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Preface

This thesis elaborates the relations between dynamic evolutionary
game theory, the concept of a Nash equilibrium, and the potential use
of the theory to serve as an equilibrium selection technique. It em-
phasizes the importance of different types of evolutionary dynamics,
beside the well known replicator dynamic. The vast majority of the
literature is concerned with games in normal form. In the last Part
I apply evolutionary dynamics to two examples of games in extensive
form. One is a perfect information game, where already some general
results are known, the other one is a game where one player has im-
perfect information, where not much is known. In this example we will
see how evolutionary dynamics can help to select equilibrium points,
when a continuum of Nash equilibria exist. The rest of the thesis is
organized as follows:
Part 1 gives a self contained discussion about the well known ratio-
nality assumptions that are embodied in the notion of the (nowadays)
most common solution method of non-cooperative game theory, the
Nash equilibrium. A different interpretation of this solution concept
is provided, which was already proposed by John Nash himself in his
unpublished Ph.D. Thesis.

Part 2 gives a concise definition of games in normal and extensive
form, where we identify players not with single individuals, but much
more with large (theoretically infinite) populations. The definition of
an extensive form game is influenced by Cressman (2003, in particular
chapter 6) and Fudenberg and Tirole (1991, chapter 3). The formaliza-
tion of decision sets, which establish a correspondence between nodes
and players, was introduced by myself. The definition of normal form
games follows closely Sandholm (2007a), but also elements of Weibull
(1995) and Hofbauer and Sigmund (1998) can be found there.

A short and self-contained introduction to the theory of dynamical
systems is given to clarify the meaning of some phrases used in the
discussions. The concepts introduced there are of crucial importance
to study dynamical systems, and so I found it necessary to add this
chapter. Resources therefore have been the books of Hirsch, Smale
and Devaney (2004), Königsberger (2000) and Hofbauer and Sigmund
(1998).

The core of the thesis deals with three important families of evolu-
tionary dynamics, and fills Part 3 completely. The discussion there is
closely related to Sandholm (2007a). Other references can be found
in the text. The majority of proofs are adapted versions of Sandholm
(2007a), others are made more readable, or are even self-contained.
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Immediately after the introduction of the dynamics, an example will
be given to demonstrate similarities, differences, and special attributes
of the models. Additionally, a self-contained economic derivation of the
replicator dynamic is given. Long computations are relegated to the
Appendix, which proves the global asymptotic stability of the unique
Nash equilibrium in the “Matching Pennies” game under two particu-
lar evolutionary dynamics. The proof is formulated by means of Lya-
punov functions, which are discussed in Sandholm (2007a) and Hof-
bauer and Sandholm (2007a, 2007b), and are here generalized to the
two-population setting. These proofs are completely formulated by my
own.

Part 4 will present three examples of games in extensive form. These
examples shall demonstrate the role that evolutionary dynamics might
play when we are confronted with games, that have implausible Nash
equilibria that pass the test of subgame perfection. Since not much
is known about evolutionary dynamics and extensive form games that
have not perfect information, these examples are designed as a moti-
vation for further investigations.

Comment of the author: The explicit use of “he” and “she”, or “his”
and “hers”, is not intended to provoke any “battle of the sexes”. My
intention was much more to make the reading as fluent as possible. In
some examples I call one player as “he” while the other as “she”. This
shall not be misunderstood with any gender role assignment.
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Vorwort

Diese Diplomarbeit beschäftigt sich mit den Zusammenhängen zwis-
chen dynamischen Evolutionären Modellen und dem Lösungskonzeptes
des Nash Gleichgewichtes, sowie der Möglichkeit eben diese dynamis-
chen Modelle zur Selektion von Gleichgewichten zu verwenden. Beson-
ders hervorgehoben wird die Bedeutung der verschiedenen Modellan-
sätze, die neben der oft verwendeten Replikator Dynamik in der Liter-
atur eingeführt wurden. Die Mehrheit der bekannten Resultate wurde
in Spielen in Normalform hergeleitet. Im letzten Teil dieser Arbeit wer-
den Spiele in ihrer extensiven Form unter dynamischen evolutionären
Gesichtspunkten analysiert. In diesen Beispielen wird versucht dazustellen
wie diese Dynamiken als Selektionsmechanismen zwischen konkurri-
erenden Gleichgewichten verwendet werden können. Die Diplomarbeit
ist wie folgt organisiert:

Der erste Teil ist eine eigenständig verfasste Diskussion der Rational-
itätsannahmen, welche implizit in dem Lösungskonzeptes eines Nash
Gleichgewichtes stecken. Eine alternative Interpretation eben dieses
Gleichgewichtskonzeptes wird dargelegt, welche schon auf die Arbeiten
von John Nash zurück gehen.

Der zweite Teil gibt eine formale Definition von Spielen in Nor-
malform, als auch in extensiver Form. Dem üblichen Rahmen der
evolutionären Spieltheorie folgend, werden hier Spieler nicht als In-
dividuen betrachtet, sondern durch theoretisch unendlich große Popu-
lation verkörpert. Dieser Abschnitt beruht auf Cressman (2003, ins-
besondere Kapitel 6), sowie Fudenberg und Tirole (1991, Kapitel 3).
Eine formale Behandlung von “Entscheidungsmengen” (im Text als
“decision set” bezeichnet) stammt von mir selbst. Derartige Mengen
stellen eine Korrespondenz zwischen Entscheidungsknoten und Spiel-
ern dar. Die hier verwendete Definition von Spielen in Normalform
ist aufbauend auf Sandholm (2007a), doch auch Elemente von Weibull
(1995) und Hofbauer und Sigmund (1998) können gefunden werden.

Eine kurze Einführung in die Theorie dynamischer Systeme wird
dargelegt. Dies dient dazu, dem Leser die grundlegenden Begriffe
näher zu bringen, die im Laufe der Diplomarbeit verwendet werden.
Verwendete Materialen hierfür waren die Bücher von Hirsch, Smale
und Devaney (2004), Königsberger (2000) sowie Hofbauer und Sigmund
(1998).

Der Hauptteil der Arbeit stellt drei verschiedene Modelle von evolu-
tionären Dynamiken vor. Die Darstellung ist eng verwandt mit der in
Sandholm (2007a). Weitere Literaturhinweise sind im Text vermerkt.
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Die meisten bewiesenen Sätze können auch in Sandholm (2007a) gefun-
den werden. Alle sind jedoch von mir selbst überarbeitet, umgeschrieben
und teilweise besser lesbar gemacht worden. Manche sind auch von
mir selbst durchgeführt worden. Nach jeder besprochenen Dynamik
wird ein illustratives Beispiel vorgerechnet, welches die Eigenheiten
der jeweiligen Modelle verdeutlichen soll. Längere Rechnungen sind im
Appendix anzufinden. Dort wird die globale asymptotische Stabilität
des eindeutigen Gleichgewichts im "Matching Pennies" Spiel, in zwei
spezifischen evolutionären Dynamiken bewiesen. Der Beweis verwen-
det geeignete Lyapunov Funktionen, wie sie von Sandholm (2007a) und
Hofbauer und Sandholm (2007a, 2007b) definiert wurden. Ich general-
isierte diese Ansätze auf Spiele zwischen zwei Population. Der Beweis
wurde von mir eigenständig erbracht.

Im vierten Teil sind drei Beispiele von Spielen in extensiver Form
angeführt. Hier soll die Rolle von evolutionäre Dynamiken analysiert
werden, wenn mehere, unter umständen unplausible, Teilspielperfekte
Gleichgewichte exisitieren. Abgesehen von Spielen mit perfekter Infor-
mation ist noch wenig bekannt auf diesem Gebiet. Dieser Abschnitt
soll daher als Motivation zukünftiger Forschungsarbeit dienen.
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Part 1. Introduction

1. What to know to play Nash?

Game theory is widely used today in various sciences. The social
science, in particular economics, were among the first field were it was
applied. But also natural scientists, most of all biologists, discovered
this tool quite early. It is often said that the work by Maynard Smith
and Price (1973) was among the first which made use of (and then
extended) a game-theoretic equilibrium concept to biological systems.
Their work is often taken as the birth of evolutionary game theory,
which is nowadays one of the most dynamic and interdisciplinary fields
in the world of science. Their notion of an evolutionary stable strategy
(ESS) opened the way to reinterpret the most common solution concept
of non-cooperative game theory, namely the notion of a Nash equilib-
rium (NE). In particular it opened doors to economists that were not
that satisfied with the informational assumptions that have to be made,
when applying NE. The fundamental “common knowledge” assumption
is something that lies implicitly in the concept of NE. As an example
consider the simple 2-player game in extensive form in Figure 1. Player

Figure 1. A game with unique Nash equilibrium in pure strategies

1 starts the game by choosing one out of three actions. Player 2 does
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not know with certainty which action player 1 has selected. At every
decision node, which are indicated by small letters (hence y1, y2, y3, for
player 2), player 2 will ask herself what the best action might be, if
player 1 has chosen the action that leads to this decision node. For
example, if player 1 plays A, player 2 knows that she has to decide at
her decision node y1. Payoffs are received at the terminal nodes of the
play. The first numbers are the payoffs to player 1 (red colored), while
the last numbers (blue colored) are the payoffs of player 2. Both play-
ers know the possible payoffs that might arise in the game. From this
information, player 2 can infer that her opponent will never decide to
play action A. Independently of what she does, player 1 can perform
better by choosing either B or C, so why should he choose A? As a
player who wants to win the game (otherwise it needs some justifica-
tion of why the two meet and play the game), it does not make sense to
assume that player 1 will really play action A. But not enough, player
1 also knows that player 2 sees that his action A is never optimal, and
moreover he knows that player 2 knows that he is a rational player who
wants to get the maximum out of the game. She will eliminate action
A mentally, knowing that she plays with a rational guy, and knowing
that he knows that she knows that he is rational. In this way she is
sure that her node y1 is never reached during play. After eliminating
A, player 1 will know that his opponent’s action a is also never an opti-
mal reply, independently of what he actually does. Following the same
considerations as player 2, he will eliminate action a mentally out of
player 2’s action set. But now player 2 sees that player 1 always earns
a higher payoff when he selects his second action B (4 is better than
2 and 2 is better than 1). Thus, she knows that player 1 will play his
second action, and by maximizing payoffs conditionally on this infor-
mation, she will play her second action. In this way we have found a
unique solution of this game, by making use of the so-called “iterative
elimination of strictly dominated strategies” algorithm. If both players
are rational in this fairly convincing sense, the game path will be such
that player 1 chooses B, player 2 will choose b, and none of them have
an incentive to deviate from this “convention”, ceteris paribus. We want
to emphasize that we could perform this algorithm, just because it is
assumed that the players can correctly anticipate the behavior of the
other player, or differently, players rely on each other that the oppo-
nent plays the game as he would play it.

In the example of Figure 1 the algorithm stopped after four rounds
of deletion. In every consecutive round, the assumptions on knowledge
became stronger. In the first round player 2 could infer that the first
action of player 1, A, is strictly dominated by the other available ac-
tions B and C. At the same instant she knows that player 1 also knows
that his first action is never optimal, independently of what she does,
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so he will never choose this action. Note how important the phrase
“she knows that he knows that...” is in this argument. Without it no
action can be a priori excluded, and the algorithm breaks down at the
first iteration.
In the second round player 1 knows that player 2 will eliminate her
first action, because it is strictly dominated. This embodies one more
assumption. Now not only player 2 knows that player 1 is rational,
in the sense that only optimal actions are chosen, but also player 1
knows that player 2 knows that her first action is never optimal. Then
player 2 knows, that player 1 will not choose his third action, and fi-
nally player 1 knew that only the second action for player 2 is optimal
for her. Player i knows that player j knows that.... That’s the way
how every new round of the algorithm starts. The apparent problem
with this reasoning is that we assume that players know how to play
the game a-priori.

Dynamic evolutionary game theory gives a chance to interpret the
way how the game is played in a different way. In such a setting we
do not look at players in the conventional sense, but rather interpret a
game as a situation where different populations interact. The set of all
possible populations that could meet to play the game, can be called
the society which we are analyzing. The theory starts from the as-
sumption that the individual members of the populations are initially
programmed to a certain pure strategy and then gradually adjust their
behavior depending on what society does. If we observe that the ag-
gregate behavior converges to Nash equilibrium, we have found a very
strong justification for the assumption that people actually play Nash.
This is accomplished without any additional assumptions concerning
knowledge of players, or any belief that a player might have how his
opponent will behave.
There are two other reasons why a dynamic look at a game is something
valuable. First, suppose there are two players that meet to play the
famous “Matching Pennies” game, which will serve as the “role model”
in subsequent sections. It is represented in extensive form in Figure
2. This game possesses one completely mixed NE where each player
chooses one of his actions with probability 1/2. A dynamic analysis of
this game offers a straightforward explanation why randomizing is op-
timal in this game. Particularly in economics it is often very difficult
to justify any Nash equilibrium in mixed strategies. However, if we
only look at equilibria in pure strategies, we are confronted with games
that have no Nash equilibrium (i.e. games of the Matching pennies
type). This is very unsatisfactory for a solution concept. However, if
we equip “Matching pennies” with a dynamic story, there is no prob-
lem with having mixed strategies. To see this point, let us investigate
“Matching pennies” a little bit closer. It is a two player game, where
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Figure 2. The Matching Pennies game in Extensive Form

both have the same set of possible actions. Suppose there are two large
populations from which two individuals (from each population one) are
randomly drawn to play “Matching Pennies”. Before the game starts,
every member of one population has to declare himself being a H-player
or a T-player. Both populations are of the same size, which we nor-
malize to unity. When drawn to play the game, individuals do what
their pure strategies tell them to do simultaneously, receive the payoffs,
and then a new pair of individuals is drawn and told to play “Matching
Pennies”. If the populations are sufficiently large we can repeat this
random matching process very often, so that the game is played “for a
long time” by different members of the population. Since agents ini-
tially have to declare themselves being an H or an T strategist, we can
partition the player populations into fractions of H-players and frac-
tions of T-players. Thus, a player population can be segregated into
two disjoint subpopulations, labeled through the two pure strategies.
The sum of these disjoint subpopulations must be equal to the total
population size, which is normed to unity. Suppose that at some point
of time the player proportions in the populations are unequal. Say, for
example, the proportion of H-players in population 1 is 3/4, so that
75 percent of the population is devoted to pure strategy H, and 1/4
is a declared member of subpopulation T. Suppose further that the
converse is given data in population 2, that is 1/4 of the individuals in
population 2 are declared H-strategists. The expected payoff that an
H-strategist of population 1 gains in a game is 1/4 times the payoff he
receives when meeting another H-strategist of population 2, plus 3/4
times the payoff he will receive when his opponent is a T-player from
population 2. Thus, the average payoff to members of subpopulation H
equals -1/2. Similarly, the expected payoff of T players in population 1
is then 1/2.1 On average the more prevalent subpopulation of the first

1Note that all what subpopulation H loses on average is absorbed by the subpop-
ulation T. This is a nice characteristic of zero-sum games, where all what one player
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player population, in our illustration H, loses, while those that appear
with a lower frequency gain on average. Now the dynamic story be-
comes important. Suppose that, as time proceeds, players are allowed
to switch strategies. The sizes of the subpopulations are allowed to
vary over time. A possible way to model this switching of strategies is
by assuming that players imitate the better. At some (rare) moments
of time individuals meet an comrade from their own population and
get to know the payoff that this agent received. Imitate the better
means then, that a player adopts the strategy of his opponent if the
comrade receives a higher average payoff with his strategy. In our ex-
ample this would mean that an H strategist in player population 1 will
alter his strategy in favor for strategy T, since the T players receive a
higher average payoff. Consequently the fraction of players who decide
to play H must decline over time, leading to an increase of the relative
size of the T subpopulation in player population 1. A similar adap-
tion process will evolve in population 2, if members of this population
behave just as members of population 1 do, where the fraction of T
players will decline. The state (or the composition) of the populations
change over time, because of players changing their pure strategies.
When does this adjustment of subpopulations stop under the proposed
imitative rule? Obviously only then, when no subpopulation has an
higher average payoff than the other, in both player populations. Note
that this occurs if and only if the sizes of the subpopulations are equal,
thus 50 percent of the individuals are H-strategists and 50 percent are
T strategist. This is true from the point of view of population 1 and
2. At not other partition of the populations is such a stationary state
reached. In terms of evolutionary game theory, one can interpret the
Nash equilibrium in Matching Pennies as a partition of the population,
where one half of the mass of the population plays H while the other
half plays T, and such a partition is mathematically equivalent to a
mixed strategy profile.

Second, there are games with more than one Nash equilibrium. A
slight change in the payoffs of matching pennis gives us the class of
anti-coordination games. One of them is shown in Figure 3. This is
a so-called Hawk-Dove game, which possesses three NE, one in mixed
and 2 in pure strategies. A solution concept with multiple solutions
is clearly something irritating. Which equilibrium shall the theorist
predict in such a case? Again, evolutionary dynamic game theory can
help as an equilibrium selection mechanism. By looking at the dynamic
pattern of the strategy adjustment in a “neighborhood” of one of the
equilibria, we are able to predict which of the NE are stable in a precise

wins must be payed by the opponent. The outcome of such a game is therefore a
nice model of pure redistributions among players (or, in our framework, of society
groups.)
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Figure 3. An anti-coordination game

way. If some of the found equilibria are stable in this sense, we would
have some confident in researchers forecasting such a behavior.

2. Nash equilibrium in large populations

Evolutionary game theory draws a picture of finitely many large
populations, from which individuals are randomly drawn and matched
to play a certain N-player game. Behind each player, we imagine a
large population. What does this have in common with the classical
non-cooperative game theory? Suppose that every individual in a pop-
ulation employs a single pure strategy, which is one of possibly many
strategies that individuals of this population have. Even if the popula-
tion is very large (possibly infinite, so that we can speak of a continuum
of individuals), we can measure the number of agents in the population
that employ some pure strategy. If we set this number in relation to
the overall mass of the population, we get the proportion of individuals
belonging to the population and devoted to some pure strategy. This
proportion can also be interpreted as a subpopulation of individuals.
We consider only games with finite strategy sets, so, there are only
finitely many subpopulations, whose shares of the total population size
have to add up to one. The list of sizes of subpopulations is there-
fore mathematically equivalent to a mixed strategy profile, and a Nash
equilibrium can be seen as a distribution of sizes of subpopulations. A
central question is now: How do individuals in infinite populations co-
ordinate to arrive at the Nash equilibrium? One suggestion was given
by John Nash:

It is unnecessary to assume that the participants have full
knowledge of the total structure of the game, or the abil-
ity and inclination to go through any complex reasoning
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process. But the participants are supposed to accumu-
late empirical information on the relative advantages of
the various pure strategies at their disposal.2

The relative advantages of which Nash speaks here is the expected pay-
off of a pure strategy against a mixed strategy profile, which we identify
with the composition of the population to which the opponent players
belong. What is meant with empirical information is the gathering of
data that describes the performance of the various pure strategies, at
a given population state. Once the population members found that
their currently used strategy performs worse than some other available
pure strategy, they are assumed to abandon their strategy and switch
to those that promise higher rewards.3 Through this learning and imi-
tation mechanism, Nash predicts that the state of the large population
will converge to his equilibrium concept. In greatest generality, an
equilibrium, in the sense of Nash, is then a distribution of sizes of sub-
populations, such that these sizes remain constant over time.
We will follow this idea in this work, were especially the link between
the equilibrium concept of Nash and the (long-run) outcome of evolu-
tionary dynamics shall be elaborated.

2This quotation is taken from Björnerstedt and Weibull (1993, p.156).
3One should note that we define player populations as a large mass of human

beings that have common preferences in the game to be played.
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Part 2. Games in large Populations

3. Definition of a N-population game

In this section we want to introduce a game in a slightly different
way as it is done in classical game theory. The standard definition of
a game (in normal form) is given by a (finite) set of players, a finite
set of pure strategies for each player, and a payoff function for each
player associated with the strategies (see Fudenberg and Tirole 1991).
Instead we consider a “society” consisting of N , N <∞, different pop-
ulations. Formally we can describe our model society as a countable
set of populations P = {1, . . . , N}. Each population is assumed to
form a continuum of positive mass, mk, 1 ≤ k ≤ N . If we look at an
arbitrary population we simply write k for this population, and k is an
index that can vary between 1 and N .
As is usual in evolutionary game theory, we imagine that individuals
are drawn randomly from the distinct populations and are matched
to play a particular game in question. Each population may engage
in a strategic conflict in different positions of the game. A situation
of competition between different populations can be described through
an N-player game, where behind each player we imagine a large (infi-
nite) population from which individuals are randomly drawn to engage
in the conflict. If we want to model competition between individuals
belonging to the same population, we can also imagine that N individ-
uals from the same population are drawn and assigned to each player
position.4 As a simple example consider an Entry-Deterrence game.5
The original story of this game is, that a firm is confronted with the
decision whether to enter a market (pure strategy E), that is currently
controlled by a monopolist. The monopolist is aware of the possible
entrant and has two possible actions: accommodate (A), and share
the market, or fight (F), by starting a price war. Its extensive form
representation is given in Figure 4. We can view this conflict as a
two-population game, where one is the owning population, of a certain
asset, who plays the role of the monopolist, and the other population
is a (large) group of intruders. For simplicity we assume that both
populations are of equal size, so that the members of the populations
are drawn with equal probability.
We want to use the extensive form representation of a game as often
as possible in this work. Therefore we introduce the notion of a popu-
lation game for the extensive form, as well as for the normal form of a
game. The main difference between the two is the recognition that the
player‘s information have huge impacts on the way games are played.
The extensive form can incorporate sequentiality of moves, while in the

4In a 2 player game, we imagine that 2 individuals belonging to the same popu-
lation are drawn and instructed to act as player 1 or player 2.

5In economics this game is better known as the Chain-store game.
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Figure 4. An Entry-Deterrence Game

normal form, we have to rely on the assumption that all players make
moves “in the same moment”.6 As a motivating example go back to
Figures 3 (section 1) and 4. As is rather common, information is vi-
sualized through a dotted line that connects the decision nodes of the
second player. If two nodes are connected in such a way, we mean that
the player in question does not know with certainty which action player
1 has chosen at his decision point. Conversely if the decision nodes are
not connected, as in Figure 4, player 2 can observe the action of player
1. This observation of actions is an important attribute of extensive
form games. We now introduce these thoughts formally. The beginning
will be made with a thorough definition of population games in nor-
mal form, as is done by Sandholm (2007a). Afterward we turn to the
definition of a population game in extensive form. A discussion of the
differences between these two approaches shall conclude the section.

