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Abstract 
During working memory/decision making tasks correlated firing between the 

hippocampus and the medial prefrontal cortex (mPFC) of rats is enhanced and neurons 

in the mPFC are phase-locked to hippocampal theta oscillations. In order to understand 

the contribution of GABAergic interneurons of the mPFC to temporal network 

organisation, the firing patterns of single interneurons in the mPFC were recorded in 

anaesthetized rats and their soma, dendrites and axons specifically labelled with 

neurobiotin (done by Katja Hartwich). In this diploma thesis, I have investigated the 

molecular expression profile and postsynaptic targets of the recorded and labelled 

interneurons. Most of the cells expressed either parvalbumin (PV), or Calbindin (CB) 

or both calcium-binding proteins. Cells expressing PV only and cells expressing PV 

and CB target small and apical dendrites, dendritic spines and somata of pyramidal 

cells, and could therefore be identified as basket cells. In contrast, CB only expressing 

cells exclusively terminate on small dendrites and spines. Additionally, an axo-axonic 

cell was identified, which targets exclusively axon initial segments and does not 

express PV or CB. In order to support future characterization of interneuron classes 

using novel molecular markers, I have also tested several antibodies against molecules 

that could further distinguish between cell classes. In conclusion, in a subset of 

GABAergic interneurons in the mPFC, molecular expression profile and postsynaptic 

target-specificity seems to be correlated: PV expressing, but also PV/CB co-expressing 

interneurons could be identified as basket cells and CB only expressing cells as dendrite 

targeting interneurons. 
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Zusammenfassung  
In Aufgaben, die eine Entscheidungsfindung unter Mitwirkung des 

Arbeitsgedächtnisses erfordern, tritt verstärkt korreliertes Feuerungsverhalten von 

Neuronen im Hippocampus und im medialen, präfrontalen Kortex (mPFC) auf und 

Neurone im mPFC feuern zu einer bestimmten Phase von Theta-Oszillationen im 

Hippocampus. Um zu verstehen welche Rolle Interneurone im mPFC bei diesem 

Phänomen spielen, wurde das Feuerungsmuster von einzelnen Interneuronen im mPFC 

aufgezeichnet und deren Soma, Dendriten und Axons mit Neurobiotin angefärbt 

(durchgeführt von Katja Hartwich). In dieser Diplomarbeit habe ich die molekularen 

Expressionsmuster und postsynaptischen Zielzellen dieser angefärbten Interneurone 

untersucht. Der Großteil dieser angefärbten Zellen exprimiert entweder Parvalbumin 

(PV) oder Calbindin (CB) oder beide dieser Calcium-bindenden Proteine. Zellen, die 

nur PV exprimieren oder PV und CB co-exprimieren bilden Synapsen an kleinen und 

apikalen Dendriten, dendritischen Dornen und Zellkörpern von Pyramidenzellen und 

konnten daher als Korbzellen identifiziert werden. Im Gegensatz dazu bilden CB-

exprimierende Zellen Synapsen ausschließlich an kleinen Dendriten und dendritischen 

Dornen von Pyramidenzellen aus. Außerdem wurde noch ein Zelltyp identifiziert, der 

ausschließlich Synapsen an initialen Axonhügeln ausbildet und weder PV noch CB 

exprimiert. Um zukünftig die Charakterisierung von Interneuronklassen durch neue 

molekulare Marker zu unterstützen, habe ich auch diverse Antikörper getestet, die es 

erlauben zwischen Zelltypen zu unterscheiden. 

Als Fazit, in einer Subpopulation von GABAergen Interneuronen im mPFC scheint das 

molekulare Expressionsmuster mit der Spezifität von postsynaptischen Zielzellen 

korreliert zu sein: PV-exprimierende aber auch PV und CB co-exprimierende Zellen 

konnten als Korbzellen und Zellen, die nur CB exprimieren, als Dendriten 

innervierende Interneurone identifiziert werden. 
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Introduction 
Interaction of hippocampus-dependent short-term memory and neocortex-dependent 

long-term memory is important for intelligent behaviour (Goldman-Rakic, 1995). 

György Buzsaki (Buzsaki, 1989) put forward a model of memory consolidation in 

which the animal is considered to be in a recording mode during exploratory behaviour. 

This recorded information is played back in temporally compressed form during 

subsequent periods of inactivity and sleep in the prefrontal cortex (Euston et al., 2007), 

the hippocampus (Diba and Buzsaki, 2007) and the visual cortex (Ji and Wilson, 2007), 

whereas the latter might account for vivid images during dreaming. Periodic playback 

could promote a gradual integration of newly acquired knowledge into the neocortex 

(Wiltgen et al., 2004). A gradual integration is important, because a rapid incorporation 

of new information into a pre-existing knowledge system could cause interference and 

previously acquired information would be erased (McClelland, 1995). 

Once the information is consolidated in the neocortex, it becomes independent of the 

hippocampus. For subsequent retrieval and integration with newly acquired information 

stored in the hippocampus, the prefrontal cortex (PFC) plays a central role (Wiltgen et 

al., 2004). This integration process is referred to as working memory and can be 

described as retaining acquired knowledge for an impending action, which is dependent 

on that knowledge (Fuster, 2001). In delayed response tasks the functioning of working 

memory can be elucidated and it was shown that in rats with lesions in the 

prelimbic/infralimbic medial PFC, working memory was impaired (Gisquet-Verrier and 

Delatour, 2006). 

The rodent PFC is divided into medial, lateral and orbital parts with the medial part 

(mPFC) consisting of four sub-divisions (Ongur and Price, 2000). The most dorsal 

divisions are the medial (frontal) agranular and the anterior cingulate cortices, which 

receive sensorimotor input and are associated with motor behaviour. The prelimbic 

(PL) and infralimbic (IL) cortices make up the medio-ventral portion of the mPFC, 

receive limbic input from the hippocampus, subiculum and amygdala and are involved 

in emotional, cognitive and mnemonic processes (Heidbreder and Groenewegen, 2003). 

Furthermore, these brain areas are highly interconnected among themselves (Vertes, 

2006). The functional analogue to the PL in primates is the dorsolateral PFC (Vertes, 
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2006) and it was reported that lesions of this brain area disrupt performance on delayed 

response tasks in monkeys (Goldman and Rosvold, 1970). 

The mPFC receives input from various brain regions, including the hippocampus. 

Retrograde tracing has shown that PL and IL of rats are targeted by glutamatergic 

afferents of the CA1 / subiculum (Hoover and Vertes, 2007) – the major output areas of 

the hippocampal formation. This is consistent with anterograde tracing studies (Jay and 

Witter, 1991) and has also been shown in primates with both retrograde and 

anterograde tracing (Goldman-Rakic et al., 1984). Not only the mPFC but also this 

Hippocampo-mPFC pathway seems to be important for working memory as it was 

shown that rats with a transient inactivation of this pathway were impaired in a delayed 

choice of a radial-arm maze task (Floresco et al., 1997). 

The cerebral cortex contains two main types of neurons, excitatory pyramidal cells 

(DeFelipe and Farinas, 1992), which are the vast majority (70-80 %) and are relatively 

uniform, and interneurons, which are mostly inhibitory and have diverse 

morphological, physiological, molecular and synaptic properties (Kawaguchi and 

Kubota, 1997). Single pulse stimulation of the hippocampus in anaesthetized rats 

induced EPSPs in mPFC pyramidal neurons of fixed latency, suggesting a 

monosynaptic connection, followed by prolonged IPSPs (Degenetais et al., 2003). 

Afferent projections from CA1 / subiculum not only target pyramidal cells of the mPFC 

(Carr and Sesack, 1996), but also interneurons (Gabbott et al., 2002). So whilst the 

IPSP could result from innervation of interneurons by these activated PFC pyramidal 

cells through a feedback process, it might also result from interneurons being excited 

directly by CA1 projections. Indeed, a large proportion of recorded mPFC interneurons 

showed an excitatory response with a latency consistent with the conduction time of the 

hippocampo-mPFC pathway, suggesting a monosynaptic connection (Tierney et al., 

2004). However, recorded and juxtacellularly labelled interneurons were not 

characterised further in this study. Traditionally neurons have been classified by their 

morphology (Ramon y Cajal, 1911), but because this is a highly variable feature of 

neurons, morphology alone cannot reliably define a cell type (Markram et al., 2004). 

It has been suggested (Somogyi and Klausberger, 2005) that cortical neurons can be 

characterized and defined on application of following measures: (I) brain area- and cell 

domain-specific distribution of presynaptic inputs and postsynaptic targets, (II) 

expression profiles of signalling molecules and ion channels, and (III) in vivo firing 

patterns. 
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Interneurons can be classified by investigating their postsynaptic targets and can be 

functionally divided into axo-axonic cells targeting exclusively axon initial segments, 

soma- and proximal dendrite-targeting basket cells, proximal dendrite-targeting, and 

distal dendrite- and spine-targeting interneurons (Somogyi et al., 1998). Axo-axonic 

cells have their boutons aligned along axon initial segments and can thus be recognized 

in some cases on the light microscopic level. On the other hand, axons of basket cells, 

which are soma- and proximal dendrite-targeting cells, show little directivity in their 

orientation in close proximity to their somata (Somogyi and Klausberger, 2005). 

Furthermore, there are subpopulations of interneurons that target preferentially other 

interneurons (Acsady et al., 1996). 

Molecules such as calcium binding proteins Parvalbumin (PV), Calbindin (CB), or 

Calretinin (CR), or neuromodulators like neuropeptide Y (NPY), Somatostatin (SM), 

Cholecystokinin (CCK), vasoactive intestinal peptide (VIP) are known to be 

differentially expressed in subpopulations of interneurons in the hippocampus 

(Somogyi and Klausberger, 2005). However, it has been demonstrated in the 

hippocampus that the expression of a single molecule cannot define a distinct class of 

interneurons as defined by synaptic connectivity, because most molecules are expressed 

by several classes. For example, parvalbumin is expressed by basket, axo-axonic, 

bistratified and oriens-lacunosum moleculare (O-LM) cells (Somogyi and Klausberger, 

2005). In order to further characterize interneuron classes, novel molecular markers 

were investigated and potential candidates are described below. 

