ��

���

� �

���

� � �
���

Figure 3.6: Example where the clause cj=false

39

3 The Double Set Cover Problem

�

�

�

�
�

�

�

�

�	

������

�� � �������� � �������

������

�

�

�

�
�

�

�

�

�	

�

�

�

�
�

�

�

�

�	

��������

� � �
���

� ��
���

� ��
���

� � �
���

� ��
���

� � �
��� � ��

���

� �

���

� � �
���

Figure 3.7: Example where the clause cj=true

Proof. The proof is a direct consequence of det(B) = det(Bt).

Proposition 3.3.10. Integer programming, which is known to be NP-hard gets easy to
solve (in polynomial time) if the coefficient matrix is total unimodular. (see [59] and
[66])

Proposition 3.3.11. Sufficient criterion for total unimodularity [57]:
A matrix that only contains zeros and ones is totally unimodular if it is possible to
partition the matrix into two sets of rows such that each column has one entry in each
of these sets.

Proof. Suppose that a matrix A that fulfills the requirements is given and let’s suppose
that the statement is not true. The partition (I1, I2) is given and it is clear that all
minors of (1×1)− submatrices are 0 or 1. Now suppose that r is the largest value where
all minors of (r × r)− submatrices of B are element of {−1, 0, 1}. Therefore 1 ≤ r < n

and there exists a submatrix B whose determinant is not element of {−1, 0, 1}. We will
show that B has exactly two entries in each column. Because if not, then there exists a
column with no entry or only one entry.

• no entry implies that we have a column of zeros and therefore det(B) = 0.

• if there is only one entry, then we can use Laplace’s Formula to expand the calcu-
lation of the determinant along this column. Since we only have one summand the
determinant is ± a minor of a (r−1×r−1)-matrix and therefore det(B) ∈ {0,±1}

40

3.3 Complexity Results

Both cases are irrelevant and we conclude that all columns have 2 entries. Now we
can separate the rows j ∈ J of B = (bt

j) according to the partition (I1, I2) and sum them
up. ∑

j∈I1∩J

bj =
∑

j∈I1∩J

bj

That shows that the rows of B are linearly dependent and therefore det(B) = 0 - a
contradiction. Now we show that there exist matrices that are TUM and don’t show
don’t satisfy the properties of the criterion.

A =

1 1 0 0 0
1 0 1 0 0
1 0 0 1 1

The given matrix A is TUM and since there are columns that have 3 entries we cannot
make a partition that has the wanted property (also for the transposed).

Theorem 3.3.12. If d ≤ 2 and m = n then DSCP is polynomial.

Proof. Again, lets suppose that dA1 = dA1 = 2 then A1 and A2 may be interpreted as
singletons and edges that have at most one vertex in common. For each service we have
to cover n nodes. Since n = m we can interpret the instance as mentioned in remark
(3.3.2) - each vertex i ∈ S covers at most 2 vertices in S. Since we have to reach each
node we have:

2|Λ1| ≥ |S| ∧ 2|Λ2| ≥ |S|

⇒ |Λ1|+ |Λ2| ≥ |S|

therefore we need to select all vertices, i.e.: Λ1 ∪ Λ2 = S. That also means that each
vertex has to cover exactly 2 vertices. If a vertex i covers less then 2 vertices in the first
service, then it has to cover 2 vertices in the other service, i.e.: i ∈ Λ2. Therefore we
suppose that these decisions are already fixed and we only have to decide upon those
nodes where we have both options. By eliminating all these options (recursively) we may
end up in having no choice left (infeasibility or feasibility) or we can reduce the matrices

A1 and A2 to the matrices Ã1 and Ã2 that have exactly 2 row entries and exactly 2
column entries. Now, we are ready to reformulate the following problem:

Ã1x = 1 (3.22)

Ã2y = 1 (3.23)

x + y = 1 (3.24)

xi, yi ∈ {0, 1} (3.25)

or to put it different:

A

(
x

y

)
=

Ã1

Ã2

In In

(

x

y

)
= 1

41

3 The Double Set Cover Problem

Now we will show that this coefficient matrix is total unimodular (TUM) and therefore
the problem is solvable in polynomial time. In fact any basic solution of the system gives
us a feasible integer solution. We have to recall that Ã1 and Ã2 have exactly 2 entries
in each row and column and therefore we can represent them as disjoint circles. If one
of the circles is odd then the problem is infeasible. Now, lets suppose that all circles are
even, then it is possible to give a bipartition (Γ1

1, Γ
1
2), (Γ2

1, Γ
2
2) of the nodes Ṽ , for Ã1

and Ã2 respectively. Applying the criterion for total unimodularity (Theorem 3.3.11) on
At with the index sets (Γ1

1 ∪ Γ2
1, Γ

1
2 ∪ Γ2

2) we get the result.

A practical method to solve the problem is a backtracking method: i.e.: set x1 = 1
and fix all variables that appear in S1

i and S2
i accordingly. Since x and y are alternatives

we only have to fix the values for x. We continue this process of fixing x until we
reach a contradiction or alternatively can’t find a new neighbor. The pseudo code of the
algorithm is given in Algorithm 1. The algorithm uses the sets L and R that represent
possible conflicts. I.e. if (i, 1) is element of R then x1 should take the value 1. Therefore,
if the Algorithm 1 terminates with v=feasible then L gives us the opposite values of the
correct variables. I.e.:

(i, l) ∈ L⇒ xi ← (1− l)

. To estimate the complexity of the Algorithm we have to notice that starting in a small
circle might lead to a bad performance: The algorithm runs in O(n2) time.

Remark 3.3.13. The key argument of Theorem 3.3.12 is that A1 and A2 can be inter-
preted as disjoint even circles, which directly leads us to a suitable row partition.

If an instance satisfies d+ ≤ 2 it is possible to interpret the DSCP as an edge covering
problem and incites us to formulate the following problem:

Definition Peaceful Perfect Matching Problem (PPMP): Given a graph G(V, E) and a
conflict set W ⊂ E × E. We want to find a subset Λ ⊂ V such that:

• M is a perfect matching of (V, E).

• (ei, ej) ∈W ⇒ ¬ ({ei, ej} ⊂M).

Since the odd cycles in Theorem 3.3.6 are essential we needed to choose k > n sets
from F . If (k = n) we can conclude that we have chosen perfect matchings for both
services, and therefore disjoint odd cycles cannot be present. Like mentioned in Remark
3.3.13 even cycles make the problem easier and we can also show that the following
statement is true:

Corollary 3.3.14. If dA1 , dA2 ≤ 2 and k = n then DSCP is polynomial.

Proof. Similarly to the proof for Theorem 3.3.6 we can show that dA1 , dA2 ≤ 2 ⇒ k ≥
|Λ1 ∪Λ2| ≥ n. Therefore k = n is the minimum we can reach and we can concentrate on
selecting edges. We again reduce the matrices A1 A2 and build up an auxiliary linear
program that solves the problem. Like in the proof of Theorem 3.3.6 we filter out the real

alternatives Ã1
1, Ã1

2 and we additionally integrate those edges that may only be selected

42

3.3 Complexity Results

Algorithm 1 A backtracking method

L← φ;
v ←feasible;
while (|L| < |S|) do

i← min ({t ∈ S : (t, 0) 6∈ L ∧ (t, 1) 6∈ L});
L′ ← {(i, 0)};
R← {(j, 1) : j ∈ S1

i } ∪ {(j, 0) : j ∈ S2
i };

while (R 6= φ) do

r ← (j, l) ∈ R;
if (r 6∈ L ∪ L′) then

R← R \ {(j, l)};
L′ ← L′ ∪ {(j, 1− l)};
R← R ∪ {(s, l) : s ∈ S1

j } ∪ {(s, 1− l) : s ∈ S2
j)};

else

if ((i, 1) ∈ L′) then

R← φ;
L← {(s, 1) : s ∈ S};
v ←infeasible;

else

L′ ← {(i, 1)};
R← {(j, 0) : j ∈ S1

i } ∪ {(j, 1) : j ∈ S2
i };

end if

end if

end while

if (v =feasible) then

L← L ∪ L′;
end if

end while

return v;

43

3 The Double Set Cover Problem

for one of the services (Ã2
1, Ã2

2). We emphasize that we already exclude paths from our
investigations, since they don’t leave a choice. We state the following linear programm:

min

m1∑

i=1

(
x1

i + y1
i

)
+

m2∑

i=1

(
x2

i + y2
i

)
(3.26)

Ã1
1x

1 + Ã2
1x

2 = 1 (3.27)

Ã1
2y

1 + Ã2
2y

2 = 1 (3.28)

x1 + y1 ≤ 1 (3.29)

x1
i , x

2
i , y

1
i , y

2
i ∈ {0, 1} (3.30)

or to put it different:

A

x1

y1

x2

y2

 = A =

Ã1
1 Ã2

1

Ã1
2 Ã2

2

Im1 Im1

x1

y1

x2

y2

 T 1

The matrix A of the coefficients includes (Ã1
1, Ã

2
1) which represents a set of disjoint even

cycles. The same is true for (Ã1
2, Ã

2
2), therefore we may partition the columns in a way

that suits to criterion 3.3.11, and we again find total unimodularity.

Now, we give an alternative proof of NP-completeness where k = n and dA2 ≤ 2 and

for the other service we take d
(−)
A1
≤ 2 and d

(+)
A1

= 3. First, we will show for PPMP the
following:

Proposition 3.3.15. Complexity of the Peaceful Perfect Matching Problem:

1. For d(i) ≤ 2 PPMP is polynomially solvable

2. If d(i) ≤ 3 then PPMP is NP-complete

Proof. The proof has two parts,

1. It is clear that E has to consist of disjoint paths of odd length and circles of even
length. Considering feasibility, we need to take the conflict set W into account. To
simplify the problem we represent each circle and each path with a literal xi(i ∈ N).
Since there are only 2 possible configurations we assign the value xi = 0 for one of
the configurations and xi = 1 for the other. Each conflict can be translated: i.e.:
if (i, j) ∈W then we have two possible situations:

• i and j are members of the same circle, then obviously the conflict is either
indissoluble or dispensable.

• i and j are members of different circles xi and xj , then the conflict translates
into two conflicting situations (ai, aj ∈ {0, 1}). That means that it is not

44

3.3 Complexity Results

possible to have xi = ai and xj = aj at the same time. Since xi 6= ai ⇒
xi + ai = 1 the conflict can be written as the following linear equation:

(2ai − 1)(xi + ai − 1) + (2aj − 1)(xj + aj − 1) ≤ 1

To solve this system of linear equations we can adopt the Algorithm 1 accordingly.
A pseudo code to solve linear inequalities mentioned above is given in Algorithm
2.

Algorithm 2 Solving a system of linear inequalities with two binary variables per
inequality

L← φ;
v ←feasible;
while (|L| < |N |) do

i← min ({i ∈ N : xi = 0 6∈ L ∧ xi = 1 6∈ L});
L′ ← {xi = 0};
R← {xj = aj : ((1− xi) + (2aj − 1)(xj + aj − 1) ≤ 1) ∈ LP};
while (R 6= φ) do

r ← xj = aj ∈ R;
if (r 6∈ L ∪ L′) then

R← R \ {r};
L′ ← L′ ∪ {r};
R← R∪{xs = as : ((2aj − 1)(xj + aj − 1) + (2as − 1)(xi + as − 1) ≤ 1) ∈ LP};

else

if (xi = 1 ∈ L′) then

R← φ;
L← {xs = 0 : s ∈ N};
v ←infeasible;

else

L′ ← {xi = 1};
R← {xs = as : (xi + (2as − 1)(xs + as − 1) ≤ 1) ∈ LP};

end if

end if

end while

if (v =feasible) then

L← L ∪ L′;
end if

end while

return v;

2. Now we will show that that PPMP is NP-complete by using a reduction of 3-SAT.
Since the proof is similar to Theorem 3.3.6 we can reduce the details and only
give a sketch of the proof: Roughly speaking, we are searching for non-conflicting
perfect matchings. For each clause we define squares isomorphic to K4 and for

45

3 The Double Set Cover Problem

�� ��

��

����� � �������

������ � ���� � ���� ����� � ��������

Figure 3.8: Example of a transformation of a 3-SAT instance with 3 clauses and 3 vari-
ables

each variable we construct a circle that is sufficiently large. Each of the matchings
of the squares represent a literal. I.e.: Each one of the 3 possible matchings on the
square selects which literal has to be fulfilled. We select 3 distinguished edges in
the square (cj) that belong to different matchings and indicate the corresponding
literals lj1 , lj2 , lj3 . For each even length circle that represents a variable (xi) we
exactly have two possible configurations - one of them indicates that xl =true and
the other one xl =false. According to that we have even and odd edges in each
circle. If the even edges are chosen to be part of the matching, then xi =true
therefore the edges are also called to be ”true”, analogously the odd edges are
called ”true”. For each clause cj = {lj1 , lj2 , lj3} we construct conflicts between
squares and circle. We illustrate the transformation by giving an example. Figure
3.8 gives a transformation of an instance and figure 3.9 gives a solution.

Corollary 3.3.16. If k = n, d
(+)
A1

, d
(−)
A1
≤ 2 and d+

A2
≤ 2,d−A2

≤ 3 then DSCP is NP-
complete.

Proof. We can interpret the instance constructed in the second part of proof of theorem
3.3.15 as an instance of DSCP. The idea is to interpret the edges that build the circles
as part of A1 and the edges that are part of the squares as part of A2. That means if the
number of nodes from squares is larger than the number of nodes from circles, then the
number of elements in S is equal to the number of nodes from the squares else we take
the circles. If we find a conflict between two edges then the corresponding sets are joined
in one pair of F . Since some elements cannot be covered we complete the instance with
adequate sets. We illustrate this transformation in Figure 3.10.

46

3.3 Complexity Results

����� � �������

������ � ���� � ���� ����� � ��������

������	

������	

���
��	

Figure 3.9: Solution to the example given in Figure 3.8

��

��

��

��
��

��

��

��

�	

�

�

�

�

�
�

�

�

�

�	

��

��

��

��
��

��

��

��

�	

�

��

��

��

����

��

�
 ��

�� ��

��

��

����

�� �	

�

�	

� �

� �

��

� �

�	

�� ��

Figure 3.10: Example of a transformation of PPMP to DSCP to apply Proposition 3.3.15

47

3 The Double Set Cover Problem

Lemma 3.3.17. DSCP is polynomial if A1 = A2 = A and dA ≤ 2.

Proof. We can only find a small number of different situations:

• even circles: Suppose that vi ∈ {1 . . . 2l} ⊂ S are the elements of the circle C

that are connected by S1
1 = S2

i = Si =
{
vi, v1+(i mod 2l)

}
. Then the circle C =

2l⋃
i=1
{(Si, Si)} can be handled by choosing alternately the (2i) for Λ1 and (2i − 1)

for Λ2.

• odd circles
2l+1⋃
i=1

{
(
{
vi, v1+(i mod 2l)

}
,
{
vi, v1+(i mod 2l)

}
)
}

lead to infeasibility.

• odd path
2l+1⋃
i=1
{({vi, vi+1} , {vi, vi+1})} can be handled by alternately choosing the

sets for Λ1 and Λ2.

• even paths
2l⋃

i=1
{({vi, vi+1} , {vi, vi+1})} make the instance infeasible.

• singletons f = ({vi}, {vi}) ∈ F could be found isolated or at the endings of a path,
which leads back to odd and even paths.

Lemma 3.3.17 shows that A1 6= A2 is necessary to prove NP-completeness and gives
reason to investigate the case A1 = A2. Now, we will show that DSCP is NP-complete
if A1 = A2 = A, d+

A ≤ 2 and d−A ≤ 3.
To continue discussing the case A1 = A2 we consider the case where d+ ≤ 2 and

d− ≤ 3. We suppose that d+ = 2 and we can interpret F as a collection of edges. As a
further restriction we concentrate on instances where k = n. That is equivalent to the
question if we can find two disjoint perfect matchings in F . If F represents a cubic graph
then it is equivalent to finding a 1-factorization of the graph. In other words if we can
show that it is hard to find a 1-factorization of a cubic graphs then we are done [100].
CHROMATIC-INDEX for Edge Coloring is equivalent factorizing a graph into 1-factors.
This problem is known to be NP-hard and [61] shows that CHROMATIC-INDEX is also
NP-hard for cubic graph. Therefore we state the following result:

Corollary 3.3.18. DSCP is NP-complete even if A1 = A2 and d+ ≤ 2 and d− ≤ 3.

As a last step in analyzing the case A1 = A2 we consider the case where d− ≤ 2:

Theorem 3.3.19. DSCP is polynomially solveable if A1 = A2 and d− ≤ 2.

Proof. We can interpret DSCP to a 2-coloring vertices which is easy to solve: Since
d− ≤ 2. for each i ∈ S there exist at most two sets Si1 , Si2 ∈ F . We can find 3
situations:

1. If d−(i) = 0 then DSCP is infeasible since there is no set that covers i.

48

3.3 Complexity Results

2. If d−(i) = 1 then there is only one set that covers i, therefore can be either selected
for Λ1 or Λ2. Therfore the instance is infeasible.

3. If d−(i) = 2 we can think of i = [Si1 , Si2] as an edge and Sj build the nodes.

Only the last case is of interest, therefore we may interpret the problem as coloring of the
vertices: Suppose that there is an edge that in the auxiliary graph where both endpoints
are chosen for the same service, then this edge is isolated from the other service and
we end up in infeasibility. But checking if a graph is 2-colorable is an easy task. I.e.:
start with an arbitrary node and assign one of the colors. In the next steps we assign
an appropriate color to all new neighbors that are not yet colored and those that are
already colored are checked for feasibility. In this process each edge of the auxiliary
graph is visited exactly once - therefore we end up in a algorithm with O(n).

We summarize the complexity results for the DSCP in the graph depicted in Figure
3.11. We starts with the unrestricted version on top and successively add restrictions.
Every path classifies a sub problem of DSCP as NP-complete or polynomially solvable.

3.3.2 Complexity Results for the Optimization Versions of the DSCP

Regarding the corresponding optimization version we may decide for a DSCP instance
if we can find a proper solution or not, i.e:

Corollary 3.3.20. ODSCP1 and ODSCP2 are NP-hard, even if d(A1), d(A2) ≤ 2.

Proof. It is easy to see that an instance F of DSCP is feasible if and only if the objective
value of the corresponding optimization versions is zero (f∗

ODSCP1 = 0 and f∗
ODSCP1 =

0). Therefore it is also possible to make a transfer of the assumptions of the Theorem
3.3.6.