3.1. Population Games in Normal Form. Classical game theory
defines a game in normal form over the set of players I = {1, 2, . . . , N},
the pure strategy space available to each player, Sk =

{
ek1 , . . . , eknk

}
,

and a payoff function for each player

νk : S → R (3.1)

6In fact normal form games are always appropriate when players decide on their
strategies simultaneously, which does not necessarily imply that choices have to be
made at the same point in time. Simultaneity of moves is not necessarily chronolog-
ically ordered. For example, to play the matching pennies game it is not necessary
that players are in a “face-to-face” situation, where both toss a coin at the same
instant of time. It can also be that player 1 decides on his strategy at a completely
different point in time as player 2 does, both write their strategies on a sheet of
paper, put it in an envelope, and submit it to some independent referee who opens
the envelope again at a different point in time, and informs both players about the
outcome of the game. This is admittedly a fairly complicated way to play a game,
but its nature is the same as if players would decide on their strategy at the same
instant of time.
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where S := ×k∈ISk, is the pure strategy space, defining all possible
strategy combinations in the game. In population games we asso-
ciate with each player a large population, with continuum of mass
mk, k ∈ I. Instead of N players we look at N populations, building a
society P = {1, . . . , N}. Each population is endowed with a finite set
of pure strategies, which we can identify with the set Sk. For each k,
the cardinality of the pure strategy space is |Sk| := nk. This set con-
sist of at least one strategy for all populations, and there exists some
population for which nk > 1. Individuals in the player populations are
imagined to be programmed to pure strategies. The mass of individuals
in population k (1 ≤ k ≤ N), who are programmed to pure strategy
ekh

(1 ≤ h ≤ nk) is 0 ≤ xkh
≤ mk. In this way we can divide each

population into finitely many subpopulations, each subpopulation for
an available pure strategy. If a certain pure strategy is not used in the
population, a zero occurs in the population state. If all individuals in
the population are devoted to a single pure strategy, the population
state has all its mass concentrated on this strategy, so that this sub-
population’s share is 1. The relative size of a subpopulation, measured
as the share of total mass mk that ekh

-players have in population k, is
denoted by pkh

, h ∈ {1, 2, . . . , nk}, meanwhile xkh
represents the mass

of players in population k choosing pure strategy ekh
. Alternatively we

can interpret the number pkh
as the relative frequency with which an

ekh
player is observed in population k. To summarize:

Definition 1. Let Sk be a finite set of pure strategies corresponding to
player population k ∈ P.

(i) The set of all possible strategy distributions in this population
is

Xk =

{
xk = (xk1 , . . . , xknk

)T ∈ Rnk
+ :

nk∑
h=1

xih = mk

}
(3.2)

(ii) A population state is an element of the (nk − 1)-dimensional
simplex 7

∆(Sk) =

{
pk = (pk1 , . . . , pknk

)T ∈ Rnk
+ :

nk∑
h=1

pkh
= 1

}
(3.3)

7Consider a finite collection of points in euclidean Rn, given by {x1, x2, . . . , xm}.
Such a set is affinely independent if

∑m
i=1 λixi = 0 and

∑m
i=1 λi = 0 imply that

λi = 0, 1 ≤ i ≤ m. An (m−1)-dimensional simplex is the set of all strictly positive
convex combinations of an m element set of affinely independent points.

∆(x1x2 · · ·xm) :=

{
m∑

i=1

λixi|∀i = 1, . . . ,m : λi ≥ 0 ∧
m∑

i=1

λi = 1

}
.

See Border (1985).
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generated by the pure strategies
{
ek1 , . . . , eknk

}
. Geometrically

each pure strategy ekh
is a vertex of an nk−1 dimensional poly-

hedron, living in Rnk
+ . For all h ∈ {1, 2, . . . , nk} the component

pkh
≡ xkh

mk
is the proportion of h-strategists in the player popu-

lation k, or the frequency with which strategy ekh
is observed in

population k.
(iii) A state of society is the collection of all population states

observed at a certain point in time. It describes simultane-
ously the distribution of frequencies with which the pure strate-
gies in the populations are used, in all N populations. The
set of possible states of the society is denoted by the set Θ =
∆(S1)× . . .×∆(SN), with p = (p1, . . . , pN)T a typical element.
It has

∑N
`=1(n` − 1) dimensions.

In what follows we will assume that the population masses stay con-
stant, so that we do not have to think about possible effects arising
from demographic dynamics. Moreover we are going to assume that
all populations are of the same size, so every individual in every pop-
ulation is drawn with the same probability. Thus, we can concentrate
ourselves on the population states (3.3) and social states.
Strategic interactions might take place between and within the popu-
lations. In a given game, individuals from each of the N player popu-
lations are randomly drawn and matched to play the game in question.
If we fix the strategy sets and the set of populations, we can identify
a game with its payoffs. Choose an arbitrary population k. The set
of pure strategies available to players from all other populations ex-
cept k can be written as S−k = ×i6=kSi. This is the standard notation
used in game theory, thus must not be explained further. As a result
from the random drawing of agents, we observe the game pattern, in-
duced by the pure strategy profile e ∈ S. If we want to emphasize
that a certain player in some population k has chosen a particular pure
strategy, we are going to write e \ ekh

≡ (e1, . . . , ek, . . . , eN), where
ekh

= ek ∈ Sk is the pure strategy employed by an agent that belongs
to player population k. The probability that an agent from population
k is drawn and matched with opponents who jointly play according to
the strategy profile e, is given by the product of frequencies with which
the agents, in all other populations except k, employ the pure strategy
components of e, with exception the k-th component. As is common in
game theory, we will denote the strategy profile used by all individuals,
except the k-th, as e−k ∈ ×i∈I\{k}Si. Then, we have another writing
for e \ ekh

, namely (ekh
, e−k) ∈ S. Using this notation, the probability
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is the product

Pr(e−k) : =
∏

i∈I\{k}

{
pij |eij is the pure strategy used by agent i in the profile e ∈ S

}
≡

∏
i∈I\{k}

{
pij |ei = eij

}
Using the pure strategy payoff function (3.1), an h-strategist drawn
from population k can expect a payoff

πkh(p) =
∑

e−k∈S−k

νk(ekh
, e−k) Pr(e−k) ∀p ∈ Θ (3.4)

This definition of expected payoffs holds for arbitrary h ∈ {1, 2, . . . , nk}
and arbitrary population k ∈ P , so that we are able to write the
expected payoff to population k as a vector valued function πk : Θ →
Rnk , or more explicitly

∀k ∈ P : πk(p) =

 πk1(p)
...

πknk
(p)

 ∀p ∈ Θ (3.5)

A component of this vector gives the expected payoff to a randomly
drawn h-strategist of population k. The resulting aggregate payoff for
a given social state p ∈ Θ can then be read off from the list

π(p) =

 π1(p)
...

πN(p)

 (3.6)

giving a complete description of the earnings that the populations re-
ceive. Now we have introduced all elements that we need to define a
population game in normal form. To summarize

Definition 2. A population game in normal form is a N-player
game consisting of

(i) The society P = {1, . . . , N} consisting of N large populations,
where each population k ∈ P forms a continuum of mass mk >
0.

(ii) A finite pure strategy space Sk =
{
ek1 , . . . , eknk

}
available to

individuals belonging to population k. Behind each pure strategy
there is a continuum of individuals playing this pure strategy,
when drawn. There might be pure strategies that are unused in
a population.

(iii) A population state pk = (pk1 , . . . , pknk
)T describing the frequency,

measured on the unit interval [0, 1], of individuals appearing
in population k, that can be classified to be h ∈ {1, 2, . . . , nk}
strategists. The set of all potential population states is the sim-
plex ∆(Sk) =

{
pk = (pk1 , . . . , pknk

)T ∈ Rnk
+ :

∑nk

h=1 pkh
= 1
}
. A
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social state is the collection of all realized population states. The
set of all potential social states is the Cartesian product of all
population states and denoted by Θ.

(iv) Payoffs to player populations are described by functions πk :
Θ→ Rnk , one for each population k ∈ P. Aggregate payoffs for
some social state p ∈ Θ is then the list π(p) = [πi(p)]i=1,...,N .

3.2. Population games in extensive form. Consider a finite set of
players I = {1, . . . , N}. Each player has a distinct position in a game.
These roles are defined through the information structure, which in
turn is incorporated in a concise way by the extensive form of a game.
Following Cressman (2003, Section 6.1) an N-player extensive form
game is defined via a game tree and an ordering of moves. Distin-
guished nodes are the origin, or the root, of the game tree, and ter-
minal nodes. The set of all decision points is denoted by Υ and the
collection of all terminal points is summarized by a set Z. The order
of moves is induced by a relation f defined on Υ × Υ. A path to an
endpoint is called play. A node x is said to precede a different node
y, if x f y, and x is on the path to y. Terminal nodes are identified
through the equivalence z ∈ Z ⇔ (@x ∈ Υ) : z f x. Different nodes
are connected through actions, chosen by players. The main difference
between a terminal and a decision node is consequently, that the latter
proceeds some other node, which might possibly be a terminal node.
Each node belongs to one of the N players. Formally we can define a
mapping

α : Υ→ I, x 7→ α(x) (3.7)
which assigns to each decision node in Υ a player. Thus the index
α(x) ∈ {1, . . . , N} gives the player who has to make a decision at node
x. If x, y ∈ Υ are two decision nodes satisfying α(x) = α(y) = i, we
say that the nodes x, y belong to player i. The collection of all decision
nodes belonging to a certain player is then the set of all nodes, where
the function α assumes the same value, hence

Di = {x ∈ Υ|α(x) = i} , 1 ≤ i ≤ N (3.8)

shall be called the decision set of player i ∈ I. Note that the union of
all these decision sets over players must be equal to the set of decision
nodes, and further the sets are disjoint. With other words, the collec-
tion {D1, D2, . . . , DN} is a partition of Υ into N sets, induced by the
equivalence relation α.
These decision nodes can be indistinguishable for a player, in the sense
that she is not certain that a particular node is really reached during
the play of the game. This leads us to the formal definition of infor-
mation. For each player i there exists a partition Ui containing the
information sets of player i. Every node of the tree belongs to one and
only one information set. An information set is written as u ∈ Ui. Fix
an arbitrary information set, then (∀x, y ∈ u) : α(x) = α(y) = i. Every
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decision node lying in some information set must belong to the same
player. Intuitively, an information set is the collection of all nodes that
a particular player cannot distinguish a-priori. In a two-player setting,
where each player has only one move, player 2 might not be able to
observe which decision player 1 selected. She does therefore not know
with certainty which of her nodes is reached, so that all nodes coming
after the decision of player 1 are “identical” for her. Such a situation
is given in Figure 2 for instance. It is as if both players throw the coin
at the same instant of time in this game, so player 2 does not know
with certainty whether player 1 had head or tail as outcome. If two
nodes are contained in the same information set, the player possessing
this information set must have the same number of alternatives, or ac-
tions, available at these nodes. Suppose this would not be the case. In
particular go back to Figure 2, but imagine that at the decision node
of player 2 coming after player 1 yielded head, there is an additional
action, that is not available at the node coming after player 1 yielded
tail. If player 2 is now at the decision node following head of player
1, she can infer that player 1 yielded head with probability 1, since
she now has actions available that she could not select if player 1 had
yielded tail. Thus, the knowledge of player 2 about the action chosen
by player 1 changed dramatically, since now player 2 can distinguish
the moves made by player 1 through the actions which are at her dis-
posal. So the nodes cannot belong to the same information set. This is
why the set Ui was introduced as a partition. It partitions the set Di of
decision nodes of player i in such a way that it pools indistinguishable
decision nodes together into information sets. Since every node in the
tree has to belong to an information set, and every node is assigned to
a player via the mapping α(.), we can assemble all nodes and classify
them through information sets of player k ∈ I. In a N player setting,
the information structure of the game can be represented by a partition
U = {U1, . . . ,UN} of the set of decision nodes Υ, where each Uk is the
collection of all information sets that partition the decision set Dk of
player k ∈ I.

To every information set u ∈ Uk corresponds an action set A(u),
specifying all the available actions among which player k can select at
information set u. With this notation we make sure, that the possible
actions are identical at each node belonging to the same information
set. For example in Figure 3 both players have a single information
set. The information set of player 2, v1, contains 2 decision nodes,
y1, y2, and at both she has the same set of disposable actions, H or
D. At each information set a player must make a choice. A strategy
of a player is the collection of all choices at each information set of a
player. Formally we are able to write the space of pure strategies as
the Cartesian product of all actions available at each information state
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Sk = ×u∈Uk
A(u). The more segregated the information structure of a

game is the more complex can be the pure strategy space of a player.
In general if we denote |A(u)| the number of actions available at infor-
mation set u ∈ Uk of player k, the number of pure strategies will be
|Sk| =

∏
u∈Uk
|A(u)|. We call this number nk and write the pure strat-

egy space of player k ∈ I as a list Sk =
{
ek1 , ek2 , . . . , eknk

}
. A typical

element of this set ekh
(1 ≤ h ≤ nk) is a list that specifies an action

at each information set of player k. Formally, it is a vector-valued
function, mapping information sets to actions,

ekh
: Uk →

⋃
u∈Uk

A(u)

ekh
= (a(u))u∈Uk

and ∀u ∈ Uk : a(u) ∈ A(u)

We assume that there is some player whose strategy set consists of more
than two elements. If all N players have decided upon a pure strategy,
we will write for the profile of pure strategies e = (e1, . . . , eN) ∈ S :=
×Ni=1Si, with bearing in mind that behind a component of this profile,
say ei ∈ Si, lies a list of actions for each information set of player i.
Just like the vast majority of the economic literature, we assume that
players have perfect recall. Intuitively this means, that no player ever
forgets what she once knew. In particular all the chosen actions of
player i that have been chosen at some anterior node, are known to
her. The definition presented here is from Cressman (2003, p.168).
We say that an action of an arbitrary player k at information set u ∈ Uk
comes before decision point x if the taken action leads to this decision
point. Consider two decision nodes of player k at informations set
u′ ∈ Uk. Call the decision nodes x, y, and select another information set
u ∈ Uk. The game has perfect recall if for all decision nodes x, y ∈ u′,
and all choices a(u) ∈ A(u), this action comes before x if and only if
it comes before y. This ensures two things. First, if x, y are contained
in the same information set, neither x f y nor y f x. Second, the
definition ensures that players do not forget their actions. Suppose
that player i chooses an action at two decision points x, y that are
contained in different information sets, u and u′, of the player, and this
choice leads to nodes x′ and y′ that lie in the same information set
u′′. If the player has to make a decision at these nodes, she does not
know which action has taken her to this information set (see Figure 5).
At the starting decision nodes, two actions have to be specified, one
for each information set. The action chosen at decision node x leads
to decision node x′ and comes, in our terminology, before x′, but not
before y′ since this node is not reached by the specified action at x.
However, x′ and y′ are in the same information set, but there exists a
choice at information set x that comes before x′ but not before y′. This
violates our definition of perfect recall. Hence, our definition ensures
that players never forget a previously chosen action. Terminal nodes
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Figure 5. A game violating perfect recall

are special nodes of a tree, since these are the only nodes where no node
follows. At each terminal node, payoffs to the players are specified. The
payoff function to player k at terminal node z ∈ Z will be written as
νk(z).
Once the set of pure strategies is defined for all players, the mixed-
strategy extension of the game is easily done. Call ∆(Sk) the (nk− 1)-
dimensional simplex, with vertices generated by the pure strategies in
Sk.

A probability distribution pk ∈ ∆(Sk), whose entries represent the
relative frequencies with which player k chooses his pure strategies, is
called a mixed strategy. Thus, pk =

(
pk1 , pk2 , . . . , pknk

)T where pkj
∈

[0, 1] represents the relative frequency with which pure strategy ekj
is

chosen by player k, and by axioms of probability we have
∑nk

j=1 pkj
= 1.

This is why we lose one degree of freedom by generating the mixed
strategy space of player k.
The profile p = (p1, . . . , pN)T ∈ ∆(S1)×. . .×∆(SN) is a list of all mixed
strategies used by the players of the game. Call Θ := ∆(S1) × . . . ×
∆(SN) the

∑N
k=1(nk−1) dimensional simplex of mixed strategy profiles.

For a fixed p ∈ Θ there is a certain probability that a terminal node z is
reached in the game. Call ∆(Z) the set of probability distributions over
the terminal nodes of the game. Entries in this set are distributions{

(γ(z, p))z∈Z :
∑
z∈Z

γ(z, p) = 1, ∀p ∈ Θ

}

which can be interpreted as the outcome of the profile p ∈ Θ. This
vector assigns to each terminal node a certain probability with which
it is reached, when all players act according to p. The payoff function
to each player k extends now to expected payoffs, induced by the profile
p ∈ Θ. This expected payoff takes the general form of a function

∀k ∈ I : πk : Θ→ R, πk(p) =
∑
z∈Z

γ(z, p)νk(z) (3.9)
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To make all these rather abstract definition more tractable, consider
the following example.
Example 1. Consider the extensive form game in Figure 6. This is a
two player game, where player 2 possesses two distinct information sets
U2 = {{v1} , {v2}}. Player 1’s information partition is rather simple,
U1 = {{u1}}. The game tree consists of 4 decision nodes, x1, y1, y2, y3,
where x1 is also the root of the tree. Six terminal nodes are indicated
(labeled as z1 until z6), and row vectors represent the payoffs that play-
ers receive if the outcome leads to the corresponding terminal node. The
first entry in this vector represents the payoff obtained by player 1. The
partition of decision nodes is D1 = {x1} , D2 = {y1, y2, y3}. The pure
strategy space of player 1 is S1 ≡ A(u1) = {A,B,C}, and for player
2 we get S2 = A(v1) × A(v2) = {[ac], [ad], [bc], [bd]}, so that the pure
strategy [ac] has the interpretation: ”Play action a at information set
v1 and action c at information set v2.”

Figure 6. A game with one proper subgame

The mixed strategy profile p = [(4/29, 15/29, 10/29); (0, 0, 1, 0)] has
then the interpretation that player 1 chooses A with probability 4/29,
and player 2 plays according to [bc]. When the game is played under
this profile the following terminal nodes are reachable:

• Player 1 plays A and player 2 replies with b (terminal node z2)
⇒ Payoffs are ν1(z2) = −1, ν2(z2) = −1
• Player 1 plays B and player 2 replies with c (terminal node z3)
⇒ Payoffs are ν1(z3) = −1, ν2(z3) = 0
• Player 1 plays C and player 2 replies with c (terminal node z5)
⇒Payoffs are ν1(z5) = −1, ν2(z5) = 2

The expected payoff of the profile p is then for player 1

π1(p) = 4/29ν1(z2) + 15/29ν1(z3) + 10/29ν1(z5) = −1
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and for player 2

π2(p) = 4/29ν2(z2) + 15/29ν2(z3) + 10/29ν2(z5) = 16/29

Now we have a complete description of a game in extensive form,
where players may have imperfect information. However, there might
be situations where a player is not sure of his role in the game. Consider
the following interesting example of a (generalized) rock-paper-scissors
game, taken from Cressmann (2003, p. 125), and displayed in Figure 7.
In this game players may condition their play on whether or not a cer-

Figure 7. A generalized RSP game with incomplete information

tain exogenous event has taken place. For example somebody could be
behind this game (an independent referee) who tosses a fair dice. The
game is played after an odd and an even number has been observed.
These are two equal likely events, on which players can condition their
play. Nothing else changes and the base game is a generalized rock-
paper-scissors game. For the present discussion, the only thing that
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is worth noting is that here a third player is introduced, whose only
business is to toss the dice, and convey the information to the play-
ers whether the resulting number is even or odd. This is actually
Harsanyi’s transformation used in Bayesian games, where a fictitious
player, often called “nature”, is introduced (See Fudenberg and Tirole,
1991). “Nature” has only one decision node, and her strategies are the
distribution of roles in the game. Thus, if necessary, a move by “na-
ture” can be introduced in the definition of an extensive form game.
But then “nature” is nothing else than another player in the set I, who
also has a decision set, which is singleton, and an information partition,
also a singleton set, and payoffs always equal to zero. Therefore, the
above description also covers games of incomplete information and is
consequently an appropriate definition of an extensive form game. To
summarize

Definition 3. A N-player game in extensive form consists of
(a) a finite set of players I = {1, 2, . . . , N},
(b) a game tree, consisting of:

(i) a set of decision nodes Υ and an ordering of moves, de-
scribed via a precedence relation f, that has the interpre-
tation

∀x, y ∈ Υ : xf y ⇔ x comes before y

(ii) a rule that states which decision node belongs to which
player. This is done via the function (3.7),

(iii) the decision set (3.8), on which the labeling function (3.7)
is constant. It is the collection of all decision nodes belong-
ing to a player.

(c) the partition of information sets of players,
(d) the set of available actions at each information set,
(e) payoffs to players received at terminal nodes.

In the following we call a finite extensive form game Γ and identify
with this all the mentioned characterizing points.

We can also represent the extensive form as a normal form game.
All we need for this is the strategy space Sk of each player k and the
payoff functions
nuk. This leads to the pure strategy space S and a list of payoff func-
tions, ν(e) =

[
ν1(e), . . . , νN(e)

]T . The extended normal form game is
then the mixed strategy space of all players, together with the expected
payoff function (3.9).

Evolutionary game theory has in mind the analysis of player popula-
tions, instead of single players. We can therefore identify a population
game, where N large populations strategically interact, as an N-player
extensive form game, where each player has a large population behind
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him. A game is played when we draw N individuals out of the N differ-
ent populations. An agent belonging to population k is then assigned
to adopt the position of player 1 ≤ k ≤ N . The extensive form of
a game can already become very complicated in a two-player game,
and with more than two players even the visualization of the game
tree is fairly difficult. Fortunately, there are some games that can be
decomposed in smaller subgames, which can be treated as a separate
game, be played on Γ. To identify such subgames, we start with the
singleton information sets of the game. Suppose u = {x} ∈ Uk is such
an information set, belonging to player k ∈ I. Call Γu the game tree
with root u. Suppose xf y, and y has the additional property that its
containing information set is disjoint from all information sets that do
not belong to Γu. Then Γu is called a subgame of Γ. If moreover u is
not the root of Γ, then Γu is a proper subgame of Γ. The payoffs arising
in such a subgame is the restriction of the payoff function πk to the
terminal nodes of the subgame. The games presented in Figures 7 and
6 are the only games that are decomposable in subgames. In all other
games, the only subgame, is the game Γ itself. A proper subgame in
Figure 6 starts at information set v1 of player 2.