The mPFC receives dopaminergic input from the ventral tegmental area (VTA) and it 

was shown that working memory performance was at its best with moderate stimulation 

of D1 family dopamine receptors (Muly et al., 1998). Dopamine D1 receptors are 

expressed by both pyramidal cells and GABAergic interneurons (Muly et al., 1998); 

most PV-expressing and 10 % of CB-expressing interneurons express D1 as shown by 

in situ hybridization (Le Moine and Gaspar, 1998). Furthermore, the effect of dopamine 

on inhibition dominates over that on excitation (Bandyopadhyay and Hablitz, 2007) and 

the PFC in turn acts through various pathways to excite or inhibit dopaminergic 

neurons in the VTA (Gao et al., 2007). Because of the importance of dopaminergic 

input for reinforcement learning mechanisms (Hazy et al., 2006), it would be interesting 

to investigate, which subpopulations of PV- and/or CB-expressing interneurons also 

expresses the dopamine D1 receptor. 
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The mPFC also interacts with the thalamus especially during sleep, which leads to the 

generation of spindle oscillations (7-14 Hz) (Steriade and Amzica, 1998). Furthermore, 

afferents from the thalamus express the vesicular glutamate transporter type 2 

(vGLUT2), whereas cortical terminals either express vGLUT1 or a minor 

subpopulation of cortical terminals co-express both types (Kubota et al., 2007). It 

would be interesting to investigate, whether a subpopulation of PV-expressing cells 

receives more thalamic input than others. 

Neurons in the mPFC are also modulated by Serotonin and in fact, the 2c subunit of the 

serotonin receptor (5-HT2c) is expressed particularly by neurons in deep layers of the 

PL area and 50 % of these neurons were immunopositive for glutamate decarboxylase 

(GAD67) (Liu et al., 2007a), the enzyme that converts glutamate into γ-aminobutyric 

acid (GABA). Furthermore, this receptor subunit is predominantly expressed by PV-

expressing interneurons and to a significantly lesser extant in CB- or Calretinin-

expressing cells (Liu et al., 2007a), so it would be interesting to see which 

subpopulation of PV-expressing cells also expresses 5-HT2c. 

A subset of PV-expressing cells (26 %) receives about five times more boutons 

immunopositive for VIP than the rest of PV-expressing cells (David et al., 2007), but it 

is not known which subpopulation receives more input. 

It was shown that the α1 subunit of a nitric oxide (NO)-sensitive guanylyl cyclase is 

specifically expressed in interneurons, but only in a subpopulation of PV-positive cells 

(75%) in the hippocampus (Szabadits et al., 2007). Nitric oxide contributes to synaptic 

plasticity as a retrograde messenger and this enzyme plays an important role in this 

pathway. This enzyme could therefore be used as a molecular marker for a 

subpopulation of PV-expressing cells. 

Voltage-gated potassium channels comprise the most divers group of heteromeric ion 

channels discovered so far. There are more than 20 genes encoding these channels and 

examples of interneuron specific potassium channels are Kv3.1 (Sekirnjak et al., 1997) 

and Kv4.3 (Serodio and Rudy, 1998), Kv3.1 is co-expressed with PV, but not found in 

other subpopulations of interneurons (Chow et al., 1999). For Kv4.3 on the other hand, 

a highly uneven subcellular distribution of this potassium channel was reported (Kollo 

et al., 2006). Both of these channels might be usable as a molecular marker for 

characterization of cell types. 
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Another type of proteins that are differentially expressed in subsets of neurons are 

neurofilaments. For example, N200 is expressed in a subpopulation of pyramidal cells 

in the prefrontal cortex (Law and Harrison, 2003), but it would also be interesting to 

show whether these neurofilaments are also expressed in certain types of interneurons. 

The metabotropic glutamate receptor subtype 1α (mGluR1α) has been associated with 

a variety of contributions to network activity, including modulation of synaptic 

transmission and plasticity and is predominantly expressed by interneurons of the 

hippocampal CA1 area. In particular, only a small subset of PV-expressing cells – 

mostly those, which also express SM - co-express mGluR1α (Ferraguti et al., 2004). 

This molecular marker could be employed to differentiate subpopulations of PV-

expressing cells. 

Network oscillations of various frequency bands in the brain provide a time frame and 

temporal coordination within and between distinct brain areas. Theta oscillations (4-8 

Hz), for example, occur during exploratory behaviour and rapid-eye-movement sleep 

(Buzsaki, 2002) and are considered to be the online state of the hippocampus. 

Furthermore, during sleep the thalamus interacts with the mPFC, which leads to the 

generation of spindle oscillations (7-14 Hz) during slow wave sleep (0.5-4 Hz) 

(Steriade and Amzica, 1998). 

It has been shown (Siapas et al., 2005) that in freely behaving rats mPFC neurons are 

phase-locked to hippocampal theta oscillations with a delay of approximately 50 ms 

suggesting that hippocampal activity is leading neural activity in the mPFC. 

Furthermore, mPFC neurons exhibit phase precession to the hippocampal theta rhythm 

(Jones and Wilson, 2005a), which indicates that the cell discharges at earlier phases of 

consecutive theta cycles (O'Keefe and Recce, 1993).  Moreover, correlated firing of 

neurons in the hippocampus and the mPFC is selectively enhanced during behaviour 

that involves working memory (Jones and Wilson, 2005b). 

As it has been shown that interneurons during theta oscillations coordinate the temporal 

activity of pyramidal cells in the hippocampus (Klausberger et al., 2003), interneurons 

in the mPFC might therefore play an important role for spike timing and phase-locking 

of mPFC neurons. Hence, Katja Hartwich in our lab has been investigating interneurons 

in the PL area of the mPFC in the context of hippocampal theta oscillations in 

anaesthetized rats. In order to do so, single interneurons were extracellularly recorded 

simultaneous with the local field potential (LFP) in the mPFC and the LFP in the CA1 
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region of the hippocampus and subsequently juxtacellularly labelled with neurobiotin. 

With the juxtacellular labelling method single-cells can be labelled specifically by 

using a glass electrode filled with Neurobiotin and injecting positive current pulses. The 

cell modulates its firing to these pulses and takes up the Neurobiotin, which distributes 

throughout the cell including dendrites and axon (Figure 1, (Pinault, 1996). 

 

Figure 1: modified from Pinault (1996). The left panel shows extracellular recording from a 
single cell with a glass electrode filled with neurobiotin from which the local field potential 
(frequency band up to 200 Hz; top trace) and the in vivo-firing pattern of the cell depicted (high 
frequency: 0.8-5 kHz; bottom trace) can be extracted. Note that the anaesthetized rat was 
pinched in the foot (red arrow indicating the time point), which causes a change from slow wave 
oscillations (0.5-4 Hz) to theta oscillations (4-8 Hz). The right panel illustrates the labelling 
procedure, where the glass electrode was lowered very closely to the cell and neurobiotin was 
ejected together with a current pulse. If the cell is modulated to the current pulse, it takes up the 
ejected neurobiotin. 

In order to determine the synaptic connectivity, molecular expression profile and 

neuronal classes of these labelled cells, I have tested their expression of various 

molecular markers and identified their postsynaptic targets with electron microscopy. 
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Methods 

Preparing buffers 

TBS buffer 

For 1 l of buffer (pH 7.4) 6.61 g TRIZMA Hydrochloride (Sigma-Aldrich Inc., St. 

Louis, USA, T-3253), 0.97 g TRIZMA Base (Sigma-Aldrich Inc., St. Louis, USA, T-

1503), 9 g NaCl (BDH Laboratory Supplies, Poole, UK, 44827W) were dissolved in 

ddH2O and filled up to an end volume of 1 l. 

PB buffer 

For 5 l of 0.2 M PB buffer 142.39 g Na2HPO4 x 2H2O (BDH Laboratory Supplies, 

Poole, UK, 103834G) were dissolved in 4 l of dH20. 27.6 g NaH2PO4 x H2O were 

dissolved in 1 l of dH2O, mixed with the other solution and the pH was confirmed to be 

below 7.39. 

Vibratome cutting 

The rat was perfused through the aorta with 0.9 % saline followed by fixative (4 % 

Paraformaldehyde + 15 % w/v of saturated Picric acid + 0.05 % Glutaraldehyde in 0.1 

M PB, pH 7.3) for approximately 20 minutes. The brain was removed from the skull 

and was washed over night in 0.1 M PB. Then the frontal part of the right hemisphere 

was cut on the vibratome (Leica, Wetzlar, Germany, VT 1000S) in 70 µm thick coronal 

sections. The sections were washed twice in 0.1M PB for 15 minutes on the shaker and 

stored in 0.1M PB + 0.05 % Sodium Azide (VWR International Ltd., Poole, England, 

103692K) at 4ºC (Maccaferri et al., 2000). 

Strep-Alexa488 labelling 

Sections stored in 0.1 M PB + 0.05 % Sodium Azide (VWR International Ltd., Poole, 

England, 103692K) were washed twice in 0.1 M PB and once in TBS + 0.3 % Triton 

X-100 (VWR International Ltd., Poole, England, 306324N) for 20 min on the shaker at 

room temperature. After that they were incubated with StrepAlexa488 (1:1000) in TBS 

+ 0.3 % Triton X-100 + 2 % normal horse serum for 4 hours on the shaker at room 

temperature (or alternatively 24 hours at 4ºC, although this was abandoned during the 
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course of the thesis because it resulted in higher unspecific background labelling). The 

sections were washed three times with TBS + 0.3 % Triton X-100 for 20 min on the 

shaker at room temperature and mounted on microscopic slides (VWR International 

bvba, Leuven, Belgium, 631-0117) with vectashield mounting medium for fluorescence 

(Vector Laboratories Inc, Burlingame, USA, H-1000) and covered with a cover slip 

(VWR International bvba, Leuven, Belgium, 631-0133) (Losonczy et al., 2002). 