Lemma 3.3.21. ODSCP1 is polynomial if A1 = A2 = A and dA ≤ 2.

Proof. This proof is done by inspection.

Lemma 3.3.22. For ODSCP1 is possible to reduce instances that satisfy d(A1)
+ ≤ c to

equivalent instances with d(Ã1)
+ = c.

Proof. I.e: We will construct an instance mainly by adding c+2 auxiliary sets
{(

S̃1
w1

, S̃2
w1

)
,

(̃S1
w2

, S̃2
w2

), . . . (S̃1
wc+2

, S̃2
wc+2

)
}

to F and the following definitions:

• k̃ = k + c + 2

• S̃2
i = S2

i

• S̃1
i = S1

i ∪ {wi : i ≤ c− |Si|}

• S̃1
wc+1

= {w1, . . . wc−1} ∪ {wc+2}

49

3 The Double Set Cover Problem

F
igu

re
3.11:

C
om

p
lex

ity
of

D
S
C

P

50

3.3 Complexity Results

• S̃1
wc+2

= {w2, . . . wc} ∪ {wc+1}

• S̃1
wi

= {w1, . . . wc+1} \ {wi} for (i ≤ c)

On the other hand we need to cover the auxiliary nodes by the second service. Therefore

we define the sets S̃2
wi

:

• S̃2
wi

= {w1+(i mod (c+2))} for (i ≤ c + 2)

Now, every subset S̃1
i has exactly c elements and obviously, wc+1 has to be selected

(wc+1 ∈ Λ̃1 ∪ Λ̃2, where Λ̃1 Λ̃2 is the optimal solution of the derived instance), since
S1

wc+1
is the only set that covers wc+2. Therefore we only need to put effort on covering

the remaining elements {wc, wc+1}. A good choice is selecting wc+2, since it covers both

and wc+1 is only covered by auxiliary sets S̃1
wi

. We conclude that we have to select
at least 2 auxiliary elements and choosing {wc+1, wc+2} ⊂ Λ2 is optimal, because of

the structure of S̃2
wi

. I.e: regarding the second service, we need to select all auxiliary
elements {w1, . . . wc+2} ⊂ Λ′

1 ∪ Λ′
2 and there exists an optimal solution that satisfies:

• {wc+1, wc+2} ⊂ Λ̃1

• {w1, . . . wc} ⊂ Λ̃2

We summarize, that we can transfer an optimal solution of the derived problem to the
original one by setting:

• Λ1 = Λ̃1 \ {wc+1, wc+2}

• Λ2 = Λ̃2 \ {w1, . . . wc}

Obviously, the other way round is also possible, and an optimal solution of the original
problem leads to an optimal solution of the derived one:

• Λ̃1 = Λ1 ∪ {wc+1, wc+2}

• Λ̃2 = Λ2 ∪ {w1, . . . wc}

That shows that the problems are equivalent and that the structure of the derived
problem regarding the second service is minimally changed. I.e.: If the original instance
is feasible, then d(Ã2)

+ = d(Ã2)
+.

Remark 3.3.23. Because of the symmetry of the problem, Lemma 3.3.22 can also be
applied for A2 and therefor shows that it is possible to reduce instances that satisfy
d(A2)

+ ≤ c to equivalent instances with d(A2)
+ = c.

To simplify some proofs, we will give conditions where ODSCP1 and ODSCP2 merge
to one and the same problem:

Lemma 3.3.24. If d(A1)
+(i) + d(A2)

+(i) ≤ 3, then ODSCP1 and ODSCP2 may be
regarded as equivalent.

51

3 The Double Set Cover Problem

Proof. Suppose that (Λ1, Λ2) is optimal for ODSCP1 and the objective fODSCP1 > 0,
then we will investigate the elements l1 ∈ L1 ⊂ Λ1 and l2 ∈ L2 ⊂ Λ2 (L1 ∪ L2 6= φ)
where we define consider the following sets J1(l) ⊂ J1 and J2(l) ⊂ J2:

J1 = {j :
∑

i∈S

a
(1)
ij z

(1)
i = 0}

J1(l) = {j :
∑

i∈S

a
(1)
ij z

(1)
i = 0 ∧ a

(1)
lj = 1} l ∈ L2

J2 = {j :
∑

i∈S

a
(2)
ij z

(2)
i = 0}

J2(l) = {j :
∑

i∈S

a
(2)
ij z

(2)
i = 0 ∧ a

(2)
lj = 1} l ∈ L1

fODSCP1 = |J1| ∪ |J2|

we can formulate the auxiliary SCP subproblems:

min |∆1|
⋃

l∈∆1

J2(l) = J2 ∆1 ⊂ L1

min |∆2|
⋃

l∈∆2

J1(l) = J1 ∆2 ⊂ L2

Since i ∈ L : z1
i = 1 ⇒ d(A1)

+(i) ≥ 1 ⇒ d(A2)
+(i) ≥ 2 this problem is easy to solve,

since it is equivalent to the edge cover problem (using Lemma 3.3.22). The derived
solution is:

Λ1 ← Λ1 ∪∆2

Λ2 ← Λ2 ∪∆1

Since fODSCP2 = |∆1|+|∆2|, this solution is feasible for ODSCP2 with k ← k+|∆1|+|∆2|
and fODSCP2 ≤ fODSCP2. On the other hand, taking an optimal solution of ODSCP2
we can generate a corresponding feasible solution for ODSCP1 by investigating Λ1 ∩Λ2.
First we define:

Λ̃1 = Λ1 \ (Λ1 ∩ Λ2)

Λ̃2 = Λ2 \ (Λ1 ∩ Λ2)

Since,

i ∈ Λ1 ∩ Λ2 ⇒ d(A1)
+(i) = 1 ∨ d(A2)

+(i) = 1

we can separate Λ1 ∩ Λ2 into disjoint sets ∆1, ∆2:

∆1 : i ∈ ∆1 ⊂ (Λ1 ∩ Λ2)⇔ d(A1)
+(i) = 2

∆2 : i ∈ ∆2 ⊂ (Λ1 ∩ Λ2)⇔ d(A2)
+(i) ≤ 1

52

3.3 Complexity Results

Now, we define the solution for ODSCP2:

Λ̃1 ← Λ̃1 ∪∆1

Λ̃2 ← Λ̃2 ∪∆2

Additionally, we know that for every i ∈ ∆1 and j ∈ J2 we have:
∑

i∈∆1

a
(2)
ij = 1 ∧

∑

j∈J2

a
(2)
ij = 1

Else the solution for ODSCP2 could be improved by eliminating i from Λ2. Obviously,
k is decreased by |Λ1 ∩ Λ2|, i.e:

k ← k − |Λ1 ∩ Λ2|

Summarizing, it follows that |∆1| = |J
2| and |∆2| = |J

1|, or fODSCP1 = fODSCP2, which
completes the proof.

Lemma 3.3.25. ODSCP1 and ODSCP2 are polynomial if dA1 = 1 and d+
A2
≤ 2.

Proof. Ad ODSCP1: Since dA1 = 1 we have to select all vertices, i.e.: Λ1 ∪ Λ2 = S. If
Λ1 = S and Λ2 = φ we have an error of size |S|. Now we suppose that Λ2 6= φ, then Λ2

defines a set of edges, singletons and empty sets. Since Λ1 and Λ2 are disjoint sets and
all nodes in S are covered by exactly one set S1

i the objective value is only dependent
on Λ2 or on how to cover S with the minimum number of sets from F∈ = {S2

i }. We will
argue that it is possible to rewrite the objective function in the following way:

f∗ = min f(Λ2) = |Λ2|

To proof this, we suppose that (Λ1, Λ2) (or z1, z2) is a minimal solution, then there are
only two ways to contribute in f . First, suppose that we have an element i that is only
covered by the node j (i ∈ S1

j), although z1
j = 0, then it follows directly that z2

j = 1. If

an element i is only covered by the node j (i ∈ S2
j) although z2

j = 0, then it is possible

to switch from z1
j = 1 to z2

j = 1 without increasing the objective function.
To proof that ODSCP1 is easy to solve we fill the last claim: Namely, it is easy to

solve the minimum SCP for S and F∈ = {S2
i }.

I.e: W.l.o.g.(see Lemma 3.3.22 and c = 2) we suppose that Λ2 ⊂
{
i ∈ S : |S2

i | = 2
}
.

Therefore we obtain the optimal solution by selecting the maximum set of disjoint
edges. This can be seen as an edge covering problem an therefore the problem is poly-
nomially solvable. Consider the following graph G(V, E), with the undirected edges
E = {Si : |Si| = 2} and V =

⋃
e∈E e ⊂ S. Suppose that a minimum edge cover E′ ⊂ E

for this graph is already found, then we define:

Λ2 =
{
min{j : Sj = e} : e ∈ E′

}

Since |Λ2| = |E
′| it is clear that:

f = |E′|

Ad ODSCP2: use Lemma 3.3.24.

53

3 The Double Set Cover Problem

we will show that ODSCP2 is still NP-complete if d ≤ 2 without the presence odd
cycles. We will use a transformation of Max-2-SAT to ODSCP2.

Theorem 3.3.26. ODSCP2 is NP-complete if d(A1), d(A2) ≤ 2.

Proof. The proof is accompanied by the following example:

5∧

i=1

ci

c1 = ¬x1 ∨ ¬x2

c2 = ¬x1 ∨ x2

c3 = x1 ∨ x2

c4 = ¬x3 ∨ ¬x2

c5 = x3 ∨ x1

This set of clauses is not simultaneously satisfiable. To find an assignment that realizes
the maximum number of true clauses we will construct a suitable ODSCP2 instance.
For the derived ODSCP2 instance we construct a sufficiently large even circuit for each
variable and we claim that:

1. each circle has exactly two feasible configurations. (namely, xi =true and xi =false)

2. for each circle the services are ”conflict free”. I.e: Suppose that Ci ⊂ S represents
one of the circles. If (S1

j , S2
j) = ({v1, v2}, {v1, v2}) ∈ F and v1, v2 ∈ C then

j 6∈ Λ1 ∩ Λ2

3. for each clause cj = (li1 ∨ li2) with li1 ∈ {xi1 ,¬xi1} (respectively, li2 ∈ {xi2 ,¬xi2})
the corresponding circles use a common fj ∈ F that has to be selected if cj = li1 =
li2 =false. In other words: the clauses are represented in the connections of the
circles.

We construct S and F in the following way:

1. S =
n⋃

i=1
Ci and Ci = {L ∗ i + 1, . . . , L ∗ (i + 1)}

2. F =
n⋃

i=1
Fi ∪

m⋃
j=1
Fj

3. Fi =

L
3
−1⋃

λ=1

({L ∗ i + λ, L ∗ i + (λ + 1)} , {L ∗ i + λ, L ∗ i + (λ + 1)})

4. For cj = (lj1 ∧ lj1) and xi we define:

• r1(j) = | {cr : r ≤ j ∧ lr1 = lj1} |

54

3.3 Complexity Results

• r2(j) = | {cr : r ≤ j ∧ lr2 = lj2} |

• h1(j) = i if lj1 ∈ {xi,¬xi}

• h2(j) = i if lj2 ∈ {xi,¬xi}

• g(l) =

{
0, l ∈ {xi : i ≤ n};
1, l ∈ {¬xi : i ≤ n}.

5. Fj =
⋃

cj=(lj1∧lj2)

{(
{a(j), a(j) + 1}, {b(j), b(j) + 1}

)}
, where:

• a(j) = (h1(j)− 1) ∗ L + L
3 + (2r1(j)− g(lj1))

• b(j) = (h2(j)− 1) ∗ L + 2L
3 + (2r2(j)− (1− g(lj2)))

6. in the last step we augment F by the sets that cover the missing nodes. Therefore
we need to define:

• T1 =
⋃

(S1
j ,S2

j)∈F

{S1
j }

• T2 =
⋃

(S1
j ,S2

j)∈F

{S2
j }

• T =
⋃n

i=1

L⋃
λ=L

3

{{L ∗ i + λ, L ∗ i + 1 + (λ mod L)}}

7. F ← F ∪
⋃

T∈T \T1

{(T, φ)} ∪
⋃

T∈T \T2

{(φ, T)}

We summarize that the derived instance consist of n′ = nL nodes and m′ = 5
3nL −m

sets. To formulate a sufficient condition for L we need to define:

• R1
1(i) = | {cj : lj1 = xi} | and R1

2(i) = | {cj : lj1 = ¬xi} |

• R2
1(i) = | {cj : lj2 = xi} | and R2

2(i) = | {cj : lj2 = ¬xi} |

The idea is now that we choose L according to the following equations,

max{R1
1(i), R

1
2(i), R

2
1(i), R

2
2(i)} <

L

3
∧ L mod 6 = 0

Since fODPC2 = |Λ1 ∪ Λ2| counts the number of conflicts z we also suppose that:

z ≤
L

3
∧ k = n′

Suppose that z = 0 and then we obviously found a solution for the Max-2-SAT where
all clauses are satisfied. Now we have to argue that if z > 0 that the optimal solutions
induce a perfect matching. I.e. to prove that we suppose that this is true for m clauses,
and then we will observe an optimal solution for m+1 clauses. If we can find a clause that
causes a conflict, then we may eliminate it to get a problem with m clauses and a lower

55

3 The Double Set Cover Problem

z. Since this leads us to a perfect matching we can add the conflicting clause afterwards
and we come back to another optimal solution, but one that also induces a perfect
matching. Therefore we can argue that we always get perfect matchings as solutions
of the ODSCP2 and therefore we can directly identify the solutions as solutions for the
Max-2-SAT. I.e.: If z is the smallest number for which we can get a feasible solution
to this problem, we know that we need to use at least z sets (S1

i , S2
i) simultaneously.

In Figure 3.12 the example is transformed and L = 12 is used. A minimal solution for
z = 1 is given and corresponds to an optimal assignment for Max-2SAT.

Since the ODSCP mention the method described in Hochbaum et al. [58] that provides
a 2-approximation.

We can generalize the PPMP to an optimization variant called the Minimum Conflict
Perfect Matching Problem and we will apply the arguments of Theorem 3.3.26 to show
that PPMP is NP-complete for low key requirements.

Definition Minimum Conflict Perfect Matching Problem (MCPMP): Given a graph
G(V, E) and a conflict set W ⊂ E × E. We want to find a subset M ⊂ E such that:

• min |{{ei, ej} ∈M |(ei, ej) ∈W}|.

• M is a perfect matching of (V, E).

Corollary 3.3.27. MCPMP is NP-complete even if d(i) ≤ 2 and W is a injective partial
mapping.

Proof. In the case of Figure 3.12 we can also think of a MCPMP instance. I.e. we can
think of separating the structure due to S1

j and S2
j by duplicating the nodes in S. Again,

we can directly transfer the optimal solutions. Since each edge S1
i has only one counter

part S2
i we can interpret W as injective partial mapping.

We continue with the discussion of the the complexity of the the optimization versions
of DSCP. Unlike the DSCP with A1 = A2 we can show that d− ≤ 2 doesn’t lead to an
easy problem.

Theorem 3.3.28. ODSCP1 is NP-complete even if A1 = A2 and d+ ≤ 3 and d− ≤ 2.

Proof. We polynomially reduce VERTEX COVER to ODSCP1: We will construct an
instance with d− = 2 and we can interpret each i ∈ S as an edge Si1 , Si2 ∈ F . Now,
the idea is to directly transfer the VERTEX COVER instances. Since Garey et al. [45]
show that VERTEX COVER remains NP-complete if the maximum degree is 3 we can
sustain d+ ≤ 3 and d− ≤ 2 for the instance. If we can also transfer k since the error
doesn’t matter. I.e: we will show that the vertex cover problem is feasible if and only
if ODSCP1 is feasible. A solution to the vertex cover C ⊂ V can be transferred to a
solution Λ1 = S and Λ2 = φ. On the other hand, if (Λ1, Λ1) is a solution to the ODSCP1
then we know that Λ1 ∪ Λ1 is a solution to the vertex cover problem.

Also for the ODSCP2 we can conclude that:

56

3.3 Complexity Results

��������

��������

�	�
���

�

	

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�	

��

��

�	

��

��

	�

��

�

��

��

����

��

	�

		

	�

	�

	�

��

�

��

��

�� ��

��

	�

		

	�

	�

	�

��

	� ��

	�

�	

	

��

	�

����

��

	�

��

	���

	�

�	

	

��

	�

�� ��

��

��

�	

��

��

��

Figure 3.12: Example of a transformation from Max-2-SAT to ODSCP2

57

3 The Double Set Cover Problem

Corollary 3.3.29. ODSCP2 is NP-complete even if A1 = A2 and d+ ≤ 3 and d− ≤ 2.

Proof. reduction of vertex cover to ODSCP1: we follow the arguments in the proof of
Theorem 3.3.28 and set k′ = 2 ∗ k.

Like Figure 3.11 that summarizes the results for the DSCP we also prepare a Figure
3.13 that gives an overview of the complexity results for the optimization versions of
DSCP. Here we classify NP-hard and polynomially solvable sub problems.

3.4 Inference of Gene Regulatory Networks

In this section we will present the joint work with G. Lulli [82] that deals with the
inference of Gene Regulatory Network Problem. This problem originally motivated the
discussion about the Double Set Cover Problems. The aim of this section is to pro-
vide a mathematical tool that filters out information from a large amount of putative
regulations.

3.4.1 Introduction

Recent technological advances enable biomedical investigators to observe the genome
of entire organisms in action by simultaneously measuring the level of activation of
thousands of genes under the same experimental conditions. This technology, known as
microarrays, provides unparalleled discovery opportunities and is reshaping biomedical
sciences. One of the main aspects of this revolution is the introduction of computationally
intensive data analysis methods in biomedical research. These methods have already
contributed to the discovery of a large number of genes and their regulatory sites. Much
less is known, however, about the functioning of the regulatory systems of which the
individual gene and its interactions form a part, e.g., see [8, 93]. With few exceptions,
all the cells in an organism contain the same genetic material. To better understand
how genes are implicated in the control of intracellular and intercellular processes, it is
of fundamental importance to gain insight into gene function and operation, and in their
functional linkages [2].

Gene regulatory networks regulate the expression of thousands of genes. Uncovering
such networks is essential for understanding how genomic expression programs unfold
during developmental processes, how the molecular machinery of cells works to respond
adequately to environmental clues and to maintain homeostasis, and, consequently, how
to manipulate these processes to human advantage. Hence, gaining an understanding
of the emergence of complex patterns of behavior from the interactions between genes
in a regulatory network poses a huge scientific challenge with potentially high industrial
pay-offs.