4. The extensive versus the Normal Form

The main advantage that the extensive form has over the normal
form is the explicit description of the sequential nature of the play-
ers’ interaction. Games in normal form have the implicit assumption
that the agents involved act simultaneously. This might be accurate in
the description of gambles like “Matching pennies” or the rock-scissors-
paper game. In many situations that are interesting for economists this
assumption is rather strict. The most famous example where games
that look fairly similar yield possibly different results comes from the
Industrial Organization literature. The classical Cournot model as-
sumes that firms act as quantity setters in an oligopolistic market.
Technologies of the firms are given and fixed, and each firm knows the
technology of its competitors. This is a situation which corresponds
to a normal form game. However, assume now that there exists one
firm that takes in the leadership in the market. The leader has the
possibility to make the first move, hence set its preferred output level.
All other firms observe the leaders choice, and adapt their production
to the leader’s output. This is a different model coming from Indus-
trial Organization, namely the Stackelberg model. It is well known
that there are many equilibria in the Stackelberg model.8 The Cournot

8For a concrete example consider an homogeneous market with 2 firms. Inverse
demand is given by P (x) = a − bx, where a, b ≥ 0, x ≡ x1 + x2. Technology of
the firms is given by cost functions C(xi) = cxi, 0 < c ≤ a. For a given out-
put level x̄j , j ∈ {1, 2} the best response of firm i 6= j is a solution to the prob-
lem maxxi≥0 {P (x)xi − C(xi), s.t. : xj = x̄j}. One can easily compute that output
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outcome may also be possible in the Stackelberg model.
We see, due to the sequentiality of the moves of players, the model
gains a lot more descriptive power. A clear disadvantage of the ex-
tensive form is its complexity. The more possible actions, or states of
informations players have, or simply the more players we include in the
model, the more complicated it will be. In particular the cardinality of
the strategy sets increase very quick, since in a N-player game where
each player k has ak actions at each of his |Uk| information sets, player
k will have a pure strategy space with a

|Uk|
k pure strategies. Thus, a

game with 3 actions and 5 information sets has 243 pure strategies,
leading to an 242-dimensional mixed strategy space.
Which approach to take depends consequently on the situation of inter-
est. The vast majority in the literature about evolutionary game theory
restrict themselves to (symmetric) normal form games, and there are
very well-known scientists who reject the use of the extensive form, just
because we know that every extensive form game can be brought into
a normal form.

levels on the line BRi(x̄j) = max[0,
a−c−bx̄j

2b ] are best responses. Suppose that
firm with index 2 is the follower in the market, who uses the constant strategy
BR2 ≡ a−c

2b . The Stackelberg leader, firm 1, will anticipate this decision, and
choose a profit maximizing output level, given the strategy of the follower. This
is obviously x1 = 0. This output combination are best replies to each other, thus
form an equilibrium.
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Part 3. Foundations of Evolutionary Dynamics

The most exciting feature in an evolutionary dynamic analysis of
a game is the description of the way how the population states are
formed in the long run. Since a social state is formally identical to a
mixed strategy profile of a game, we can apply the concept of Nash
equilibrium to population games. The notion of a Nash equilibrium
will now be introduced, in the context of a population game in normal
form. The theory behind this elegant equilibrium concept is conceptu-
ally independent of whether we look at extensive form or normal form
games. Intuitively, a Nash equilibrium is a social state in which no
population has an incentive to alter its composition, ceteris paribus.

5. Definitions

Let p ∈ Θ be a social state describing the joint behavior in a N popu-
lation game. The components of p are the several population states, as
introduced in definition 1. Henceforth, the vector pk = (pk1 , . . . , pknk

)T

is a list that contains as entries the share of individuals in population
k who are programmed to play the pure strategy ekh

, 1 ≤ h ≤ nk,
have. The probability that individuals are matched to play the pure
strategy profile e = (e1, . . . , eN) is then the product of the population
shares of the individuals contained in the list e. Hence, we can write
this probability as Pr(e) =

∏N
k=1 {pkh

|ek = ekh
}. Let e\ekh

≡ (ekh
, e−k)

be the profile where from all populations are agents drawn according
to e, with the exception that in population k an agent is drawn, that
is programmed to pure strategy ekh

. If this pure strategy was already
present in the profile e we can calculate the probability that such a pro-
file will be played as Pr(e \ ekh

) ≡ Pr(e) = pkh

∏
`∈I\{k}

{
p`j |e` = e`j

}
.

Using this notation, the average payoff of population k follows directly
from equation (3.4)

nk∑
h=1

πkh(p)pkh
=

nk∑
h=1

pkh

 ∑
e−k∈S−k

νk(ekh
, e−k) Pr(e−k)


=

∑
e−k∈S−k

νk(ek1 , e−k) Pr(e−k)pk1 + . . .+
∑

e−k∈S−k

νk(eknk
, e−k) Pr(e−k)pknk

=

nk∑
h=1

∑
e∈S

νk(e \ ekh
) Pr(e \ ekh

) =: π̄k(p) (5.1)

Definition 4. Consider a finite population game with N ≥ 2 popula-
tions. Each population is endowed with a pure strategy set Sk and the
space of population states is ∆(Sk). Payoffs to each population are as
in (3.5).
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(i) The pure best-response correspondence of player popula-
tion k is the correspondence βk : Θ→→ Sk given through

βk(p) =
{
ekh
∈ Sk|πkh(p) ≥ πkj (p) ∀1 ≤ j ≤ nk,∀p ∈ Θ

}
(5.2)

(ii) The mixed best response correspondence of player popula-
tion k is BRk : Θ→→ ∆(Sk) and defined through

BRk(p) =
{
pk ∈ ∆(Sk)|pkh

> 0 only if ekh
∈ βk(p)

}
(5.3)

(iii) A pure strategy eki
∈ Sk is said to be strictly dominated if there

is no social state at which it is a best reply,

∀p ∈ Θ : eki
/∈ βk(p) (5.4)

(iv) A social state is a Nash Equilibrium of the population game
if it belongs to the set

NE =
{
p ∈ Θ|pk ∈ BRk(p) ∀1 ≤ k ≤ N

}
(5.5)

If we deal with extensive form games we can exploit the sequentiality
of moves to select among the possible Nash equilibria those that are
optimal in every subgame of the game Γ. Such equilibria are said
to be subgame perfect. To identify a subgame perfect equilibrium one
makes intensive use of the information that the extensive form provides
us. The applied solution method is known as backwards induction.
Loosely speaking, when we solve a game by backwards induction, we
start with the smallest subgame of the given extensive form game Γ.9
At such a subgame we determine the optimal action that a rational
agent would choose when this subgame is reached. Working us through
to subsequently larger subgames, and determining the optimal actions
at all these subgames of the agents, leads us after some time to the
root of Γ. Then the algorithm stops, and by combining all the optimal
actions of the agents at the subgames gives us a pure strategy profile
for every player that ascribes an optimal action at each subgame where
this player has a move to make. Such a strategy profile is a Nash
equilibrium and is moreover optimal at every subgame of Γ. Thus, we
have found (by construction) a subgame perfect equilibrium. For more
on backwards induction see Fudenberg and Tirole (1991).

9This might be the game as as a whole, when Γ does not possess any proper sub-
games. Otherwise the game can be decomposed into a finite collection of subgames.
On this collection we can write an ordering of subgames labeling a subgame to be the
smallest if it contains the lowest number of decision nodes that follow it. In terms of
the relation f we can define the set ΥΓu

, as the set of decision nodes restricted to the
subgame Γu, ΥΓu

= ∅ might be possible, and F(Γu) := {x ∈ Υ|∃y ∈ ΥΓu
: y f x}

as the set of decision nodes that follow a decision node in the subgame Γu. Since
we consider only finite games, for every subgame the sets F(Γu) must be finite
for every information set u at which a subgame starts. We can then make a com-
parison of the cardinalities of these sets (which are well defined real numbers by
finiteness), and so can classify a subgame to be smallest, if the set F(Γu) has the
lowest cardinality.
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6. Dynamical Systems

This section will introduce those mathematical tools used in the sub-
sequent pages. When we analyze a game through evolutionary dynam-
ics, we actually view the game as a dynamical system. The conventional
way of solving a game is by calculating its Nash equilibria. The fun-
damental property of this equilibrium is that nobody can increase his
payoff by unilateral deviations from the Nash strategy. Once play-
ers coordinated to play the Nash equilibrium, nobody will ever have
an incentive to deviate, given the players do not change their strate-
gies simultaneously and in a somehow coordinated way. This makes
the Nash equilibrium a very strong solution concept. However, such
a static analysis is not able to show how the players actually coordi-
nate to play the Nash equilibrium. Moreover, the argument that no
player would have an incentive to deviate uniltateraly from the Nash
strategy, relies heavily on the assumption that the opponents will play
their Nash strategies. Especially in games played by large populations,
it might be fairly hard for the players to anticipate that all opponents
really choose their strategy that corresponds to the Nash equilibrium
of the game in question. As an alternative one can study a game as
a dynamic model, where no assumption concerning any agent’s belief
is needed. We focus on population games as defined in part 2. In
an N player game there are N populations, one population for each
player position, from which we randomly draw individuals, who are
programmed to some pure strategy available to the player position,
and let these individuals play the game. As time proceeds individuals
in the populations are allowed to change their pure strategy. This is
embodied by so-called behavioral rules, as will be explained in Section
7. Such behavioral rules generate a system of differential equations,
which describe the evolution of the relative frequency with which some
pure strategy occurs in a population. There is one differential equation
for each pure strategy available to a population and every differential
equation describes the evolution of the population share that this pure
strategy has, that is the number pki

∈ [0, 1] for all 1 ≤ k ≤ N and
1 ≤ i ≤ nk. The information how the state of population k behaves
over time is then encapsulated by the system of differential equations10

ṗk = V k(p) =

 V k
1 (p)
...

V k
nk

(p)

 , 1 ≤ k ≤ N

10The notation ṗ(t) = dp(t)
dt is the time derivative of the continuously differen-

tiable function p : I ⊂ R → Rnk . For ease of notation, we often suppress the time
index t.
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This system of differential equations defines a vector field acting on
some open space M ⊂ R

∑N
k=1 nk that contains the compact set Θ.11 We

will mainly work with vector fields whose Jacobian matrix DV k(p) ∈
Rnk×nk is continuously differentiable. We write for such vector fields
V k ∈ C1(M,Rnk). All vector fields at which we are going to look at
are time independent. Hence, we deal only with autonomous systems
of ordinary differential equations of order 1.12
Typical problems with which we are confronted are so-called initial
value problems, where we want to solve the system

V k : M → Rnk ṗk = V k(p), pk(0) = p0
k (6.1)

where p0
k ∈ ∆(Sk) is a given initial population state of player pop-

ulation k. Finding a solution to (6.1) means finding a continuously
differentiable function φk : I ×Θ→ Rnk , where I ⊂ R is a time period
on which this function is defined, with the property that for every pair
(t, p) ∈ I × Θ we have d

dt
φk(t, p0

k) = V k(p) and φ(0, p0
k) = p0

k. With
other words, a solution gives us the state of population k at time t
and social state p. If I is the maximal time interval on which solutions
are defined, we speak of a maximal solution. The derivative condition
implies that we already know the long run behavior of the state of
population k, for any initial condition in the state space Θ, by plotting
the vector field V k. If pk ∈ ∆(Sk) is a point on a solution curve of
(6.1), then V k(p) is the tangent vector of the solution curve at this
point. Thus, the speed and direction of motion of the population state
is encapsulated by the vector field V k. Since we are mainly interested
in the qualitative behavior of population states, the vector field is an
important source of information for our studies. Another convenient
consequence of the derivative condition of solutions is that we can write
a solution in its integral version as

φk is a solution to (6.1)⇒ φk(t, p0
k) = φk(0, p0

k) +

∫ t

0

V k(p(s))ds

We can also describe the qualitative behavior of all populations at one
instance, by summarizing them in the vector

V (p) =


V 1(p)
V 2(p)

...
V N(p)


Assuming that the vector field is of the class C1 allows us to apply the
famous Picard-Lindelöf Theorem, which ensures that to every initial

11A vector field V on a set M ⊂ Rm is a mapping assigning to each point x ∈M
a vector V (x) ∈ Rm. See Königsberger (2000)

12The order of a differential equation is determined by the highest derivative that
appears in the equation. Since we deal only with first derivatives, our differential
equations are of order 1.
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value p0
k there exists a unique solution to the problem (6.1) (A nice

proof of the Picard-Lindelöf Theorem can be found in Königsberger
(2000)). The assumption on the vector field being C1 is actually more
restrictive as we need. To prove the Picard-Lindelöf Theorem it suffices
to work with locally Lipschitz continuous vector fields.13 However it
can be shown that C1 implies Lipschitz continuity, and it allows us
to make some statements about the dependence of solutions on initial
conditions. For a technical discussion the reader may consult Hirsch,
Smale and Devaney (2004).

All the solutions to population specific vector fields that we will
encounter, are bounded by the compact subspace ∆(Sk). This is true
since all the dynamics that we will consider have solutions that leave
the simplex ∆(Sk) forward invariant. An intuitive understanding of
forward invariance under a solution φk is that once the solution started
at some point in the simplex it will always be in this simplex. Two
conditions to ensure the forward invariance under solutions are

nk∑
i=1

ṗki
(t) ≡

nk∑
i=1

V k
i (p(t)) = 0 ∀t ∈ I, 1 ≤ k ≤ N, p(t) ∈ Θ (6.2)

(∀1 ≤ k ≤ N)(∀eki
∈ Sk) : pki

= 0⇒ V k
i (p) ≥ 0 (6.3)

To understand these conditions suppose that there are only two strate-
gies available to population k. A population state is then a vector with
two elements pk = (pk1 , pk2)

T . This vector is defined on the unit square
[0, 1] × [0, 1] so that at every point in time, the identity pk2 = 1 − pk1
must hold. Taking time derivatives on the left and the right hand side of
this identity gives us the above stated invariance condition ṗk2 = −ṗk1 .
If the proportion of players in population k that choose to play strategy
ek2 ∈ Sk increases, the proportion of players in the same population,
that are devoted to pure strategy ek1 , must decrease at the same rate.
Henceforth, every motion “forward” has its corresponding “backward”
motion, so that at no point in time the dynamics can point outside
the unit square. For all positive time population states are constrained
to their set of possible population states, which is the simplex ∆(Sk).
The forward invariance of the simplex guarantees that maximal solu-
tions are defined for all future times. We can take I = [0,+∞) (see
Königsberger 2000)
It is clear that solutions are continuously differentiable in time. More-
over, equipped with the assumption that the vector field V k is C1, it

13A real valued function f : X → Y , where X and Y are some metric spaces
with metric dX , dY respectively, is said to be Lipschitz-continous if there exists
some constant L ≥ 0 such that for all x1, x2 ∈ X we have dY (f(x1), f(x2)) ≤
LdX(x1, x2). Take X to be an open subset and let X ′ ⊂ X. The function f : X → Y
is said to be locally Lipschitz continuous if each point in X has a neighborhood X ′

such that that the restriction of f on X ′ is Lipschitz continuous with Lipschitz
constant L(X ′).
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can be shown that solutions also depend continuously on the initial
conditions. For a proof see Hirsch, Smale and Devaney (2004, Chapter
17). Now we have all the ingredients to define a dynamic system. A
dynamic system is the triplet (I,Θ, φ), that is a maximal time interval,
a compact state space and a solution indicating the position of a social
state for a given initial condition and some point of time in I.

Unfortunately, solving a system of differential equations is a very
complicated task, and in high dimensions it is often not possible to
write down solutions in closed form. However, for our purposes it is
enough to study the qualitative behavior of the population states. With
qualitative behavior we mean the description of the path that solution
curves trace out when time goes by. This analysis is qualitative in the
sense that we actually only look at the vector field, and analyze all
possible motions that may arise in the state space Θ. Since we know
that solutions must mimic the directions induced by the vector field, a
qualitative investigation can be made by studying the phase portrait
of differential equations. This is fine in a dynamical system with one
variable, but clearly not possible in higher dimensions. In the case of a
planar system, we can use the vector field to study the evolution of our
dynamical system. In systems with more than two equations one needs
however different tools to study the long-run behavior of a dynamical
system. One therefore often selects a few interesting points of the
dynamical system and tries to investigate the behavior of the system
in a neighborhood of these distinguished points. Among these points
are so-called rest points, or fixed points of the dynamical system. Such
points have the special property that, once a population state reached
such a rest point, there will be no motion away from it, at least if there
are no exogenous effects that perturb the system in some way.

Definition 5. Let V : M → Rn, n :=
∑N

k=1 nk, be a C1(M,Rn)
vector field describing the motion of the social state p ∈ Θ of a given
population game. The point p∗ ∈ Θ is called a rest point of the vector
field if it is a solution to the homogeneous system of equations

(∀k = 1, 2, . . . , N) : V k(p∗) = 0 (6.4)

Clearly, a rest point must not be unique. For a simple illustration
consider the following

Example 2. Consider the one population, two strategy game, with
vector field ṗ = V (p) = p(1 − p). Here p represents the proportion of
individuals in the population that play strategy 1 and (1−p) is the pro-
portion of individuals in the population playing strategy 2. This game
has two rest points p = 0 and p = 1. These two points are constant
solutions to the differential equation. Solutions, for initial conditions
from the open interval (0, 1) on the real line, can be determined by
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“seperation of variables”. For any initial value p(0) in this interval we
can rewrite the equation as dp

p(1−p) = dt, which can be integrated over
some time interval [0, t] on the real line. This gives us∫ t

0

dp

p(1− p)
=

∫ t

0

dt∫ t

0

dp

p
+

∫ t

0

dp

1− p
= t

ln[p(t)]− ln[p(0)]− ln[1− p(t)] + ln[1− p(0)] = t

ln

[
p(t)

1− p(t)

]
= ln

[
p(0)

1− p(0)

]
+ t

p(t)

1− p(t)
=

p(0)

1− p(0)
exp(t)

p(t) =
p(0) exp(t)

1− p(0)(1− exp(t))

The long run evolution of this solution for the five initial values p(0) ∈
{0.04, 0.1, 0.5, 1, 1.5} is depicted in Figure 8.14 We see that solution

Figure 8. Solution curves for 5 different initial values
of the differential equation ṗ = p(1− p).

tend fairly rapidly to the stationary state p = 1, but there is no solution
14In a population game there can be certainly no initial value p(0) = 1.5. This

value is just added to see the general pattern of solution curves, and must be seen
independent of the population game context.
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starting in the open interval (0, 1) that tends to the other rest point
situated at the origin. To see the motion more clearly there is also one
solution plotted whose starting value lies outside the unit interval. We
see that this curve decays very fast and approaches the stationary state
p = 1 in future time.

We have seen in the example that rest points can have fundamentally
different properties. While the fixed point p = 1 seems to attract all
solution curves as time proceeds, the origin does not have this property.
More the contrary is the case. A solution may start arbitrary close to
the origin, it will never converge to it. It is therefore quite useful to
distinguish rest points of a dynamical system according to their stability
properties.

Definition 6. Consider the autonomous vector field V ∈ C1(M,Rn),
Θ ⊂ M , and suppose the point p∗ ∈ Θ is a rest point of it. Further
suppose conditions (6.2) and (6.3) are fulfilled. Then the rest point is
said to be

(i) stable if for all open neighborhoods U(p∗) of the rest point there
is another open neighborhood O(p∗) such that

(∀p0 ∈ O(p∗) ∩Θ)(∀t ≥ 0) : φ(t, p0) ∈ U(p∗) ∩Θ (6.5)
(ii) locally asymptotically stable if it is stable and moreover

(∀p0 ∈ U(p∗) ∩Θ) : lim
t→∞

φ(t, p0) = p∗ (6.6)

The rest point is then said to be attracting and the set U(p∗)∩Θ
is its basin of attraction.

(iii) globally asymptotically stable if it is locally asymptotically
stable and U(p∗) = Θ.

(iv) unstable if it is not stable.

In economics we are mainly interested in rest points that are at least
stable. Any forecast that predicts an unstable rest point as a solution
of a dynamical system has the very unattractive side effect that only
slight perturbation of the initial values are enough to lead the dynam-
ics to a totally different point in the state space. Since in “real-life” we
never analyze environments that are protected from exogenous shocks,
unstable rest points might even never be observed.15 The main instru-
ments to detect the stability of the rest points of a vector field, that
are used in applications, are techniques of linearization of the vector
field around the rest point, and the construction of so-called Lyapunov
functions.
Linearization can be motivated by the familiar method of approximat-
ing a known function with a polynomial, hence performing a Taylor ex-
pansion around the rest point. Consider the vector field V ∈ C1(M,Rn)

15Except the probability zero event occurs and the system initially is in the
unstable rest point position.
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and suppose the point p∗ is a rest point of it. A first-order Taylor ex-
pansion in a neighborhood U(p∗) ∩ Θ of the rest point is then given
by

V (p) = V (p∗) +DV (p∗)(p− p∗) + o(p− p∗)
where o(p−p∗) represents the remainder function that converges to zero
as p tends to p∗ faster then ||p − p∗|| → 0 for p → p∗.16 By definition
of a rest point, we have V (p∗) = 0, so that we are left with the linear
system of differential equations

ż = Az

where z := p − p∗ and A := DV (p∗) a n × n matrix. This derivative
matrix consists in our case of a lot of components. Since the function
V captures all directions of motions of all involved populations, and
all the motions of particular populations might in turn depend on the
aggregate behavior, there are many derivatives compute. Start with
fixing an arbitrary population k (1 ≤ k ≤ N) whose vector field is
described by V k(p) = V k(p1, . . . , pN), and pj = (pj1 , . . . , pjnj

), 1 ≤ j ≤
N . All partial derivatives are then summarized by the matrix

DV k(p) =
[
Dp1V

k(p), . . . , DpN
V k(p)

]
k = 1, 2, . . . , N

where

(∀j, k = 1, 2, . . . , N) : Dpj
V k(p) =



∂V k
1

∂pj1
(p)

∂V k
1

∂pj2
(p) . . .

∂V k
1

∂pjnj

(p)

∂V k
2

∂pj1
(p)

∂V k
2

∂pj2
(p) . . .

∂V k
2

∂pjnj

(p)

... . . . . . . ...
∂V k

nk

∂pj1
(p)

∂V k
nk

∂pj2
(p) . . .

∂V k
nk

∂pjnj

(p)

 .

This matrix does capture all the partial effects that changes in the
proportion of individuals playing pure strategy ` = 1, 2, . . . , nj in pop-
ulation j = 1, 2, . . . , N have on the motion of the player proportions
in population k. It is a matrix of dimension nk × nj . The derivative
matrix DV (p) is consequently a block matrix of the form

DV (p) =


DV 1(p)
DV 2(p)

...
DV N(p)


With our assumptions, in particular the C1 assumption of the original
vector field is here important, this system has a unique solution which
approximates solutions of ṗ = V (p) in a (possibly small) neighborhood
of the rest point p∗. The long run behavior of solutions of the lin-
ear system depend on the eigenvalues of the Jacobian matrix DV (p∗),
evaluated at the rest point. If all the eigenvalues of this matrix have

16The function ||.|| : Rn → R+ is here the euclidean norm of Rn.
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negative real parts, the rest point is locally asymptotically stable. For
a proof see Hirsch, Smale and Devaney (2004, Chapters 3 to 6 and
17). A problem with this linear approximation occurs when there is an
eigenvalue whose real part equals to zero. The Jacobian matrix is then
said to be non-hyperbolic. In such a case the linearized system does
not mimic the original vector field accurately, and so different methods
have to be found.