Immunoreaction 

Sections stored in 0.1 M PB + 0.05 % Sodium Azide (VWR International Ltd., Poole, 

England, 103692K) were washed twice in 0.1 M PB and once in TBS + 0.3 % Triton 

X-100 (VWR International Ltd., Poole, England, 306324N) for 20 min on the shaker at 

room temperature. The sections were blocked by incubating them in 20 % normal horse 

serum (Vector Laboratories Inc, Burlingame, USA, S-2000) in TBS + 0.3 % Triton X-

100 for one hour on the shaker at room temperature. They were then incubated with the 

primary antibodies (see  
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Table 1 for concentration) in TBS + 0.3 % Triton X-100 + 2 % normal horse serum for 

48 hours on the shaker at 4ºC. 

After washing the section three times with TBS + 0.3 % Triton X-100 for 20 min on the 

shaker at room temperature they were incubated with the secondary antibodies (Table 
2) in TBS + 0.3 % Triton X-100 + 2 % normal horse serum for 24 hours on the shaker 

at 4ºC. The section were washed three times with TBS + 0.3 % Triton X-100 for 20 min 

on the shaker at room temperature and mounted on microscopic slides (VWR 

International bvba, Leuven, Belgium, 631-0117) with vectashield mounting medium for 

fluorescence (Vector Laboratories Inc, Burlingame, USA, H-1000) and covered with a 

cover slip (VWR International bvba, Leuven, Belgium, 631-0133) (Losonczy et al., 

2002). 

Negative and positive controls for immunoreaction 

Antibody labelling was considered to be specific, if it was comparable with labelling 

previously published for this molecular marker (see  
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Table 1 for references). Some antibodies that were tested for the first time (including 

vGLUT2, 5-HT2c, Kv4.3 and D1) showed unspecific labelling and therefore negative 

and positive controls were applied to verify the reason for unspecific labelling. First of 

all, the secondary antibodies used for these reactions were tested without primary 

antibody, to verify whether the unspecific labelling stems from the secondary antibody. 

Additionally, all primary antibodies were tested with two different secondary antibodies 

(Alexa488 and Cy3). Furthermore, each species of secondary antibody was used in 

combination with primary antibodies, often used in the lab and known to give strong 

and characteristic labelling as a positive control. In all cases secondary antibodies did 

not show any labelling after omitting primary antibodies, different secondary antibodies 

showed the same result in combination with the same primary antibody, and all positive 

controls showed specific labelling. 

In order to avoid shine through – labelling can be observed in a channel with a filter of 

longer wavelength – the primary and secondary antibodies should not be used too 

concentrated (ideal concentration of antibodies has to be evaluated for each antibody 

individually). Furthermore, also the Strep-Alexa488 labelling should not shine through 

in other channels and therefore after labelling images are captured with all channels as 

a negative control, before any immunoreaction are performed on the section. 
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Table 1: List of primary antibodies used in this study. 

Antibody 
to 

Host Dilution Source 
Reference of 

characterisation 
Immunogens 

α-actinin mouse 1:1000 
Sigma-Aldrich, St. Louis, Missouri, 

USA. Code No. A7811 

Labelling pattern 

as published with 

other antibodies. 

sarcomeric α-

actinin 

 rabbit 1:1000 
Dr. A. Beggs, Howard Hughes 

Medical Institute, Boston, USA. 
(Chan et al., 1998) 

recombinant α-

actinin-2 (N-17) 

5-HT2c goat 1:500 

Santa Cruz Biotechnology, Inc. 

Santa Cruz, CA, USA. Code No. 

sc-15081 

(Liu et al., 2007b) SR-2C (N-19) 

CB rabbit 1:10000 
Swant, Bellinzona, Switzerland. 

Code No. CB-38 

Labelling pattern 

as published with 

other antibodies. 

rat CB D-28k 

 mouse 1:500 
Swant, Bellinzona, Switzerland. 

Code No. 300 
(Celio et al., 1990) 

chicken CB D-

28k 

CCK rabbit 1:500 
DiaSorin, Stillwater, USA. Code 

No. 20078 

Labelling pattern 

as published with 

other antibodies. 

CCK 

octapeptide 

 mouse 1:5000 

Dr. G Ohning, CURE/Digestive 

Diseases Research Center. 

Antibody/RIA Core, UCLA. Code 

No. 9303 

(Ohning et al., 

1996) 
gastrin-17 

COUP-
TFII 

mouse 1:250 
Perseus Proteomics Inc., Tokyo, 

Japan. Code No. PP-H7147-00  
(Lee et al., 2004) 

human COUP-

TF2  

CR goat 1:1000 
Swant, Bellinzona, Switzerland. 

Code No CG1 

(Schwaller et al., 

1994) 
human CR 

D1 rat 1:5000 
Sigma-Aldrich, St. Louis, Missouri, 

USA. Code No. D187 

(Paspalas and 

Goldman-Rakic, 

2005) 

C-terminal 97 

aa of human 

D1 receptor 

GAD mouse 1:100 

Dr. D. Gottlieb, Dept. of Anatomy & 

Neurobiology, Washington 

University School of Medicine, St. 

Louis, USA 

(Chang and 

Gottlieb, 1988) 

rat brain GAD 

(65kDa) 

GCα1 rabbit 1:10000 
Sigma-Aldrich, St. Louis, Missouri, 

USA. Code No. G4280 

(Szabadits et al., 

2007) 

synthetic 

peptide (673-

690) of rat GC 
α1  

GluR2 mouse 1:100 
Antibodies Inc., Davis, CA, USA. 

Code No. 75-002 

Labelling pattern 

as published with 

other antibodies. 

(Fujiyama et al., 

2004) 

monoclonal, 

clone L21/32 
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Kv4.3 rabbit 1:1000 
Alomone Labs Ltd. Jerusalem, 

Israel. Code No. APC-017A 
(Yang et al., 2001) 

Human Kv4.3 

451-467 

 goat 1:1000 

Santa Cruz Biotechnology, Inc. 

Santa Cruz, CA, USA. Code No. 

sc-11686 

(Kollo et al., 2006) 

peptide of 

internal region 

of human Kv4.3 

mGluR1α 
Guinea 

pig 
1:1000 

Dr. M. Watanabe, Department of 

Anatomy, Hokkaido University 

School of 

Medicine, Sapporo, Japan 

(Tanaka et al., 

2000) 

rat mGluR1α 

(945-1127) 

MOR 
guinea 

pig 
1:1000 

Chemicon, Hampshire, United 

Kingdom. Code No. AB1774 

(Rodriguez et al., 

2001) 

synthetic 

peptide (384-

398) from rat 

MOR-1 

N200 mouse 1:1000 
Sigma-Aldrich, St. Louis, Missouri, 

USA. Code No. 0142 N52 

(Law and Harrison, 

2003) 

Phosphorylated 

and non-

phosphorylated 

N200 

NOS rabbit 1:1000 
Chemicon, Hampshire, United 

Kingdom. Code No. AB5380 

Labelling pattern 

as published with 

other antibodies. 

(Moro et al., 1998) 

recombinant 

human nNOS 

 sheep 1:500 
Chemicon, Hampshire, United 

Kingdom. Code No. AB1529 

Labelling pattern 

as published with 

other antibodies. 

rat NOS (1409-

1429) 

NPY sheep 1:500 
Chemicon, Hampshire, United 

Kingdom. Code No.  1017 

Labelling pattern 

as published with 

other antibodies. 

(Blessing et al., 

1986) 

  

PV mouse 1:10000 
Swant, Bellinzona, Switzerland. 

Code No. 235 
(Celio et al., 1988) carp muscle PV 

Reelin mouse 1:1000 
Chemicon, Hampshire, United 

Kingdom. Code No.  MAB5364 

(Demyanenko et 

al., 2004) 

Recombinant 

reelin amino 

acids 164-496 

SOM rat 1:500 
Chemicon, Hampshire, United 

Kingdom. Code No. MAB354 

Monoclonal, 

labelling pattern as 

published with 

other antibodies, 

(Vincent et al., 

1985) 

synthetic 1-14 

cyclic SOM 

vGLUT2 
guinea 

pig 
1:2500 

Chemicon, Hampshire, United 

Kingdom. Code No.  AB5907 

Labelling pattern 

as published with 

other antibodies, 

(Fremeau et al., 

Synthetic 

peptide from rat  

vGLUT2 
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2001) 

VIP rabbit 1:50,000 
Dr. TJ Görcs, Dept. Anatomy, Sote, 

Hungary 

(Gulyas et al., 

1990) 

synthetic 

porcine VIP 

 

Table 2: List of secondary antibodies used in this study 

Antibody/Streptavidin Fluorophore Amax Supplier 

Donkey Anti-Goat Alexa 350 346nm Molecular Probes, Inc., Eugene, OR, USA 

Donkey Anti-Sheep Alexa 350 346nm Molecular Probes, Inc., Eugene, OR, USA 

Donkey Anti-Mouse IgG AMCA 350nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Streptavidin AMCA 350nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Streptavidin Alexa488 495nm Molecular Probes, Inc., Eugene, OR, USA 

Donkey Anti-Goat Alexa488 495nm Molecular Probes, Inc., Eugene, OR, USA 

Donkey Anti-Guinea Pig Alexa488 495nm Molecular Probes, Inc., Eugene, OR, USA 

Donkey Anti-Mouse Alexa488 495nm Molecular Probes, Inc., Eugene, OR, USA 

Donkey Anti-Rabbit Alexa488 495nm Molecular Probes, Inc., Eugene, OR, USA 

Donkey Anti-Mouse Cy3 550nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Donkey Anti-Guinea Pig Cy3 550nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Donkey Anti-Rabbit Cy3 550nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Donkey Anti-Rat Cy3 550nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Donkey Anti-sheep Cy3 550nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Donkey Anti-Goat Cy3 550nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Donkey Anti-Guinea Pig Cy5 650nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Donkey Anti-Goat Cy5 650nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

Donkey Anti-Mouse Cy5 650nm 
Jackson Immuno Research Laboratories, Inc., 

West Grove, PA, USA 

 

Image Acquisition and Interpretation of Immunoreactions 

The immunoreaction was examined with a Leitz fluorescence microscope (Leica, 

Wetzlar, Germany, DMRB) with the following filter blocks: A4 (excitation filter band 

pass (BP), 360/40nm; reflection short-pass (SP) filter, 400nm: suppression filter BP, 
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470/40nm), L5 (excitation filter BP, 480/40nm; reflection SP, 505nm; suppression filter 

BP, 527/30nm), Y3 (excitation filter BP, 545/30 nm; reflection SP, 565 nm; 

suppression filter BP, 610/75 nm), and Y5 (excitation filter BP, 620/60nm; reflection 

SP, 660 nm; suppression filter BP, 700/75 nm). Images were acquired with a CCD 

camera (Hamamatsu Photonics, Welwyn Garden City, UK, C4742-80) using the 

software package openlab 5.0.2 (Improvision, Coventry, UK) (Ferraguti et al., 2004). 