Several methods have been proposed to reconstruct gene regulatory networks from
gene expression data. The goal of these methods is to produce a high-fidelity rep-
resentation of the cellular network topology as a graph, whose nodes represent genes
and arcs represent direct regulatory interactions [85]. There is a wide spectrum of

58

3.4 Inference of Gene Regulatory Networks

F
ig

u
re

3.
13

:
C

om
p
le

x
it
y

of
O

D
S
C

P

59

3 The Double Set Cover Problem

techniques and criteria to define an arc. de Jong [23], Filkov [39], Friedman [43], Lee
[78], van Someren [122] among others, surveyed most of the existing methods to date.
Bayesian network [14, 42, 95], Boolean networks [67, 115], systems of Ordinary Differ-
ential Equations [11, 22, 48, 103, 123] and Computational Algebra methodologies [77]
define arcs as parent-child relationships between mRNA abundance levels that are most
likely to explain the data. Integrative methods [1, 10] use independent experimental
clues to define arcs as those showing evidence of physical interactions. Statistical meth-
ods [38, 94, 110, 120] identify arcs with the strongest statistical associations between
mRNA abundance levels. All methods show a trade-off between the level of approx-
imation of the real network and the level of computational difficulties. Some of them
provide models that might be considered as a coarse-grained approximation to the “real”
network, but they can be applied to large scale networks, others focus on subnetworks,
e.g. [3, 127]. Although all these approaches may seem disjointed, they might not be as
far apart as it appears and could serve complementary roles.

Most of the cited methods face two main challenges. The first one involves statistical
robustness. Building a network that involves thousands of genes from several dozen
examples of their joint expression levels is extremely problematic. These examples are
not enough to distinguish between true correlations and spurious ones. The second and
more difficult challenge is the biological interpretability of the results and some questions
arise on how to distinguish regulation from co-expression and direct regulations from
indirect ones. Whereas the ultimate goal is to identify the direct regulation of targets
by transcription factors, experience shows that the mentioned methods also reveal many
other indirect relations. Therefore, we often come up with a putative network containing
putative relationship between genes.

In the paper [82], we focussed on the problem of pruning a putative regulatory network
obtained from gene expression data sets by applying appropriate inference methods. We
formalize the problem of identifying a smaller set of interesting candidate regulatory
elements by means of a mathematical program. A similar problem has been tackled by
Chen et al. [12], who proposed an approximation algorithm. As well as Chen et al. [12],
we do not assert that we identify the regulatory network as result of our computation,
but, we believe that our approach quickly enables biologists to identify and visualize
interesting features from raw expression array data sets. The proposed method is also
intended to generate a “refined draft” of large gene regulatory networks, on which further,
more local, analysis can be based. It can also be used as “warm start” for several of the
approaches listed above which assume that an initial network is given, e.g., Kholodenko
et al. [68] and Kim et al. [69] to mention just a few. Moreover, even if an initial guess
on the network topology is not required, in many cases, a refined draft network can be
useful to guide procedures designed to infer gene regulatory network, e.g. [24].

As a real world test to validate our approach, we used the 17-point time series data set
measuring the expression level of each of 6601 different genes from the Saccharomyces
cerevisiae genome, first published in [15] (available at http://genome-www.stanford.edu/
/cellcycle/data/rawdata/).

The rest of the section is organized as follows. In §3.4.2 we present the mathematical
programming formulation of the model, which is shown, in §3.4.4, to be NP-complete by

60

3.4 Inference of Gene Regulatory Networks

reduction of the SET COVER decision problem. In §3.4.3, we give an equivalent Mixed
Integer Programming (MIP) formulation. To solve large instances, in §3.4.5 we propose
a metaheuristic algorithm based on the Ant Colony Optimization (ACO) concept. The
results of computational analysis on instances of the GRNP problem are reported in
§3.4.6. Finally, §3.4.9 contains the conclusions.

3.4.2 The Gene Regulatory Network Problem

Gene regulatory networks represent the activation/inhibition influence of gene products
upon the expression of other genes. Every gene has one or more activators (resp. in-
hibitors), i.e., biochemical signals which are necessary to start (resp. to prevent) the
transcription of the gene. Any reverse engineering algorithm for inferring gene regula-
tory networks might compute network topologies containing spurious correlations and
indirect relations due to the reduced amount of data and measurement noise.

The mathematical model we present, is purposely designed to generate networks in
which a relatively small number of regulators explain the expression of all other genes.
These networks are obtained by pruning putative gene relations, which are derived from
gene expression raw data sets by applying appropriate inference methods. Putative gene
regulatory networks usually contain genes which activate the expression of some genes
and inhibit the expression of others. Loosely speaking, we say that these genes are
both activators and inhibitors. Even though the presence of such genes is consistent
with biological evidence, e.g., [47, 96], few examples are known and their number should
be rather small. In our model, we implicitly minimize the number of these genes by
deleting either all the activation or all the inhibition influences of the gene upon the
others. However, not all these influences can be deleted in order to promote or to repress
the expression of all the genes of the network. Furthermore, we call neutral those genes,
though playing a role in biochemical intracellular and intercellular processes, do not have
any activation/inhibition influence upon other genes of the network.

In mathematical terms, we represent the putative gene network by a graph G(N, E′, E′′).
N , the set of nodes, represents the gene products, E′ ⊂ N×N and E′′ ⊂ N×N , the sets
of arcs, represent the sets of putative activation and inhibition influences respectively.
For clarity of exposition, we call E′ the set of activating arcs and E′′ the set of inhibiting
arcs. If a gene i activates (inhibits) a gene j then there exists and arc [i, j] ∈ E′(E′′).
Gene i is a predecessor of gene j while gene j is a successor of gene i. The decision
problem is to label nodes either as activators, inhibitors or neutral which explains the
expression of all the genes while minimizing the number of “irregular” influences. An
irregular influence is an arc whose label differs from the label of the parent node, i.e., an
activation arc ∈ E′ (resp. inhibition arc ∈ E′′) whose parent node is labeled inhibitor
(resp. activator). The presence of an irregular arc means that a gene is both activator
and inhibitor.

Our problem is similar to the maximum gene regulation problem proposed by Chen et
al. [12]. However, with respect to their model, we also consider neutral gene products,
whose number it is supposed to be bounded below by a known parameter M. Moreover,
in our model gene products can be both activators and inhibitors, i.e., they can induce

61

3 The Double Set Cover Problem

both activation and inhibition influences, even though we implicitly reduce the number
of such genes.

We assign to each node (gene) of the network, two binary variables: z
(A)
i and z

(I)
i . The

former labels node i as activator, the latter as inhibitor. We also use a binary decision
variable for each arc of the putative network to discern if the arc is either held or removed
from the graph. For the convenience and clarity for the reader, we here summarize the
decision variables:

z
(A)
i =

{
1 if node i is labeled as activator,
0 otherwise.

z
(I)
i =

{
1 if node i is labeled as inhibitor,
0 otherwise.

xij =

{
1 if arc [i, j] ∈ E′ is held in the network,
0 otherwise.

yij =

{
1 if arc [i, j] ∈ E′′ is held in the network,
0 otherwise.

As described above, we minimize the number of irregular arcs.

min
∑

i∈N

(1− z
(I)
i)

∑

j:[i,j]∈E′′

yij +
∑

i∈N

(1− z
(A)
i)

∑

j:[i,j]∈E′

xij

s.t.
∑

i:[i,j]∈E′ xij ≥ 1 ∀j ∈ N (3.31)
∑

i:[i,j]∈E′′ yij ≥ 1 ∀j ∈ N (3.32)

z
(A)
i + z

(I)
i ≤ 1 ∀i ∈ N (3.33)

∑
i∈N z

(A)
i + z

(I)
i ≤ |N | −M (3.34)

∑
[i,j]∈E′ xij +

∑
[i,j]∈E′′ yij ≤ d+

G(i) · (z
(A)
i + z

(I)
i) ∀i ∈ N (3.35)

xij ∈ {0, 1} ∀[i, j] ∈ E′

yij ∈ {0, 1} ∀[i, j] ∈ E′′

z
(A)
i , z

(I)
i ∈ {0, 1} ∀i ∈ N

Sets of constraints (3.31) and (3.32) force each gene to have at least one activator and
one inhibitor. That is, each node has at least one inhibiting arc and one activating arc
among all the incoming arcs in the final network. Constraints (3.33) impose that each
gene can be labeled either as activator, inhibitor or neutral. A gene is neutral if both
the z variables take value 0. The number of activator and inhibitor genes is bounded
above by constraints (3.34). More precisely, constraints (3.34) impose that at least M

62

3.4 Inference of Gene Regulatory Networks

genes products are neutral. In constraints (3.35), d+
G(i) denotes the outdegree of node

i. These constraints impose that neutral genes do not have influences upon other genes.
In this case, the right hand side of constraints (3.35) is equal to 0. These constraints are
redundant for nodes labeled as either activators or inhibitors.

Note that, the sets of constraints (3.31) and (3.32) are satisfied if each node of the
network has at least one incoming arc labeled as activator and one as inhibitor, i.e., if
the following condition holds:

{j | ∃ [i1, j] ∈ E′ ∧ [i2, j] ∈ E′′} = N

In case this condition does not hold, it is purposely enforced by adding some dummy
activation/inhibition arcs, see §3.4.8 for details. Note also that these constraints, i.e.,
constraints (3.31) and (3.32), are coherent with biological knowledge especially if we
consider both transcriptional and translational levels in molecular cell cycle mechanisms
[72, 106].

3.4.3 A Mixed-Integer Linear Programming Formulation

The formulation presented in §3.4.2 is bilinear ([BIL]). However, the objective function
can be linearized using one of the approaches proposed for this class of problem, e.g.
see Sherali and Adams [111]. Herein, we present a more compact Mixed-Integer Lin-
ear Program (MIP) formulation for the gene regulatory problem, named [GRNP-MIP],
equivalent to [BIL].

The [GRNP-MIP] formulation appends the same decision variables, z
(A)
i and z

(I)
i , to

each node of the network (gene). Again, the former decision variable labels node i as
activator, the latter as inhibitor. Additional decision variables are used to take into
account “node regulation”. We say that a gene is regularly activated if it is activated by
a gene labeled as activator. In graph theoretical terms, it means that at least one of the
adjacent (parent) nodes by means of activating arcs is labeled activator. The case of a
regularly inhibited gene is similar.

In summary, the node regulation decision variables are formally defined:

δ
(A)
j =

{
1 if node j is regularly activated,
0 otherwise

δ
(I)
j =

{
1 if node j is regularly inhibited,
0 otherwise

The objective function minimizes the number of nodes irregularly activated/inihbited,
which is of course equivalent to maximizing the number of regular influences.

min
z,δ

∑

i∈N

(1− δ
(A)
i) + (1− δ

(I)
i)

︸ ︷︷ ︸
fGRNP−MIP (z,δ):=

63

3 The Double Set Cover Problem

s.t.
∑

i:[i,j]∈E′ z
(A)
i ≥ δ

(A)
j ∀j ∈ N (3.36)

∑
i:[i,j]∈E′′ z

(I)
i ≥ δ

(I)
j ∀j ∈ N (3.37)

z
(A)
i + z

(I)
i ≤ 1 ∀i ∈ N (3.38)

∑
i∈N z

(A)
i + z

(I)
i ≤ |N | −M (3.39)

∑
i:[ij]∈E′(z

(I)
i + z

(A)
i) ≥ 1 ∀j ∈ N (3.40)

∑
i:[ij]∈E′′(z

(I)
i + z

(A)
i) ≥ 1 ∀j ∈ N (3.41)

z
(A)
i , z

(I)
i ∈ {0, 1} ∀i ∈ N (3.42)

δ
(A)
i , δ

(I)
i ∈ {0, 1} ∀i ∈ N (3.43)

The sets of constraints (3.36) and (3.37) fix the node regulation decision variables, δ.
If none of the parent nodes by means of activating (inhibiting) arcs is labeled activator

(inhibitor) then δ
(A)
j (δ

(I)
j) is forced to take value 0. Constraints (3.38) and (3.39) play

the same role as constraints (3.33) and (3.34) in [BIL]. Constraints (3.40) and (3.41)
impose that each gene has at least one activator and one inhibitor.

Note that, the left hand side of constraints (3.36) and (3.37) is always a non-negative
integer value. In view of the objective function, the decision variables δ will always
attain their maximum value in correspondence of any optimal solution; therefore they
will always be either 0 or 1. This justifies the following claim:

Claim 1:The optimal solution of the relaxed formulation of [GRNP-MIP], obtained re-
laxing the integer requirements on δ decision variables, is integer, i.e., feasible and thus
optimal for [GRNP-MIP].

Note also that, the optimal solution of [GRNP-MIP] is univocally identified by the z
variables.

Lemma 3.4.1. Given a feasible solution (z, δ) of [GRNP-MIP] there exists a feasible
solution (z, x, y) of [BIL] such that fBIL(z, x, y) ≤ fGRNP−MIP (z, δ).

Proof. Consider a feasible solution of [GRNP-MIP], (z, δ). A feasible solution of [BIL]
(z, x, y) is constructed as follows.

We let the z variables of the [BIL] solution to take the same values of those of the (z, δ)
solution. Hence, constraints (3.33) and (3.34) hold since they are the same constraints
as (3.38) and (3.39) and involve only the z variables. As far as the x and y variables, we
set to 1 all the x (y) variables referring to regular activations (inhibitions), i.e. activating
(inhibiting) arcs whose parent node is labeled activator (inhibitor). Thus,

∀i ∈ N : z
(A)
i = 1 =⇒ xij = 1 ∀[i, j] ∈ E′

∀i ∈ N : z
(I)
i = 1 =⇒ yij = 1 ∀[i, j] ∈ E′′

All these edges do not increase the objective function fBIL(z, x, y) since they represent
regular activations and inhibitions. Moreover, nodes regulated by these arcs are regularly
activated and/or inhibited and thus satisfy conditions (3.31) and/or (3.32).

64

3.4 Inference of Gene Regulatory Networks

Now, we consider not regularly regulated nodes, i.e., nodes for which either
∑

i:[i,j]∈E′ z
(A)
i =

0,
∑

i:[i,j]∈E′′ z
(I)
i = 0, or both.

Suppose that there exists a node j such that
∑

i:[i,j]∈E′ z
(A)
i = 0 which implies δ

(A)
j = 0

(by constraint (3.36)). By constraints (3.40), which hold by assumption, it follows that∑
i:[i,j]∈E′ z

(I)
i ≥ 1 or equivalently {i : [i, j] ∈ E′ ∧ z

(I)
i = 1} 6= φ. Hence, one of

the irregular activators has to be chosen to activate node j, for instance the putative

regulation with the smallest index (i
(A)
min). The corresponding x variable is set to 1 (

x
i
(A)
minj

= 1), while all the others are set to zero. So we have:

xij =

{
1 if i = i

(A)
min = min{i : [i, j] ∈ E′ ∧ z

(I)
i = 1}

0 otherwise.

A node j, which is not regularly inhibited (i.e.,
∑

i:[i,j]∈E′′ z
(I)
i = 0), is handled in a

similar manner by fixing the y variables as follows:

yij =

{
1 if i = i

(I)
min = min{i : [i, j] ∈ E′′ ∧ z

(A)
i = 1}

0 otherwise.

Both the x and y variables of the solution so constructed, satisfy constraints (3.31),
(3.32) and (3.35); therefore the solution (z, x, y) is feasible. The inequality

fBIL(z, x, y) ≤ fGRNP−MIP (z, δ)

immediately follows by noting that for every node of [GRNP-MIP], not regularly regu-
lated (δ- variable = 0), we select exactly one irregular arc for [BIL].

Lemma 3.4.2. Every feasible solution of [BIL] satisfies the sets of constraints (3.40)
and (3.41) of [GRNP-MIP].

Proof. Let (z, x, y) be a feasible solution of [BIL] which violates constraints (3.40), i.e.,∑
i:[ij]∈E′(z

(I)
i + z

(A)
i) = 0 for at least one node j. Since constraints (3.31) hold, then

there exists at least one node ĩ that activates node j, (xĩj = 1). But xĩj also occurs

on the left hand side of (3.35), therefore either z
(I)

ĩ
= 1 or z

(A)

ĩ
= 1, which contradicts

our assumption. Similar argument can be used to show that constraints (3.41) are also
satisfied.

Lemma 3.4.3. Given a feasible solution (z, x, y) of [BIL], there exists a feasible solution
of [GRNP-MIP], (z, δ), such that fGRNP−MIP (z, δ) ≤ fBIL(z, x, y).

Proof. Suppose (z, x, y) is a feasible solution of [BIL]. We let to the z decision variables of
the [GRNP-MIP] solution to take the same values of those of the (z, x, y) solution. These
z variables trivially satisfy constraints (3.38), (3.39) and they also satisfy constraints
(3.40) and (3.41) by Lemma 3.4.2. Therefore, to come to a feasible solution of [GRNP-
MIP] we only need to construct appropriate δ decision variables. We fix the δ variables
as follows:

65

3 The Double Set Cover Problem

δ
(A)
j =

{
1 if

∑
i:[i,j]∈E′ z

(A)
i ≥ 1

0 otherwise.

δ
(I)
j =

{
1 if

∑
i:[i,j]∈E′′ z

(I)
i ≥ 1

0 otherwise.

Hence, the (z, δ) solution is feasible for [GRNP-MIP] by construction.

We now verify that the inequality fGRNP−MIP (z, δ) ≤ fBIL(z, x, y) holds. The δ

variables are responsible for increasing the objective function fGRNP−MIP (z, δ). Suppose

that δ
(A)
j = 0 (i.e.,

∑
i:[i,j]∈E′ z

(A)
i = 0). The δ

(I)
j = 0 (i.e.,

∑
i:[i,j]∈E′′ z

(I)
i = 0) case is

analogous. δ
(A)
j = 0 increases fGRNP−MIP (z, δ) by one unit. By virtue of constraints

(3.31) and (3.35), at least one node i, labeled inhibitor (z
(I)
i = 1), activates node j

(xij = 1), i.e., we have at least one irregular influence which augments fBIL(z, x, y) by
one unit. From this, the inequality immediately follows.

From the lemmas listed above it is straightforward to prove by contradiction the
following theorem.

Theorem 3.4.4. At the optimum both [GRNP-MIP] and [BIL] show the same value,
i.e., f∗

GRNP−MIP = f∗
BIL. Moreover, given an optimal solution of one formulation is

possible to construct an optimal solution of the other.