Another method to determine the stability of rest points is the con-
struction of a real-valued function that assumes its minimum value at
the rest point and is strictly decreasing along solution curves at all
other points then the fixed point. Such a function is called a Lyapunov
function, and will turn out to be very important in later chapters. The
inner product of two vectors x, y ∈ Rn is denoted by the bilinear map
17 〈., .〉 : Rn × Rn → R, and computed as 〈x, y〉 :=

∑n
i=1 xiyi.

Lemma 1. Let O ⊂ Θ be an open subset and consider the continuously
differentiable function L : O → R. Let φ(t, p0) denote a solution to the
system of differential equations ṗ = V (p), V ∈ C1(M,Rn), Θ ⊂ M ,
with initial value p0 ∈ Θ. If 〈∇L(φ(s, p0)), φ(s, p0)〉 < 0 for almost all
s, then we have L(φ(t, p0)) < L(φ(s, p0)) for all s < t.

Proof:

(∀s < t) : L(φ(t, p0))−L(φ(s, p0)) =

∫ t

s

〈
∇L(φ(τ, p0)), φ(τ, p0)

〉
dτ < 0

q.e.d.
Definition 7. Consider an autonomous dynamical system ṗ = V (p),
where V ∈ C1(M,Rn) and M is an open subset of Rn containing Θ.
Denote by φ(t, p0) a continuously differentiable solution curve starting
from some initial value p0 ∈ Θ. Suppose the point p∗ is a rest point
of the dynamical system and consider the rule p 7→ L(p) for some
p ∈ Θ, L(p) ∈ R. If L(p) is continuously differentiable on some open
neighborhood U(p∗) of the rest point, and satisfies

(∀p ∈ U(p∗) ∩Θ) : L(p) ≥ L(p∗)

(∀p ∈ U(p∗) ∩Θ) : d
dt
L(φ(t, p0)) = 〈∇L(φ(t, p0)), φ(t, p0)〉 ≤ 0

then it is called a local Lyapunov function. If 〈∇L(p), p〉 < 0 for
all p ∈ (U(p∗) ∩Θ) \ {p∗} then it is a strict Lyapunov function.
p∗ is stable if there exists a local Lyapunov function, and asymptotically
stable if there exists a strict Lyapunov function.

17A map is said to be bilinear if it is linear in both of its arguments, thus in our
case

(∀x, y, z ∈ Rn)(∀λ ∈ R) : 〈x, λ(y + z)〉 = λ(〈x, y〉+ 〈x, z〉)
〈λ(x + z), y〉 = λ(〈x, y〉+ 〈z, y〉)
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A proof of the connection between (asymptotical) stability and the
existence of a (strict) Lyapunov function can be found for example in
Hirsch, Smale and Devaney (2004, Chapter 9). Once one has found a
Lyapunov function, one is able to reconstruct the pattern of solutions
to the vector field, in an open neighborhood around the rest point.
Note that in the definition of a Lyapunov function we require that the
rest point is an isolated minimum and along solution curves we attain
only lower level sets of L. Thus, if we encounter a stable rest point
of a dynamical system, we can construct a continuously differentiable
function that leads us to this rest point, when the solutions start in
some neighborhood of it.
There is one more concept we have to introduce. Suppose we find
a continuously differentiable function E : M → R that is constant
along solution curves, thus 〈∇E(φ(t, p0)), φ(t, p0)〉 = 0. We call such
a function first integral, or a constant of motion. By definition, a first
integral is a special kind of a Lyapunov function. However, a direct
consequence of the constancy along solution curves is that vector fields,
that possess a constant of motion, cannot have asymptotically stable
fixed points, since there does not exist a strict Lyapunov function.
Stability is guaranteed in such systems.

7. From Behavioral Rules to deterministic Dynamics

There are two well established ways to introduce evolutionary dy-
namics. The “mechanical” approach is by defining growth rate func-
tions that describe the dynamic pattern of strategy frequencies (see
Hofbauer and Sigmund, 1998). A drawback of this approach is the
flavor of arbitrariness which is accompanied by “simply” writing down
functional forms. An alternative takes the behavior of the agents as
its primitive. With this framework we are able to model the decision
process of individuals in terms of so-called behavioral rules. This term
is used by Schlag and Cressman (2003) for decision theoretic problems
(extensive form games with a single player). Weibull (1995) and Sand-
holm (2007a, 2007b) introduce similar concepts for normal form games.
As the name suggests, a behavioral rule is a formal description how an
agent reviews her strategy, given some information about the state
of society. We define such a behavioral rule according to Sandholm
(2007a, p.103).

Definition 8. A behavioral rule is a map from currently aggregate
behavior to conditional switch rates. The map is given by

F k : Rnk ×∆(Sk)→ Rnk×nk
+

The real number fkij(πk(p), pk) is the rate at which a current eki
∈ Sk

strategist switches to pure strategy ekj
∈ Sk. The matrix F k(πk(p), pk) =
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fkij(π

k(p), pk)
]
i,j=1,...,nk

models the decision process of all agents in pop-
ulation k, for a given social state p.

Note that the conditional switch rates are not probabilities, but
agents will switch from strategy eki

to strategy ekj
with likelihood pro-

portional to the switching rate fij18. With the use of behavioral rules
we can define an evolutionary dynamic as an inflow-outflow model.
The inflow into pure strategy eki

captures the mass of individuals that
abandon their currently employed pure strategy and play eki

until the
next switching opportunity is granted. The outflow term is the mass
of individuals that currently play eki

, but now decide to play some dif-
ferent pure strategy in Sk. Inflow and outflow affect the number pki

.
Inflows make pki

growing, while outflows lower this strategy frequency.
The netflow is the difference between inflow and outflow and deter-
mines whether the frequency with which we observe pure strategy eki

becomes larger, or declines. Assuming that the populations are suf-
ficiently large, we can describe this inflow-outflow process through a
system of differential equations, that assume the form:

ṗki
=

nk∑
j=1

pkj
fkji − pki

nk∑
j=1

fkij 1 ≤ k ≤ N, 1 ≤ i ≤ nk (7.1)

The first term measures the inflow, the second the outflow. This equa-
tion induces a continuous law of motion on every population state,
which is summarized by the dynamical system

ṗk =

 ṗk1
...

ṗknk

 = V k(p) (7.2)

Hence, every behavioral rule can generate an evolutionary dynamic plus
they take individuals behavior as starting point. This explicit micro-
foundation of the evolution of the populations makes behavioral rules
a very attractive tool.
In principle any function, that is in accordance with definition 8, can
generate an evolutionary dynamic. Certainly there are some proper-
ties that we would like from a “good” behavioral rule to share. One of
them can be seen from a technical point, but reflects also a fact coming
from large populations. A good behavioral rule shall be Lipschitz-
continuous in payoffs and social states. The technical implication of
this assumption is that we can apply the Picard-Lindelöf theorem (see
for example Hirsch, Smale and Devaney, Chapter 17, or the discussion
in section 6) on the dynamical system, induced by the equations (7.1).

18The following derivation is based on Sandholm (2007a, Chapter 9). It is de-
signed to be more illustrative than mathematically concise. For a thorough math-
ematical discussion we refer to Sandhalm (2007a, Chapter 9) and Benaim and
Weibull (2003)
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For every initial social state p(0) ∈ Θ there exists a unique and con-
tinuous solution φk : R+ × Θ → Rnk for all populations k, satisfying
d
dt
φk(t, p(0)) = ṗk. On the other hand, it ensures that small changes in

initial conditions and the payoffs, alters the way how individuals make
their decisions smoothly. If individuals would have perfect information
about all payoffs yielded by other pure strategies, and know the state of
the population perfectly well, behavioral adjustments would be much
faster, possibly leading to discontinuous switches. Perfect and com-
plete information is something rare in large populations, if there does
not exist any central authority that distributes information fast and
reaches every individual in society. Hence, Lipschitz-continuity reflects
an assumption that people have limited knowledge about payoffs and
population states, which has some appeal if we look at large popula-
tions.
There are certainly other assumptions one may impose on behavioral
rules. Indeed we are going to discuss other properties in section 9
and in the following paragraphs. Now we are going to look at some
commonly used evolutionary dynamics and the behavioral rules that
generate them. In particular we are going to look at three families of
evolutionary dynamics. The best-known dynamic, the replicator dy-
namic, is a member of the class of imitative dynamics. Since it is the
best understood dynamic in use in the evolutionary literature, we are
going to start with it. Then we consider excess payoff dynamics, where
individuals form their decision independently of their current strat-
egy. Agents are more likely to switch to those strategies that promise a
higher payoff than the average in the population. The pairwise compar-
ison dynamic is a combination of an imitative dynamic and an excess
payoff dynamic.19

8. Families of evolutionary dynamics

8.1. Imitative dynamics. Behavioral rules driven by imitation have
a long tradition in the evolutionary literature. One of the best known
evolutionary models, the replicator dynamics, describes an evolution-
ary process which is driven purely by imitation of other individuals.

19We skip one very important dynamic used in the evolutionary game theory
literature, namely the so-called best-response dynamic. As its name suggests, it
is based on the, from the non-cooperative literature familiar, best-response corre-
spondence of a player. Its treatment has some technical drawbacks, since its vector
field is not continuous. Additional theory about dynamical systems is necessary to
give a full description of this dynamic. More importantly, the best-response dy-
namic models a dynamic process in which players are rational in the strict sense,
that only current best responses grow, for a given social state. It is clear that the
phenomenon of persisting irrational behavior cannot occur in this dynamic, so it is
not an interesting dynamic for this work. We do however recognize its importance
for economic theory. For a very detailed description of the best-response dynamic
see Cressman (2003) or Hofbauer and Sigmund (1998).
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All imitative dynamics share a common interpretation. An i-strategist
chooses an agent from his own population at random and observes her
strategy. The player will imitate the randomly drawn opponent, thus
switch to her strategy, according to the rule

fkij(π
k(p), p) = pkj

σkij(π
k(p)) (8.1)

where the function σ is Lipschitz continuous, and can be interpreted
as the conditional imitation rate of strategy ekj

by an individual that
currently plays strategy eki

.

Example 3. Suppose σ assumes the form

σkij =

{
πkj (p)− πki (p) if πkj (p) > πki (p)

0 otherwise

This revision protocol comes from Schlag (1998) and generates the
replicator dynamics first introduced by Taylor and Jonker (1978).
According to this rule, an agent imitates the randomly drawn oppo-
nent if and only if his payoff exceeds the agent’s own payoff. It mimics
therefore a behavior that imitates via pairwise comparison of payoffs.
Combining this rule with equation (7.1) gives us the autonomous dif-
ferential equation

ṗki
=

nk∑
j=1

pkj
pki

[
πki (p)− πkj (p)

]
+
− pki

nk∑
j=1

pkj

[
πkj (p)− πki (p)

]
+

= pki

nk∑
j=1

pkj
(πki (p)− πkj (p))

= pki
(πki (p)− π̄k(p)) (8.2)

where the expression [u]+ = max[0, u], u ∈ R and π̄k(p) is the kth pop-
ulation’s average payoff as defined in (5.1). The replicator dynamic
models a process where only those strategies replicate, which are better
than the population’s average. One should note the weak information
assumptions that are embodied by this proposed behavioral rule. The
only thing a revising agent needs to know is the strategy of the ran-
domly met opponent. In an extensive form game this could be modeled
through a “message“ or signal, coming from the opponent to the revising
individual.

A further defining characteristic of imitative behavioral rules is a
monotonicity assumption, that links the function σ with the payoffs to
strategies. Intuitively we want from a imitative behavioral rule, that
agents select those strategies more frequently, that have a higher payoff.
This leads us to a general definition as can also be found in Sandholm
(2007a).
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Definition 9. A behavioral rule of the form (8.1) generates an imita-
tive dynamic defined on the set of social states Θ if for all populations
1 ≤ k ≤ N

(i) the conditional imitation rate σkij is Lipschitz continuous for all
i, j ∈ {1, 2, . . . , nk}

(ii) (∀ek`
, eki

, ekj
∈ Sk) : σk`j(π

k(p)) − σkj`(π
k(p)) ≥ σk`i(π

k(p)) −
σki`(π

k(p)) if and only if πkj (p) ≥ πki (p)

The dynamic generated by such a behavioral rule takes the general form

ṗki
= pki

{
nk∑
j=1

pkj

[
σkji(π

k(p))− σkij(πk(p))
]}

k = 1, 2, . . . , N (8.3)

The last condition, that an imitative dynamic has to satisfy, can be
interpreted as a monotonicity condition. The net-flow to strategy j,
which is the number

∑nk

j=1[σ
k
ij − σkji], must be larger than to strategy

i, if the former promises a higher payoff than the latter. The imposi-
tion of this restriction appears to be fairly natural if we want to model
imitative behavior. We have to emphasize that this condition does not
exert that individuals know the payoff functions of all players (strate-
gies) available, nor do individuals need to know the population state
exactly. All that we ask for is, that players can observe the strategy of
the randomly drawn opponent. For an economic (and self-contained)
derivation of the replicator dynamics, see the following

Example 4. Consider a very large, but finite population of firms,
acting in a perfect competitive economy. Take the population suffi-
ciently large, so that all involved variables can be regarded to have a
continuum as support. Firms can choose between a finite set of pos-
sible investments, denoted by S = {e1, e2, . . . , en}. In the initial time
period of our observations, t, suppose each firm is programmed to a
certain investment ek, and firms can only decide upon a single invest-
ment type. The number xk(t) ≥ 0 is the absolute number of firms
who choose the investment of type k at time t. The total number
of firms in the economy is then the sum

∑n
k=1 xk(t) > 0. The list

p(t) = 1∑n
`=1 x`(t)

(x1(t), x2(t), . . . , xn(t)) describes the relative share of
firms that are devoted to a particular type of investment. Thus, the
number pk(t) = xk(t)∑n

`=1 x`(t)
is the relative frequency with which invest-

ment of type k occurs in the economy, in the sense that 100×pk(t) per-
cent of all firms choose investment ek ∈ S at time t. Clearly, pk(t) ≥ 0
and

∑n
k=1 pk(t) ≡ 1 for all times t.

By making an investment, firms expect to receive some rent. Suppose
this rent depends on the relative occurrence of the particular type of
investment in the economy. The rent to a firm, that makes an invest-
ment ek, is πk(p(t)) = ψ(ek, p(t))− δ. The function ψ is assumed to be
continuously differentiable and represents the gains of the investment
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ek. The constant factor δ is a nonnegative cost term, which is the same
for all firms. To model our assumption that the frequency of an invest-
ment and its rent is negatively correlated, suppose ∂ψ

∂pk
≤ 0. Average

returns to investment in the economy are then given by

π̄(p(t)) := π1(p(t))p1(t) + . . .+ πn(p(t))pn(t) =
n∑
k=1

ψ(ek, p(t))pk(t)− δ

Suppose that only the payoffs out of the investment decides whether a
firm survives or not. Hence, investment types that promise a relative
higher return, make firms, that have decided on this investment type,
grow relatively fast. Since firms are assumed to be programmed to a
certain investment type, we can identify the investment with a class of
firms. Those firms that have chosen investment of type ek will then
grow according to the differential equation20

ẋk(t) = [ψ(ek, p(t))− δ]xk(t)
To derive a law of motion of the relative share of firms that are in cor-
respondence with investment ek, observe that xk(t) = pk(t)

∑n
`=1 x`(t).

Taking time derivatives, by applying the product rule, we see that ṗk(t)
∑n

`=1 x`(t) =
ẋk(t)− pk(t)

∑n
`=1 ẋ`(t). From this it follows

ṗk(t)
n∑
`=1

x`(t) = xkπk(p(t))− pk(t)
n∑
r=1

πr(p(t))xr(t)

= pk(t)πk(p(t))
n∑
`=1

x`(t)− pk(t)
n∑
r=1

πr(p(t))xr(t)

Dividing the left and the right side of this equation by
∑n

`=1 x`(t) gives
the differential equation

ṗk(t) = pk

[
πk(p(t))−

n∑
r=1

πr(p(t))pr(t)

]
what is equivalent to the replicator dynamics, defined for a single pop-
ulation.

8.1.1. Properties of Imitative Dynamics. This section is oriented
on works by Sandholm (2007a), Hofbauer and Weibull (1996), Weibull
(1995) and Hofbauer and Sigmund (1998). In particular Proposition 1
can be found in Sandholm (2007a), but the proof was done by myself.
Proposition 2 is taken from Sandholm (2007a, p.142). Proposition 3
is a well known result and can be found in nearly all textbooks on
evolutionary dynamics. The proof given here is however entirely self-
contained. Corollary 1 and Lemma 2 are my owns.
We have already mentioned that the net-flows of imitative dynamics

20The continuous time assumption can be regarded as a deterministic discrete
time approximation. However this is not of importance in this example.
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are monotone in payoffs. This implies that informational requirements
for modeling imitative behavior are fairly low. However, the weak
monotonicity property has some touch of rationality, since we impose
that better performing strategies come up with higher net-imitation
rates. The notion “better performing” must be understood in a local
sense, since only a comparison between two strategies is made. A global
monotonicity assumption must clearly involve all strategies available to
the population. One can even sharpen the monotonicity of imitative
dynamics by the following

Proposition 1. All imitative dynamics are monotone in the sense that

(∀k ∈ {1, 2, . . . , N})(∀pkj
, pki

> 0) :
V k
j (p)

pkj

≥ V k
i (p)

pki

⇔ πkj (p) ≥ πki (p) (8.4)

Proof:
(⇐) Suppose that πkj (p) ≥ πki (p) and pki

, pkj
> 0. Then it follows

that
V k
j (p)

pkj

=

nk∑
`=1

pk`

[
σk`j(π

k(p))− σkj`(πk(p))
]

≥
nk∑
`=1

pk`

[
σk`i(π

k(p))− σki`(πk(p))
]

=
V k
i (p)

pki

where the inequality follows since the net-flow from all strategies
to pure strategy ekj

must be larger than the net-flow to pure
strategy eki

if the latter earns a lower payoff than the first.
(This is part (ii) of definition 9.)

(⇒) Suppose now that V k
j (p)

pkj
≥ V k

i (p)

pki
. We have then that

V k
j (p)

pkj

− V k
i (p)

pki

=

nk∑
`=1

pk`

{[
σk`j(π

k(p))− σkj`(πk(p))
]
−
[
σk`i(π

k(p))− σki`(πk(p))
]}

≥ min
ek`

∈Sk

{[
σk`j(π

k(p))− σkj`(πk(p))
]
−
[
σk`i(π

k(p))− σki`(πk(p))
]}

≥ 0

only if πkj (p) ≥ πki (p) by part (ii) of the definition of an imitative
dynamics.

q.e.d.
Proposition 1 tells us that growth rates of strategies are ordered ac-

cording to their payoffs. This is a very important property of imitative
dynamics, and was first investigated by Samuelson and Zhang (1992)
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(although only for the case of two populations). It is well known that
this monotonicity property of the replicator dynamic lead evolutionary
dynamics to eliminate strictly dominated strategies, and so offer a dy-
namic approach, which shares already one very important feature with
the “rationalistic” static analysis of games. Elegant proofs of this claim
can be found in Samuelson and Zhang (1992), Hofbauer and Weibull
(1996) and Sandholm (2007a).

Corollary 1. For all populations 1 ≤ k ≤ N we have for all pki
, pkj

>
0:

πkj (p) = πki (p)⇒
V k
j (p)

pkj

=
V k
i (p)

pki.

Proof: πkj (p) = πki (p) is equivalent to πkj (p) ≤ πki (p) and πkj (p) ≥
πki (p). From the definition of an imitative dynamic, we can conclude

πkj (p) ≤ πki (p) ⇒ (∀ek`
∈ Sk) : σk`i − σki` ≥ σk`j − σkj`

πkj (p) ≥ πki (p) ⇒ (∀ek`
∈ Sk) : σk`j − σkj` ≥ σk`i − σki`

If we summarize these two findings, it must be true that

(∀ek`
∈ Sk) : σk`i − σki` = σk`j − σkj`

And so
nk∑
`=1

pk`

[
σk`j(π

k(p))− σkj`(πk(p))
]

=

nk∑
`=1

pk`

[
σk`i(π

k(p))− σki`(πk(p))
]

or differently put
V k
j (p)

pkj

=
V k
i (p)

pki

q.e.d.
Another crucial property shared by all imitative dynamics is that there
is no innovation in a game. Suppose there is an unused strategy, say
ekj
∈ Sk in population k. This translates itself into pkj

= 0, and so,
by equation (8.3), ṗkj

= 0. A once unexplored strategy will never be
discovered by the population. This is a logical consequence from im-
itative behavior. If individuals imitate strategies that they meet at
random, they will never imitate a strategy which they will never meet.
Hence, there can be no movement to a strategy, which nobody uses
in the population. An immediate consequence from this property is
that all “degenerate” population states, states at which all individuals
in the population are programmed to a single pure strategy, are neces-
sarily rest points under all imitative dynamics. If everybody in a fixed
population only meets individuals that play the same strategy as she
already does, then no imitation can take place.
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Every imitative dynamic leaves the population masses constantly
equal to one. This property makes an imitative dynamics to a regu-
lar dynamic, following the terminology used by Hofbauer and Weibull
(1996), or Weibull (1995, Chapter 5.5). This property states that the
sum of all directions of motion in a population has to vanish. For all
times, a population state must remain in the simplex ∆(Sk). Clearly
this must also hold at the macro-level of society (which we have defined
as the collection of all populations). It is quite easy to establish this
property. Fix an arbitrary population k and sum the time derivatives
of all strategies contained in Sk:

nk∑
i=1

ṗki
=

nk∑
i=1

pki

{
nk∑
j=1

pkj

[
σkji(π

k(p))− σkij(πk(p))
]}

(8.5)

=

nk∑
i=1

pki

[
nk∑
j=1

pkj
σkji(π

k(p))

]
−

nk∑
i=1

pki

[
nk∑
j=1

pkj
σkij(π

k(p))

]

=

nk∑
i=1

pki

[
nk∑
j=1

pkj
σkij(π

k(p))

]
−

nk∑
i=1

pki

[
nk∑
j=1

pkj
σkij(π

k(p))

]
= 0

With other words, an imitative process ensures that every population
k is in its state space ∆(Sk) for all times, or in more technical terms,
every imitative dynamics leaves the simplex ∆(Sk) invariant (also its
interior and its boundary).21 Consequently, the space of social states
Θ is invariant under imitative dynamics.
In proposition 1 we have established an ordering of growth rates of
strategy proportions. This ordering is generated by payoff differences
of the several pure strategies available to some player population. Rel-
atively more individuals are going to adopt a certain pure strategy if
it offers a higher payoff compared to the strategy that they currently
employ. Since imitation does not allow unused strategies to become
discovered, we can partition the set of pure strategies into those with
positive growth rate, those with negative growth rates and the unused
strategies with growth rate zero. Thus, we can define 3 disjoint sets

Gk±(p) =

{
eki
∈ Sk|pki

> 0 ∧ ±V
k
i (p)

pki

> 0

}
Gk0 (p) =

{
eki
∈ Sk|pki

= 0 ∨ V k
i (p) = 0

}
Lemma 2. For every imitative dynamics and all populations 1 ≤ k ≤
N , the following is true:

(i) Gk+ ∩ Gk− = ∅ and Gk+ ∪ Gk− ∪ Gk0 (p) = Sk
(ii) min

{
πkj (p)|ekj

∈ Gk+(p)
}
≥ max

{
πki (p)|eki

∈ Gk−(p)
}

21Invariance was also discussed in Section 6.
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Proof:
(i) Follows directly from the definitions of these sets.
(ii) Pick pure strategies ekj

∈ Gk+(p), eki
∈ Gk−(p). By definition

of these sets, we get V k
j (p)

pkj
> 0 >

V k
i (p)

pki
. By proposition 1 this

holds if and only if πkj (p) ≥ πki (p). Since there are only finitely
many pure strategies, there must exist a minimal payoff in Gk+(p)
and a maximal payoff in Gk−(p). Henceforth, it must be that
min

{
πkj (p)|ekj

∈ Gk+(p)
}
≥ max

{
πki (p)|eki

∈ Gk−(p)
}

q.e.d.
Applying Lemma 2 gives us the possibility to derive a nice, and impor-
tant, geometric property of payoff vectors and the vector field induced
by any imitative dynamic.