For each image the exposure time had to be adjusted depending on the reaction quality, 

the objective used and the channel (A4: 500-2000ms, L5: 200-500 ms, Y3: 20-150 ms, 

Y5: 1000-3500 ms). If images had to be taken from more than two channels, a macro 

programmed by Wai-Yee Suen was used. 

In order to show whether a neurobiotin-labelled cell expresses a certain marker or not, a 

co-localisation study with sections containing either soma, dendrites, or axons of the 

labelled cell was performed. For soma sections, images with at least three different 

focuses were acquired for each channel. For co-localisation in dendrites, images were 

taken of at least three individual dendrites of the same cell with as many focuses 

required for an unequivocal judgment. For co-localisation in axons, images were 

acquired from at least ten boutons of at least 3 different axons. If there was a co-

localisation, the cell was called “immuno-positive” for this marker. If no co-localisation 

was observed with the tested marker, the cell was called “immuno-negative”, although 

weak expression cannot be excluded with this method. In case of ambiguous results, the 

cell was called “not tested” for this marker. 

Section preparation for Electron Microscopy 

Freeze thaw  

Sections containing axons of neurobiotin-labelled cells, which have not been used for 

immunofluorescence and were stored in 0.1 M PB + 0.05 % Sodium Azide (VWR 

International Ltd., Poole, England, 103692K) were washed four times for 15 minutes in 

0.1 M PB on the shaker at room temperature. Then they were incubated for 15 minutes 

in 0.1 M PB + 10 % Sucrose (Sigma-Aldrich Inc., St. Louis, USA, S7903-1KG) and for 

at least 2 hour in 0.1 M PB + 20 % Sucrose or until they sank to the bottom of the well 

without pushing them down. Afterwards, the sections, one by one, were transferred into 

a well of a TC-plate six well (Greiner bio-one Ltd., Stonehouse, UK, 657 160) and any 

remaining buffer discarded. The plate was dipped into liquid nitrogen until the section 
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was frozen as indicated by turning into a white colour. The section was then thawed as 

quickly as possible by pouring 0.1 M PB (room temperature) into the well and rubbing 

with a finger underneath the section. Then the sections were washed twice with 0.1 M 

PB and once with TBS for 15 minutes at room temperature on the shaker. Meanwhile, 

component A and component B of the Vectastain ABC kit elite (Vector Laboratories 

Inc, Burlingame, USA, PK-6100) were mixed both 1:100 in TBS and pre-incubated for 

30 minutes at room temperature. The sections were incubated in the pre-incubated 

mixture for 48 hours at 4ºC on the shaker. 

DAB-reaction 

In order to prepare the DAB solution, 10 mg of DAB (3,3’-Diaminobenzidine tetra-

hydrochloride, approx. 97 %, Sigma-Aldrich Inc., St. Louis, USA, D5637-1G) were 

dissolved in 9.6 ml distilled water and mixed with 10 ml 0.2 M PB, 200 µl of 20 % 

Glucose (BDH Laboratory Supplies, Poole, UK, 10117) in distilled water + 200 µl of 

0.4 % Ammonium Chloride (Sigma-Aldrich Inc., St. Louis, USA, A-4514-100G) in 

distilled water. The solution was divided in two portions and one was used to pre-

incubate the sections in 0.5 ml per well of a TC-plate 24 well (Greiner bio-one Ltd., 

Stonehouse, UK, 662 160) for 15 minutes at room temperature in the fume hood (all 

following steps were carried out in the fume hood as well). To the other portion, 15 µl 

of Glucose-oxidase (0.00542 g / ml, Sigma-Aldrich Inc., St. Louis, USA, G-2133) were 

added. After pre-incubation, the sections were incubated with the DAB solution 

containing Glucose-oxidase at room temperature for approximately 45 minutes, 

although the progress of the reaction had to be monitored carefully and checked 

regularly under the microscope. This glucose oxidase reaction was used to produce 

H2O2 in situ, which is required for the DAB reaction. To stop the reaction the sections 

were washed three times in 0.1 M PB at room temperature. The sections were then 

incubated for 45 minutes in Osmium tetroxide (4 % w/v solution, TAAB Laboratories 

Equipment Ltd., Reading, UK, O012) with a concentration between 0.5 to 2 % in 0.1 M 

PB according to the colour and the level of unspecific background labelling of the 

section after the DAB reaction. The sections were washed twice in 0.1 M PB for ten 

minutes and three times rinsed with distilled water in order to remove phosphate, which 

would form a precipitate with uranium in subsequent steps. 
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Dehydration and Uranyl acetate staining 

The sections were dehydrated by incubating them for 10 min each in a series of 

solutions with increasing ethanol concentration starting with 50 % Ethanol (VWR 

International Ltd., Poole, UK, 103692K). A solution of 1 % Uranyl acetate (Emscope 

Laboratories Ltd., Kent, UK, C024) in 70 % Ethanol was prepared. The sections were 

then incubated in this solution in the dark for 30 - 60 min depending on the colour and 

level of unspecific background labelling of the section. After that the dehydration 

continued with 70 %, 90 %, 95 %, twice 100 % ethanol and eventually twice in 

propylene oxide (VWR International Ltd., Poole, UK, 282904W) each for 10 minutes 

at room temperature.  The propylene oxide was only used in glass ware, so if the 

reaction was started in a 24 well plate, sections needed to be transferred to glass vials 

before pursuing dehydration with propylene oxide. Meanwhile, the Durcupan ACM 

Fluka resin (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) was prepared by 

mixing 10 g of single component A (44611), 10 g of B (44612), 0.3 g of C (44613) and 

0.3 g of D (44614). The sections were transferred into resin and incubated for 12 to 18 

hours at room temperature. Then the sections were mounted on microscopic slides 

(VWR International bvba, Leuven, Belgium, 631-0117) with the resin as mounting 

medium and covered with a cover slip (VWR International bvba, Leuven, Belgium, 

631-0133); both the slide and the cover slip were greased on the forehead and no 

pressure was applied onto the cover slip. The slides were incubated at 60ºC for 48 hours 

to harden (Halasy et al., 1996).  

Re-embedding 

A decision of which area to re-embed for electron microscopic investigation was made 

using the following criteria: 

• Area should contain a good amount of labelled axon 

• There should be no dendrite in this area (these are instead saved for 

reconstruction of the dendritic tree using light microscopy) 

• The size of the area depends on the amount and density of axons (a lot of axon - 

small area, fewer axons - larger area (excess tissue can be trimmed away under 

the ultra-microtome (Leica ultracut UCT, Leica AG, Vienna, Austria, 500613)) 

• If there are more boutons closer to one of the surfaces, this surface should face 

up on the block to be cut first 
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Pictures were then taken of the selected area of interest and the cover slip was removed 

by using a double-edged razor blade (Wilkinson Sword). 

A droplet of Durcupan ACM Fluka resin (Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany) (usually leftover resin from embedding, which was stored in the frigde and 

can be reused for a few weeks for this purpose only) was put in the lid of the 

embedding capsule (TAAB Laboratories equipment limited, Aldermaston, UK, 

MS9051). Using a surgical blade type 26 (Swann-Morton, Sheffield, UK, 0213) the 

first cut into the tissue was made in an area, away from the selected area of interest in 

order to see how the tissue was cutting. In some cases the tissue was very brittle in 

which case the slide was placed on a heating plate (Agar scientific Ltd., Stansted, UK) 

at 60°C for a couple of minutes to soften the resin. The area was then cut out and 

transferred to the droplet of resin with the preferred surface face down. An antistatic 

gun Zerostat (Discwasher, England, 3997817) was used with all metal equipment, to 

prevent the loss of the cut piece (usually around 1 mm2) due to electrostatic forces. 

Another security measure was to put a finger close to the area of cutting. If the piece 

would jump, it would often be trapped on the fingertip. The embedding capsule was 

then labelled with a number, filled up with resin, covered with a cover slip and 

incubated at 60°C for 48 hours to harden. After removing the cover slip and the 

embedding capsule, the block could be used for ultra microtome cutting (Halasy et al., 

1996). 

Ultra microtome cutting 

The excess resin around the area of interest of the block was trimmed away using a 

double bladed razor blade (Wilkinson Sword) to make a trapezoid shaped area on top of 

a pyramid. A glass knife was then made with the knife maker (LKB-Produkter AB, 

Stockholm, Sweden, 7801B) and aligned to the surface of the block by following 

adjustments: 

• The base of the trapezoid and the edge of the knife should be parallel 

• The left and right side of the surface should be equidistant from the edge of the 

knife (can be adjusted by aligning the edge of the knife with the reflection of the 

edge of the knife on the surface of the block) 

• The top and bottom of the surface should be equidistant from the edge of the 

knife (if the distance between edge of the knife and the reflection of the edge of 
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the knife on the surface of the block doesn’t change when moving the block up 

and down, then top and bottom are equidistant) 

When the block was aligned the resin above the tissue was trimmed away. Then final 

cuts around the area of interest were made to get a block as small as possible without 

losing any labelled axon (empty tissue can be trimmed away) by using a double-edged 

razor blade. After aligning the block again with a glass knife and trimming a few µm of 

the surface away, the glass knife was replaced by a diamond knife Diatome (TAAB 

Laboratory equipment limited, Aldermaston, UK, MS9051) and realigned. Then the 

water bath was filled with ddH2O, such that the water level was slightly lower then the 

edge of the knife (can be adjusted by watching the reflection of light on the water 

surface). After setting the cutting window, the thickness (desired thickness was 70nm, 

which can be judged by the reflection colour of the sections on the water surface after 

cutting; so after cutting a few sections, settings were adjusted accordingly) and the 

speed (around 1mm/s, but optimal speed varied between blocks) cutting was started and 

serial sections were collected on Piloform coated copper grids (3.05mm, slot 2mm x 

1mm, Agar scientific Ltd., Stansted, UK, G2500C) (Halasy et al., 1996).  