3.4.4 Complexity of the GRNP

To prove the NP-completeness of GRNP, we show that any instance of the SET COVER
decision problem, which is is NP complete [46], polinomially transforms to an instance
of GRNP (see (3.36)-(3.43)).

Definition SET COVER Decision Problem. Given a finite set S = {1 . . .m} and a
collection of subsets of S, C = {Si ⊂ S|i = 1 . . . n }, does C contain a cover of S of size
k ?

Or equivalently, does a subset Λ ⊂ {1 . . . n} exist such that S =
⋃

i∈Λ Si?

We say that an instance of the SET COVER Decision Problem is not trivial if the
following conditions hold:

S =
n⋃

i=1

Si |S| ≥ 2.

Definition GRNP Decision Problem. Given an instance of the GRNP problem, i.e.,
a graph G(N, E′, E′′), does a labeling of nodes exist such that the GRNP has at most
k + 1 irregular influences?

Theorem 3.4.5. GRNP is NP-complete even if the number of neutral nodes is set to 0
and the outdegree of either activation or inhibition arcs is 1 for all the nodes.

66

3.4 Inference of Gene Regulatory Networks

~

~

v
3

v
1

v
2

v
4

v
5

v
6

w
0

w
1

w
2

w
3

w
4

Figure 3.14: The derived graph for the following SET COVER instance: S = {v1, v2,

v3, v4, v5, v6} and C = {S1, S2, S3, S4} where S1 = {v1, v3, v6}, S2 =
{v2, v4, v5}, S3 = {v3, v4, v6} and S4 = {v3, v4, v6}.

Proof. We transform instances of the SET COVER decision problem into restricted
instances of the GRNP decision problem. More specifically, we consider the following
two restrictions:

i the outdegree of activating arcs is equal to 1 for all the nodes;

ii the minimum number of neutral nodes is set to 0.

In view of restriction i, any feasible instance of the GRNP problem has all the nodes with
both outdegree and indegree of activating arcs equal to 1. Moreover, as a consequence
of both the restrictions, all the nodes are labeled either as activators or inhibitors in any
feasible solution of the GRNP problem.

Given an arbitrary, non trivial, instance of the SET COVER decision problem, we
derive a restricted instance of GRNP by considering the following graph G(N, E′, E′′).
N = V ∪ W ∪ {w0} is the set of nodes, where V = {v1, . . . , vm} is a copy of S and
W = {w1, . . . , wn} is a copy of C. E′ and E′′ are the sets of arcs. E′ is the set of
putative activation arcs and is restricted to an arbitrary assignment of the nodes (e.g.
by a hamiltonian cycle). E′′ := E

′′

1 ∪ E
′′

2 is the set of putative inhibition arcs and is
defined as follows:

• E
′′

1 =
⋃n

i=1{[wi, vj]|j ∈ Si}.

• E
′′

2 = {[w0, wi]|i = 1, . . . , n}.

Figure 3.14 shows the transformation of an instance of the SET COVER problem to an
instance of [GRNP]. The arcs with a T-ending represent putative inhibiting influences
and the arrows represent putative activating influences. The outgoing arcs from node

67

3 The Double Set Cover Problem

wi represent the elements of the set Si. For instance, the arc [w2, v4] ∈ E′′ means that
v4 ∈ S2. We can also see that w0 putatively inhibits itself and all the elements of the
set W . For the set E′ (the arrows) we have chosen an arbitrary hamiltonian cycle.

Before going on to prove the Theorem, we first observe the following facts:

Claim 2. In any optimal solution of the constructed GRNP instance, all the nodes in
S are labeled activators.

Note that, all the nodes in S exert only activation influences. If one of these nodes is
labeled as inhibitor then it is possible to improve the solution, i.e., to reduce the number
of irregular influences, by simply switching the label of the node.

Claim 3. In any optimal solution of the constructed GRNP instance, we may assume
that the irregular influences are activating influences.

By restriction, the outdegree of activating influences is one for all the nodes. Therefore,
if a node exerts at least one inhibition influence then it is not inconvenient to label the
node as inhibitor. In case the node does not inhibit any other node then, by labeling
the node as activator, it does not induce any irregular influence.

Here, we show that a “YES” answer to the GRNP decision problem exists if and only
if there is a “YES” answer to the SET COVER decision problem, i.e., there exists a
solution Λ for the SET COVER, with |Λ| = k.

(⇒) Suppose that there exists a “YES” answer to the GRNP decision problem. Without
loss of generality, suppose that the k+1 irregular influences are activating influences, see
Claim 3. These influences are promoted by nodes labeled inhibitors, more precisely node
w0 plus k nodes of the set W , see Claim 2. Therefore all the inhibiting influences are
regular which implies that there exists a solution for the SET COVER with cardinality k.

(⇐) Suppose the answer to the SET COVER decision problem is “YES”. We label
both the k nodes of W which cover the set S and node w0 as inhibitors. Thus, all the
nodes of the GRNP instance are regularly inhibited. All the other nodes are labeled as
activators thus resulting in no irregular activations. Hence, all the irregular influences,
activations, are k + 1 and are those induced by nodes labeled as inhibitors. From this,
we have constructed a “YES” instance of the GRNP decision problem.

3.4.5 Using ACO for solving the GRNP

To solve large instances of the GRNP problem, we implemented a heuristic procedure
that follows the Ant Colony Optimization (ACO) idea. ACO is a relatively new bio-
inspired population based metaheuristic, and it has already been effectively applied
to various combinatorial optimization problems [30]. At each iteration a set (colony)
of agents (ants) individually constructs solutions. The construction of each solution is
based on both heuristic information (visibility) and adaptive memory (pheromone). The
pheromone gives a learning effect from past iterations.

The idea of ACO came from behavioral studies on ants, which investigated the foraging
habits of ants [54]. Experiments on real ants showed how pheromone trails are used to

68

3.4 Inference of Gene Regulatory Networks

find the shortest path between the nest and the food source.

(a) (b) (c)

Figure 3.15: Ants when choosing the shortest way between their nest and a food source

Figure 3.15 displays three situations: In the first one, the ants have a direct connection
to the food source (a). An obstacle is placed between the nest and the food source, to
offer two new routes to the food source - one longer and one shorter. When encountering
the new situation the ants use both the routes with same probability to avoid the obstacle
(b). In the same time interval the shorter route is used more often than the longer one.
Therefore, the pheromone level of the shorter route increases more rapidly and almost
all the ants are going to use it (c), see [28, 29].

Algorithm 3 reports the pseudo code of the method applied to the GRNP problem. The
way how procedures are implemented and parameters are set reflects the customization
of ACO to the GRNP problem. The algorithm consists of two main nested loops.

In the inner loop, the procedure ant(η, τ) constructs a solution by iteratively adding
a new regulating element to the partial solution. A partial solution is represented by
both the set of selected activators Ã ⊂ N and the set of selected inhibitors Ĩ ⊂ N . A
new regulator element i (Ã← Ã∪ {i} or Ĩ ← Ĩ ∪ {i}) is selected from the set of not yet
labeled nodes R̃ (= N \ Ĩ ∪ Ã) by applying either a greedy rule, with a 70% probability,
or a random decision rule (roulette wheel), with a probability of 30%.

• The greedy rule selects the element with the largest value of pheromone (τ) plus
visibility (η). In formula:

X̃ ← X̃ ∪ {i} ⇔ (i, X) = arg max
(j,Y)∈R̃×{I,A}

{η
(Y)
j (Ỹ) + τ

(Y)
j }. (X ∈ {I, A})

In our specific implementation of the ACO algorithm, the visibility of element
i is its covering number, that is, the number of additional elements regulated

69

3 The Double Set Cover Problem

Algorithm 3 ACO

vmin = 2 · |N |

τ
(A)
i = |N |−M

2

τ
(I)
i = |N |−M

2
for (1. . .n iterations) do

ṽmin = 2 · |N |
for (1. . .n ants) do

s = (Ĩ , Ã, v) = ant(η, τ)
evaporate(s, ρ1)
s = local search(s)
if v < vmin then

smin = s

end if

if v < ṽmin then

s̃min = s

end if

end for

pheromone update(s̃min, smin)
evaporate(ρ)

end for

return smin

by element i. In other words, those elements which are already regulated by
genes(elements) included in the current partial solution are not counted for the
covering number of element i .

η
(A)
i (Ã) = |{j ∈ N : [i, j] ∈ E′} \ {j ∈ N : [k, j] ∈ E′, k ∈ Ã}|

η
(I)
i (Ĩ) = |{j ∈ N : [i, j] ∈ E′′} \ {j ∈ N : [k, j] ∈ E′′, k ∈ Ĩ}|

• The roulette wheel rule selects element i, Ĩ ← Ĩ ∪ {i} (resp. Ã← Ã ∪ {i}) with a

probability proportional to η
(I)
i (Ĩ) + τ

(I)
i (resp. η

(A)
i (Ã) + τ

(A)
i).

P(X̃ ← X̃ ∪ {i}) =
η

(X)
i (X̃) + τ

(X)
i∑

(j,Y)∈R̃×{I,A}

η
(Y)
j (Ỹ) + τ

(Y)
j

(X ∈ {I, A})

Once a new solution s is constructed, the pheromone of each element in sets Ã and Ĩ

is slightly reduced by a constant multiplicative factor 0 < ρ1 < 1 (near 1), thus lessen-
ing the probability for solution s to be constructed twice (procedure evaporate(s, ρ1)).

70

3.4 Inference of Gene Regulatory Networks

Table 3.1: Settings of the ACO parameters
Case SU ξ

ṽ ≤ vmin s̃min 0.5
vmin < ṽ ≤ 1.1 · vmin s̃min 0.05

ṽ > 1.1 · vmin smin 0.05

SU, solution used to update the pheromone.

Then, the local search(s) procedure is executed to improve the quality of the solution.
local search(s) implements a first improvement 2-exchange local search procedure which
first recovers from possible infeasibilities. The inner loop is repeated a number of times
equal to the number of ants.

Before to start a new iteration - outer loop of the algorithm - the pheromone is updated
in two steps.

• In the first step, procedure pheromone update(s̃min, smin) is invoked to update
only the pheromone of nodes selected (labeled) in the solution. s̃min = (Ã, Ĩ, ṽ)
denotes the best solution computed during the last iteration and smin = (Amin,

Imin, vmin) denotes the best solution computed so far in the execution of the
algorithm. To update the pheromone, by means of the following formulas (3.44)
and (3.45), it is used either s̃min, if its quality is considerably good, or smin.

∀i ∈ Ã : τ
(A)
i ← τ

(A)
i + ξ · (N − τ

(A)
i) (3.44)

∀i ∈ Ĩ : τ
(I)
i ← τ

(I)
i + ξ · (N − τ

(I)
i) (3.45)

• In the second step - procedure evaporate(ρ) -, the pheromone of all the nodes is
reduced by a constant multiplicative factor ρ. ρ is set to a value such that the net
change of pheromone computed over all the nodes is null.

To tune the algorithm parameters, we carried out computational tests on small size
instances (|N | = 50). The size of the colony, i.e., number of ants (n ants), is set to 50.

High initial values of the pheromone (τ0 ≥
|N |−M

2) give better performances, since they
guarantee a longer exploration phase. For the local pheromone evaporation we consider
ρ1 = 0.99. In the pheromone update(s̃min, smin) procedure, both the value of ξ and the
solution used to update the pheromone depend on the quality of s̃min with respect to
smin. In Table 3.1, we report the possible cases where we denoted with ṽ and vmin the
objective function value of s̃min and smin respectively.

3.4.6 Computational Experience

In this section, the computational results of the proposed method are reported. In Figure
3.16, we schematically depict the complete procedure to generate a reduced and coherent
regulatory network from raw expression array data sets. In grey, we highlight the parts of

71

3 The Double Set Cover Problem

Figure 3.16: Methodology

the procedure addressed in this section. A putative gene regulatory network is obtained
from microarray expression data by applying an appropriate inference method, see §3.4.8
for details. Given the putative regulatory network we release the “refined draft” of the
gene regulatory network by solving the proposed mathematical program. To solve large
instances of the mathematical program we run the ACO metaheuristic described in
§3.4.5.

In the following sections, we first present a computational analysis on randomly gener-
ated instances to verify the viability of the proposed algorithm to solve instances of the
GRNP problem; then we show the results obtained by applying the proposed method-
ology to a real instance based on Saccharomyces cerevisiae genome data.

3.4.7 Randomly Generated Instances

The computational analysis on random instances was carried out on different instances
each of them having 100 nodes. The instances were generated by varying the av-

72

3.4 Inference of Gene Regulatory Networks

Table 3.2: Five groups of instances with increasing graph densities

degree seed1 seed2 seed3 seed4 seed5

10 100-20-1.dat 100-20-2.dat 100-20-3.dat 100-20-4.dat 100-20-5.dat
10.5 100-21-1.dat 100-21-2.dat 100-21-3.dat 100-21-4.dat 100-21-5.dat
11 100-22-1.dat 100-22-2.dat 100-22-3.dat 100-22-4.dat 100-22-5.dat

11.5 100-23-1.dat 100-23-2.dat 100-23-3.dat 100-23-4.dat 100-23-5.dat
12 100-24-1.dat 100-24-2.dat 100-24-3.dat 100-24-4.dat 100-24-5.dat

Figure 3.17: CPLEX solution process for both [GRNP-MIP] and [RMIP-GRNP], on in-
stance 100-21-4.dat

erage degree of nodes, from 10 to 12 with a step size of one half. The instances
were ordered in 5 groups with increasing graph density. Each group consisted of 5
instances with approximately the same density but with a different seed of the ran-
dom number generator. The minimum number of neutral nodes was set to 80 in all
cases. The groups of instances are reported in Table 3.2 and they are available at
http://homepage.univie.ac.at/martin.romauch/GRNP/.

The instances we generated are already difficult to solve optimally for a commercial
solver like CPLEX 10.0. In our computational tests, a time limit of 5000 seconds was
imposed for CPLEX. CPLEX was able to compute the optimal solution within the time
limit in only two cases out of 25. While solving an instance, CPLEX also returned a
lower bound on the optimal solution. The quality of lower bounds was poor and the
gap between the lower bound and the solution remained quite large, even after 1 day of
computation on 1GHZ machine.

Figure 3.17 displays the trajectories of the solution value and of the lower bound
during the execution of branch-and-bound algorithm with grey dashed lines. On the same

73

3 The Double Set Cover Problem

diagram, the trajectory of the ACO solution is reported with a grey solid line, while black
solid lines represent the trajectories of the solution value and of the lower bound during
the execution of the branch-and-bound algorithm applied to [RMIP-GRNP]. [RMIP-
GRNP] is a relaxed formulation of [GRNP-MIP] obtained by relaxing constraints (3.40)
and (3.41). It allows us to compute better lower bounds of the solutions. In fact, the
lower bound of [RMIP-GRNP] is itself a lower bound for [GRNP-MIP].

[RMIP-GRNP] is easier to solve for CPLEX. Within a time limit of 1000 seconds,
CPLEX optimally solved 6 instances of [RMIP] while it did not solve any instance of
[GRNP-MIP] in the same amount of time. In only two cases, the lower bound obtained
from [RMIP-GRNP] was worse than the one returned by CPLEX when solving [GRNP-
MIP], whereas it was significantly better in more than half of the instances as reported
in the last two columns of Table 3.3. From Figure 3.17 it is evident that [RMIP-GRNP]
converges faster and gives better lower bounds especially in early stage. Note that, the
trajectories depicted in Figure 3.17 do not refer to a peculiar case (instance 100-21-
4.dat). Indeed, all the instances exhibited similar trajectories. In the last four columns
of Table 3.3, the results on the best solution computed by CPLEX within the time limit
and the corresponding lower bounds are reported.

To compute good quality solutions of large instances, we implemented the ACO proce-
dure described in §3.4.5. We also compared ACO with GRASP and GREEDY. GRASP,
Greedy Randomized Adaptive Search Procedures, is another metaheuristic methodology
to solve combinatorial optimization problems, see [36, 37, 99]. Its basic idea is to disturb
a greedy construction heuristic and it can also be considered as a simplification of ACO,
that is, an ACO without common memory (pheromone). Hence, by comparing ACO
and GRASP we can verify the effectiveness of pheromone. GREEDY is a greedy heuris-
tic improved by a local search. The local search procedure implements a 2-exchange
improvement between activator, inhibitor and neutral nodes.

We imposed a time limit of 180 seconds for both ACO and GRASP and we started the
two algorithms with 5 different seeds since they are random search procedures. Table 3.3
summarizes the computational results. For each instance, the value of the best solution
computed within the time limit by each procedure is listed. For ACO and GRASP,
the average value computed on all the solutions constructed during the execution of the
algorithm is also reported within brackets.

In all the instances, the ACO metaheuristic outperforms significantly GREEDY and
GRASP. Indeed, the performances of the greedy heuristic are poor. The algorithm often
gets trapped in infeasible solutions and the local search procedure is mostly devoted to
restore the feasibility of solutions. The capability of GREEDY to compute good quality
solutions is thus compromised. By comparing ACO and GRASP, we deduce that the
effect of pheromone is considerable. In 24 instances out of 25, ACO computed solutions
which are not worse than those computed by CPLEX in 5000 sec., and in 19 cases
ACO outperforms CPLEX in terms of solution quality. Only for instance 100-22-5.dat,
CPLEX provided a solution which was better than the ACO solution.

In summary, ACO gave high quality solutions for the GRNP problem in a reasonable
amount of time, and we may conclude that it is capable of success.