Proposition 2. For every population 1 ≤ k ≤ N , the vector of payoffs
πk(p) and the vector field V k(p) of an imitative dynamic must form an
acute angle, that is algebraically〈

πk(p), V k(p)
〉
≥ 0

Proof: Choose an arbitrary population k and suppose, the vector
field vanishes at some social state p∗ ∈ Θ, that is V k(p∗) = 0. In this
case we have

〈
πk(p), V k(p)

〉
= 0.

Suppose now the system is not in a resting position. Since imitative
dynamics are not innovative, we have

nk∑
i=1

V k
i (p)πki (p) =

∑
ekj

∈Gk
+(p)

V k
j (p)πkj (p) +

∑
eki

∈Gk
−(p)

V k
i (p)πki (p)

The directions of motions have to sum to zero, thus∑
ekj

∈Gk
+(p)

V k
j (p) = −

∑
eki

∈Gk
−(p)

V k
i (p) (8.6)

and on the left and the right side there are positive numbers. Further
we can give a lower bound∑

ekj
∈Gk

+(p)

V k
j (p)πkj (p) ≥ min

{
πkj (p)|ekj

∈ Gk+(p)
} ∑
ekj

∈Gk
+(p)

V k
j (p)

Combining this fact together with the equality (8.6) yields
nk∑
i=1

V k
i π

k
i (p) ≥ min

{
πkj (p)|ekj

∈ Gk+(p)
} ∑
ekj

∈Gk
+(p)

V k
j (p) +

∑
eki

∈Gk
−(p)

V k
i (p)πki (p)

=
∑

eki
∈Gk

−(p)

V k
i (p)

[
πki (p)−min

{
πkj (p)|ekj

∈ Gk+(p)
}]

≥ 0
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since the sum of the growth rates are negative and the term in the
brackets must be negative as well by Lemma 2.

q.e.d

The last property we are going to establish is something that all imi-
tative dynamics share, and links the rest points of the dynamics with
the Nash equilibria of the underlying game. Consider an N-population
game in normal form, where each population is endowed with a finite
set of pure strategies. Suppose strategies are fixed, and so is then the
space of population states. We can identify the normal form game with
the payoff functions of each population. Given this population game,
a vector field of an imitative dynamic is induced, according to an be-
havioral rule as in definition 9. Denote the set of stationary states of
this vector field by

R :=
{
p̃ ∈ Θ|V k(p̃) = 0, ∀k = 1, 2 . . . , N

}
Proposition 3. A Nash equilibrium in the N-population normal form
game, identified by the payoff functions π = [πk]k=1,2...,N , is always a
rest point of an imitative dynamics defined on this game. With other
words NE ⊂ R

Proof : Suppose p∗ ∈ Θ is a Nash equilibrium of the underlying
population game. Fix an arbitrary population k and note that, if the
population state p∗k ∈ ∆(Sk) is a Nash equilibrium in the population,
than all the pure strategies that occur with positive mass in this pop-
ulation must have the same average payoff. Thus there exists some
constant c ∈ R, such that:

(∀p∗ki
> 0) : πki (p

∗) = c := max
ekj

∈Sk:p∗kj
>0
πkj (p

∗)

By Corollary 1 we get immediately that all the strategies that occur
with positive mass in Nash equilibrium must have the same growth
rate. Call this uniform growth rate γk. Imitative dynamics are not
innovative, what implies that unused strategies in Nash equilibrium
have neither inflow nor outflow. This implies

(∀p∗k`
= 0) : V k

` (p∗) = 0

By equation (8.5), the sum of all motions in population k must vanish.
In particular this must be true in Nash equilibrium, so that we can
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conclude

0 =

nk∑
i=1

V k
i (p∗) =

∑
i:p∗ki

>0

V k
i (p∗)

=
∑
i:p∗ki

>0

p∗ki

V k
i (p∗)

p∗ki

, since
V k
i (p∗)

p∗ki

≡ γk

= γk
∑
i:p∗ki

>0

p∗ki

Consequently it is true that

(∀p∗ki
> 0) : V k

i (p∗) = 0

Since population k was chosen arbitrarily, we get the desired result.
q.e.d.

Unfortunately the reverse implication is not true. Every imitative
dynamics possesses rest points that are not Nash equilibria. In particu-
lar, every vertex of the simplex ∆(Sk) is a rest point, but will not be a
Nash equilibrium in general. This is the major drawback of imitative
behavioral rules. However it stands without a doubt that imitation
might be one of the most important features of social life. To end up
the discussion about imitative dynamics, we are going to present the
replicator dynamics applied to a two-population version of the “Match-
ing pennies” game.

Example 5. “Matching pennies” was already introduced in 1. Its nor-
mal form representation is given by Table 1. There are two populations,

H T
H (1,-1) (-1,1)
T (-1,1) (1,-1)

Table 1. Matching pennies in normal form.

endowed with pure strategy space Si = {H,T} , i ∈ {1, 2}. These pure
strategies can be seen as the vertexes of an closed interval on the real
line. A population state is then a partition of this interval into two
disjoint parts, and can formally be written as a vector p = (p1, 1− p1)
satisfying p ∈ [0, 1]× [0, 1]. With this notation we interpret the size of
the subpopulation whose individuals play “H” with the number p1, and
analogously the size of the subpopulation whose individuals play “T” is
the real number 1 − p1. One population has the role of the row-player
and the other population constitutes agents who are assigned to the role
of the column player. Let the state of the population in the role of the
row player be the vector p and the state of the population in the role
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of the column player be q = (q1, 1 − q1). The space of social states is
consequently the cube Θ = [0, 1]4. Payoffs to population 1 are

π1(q) =

[
π1

1(q)
π1

2(q)

]
=

[
2q1 − 1
1− 2q1

]
and for population 2

π2(p) =

[
π2

1(p)
π2

2(p)

]
=

[
1− 2p1

2p1 − 1

]
Average payoffs in the player populations are then

π̄1(p, q) = p1(2q1 − 1) + (1− p1)(1− 2q1) = (1− 2p1)(1− 2q1)

π̄2(p, q) = q1(1− 2p1) + (1− q1)(2p1 − 1) = (1− 2p1)(2q1 − 1)

It is readily verified that there can be no Nash equilibrium in degenerate
population states, and there is a unique Nash equilibrium in the interior
of the unit cube given by the profile

NE = {(1/2, 1/2); (1/2, 1/2)}
The replicator dynamics for population 1 can be written in a concise
way as

V 1(p, q) =

[
p1 0
0 1− p1

]{[
2q1 − 1
1− 2q1

]
−
[

(1− 2p1)(1− 2q1)
(1− 2p1)(1− 2q1)

]}
=

[
2p1(2q1 − 1)(1− p1)
2p1(1− 2q1)(1− p1)

]
The replicator dynamics for population 2 is derived after similar calcu-
lation, and equal to

V 2(p, q) =

[
2q1(1− q1)(1− 2p1)
2q1(2p1 − 1)(1− q1)

]
Obviously we have V k

1 (p, q) + V k
2 (p, q) = 0 for k ∈ {1, 2}. Thus, it suf-

fices to analyze the evolution of one strategy population. The motion
of the other subpopulation is then known as the negative of it. Con-
sider the dynamics of the proportion of H-players in population 1. It is
clearly visible that the sign of the motion is independent of the frequency
of H-players in the own population. Only the proportion of H-players
in the opponent population, q1, affects the direction of the dynamic. If
q1 > 1/2 we have V 1

1 (p, q) > 0 so that the proportion of individuals in
population 1 that play H will rise. It will fall only if q1 < 1/2, and the
state of population 1, population 2 respectively, is at a rest if q1 = 1/2.
Other rest points of the dynamic are when the population is extremely
concentrated on one pure strategy, that is if p1 ∈ {0, 1} occurs. No
matter what population 2’s composition q is, there will be no movement
between pure strategies in population 1. This is a direct consequence
of the pure imitative behavior of agents under the replicator dynam-
ics. Using the dependence of subpopulation proportions we can identify
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a social state with the vector (p1, q1). From the information that this
list conveys, we can easily reconstruct the state of the separate popu-
lations. This allows us to restrict ourselves to a phase plane analysis
constrained by the unit square [0, 1] × [0, 1]. The set of rest points for
both populations can therefore be characterized through a set of points
in the unit square, and is given by

R = {(0, 0), (1, 0), (0, 1), (1, 1), (1/2, 1/2)}
The stability of these rest points can be determined by linearizing the
reduced system

Ṽ (p1, q1) =

[
2p1(2q1 − 1)(1− p1)
2q1(1− q1)(1− 2p1)

]
The Jacobian matrix of this vector field is for general values (p1, q1)

DṼ (p1, q1) =

[
(2− 4p1)(2q1 − 1) 4p1(1− p1)

4q1(q1 − 1) (2− 4q1)(1− 2p1)

]
Evaluating the Jacobian at the five points listed in the set R gives us

DṼ (0, 0) = DṼ (1, 1) =

[
−2 0
0 2

]
, DṼ (1, 0) = DṼ (0, 1) =

[
2 0
0 −2

]
DṼ (1/2, 1/2) =

[
0 1
−1 0

]
The eigenvalues of these matrices can be directly read off form the prin-
ciple diagonal, except in the case of the Nash equilibrium. Here the
eigenvalues are pure imaginary, that is λ = ±i, where i is the imagi-
nary unit, corresponding to the complex eigenvectors (1, 0)T ± (0, 1)T i.
The interior Nash equilibrium is a so-called center of the linearized
system. The boundary rest points are saddle points, since eigenvalues
always appear in pairs of positive and negative numbers. There are di-
rections of motion that point into their direction, and there are other
directions of motion that point away from them. They can therefore
not be stable rest points of the replicator dynamics. There is an easy
way to find the solution curves of the replicator dynamics in Matching
pennies, by means of finding a first integral (see section 6). For sake
of convenience we remain in our 2-dimensional restriction. Fix an ar-
bitrary initial social state where p0

1 and q0
1 are not assuming values that

make the vector field stationary (i.e. 0,1,1/2). Then, we can compute
the ratio

ṗ1

q̇1
=
dp1

dq1
=
p1(1− p1)

1− 2p1

2q1 − 1

q1(1− q1)
This a differential equation which can be solved by separation of vari-
ables. Rearranging terms, and integrating the left and the right side of
the equation shows∫

1− 2p1

p1(1− p1)
dp1 =

∫
2q1 − 1

q1(1− q1)
dq1
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Figure 9. Solution curves, given implicitly by equation
(8.7), of the Matching pennies game played by two pop-
ulations under the replicator dynamics. The arrows are
added to indicate the directions of motion.

The solution corresponding to the right side is given by ln(p1(1−p1))+
C1, where C1 is a constant of integration. Similarly, the solution to the
left side is − ln(q1(1− q1)) + C2, and so we get

ln(p1(1− p1)) + ln(q1(1− q1)) = C (8.7)

where C := −C1 + C2 a constant factor. The expression on the left
side is a constant of motion of the replicator dynamics in Matching
pennies. It can be shown that all zero-sum games have a first integral
for the replicator dynamics (see Sandholm 2007a).

This example is remarkable, since we see that there is no guarantee
that evolutionary dynamics converge to the Nash equilibrium. In fact,
population states are captured in a periodic cycle. Another example for
non convergence under the replicator dynamic is the “standard” rock-
paper-scissors game. As one might have guessed, it is also a zero-sum
game.

Example 6. The standard rock-paper-scissors (standard RPS from
now on), is defined through the payoff matrix in Table 2. The best
responses of population 1 (again the row player) show cyclic behavior.
Let BRk denote the best response of population k. Suppose population 2
starts with rock, and continuous then with the best response to the strat-
egy of population 1. A cycle systematically drawn in Table 3 occurs.
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r p s
R (0,0) (-1,1) (1,-1)
P (1,-1) (0,0) (-1,1)
S (-1,1) (1-1) (0,0)

Table 2. standard RPS in normal form

After 3 rounds we are back at the initial strategy. It is clear from this

r → BR1(r) = P → BR2(P ) = s
↓

BR1(p) = S ← BR2(R) = p ← BR1(s) = R
↓

BR2(S) = r
Table 3. Cyclic best responses in the standard RPS game.

cyclic behavior that there are no mutually best responses in degenerate
population states. Using the same notation as in the previous example,
the payoffs in population 1 and 2 are

π1(q) =

 π1
1(q)
π1

2(q)
π1

3(q)

 =

 −q2 + q3
q1 − q3
−q1 + q2


and analagously for population 2

π2(p) =

 −p2 + p3

p1 − p3

−p1 + p2


Average population payoffs are then

π̄1(p, q) = p1(−q2 + q3) + p2(q1 − q3) + p3(−q1 + q2)

= −q1(−p2 + p3)− q2(−p1 + p3)− q3(−p1 + p2)

= −π̄2(p, q) (8.8)

The unique interior NE occurs at that point where every subpopulation
earns the same average payoff. This is only then the case, when all three
strategies are used with the same probability in the two populations.
Thus, the set of NE is a singleton

NE = {(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)}

where society neither loses nor gains anything. It is useful to visualize
the best-response correspondence for one population. Since the game is
symmetric, in the sense that both populations share the same payoff
matrix, we get a complete picture of the game by considering a single
population. Without loss of generality we can select population 1, and
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calculate the best responses of this population in dependence of the state
of its opponent population.

BR1(q) =



{R} if q2 < 2/3− q1 ∧ q2 < 1/3
{S} if q1 < 1/3 ∧ q2 > 1/3
{P} if q2 > 2/3− q1 ∧ q1 > 1/3

{(p1, p2, 0)} if q2 = 2/3− q1 ∧ q1 > 1/3
{(p1, 0, p3)} if q2 = 1/3 ∧ q1 < 1/3
{(0, p2, p3)} if q1 = 1/3 ∧ q2 > 1/3
{(p1, p2, p3)} if q1 = q2 = 1/3

The replicator dynamics can then be written as

Figure 10. Regions of best responses in the standard
RPS game.

V 1(p, q) =

 p1 0 0
0 p2 0
0 0 p3


 −q2 + q3

q1 − q3
−q1 + q2

−
 π̄1(p, q)
π̄1(p, q)
π̄1(p, q)


=

 p1 (−q2 + q3 − π̄1(p, q))
p2 (q1 − q3 − π̄1(p, q))
p3 (−q1 + q2 − π̄1(p, q))


If we want to find a constant of motion, we need to construct a con-

tinuously differentiable function, whose time derivative vanishes along
solution curves of the replicator dynamics. First of all suppose that
population 1 is in its Nash equilibrium state. Per definition of an Nash
equilibrium in this game, we have then π̄1(p∗, q) = 0 for all q ∈ ∆(S2).
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Clearly the same holds for population 2, if it is in its Nash equilib-
rium position. Pick an arbitrary population state p ∈ int[∆(Sk)], and
consider the sum∑

i:p∗i>0

p∗i
V 1
i (p, q)

pi
=

∑
i:p∗i>0

p∗i
[
π1
i (q)− π̄1(p, q)

]
=

∑
i:p∗i>0

p∗iπ
1
i (q)− π̄1(p, q)

= π̄1(p∗, q)− π̄1(p, q)

= −π̄1(p, q) (8.9)

The same expression holds for population 2, after substituting the letters
p with q and changing sub- and superscripts. If we combine these two
expressions we get∑

i:p∗i>0

p∗i
V 1
i (p, q)

pi
+
∑
i:q∗i >0

q∗i
V 2
i (p, q)

qi
= 0

since the the standard RPS is a zero-sum game (and thus −π̄1(p, q) =
π̄2(p, q) does hold for all social states (p, q) ∈ Θ ≡ [0, 1]4). Our goal
is to find a function, whose time derivatives gives us the expression
above, for interior solutions of the replicator dynamics. Define the
space Θ(p∗,q∗) := {(p, q) ∈ Θ|p∗i > 0⇒ pi > 0, q∗i > 0⇒ qi > 0}. A can-
didate function for a first integral is then H : Θ(p∗,q∗) → R+ given by:

H(p∗,q∗)(p, q) =
∑
i:p∗i>0

p∗i ln(
p∗i
pi

) +
∑
i:q∗i >0

q∗i ln(
q∗i
qi

)

Compute the partial derivatives: ∂H(p∗,q∗)(p,q)

∂pi
= −p∗i

pi
, and a similar ex-

pression holds for the derivatives with respect to qi. Its time derivative
is

d

dt
H(p, q) =

∑
i:p∗i>0

∂H(p∗,q∗)(p, q)

∂pi
ṗi +

∑
i:q∗i >0

∂H(p∗,q∗)(p, q)

∂qi
q̇i

= −
∑

(p∗i
ṗi
pi

+ q∗i
q̇i
qi

)

= π̄1(p, q) + π̄2(p, q) by (8.9)
= 0 by (8.8)

For the standard RPS game, and in the single population case, it is
visualized in Figure 11. Solutions starting in the interior of the space
of population states lie on a level set of the function, and remain on
these closed curves forever. Again we see that evolutionary dynamics
does not guarantee convergence to Nash equilibrium in all games.
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Figure 11. Constant of motion for the standard RPS
game in the single population case. Here the projection
H(p) = p

1/3
1 p

1/3
2 (1− p1 − p2)

1/3 is drawn.

8.2. Excess Payoff Dynamics. The name of this family appears in
Sandholm (2007a). The discussion presented here is also closely related
to this text. Further references are Hofbauer and Berger (2004) and
Hofbauer and Sandholm (2007a and 2007b). The strength of behav-
ioral rules driven by imitation is the low amount of information agents
need to adopt such a rule. However, we have seen that imitative rules
cannot establish a one-to-one correspondence between the rest points
of the generated dynamic and the Nash equilibria of the underlying
game. Moreover, pure imitation rules do not allow any innovations in
society. A once unused strategy remains unused forever. It appears
to be necessary to make further assumptions about the knowledge of
the individuals. Exactly that is what excess payoff dynamics do. Un-
der these dynamics, each agent knows the current population state
p ∈ ∆(Sk) and evaluates the performance of the various pure strategies
directly. She is able to calculate the payoffs arising to each available
pure strategy. Then she compares then the payoff with the population’s
average payoff, and switches to those strategies with some probability,
whose payoff is above the population’s average. A current i-strategist
in population k will therefore switch to pure strategy ekj

∈ Sk with
probability proportional to the continuous function

fkij(π
k, pk) = σkj

 πk1(p)− π̄k(p)
...

πknk
(p)− π̄k(p)
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Hence the switching rate depends on the difference in payoffs of all pure
strategies available to the population and average population payoffs.
Note that such a behavioral rule is completely independent of the cur-
rently used strategy of an revising agent. Differently put, the switching
rates depend solely on the vector of centered payoffs, which measures
the deviations of all pure strategies from mean payoff, for given social
state p ∈ Θ. Denote this vector by π̂k(p), and call it the excess pay-
off vector, so that we can write the behavioral rule in a more concise
fashion as

fkij(π
k, pk) = σj(π̂

k(p)) (8.10)
Before defining excess payoff dynamics in all generality, we are going
to present an important representative of this family.

Example 7. Suppose that agents in population 1 ≤ k ≤ N switch
from a pure strategy eki

∈ Sk to another pure strategy ekj
∈ Sk with

probability proportional to the rate

fkij(π
k(p), p) =

{
πkj (p)− π̄k(p) if πkj (p) > π̄k(p)

0 otherwise

The inflow to strategy eki
is then

nk∑
j=1

pkj
fkji(π

k(p), p) =

{
πki (p)− π̄k if πki (p) > π̄k

0 otherwise

and the corresponding outflow

pki

nk∑
j=1

fkij(π
k(p), p) = pki

∑
j:π̂k

j (p)>0

[
πkj (p)− π̄k(p)

]
.

The net-flow, or the law of motion of strategy eki
, induced by this be-

havioral rule, becomes

ṗki
=
[
πki (p)− π̄k(p)

]
+
− pki

nk∑
j=1

[
πkj (p)− π̄k(p)

]
+

(8.11)

The so obtained system of differential equations, is called the Brown-
von Neumann-Nash (BNN) dynamics. For a short history of this
dynamic see Hofbauer and Berger (2004). The behavioral rule used
here is proposed in Sandholm (2007a).

From the behavioral rule it seems to be natural to assume that strate-
gies with higher excess payoffs influence the switching rates positively.
Indeed, Sandholm (2007a, Chapter 4) adds a “positive correlation” con-
dition between excess payoffs and switching rates, as a characteristic
feature of excess payoff dynamics. We will follow this approach. Be-
fore giving the general definition, note that a vector of excess payoffs
cannot be strictly negative, in the sense that every pure strategy earns
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a strictly lower payoff than the average. Analogously, a vector of ex-
cess payoffs cannot be strictly positive, in the sense that every pure
strategy earns a strictly higher payoff than the average. It can be that
π̂k(p) = 0, the null-element of Rnk . In such a case all pure strategies
earn the same payoff. Define the set

Ek :=
{
π̂k(p) ∈ Rnk |(∃eki

∈ Sk) : π̂ki (p) > 0 for some p ∈ Θ
}

Hence Ek is a subspace of Rnk , where there exists some pure strategy
that earns a payoff above the population’s average. We say that a vec-
tor z is non-positive, z ≤ 0, if and only if ∀i = 1, . . . , nk : zi ≤ 0∧∃i =
1, . . . , nk : zi = 0.