Image Acquisition and Interpretation of Electron micrographs 

Images were acquired with either CM10 or CM100 Transmission Electron Microscope 

(Philips, Eindhoven, The Netherlands) using DigitalMicrograph™ 3.9.3 (Gatan 

Software Team, Pleasanton, CA, USA). In order to achieve optimal image quality, 

magnification, focus and beam size were set by eye, the camera was then inserted and 

the image acquired with auto exposure. To get an optimal image of a synapse where the 

synaptic cleft is clearly visible, the specimen holder was tilted accordingly. In some 

cases, the copper grid had to be rotated, since tilting of the specimen holder was only 

possible in one dimension. 

In order to find labelled boutons – the most likely part of an axon to find a synapse – 

the first section was searched in regions where labelled axon could be seen at the light 

microscopic level. When an axon was found, it was followed through subsequent 

sections until it forms a bouton. In order to find a synapse on either side of the bouton, 

it was necessary to tilt the specimen holder until both plasma membranes – the one of 

the bouton and the one of the neighbouring structure – became clearly visible. Then the 

following criteria were used to identify Type II synapses according to Gray (Gray, 

1959): 
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• Widening between the two parallel running membranes (synaptic cleft) 

containing electron-dense protein (appearing grey in the electron microscope) 

• Vesicles on the presynaptic side (sometimes difficult to jugde, since the bouton 

appears completely black in some cases (because of the DAB labelling) but 

there should at least not be a mitochondrion in direct apposition to the putative 

synapse on the presynaptic side) 

• A small postsynaptic density (compared to a nearby Gray Type I synapse) 

Having identified a synapse, the next step was to identify, whether the target was a 

dendritic shaft (proximal or distal), spine, soma or axon initial segment of a pyramidal 

cell or an interneuron. 

The criteria for the identification of spines were: 

• Gets smaller in one direction (spine neck) and ends in the other when followed 

through serial sections 

• Contains spine apparatus (looks like smooth endoplasmatic reticulum) 

• Does not contain mitochondria or microtubuli 

• Also receives a single Gray Type I synapse (not observable when synapse 

parallel to cutting plane) 

A dendritic shaft, on the other hand, does contain mitochondria and microtubules. If the 

diameter exceeds 500 nm, it was considered as an apical dendrite. A soma can usually 

be identified by the presence of the nucleus, but rough endoplasmatic reticulum and 

ribosomes are also only found in the soma. Axon initial segments have a characteristic 

undercoating beneath the plasma membrane, receive a high number of Type II but no 

Type I synapses, do not emit spines and contain bundles of microtubules (Kosaka, 

1980). 

In order to distinguish between pyramidal cells and interneurons, the following criteria 

were applied: 

• Dendrites of pyramidal cells have spines, whereas most interneurons have a 

smooth dendritic shaft 

• Pyramidal cells predominantly receive Gray Type I synapses on spines (in the 

hippocampus exclusively), very rarely on their dendritic shaft and not on soma 

• Pyramidal cells contain non-membrane bound protein aggregations (dendrites 

and soma) (Halasy et al., 1996). 
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Results 
In order to identify prefrontal interneurons that are involved in the temporal 

coordination of the prefrontal cortex and hippocampus, single cells were extracellularly 

recorded with glass electrodes in the medial prefrontal cortex together with the local 

field potential (LFP) in the same region and in the hippocampal CA1 area of 

anaesthetized rats. The LFP is an electroencephalogram (EEG) recorded extracellularly 

within certain brain areas and information about brain oscillations of different 

frequency bands (theta (4-8 Hz; during exploratory behaviour and rapid-eye-movement 

sleep (Buzsaki, 2002)), gamma (at 30-80 Hz and associated with working memory and 

attention (Engel et al., 2001)), slow wave or delta (0.5-4 Hz; a certain stage of sleep is 

referred to as slow wave sleep (SWS) (Steriade and Amzica, 1998)), hippocampal sharp 

wave-associated ripple oscillations (120-200 Hz; associated with memory consolidation 

(Ylinen et al., 1995)), spindles (12-16 Hz and occur during SWS (Steriade and Amzica, 

1998))) can be extracted from the LFP. After electrophysiological data was acquired, 

the cell was juxtacellularly labelled with Neurobiotin, by ejecting a small volume of 

Neurobiotin from the recording electrode and by stimulating the cell with a current 

pulse. The Neurobiotin is then specifically taken up by the stimulated cell only. The 

Neurobiotin was allowed to be distributed throughout the cell (including axons and 

dendrites), and the rat was perfused with fixative via the aorta only after 2-4h; the brain 

was removed and cut into 70 µm thick sections with a vibratome1. 

For organisation purposes each cell has a code number, for example K125a. K for Katja 

(the recorder), the rat brains are consecutively numbered and each recording attempt in 

each brain gets a small letter (not every recorded cell was successfully labelled). 

Next, every third section was incubated with Streptavidin-Alexa488 and investigated 

under the fluorescence microscope. On average, the dendrites of a cell can be observed 

in 5-10 sections around the soma, the axon of an interneuron usually spans in 10-15 

sections. 

Depending on the electrophysiological data and the dendritic and axonal arborisation a 

decision was made on which molecular markers to test first. In most cases the calcium 

                                                 
1 All in vivo experiments – from recording to perfusion - were performed by Katja 

Hartwich. 
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binding proteins Parvalbumin (PV) and Calbindin (CB) were tested initially, because 

they are both expressed by many cell types and so the result of this experiment narrows 

down the possibilities for further investigations2. 

Immunoreaction on labelled cells3 

Most of the cells that were recorded in the prelimbic medial prefrontal cortex in fact 

express either PV or CB or both (Table 3). In contrast to the hippocampus, where PV 

and CB are not co-expressed (unpublished observation), most PV cells in layer II/III of 

the frontal cortex are either weakly (80%) or strongly (11%) immunopositive for CB 

(Kawaguchi and Kubota, 1997). 

Table 3: Molecular expression profile of in vivo recorded and labelled GABAergic interneurons 

 PV CB SM CCK GABAARα1 GAD CR mGLUR1α VIP NPY NOS 

K19a + - -  +  -   - - 
K48a + -  - -  -     
K64a + -          
K79a + -   +       
K94e + -      -    
K105a + -          
K109a + -          
K126c + -          
K131g + -          
K133a + -          
K135b + -          
K137c + -          
K146c + -          

                                                 
2 Cutting the brain, Strep-Alexa488 labelling, Immunoreactions on labelled cells and 

image acquisition were performed by both Katja Hartwich and me. In this thesis only 

figures are shown were I did the reaction, the image acquisition and editing, if not 

explicitly stated otherwise. 
3 My contribution to this part of the project was about 30%. A lot of the data was 

already acquired before I joined the project and Katja Hartwich and I did both the 

immunoreactions and image acquisition in parallel. 
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K148c + -          
K155a + -    +      
K35a  + +       +  
K60a - + - -        
K70b - + - -     -   
K125a - + - -  +   -   
K65b + +        -  
K72a + +   +       
K74d + +          
K75a + +   +       
K101a + +      -    
K107b + +          
K122c + +     -     
K123a + +          
K142a + +          
K145a + +          
K157a + +          
K158c + +          
K47b - - - +     -   
K58a - - - -        
K93d - - -         
K104a -    -       
K108d - - -         
K110b - - - -        
K119a  - +         
K149d - -          
K153b - - -         
K154b - - -         

 

PV only expressing cells 

Out of 27 labelled PV expressing cells, 15 were immunonegative for CB. Importantly, 

immunonegativity cannot distinguish between the total absence of expression of this 
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protein and a very weak expression that falls below the detection threshold of this 

method. Therfore we cannot exclude that all PV immuno-positive cells might express 

low levels of CB. An example of a PV immunopositive cell is shown in Figure 2 

(K146a); this cell was tested on a proximal dendrite. Of the PV only expressing cells 

K19a was additionally tested for somatostatin (SM), calretinin (CR), neuropeptide 

tyrosin (NPY), nitric oxide-synthase (NOS), and the α1 subunit of the GABAA repector 

(GABAARα1) of which only the latter one was immunopositive. Cell K48a was 

immunonegative for CCK, GABAARα1 and CR, whereas K79a was immunopositive 

for GABAARα1. K94e was tested negative for mGluR1α and K155a positive for GAD. 

 
Figure 2: Fluorescence micrograph shows a dendrite of a GABAergic interneuron (K146a) 
labelled with Neurobiotin. The dendrite is immunopositive for Parvalbumin (PV), but 
immunonegative for Calbindin (CB). 

Almost all PV expressing cells fire rhythmically in relation to local and hippocampal 

network oscillations and are correlated to the spindle trough and the hippocampal theta 

peak, as tested by Katja Hartwich. One exception was K19a, which is correlated to the 

theta trough, but that might be due to problems with the theta detection during the 

analysis of firing patterns. 

CB only expressing cells 

Three (K60a, K70b, K125a) CB only positive cells were observed in our sample 

(Figure 3). Two of the cells (K60a and K125a) had remarkably spiny dendrites (shown 

for K60a in Figure 4), whereas K70b had rather smooth dendrites.  
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Figure 3: Fluorescence micrograph showing the dendrite of a Neurobiotin-labelled cell (K125a) 
immunopositive for Calbindin (CB), but immunonegative for Parvalbumin (PV). 

 

Figure 4: Light micrograph showing a spiny dendrite captured from K60a – a CB only 
expressing cell. 