74

3.4 Inference of Gene Regulatory Networks

Table 3.3: Computational results for the GRNP instances

GREEDY GRASP ACO CPLEX CPLEX LB LB

(GRNP-MIP) (RMIP-GRNP)

time limit (sec) 180 180 5000 1000 1000 1000

100-20-1.dat 32 22(23.6) 21(21) 21 21 15 17
100-20-2.dat 35 18(19) 14(14.2) 15 - 13 10
100-20-3.dat 26 16(18.2) 13(13.8) 13* 16 10 10

100-20-4.dat 28 20(21.2) 17(17) 18 18 12 16 †

100-20-5.dat 47 19(20) 17(17.2) 17* 18 15 15 †

100-21-1.dat 40 19(21.2) 16(16.6) 17 17 11 13 †

100-21-2.dat 24 14(15.2) 10(10.2) 10 10 3 5
100-21-3.dat 20 15(16.4) 11(11.2) 13 13 3 5
100-21-4.dat 30 16(18.2) 15(15.2) 16 17 7 9

100-21-5.dat 29 15(18.6) 15(15) 15 15 14 13 †

100-22-1.dat 26 15(16.8) 13(13.2) 14 14 6 11 †

100-22-2.dat 26 12(14) 9(9.2) 11 11 2 3
100-22-3.dat 22 12(14) 8(8.4) 13 13 3 3
100-22-4.dat 20 14(16) 11(11.8) 13 18 3 4

100-22-5.dat 21 14(16) 13(13) 12 12 10 11 †

100-23-1.dat 22 13(13.6) 10(10) 11 11 3 5
100-23-2.dat 15 10(11.4) 6(6) 9 9 1 1
100-23-3.dat 21 10(11.2) 6(6.6) 8 10 2 3
100-23-4.dat 18 10(12.8) 9(9) 10 12 2 3
100-23-5.dat 18 13(15) 10(10.4) 12 12 3 4
100-24-1.dat 19 12(12.8) 9(9) 10 10 2 2
100-24-2.dat 27 7(8.4) 4(4.2) 8 8 0 0
100-24-3.dat 10 6(7.6) 4(4) 4 5 1 1
100-24-4.dat 16 10(11.4) 5(5.2) 8 9 1 1
100-24-5.dat 15 11(13.2) 7(8.2) 9 12 3 3

* marks CPLEX optimal solutions.
† marks optimal solutions of RMIP-GRNP.

75

3 The Double Set Cover Problem

3.4.8 A Real World Problem

To show the viability of the proposed approach we considered a real test based on
microarray experiments on Saccharomyces cerevisiae. More specifically, we considered a
17-point time series data set measuring the expression level of each of 6601 different genes
from the S. cerevisiae genome, available at http://genome-www.stanford.edu/cellcycle/
/data/rawdata/.

To create the putative network we implemented the improved edge detection function
proposed in [38]. This methodology suggests a relation between two genes as a result of a
local analysis on the expression time series of the two genes. More in detail, it investigates
local changes in the expression data and their qualitative behavior, e.g. increasing or
decreasing, in order to discover either resemblances or differences. The edge detection
function scores any pair of genes (ga, gb ∈ N) with a value S(ga, gb) ∈ [−1, 1]. Once all
the possible pairs of genes have been scored, the corresponding influences are considered
in the putative regulatory network if the absolute value of their score is greater than a
given threshold value (µ), that is, |S(ga, gb)| ≥ µ.

In our computational analysis we considered several values of µ. The higher was
the threshold value µ, the smaller was the number of influences detected by the edge
detection function method. For values of µ ≥ 0.5, the putative network was rather
small with many false negative influences. In these cases, it was not convenient to
apply our procedure. With a threshold value equal to 0.3 (µ = 0.3), the nodes of
the putative network had an average degree of 14. Since there were nodes without
putative inhibition/activation we added the auxiliary nodes AUX 1, AUX 2, and the
corresponding putative regulations. Node AUX 1 activated all nodes with no putative
activations and node AUX 2 inhibited all the nodes with no putative inhibitions.

Given the putative gene regulatory network, we generated several instances of the
GRNP problem by varying the lower bound on the number of neutral genes, i.e., the
parameter M. We considered values of M greater than 90% of the total number of genes.
Such values of M are coherent with the number of known regulators, which is approxi-
mately 8% of the total number of genes (http://www.yeastgenome.org). To compute the
gene regulatory network we run the Ant Colony Optimization metaheuristic. The ob-
jective value of the final solution, which corresponds to the average number of irregular
influences in the refined gene regulatory network, was on average 523. The average value
was computed over all the instances generated with different combinations of M and µ.
Moreover, the number of genes labeled in the solution was in general not constrained by
|N | −M . Indeed, the constraint on the maximum number of regulators, both activators
and inhibitors, was active only for values of M ≥ 98%.

These results, i.e., the relatively small number of regulators and the high number of
irregular influences, implicitly corroborate the conclusion that the putative network has
a scale-free structure and is preserved by the method we proposed.

Figure 3.18 shows a small portion of the refined network computed with the following
settings: M = 95% and µ = 0.3. This portion is extracted by choosing one inhibitor
(node 394, YBR293w) and its regulating and regulated neighbors. Activating and in-
hibiting influences are represented by arrows and T-ending arcs respectively. The nodes

76

3.4 Inference of Gene Regulatory Networks

1100 70

2917 1197

173

2613

161

152

4596

+
+

+

false

?

false
+

?

++

++

+++

+++

394

Figure 3.18: A small cut-out of the resulting network

are labeled with numbers and the key to the corresponding genes is given in Table 3.4.

Table 3.4: Node label and the corresponding gene product
label gene label gene

70 YAL005c/SSA1 2917 YLR293c/GSP1
152 YBL025w/RRN10 1100 YDR524c
161 YBL016w/FUS3 1197 THR3
173 YBR001c/NTH2 2613 YKR065c
394 YBR293w 4596 YNL162w/RPL41A ex1 f

As displayed in Figure 3.18, the influences proposed by our approach have been scored
according to the biological knowledge up to date [21]. With “+” we tag all the rela-
tionships between genes which are consistent with the current knowledge about the S.
cervisae genome. The number of “+” denotes the probability of the existence of a biologi-
cal and functional connection. In particular, the arcs tagged with “+++” are deeply doc-
umented by scientific biological papers, such as the influence of 161 (YBL016w/FUS3)
upon 1100 (YDR524c) and 2613 (YKR065c), [97]. Fus3 is a kinase involved in cell pro-
liferation processes and it also acts in a pathway upstream of Arf (aka Age1 number
1100, YDR524c) which is strongly implied in cell proliferation processes as well, [126].

With only one “+” we tagged influences which are consistent with a gene ontology
analysis, i.e., they may be inferred from other genes which belong to the same cluster
and exert similar biological functions. For instance, referring to the relationship between
394 and 1197, a defect in the uptake of histidine, lysine, or arginine is also observed in
the vacuolar membrane vesicles of mutants YBR293w (VBA2). More specifically, VBA2
(a vesicle amino acid transporter) is involved in amino acid uptake from the external

77

3 The Double Set Cover Problem

environment (as shown by mutants [114]). It is known that histidine and arginine biosyn-
thesis genes, His1 and Arg6, are inhibited by a feedback regulatory loop when amino
acids are available in the cell [76]. Therefore, perturbing the activity of VBA2, it is
possible to modify intracellular amino acid levels, and thus His1 and Arg6 (through the
regulatory loop). With regard to Thr3, it is in a gene cluster together with His1 and
Arg6, therefore it is highly probable that Thr3 is involved in amino acid biosynthesis
as well, and is regulated by the same feedback loop. That may provide a rationale for
Thr3 ⊢ VBA2 relation found.

Our methodology also revealed influences that at the moment are unknown, tagged
with “?”. This is due to either one or both of the two following motivations.

1. the relation between the two proteins is unknown,

2. the proteins do not have a known functionality.

Finally, we tagged with “false” those influences which correspond to false positive, since
between the two genes there is not any functional and/or physical relation.

The relations may be a good initial point for discovering interesting regulatory coher-
ence and may be the basis for designing experiments.

3.4.9 Conclusion

In this section, we presented a mathematical model which formalizes the problem of
identifying a smaller set of interesting candidate regulatory elements given a putative
gene regulatory network. The Ant Colony Optimization procedure we proposed to solve
real instances of the problem, provided good quality solutions in a reasonable amount
of time.

The proposed methodology, like any reverse engineering approach, might not be lack-
ing of errors, since both false positive and false negative influences might be revealed.
Indeed, data are often inherently inadequate to identify the gene regulatory network.
For instance, simple signal analysis techniques fail to find the vast majority of known
regulatory relations on the Cho/Spellman data set as demonstrated in [38]. Better re-
sults could be achieved if more recent methodologies were applied in the generation of
the putative gene regulatory network. On this subject, we can mentioned among others,
methods which either use disparate biological data sources [9], use multiple time series
data sets [113] or relieve from biological data errors [64].

The proposed approach is fairly general and makes interesting prediction of the S.
cerevisiae gene regulatory network. However further issues should be addressed. For
instance, gene products are also activated by other factors such as phosphorylation, an
option which is not considered in our model.

We believe that the proposed method should be used in combination with other
methodologies and it could serve as a basis to design experiments with the aim of dis-
covering unknown influences.

78

3.5 Art Gallery Problems

3.5 Art Gallery Problems

In this section we give complexity results for the Vertex Guard Double Cover problem
and give some notes on how to get solutions and also give bounds for this problem.

Definition Vertex Guard Double Cover Problem
The layout of art gallery is given by a polygon P described by the graph G(V, E) where
V is also called the set of corner points. A Vertex Guard Double Cover is defined by:

• a pair of sets (Λ1, Λ2) and Λ1, Λ2 ⊂ V .

• Λ1 ∩ Λ2 = φ.

• Λ1 is a Vertex Guard Cover of P.

• Λ2 is a Vertex Guard Cover of P.

To interpret this problem we can imagine to position cameras on finite number of possible
points (not necessarily corners) of a polygonal region. The aim is to monitoring the
border of the polygon using two independent systems. For instance we can imagine that
the camera systems are sensible to two different kinds of radiation. Furthermore we
don’t allow to put more than one camera into one and the same place.

We can refine the problem and use weights instead of solely counting the number of
cameras:

Definition Minimum Cost Vertex Guard Double Cover Problem
Again the layout of art gallery is given by a polygon P with the corresponding graph
G(V, E). The pair (Λ1, Λ2) is a solution to the Minimum Cost Vertex Guard Double
Cover Problem if:

• Λ1, Λ2 ⊂ V .

• Λ1 ∩ Λ2 = φ.

• Λ1 is a Vertex Guard Cover of P.

• Λ2 is a Vertex Guard Cover of P.

• c1 : V → R+

• c2 : V → R+

• and if
∑

i∈Λ1
c1(i)

∑
i∈Λ2

c2(i) ≤ C is minimal.

79

3 The Double Set Cover Problem

Figure 3.19: Junction types

3.5.1 Complexity Issues

The question about complexity is not covered by the results in the previous section.
Although the problem is a version of the DSCP we find a very special structure. I.e.:
A1 = A2 and the sets Si describe intersection of the visibility polygon of vertex i with
the border of the polygon.

Theorem 3.5.1. The VGDCP (with holes) is NP-hard.

Proof. A sketch of the proof.
Assumption: P may contain holes. We give a proof where we suppose that the graph is
cubic.
A sketch: we transform the vertex cover on cubic graphs G(V, E). Given an instance we
transform the network to corridors P(V, E), where at the position of the vertices we get
a junction of corridors where at lest 2 corner points cover the 3 corridors.
For each junction of corridors we have to identify at least 2 corner points that carry the
property of the former vertex. Namely, if a vertex vi was adjacent to the edge ej then
the corridor cj plus junction is visible to at least two corner points in the junction Ji.
We have to consider three different junction types:

1. no acute angle

2. one acute angle

3. two acute angles

In Figure 3.19 we show how to do the transformation. Since the explained method only
works for planar graphs we need to deal with edge crossings. Therefore we add special
junctions like depicted in Figure 3.22. The idea is that we add alcoves that need to be
illuminated by at least one interior light, therefore the outer nodes need not be used in

80

3.5 Art Gallery Problems

Figure 3.20: Cubic graph

the optimal solution, since the corresponding visibility polygons only cover one of the
corridors. E.g. we can see the transformation of a cubic graph (Figure 3.20) to an art
gallery instance, depicted in Figure 3.21.

To complete the proof we summarize that if we are given a solution of a vertex cover
problem with k nodes, then we may position 2 different kinds of cameras in the junctions
and therefore we get a solution with k′ = 2k. On the other hand, if we end up in a
solution of the VGDCP that uses 2k cameras, then we can argue that we can transform
the solution in such a way that the cameras used, are always located in the junctions. If
this is true then we can also argue that we will have at most one camera of each type in
the same junction and that these cameras cover all adjacent corridors. Otherwise we can
eliminate one of them or reposition it. After this step we still don’t use more than 2k
vertex guards and therefore at least on of the vertex guard types doesn’t use more than
k guards. The associated corridors build the solution for the vertex cover problem.

Remark 3.5.2. Since Garey and Johnson show that vertex cover problem in planar graphs
with maximum degree 3 is still NP-complete in [45], we can get rid of the junctions and
we can simplify the proof. For the sake of completeness we show a method how we can
transform non-planar graphs by adding special corridor crossings. In 3.22 we can find a
non planar graph and we will show how to transform it to an art gallery instance (Figure
3.23) with corridors and alcoves. Figure 3.24 shows the alcoves in detail. We can see
that we have to locate 2 cameras inside the alcove and therefore we can argue that it
is always possible to find optimal solutions where we don’t need to select points from
junctions of corridors to cover the corridor.

Theorem 3.5.3. The VGDCP without holes is NP-hard.

Proof. We will give a sketch of the proof and concentrate on how to adapt the proof
in [81], where 3-SAT is transformed to the vertex guard problem (see Figure 3.25). We
recall that fixing a vertex guard means choosing a visibility polygon and how the original

81

3 The Double Set Cover Problem

Figure 3.21: Polygon

Figure 3.22: C3,3 a non-planar graph

82

3.5 Art Gallery Problems

Figure 3.23: Junction of corridors

Figure 3.24: Junction in detail

83

3 The Double Set Cover Problem

proof makes use of alcoves that are only visible to some vertices. In the instance we find
narrow corridors that can be covered by only few vertices. We show how the clauses are
transformed for [81] and we show how to transfer this idea. In Figure 3.26 we can see that
the black node is a dominating node, it covers all the pikes and the whole surrounding.
The white nodes represent the second type of guards. We can see that it is necessary to
select at least three white nodes for the second vertex guard type. Furthermore it is not
reasonable to put all the nodes on inside positions of the pikes. I.e.: at least one of the
white nodes needs to take a bordering position to the exterior. The whole configuration
represents a clause and each pike represents a literal. If we mark the outer vertex, then
this represents a ”true”, and the inside choice represents a ”no”. The connection of
the literal variables is realized by narrow corridors that are exclusively visible from the
corresponding literal.

The key idea is to redesign the transformation of [81] in a way that one of the vertex
guard types uses obvious locations (w.l.o.g the black one), while the other one solves the
3-SAT instance.

To do that we add alcoves to the narrow corridors, i.e.: we add an alcove with a pike,
see Figure 3.27. Here the idea is that some parts of the alcove(i.e: the pike) are visible
from some exterior points, e.g.: the corresponding node that realizes the literal. We
know that the alcove forces us to put at least 2 guards of different types into it. Or to
be more precise: if there is no help coming from the exterior we need at least 3 guards.
Since the alcove is asymmetric it is clear that if we get assistance from outside then
this has a direct influence of the inside alcove configuration. I.e. if the assistance comes
from a white node then the black node is the unique position that covers the whole
alcove. Obviously the vis-à-vis node gets colored white. In the Figure 3.28 we can see
the transformed instance. Investigating the picture we can see that the black nodes give
the smallest set of vertex guards.

We start with the upper left corner and it is a good choice to use them for both vertex
types (they correspond to the node called W in Figure 3.25 of the proof in [81]). W.l.o.g.
we choose them like in the Figure 3.28. Now we continue and have look into the alcoves
that represent the clauses. It is obvious to choose the black node that covers the whole
alcove and that therefore the white ones have to solve the 3-SAT. The large alcoves in
the low left corner represent the values of the variables and there are two alcoves for
each variable. One represents ”true” and the other one ”false”. All occurrences are
aggregated in the narrow corridors and we can choose which one gets assisted by nodes
of literals and which one gets assisted by the nodes for the variables. The details can be
found in the proof of [81].

3.5.2 Bounds

Theorem 3.5.4. If we we restrict on polygons without holes then the minimum number
of vertices needed to solve the Vertex Guard Double Cover Problem is bounded by ⌊2n

3 ⌋.

Proof. The arguments of the proof for Chvátal’s classic art Gallery Problem by Fisk [40]
are used and an example shows that the bound is sharp. First a triangulation of the

84

3.5 Art Gallery Problems

Figure 3.25: Transformation of 3-SAT to vertex guard [81]

Figure 3.26: Representation of a clause: the white nodes represent the values of the
literals

85

3 The Double Set Cover Problem

Figure 3.27: Narrow corridor with an alcove and spike

polygon is generated and then we assign colors to the vertices in a way that each edge
connects different colors and it is shown that only 3 colors are needed (tree structure).
Therefore putting together all vertices of one color we get a vertex guard cover for the
polygon. To get a solution for a double covering it is sufficient to take 2 colors. Since
the number of vertices of least one of the colors needs to be larger or equal ⌈n

3 ⌉. We can
see that the minimum number of two colors is bounded by ⌊2n

3 ⌋. An example where the
minimum equals ⌊2n

3 ⌋ is given in the example depicted in Figure 3.29.

Definition Neighboring Holes
Two holes of a polygon P are neighboring holes if they have an edge that is visible
to each other. If P has h holes that are connected trough a tree of neighboring holes
we say that P has h neighboring holes. We emphasize that we alsosuppose that the
corresonding tree is planar and the corresponding pairs of visible edges are disjoint.

Theorem 3.5.5. If the polygon P has h neighboring holes then the minimum number of
vertices needed to solve Art Gallery Double Covering problem is bounded by ⌊n

2 ⌋+⌊
n
3 ⌋+1.

Proof. Sketch of the proof by induction in h: Suppose that ⌊n
2 ⌋ + ⌊n

3 ⌋ + 4h guards
are sufficient to cover a polygon with h neighboring holes. Obviously, for h = 0 the
statement is true. Now we show that the statement is true for h = 1: I.e.: we will show
that ⌊n

2 ⌋+ ⌊n
3 ⌋ are sufficient to cover a polygon with 1 hole.

We use the property that for each polygon P with one hole we can find an edge
[u, v] ∈ E of the border of the hole that is fully visible by a vertex w ∈ V of the border
of the polygon or we can find an edge [u, v] ∈ E of the border of the polygon that is
visible to a corner point w ∈ V of the border of the hole. We cut the polygon P along
the edge [v, w]. I.e.: we generate a new polygon P̃ without holes and n + 2 vertices
Ṽ = V ∪ ṽ, w̃ and the edges Ẽ. We start a triangulation by cutting the ear (w.l.og.:
{u, v, w}). The remaining polygon is arbitrarily decomposed into triangles of diagonals.