We have introduced a behavioral rule as a matrix whose elements
where the switching rates between two pure strategies. Behavioral rules
that generate an excess payoff dynamic, depend only on the excess pay-
off vector in the population. Hence, a switch from pure strategy, say
ek1 , to pure strategy ek3 , will be observed with a probability propor-
tional to the factor σk3(π̂k(p)). By definition, this factor is independent
of the currently used strategy of the revising individual. The behavioral
rule of a population k is therefore a matrix with one linear independent
row, of the form

F k(πk, p) =


fk11 fk12 . . . fk1nk

fk21 fk22 . . . fk2nk... . . . . . . ...
fknk1 fknk2 . . . fknknk

 =


σk1 σk2 . . . σknk

σk1 σk2 . . . σknk... . . . . . . ...
σk1 σk2 . . . σknk


so that actually all the relevant information can be stored in a nk dimen-
sional column vector,

[
σk(π̂k(p))

]T
=
[
σk1(π̂

k(p)), σk2(π̂
k(p)), . . . , σknk

(π̂k(p))
]
,

and the real number σkj (π̂k(p)) ≥ 0 is the conditional switching rate to
pure strategy ekj

∈ Sk.

Definition 10. (Sandholm, 2007a, pp.144) A behavioral rule of the
form (8.10) generates and excess payoff dynamic defined on the set
of social states Θ if

(i) the switching rate fkij(π
k(p), p) = σkj (π̂

k(p)) is Lipschitz con-
tinuous for all populations 1 ≤ k ≤ N and all pure strategies
eki
, ekj
∈ Sk.

(ii) for some p ∈ Θ we have π̂k(p) ∈ Ek, then the vector of ex-
cess payoffs and the switching rates point in the same direction.
Algebraically, this means〈

σk(π̂k(p)), π̂k(p)
〉

=

nk∑
j=1

σkj (π̂
k(p))π̂kj (p) > 0

for all populations 1 ≤ k ≤ N .
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(iii) it satisfies sign preservation, that is

sgnσkj (π̂
k(p)) = sgn[π̂k(p)]+ ∈ {0, 1}

In particular, this implies that there is no inflow into a pure
strategy that earns less than the population’s average does.

The dynamic generated by such a behavioral rule assumes the general
form

ṗki
=

nk∑
j=1

pkj
fkji(π

k(p), p)− pki

nk∑
j=1

fkij(π
k(p), p)

= σki (π̂
k(p))− pki

nk∑
j=1

σkj (π̂
k(p)), ∀1 ≤ k ≤ N (8.12)

From the evolutionary dynamic (8.12) we see that the inflow term is
independent on the frequency with which this pure strategy is played
in population k. This clearly distinguishes excess payoff dynamics from
imitative dynamics. In particular it makes the class of excess payoff
dynamics an innovative dynamic, in the sense that there might be
currently unused strategies that will be discovered by some individuals
in the population and selected if, and only if, they give a positive excess
payoff.
Clearly, excess payoff dynamics leave the interior of the state space
∆(Sk) invariant, and so the interior of the social space Θ. At all points
in time, the state of a population k must be contained in this simplex.
To see this, sum all differential equations of (8.12).

nk∑
i=1

ṗki
=

nk∑
i=1

σki (π̂
k(p))−

nk∑
i=1

pki

nk∑
j=1

σkj (π̂
k(p))

=

nk∑
i=1

σki (π̂
k(p))−

nk∑
j=1

σkj (π̂
k(p))

= 0

since these two sums contain actually the same summands. However,
the boundary of the simplex is not invariant under excess payoff dy-
namics, since currently unused pure strategies may be discovered, and
so the population state drifts away from the boundary, into the interior
of the simplex.

8.2.1. Properties of excess payoff dynamics. We are now ready
to establish the most important properties of excess payoff dynamics.
In particular, we are going to investigate the relationship between its
rest points, and the Nash equilibria of an underlying population game.
Then we are going to establish an analogous monotonicity property as
was done for the class of imitative dynamics in proposition (2). All
results here are conceptually from Sandholm (2007a, pp.145). Proofs



60 MATHIAS STAUDIGL

are presented in a self-contained way and all results are written for the
multi population case, which is an extension to the reference literature.
Corollary 2 is inspired by Sandholm (2007a) and proved individually.

Lemma 3. Consider an arbitrary N-population game, with fixed strat-
egy sets. Suppose populations play according to a behavioral rule that
generates an excess payoff dynamic. Then π̂ki (p) ≤ 0 holds for all pure
strategies 1 ≤ i ≤ nk and populations 1 ≤ k ≤ N , if and only if p is a
Nash equilibrium of the underlying game.

Proof:

(⇒) Suppose (∀i = 1, 2, . . . , nk) : π̂ki (p) ≤ 0 is true. The definition
of average payoffs in population k is π̄k(p) =

∑nk

i=1 pki
πki (p), so

that our assumption is πki (p) ≤
∑nk

i=1 pki
πki (p). If pki

= 0 it must
therefore be that pure strategy eki

earns a lower than average
payoff, πki ≤ π̄k(p). It cannot earn a strictly higher payoff,
because then it must earn a higher payoff then all the other pure
strategies in use, and consequently must earn a higher payoff
then every convex combination between these payoffs. Such
a convex combination is per definition population k’s average
payoff, and so the excess payoff of such an unused strategy
would be strictly positive. A contradiction.
If on the other hand pki

> 0, then πki (p) = π̄k(p) must hold,
because πki (p) <

∑nk

i=1 pki
πki (p) cannot be true, if πki (p) appears

in the sum on the right hand side of the inequality. Henceforth
we get

(∃c ∈ R)(∀pki
> 0) : πki (p) = c

⇔ πki (p) = maxj:ekj
∈Sk

πkj (p) whenever pki
> 0

But then must the population state pk ∈ ∆(Sk) be a Nash
equilibrium in this population. Since k was selected arbitrarily,
this must hold for every population.

(⇐) If p is a Nash equilibrium, the same steps as in direction (⇒)
apply, but in the reversed order.

q.e.d.

The next Lemma is a simple consequence of point (iii) in definition 10
and Lemma 3.

Lemma 4. Consider an arbitrary N-population game, with fixed strat-
egy sets. Suppose populations play according to a behavioral rule that
generates an excess payoff dynamic. If for some social state p ∈ Θ we
observe that π̂k(p) ≤ 0 for all populations 1 ≤ k ≤ N then V k(p) = 0
for all populations k.
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Proof: If pki
= 0, then this pure strategy must earn a lower than

population average payoff. By definition of a behavioral rule that gen-
erates an excess payoff dynamic we get σki (π̂k(p)) = 0. If pki

> 0 then
πki (p) = π̄k(p) and again sign preservation implies that σki (π̂k(p)) = 0.
The general formula for an excess payoff dynamic (8.12) states that
ṗki

= 0, so that V k(p) = 0. Since we have selected population k
arbitrarily, we obtain the desired result.

q.e.d.

Equipped with these two Lemmas, it is easy to establish our main
result.

Proposition 4. Consider an arbitrary N-population game, with fixed
strategy sets. Suppose populations play according to a behavioral rule
that generates an excess payoff dynamic. Independent of the particular
specification of the game and the particular form of the dynamics, the
following two results are valid:

(i) p∗ ∈ Θ is a NE⇔ V k(p∗) = 0 ∀k ∈ {1, 2, . . . , N}
(ii) (∀k ∈ {1, 2, . . . , N}) : π̂k ∈ Ek ⇒

〈
πk(p), V k(p)

〉
> 0

Proof:

(i) (⇒) If p∗ ∈ Θ is NE of the population game, with population
component p∗k ∈ ∆(Sk), then Lemma 3 implies that the vector
of excess payoffs in population k is the zero vector. Lemma 4
states then that the vector field of this population comes to a
rest at p∗. This must hold for all populations.
(⇐) Can be proved by contraposition. If p∗ ∈ Θ were not a
NE, then by Lemma 3 π̂k(p∗) ∈ Ek. By definition of an excess
payoff dynamics, we get

〈
σk(πk(p∗), p∗), π̂k(p∗)

〉
> 0. But then

can the vector field of population k not be in a resting position.
(ii) Call the column vector in Rnk filled up with ones, as 1. We

can write the excess payoff vector as π̂k(p) = πk(p) − π̄k(p)1.
Exploiting the bilinearity of the inner product, we get〈

πk(p), V k(p)
〉

=
〈
π̂k(p) + π̄k(p)1, V k(p)

〉
=

〈
π̂k(p), V k(p)

〉
+ π̄k(p)

〈
1, V k(p)

〉
=

nk∑
i=1

π̂ki (p)V
k
i (p)

=

nk∑
i=1

π̂ki (p)σ
k
i (π̂

k(p))−
nk∑
j=1

σkj (π̂
k(p))

nk∑
i=1

pki
π̂ki (p)

where the third equality comes from the already demonstrated
fact, that the sum of all directions of motions in a population
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must sum up to zero. A short calculation beside, reveals that
nk∑
i=1

pki
π̂ki (p) =

nk∑
i=1

[
πki (p)− π̄k(p)

]
pki

=

nk∑
i=1

πki (p)pki
− π̄k(p)

= 0

Using the result, one sees immediately that〈
πk(p), V k(p)

〉
=
〈
σk(πk(p)), π̂k(p)

〉
> 0

by definition of an excess payoff dynamics if π̂k(p) ∈ Ek.
q.e.d.

Combining the results from Lemma 4 and Proposition 4, we can show
that in all excess payoff dynamics, the payoffs and the vector field forms
an acute angle. We outline here a different proof, in which point (iii) of
definition 10 is not needed as an assumption. However, (iii) simplifies
the proof dramatically.

Corollary 2. In any excess payoff dynamic the vector of payoffs and
the induced vector field V k : Θ→ ∆(Sk) form an acute angle.

Proof : Form Proposition 4 we know that we can write〈
πk(p), V k(p)

〉
=
〈
σk(πk(p)), π̂k(p)

〉
This inner product is positive if there is some pure strategy that earns
more than the mean. If this is not the case, than π̂k(p) ≤ 0. We will
show that if π̂ki (p) < 0, then σki (π̂k(p)) = 0.
Order the pure strategies according to their excess payoffs in an in-
creasing order. The first entry in the vector is then the pure strategy
with the lowest excess payoff at p, the second entry is the pure strategy
with the second lowest, and so on. By assumption the excess payoff
vector is non-positive. Call the number of pure strategies who earn
exactly the mean payoff by n0

k ≤ nk. The rest performs worse than the
population’s average and we count n−k := nk − n0

k of such strategies.
Define an indicator function as

(i = 1, 2 . . . , nk) : ind(π̂ki (p)) :=

{
1 if π̂ki (p) ≥ 0
0 otherwise

Next define the vector 1n0
k
∈ Rnk

+ which is filled up with indicator func-
tions. Since we have ordered the payoff entries in an increasing order,
the entries 1 to n−k are zero, and the entries n−k + 1 to nk are 1. Now,
if we translate the excess payoff vector of population k by ε1n0

k
, where

ε > 0 and an arbitrary small parameter, we see that the resulting vec-
tor π̂k(p; ε) := π̂k(p)+ε1n0

k
∈ Ek. The linear (and therefore continuous)

transformation g : R+ −→ R+ given by g(ε) :=
〈
σk(π̂k(p; ε)), π̂k(p; ε)

〉
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assumes, by point (ii) in definition 10, always positive values for ε > 0.
By continuity, we have limε−→0 g(ε) = g(0) =

〈
σk(π̂k(p)), π̂k(p)

〉
. This

limit cannot be strictly negative, since then, again by continuity, we
could find some small δ > 0, and g(δ) ≤ 0, what is a contradic-
tion. Henceforth, g(0) ≥ 0 must be true. By definition 8, condi-
tional switching rates are non-negative, and by our assumption the ex-
cess payoff vector is non-positive. To accomplish

〈
σk(π̂k(p)), π̂k(p)

〉
=∑n−k

h=1 σ
k
h(π̂

k)π̂k ≥ 0, we need that σkh = 0 for h = 1, 2, . . . , n−k .
q.e.d.

Excess payoff dynamics have the nice property that they link the fixed
points of the induced vector field with the Nash equilibria of the un-
derlying population game. The cost of a model that assumes agents
adopt behavioral rules that generate an excess payoff dynamic is that
we have to presuppose that agents know a lot about the society in
which they are playing the game. In particular, agents need to know
the average payoff earned in their populations. This is fairly restrictive
when we speak of large populations. Imitative dynamics worked fine
without any assumption about the knowledge of individuals, concern-
ing the state of the population they belong to. To end up this section
we are going to present examples using the BNN dynamic.

Example 8. Consider the already familiar Matching pennies game.
For sake of completeness, we represent the payoffs to the two popula-
tions once again,

π1(q) =

[
π1

1(q)
π1

2(q)

]
=

[
2q1 − 1
1− 2q1

]
, π2(p) =

[
π2

1(p)
π2

2(p)

]
=

[
1− 2p1

2p1 − 1

]
π̄1(p, q) = p1(2q1 − 1) + (1− p1)(1− 2q1) = (1− 2p1)(1− 2q1) = −π̄2(p, q)

Let us start with computing the excess payoff vector for population 1

π̂1(p, q) =

[
π1(q)− π̄1(p, q)
π2(q)− π̄1(p, q)

]
= 2

[
(2q1 − 1)(1− p1)

(1− 2q1)p1

]
and analogously one calculates the excess payoff vector for population
2

π̂2(p, q) = 2

[
(1− 2p1)(1− q1)

(2p1 − 1)q1

]
The BNN dynamic for population 1 is then

ṗ1 =
[
π̂1

1(p, q)
]
+
− p1

[
π̂1

1(p, q)
]
+
− p1

[
π̂1

2(p, q)
]
+

ṗ2 = −ṗ1

where [π̂1
1(p, q)]+ = 2(2q1−1)(1−p1) only if q1 > 1/2, and 0 otherwise,

[π̂1
2(p, q)]+ = 2(1− 2q1)p1 only if q1 < 1/2. For population 2 we get

q̇1 =
[
π̂2

1(p, q)
]
+
− q1

[
π̂2

1(p, q)
]
+
− q1

[
π̂2

2(p, q)
]
+

q̇2 = −q̇1
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where [π̂2
1(p, q)]+ = 2(1−2p1)(1−q1) only if p1 < 1/2, and 0 otherwise,

[π̂2
2(p, q)]+ = 2(2p1 − 1)q1 only if p1 > 1/2.

It is obvious from these four equations that it is sufficient to analyze
the evolution of the first pure strategy in each population. The path
of the second strategy follows then automatically. Our state space is
again the unit square in the plane, spanned by the intervals [0, 1]. The
BNN dynamic divides this unit square into six regions, which have to
be studied separately.

Region 1: 0 ≤ p1, q1 < 1/2. Strategy T has a positive excess payoff in
population 1 and strategy H has a positive payoff in population
2. The two relevant differential equations are thus[

ṗ1

q̇1

]
=

[
2(p1)

2(2q1 − 1)
2(1− q1)2(1− 2p1)

]
Wee see that that p1 is decreasing, while q1 is increasing. This
means that there is an over-proportional outflow in population
1 from pure strategy H, and an over-proportional inflow in pop-
ulation 2 to pure strategy H.

Region 2: 0 ≤ p1 < 1/2, 1/2 < q1 ≤ 1. H earns now an payoff above
the average in both populations, so that we have to analyze the
equations [

ṗ1

q̇1

]
=

[
2(1− p1)

2(2q1 − 1)
2(1− q1)2(1− 2p1)

]
We see that the proportion of H players increases in both popu-
lations in this region.

Region 3: 1/2 < p1 ≤ 1, 0 ≤ q1 < 1/2. T earns an payoff above the
average in population 1, and H does so in population 2. The
dynamics are in this region[

ṗ1

q̇1

]
=

[
2(p1)

2(2q1 − 1)
2(q1)

2(1− 2p1)

]
Both strategy frequencies are decreasing in this region.

Region 4: 1/2 < p1 ≤ 1, 1/2 < q1 ≤ 1. In this case H earns an above
average payoff in population 1, T earns an above average payoff
in population 2. This leads us to the consideration of the planar
system [

ṗ1

q̇1

]
=

[
2(1− p1)

2(2q1 − 1)
2(q1)

2(1− 2p1)

]
We see that the proportion of H strategists in population 1 is
increasing in this region, while the proportion of H strategists
in population 2 is decreasing.

Region 5: p1 = 1/2, 0 ≤ q1 ≤ 1. In this case there is no motion in
population 2, since the excess payoff vector is the zero vector.



EVOLUTIONARY DYNAMICS AND RATIONALITY 65

The dynamics in population 1 depend on the initial state of
population 2.

Region 6: 0 ≤ p1 ≤ 1, q1 = 1/2. Population 1 is in a steady state posi-
tion. The motions in population 2 depend on the initial state of
population 1.

One sees that the Nash equilibrium is the unique rest point of the BNN
dynamics in Matching pennies, and in particular there can be no rest
point at any boundary state. To get a better overview of the dynamics,
we can summarize all these cases in two continuous functions

Ṽ 1(p1, q1) = ṗ1 =

 2(p1)
2(2q1 − 1) ; 0 ≤ q1 < 1/2

0 ; q1 = 1/2
2(1− p1)

2(2q1 − 1) ; 1/2 < q1 ≤ 1

Ṽ 2(p1, q1) = q̇1 =

 2(1− q1)2(1− 2p1) ; 0 ≤ p1 < 1/2
0 ; p1 = 1/2

2(q1)
2(1− 2p1) ; 1/2 < p1 ≤ 1

The induced vector field is plotted in Figure 12

Figure 12. Vector field induced by the BNN dynamics
in matching pennies

The indicated directions by the vectors mimic the directions of so-
lution curves of the BNN dynamics. It appears that the system ap-
proaches its Nash equilibrium in a spiraling motion. The prove that
the Nash equilibrium is asymptotically stable under the BNN dynamic
needs a long and tedious computation. It is shown how to construct an
appropriate Lyapunov function in Appendix A.
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8.3. Pairwise Comparison dynamics. Maybe the most important
property of excess payoff dynamics is their one-to-one correspondence
between its rest points and the Nash equilibria of the underlying pop-
ulation game. However, agents that act according to a behavioral rule
that generates such dynamics, must be very well informed about the
current population state, since they compare every payoff with the pop-
ulation’s average. If all individuals in all populations adopt the same
behavioral rule that generate an excess payoff dynamic, it is doubtful
why there should be a sort of tâttonement process before the Nash
equilibrium state is “discovered”. In the context of large populations, it
is clearly a strong assumption that individuals are perfectly informed
about the state of their population, so we seek for a refinement of be-
havioral rules, that share the connection between rest points and Nash
equilibria as excess payoff dynamics, but keep the required level of
knowledge of players at a minimum, just like the imitative dynamics
do. Such a behavioral rule does exist, and was introduced by Sand-
holm (2007a, 2007b), which serves also as the general reference for the
following lines. Since we search a dynamic that combines all the good
facts of the already introduced dynamics, it comes with no surprise
that the behavioral rules that generate this dynamic, will be closely
related to them. Excess payoff dynamics are derived from agents who
pick an individual from the own population at random, and compare
the payoff of this agent with the population’s average. Strategies are
adopted with probability proportional to the difference of expected
payoffs of a pure strategy and the population’s average. In this case
some kind of selection takes place, where only the better than average
performing strategies are sorted out. The behavioral rule proposed for
the replicator dynamics works similar, whereas agents do not compare
the strategy’s payoff with the population’s average, but with their own
payoff. Moreover, switching probabilities are positively influenced by
the proportion of individuals that play some pure strategy, since such
strategies are more likely to be observed. Pairwise comparison dynam-
ics combine these two properties, as will be clear after looking at the
following

Example 9. Consider a population whose members use the behavioral
rule

fkij(π
k(p), p) = max

[
0, πkj (p)− πki (p)

]
≡
[
πkj (p)− πki (p)

]
+

According to this rule, individuals switch from their current pure strat-
egy eki

∈ Sk to the pure strategy ekj
∈ Sk with probability proportional

to the absolute difference between the payoffs of these strategies. There
will be no flow from eki

to ekj
if the latter perform worse than the
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former. Applying equation (7.1), we get the differential equation

ṗki
=

nk∑
j=1

pkj
fkji − pki

nk∑
j=1

fkij (8.13)

=

nk∑
j=1

pkj

[
πki (p)− πkj (p)

]
+
− pki

nk∑
j=1

[
πkj (p)− πki (p)

]
+

The inflow to strategy eki
depends therefore on the proportion of those

strategies, used in population 1 ≤ k ≤ N , that perform worse as itself,
and the flow out of this pure strategy depends on the proportion of in-
dividuals that currently play it, and the payoff difference between it and
better performing strategies. Sandholm (2007b) baptized this dynamic
with the name pairwise difference dynamic. We refer to Sandholm
(2007b) for a history of this dynamic.

It is clear from the just given example that pairwise difference dy-
namics have the selection characteristic also shared by excess payoff
dynamics, since only better performing strategies do spread. Better
performing is here understood as a comparison between two available
pure strategies to the population. No knowledge about the definite
state of the population is assumed, a feature that also imitative dy-
namics have. In general we introduce pairwise comparison dynamics
through a behavioral rule that only depend on the payoffs in the pop-
ulation k ∈ {1, 2, . . . , N}, and so only indirect on the population state.

fkij(π
k, p) = σkij(π

k
j (p)− πki (p)) (8.14)

Equipped with this behavioral rule, we can now state the general

Definition 11. (Sandholm, 2007a, pp.148) A behavioral rule of the
form (8.14) generates a pairwise comparison dynamic defined on
the space of social states Θ if

(i) the function σkij(π
k
j (p) − πki (p)) is Lipschitz continuous in its

arguments, for all 1 ≤ k ≤ N and 1 ≤ i, j ≤ nk.
(ii) switching rates are positively influenced by the payoff difference

between two pure strategies, and worse strategies do not repli-
cate. We can formulate such a condition mathematically as

sgnσkij(π
k
j (p)− πki (p)) = sgn

[
πkj (p)− πki (p)

]
+
∈ {0, 1}

This behavioral rule generates a system of differential equations, one
for each pure strategy in population 1 ≤ k ≤ N , which is given by

ṗki
=

nk∑
j=1

pkj
fkji(π

k(p), p)− pki

nk∑
j=1

fkij(π
k(p), p) (8.15)

=

nk∑
j=1

pkj
σkji(π

k
i (p)− πkj (p))− pki

nk∑
j=1

σkij(π
k
j (p)− πki (p))
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The last requirement is a monotonicity condition on behalf of the
switching rates. If pure strategy eki

∈ Sk performs worse than a ran-
domly drawn opponent strategy, there will be some positive probability
that a currently eki

playing agent changes her strategy in favor for some
alternative ekj

. Otherwise there will be no outflow to the randomly
drawn strategy, and σkij(π

k
j (p) − πki (p)) = 0. Clearly, the sum of all

these differential equations vanishes at all population states p ∈ Θ. To
see this, we count
nk∑
i=1

ṗki
=

nk∑
i=1

nk∑
j=1

pkj
σkji(π

k
i (p)− πkj (p))−

nk∑
i=1

pki

nk∑
j=1

σkij(π
k
j (p)− πki (p))

=

nk∑
i=1

pki

nk∑
j=1

σkij(π
k
j (p)− πki (p))−

nk∑
i=1

pki

nk∑
j=1

σkij(π
k
j (p)− πki (p))

= 0

8.3.1. Properties of pairwise comparison dynamics. The class of
pairwise comparison dynamics establishes a one-to-one correspondence
between its rest points and the Nash equilibria of the underlying pop-
ulation game, just as the excess payoff dynamics do. Their remarkable
characteristic is that they achieve this without any demanding knowl-
edge restriction on behalf of the individuals. All they need to know is
the payoff of their own strategy, and the payoff of the randomly drawn
agent, just as in pure imitative behavioral models. We will proof the
existence of this correspondence with the help of some Lemmas. Refer-
ence literature for the following discussion is Sandholm (2007a,2007b).