All of them were tested for PV, SM, and CCK and K70b and K125a additionally for 

VIP; all reactions tested immunonegative for these cells. The cell K125a was also 

immunopositive for GAD (Figure 5) and all three cells form Gray Type II synapses, as 

defined by Gray (Gray, 1959) and usually attributed to GABAergic synapses. The most 

striking feature of these three cells is that they are not correlated to theta oscillations 

recorded in the hippocampus and spindle oscillations detected locally (recorded and 

tested by Katja Hartwich), whereas all PV and PV/CB expressing cells are correlated to 

spindle oscillations and hippocampal theta. One CB expressing cell (K35a), which was 

immunopositive for SM and NPY, has not been characterized further yet. 
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Figure 5: Fluorescence micrograph showing the axon of cell K125a (CB only expressing cell) 
labelled with Neurobiotin, which expresses L-Glutamic Acid Decarboxylase (GAD). 

PV/CB co-expressing cells 

Out of twelve labelled PV/CB co-expressing cells K65b was the only cell that was 

labelled weakly for PV and strongly for CB, whereas most cells exhibit 

immunoreactivity for PV and CB at comparable levels (as jugded in comparision to 

nearby immunopositive cells), with three exceptions that were only weakly labelled for 

CB (K72a, K75a, K123a). An example of a PV/CB co-expressing cell is shown in 

Figure 6 (K145a). 

 

Figure 6: Fluorescence micrograph showing the dendrite of neuron (K145a) labelled with 
Neurobiotin. The cell is immunopositive for both, Parvalbumin (PV) and Calbindin (CB). 

Cell K65b was also tested for NPY and is immunonegative for this marker, whereas 

two cells (K72a and K75a) were immunopositive for GABAARα1. Cell K122c was 

negative for CR and K101a for mGluR1α. 

These co-expressing cells are mostly correlated to network oscillations similar to PV 

only expressing cells, but there is some heterogeneity within this group. One way to 
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further characterize these cells would be to find molecular markers that are 

differentially expressed by these PV/CB co-expressing cells. 

Other cells 

Additionally, eight interneurons recorded and labelled in vivo tested negative for both 

PV and CB. One of them expressed SM (K119a), one CCK (K47b) and six other cells 

do not express any of the markers tested so far. As for the PV/CB co-expressing cells, 

testing of additional molecular markers will be required in the future. 

Identification of postsynaptic targets4 

The majority of all labelled cells expressed PV, CB or both and in order to test whether 

these cells have distinct synaptic connectivity, their postsynaptic targets were identified 

by randomly sampling synapses of the labelled cells using electron microscopy. 

PV expressing cells 

Labelled axons were traced through serial ultrathin sections using an electron 

microscope until a synapse was identified and then the postsynaptic target was 

identified using criteria described in the method section.  

The results are described here for each cell in detail and summarized in Figure 16. Of 

23 identified synapses originating from cell K79a, which expressed PV and 

GABAARα1, ten synapses targeted small dendritic shafts (including distal and oblique 

dendrites), seven targeted spines, four made synapses onto apical dendrites, and two 

synapses innervated the soma of pyramidal cells. Most of the dendrites could be 

identified to belong to a pyramidal cell, whereas two of them were identified as 

interneuron dendrites and one dendrite could not be clearly identified (shown in Figure 
7). 

                                                 
4 My contribution to this part of the project was about 95%. Katja Hartwich prepared 

some of the sections for electron microscopy, but I did the the re-embedding, the 

cutting and image acquisition with the electron microscope. 
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Figure 7: Electron micrographs showing a labelled bouton (b) forming a Typ II synapse (arrow; 
B) onto the dendritic shaft (d) of a target neuron (A) which receives two Type I synapses 
(arrowhead) on its shaft (arrow and C, rarely for pyramidal cells), but also has a sessile spine 
with a synapse (D) unclear if Typ I or II. B is from the neighbouring section of A, whereas C is 
about 300nm in one direction and D about 550nm in the other direction on a part of the target 
neuron not depicted in A (figure derived from K79a – a PV-expressing cell). 

Furthermore, the postsynaptic targets of PV only expressing cells - K19a, K48a, and 

K64a - were tested; all cells target apical dendrites and/or somata of predominantly 

pyramidal cells, additionally to distal and oblique dendrites. In more detail, K19a 

targeted seven distal dendritic shafts, six apical dendrites (Figure 8), three spines, and 

one soma of 17 identified synapses in total. 

 
Figure 8: Electron micrographs (A-F) derived from K19a (a PV-expressing cell) showing serial 
sections (one section about 70nm) of a Type II synapse of a labelled bouton onto an apical 
dendrite of a pyramidal cell. Synapse (between arrow heads) was observed in 4 sections 
(arrows) and therefore spanning 280nm perpendicularly. 
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Boutons of cell K48a formed synapses onto four distal or oblique dendritic shafts, three 

apical dendrites, nine spines and one soma out of 17 identified synapses. For K64a 

eleven synapses were identified of which four targeted somata of pyramidal cells and 

seven targeted small dendritic shafts. 

Interneurons of the cerebral cortex which target somata (20-30%), apical and basal 

dendrites (35-50%) and dendritic spines (20-30%) have previously been classified as 

basket cells in the neocortex of cats (Kisvarday et al., 1985; Somogyi et al., 1983a). 

Accordingly, all PV expressing cells analysed so far in this study are identified as 

basket cells, because they target apical dendrites (15-35%) and somata (5-35%) of 

pyramidal cells (Figure 16), which is also consistent with findings in the rat neocortex 

(Kubota et al., 2007). 

CB only expressing cells 

The postsynaptic targets of the CB expressing cell K70b were investigated and of the 

14 identified synapses, ten targeted small dendrites on the shaft (Figure 9) and four 

targeted spines of pyramidal cells. Eleven of the targets could be identified as 

pyramidal cells and three of the dendritic shaft targets could not be verified as 

originating from pyramidal cells or interneurons. 
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Figure 9: Electron micrograph showing a labelled bouton targeting the dendritic shaft of a 
pyramidal cell (A). Two spines (circles) emerge from the target dendrite (B-E) (captured from 
K70b – a CB-expressing cell). 

The other two CB expressing cell also targeted exclusively small dendrites (K60a 

eleven of 15 in total, K125a eight of twelve) and spines (K60a three of 15, K125a four 

of twelve). One bouton was observed in direct apposition to a soma and another axon in 

direct proximity to an apical dendrite, but both axons did not form a synapse. This 

suggests that these cells specifically target distal and oblique dendrites and dendritic 

spines of predominantly pyramidal cells and avoid somata and apical dendrites. All CB 

expressing cells form Gray Type II synapses (Figure 10). In contrast to PV only 

expressing basket cells, CB only expressing cells are not correlated to theta and spindle 

oscillations, differ in molecular expression profile, and exclusively target small dndrites 

and spines. 
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Figure 10: Electron micrographs (A-D) captured from cell K60a (a CB only expressing cell) 
showing serial sections of a Gray Type II synapse (between arrow heads). As a comparison E 
shows a Type I synapse from the same area. The target was classified as a pyramidal cell 
dendrite, because it emits two spines within a few sections (not shown). 
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PV/CB co-expressing cells 

The postsynaptic targets of four PV and CB co-expressing cells were tested. Sixteen 

synapses of cell K65b, which expresses PV weakly and CB strongly (in contrast to all 

other co-expressing cells, which show either opposite expression levels or equal 

expression levels), were identified of which five targeted distal dendritic shafts, one an 

apical dendrite, six spines and four somata (three boutons targeted the same soma) of 

mainly pyramidal cells (two distal dendritic shafts remained unidentified). Therefore, 

this cell was classified as a basket cell. 

Boutons sampled of cell K72a formed synapses onto four small dendritic shafts, three 

apical dendrites, nine spines and one soma (in total 17 identified synapses) of 

pyramidal cells (only one target remained unidentified). From cell K75a one synapses 

targeted a distal dendritic shaft, two apical dendrites, three spines and three somata 

(nine synapses in total) (Figure 11).  
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Figure 11: Electron micrograph showing a labelled bouton targeting an apical dendrite of a 
pyramidal cell (A). B-F serial sections of a Typ II synapse (B) and an axon between the labelled 
bouton and its target. Approximately 600 nm away, the same bouton forms another synapse 
onto the same apical dendrite (X) (electron micrographs derived from K75a – a PV and CB-co-
expressing cell). 

For cell K101a not many synapses could be identified because of poor ultrastructural 

preservation of the tissue, but an interesting finding with this cell was that one bouton 

targeted two somata simultaneously (Figure 12). Additionally, one synapse onto a 

spine and two synapses onto distal dendritic shafts of a pyramidal cell or interneuron 

were identified for this neuron. 

In conclusion, the PV/CB co-expressing cells investigated so far could also be 

identified as basket cells, because they target apical dendrites and somata of pyramidal 

cells. 
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Figure 12: Electron micrograph shows a bouton of a labelled neuron targeting two somata (A). 
B, the synapse onto the left soma shown in A; C, synapse onto the right soma in panel A 
(electron micrographs captured from K101a – a PV and CB-co-expressing cell). 

Other cells 

Cell K104a belongs to a very distinct type of cells, because their axon runs along axon 

initial segment, which appears in the light microscopic level as chandeliers (Figure 
13). 
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Figure 13: Light micrograph showing boutons of a labelled axo-axonic (K104a); A) and PV/CB 
expressing basket (K101a; B) cell after DAB reaction. Note in A that the axons form chandeliers 
- typical for cells targeting axon initial segments – and in B an axonal arborisation typical for 
basket cells (most of its axon in close proximity to its soma in random orientation). 

The boutons of this cell target exclusively axon initial segments of pyramidal cells 

(Figure 14 and Figure 15) (ten boutons and six synapses sampled) and therefore the 

interneuron was classified as an axo-axonic cell (Somogyi et al., 1983b).  
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Figure 14: Electron micrographs showing a labelled bouton targeting an axon initial segment. 
These can be recognized in the electron microscope by their undercoating beneath the plasma 
membrane (A, opposite of labelled bouton), bundles of microtubules (B in box) and their 
innervation with several Gray Type II synapses (four synapses in figure A, whereas the top two 
release specialisations are from the same bouton and might belong to the same synapse). 
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Figure 15: Light and electron micrographs of axo-axonic cell K104a showing labelled axons 
forming chandeliers along axon initial segments. For each bouton that forms a synapse onto 
the same axon initial segment, the synapse is shown with high magnification. For one of the 
boutons no synapse could be observed and one of the boutons is not shown in the low 
magnification electron micrograph. All synapses are within 20 ultrathin sections of 70 nm 
thickness. 
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In conclusion, the cells that were investigated for their postsynaptic targets can be 

divided into three distinct groups: Axo-axonic cells targeting exclusively axon initial 

segments, CB-expressing cells targeting small dendrites and spines, and PV expressing 

and PV/CB co-expressing basket cells, which target also apical dendrites and somata of 

predominantly pyramidal cells (Figure 16). Although there is some variation within 

the latter group, the postsynaptic target analysis does not distinguish between PV only 

expressing and PV/CB co-expressing cells. 