86

3
.5

A
rt

G
a
llery

P
ro

b
lem

s

Figure 3.28: Transformation of 3-SAT to the Vertex Guard Double Cover Problem

87

3 The Double Set Cover Problem

Figure 3.29: (Chvátal’s Comb): an example where the bound is sharp

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3.30: A polygon with one hole gets transformed into a polygon without holes to
select the guard sets

88

3.5 Art Gallery Problems

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3.31: Gluing a cut: we have 2 possibilities to choose the second color

Figure 3.30 gives an example how the procedure works. After that we assign colors to
the nodes and we may encounter the following situations:

• If v, w, ṽ, w̃ have three different colors then it is possible that v ṽ or w and w̃ have
the same color.

• v, w, ṽ, w̃ have two different colors. If the points ṽ and v have the same color then
w̃ and w also have the same color. Else ṽ and w have the same color.

We can show that in any case we can use this solution to assign colors to the original
polygon P in a way that 2 colors cover the polygon. Additionally we use the fact that
the triangulation of P̃ may only force us to keep one of the colors and allows us to
choose the second one. For one of the cases we show how this is done. Figure 3.31
gives a schematic procedure. We emphasize that there are two possibilities to choose the
second color. We summarize that we might have to choose the color with the maximum
number of members, which is not larger than ⌊n

2 ⌋ + 1. Regarding the second color, we
are free to select the color with the minimum number of members. Therefore we have
⌊n

2 ⌋+1+⌊n+2
3 ⌋ guards in P̃. After the gluing step we may only loose members, therefore

the minimum number of guards needed to cover a polygon with one hole is not larger
than:

n

2
+ 1 + ⌊

n + 2

3
⌋

Now we argue that this is also true for polygons with h neighboring holes. Suppose
that P has h + 1 holes then we have at least one leaf. We can connect the leaf-hole with

89

3 The Double Set Cover Problem

Figure 3.32: Polygon with three neighboring holes can be transformed to a polygons with
one hole

the parent-hole by connecting the pair or visible edges. Since this doesn’t increase the
number of edges we can use the assumption for h holes which leads us to the result. In
Figure 3.32 we can see an example.

3.5.3 Solution Techniques

Guard placements algorithms often make use of triangulations. Following Fisk’s proof
[40] of Chvátal’s theorem for art gallery problems, we can see the important role of
dividing a polygon into triangles by diagonals. Finding the number of such divisions
for convex polygons it is called Euler’s Polygon Division Problem. And the answer is
given by the Catalan’s numbers Cn, i.e.: Cn is the number of triangulations of a convex
polygon with n + 2 vertices.

Cn =
1

n + 1

(
2n

n

)
=

(2n)!

(n + 1)!n!
∀n ≥ 0.

Stanley [118] gives various other interpretations of Cn. E.g: the number of monotonic
paths in a (n,n)-grid that do not cross the diagonal (equivalent to Dyck Words). An
illustration is given in Figure 3.33: we depicted C3 = 5 triangulations of the pentagon
and how they can be interpreted as binary trees with 4 leaves, represented by putting 3
pairs of parentheses for 4 objects.
It might be intuitive, that for solving the minimum vertex guard problem it is sufficient to
investigate all possible triangulations and picking the ”color” with the smallest number
of members. Cn−2 gives an idea of the size of the corresponding solution space. The
following example (Figure 3.34) shows that the solutions space is not sufficient to reach
all possible solutions. The key problem of the method is that only using diagonals
permits the guards to cross their views. In fact, it is possible to construct examples that
keep the triangulation solutions arbitrarily far away from optimum (see Figure 3.35).

90

3.5 Art Gallery Problems

Figure 3.33: Catalan numbers

Figure 3.34: Comparing the optimal solution with the best solution reachable by the
triangulation technique

91

3 The Double Set Cover Problem

Figure 3.35: The optimal solution uses two vertices, while the number of vertices needed
by solutions that correspond to triangulations is dependent on the number
of spikes

92

A Notions from Graph Theory and

Computational Geometry

A.1 Graph Theory

The definitions that follow can be found in introductory books in graph theory. E.g.:[25].
Most of definitions only refer to directed graphs (digraphs).

Definition Degree
the degree of a vertex in an undirected graph G(V, E) is the size of its neighborhood,
i.e.: d(i) = |{j : {i, j} ∈ E}| . The in-degree and the out-degree of a vertex in a digraph
is number of predecessors and successors, and the degree of a graph is the maximum
degree of all vertices. I.e:

d+(i) = |{j : [i, j] ∈ E}| d+(G) = max
i∈V
{d+(i)}

d−(i) = |{j : [j, i] ∈ E}| d−(G) = max
i∈V
{d+(i)}

d(i) = d+(i) + d−(i) d(G) = max
i∈V
{d(i)}

Definition Induced Subgraph
G′[V ′] = G′(E′, V ′) ⊂ G(V, E) is an induced subgraph of G if i, j ∈ V ′ implies that
{i, j} ∈ E′.

Definition Spanning
An induced Graph is spanning if V ′ = V .

Definition Complete Graphs

• The complete graph Kn = G(V, E) has n vertices and for all v, w ∈ V it follows
v 6= w ⇒ [v, w] ∈ E. If G is a undirected graph then v 6= w ⇒ {v, w} ∈ E

• A complete bipartite graph Kn,m = G(V = V1 ∪ V2, E) satisfies |V1| = n and
|V2| = m. If and only if v ∈ V1 and w ∈ V2 E contains {v, w}, respectively [v, w].

Definition Path
A directed path P is a sequence of adjacent edges in a graph G(V, E). Suppose that
number of edges is L (length of the path) then we can write as P = {[vi, vi+1] ∈ E : i =
1 . . . L}. The path is simple if all vi are different. For the undirected case is analogously
defined.

93

A Notions from Graph Theory and Computational Geometry

Definition Circuit
A path C is a circuit or cycle if |{vi : i = 1 . . . n}| = n.

Definition Regular
a undirected graph G = (V, E) is called k-regular if every node v in V has degree k in
G, i.e. v is incident with precisely k edges.

Definition Edge Cover
In undirected graphs, an edge cover is a set of edges S ⊂ E, such that every node in
i ∈ V is incident with at least one edge in S. I.e: ∀i ∈ V ∃e ∈ S : i ∈ e.

Definition Matching
A matching is a set of edges M ⊂ E, such that different edges e1, e2 ∈ M are node
disjoint. If a matching is also spanning then it is called a perfect matching.

Definition Covering and Packing
Given a class of graphs H, then there the covering problem is to find a minimum number
of subgraphs in G(V, E) that are isomorphic to graphs in H, such that the union of the
subgraph covers all nodes. The packing problem is to find a maximum number of disjoint
subgraphs isomorphic to elements in H.

Definition Tree
A graph G(V, E) is a spanning tree if spanning and doesn’t contain cycles. As a conse-
quence E has |V | − 1 edges.

Definition k-Factor
k-factor A k-factor is a k-regular spanning subgraph. E.g.: 1-factors are also known as
perfect matchings (i.e. matchings which cover all nodes), and a 2-factor is a spanning
node-disjoint circuit.

Definition factorization
A factorization is a partition of a graph into connected spanning subgraphs. A k-
factorization is a factorization into k-factors. E.g: a 1-factorization is partition into
matchings.

A.2 Computational Geometry

Definition Polygon
A simple polygon P without holes in the plane can be described as a undirected graph
G(V.E). Where V are the corner points of the polygon and E is a cycle that describes
the border of the polygon. Every vertex i ∈ V corresponds to a point Pi ∈ R × R in
the plane. For intersections of two segments we assume that [Pi, Pi+1[∩[Pj , Pj+1[= φ.
This is sufficient to assume that P has an interior. Polygons with holes can be defined
recursively adding simple polygons without holes into the interior of a ”master polygon”.
Then the interior of the polygonal holes is added to the complement of P. For Art Gallery
Problem we us the term visibility polygon:

94

A.2 Computational Geometry

Definition Visibility Polygon
Visibility Polygons V describe the visible region of a point v in the interior or on the
boundary of a polygon P. Suppose that a point v ∈ P ⊂ R2 is given, then the visibility
polygon V(v,P) collects all segments in P that start in v and continue until they reach
a point where we first intersect with the complement Pc.

V(v,P) =
⋃

a∈R2∧[v,v+ta]∩Pc=φ

[v, v + ta]

Definition Diagonals
The connection of two corner point Pi Pj that are not adjacent is called a diagonal
if [Pi, Pj] is fully contained in P. If parts of the interior of the connection]Pi, Pj [
are contained in the boundary, then the diagonal is a degenerated diagonal. A pair of
diagonals {Pi, Pj} {Pi′ , Pj′} are called intersecting diagonals if |]Pi, Pj [∩]Pi′ , Pj′ [| = 1.

Definition Triangulation into Diagonals
A triangulation into diagonals of a polygon P with n corner points is a set of n− 2 non-
intersecting diagonals. Finally a set of n−2 diagonals is called a degenerate triangulation
into diagonals if a pair of diagonals exists such that [Pi, Pj] ⊂ [Pi′ , Pj′].

95

A Notions from Graph Theory and Computational Geometry

96

B NP-complete and NP-hard

B.1 Complexity Theory

Complexity Theory deals with the tractability and the intractability of problems [46].
The basis is the formalization of computation, the corresponding computability and the
computational effort. Problems in this formal setting are formal yes/no questions like:
Is n a prime number? An input for this problem is n = 5 and the corresponding problem
instance is given by: Is 15 a prime number? A solution to this problem is a algorithm
that terminates with ”yes” or ”no” for any problem instance. Such an algorithm can be
implemented on a Turing Machine TM. The TM represents a very general and abstract
computing device, but still there are problems that cannot be be implemented on a TM
(e.g. the halting problem). I.e.: there exist problems that are undecidable on TM. We
continue with less ambiguous problems and define the class NP of those problems that
are solvable on a nondeterministic TM in polynomial time. A NTM is an accelerated
TM, where we can think of TMs that work in parallel. This class contains very hard
problem like the Satisfiability Problem SAT. SAT was the first problem that was shown
to be one of the hardest problems in NP. I.e.: S. Cook proved that if an ”efficient”
algorithm for the SAT is known, then all problems in NP are efficiently solvable. In this
context ”efficient” means that the effort of computation is bounded by a polynomial.
This result motivated to define a set of the most difficult problems in NP - the class of
NP-complete problems. Now we turn to ”easy” problems. From macro point of view a
problem X is easy to solve if the effort to solve an instance x ∈ X of size n(x) is bounded
by a polynomial, then we also say that the corresponding algorithm is polynomial. It is
clear, that algorithms with high degrees don’t make the problem really easy, therefore
this news has no direct practical impact, but it is a good starting point to improve
algorithms. Especially section 3 contains various NP-completeness and NP-hardness
proofs. The methodology is simple: we transform a known NP-complete problem X to
the investigated problem Y , in such a way that solving the the transformed problem
answers the primal one. I.e.: Normally, we give an algorithm A that transforms any
instance x ∈ X to an instance A(x) ∈ Y and we show that answering A(x) is equivalent
to answering x. If this algorithm A is polynomial then A is a polynomial reduction of X.
Since Optimization problems X: min{f(x) : x ∈ Ω} are not stated as decision problems,
the have to be adopted. We say that an optimization problems is NP-hard if it is as
least as hard as a NP-complete problem. I.e.: If we can proof that the corresponding
decision problem Xk: {f(x) ≤ k : x ∈ Ω} 6= φ is NP-complete, then X is NP-hard.

In the following section we present a selection of NP-complete problems, like the 3-SAT
that are often used in NP-completeness and NP-hardness to proofs.

97

B NP-complete and NP-hard

B.2 Selected Problems

Definition Satisfiability(SAT).
Given a set U = {x1, . . . , xn} of variables and collection C of clauses over U . I.e.: Let
c ∈ C is a clause consiting of literals c = (l1∨ l2∨ . . .∨ lm), where lj ∈ U or ¬lj ∈ U . The
collection of clauses C is satisfiable if there exists a truth assignment f : U 7→ {true, false}
such that c =true for all c ∈ C.

Definition Three-Satisfiability (3-SAT)
Let U be of variables, collection of clauses over U such that each clause c ∈ C has at
most 3 literals (|c| ≤ 3) Is there a truth assignment for U that simultaneously satisfies
all clauses?

Definition Three-Exact Cover Problem (X3C)
X3C is a variant of SCP: Given a finite set S = {1 . . . 3n} and a collection of subsets of
S, namely F = {Si ⊂ S : |Si| = 3∧ i = 1 . . .m }. Does F contain a cover of S of size n?
Or equivalently, does a subset Λ ⊂ {1 . . .m} of size n exist such that S =

⋃
i∈Λ Si?

Definition Vertex Cover Problem
In undirected graphs, a Vertex Cover is a set of vertices W ⊂ V , such that every edge
e ∈ E is incident with at least one vertex in W . I.e: ∀e ∈ E∃i ∈ W : i ∈ e. The Vertex
Cover Problem asks for a Vertex Cover Problem of size k.

Theorem B.2.1. Vertex Cover on cubic graphs is NP-complete.

Remark B.2.2. this is also true for planar cubic graphs

Definition Vertex Coloring
Given a graph G(V, E) then ϕ : V → N is a k-coloring of the vertices if:

• e = {v1, v2} ∈ E ⇒ ϕ(v1) 6= ϕ(v2)

• |ϕ(V)| = k

Definition Edge-Coloring
Given a graph G(V, E) then ϕ : E → N is a k-coloring of the edges if:

• ϕ(e1) = ϕ(e2) ⇒ e1 ∩ e2 = φ

• |ϕ(E)| = k

Definition Chromatic-Index
The chromatic index χ1(G) of a graph G(V, E) is the minimum k for which we can find
a k-coloring of the edges.

Remark B.2.3. Considering Chromatic-Index for cubic graphs is also called Tait coloring.
I.e.: Are 3 colors sufficient to color tie cubic graph G. We can see that a 1-factorization
solves Chromatic-Index.

98

B.2 Selected Problems

For cubic 2-connected graphs we know the 3 colors are sufficient:

Theorem B.2.4. (Tait): A bridgeless cubic planar graph can be face-colored with 4
colors if and only if it can be edge-colored with 3 colors.

Theorem B.2.5. Chromatic-Index is NP complete. This is still true for cubic graphs [61]:

Definition Maximum Two-Satisfiability (Max-2-SAT)
Given a set U of variables, and a collection of clauses over U such that each clause c ∈ C

has at most two literals |c| = 2. Is there a truth assignment for U that simultaneously
satisfies at least K of the clauses?

99

B NP-complete and NP-hard

100

C Experiments and Randomly

Generated Instances

C.1 Randomly Generated DCP Instances

In the experiments on randomly generated instances for the ODCP1 (3.7) and ODCP2
(3.16) (see section 3) we fixed m = n (network structure) and varied the density. The
algorithm construct two independent 0 − 1 square matrices for the service A1 and A2.
The entries are uniformly distributed with the exception of sparse matrices where we
avoid empty rows. The procedure works as described in the the pseudo code 4. We note
that M

N
is the the probability that a one is regularly assigned to an entry. If the whole

row is zero then we randomly choose exactly one position with a nonzero entry. We
calculate the average number n0 of situations when we encountered an empty row and
we abbreviate d = M

N
:

n0 = n (1− d)n−1

To calculate the expected value of the density d′ we have to take n0 into account:

d′ = f(d, n) =
n (n− 1) d + n0

n2
= d−

d− (1− d)n−1

n

In Table C.1 we can see the relative error d′

d
= f(d,n)

d
and in Table C.2 we can see

d = f−1(d′, n) for some values d′ and n. For larger values of n we can investigate an
asymptotic behavior:

lim
n→∞

(
d− d′

)
= lim

n→∞

(
d− (1− d)n−1

n

)
= 0

C.2 Experimenting on ODSCP1 and ODSCP2

The following tables report on an experiment that compares ODSCP1 and ODPC2
(see section 3), both optimizations versions of DSCP. The instances are generated by
the algorithm described in section C.1, varying n ∈ {100, 200, . . . , 900, 1000} and d ∈
{10%, 10.5%, . . . , 19.5%, 20%}. For each setting we gen C.3 and Table C.4 report the
situations where CPLEX was able to proof infeasibility within one hour. If we compare
the successful runs we can see that ODSCP1 performs better than ODSCP2. Looking a
bit more closely at the tables we can investigate that ODSCP2 performs better for smaller

101

C Experiments and Randomly Generated Instances

Algorithm 4 Generating random instances

A1 ← 0n,n;
A2 ← 0n,n;
for i ∈ {1 . . . n} do

for j ∈ {1 . . . , i, i + 1, . . . n} do

pick two random numbers z1, z2 ∈ {1, . . . , N};
if z1 ≤M then

A1(i, j)← 1;
end if

if z2 ≤M then

A1(i, j)← 1;
end if

end for

if ∀j : A1(i, j) = 0 then

pick a random numbers z ∈ {1, . . . , n− 1};
if z < i then

A1(i, z)← 1
else

A1(i, z + 1)← 1
end if

end if

if ∀j : A2(i, j) = 0 then

pick a random numbers z ∈ {1, . . . , n− 1};
if z < i then

A2(i, z)← 1
else

A2(i, z + 1)← 1
end if

end if

end for

return v;

102

C.2 Experimenting on ODSCP1 and ODSCP2

Table C.1: Relative error d−d′

d
10% 20% 30% 40% 50% 60% 70% 80% 90%

10 -28.74% 3.29% 8.65% 9.75% 9.96% 10.00% 10.00% 10.00% 10.00%
20 -1.75% 4.64% 4.98% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00%
30 1.76% 3.31% 3.33% 3.33% 3.33% 3.33% 3.33% 3.33% 3.33%
40 2.09% 2.50% 2.50% 2.50% 2.50% 2.50% 2.50% 2.50% 2.50%
50 1.89% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00%
60 1.63% 1.67% 1.67% 1.67% 1.67% 1.67% 1.67% 1.67% 1.67%
70 1.42% 1.43% 1.43% 1.43% 1.43% 1.43% 1.43% 1.43% 1.43%
80 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25% 1.25%
90 1.11% 1.11% 1.11% 1.11% 1.11% 1.11% 1.11% 1.11% 1.11%

100 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00%
200 0.50% 0.50% 0.50% 0.50% 0.50% 0.50% 0.50% 0.50% 0.50%
300 0.33% 0.33% 0.33% 0.33% 0.33% 0.33% 0.33% 0.33% 0.33%
400 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25%
500 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20%
600 0.17% 0.17% 0.17% 0.17% 0.17% 0.17% 0.17% 0.17% 0.17%
700 0.14% 0.14% 0.14% 0.14% 0.14% 0.14% 0.14% 0.14% 0.14%
800 0.13% 0.13% 0.13% 0.13% 0.13% 0.13% 0.13% 0.13% 0.13%
900 0.11% 0.11% 0.11% 0.11% 0.11% 0.11% 0.11% 0.11% 0.11%