Lemma 5. Consider an arbitrary N population game in normal form.
p∗ ∈ Θ is a Nash equilibrium of this game if and only if for all pure
strategies, and all populations p∗ki

= 0 or
∑nk

j=1

[
πkj (p

∗)− πki (p∗)
]
+

= 0

holds.

Proof: Fix an arbitrary population 1 ≤ k ≤ N . We will proof both
directions of this Lemma separately.

(⇒) If p∗k ∈ ∆(Sk) is the population k component of the Nash equi-
librium p∗, then all the strategies used in this profile must be
optimal, given this social state. This means that there exists
some scalar c ∈ R such that c = maxekj

∈Sk
πkj (p

∗). If some
strategy is unused in social state p∗, then this pure strategy
cannot earn a higher payoff than c, hence πki (p∗) ≤ c if p∗ki

= 0.
On the other hand, a used strategy cannot earn a higher payoff
than other used pure strategies, so that we get πki (p∗) = c if
p∗ki

> 0. This implies
∑nk

j=1

[
πkj (p

∗)− πki (p∗)
]
+

= 0.
(⇐) Suppose first that p∗ki

= 0. There can be no outflow from eki
to

some other pure strategy in this population. If there would be
no inflow to eki

, then the pairwise difference dynamic tells us
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that
nk∑
j=1

p∗kj
σkji(π

k
i (p

∗)− πkj (p∗)) = 0

⇔ (∀j : p∗kj
> 0) : σkji(π

k
i (p

∗)− πkj (p∗)) = 0

⇔ (∀j : p∗kj
> 0) : πki (p

∗) ≤ πkj (p
∗)

Hence, eki
cannot be a best-reply to p∗, and therefore receives

no weight in Nash equilibrium.
Suppose now that

∑nk

j=1

[
πkj (p

∗)− πki (p∗)
]
+

= 0 holds. This
translates itself into

(∀ekj
∈ Sk) : πkj (p

∗) ≤ πki (p
∗)

⇔ πki (p
∗) = max

ekj
∈Sk

πkj (p
∗)

But this is the definition of a Nash equilibrium.
q.e.d.

The next Lemma establishes a link between the outflows in a player
population, and the evolution of the size of the subpopulations, which
is the proportion of individuals in the player population, programmed
to some pure strategy. It will be useful to write down the dynamical
system in a population k ∈ {1, 2, . . . , N} in matrix form. It is readily
verified that any pairwise comparison dynamic can be written elegantly
as

V k(p) = F k(πk(p), p)Tpk − diag[pk]F
k(πk(p), p)1 (8.16)

where the nk × nk dimensional matrix F k is the behavioral rule of
population k, the nk dimensional vector 1 is a column vector containing

only 1 as entries, and finally diag[pk] =


pk1 0 . . . 0
0 pk2 . . . 0
... . . .

. . . ...
0 0 . . . pknk

.

Lemma 6. Consider an arbitrary N population game in normal form.
The dynamical system of population 1 ≤ k ≤ N has a rest point at the
social state p ∈ Θ if and only if

∑nk

j=1 σ
k
ij(π

k
j (p) − πki (p)) = 0 for all

eki
∈ Sk.

Proof:
(⇐) If there is no outflow from any pure strategy eki

∈ Sk, the
dynamic of all pure strategies reduces to an inflow. This means
that V k(p) =

[
F k(πk(p), p)

]T
pk. This is a convex combination

of nonnegative numbers. Since the directions of motion have to
sum up to zero, the dynamical system has to vanish.

(⇒) Suppose V k(p) = 0 holds for some social state p ∈ Θ. We will
construct a finite family of sets that covers Sk and show that
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all the strategies contained in the sets of the family must have
neither inflow nor outflow.

Step 1: Start with the best performing pure strategy in population
k, given the social state p. Without loss of generality let
this strategy be eki

∈ Sk, with payoff πki (p). This payoff
satisfies the inequalities

πki (p) ≥ πkj (p) ∀ekj
∈ Sk

⇔
[
πkj (p)− πki (p)

]
+

= 0 ∀ekj
∈ Sk

⇔ σkij(π
k
j (p)− πki (p)) = 0 ∀ekj

∈ Sk
Hence, there is no outflow from a best-performing strategy.
Since the dynamical system is in a resting position, there
can also be no inflow, thus

∑nk

j=1 pkj
σkji = 0, what occurs

if for all ekj
∈ Sk : σkji = 0 or pkj

= 0. There are two
possibilities for this to be observed.

(a) All pure strategies earn the same payoff as the best-
performing pure strategy does. In this case all pure
strategies have zero outflow and zero inflow, so that
we are done.

(b) There exists some worse performing pure strategy
than eki

.
Step 2: Define the set

C1 :=

{
ekh
∈ Sk : πkh(p) = min

ekj
∈Sk

[
πki (p)− πkj (p)

]
> 0

}
Elements of this set can be interpreted as the “second-best”
choices in population k for social state p, since their payoff
is closest to the payoff of the best performing strategy.
If C1 = ∅, we are in case (a), and therefore done with
the proof. We continue with case (b), so that there exists
some strategy that lies in C1. Let ekh

be such a strategy,
with associated payoff πkh(p). Denote the truncated pure
strategy space S1

k = Sk \ C1. The following inequalities are
then satisfied

πki (p)− πkh(p) < πki (p)− πkj (p) ∀ekh
∈ C1,∀ekj

∈ S1
k

⇔ πkh(p) > πkj (p) ∀ekh
∈ C1,∀ekj

∈ S1
k

⇔
[
πkj (p)− πkh(p)

]
+

= 0 ∀ekh
∈ C1,∀ekj

∈ S1
k

⇔ σkhj = 0 ∀ekh
∈ C1,∀ekj

∈ S1
k

In Step 1 of this proof, we have seen that there is no inflow
to the best performing strategies. Since there can be no
outflow to other worse performing strategies, who lie in S1

k ,
we obtain the result that

∑nk

j=1 σ
k
hj = 0. By assumption,
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V k
h (p) = 0, so there can also be no inflow to the strategies

lying in C1. Again we have to consider two separate cases,
as outlined in Step 1.

Step 3: Define the set

C2 :=

{
ekm ∈ S1

k : πkm(p) = min
ekj

∈S1
k

[
πki (p)− πkj (p)

]
> 0

}
This is the set of third-best alternatives, given the social
state p. Define the truncated pure strategy space S2

k =
S1
k \ C2, and repeat the calculations outlined in Step 2:

πki (p)− πkm(p) < πki (p)− πkj (p) ∀ekm ∈ C2,∀ekj
∈ S2

k

⇔ πkm(p) > πkj (p) ∀ekm ∈ C2,∀ekj
∈ S2

k

⇔
[
πkj (p)− πkm(p)

]
+

= 0 ∀ekm ∈ C2,∀ekj
∈ S2

k

⇔ σkmj = 0 ∀ekm ∈ C2,∀ekj
∈ S2

k

Since from the better performing strategies, contained in
Sk \ S2

k , there is no inflow, there can be no outflow from
strategies in C3, hence

∑nk

j=1 σ
k
mj = 0. By our assumption

V k
m(p) = 0, forbidding any inflow to this strategy, hence
σkjm = 0 for all ekj

∈ Sk.
Step 4: Since there are only finitely many strategies, this procedure

stops after a finite number of steps. By induction we see
that

∑nk

j=1 σ
k
ij(π

k
j (p)− πki (p)) = 0 for all eki

∈ Sk.
q.e.d.

Using these two Lemmas we are able to proof an important
result about pairwise comparison dynamics.

Proposition 5. Consider an arbitrary N population game in
normal form, and let ṗ = V (p) be a pairwise comparison dy-
namic for this game. A social state p∗ ∈ Θ is a Nash equilibrium
of the game if and only if V (p∗) = 0.

Proof:
(⇐) Suppose V (p) = 0 holds for some p ∈ Θ, and let p∗ denote

a Nash equilibrium. From Lemma 6, we know that

(∀eki
∈ Sk) :

nk∑
j=1

σkij = 0

By definition of a pairwise comparison dynamic, the num-
ber σkij is nonnegative, and mimics the sign of the payoff
difference

[
πkj (p)− πki (p)

]
+
. Thus, it must be true that

(∀eki
∈ Sk) :

nk∑
j=1

[
πkj (p)− πki (p)

]
+

= 0
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Applying Lemma 5, we see that p = p∗ is the case.
(⇒) If p∗ is a Nash equilibrium, we know by Lemma 5 that∑nk

j=1

[
πkj (p)− πki (p)

]
+

= 0 holds for all pure strategies
eki

. By definition of the behavioral rule that generates a
pairwise comparison dynamic, it must be true that

(∀eki
∈ Sk) :

nk∑
j=1

σkij = 0

and Lemma 6 establishes the stationarity of the vector
field.

q.e.d.
This is a strong result for the class of pairwise comparison dy-
namics. The assumptions concerning knowledge of players is
reduced to a minimum, just like they would obey a strict imita-
tive behavioral rule. As a refinement, the pairwise comparison
dynamic eliminate the boundary states as fixed points of the
dynamical system, which are always stationary states under
imitative behavioral rules.
For a last theoretical result, we are interested in the relation
between the evolution of a population state, and the payoffs of
the population. An intuitive result would be that the vectors
V k(p) and πk(p) point in the same direction, since higher pay-
offs of some pure strategy should induce a movement toward
the face of the simplex ∆(Sk), where these especially profitable
strategies are used.22 Indeed, we are able to establish such a
positive “correlation”, by simply computing the inner product
between these two vectors. Pick therefore an arbitrary popula-
tion 1 ≤ k ≤ N and fix some social state p ∈ Θ. We calculate

22A face of a simplex is the convex hull of a finite subset of points that generate
the simplex. See Border (1985, Chapter 3).
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〈
V k(p), πk(p)

〉
=

nk∑
i=1

ṗki
πki (p)

=

nk∑
i=1

[
nk∑
j=1

pkj
σkji − pki

nk∑
j=1

σkij

]
πki (p) =

=

nk∑
i=1

πki (p)

(
nk∑
j=1

pkj
σkji

)
−

nk∑
i=1

pki
πki (p)

(
nk∑
j=1

σkij

)
=

= πk1(p)
(
pk1σ

k
11 + pk2σ

k
21 + . . .+ pknk

σknk1

)
+

+ πk2(p)
(
pk1σ

k
12 + pk2σ

k
22 + . . .+ pknk

σknk2

)
+

...
+ πknk

(p)
(
pk1σ

k
1nk

+ pk2σ
k
2nk

+ . . .+ pknk
σknknk

)
−

− pk1π
k
1(p)

(
σk11 + σk12 + . . .+ σk1nk

)
−

...
− pknk

πknk
(p)
(
σknk1 + σknk2 + . . .+ σknknk

)
=

= pk1
(
πk1σ

k
11 + πk2σ

k
12 + . . .+ πknk

σk1nk
− πk1(σk11 + . . .+ σk1nk

)
)

+

...
+ pknk

(
πk1σ

k
nk1 + . . .+ πknk

σknknk
− πknk

(σknk1 + . . .+ σknknk
)
)

=

= pk1

[
nk∑
j=1

σk1j(π
k
j (p)− πk1(p))

]
+ . . .+ pknk

[
nk∑
j=1

σknkj
(πkj (p)− πknk

(p))

]
=

=

nk∑
i=1

nk∑
j=1

pki
σkij(π

k
j (p)− πki (p))

and by definition of the behavioral rule that generates a pairwise
comparison dynamic it is σkij = 0 whenever πkj − πki ≤ 0, so it
follows 〈

V k(p), πk(p)
〉
≥ 0

for all social states p ∈ Θ with equality only if, for all eki
∈

Sk, we have
∑nk

j=1 pki
σkij(π

k
j (p) − πki (p)) = 0. This is a con-

vex combination of nonnegative real numbers, and can there-
fore only be zero if pk = 0 (what cannot be), or for all eki

,∑nk

j=1 σ
k
ij(π

k
j (p) − πki (p)) = 0. By Lemma 6 this occurs only in

a Nash equilibrium.
As in all past sections, we are going to investigate the behavior
of Pairwise comparison dynamics in an important example, the
Matching Pennies game.
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Example 10. Remember the payoffs in the two-populations
matching pennies game.

π1(q) =

[
2q1 − 1
1− 2q1

]
, π2(p) =

[
1− 2p1

2p1 − 1

]
Without losing much, we can focus on the evolution of the rel-
ative size of the subpopulations p1, q1. The pairwise difference
dynamic is in this fairly simple set-up, given by the planar sys-
tem

ṗ1 = p2

[
π1

1(q)− π1
2(q)

]
+
− p1

[
π1

2(q)− π1
1(q)

]
+

q̇1 = q2
[
π2

1(p)− π2
2(p)

]
+
− q1

[
π2

2(p)− π2
1(p)

]
+

A look at the structure of the payoffs in the two populations
shows, that π1

1(q) − π1
2(q) > 0 only if q1 > 1/2 and π2

1(p) −
π2

2(p) > 0 only if p1 < 1/2. Thus, there are - just as in the
example where the BNN dynamic was discussed - 6 regions we
have to analyze:

Region 1 : 0 ≤ p1, q1 < 1/2. The system is given by[
ṗ1

q̇1

]
=

[
−p1(π

1
2(q)− π1

1(q))
(1− q1)(π2

1(p)− π2
2(p))

]
=

[
2p1(2q1 − 1)

2(1− q1)(1− 2p1)

]
We observe that the fraction of H-strategists in population
1 is decreasing, while the fraction of H-strategists in popu-
lation 2 is increasing.

Region 2 : 0 ≤ p1 < 1/2, 1/2 < q1 ≤ 1. Our system becomes[
ṗ1

q̇1

]
=

[
(1− p1)(π

1
1(q)− π1

2(q))
(1− q1)(π2

1(p)− π2
2(p))

]
=

[
2(1− p1)(2q1 − 1)
2(1− q1)(1− 2p1)

]
The proportion of H-strategists is increasing in population
1 and in population 2.

Region 3: 1/2 < p1 ≤ 1, 0 ≤ q1 < 1/2.[
ṗ1

q̇1

]
=

[
−p1(π

1
2(q)− π1

1(q))
−q1(π2

2(p)− π2
1(p))

]
=

[
2p1(2q1 − 1)
2q1(1− 2p1)

]
The proportion of H-strategists is decreasing in population
1 and in population 2.

Region 4: 1/2 < p1, q1 ≤ 1.[
ṗ1

q̇1

]
=

[
(1− p1)(π

1
1(q)− π1

2(q))
−q1(π2

2(p)− π2
1(p))

]
=

[
2(1− p1)(2q1 − 1

2q1(1− 2p1)

]
Region 5: p1 = 1/2, 0 ≤ q1 ≤ 1. There is no motion in population 2.

The behavior in population 1 depends on the initial position
of population 2’s state.

Region 6: 0 ≤ p1 ≤ 1 q1 = 1/2. There is no motion in population 1.
The behavior in population 2 depends on the initial position
of the state of population 1.



EVOLUTIONARY DYNAMICS AND RATIONALITY 75

A qualitative analysis of this dynamical system, can be per-
formed by plotting the induced vector field in all these regions.
Such a vector field is graphically presented in Figure 13. Similar

Figure 13. Vector field induced by the pairwise differ-
ence dynamic in a 2 populaiton matching pennies game.

to the BNN dynamic, we observe some kind of spiraling conver-
gence to the Nash equilibrium. Linearization techniques to de-
termine the stability of the Nash equilibrium under the pairwise
difference dynamic gives us no complete answer, since eigen-
values of the Jacobian matrix (Independent from which region
one is coming) are pure imaginary, which just reflects the spi-
raling pattern of solutions. A complete analysis must rely on an
appropriate Lyapunov function. Following Hofbauer and Sand-
holm (2007), we can present such an analysis for the two pop-
ulation case. The computations are relegated to Appendix B.
There it is demonstrated that the Nash equilibrium is globally
asymptotically stable under the pairwise difference dynamic.
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Part 4. Nash equilibrium as an outcome of Evolution?

9. Evolutionary dynamics and strictly dominated
strategies

We have discussed the stability of the Nash equilibrium in the
“Matching Pennies” game under the main representatives of the
introduced evolutionary dynamics. The replicator dynamics, al-
though the most popular dynamic model, did not show conver-
gence to the Nash equilibrium, whereas all other dynamics sent
solutions from arbitrary interior initial conditions to the Nash
equilibrium of the game.23 The negative result for the replicator
dynamic is a general phenomenon for zero-sum games, played
by more than one population.24 The proof of this fact relies
on the existence of first integrals for the replicator dynamics,
which was introduced in the examples for the single population,
two population case, respectively. Henceforth, stability under
the replicator dynamics is given for zero-sum games, but not
convergence. An interesting question is then, what made the
other dynamics so special to guarantee convergence. The fam-
ily of excess payoff dynamics model individual behavior where
one population gradually adjusts its composition as a reaction
to the opponent population, where adjustment is made accord-
ing to the criterion: “Select the better than average strategies.”
Moreover, even if there is currently no agent in a population
that plays a best-reply to the state of the opponent population,
there are some individuals that will discover this strategy and
adopt it. Thus, a crucial element of excess payoff dynamics
is innovation. Technically, in the matching pennies game, the
boundary of the unit square in Figure 12 is repelling, in the
sense that solution trajectories that approach a boundary face
will change their direction of motion at some point in time, and
move away from the boundary. Even if we start from a social
state that lies on the boundary of this unit square, evolutionary
forces will push society away from this state.
These two characteristics led to convergence of populations to-
ward their Nash states. In the class of pairwise comparison
dynamics, the argument is similar. Here the adjustment crite-
rion is not, “better than the average”, but “better than the next
one I meet.” This criterion is actually imitative behavior, of the
sort “imitate the better”, and is also a defining characteristic of
the replicator dynamic. However, pairwise comparison dynam-
ics are also innovative, making an adjustment toward the Nash

23For zero-sum games this is generalizable. See Hofbauer and Sandholm (2007b).
24See Sandholm (2007a).
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equilibrium possible, irrespective of the initial region.

The possibility that some evolutionary dynamics do not lead
to a Nash equilibrium is certainly something disappointing. The
starting point of the dynamic analysis of games, was the search
for a justification of the Nash equilibrium as the result of a game
that is played by large populations, where individuals do not
necessarily have complete information about the payoff struc-
tures and the population states.25We have seen through exam-
ples that convergence is not guaranteed in all evolutionary mod-
els. Even worse, one can construct games with a unique Nash
equilibrium, that is repelling under certain dynamics. In fact
this is the case for all the main dynamics (replicator, BNN, pair-
wise difference) applied to the rock-paper-scissors game with

payoff matrix

 0 −a b
b 0 −a
−a b 0

, where a > b > 0.26 The first

row describes the earnings of “Rock” in all possible constella-
tions, the second “Paper”, and the third “Scissors”. The loss of
one round exceeds the gains that a player can make. Therefore
losing the game hurts players, why this version of the game is
often called the “bad RSP” game. The unique Nash equilib-
rium of this game is the center point p∗ = (1/3, 1/3, 1/3) for all
parameters a, b that are chosen according to the mentioned cri-
teria. With the methods of Appendix A and B, we are able to
proof that the unique Nash equilibrium in this family of games
is unstable under the BNN and pairwise difference dynamic.
For a concrete calculation we refer to Hofbauer and Sandholm
(2007a).
Some authors analyzed the relationship between dominance of
strategies in normal form games and evolutionary dynamics. A
fairly mild postulate of non-cooperative (rational) game theory
is that players never play strictly dominated strategies. The
reasoning for this postulate was already given in the introduc-
tion of this work, where we came to the conclusion that it is
indeed not very demanding to assume that players never choose
such a strategy. For a reasonable dynamic analysis of a game
we would therefore expect that players also do not choose a
strictly dominated strategy, or at least the fraction of such play-
ers gets extremely small as the game is played for some time.

25This is Nash’s “mass-action interpretation” of his equilibrium concept. See
Björnerstedt and Weibull (1993) or the introductory section 2.

26Rock-scissor-paper games are frequently used examples to demonstrate (non)-
convergence of solutions. They are extensively analyzed in Hofbauer and Sigmund
(1998, in particular Chapter 7), and in Sandholm (2007a).
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Fortunately such results are obtained in the class of imitative
dynamics, at least if we do not start from a social state where
only a strictly dominated strategy is adopted by agents. For a
thorough discussion of this we refer to Samuelson and Zhang
(1992), Hofbauer and Weibull (1996) and Weibull (1995). Im-
itative models are certainly important for the social science,
but they miss another important ingredient of human societies:
innovation. Thus, imitative behavior cannot be the universal
(canonical) model of evolutionary game theory and we have
to analyze also different dynamics. Here the great disappoint-
ments come into light. In two very important papers by Hof-
bauer and Berger (2004), and Hofbauer and Sandholm (2007a)
it is demonstrated that strictly dominated strategies do survive
in the long run under the BNN dynamic and the pairwise dif-
ference dynamic in some families of games. One family is build
on the “bad RSP” game. These are strong results and it is not
easy to say what implications they have for an application of
evolutionary dynamics in economics.

All the mentioned results were obtained for games in normal
form. There is not much literature about dynamics in extensive
form games. Instead of presenting a concise theoretical body,
we are therefore going to present some interesting examples of
games, where our main focus is on establishing some facts about
subgame perfect equilibria and evolutionary dynamics.