 

Figure 16: Diagram showing the percentage of the different types of targets for each cell. Cells 
expressing only CB exclusively target small dendrites and spines, PV-expressing cells and 
PV/CB co-expressing cells, additionally target apical dendrites and somata and were therefore 
identified as PV- and PV/CB-expressing basket cells. On the right the number of identified 
synapses is depicted for each cell. 

Quest for novel molecular markers5 

In order to identify additional moelcular markers that could further distinguish 

interneurons, antibodies against various molecules, for example, known to be expressed 

in subsets of PV expressing cells were tested for their suitability in our conditions (for 

instance the perfusion/fixation cannot be changed retrospectively). Some of these 

                                                 
5 My contribution to this part of the project was about 95%. Katja Hartwich did two of 

the immunoreactions (mGluR1α, PV, CB and SM-co-localisation and CB, SM and 

NPY-co-localisation) before I arrived. 
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antibodies can be used in the future to further investigate PV/CB co-expressing cells 

and cells that were not positiv for markers tested so far. 

mGluR1α 

A co-localisation study was performed using antibodies of the metabotropic glutamate 

receptor 1α subunit (mGluR1α), PV, SM, and CB raised in different species, 

respectively. Of 33 cells that were immunopositive for at least one of the markers, 18 

were immunopositive for PV and seven of these cells also expressed mGluR1α, five 

cells expressed PV, mGluR1α and CB and one cell expressed PV and CB, whereas five 

cells only expressed PV. Additionally, two cells were observed that express both CB 

and mGluR1α, four cells expressing CB, SM and mGluR1α and three cells which only 

express CB. 

In summary, PV, CB and mGluR1α can be expressed in all sorts of combinations, 

except PV and SM are never co-expressed. In contrast to this observation in the medial 

prefrontal cortex (mPFC), bistratified and O-LM (oriens-lacunosum moleculare) cells 

in the hippocampal CA1 co-express PV and SM (Klausberger et al., 2003; Klausberger 

et al., 2004). An additional difference between mPFC and hippocampus is indicated by 

the observation that PV and mGluR1α are much more frequently co-expressed in the 

mPFC (Figure 17) than in the hippocampus (Ferraguti et al., 2004). 
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Figure 17: Fluorescence micrographs showing a co-localisation between PV and mGluR1α in 
the same neurons. In the first row two PV-positive cells are depicted which also express 
mGluR1α, whereas one cell expresses only mGluR1α, but not PV. In the second row a PV-
expressing cell is shown, which is mGluR1α-negative. 

vGLUT2 

An antibody against the vesicular glutamate transporter type 2 (vGLUT2) raised in 

guinea pig was tested in dilutions of 1:2500 and 1:5000, which both showed a dotted 

labelling pattern, supposedly boutons, throughout the CA1 area of the hippocampus, 

but remarkably dense in the stratum lacunosum-moleculare. The labelling in the 

prefrontal cortex was much weaker in the 1:5000 dilution, so for the co-localisation 

with PV and CB a concentration of 1:2500 was used. The high number of vGLUT2-

positive dots, presumably representing axonal boutons from the thalamus (Kubota et 

al., 2007) did not allow to judge at the light microscopic level, whether these boutons 

form synapses preferentially onto the soma or dendrites of certain PV-expressing cells 

and not on others. To investigate if terminals of certain PV- and/or CB-expressing cells 

target spines, which receive a Gray Type I synapse of a terminal immunopositive for 

vGLUT2 and therefore most likely thalamic input, was impossible at the light 

microscopic level, but this question could be addressed in the future by immunogold 

labelling using electron microscopy. 
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5-HT2c – a serotonin receptor subunit 

Another antibody against 5-HT2c – the 2c subunit of a serotonin receptor – was tested 

with various dilutions ranging from 1:20 to 1:500. However, only a very weak nuclear 

labelling in all cells was observed, although a receptor-like labelling of the cell 

membrane was expected. Interestingly, when this antibody was also tested in a much 

higher dilution (1:10000 and 1:100000), a specific labelling of the plasma membranes 

of neurons was observed in layer VI of the prefrontal cortex, but no labelling in 

superficial layers or the hippocampus. 

N200 

The co-localisation of PV and N200 – a neurofilament - was tested as well, but of 28 

counted cells in layer II and III of the mPFC only one PV-expressing cell was negative 

for N200. Further investigations may verify whether this molecular marker could be 

used to distinguish between subpopulations of PV-expressing cells. 

Kv3.1 

An antibody against the potassium channel Kv3.1 was tested for co-localisation with 

PV and of 164 observed cells only 3 PV positive cells did not express this potassium 

channel. 

Kv4.3 

A Kv4.3 antibody raised in rabbit was tested as well, but instead of an expression 

pattern on the cell surface a dotted nuclear labelling was observed in all concentration 

ranging from 1:500 to 1:100000. A co-localisation study with PV indicated that the 

labelling was not on the cell surface, but in the nucleus (Figure 18). Additionally, an 

antibody raised in goat was also tested, but showed similar non-specific results as the 

rabbit antibody. 
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Figure 18: Fluorescence micrographs showing a PV (A,C,E,G) positive cell in different focuses 
(from top to bottom) acquired with a conventional fluorescence microscope and the 
corresponding images showing Kv4.3 labelling (B,D,F,H). The Kv4.3 labelling cannot be 
encountered on the cell surface, but in the nucleus. 

D1 dopamine receptor 

A subtype specific antibody against the D1 dopamine receptor was tested in 

concentrations ranging from 1:20 to 1:100000 (optimal concentration between 1:1000 

and 1:10000) and showed strong labelling in the substantia nigra and the striatum, but 

only a few dots (presumably boutons) in the prefrontal cortex. 

GluR2 

A GluR2 antibody was also tested and showed dotted labelling throughout the section 

(like boutons) and also some dotted nuclear labelling of interneurons (somata in stratum 

radiatum and stratum oriens of the hippocampal CA1 region were labelled). Also 

somata in the prefrontal cortex had this unspecific nuclear labelling and therefore, this 

antibody cannot be used in our material. 

NO sensitive guanylyl cyclase α1 subunit 

Another promising candidate was a nitric oxide (NO) sensitive guanylyl cyclase α1 

subunit (GCα1) specific antibody, which was used at an optimal dilution of 1:10000 

and showed receptor-like labelling in both the hippocampus and the prefrontal cortex. 

A co-localisation study with PV and Somatostatin (SM) was performed, but 
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unfortunately, the immunoreaction of the GCα1 only seemed to have worked in the 

hippocampus (Figure 19), but not in the prefrontal cortex, although both other 

antibodies worked in the prefrontal cortex as well. Therefore, the prefrontal cortex of 

the same brain as the hippocampal sections was cut and the immunoreaction repeated 

on those sections. This time the reaction worked in both the hippocampal and the 

prefrontal section, although it was somewhat weaker in the mPFC. Many cells 

expressed this protein at relatively low level especially in layer II/III, whereas in layer 

V fewer cells were strongly immunopositve for this molecular marker. 

In conclusion, this molecular marker might allow to distinguish subpopulations of PV-

expressing cells in the hippocampus (possibly axo-axonic and basket cells), but whether 

it can be used in the mPFC is a matter of further investigations. 
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Figure 19: Fluorescence micrographs showing co-immunolabelling for PV in blue, SM in red 
and GCα1 in green. The first row depicts a cells in stratum pyramidale of the hippocampal CA1 
area immunopositive for PV, but immunonegative for SM and GCα1. In the second row a cell in 
stratum oriens is shown that is positive for all three molecules tested in this co-localisation 
study. In the third row a cell is shown, which is positive for PV and SM, but negative for GCα1 
and another cell positive for GCα1 and PV (weak), but negative for SM captured from stratum 
oriens.  

CB-SM-NPY 

Furthermore, to further investigate CB expressing cells, a co-localisation of CB, SM 

and Neuropeptide tyrosin (NPY) was carried out. Of 41 CB expressing cells 30 % also 

expressed SM, 10 % also NPY, 10 % both markers, whereas 50 % expressed CB only. 

Out of the four in vivo labelled CB expressing cells, one expresses SM and NPY, 

whereas the other three only expressed CB; this reflects the ratio of the co-localisation 

study. 

VIP 

In order to verify whether distinct subsets of PV expressing cells receive differential 

amounts of input from vasoactive intestinal peptide (VIP) expressing interneurons as 

suggested previously (David et al., 2007), a co-localisation of PV and VIP was 

performed. In Figure 20 an example of a bouton expressing VIP forming a putative 

synapse onto a dendrite expressing PV is shown, but only very few similar examples 

were observed. 

In conclusion, mGluR1α, N200 and GC α1 could be used to further characterize 

labelled cells in the mPFC, and vGLUT2- and VIP-input could be investigated using 

confocal or electron microscopy. 
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Figure 20: Fluorescence micrograph showing VIP positive boutons (orange, in circle) in close 
proximity to and putatively forming synapses onto a PV positive dendrite (blue). 
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Discussion 
In the present thesis I have analysed the molecular expression profile and postsynaptic 

targets of GABAergic interneurons in the medial prefrontal cortex. Of twelve labelled 

cells the postsynaptic targets were identified and these cells can be divided into three 

categories: axo-axonic cells, which target exclusively axon initial segments, CB-

expressing dendrite targeting cells and basket cells, which either express PV or co-

express PV and CB and target apical dendrites and somata additionally to small 

dendrites and spines of pyramidal cells. Approximately 25% of synapses of 

interneurons target dendritic spines in the cat visual cortex (Beaulieu et al., 1992) and 

these spines usually also receive excitatory input (Jones and Powell, 1969). Innervation 

of spines has been found for basket and dendrite targeting cells, but not the axo-axonic 

cell. Because spines are electrically compact, GABAergic synapses are in a unique 

position to shape the excitatory input onto the spine (Dehay et al., 1991) and it has been 

shown that interneurons target predominantly spines that receive thalamo-cortical input 

(Kubota et al., 2007). These spines are larger and express AMPA receptors in contrast 

to spines that receive cortico-cortical input (Kubota et al., 2007) and co-innervation of 

interneurons of spines receiving thalamo-cortical input might be a mechanism to 

compensate for reduced synaptic plasticity of these terminals. Interestingly, it seems 

that from the interneurons investigated in this study all of them innervate dendritic 

spines apart from axo-axonic cells. 