1000 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 0.10% 0.10%

Table C.2: d = f−1(d′, n)
10% 20% 30% 40% 50% 60% 70% 80% 90%

10 0.00% 20.87% 33.03% 44.39% 55.55% 66.67% 77.78% 88.89% 100.00%
20 9.78% 20.99% 31.58% 42.11% 52.63% 63.16% 73.68% 84.21% 94.74%
30 10.19% 20.69% 31.03% 41.38% 51.72% 62.07% 72.41% 82.76% 93.10%
40 10.22% 20.51% 30.77% 41.03% 51.28% 61.54% 71.79% 82.05% 92.31%
50 10.19% 20.41% 30.61% 40.82% 51.02% 61.22% 71.43% 81.63% 91.84%
60 10.17% 20.34% 30.51% 40.68% 50.85% 61.02% 71.19% 81.36% 91.53%
70 10.14% 20.29% 30.43% 40.58% 50.72% 60.87% 71.01% 81.16% 91.30%
80 10.13% 20.25% 30.38% 40.51% 50.63% 60.76% 70.89% 81.01% 91.14%
90 10.11% 20.22% 30.34% 40.45% 50.56% 60.67% 70.79% 80.90% 91.01%

100 10.10% 20.20% 30.30% 40.40% 50.51% 60.61% 70.71% 80.81% 90.91%
200 10.05% 20.10% 30.15% 40.20% 50.25% 60.30% 70.35% 80.40% 90.45%
300 10.03% 20.07% 30.10% 40.13% 50.17% 60.20% 70.23% 80.27% 90.30%
400 10.03% 20.05% 30.08% 40.10% 50.13% 60.15% 70.18% 80.20% 90.23%
500 10.02% 20.04% 30.06% 40.08% 50.10% 60.12% 70.14% 80.16% 90.18%
600 10.02% 20.03% 30.05% 40.07% 50.08% 60.10% 70.12% 80.13% 90.15%
700 10.01% 20.03% 30.04% 40.06% 50.07% 60.09% 70.10% 80.11% 90.13%
800 10.01% 20.03% 30.04% 40.05% 50.06% 60.08% 70.09% 80.10% 90.11%
900 10.01% 20.02% 30.03% 40.04% 50.06% 60.07% 70.08% 80.09% 90.10%

1000 10.01% 20.02% 30.03% 40.04% 50.05% 60.06% 70.07% 80.08% 90.09%

103

C Experiments and Randomly Generated Instances

Table C.3: Situations where ODSCP1 proofs infeasibility
d 100 200 300 400 500 600 700 800 900 1000

10.0% 4 5 5 5 5 5 5 5 5 5 49
10.5% 5 5 5 5 2 3 5 4 4 38
11.0% 5 3 1 4 3 4 3 23
11.5% 5 2 2 1 10
12.0% 4 1 5
12.5% 2 2
13.0% 1 1
13.5% 0

26 13 10 11 7 6 14 15 14 12 128

Table C.4: Situations where ODSCP2 proofs infeasibility
d 100 200 300 400 500 600 700 800 900 1000

10.0% 5 5 5 5 5 5 5 5 5 5 50
10.5% 5 5 5 5 3 1 3 2 29
11.0% 5 5 2 1 13
11.5% 5 5
12.0% 5 5
12.5% 3 3
13.0% 2 2
13.5% 0

30 15 10 12 9 6 8 7 5 5 107

instances, while OPCD2 performs much better in case of larger instances. The situation
goes into the reverse when we compare the number of optimally solved instances. In
total, we see that the performance is comparable and. ODSCP1 solves 459 (331 positive
and 128 negative answers) of 1050 instances and ODSCP2 could find 454 (347 positive
and 107 negative) answers.

C.3 SDWLP: Instances and Solutions

For experiments with SPFLP we generated simple instances. The instance used in the
experiments in section 2.3.1 we have to service 3 customers from 2 production sites within
3 periods. Each customer’s demand equals one with certain probability. Transporting
one unit costs 1 and also as well as the inventory. The capacity of the inventory is
given by 3. The production costs are given in the Table C.7. The Output of the
Dynamic Programing Procedure, as well as the heuristic is a table that gives the optimal
production quantities to the current state of the inventory. In Table C.8 the solution is
given for pt

i = 0.5 for all i ∈ {1, 2} and t ∈ {1, 2, 3}.

104

C.3 SDWLP: Instances and Solutions

Table C.5: Situations where ODSCP1 gives the optimal solution
d 100 200 300 400 500 600 700 800 900 1000

13.5% 1 1
14.0% 2 2
14.5% 4 4
15.0% 4 3 2 9
15.5% 5 5 3 2 15
16.0% 5 5 4 4 2 1 21
16.5% 5 4 5 3 5 5 3 30
17.0% 5 5 5 5 5 4 2 31
17.5% 5 5 5 5 5 5 5 35
18.0% 5 5 5 5 5 5 5 35
18.5% 5 5 5 5 5 5 5 35
19.0% 5 5 5 5 5 5 5 1 1 37
19.5% 5 5 5 5 5 5 5 2 1 38
20.0% 5 5 5 5 5 5 5 1 2 38

61 52 49 44 42 40 35 4 4 331

Table C.6: Situations where ODSCP2 gives the optimal solution
d 100 200 300 400 500 600 700 800 900 1000

14.0% 2 2
14.5% 4 1 5
15.0% 4 4 2 10
15.5% 5 3 4 2 14
16.0% 5 5 5 2 17
16.5% 5 5 5 5 1 2 23
17.0% 5 5 5 5 4 3 3 30
17.5% 5 5 5 5 4 5 2 1 1 33
18.0% 5 5 5 5 5 5 5 1 1 37
18.5% 5 5 5 5 5 5 5 4 2 1 42
19.0% 5 5 5 5 5 5 5 4 4 43
19.5% 5 5 5 5 5 5 5 5 4 44
20.0% 5 5 5 5 5 5 5 5 5 2 47

60 53 51 44 34 35 30 20 17 3 347

Table C.7: Production costs
t ot

1 ot
2

1 1 1
2 1 1
3 5 5

105

C Experiments and Randomly Generated Instances

Table C.8: For every combination of inventory levels we calculate the production quan-
tities that minimize the expectation value of F

y1
1 y2

1 u1
1 u2

1 E(F) y1
1 y2

1 u1
1 u2

1 E(F) y1
1 y2

1 u1
1 u2

1 E(F)

0 0 3 0 16 0 0 3 2 12 0 0 0 3 17
1 0 2 0 15 1 0 2 2 11 1 0 0 2 12
2 0 1 0 14 2 0 1 2 9.5 2 0 0 1 6.5
3 0 0 0 13 3 0 0 2 8.5 3 0 0 0 1.5
0 1 2 0 15 0 1 3 1 11 0 1 0 2 12
1 1 1 0 14 1 1 2 1 9.5 1 1 0 1 6.5
2 1 0 0 13 2 1 1 1 8.5 2 1 0 0 1.5
3 1 0 0 13 3 1 0 1 7.5 3 1 0 0 1.5
0 2 1 0 14 0 2 3 0 9.5 0 2 0 1 6.5
1 2 0 0 13 1 2 2 0 8.5 1 2 0 0 1.5
2 2 0 0 13 2 2 1 0 7.5 2 2 0 0 1.5
3 2 0 0 13 3 2 0 0 6.5 3 2 0 0 1.5
0 3 0 0 13 0 3 2 0 8.5 0 3 0 0 1.5
1 3 0 0 13 1 3 1 0 7.5 1 3 0 0 1.5
2 3 0 0 13 2 3 0 0 6.5 2 3 0 0 1.5
3 3 0 0 13 3 3 0 0 6 3 3 0 0 1.5

106

List of Figures

1.1 Varignon frame . 8

1.2 Example where 3 cameras are sufficient to cover the border, but 4 cameras
are needed to cover the whole area . 13

1.3 Example of 2 different triangulations . 14

1.4 An example where putting the camera on the wall leads to a better solution 14

1.5 An example where putting the camera inside the polygon leads to a better
solution . 15

2.1 Sequencing of decisions . 19

2.2 Comparison of different solutions . 22

2.3 Distributions of the optimal solution to instances with different levels of

probability (p
(t)
j = p ∈ {0, 0.01, 0.02, . . . , 1}) 25

2.4 Choice of sample size N and the number of samples M 25

2.5 Expected costs to different levels of inventory y (1 : [0, 0]; 2 : [0, 1]; ...;
4 : [0, 3]; 5 : [1, 0]; ...; 12 : [2, 3]). 26

3.1 Example for a road network . 28

3.2 Polygon with two independent surveillance systems 29

3.3 Example of a transformation of F = {({2}, {2}), ({1, 3}, {1}), ({1, 2}, {1, 2}),
({2, 3}, {1, 2}), ({1}, {3}), ({3}, {1, 2})} 33

3.4 Transformation of literal i and clause j into circular configurations 38

3.5 Example of a clause cj in tree variables x1 x2 x3 39

3.6 Example where the clause cj=false . 39

3.7 Example where the clause cj=true . 40

3.8 Example of a transformation of a 3-SAT instance with 3 clauses and 3
variables . 46

3.9 Solution to the example given in Figure 3.8 47

3.10 Example of a transformation of PPMP to DSCP to apply Proposition 3.3.15 47

3.11 Complexity of DSCP . 50

3.12 Example of a transformation from Max-2-SAT to ODSCP2 57

3.13 Complexity of ODSCP . 59

3.14 The derived graph for the following SET COVER instance: S = {v1, v2,

v3, v4, v5, v6} and C = {S1, S2, S3, S4} where S1 = {v1, v3, v6}, S2 =
{v2, v4, v5}, S3 = {v3, v4, v6} and S4 = {v3, v4, v6}. 67

3.15 Ants when choosing the shortest way between their nest and a food source 69

107

List of Figures

3.16 Methodology . 72
3.17 CPLEX solution process for both [GRNP-MIP] and [RMIP-GRNP], on

instance 100-21-4.dat . 73
3.18 A small cut-out of the resulting network 77
3.19 Junction types . 80
3.20 Cubic graph . 81
3.21 Polygon . 82
3.22 C3,3 a non-planar graph . 82
3.23 Junction of corridors . 83
3.24 Junction in detail . 83
3.25 Transformation of 3-SAT to vertex guard [81] 85
3.26 Representation of a clause: the white nodes represent the values of the

literals . 85
3.27 Narrow corridor with an alcove and spike 86
3.28 Transformation of 3-SAT to the Vertex Guard Double Cover Problem . . 87
3.29 (Chvátal’s Comb): an example where the bound is sharp 88
3.30 A polygon with one hole gets transformed into a polygon without holes

to select the guard sets . 88
3.31 Gluing a cut: we have 2 possibilities to choose the second color 89
3.32 Polygon with three neighboring holes can be transformed to a polygons

with one hole . 90
3.33 Catalan numbers . 91
3.34 Comparing the optimal solution with the best solution reachable by the

triangulation technique . 91
3.35 The optimal solution uses two vertices, while the number of vertices

needed by solutions that correspond to triangulations is dependent on
the number of spikes . 92

108

Bibliography

[1] M. Andrec, B. N. Kholodenko, R. M. Levy, E. Sontag, Inference of signaling and
gene regulatory networks by steady-state perturbation experiments: structure and
accuracy. J. Theoret. Biol. 232 (2005) 427–441

[2] M.I. Arnone, E.H. Davidson, The hardwiring of development: organization and
function of genomic regulatory systems. Development 124 (1997) 1851–1864

[3] M. Bansal, G. D. Gatta, D. di Bernardo, Inference of gene regulatory networks and
compound mode of action from time course gene expression profiles. Bioinformatics
22 (2006) 815–822

[4] D.P. Bertsekas: Dynamic Programming and Optimal Control, Athena Scientific,
Belmont, MA (1995)

[5] M. Benkert,t. Shirabe, A. Wolff: The Minimum Manhattan Network Problem -
Approximations and Exact Solutions, citeseer.ist.psu.edu/benkert04minimum.html

[6] M. Benkert, F. Widmann, A. Wolff: The Minimum Manhattan Network Problem -
A Fast Factor-3 Approximation, citeseer.ist.psu.edu/702298.html

[7] B. Bozkaya, J. Zhang, E. Erkut: An Efficient Genetic Algorithm for the p-Median
Problem, in Z. Drezner and H.W. Hamacher (Eds.) Facility Location: Applications
and Theory, Springer, New York (2002) 179-205

[8] J. Bower, H. Bolouri, Computational Modeling of Genetic and Biochemical Net-
works. The MIT Press, Cambridge, MA (2001)

[9] M. P. Brynildsen, L. M. Tran, J. C. Liao, A Gibbs sampler for the identification
of gene expression and network connectivity consistency. Bioinformatics 22 (2006)
3040–3046

[10] P. Brazhnik, Inferring gene networks from steady-state response to single-gene per-
turbations. J. Theoret. Biol. 237 (2005) 427–440

[11] T. Chen, H. He, G. Church, Modeling gene expression with differential equations,
Pac. Symp. Biocomput. 4 (1999) 29-40

[12] T. Chen, V. Filkov, S.S. Skiena, Identifying gene regulatory networks from experi-
mental data. Parallel Computing 27 (2001) 141–162

109

Bibliography

[13] J. Cheriyan, R. Ravi: Lecture Notes on Approximation Algorithms for Network
Problems: Media, url = ”http://www.math.uwaterloo.ca/ jcheriya/lecnotes.html”

[14] X. Chen, G. Anantha, X. Wang An effective structure learning method for con-
structing gene networks. Bioinformatics 22/11 (2006) 1367–1374

[15] R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T.
Wolfsberg, A. Gabrielan, D. Landsman, D. Lockhart, R. Davis, A genome-wide
transcriptional analysis of the mitotic cell cycle. Mol. Cell 2 (1998) 65-73

[16] S. Chopra, C.-Y. Tsai: Polyhedral Approaches for the Steiner Tree Problem on
Graphs, in D.-Z. Du and X. Cheng (Ed.), Steiner Trees in Industries

[17] H. S. M. Coxeter: Introduction to Geometry John Wiley & Sons, New York -
London (1961)

[18] Steven A. Cook: The Complexity of Theorem-Proving Procedures: Annual ACM
Symposium on Theory of Computing, Shaker Heights, Ohio, United States,(1971)
151–158

[19] E. S. Correa, M. T. A. Steiner, A. A. Freitas, C. Carnieri: A Genetic Algorithm
for the P-median Problem, in LE Spector and E Goodman et al. (Eds.): Proc.
2001 Genetic and Evolutionary Computation Conference (GECCO-2001), Morgan
Kaufmann, San Fracisco (2001) 1268-1275

[20] M.C. Couto, C.C. de Souza, P.J. de Rezende: An Exact and Efficient Algorithm for
the Orthogonal Art Gallery Problem, Brazilian Symposium on Computer Graphics
and Image Processing (2007) 87–94

[21] S. D’Agostino, Personal Communication (2007).

[22] M. De Hoon, S. Imoto, S. Miyano, Inferring gene regulatory networks from time-
ordered gene expression data using differential equations. Lecture Notes in Com-
puter Science 2534 (2002) 267–274

[23] H. De Jong, Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. J. of Computational Biology 9/1 (2002) 67–103

[24] D. Di Bernardo, T.S. Gardner, J.J. Collins, Robust Identification of Large Genetic
Networks. Pacific Symposium on Biocomputing 9 (2004) 486–497

[25] R. Diestel: Graph Theory, Springer-Verlag, Heidelberg, New York (2005)

[26] K. Doerner, R.F. Hartl, M. Karall, M. Reimann: Heuristic solution of an extended
double-coverage ambulance location problem for Austria, Central European J. of
Operations Research 13 (2005) 325–340

[27] W. Domschke, A. Drexl: Logistik, Bd.3, Standorte, Oldenbourg Wiss., Mchn. (1996)

110

Bibliography

[28] M. Dorigo, V. Maniezzo, A. Colorni, The Ant System: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B:
Cybernetics 26/1 (1996) 29–41

[29] M. Dorigo, T. Stützle, The Ant Colony Optimization Metaheuristic: Algorithms,
Applications, and Advances. In F. Glover, G. Kochenberger (Eds.), Handbook of
Metaheuristics (2002) 251–285

[30] M. Dorigo, T. Stützle, Ant Colony Optimization. MIT Press, Cambridge, MA (2004)

[31] Z.Drezner: Facility Location a Survey of Applications and Methods (Springer Series
In Operations Research), Springer Verlag, New York, Berlin Heidelberg (1995)

[32] S. Eidenbenz: Inapproximability Results for Guarding Polygons without Holes,
ISAAC: 9th International Symposium on Algorithms and Computation , Organized
by SIGAL of the IPSJ and IEICE (1998)

[33] D. Erlenkotter: A Dual Based Procedure for Uncapacitated Facility Location, Op-
erations Research, 26 (1978) 992-1009

[34] P.L. Hammer: Annals of Operations Research: Recent Developments in the Theory
and Applications of Location Models 1/2, Kluwer Academic Publishers (2002)

[35] U. Feige: A treshhold of ln(n) for approximating set cover, Proc. 28 Annual ACM
Symp. on Theory of Computing (1996) 314–318

[36] T.A. Feo, M.G.C. Resende, A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters 8 (1989) 67-71

[37] T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures. J. of
Global Optimization 6 (1995) 109-133

[38] V. Filkov, S. Skiena, J. Zhi, Analysis Techniques for Microarray Time-Series Data.
J. of Comput. Biol. 9/2 (2002) 317–330

[39] V. Filkov, Identifying Gene Regulatory Networks from Gene Expression Data. In S.
Aluru (Ed.), Handbook of Computational Molecular Biology, Chapman&Hall/CRC
Press (2005)

[40] S. Fisk: A short proof of Chvátal’s watchman theorem. Journal of Combinatorial
Theory Ser B 24, (1978) 374

[41] R. Francis, L. Richard, L. F. McGinnis, J. A. White: Facility Layout and Location,
2nd. ed., Prentice Hall, Englewood Cliffs, NJ (1992)

[42] N. Friedman, M. Linia, I. Nachman, D. Peer, Using Bayesian networks to analyze
expression data. J. of Comput. Biol. 7 (2000) 601-620

[43] N. Friedman, Inferring Cellular Networks Using Probabilistic Graphical Models.
Science 303 (2004) 799–805

111

Bibliography

[44] M.R. Garey, R.L. Graham, D.S.Johnson: The complexity of computing Steiner
minimal trees. SIAM J. of Appl. Math. 31 (1977) 835–859

[45] M. R. Garey, D. S. Johnson, The Rectilinear Steiner Tree Problem is NP -Complete,
SIAM Journal on Applied Mathematics 32/4 (1977) 826–834

[46] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman and Company, New York (1979)

[47] A.L. Gartel, S.K. Radhakrishnan, Lost in Transcription: p21 Repression, Mecha-
nisms, and Consequences. Cancer Res. 65/10 (2005) 3980–3985

[48] J. Gebert, N. Radde, G.W. Weber, Modeling gene regulatory networks with piece-
wise linear differential equations. European Journal of Operational Research 181/3
(2007) 1148–1165

[49] M. Gendreau, G. Laporte, F. Semet: Solving an ambulance location problem by
tabu search, Location Science 5 (1997) 75-88

[50] F. Glover, M. Laguna, R. Mart: Fundamentals of Scatter Search and Path Relink-
ing, Control and Cybernetics 29/3 (2000) 653-684

[51] G. Ghiani, G. Laporte, R. Musmanno: Introduction to Logistics Systems Planning
and Control, Halsted Press, New York, NY, USA (2004)

[52] A. J. Goldman: Optimal center location in simple networks. Transp. Sci., 5 (1971)
240–255

[53] S . K . Ghosh: Approximation algorithms for art gallery problems Proc. Canadian
Inform. Process. Soc. Congress (1987)

[54] S. Goss, S. Aron, J.L. Deneubourg, J.M. Pasteels, Self-organized shortcuts in the
Argentine ant. Naturwissenschaften 76 (1989) 579–581

[55] J. Gudmundsson, C. Levcopoulos, G. Narasimhan: Approximating a Minimum
Manhattan Network, Nordic Journal of Computing 8/2 (2001) 216-229

[56] S. L. Hakimi: Optimum Locations of Switching Centers and the Absolute Centers
and Medians of a Graph Operations Research 12/3 (1964) 450–459

[57] I. Heller, C.B.Tompkins, An Extension of a Theorem of Dantzig’s, in H.W. Kuhn,
A.W. Tucker, Linear Inequalities and Related Systems, vol. 38, Annals of Mathe-
matics Studies, Princeton (NJ): Princeton University Press (1956) 247–254

[58] D.S. Hochbaum, N. Megiddo, J. Naor, and A. Tamir: Tight bounds and 2approx-
imation algorithms for integer programs with two variables per inequality. Mathe-
matical Programming 62 (1993) 69–83

112

Bibliography

[59] A. Hoffman and J. Kruskal: Integral boundary points of convex polyhedra, in H.
Kuhn, A. Tucker (eds.): Linear Inequalities and Related Systems, Princeton Uni-
versity Press (1956) 223-246

[60] K. Hogan, C. Revelle: Concepts and Applications of Backup Coverage, Management
Science, Vol. 32, No. 11 (1986) 1434–1444

[61] I. Holyer: The NP-completeness of edge-coloring. SIAM J. Comput. 10 (1981) 718-
720

[62] T. Homem-de-Mello, Variable-Sample Methods for Stochastic Optimimization,
ACM Trans. on Modeling and Computer Simulation (2003)

[63] Mathematical Gems II, Ed: R. Honsberger, Washington DC (1976)

[64] S. Imoto, T. Higuchi, T. Goto, S. Miyano, Error tolerant model for incorporat-
ing biological knowledge with expression data in estimating gene networks. Stat.
Methodol. 3/1 (2006) 1–16

[65] P. Jaillet: Probabilistic Travelling Salesman Problems, Ph.D. thesis, MIT (1985)

[66] R. Karp: Reducibilities among combinatorial problems, in R.E. Miller,
J.W.Thatcher (Eds.) : Complexity of Computer Computations, Plenum Press
(1972) 85-103

[67] S. Kauffman: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22 (1969) 437-467

[68] B.N. Kholodenko, A. Kiyatkin, F. Bruggeman, E.D. Sontag, H. Westerhoff, J. Hoek:
Untangling the wires: a novel strategy to trace functional interactions in signaling
and gene networks. PNAS 99 (2002) 12841–12846

[69] P.M. Kim, B. Tidor, Limitations of Quantitative Gene Regulation Models: A Case
Study. Genome Res. 13 (2003) 2396–2405

[70] T. Koch, A. Martin: Solving Steiner tree problems in graphs to optimality Networks
32/3 (1998) 207–232

[71] A. Kleywegt, A. Shapiro, T. Hohem-de-Mello: The Sample Average Method for
Stochastic Discrete Optimization, SIAM J. Optim. 12 (2001/02)

[72] L. Lania, B. Majello, G. Napolitano, Transcriptional Control by Cell-Cycle Regu-
lators: A Review. J. of Cellular Physiology 179 (1999) 134-141

[73] G. Laporte, P. J. Dejax: Dynamic Location-Routeing Problems, J. Opl Res. Soc.
40/5 (1989) 471–482

[74] G. Laporte, F. Louveaux, L. Van Hamme: Exact Solution to a Location Problem
with Stochatic Demands, Transportation Science 28 (1994)

113

Bibliography

[75] G. Laporte, F.Louveaux, H. Mercure: Models and exact solutions for a class of
stochastic location-routing problems. European Journal of Operational Research 39
(1989) 7178

[76] C. Lax, S. Fogel, C. Cramer: Regulatory mutants at the his1 locus of yeast. Genetics
92/2 (1979) 363–82

[77] R. Laubenbacher, B. Stigler, A computational algebra approach to the reverse en-
gineering of gene regulatory networks. J. Theoret. Biol. 229/4 (2004) 523–537

[78] N. H. Lee: Genomic approaches for reconstructing gene networks. Pharmacoge-
nomics 6/3 (2005) 245–258

[79] Y. Li: A Newton Acceleration of the Weiszfeld Algorithm for Minimizing the Sum of
Euclidean Distances, Computational Optimization and Applications, Volume 10/3
(1998) 219-242

[80] D. Lichtenstein: Planar formulae and their uses, SIAM Journal on Computing 11
(1982) 329–343

[81] D.T. Lee, A.K. Lin: Computational Complexity of Art Gallery Problems. IEEE
Transactions on Information Theory, 32-2 (1986) 276–282

[82] G. Lulli, M. Romauch: Inferring gene regulatory networks by mathematical pro-
gramming. to appear in Discrete Applied Mathematics

[83] A. Makhorin:GNU Linear Programming Kit - Reference Manual - Version 4.1,
Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia
(2003)

[84] J. MacGregor Smith: Steiner Minimal Trees in E3: Theory, Algorithms, and Ap-
plications, url = ”citeseer.ist.psu.edu/486856.html”

[85] A.A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla Fav-
era, A. Califano, ARACNE: an algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinformatics 7 (2006) Suppl 1:S7

[86] M.T. Melo, S. Nickel, F. Saldanha da Gama: Large-Scale Models for Dynamic Multi-
Commodity Capacitated Facility Location, Berichtsreihe des Fraunhofer Inststituts
für Techno- und Wirtschaftsmathematik (ITWM) Kaiserslautern (2003)

[87] William Miehle: Link-Length Minimization in Networks, Operations Research 6/2
(1958) 232–243

[88] H. Min, V. Jayaraman, R. Srivastava: Theory and Methodology, Combined
location-routing problems: A synthesis and future research directions, European
Journal of Operational Research 108 (98) 1–15.

114

Bibliography

[89] A. Murray, K. Kim, J. Davis, R. Machiraju, R. Parent: Coverage Optimization
to Support Security Monitoring, Computers, Environment and Urban Systems 31
(2007) 133-147.

[90] G. Nagy, S. Salhi: Location-routing: Issues, models and methods, European Journal
of Operational Research 177 (2007) 649672

[91] S. Hesse Owen, M.S. Daskin: Strategic Facility Location: A Review, Eropean Jour-
nal of Operational Research 111 (1998)

[92] J. O’Rourke: Art gallery theorems and algorithms. Oxford University Press (1987)

[93] B.O. Palsson, In silico biotechnology: Era of reconstruction and interrogation. Cur-
rent Opinion in Biotechnology, 15/1 (2004) 50–51.

[94] D. Peer, A. Regev, G. Elidan, N. Fridman, Inferring subnetworks from expression
profiles. Bioinformatics 17 (2001) 215-224.

[95] B. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, F. d’ Alch Buc, Gene
networks inference using dynamic Bayesian networks. Bioinformatics 19 (2003) 138–
148.

[96] A. J. Pittard, B.E. Davidson, TyrR protein of Escherichia coli and its role as re-
pressor and activator. Molecular microbiology, 5/7 (1991) 1585–1592

[97] A. Remenyi, M.C. Good, R.P. Bhattacharyya, W.A. Lim, The role of docking inter-
actions in mediating signaling input, output, and discrimination in the yeast MAPK
network. Mol Cell. 22;20/6 (2005) 951–962.

[98] M. G. C. Resende: Computing Approximate Solutions of the Maximum Covering
Problem with GRASP, Journal of Heuristic 4/2 (1998) 161–177.

[99] M.G.C. Resende, C.C. Ribeiro, Greedy randomized adaptive search procedures. In
F. Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics (2002) 219–249.

[100] R. Rizzi, Personal Communication (2007).

[101] M. Romauch, R.F. Hartl: Dynamic Facility Location with Stochastic Demands.
SAGA 2005: 180–189

[102] J. B. Rosen, G. L. Xue: On the Convergence of Miehle’s Algorithm for the Eu-
clidean Multifacility Location Problem (in Technical Note), Operations Research,
Vol. 40/1 (1992) 188–191

[103] E. Sakamoto, H. Iba, Inferring a system of differential equations for a gene reg-
ulatory network by using genetic programming. Proceedings of the Congress on
Evolutionary Computation (2001) 720–726

[104] S. Salhi, G. Nagy: Local improvement in planar facility location using vehicle
routing facility location using vehicle routing. Annals of Operations Research (2007)

115

Bibliography

[105] T. Santoso, S. Ahmed, M. Goetschalckx, J. Shapiro: A Stochastic Programming
Approach for Supply Chain Network Design under Uncertainty, The Stochastic
Programming E-Print Series (SPEPS), (2003)

[106] K.A. Schafer, The Cell Cycle: A Review. Vet. Pathol. 35 (1998) 461–478

[107] D. Schilling, V. Jayaraman, R. Barkhi: A review of covering problems in facility
location. Location Science, 1 (1993) 25-55

[108] C. Schneeweiss: Dynamisches Programmieren. Physica, Heidelberg (1974)

[109] D. Schuchardt, H.-D. Hecker: Two NP-Hard Art-Gallery Problems for Ortho-
Polygons. Math. Log. Q. 41 (1995) 261-267

[110] P. Sebastiani, E. Gussoni, I.S. Kohane, M.F. Ramoni, Statistical Challenges in
Fuctional Genomics. J. of Statistical Science 18/1 (2003) 33–70

[111] H.D. Sherali, W.P. Adams, A tight linearization and an algorithm for 0-1 quadratic
programming problems. Management Science 32/10 (1986) 1274–1290

[112] T. Shermer: Recent results in art galleries, Proc. IEEE, 80 (1992) 1384-1399

[113] Y. Shi, T. Mitchell, Z. Bar-Joseph, Inferring Gene Regulatory Relationships from
Multiple Time Series Datasets. Bioinformatics 23/6 (2007) 755–763

[114] M. Shimazu, T. Sekito, K. Akiyama, Y. Ohsumi, Y. Kakinuma, A Family of Basic
Amino Acid Transporters of the Vacuolar Membrane from Saccharomyces cerevisiae.
J. Biol. Chem. 280/6 (2005) 4851–4857

[115] I. Shmulevich, E.R. Dougherty, S. Kim, W. Zhang, Probabilistic boolean networks:
A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18
(2002) 261–274

[116] L. Snyder: Facility location under uncertainty: a review, IIE Transactions 38/7
(2006) 547–564

[117] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown, D.
Botstein, B. Futcher, Comprehensive identification of cell cycle-regulated genes of
the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9
(1998) 3273-3297

[118] R. P. Stanley, Enumerative combinatorics, Wadsworth Publ. Co., Belmont, CA,
USA (1986)

[119] D. Thieffry, R. Thomas, Qualitative Analysis of Gene Networks. Pacific Sympo-
sium on Biocomputing 3 (1998) 77–88

[120] H.K. Tsai, H.H.S. Lu, W.H. Li, Statistical methods for identifying yeast cell cycle
transcription factors. PNAS 102/38 (2005) 13532-13537

116

Bibliography

[121] J.Urrutia: Art Gallery and Illumination Problems, In J. Sac, J. Urrutia (Eds.),
Handbook on Computational Geometry, Elsevier Science Publishers, Amsterdam
(2000) 973–1027

[122] E.P. van Someren, L.F.A. Wessels, E. Backer, M.J.T. Reinders, Genetic network
modeling. Pharmacogenomics 3/4 (2002) 507–525

[123] T.T. Vu, J. Vohradsky, Nonlinear differential equation model for quantification of
transcriptional regulation applied to microarray data of Saccharomyces cerevisiae.
Nucleic Acids Res. 35 (2007) 279–287

[124] D. M. Warme, P. Winter, and M. Zachariasen: Exact Algorithms for Plane Steiner
Tree Problems: A Computational Study. In D.-Z. Du, J. M. Smith, and J. H.
Rubinstein (ed.), Advances in Steiner Trees, pp. , Kluwer Academic Publishers,
Boston, (2000) 81-116

[125] E. Weiszfeld: Sur le point pour lequel la somme des distances de n points dennés
est minimum, Tôhoko Mathematics Journal, 43 (1937) 355–386

[126] C.J. Zhang, M.M. Cavenagh, R.A. Kahn, A family of Arf effectors defined as
suppressors of the loss of Arf function in the yeast Saccharomyces cerevisiae. J Biol
Chem. 31; 273/31 (1998) 19792–19796

[127] W. Zhao, E. Serpedin, E.R. Dougherty, Inferring gene regulatory networks from
time series data using the minimum description length principle. Bioinformatics
22/17 (2006) 2129–2135

117

Bibliography

118

Besitzer
Rectangle

Besitzer
Rectangle

Abstract

Facility location treats the problem of choosing locations while respecting effort and
utility. E.g.: we can think of balancing the maintenance and setup costs for a facility.
The central contribution of this work are two extensions of classical location models
that get enclosed into the presentation of standard facility location models. One of the
extensions is a dynamic warehouse location problem in a stochastic environment. Within
a planning horizon of given number of periods we are able to open and close facilities
and the aim is to minimize the expected costs. The costs consist of operating costs,
production costs, inventory costs and penalty costs for shortages. We present an exact
method and a heuristic approach. The second extension can be regarded as a double Set
Cover Problem. We have to maintain two services by allocating corresponding sites and
each customer has to be reachable by at least one of the centers and each service type.
Simultaneously we have to respect that the number of used locations is limited, while no
location is assigned to two services. We present different applications and by restricting
the problem we draw the line between polynomially solvable problems and intractable
ones. In the context of an application in bio-informatics we develop an ACO heuristic.

119

Besitzer
Rectangle

Bibliography

120

Besitzer
Rectangle

Besitzer
Rectangle

Zusammenfassung

Bei Standortoptimierungsproblemen geht es um eine strategisch günstige Auswahl von
Orten unter den Gesichtspunkten des Nutzens und der Aufwände, die mit den Standor-
tentscheidungen einhergehen. Beispielsweise können in der Planung die lageabhängigen
Betriebskosten und die Errichtungskosten gegeneinander aufgewogen werden. Der zen-
trale Beitrag der vorliegenden Arbeit sind zwei Erweiterungen von Standortproblemen
die durch einen Überblick klassischer Modelle eingefasst werden. Die eine Erweiterung
behandelt ein dynamisches Warehouse-Location Problem in einem stochastischen Um-
feld: Während mehrerer Perioden können Standorte geöffnet und geschlossen werden.
Ziel ist die Minimierung der erwarteten Kosten die sich aus Betriebskosten, Produktion-
skosten, Transportkosten, Lagerhaltungskosten und Strafkosten bei Fehlmengen zusam-
mensetzen. Ein exaktes und ein heuristisches Lösungsverfahren werden vorgestellt. Die
zweite Erweiterung kann man als doppeltes Set-Cover Problem verstehen. Es sollen
Kunden mit zwei Dienstleistungen bedient werden, die an Zentren gebunden sind. Jeder
Kunde muss von mindestens einem Zentrum eines jeden Dienstleistungstyps erreichbar
sein. Gleichzeitig ist darauf zu achten, dass die Anzahl verwendeter Zentren beschränkt
ist und dass die Zentren höchstens einer Dienstleistung zugeordnet sind. Es werden
verschiedene Anwendungen vorgestellt, und durch Einschränkungen wird versucht die
Grenze zwischen Problemen mit polynomiellem Aufwand und NP-schweren Problemen
zu ziehen. Im Rahmen einer bioinformatischen Anwendung wird eine Ant-Colony Meta-
heuristik eingesetzt

121

Besitzer
Rectangle

Wissenschaftlicher Werdegang

September 2003

Seit Dezember 2003:

Abschluss des Studiums der technischen Mathematik.
Studienzweig: Angewandte Wirtschaftsmathematik,
Diplomarbeitsthema: Standortoptimierung (Betreuer:
Prof. Dr. Dipl.-Ing. Franz Rendl)

Wissenschaftlicher Mitarbeiter (i.A.)
am Institut für Betriebswirtschaftslehre am
Lehrstuhl für Produktion und Logistik (o. Univ-Prof.
Dr. Dipl.-Ing. Richard F. Hartl)

Publikationen

• Mit Richard F. Hartl: Dynamic Facility Location with Stochastic Demands, in O.B.

Lupanov, Oktay M. Kasim-Zade, Alexander V. Chaskin and Kathleen Steinhöfel(Ed.)
Stochastic Algorithms: Foundations and Applications, Third International
Symposium, SAGA 2005, Proceedings Lecture Notes in Computer Science 3777
(2005) 180-189.

• Mit Guglielmo Lulli: Inference on Gene Regulatory Networks. To appear in Discrete

Applied Mathematics.

Tagungen

• COCOLORES 2005: A heuristic Approach for Solving the Travelling Tournament

Problem

• SAGA 2005: Dynamic Facility Location with Stochastic Demands.

• COCOLORES 2006: Maschinenbelegung und Beschleunigung in Netzplänen

• EURO 2006: A Resource Constrained Scheduling Problem

• MIC 2007: An Ant Colony Approach for Inferring Genregulatory Networks