Basket cells 

About 50% of all inhibitory interneurons are considered to be basket cells (Markram et 

al., 2004) and the percentage of the different target cell domains in this study for basket 

cells is consistent with previous findings in the neocortex (Kisvarday et al., 1985; 

Kubota et al., 2007; Somogyi et al., 1983a). In the CA1 area of the hippocampus basket 

cells express either PV, or CCK together with either VIP or vGLUT3 (Klausberger et 

al., 2005), whereas in the neocortex basket cells can express both PV and CB and many 

neuropeptides including CCK, NPY and occassionally SM or VIP (Markram et al., 

2004). At least some cells co-express PV and CB in the mPFC and could be identified 

as basket cells in this study. There is one recorded cell that expresses CCK, which 

might also be a basket cell, but its postsynaptic targets have not been investigated yet. 
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Basket cells in the hippocampus are considered to provide temporal coordination for 

pyramidal cells (Klausberger et al., 2003) and considering that basket cells in the mPFC 

are also correlated to network oscillations, they might have the same function. 

Axo-axonic cell 

In this study one axo-axonic cell has been investigated. In the hippocampus axo-axonic 

cells are considered to express PV (Katsumaru et al., 1988) and in the neocortex to 

express either PV or CB (Markram et al., 2004), but this particular cell was tested for 

both molecular markers and turned out to be negative for both of them. Another 

calcium-binding protein expressed in certain GABAergic interneurons is Calretinin 

(Acsady et al., 1996), but this molecular marker was not tested yet. 

Axo-axonic cells target exclusively axon initial segments (Somogyi et al., 1983b) and 

are therefore in the unique position to control the output of postsynaptic pyramidal cells 

(Buhl et al., 1994). The electrophysiological data of this recorded axo-axonic cell is not 

evaluated yet, but in the hippocampus it has been shown that axo-axonic cells fire just 

after the peak during theta oscillation and at the beginning of sharp wave bursts, but are 

silent subsequently, whereas basket cells fire at the descending phase of theta and are 

modulated to sharp wave oscillations (Klausberger et al., 2003). This suggests a 

differential contribution of basket cells and axo-axonic cells to the temporal 

coordination of pyramidal cells with the latter considered as controlling the output of 

pyramidal cells through inhibition. In contrast, it was reported that axo-axonic cells can 

depolarize pyramidal cells dependent on their membrane potential and chloride 

concentration in the axon-initial segment (Szabadics et al., 2006). Therefore, the 

function of axo-axonic cells and their contribution to network oscillations is not only 

dependent on their input, but also on the electrophysiological state of the postsynaptic 

target. 

CB-expressing dendrite targeting cells 

On the other hand, CB only expressing cells exclusively target small dendrites and 

dendritic spines and they are interestingly not correlated to local spindle and CA1 theta 

oscillations. Two of these cells have remarkably spiny dendrites and considering that 

most interneurons have fewer spines than pyramidal cells (Fairen et al., 1984), this 

might suggest that these cells mature slower than other cells (Wang et al., 2004). 

Martinotti cells in the neocortex also have spiny dendrites (Wang et al., 2004), but they 
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always express SM and for oriens-lacunosum moleculare (O-LM) cells – the pendant to 

Martinotti cells in the hippocampus – it has been shown that they are correlated to the 

trough of hippocampal theta oscillations (Klausberger et al., 2003). Since these cells 

have not been reconstructed yet, it is difficult to compare them with classes of cells 

already described in the literature or to suggest possible functions of these cells. But 

considering that most pyramidal cells are correlated to local spindle oscillations 

(Steriade and Amzica, 1998), there might be a subpopulation that is not correlated to 

these network oscillation. These CB-expressing cells might provide feedback inhibition 

for such pyramidal cells. 

In conclusion, interneurons innervating distinct domains of pyramidal cells – axon 

initial segments; somata and apical dendrites; distal dendrites – shape the firing of 

pyramidal cells in different ways, with axo-axonic cells having the strongest influence 

on the output of their target cells (Buhl et al., 1994). 

Heterogeneity of mPFC interneurons 

The mPFC integrates input from several different brain regions including the limbic 

system (hippocampus and amygdala), the midline thalamus, various cortical areas and 

monoaminergic nuclei of the brain stem (Hoover and Vertes, 2007), whereas the CA1 

area of the hippocampus has fewer extrinsic inputs and therefore less variation amongst 

its cell population (Somogyi and Klausberger, 2005). 

An example to illustrate the heterogeneity of interneurons in the mPFC is a co-

localisation study of PV, SM, mGluR1α and CB, which showed that PV and mGluR1α 

are much more frequently co-localized in the mPFC than in the CA1 of the 

hippocampus (Ferraguti et al., 2004). Furthermore, in the mPFC PV, CB and mGluR1α 

can be expressed either by themselves or in all sorts of combinations, except for PV and 

SM, which are not co-expressed. In contrast, bistratified and O-LM cells in the CA1 

region of the hippocampus co-express PV and SM (Klausberger et al., 2003; 

Klausberger et al., 2004). 

Examples for different expression in different layers of the mPFC are the serotonin 

receptor subunit 2c, which is predominantly expressed by cells in deeper layers (Liu et 

al., 2007a), vGLUT2, which is localized in boutons mainly in layer I/III/V (unpublished 

observation) and is mainly expressed in thalamic terminals, and GCα1 (NO sensitive 

guanylyl cyclase subunit α1), which shows high expression levels in relatively few 
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layer V neurons (similar to hippocampal CA1 (Szabadits et al., 2007)), whereas in layer 

II/III many cells seem to express this molecular marker at relatively low levels. 

The above mentioned examples illustrate which complexity of interneuron types can be 

expected in the mPFC and that it is not always straightforward to classify these cells. 

Therefore, not only molecular markers, but also postsynaptic targets, in vivo-firing 

patterns, dendritic arborisation and presynaptic input (expression profile of boutons 

innervating dendrites and/or soma of a labelled cell, but also postsynaptic receptor 

expression) are considered to reliably define cell types (Markram et al., 2004; Somogyi 

and Klausberger, 2005).  

Future directions 

Because the recording and labelling of single cells in freely-moving animals has not yet 

been possible for technical reasons, all recordings were performed in anaesthetized rats. 

How does that relate to decision making? During this drug induced brain state of rats, 

network oscillations occur that were also observed during sleep, like spindle 

oscillations (7-14 Hz) during slow wave sleep (0.5-4 Hz) in the neocortex (Steriade and 

Amzica, 1998), or theta oscillations (4-12 Hz) in the hippocampus (Buzsaki, 2002), 

which also occur during exploratory behaviour. Therefore, single cell recordings 

simultaneous with the LFP of the mPFC and hippocampus - to obtain information about 

oscillatory brain activity - allow investigating the in vivo-firing patterns of single cells, 

but also the anatomy including postsynaptic targets and molecular expression profiles 

of these recorded cells. In order to relate these results to behaving rats there are two 

possible ways. First of all, these results can be used to identify certain types of 

interneurons according to their in vivo-firing patterns alone obtained by other recording 

methods, which in fact is currently being done by Timothy Senior, MRC Anatomical 

Neuropharmacology Unit, Oxford, UK. Secondly, after technical difficulties are 

circumvented single cell recording methods could be applied to behaving animals to 

verify the results from anaesthetized animals. 

Furthermore, molecular expression profiles can be used to classify neurons in different 

brain areas. In addition, genetic manipulation of subpopulations of neurons expressing a 

certain marker could be used to measure the contribution of these subpopulations to 

network oscillation. After a promoter that controls the expression of a certain protein in 

a certain subpopulations of interneurons is identified, this promoter could be used in a 

construct to control the expression of genes that allow the manipulation of the cell’s 
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activity with, for example, light (channelrhodopsin-2 (Deisseroth et al., 2006)) or 

reversible manipulation with a pharmacological drug such as zolpidem (Wulff et al., 

2007). This would be a way to investigate causality – which subpopulations contribute 

to which kind of oscillations and to which degree – which is not possible with the 

experimental procedure used in this study. 

mPFC in health and disease 

Understanding the circuitry of the mPFC and the role of interneurons in these circuits is 

not only important to comprehend working memory and decision making in the healthy 

brain, but also has implications for brain dysfunction. It was suggested that alteration in 

GABAergic inhibition originating from distinct interneuron subclasses, in particular 

axo-axonic cells, is associated with schizophrenia (Lewis et al., 1999) and that 

abnormal synchronization of hippocampus and mPFC might contribute to attention 

deficit/hyperactivity disorder (Willis and Weiler, 2005) as well as to schizophrenia 

(Friston and Frith, 1995). 

In conclusion, PV- and PV/CB-basket cells in the mPFC contribute to the temporal 

coordination of local pyramidal cells, whereas CB-expressing dendrite targeting cells 

might provide feedback inhibition of certain pyramidal cells that are not correlated to 

rhythmic brain activity. In order to further characterize these cells, in particular PV/CB 

co-expressing cells and cells that were not positive for any markers tested so far, they 

could be tested for some of the novel molecular markers. In order to understand the 

contribution of certain subpopulations of interneurons to local and distributed network 

oscillations during behaviour, these results can be used to support and help the 

understanding of results from experiments in behaving animals. A combination of 

behavioural experiments and anatomical analysis will eventually lead to an 

understanding which cells or cell types contribute to which kind of brain activity and 

resulting behaviour. 
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