9.1. Game 1. Maybe the easiest example of an extensive form
game was already introduced in Figure 4, and is represented in
Figure 14 with slightly transformed payoffs. Individuals from

Figure 14. Game 1: An entry-deterrence game

population 1 have the first move, and can decide whether to
enter the territory of an opponent (action E) or stay out (action
O). The owners of the territory can decide whether to accept the
entrance of the individual from the different population (action
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A), or to fight with the intruder (action F) where both do not
make any gains. Denote by p ∈ [0, 1] the share of individuals in
population 1 that are programmed to enter the territory, and
q ∈ [0, 1] the share of individuals in population 2 that accept
the entrant.27

9.1.1. Static Analysis. Payoffs in population 1 are given by

the vector π1(q) =

[
2q
1

]
, where 2q = π1

1(q) is the expected

payoff of an individual in the first population, entering the op-
ponent’s territory when drawn. In population 2 the payoffs are

π2(p) =

[
2− p

2(1− p)

]
, where 2− p = π2

1(p) is the expected pay-

off of an individual in population 2 that accepts an entrant of
population 1, when drawn to play the game. Average payoffs in
the two populations are then

π̄1(p, q) = 2pq + 1− p, π̄2(p, q) = 2(1− p) + pq

The game possesses one proper subgame starting at informa-
tion set v1. Suppose we draw an individual belonging to the
population of owners, who knows her population’s payoff func-
tion and the state of her population. Such an individual will
accept an entrant of population 1, since this will not bring any
harm to her and she eventually gains when she really has to
make a decision (that is when somebody really entered the ter-
ritory). Let us now assume that we have drawn an individual
from population 1 who knows the same thing as our agent be-
longing to population 2, and additionally knows his population’s
payoff function and population state.28 By the assumption of
equal information, he knows that an invasion will be accepted
by the owner. But then such an individual will enter the ter-
ritory. Neither of the two drawn individuals can improve their
payoff by making an unilateral change from their action. With
other words we have already found one Nash equilibrium of this
game, in which an intruder enters the territory and the owner
accepts the entrant. The acceptance is optimal in the unique
proper subgame of the extensive form game, so this equilibrium
is subgame perfect. In terms of a population game the social
state (pS, qS) = (1, 1) is a subgame perfect equilibrium, where

27In Section 8 the states of the two populations are vectors p = (p1, 1− p1), q =
(q1, 1− q1) for population 1, population 2 respectively. We know that it is enough
to look at the evolution of one strategy frequency. In the following analysis we will
call the fraction of E players in population 1 by p and the fraction of A players in
population 2 by q. The reader may excuse this abuse of notation.

28All these considerations are against the spirit of evolutionary analysis.
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intruders always enter the territory of the owners, and all own-
ers of the territory accept the new entrants.
This is not the unique Nash equilibrium of this game. Suppose
p = 0 is given initial data, so that no intruder will enter the
territory. In this case individuals from population 2 are never
confronted with the intruders, so never have to make a decision
whether to accept or fight them. Individuals from population
1 are granted the possibility to change their strategy at some
(rare) events. The well informed individual from population 1,
mentioned in the paragraph above, will condition his choice on
the state of the owning population. He knows that if q ≤ 1/2,
it is better for him to stay out of the territory. Hence the con-
stellation p = 0 together with q ≤ 1/2 forms an equilibrium.
This static analysis demonstrated that the set of Nash equilibria
in the game is

NE =
{
(p, q) ∈ [0, 1]2|p = 1, q = 1

}
∪ E

where E := {(p, q) ∈ [0, 1]2|p = 0, q ≤ 1/2}. The logic of back-
wards induction excludes the possibility that a social state in E
will be a reasonable outcome of the game. The argument goes
as follows: Viewing the subgame starting at information set v1

as a game for itself, an intelligent individual should never fight
with an intruder, since he never can attain a higher payoff with
this action, compared with acceptance of the intruders. Back-
wards induction makes only a frequency of q = 1 a reasonable
solution of the game. In an dynamic evolutionary model we
will see however, that this logic must not prevail under pure
imitative behavior of individuals.

9.1.2. Dynamic Analysis.
The replicator dynamics. The planar system is given by

ṗ = p(π1
1(q)− π̄1(p, q)) = p(1− p)(2q − 1) (9.1)

q̇ = q(π2
1(q)− π̄2(p, q)) = q(1− q)p

From this two ordinary differential equations we see that the
share of entrants in population 1 is increasing if 0 < p < 1
and q > 1/2. Otherwise the share remains either constant or
decreases monotonically. The share of owners that accept an
entering individual from population 1 is monotonically increas-
ing if 0 < q < 1 and p > 0. Otherwise it will stay constant.
If, by some historical accident, the initial values of the strategy
frequencies are in the region, where p is not “too high” and q
lies below the threshold 1/2, there are solutions that hit the
boundary of the unit square at some point in the segment of
Nash equilibria E. We can also check this by means of a Lya-
punov function. Call int(Θ) := {(p, q) ∈ [0, 1]2|0 < p, q < 1}
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Figure 15. Vector field induced by the replicator and
the BNN dynamic in the entry-deterrence game.

the interior of our state space, the unit square. We claim that
the continuous differentiable function H : int(Θ) → R+ given
by the rule H(p, q) = − log(pq) is such a function. Taking the
time derivative by applying the chain rule of Calculus gives us,
d

dt
H(p, q) = −(

ṗ

p
+
q̇

q
)

= −
[
(π1

1(q)− π̄1(p, q)) + (π2
1(p)− π̄2(p, q))

]
= −[(2q − 1)− p(3q − 2)]

This is non-positive iff (2q − 1) − p(3q − 2) ≥ 0. We consider
several cases.
(1) 0 ≤ q < 1/2: Then we have 3q − 2 < 0, and therefore a

necessary condition is p ≥ 2q−1
3q−2

.
(2) q = 1/2: We obtain −(3/2− 2)p = p/2 ≥ 0 for all 0 ≤ p ≤

1.
(3) 1/2 < q < 2/3: Then −(3q − 2) > 0 and 2q − 1 > 0, and

so the time derivative is negative.
(4) q = 2/3: 22

3
− 1 = 1

3
, and again the time derivative is

negative.
(5) 2/3 < q < 1: Then 2q−1 > 3q−2 > 0, and so 2q−1

3q−2
> 1 > p

and the time derivative is negative.
A negative time derivative means that H assumes succinctly
lower values along solution trajectories of the system (9.1),
and must ultimately reach 0. In Figure 15 the flow diagram
is provided. The blue region indicates the areas where the
time derivative of H is negative. Additionally, at the state
(p, q) = (pS, qS), the function has a value H(pS, qS) = 0, what
is an isolated minimum on int(Θ). Hence, by definition 7 in
Section 6, the function H is a Lyapunov function, proving the
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local asymptotic stability of the subgame perfect NE.29
Already this simple examples shows us that evolutionary dy-
namics do not have to select the subgame perfect equilibrium
as a reasonable outcome. Depending on our initial data, there
might be convergence to the segment of Nash equilibria that
are not subgame perfect. Even worse, population states in this
segment put positive weight on the weakly dominated strategy
F . This result is not new. It is a general phenomenon for the
replicator dynamics, that it eliminates either the weakly dom-
inated strategy directly (thus, the share of agents using this
strategy approaches 0 as t → ∞) or the strategy, that domi-
nates it weakly disappears. For a formal argument we refer to
Weibull (1995). In our example this means that either q → 1
for t→∞ (all individuals in population 2 accept entrants), or
p→ 0 for t→∞ (no individual in population 1 enters the ter-
ritory, so that F fares equally well as A for agents in population
2, and trajectories converge to a unique point in the segment
E). The fact that some solution trajectories do not reach the
subgame perfect equilibrium is a well known result in the entry-
deterrence game. It was already shown in Weibull (1995), or
Cressman and Schlag (1998). The latter authors analyze games
of perfect information (i.e. all information sets are singletons)
and the behavior of trajectories of the replicator dynamic. They
come to the conclusion that convergence to the subgame perfect
equilibrium is only guaranteed in rather simple games, where
not too many decision nodes are involved.

29Alternatively one could linearize the system (9.1) in a neighborhood of
the point (pS , qS) in the relative topology of [0, 1]2. The Jacobian matrix
of the planar system for general strategy frequencies is given by DV (p, q) =[

(1− 2p)(2q − 1) 2p(1− p)
(1− q)q (1− 2q)p

]
. Evaluating this at (p, q) = (pS , qS) gives

DV (pS , qS) =
[
−1 0
0 −1

]
with one real eigenvalue λ = −1 that appears with

multiplicity 2. Let U ⊂ R2 denote an open neighborhood of the subgame perfect
equilibrium. Its intersection with the unit square gives us then a relative neighbor-
hood of this point. Pick (x, y)T ∈ U ∩ [0, 1]2, and consider the linear system[

ẋ
ẏ

]
=
[
−1 0
0 −1

] [
x− 1
y − 1

]
with rest point (x, y)T = (pS , qS), starting value (x(0), y(0))T ∈ U ∩ [0, 1]2 and
general solution [

x(t)
y(t)

]
=
[

1
1

]
−
{[

1
1

]
−
[

x(0)
y(0)

]}
e−t

We see
[

x(t)
y(t)

]
→
[

1
1

]
for t→∞, which is an alternative demonstration for the

asymptotic stability of the subgame perfect equilibrium.
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An interesting topic is how stable this observation is with re-
spect to the evolutionary model we choose. Therefore we ana-
lyze Game 1 under the BNN dynamic.
The Brown-von Neumann-Nash dynamic. To be consis-
tent with the notation introduced in Section 8, define the excess
payoff vectors of the populations as

π̂1(p, q) := π1(p)−
[

1
1

]
π̄1(p, q)

=

[
(1− p)(2q − 1)
p(1− 2q)

]
π̂2(p, q) := π2(p)−

[
1
1

]
π̄2(p, q)

=

[
(1− q)p
−pq

]
The regions where the entries of these vectors are positive are
easily determined. Due to the weak dominance of action A over
action F in population 2, its excess payoff is never positive. This
implies that [π̂2

2(p, q)]+ = 0 for all pairs (p, q) ∈ ∆(S1)×∆(S2).
For population 1 we see [π̂1

1(p, q)]+ 6= 0 if p < 1 and q > 1/2.
The BNN dynamic for Game 1 is the planar system

ṗ =
[
π̂1

1(p, q)
]
+

(1− p)− p
[
π̂1

2(p, q)
]
+

(9.2)

q̇ =
[
π̂2

1(p, q)
]
+

(1− q)

whose concrete form depends on the value of q. If q < 1/2 the
dynamic of population 1 is equal to ṗ = (2q − 1)p2 and for q ≥
1/2 we get the equation ṗ = (1−p)2(2q−1). In the first region,
the frequency p is monotonically decreasing, stopping only when
p = 0. The second region displays an increase of p. Combined
with the motion of q, which always tends to increase, we see
that, for q initially large enough, the population states converge
to the subgame perfect equilibrium. The vector plot in Figure
15 shows that, in strong contrast to the evolutionary pattern
under the replicator model, there is no solution trajectory of
the system (9.2), that approaches a state in the non-perfect
segment of Nash equilibria. By Bernoulli’s inequality we know
that (1−q)2 ≥ (1−2q). Furthermore, (p)2 ≤ p for all p ∈ [0, 1].
Hence, the growht of q exceeds the decay of p, so that even for
small values of p trajectories flow rapidly into the region where
q ≥ 1/2 applies. There p is growing and the population states
converge to the subgame perfect equilibrium.

9.2. Game 2. Consider the two-population extensive form game
in Figure 16. Players drawn from population 1 make decisions
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Figure 16. Game 2: A game in extensive form where
all Nash equilibria are subgame perfect

at node x1, which happens to be also the root of the game
tree. The game is structurally the same as in example 1 given
in section 3.2, so we skip the detailed description of the game.
There is one proper subgame at population 2’s information set
v1, which we will call Γv1 . Action c is strictly dominated by pure
strategy d, and A strictly dominates B and C. Our example is

a bimatrix game, with payoff matrices A =

 1 1 1 1
−1 0 −1 0
−1 0 −1 0


for population 1 and B =


−1 0 1
−1 1 2
1 0 1
1 1 2

 for population 2, re-

spectively. Let ∆(Sk) denote the set of population states in
player population k ∈ {1, 2}. For population 1 this set is of the
form ∆(S1) =

{
p ∈ R3

+|p1 + p2 + p3 = 1
}
, where for instance p1

is the frequency with which pure strategy A is observed in pop-
ulation 1. Similarly ∆(S2) =

{
q ∈ R4

+|q1 + q2 + q3 + q4 = 1
}
,

where q1 is, for instance, the frequency with which we observe a
player from population 2 that plays a at information set v1 and
c at information set v2, hence follows the pure strategy [ac]. The
normal form representation of the whole extensive form game

is then the 3 × 4 Table 4. Payoffs are π1(q) =

 1
−q1 − q3
−q1 − q3
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[ac] [ad] [bc] [bd]
A (1,-1) (1,-1) (1,1) (1,1)
B (-1,0) (0,1) (-1,0) (0,1)
C (-1,1) (0,2) (-1,1) (0,2)

Table 4. Normal form representation of Figure 16

in population 1 and π2(p) =


−p1 + p3

−p1 + p2 + 2p3

p1 + p3

p1 + p2 + 2p3

. The equilib-

rium structure of the game is fairly simple. A is always optimal
in population 1, and best replies to A are [bc] and [bd] in pop-
ulation 2. Hence, the set of Nash equilibria is

NE =

(p, q) ∈ ∆(S1)×∆(S2)|p1 = 1, q =


0
0
λ

1− λ

 , 0 ≤ λ ≤ 1

 .

Average payoffs in equilibrium are then π̄1(p∗, q∗) = 1 = π̄2(p∗, q∗),
for all profiles (p∗, q∗) ∈ NE. For fixed q∗ as in NE, strategy A
is a strict best reply for agents in population 1, since there is no
alternative strategy distribution that achieves the same payoff
against q∗ as A does. Formally this implies that π̄1(p, q∗) =
p1(1 + λ) − λ ≤ π̄1(p∗, q∗) for all (p∗, q∗) ∈ NE with equality
only if p = p∗. Similarly, for fixed p∗ = (1, 0, 0)T , there is no
strategy combination available to agents in population 2, that
performs as good against p∗ as q∗ does, where q∗ is as in NE.
Hence, π̄2(p∗, q) ≤ π̄2(p∗, q∗) for all (p∗, q∗) ∈ NE with equal-
ity only if q = q∗. Cressman (2003, Chapter 3, p.70) defined
such a set of Nash equilibria as a strict equilibrium set (SESet).
Note that this does not mean that the equilibrium points are
strict Nash equilibria. In our example no population state q∗
that is a component of a social state in NE forms a strict Nash
equilibrium in this population, since there is a continuum of
population states that get the same payoff against p∗ = (1, 0, 0)
as any fixed q∗. Cressman also shows that a set of rest points
of the replicator dynamic in any bimatrix game is asymptoti-
cally stable iff it is an SESet (Cressman 2003, Theorem 3.2.1,
p.72). Thus, we already know that solution trajectories of the
replicator dynamic that start in some neighborhood of NE will
stay near this set and ultimately converge to a unique point
that lies in NE. To see this, we write the replicator dynamic
for our example. In population 1 average payoffs are given by
π̄1(p, q) = p1(1+q1 +q3)− (q1 +q3), and for population 2 we get
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π̄2(p, q) = (q1+q2)(p3−p1)+(p3+p2)(q2+q4)+(q3+q4)(p1+p3).
The replicator dynamic in population 1 boils down to

ṗ1 = p1(1− p1)(1 + q1 + q3) (9.3)
ṗi = −pip1(1 + q1 + q3) i ∈ {2, 3} (9.4)

Well known results are that the replicator dynamic eliminates
strictly dominated strategies30, so that in the long run all indi-
viduals in population 1 are going to play the pure strategy A.
In population 2 the replicator dynamic takes the form

q̇1
q̇2
q̇3
q̇4

 =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4



−2p1(q3 + q4)− (1− p1)(q2 + q4)
−2p1(q3 + q4) + (1− p1)(q1 + q3)
2p1(q1 + q2)− (1− p1)(q2 + q4)
2p1(q1 + q2) + (1− p1)(q1 + q3)


(9.5)

[ac] is strictly dominated, so the replicator dynamic makes q1
converging to 0 in the long run. On the other hand, we observe
that the frequency with which [bd] is played in population 2 in-
creases monotonically. Only the signs of q2 and q3 are ambigu-
ous. Choose solution trajectories of (9.5) that are in the interior
of the state space ∆(S1) × ∆(S2) and are bounded away from
zero for some open time interval around t > 0. Then compute

d ln(q3(t)/q2(t))

dt
= π2

3(p)− π2
2(p) = 3p1 − 1

Thus, for p1 > 1/3, the growth rate of the strategy frequency
q3 dominates the growth rate of q2, implying that the former
grows faster than the latter. Since we know that p1 approaches
1, for every trajectory of (9.3), there must exist a point of time,
where it exceeds 1/3. Hence, evolution will always favor q3 over
q2 as time goes by. To see that NE is indeed asymptotically
stable define an open neighborhood in the relative topology of
∆(S1)×∆(S2), as

Oε := {(p, q) ∈ ∆(S1)×∆(S2)|1− ε < p1 ≤ 1, 0 ≤ q2 < ε, 1− ε < q3 + q4 ≤ 1}
31 Trajectories that start in this neighborhood behave according
to the following system of ordinary differential equations:

ṗ1 = p1(1− p1)(1 + q3)

q̇2 = q2[q3(1− 3p1)− 2p1q4]

q̇3 = q3[q2(3p1 − 1)− q4(1− p1)] (9.6)
q̇4 = q4[2p1q2 + (1− p1)q3]

It can be readily seen that for p1 > 1/3 q2 decays, and the dy-
namic leads to some point contained in NE. The linearization

30See Hofbauer and Weibull (1996) or Samuelson and Zhang (1992)
31We choose ε > 0.
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of (9.6) has the form (0 < λ < 1 is assumed, which is the weight
of q3 at some point in NE)

ṗ1

q̇2
q̇3
q̇4

 =


−(1 + λ) 0 0 0

0 −2 0 0
λ(1− λ) 2λ 0 0
−λ(1− λ) 2(1− λ) 0 0




p1 − 1
q2

q3 − λ
q4 − (1− λ)

 (9.7)

The eigenvalues of the Jacobian matrix are -2,−(1 + λ) and 0
with multiplicity 2. 32 We see that p1 converges to 1 and q2
approaches 0, hence the set NE is attracting. Furthermore,
small perturbations of the dynamical system do not change the
qualitative behavior of solution trajectories. This demonstrates
the asymptotic stability of the set NE. What is not obvious is
whether the replicator dynamic selects strategy [bd] as outcome.
Since [bc] contains a strictly dominated action (c at information
set v2), and is therefore weakly dominated, it is not plausible
that [bc] should be chosen by individuals.
Starting from the interior of our state space we see that q4 al-
ways grows faster than q3 does, since d ln(q4/q3)

dt
= 1 − p1. Both

have the same growth rate 2(q1 + q2), iff p1 reached 1. From
the dynamical system (9.5), it can be seen that p1 influences
the motion of q3 positively, while the growth of q4 influences it
negatively. As p1 converges to 1, the negative influence of q4
is however damped, since then 1 − p1 converges to 0. Suppose
for one moment that q1 = q2 = 0, which is no real restriction,
since both are monotonically falling. The dynamic in popu-
lation 2 is then completely determined by the planar system
q̇3 = −q3q4(1 − p1) = −q̇4. This follows from the fact that
the replicator dynamic is a non-innovative dynamic, or in more
technical terms, it leaves all the faces of ∆(S2) invariant.33 The
differential equation that describes the dynamic for p1 is given

32We can also calculate particular solutions of the linear system (9.7). Choose
positive numbers δ1, δ2 < ε such that λ+δ1 +δ2 < 1, and p1(0) = 1−δ1, q2(0) = δ1,
q3(0) = λ+δ2, q4(0) = 1−λ−δ1−δ2 are given initial conditions, so that trajectories
start in Oε. Particular solutions are then

p1(t) = 1− δ1 exp {−(1 + λ)t}
q2(t) = δ1 exp {−2t}

q3(t) = λ
1 + λ + 2λδ1

1 + λ
+ δ2 + λδ1

(
1− λ

1 + λ
exp {−(1 + λ)t} − exp {−2t}

)
q4(t) = (1− λ− δ1 − δ2) + (1− λ)δ1

1 + 2λ

1 + λ
− (1− λ)δ1

(
λ

1 + λ
exp {−(1 + λ)t}+ exp {−2t}

)

33Integrating this expression over some finite time span [0, T ] shows that q3(T )+
q4(T ) = q3(0)+ q4(0), hence once we are on a face where q3 + q4 = 1 we will forever
stay on this face.
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by ṗ1 = p1(1 − p1)(1 + q3). From this expression we see the
following: ṗ1

p1
= (1 − p1) + q3(1 − p1) = (1 − p1) + q̇4

q4
. Hence,

ṗ1
p1
− q̇4

q4
= (1 − p1) ≥ 0. This implies that frequency p1 grows

faster than q4 does, thus must reach unity before the latter can
reach this point. But this demonstrates that q3 can be posi-
tive in the long run, even though individuals in population 2
can only decide among the pure strategies [bc] and [bd], and
[bd] weakly dominates [bc]. This result is not new. In fact we
have already encountered this phenomenon for the replicator
dynamic in Game 1. In our example, [bd] and [bc] are equally
profitable when only A is played by agents from population 1.
Hence, an individual that adopts an imitative behavioral rule,
will regard them as one and the same strategy, so there is no
reason to expect that [bc] gets extinct, if p1 = 1. To summarize
we have the result for the replicator dynamic, that evolutionary
pressures do not motivate society to select the superior strat-
egy [bd] out of the set of equilibria, although the strategy [bc]
imposes the play of a strictly dominated action.

We now take a look at other types of evolutionary dynam-
ics, where we start with the pairwise difference dynamic. In
population 2, the pairwise difference dynamic is defined as

q̇i =
4∑
j=1

qj[π
2
i − π2

j ]+ − qi
4∑
j=1

[π2
j − π2

i ]+ (9.8)

We compute the four differential equations for population 2 step
by step.

i=1:

π2
2 − π2

1 = −p1 + p2 + 2p3 + p1 − p3 = p2 + p3 = 1− p1

π2
3 − π2

1 = p1 + p3 + p1 − p3 = 2p1

π2
4 − π2

1 = p1 + p2 + 2p3 + p1 − p3 = 2p1 + p2 + p3 = 1 + p1

Substituting these terms into the formula (9.8), we get the
differential equation

q̇1 = −q1[(1− p1) + 2p1 + (1 + p1)] = −2q1(1 + p1) (9.9)

The strictly dominated strategy [ac] loses frequency mono-
tonically, hence must ultimately die out.

i=2:

π2
1 − π2

2 = p1 − 1

π2
3 − π2

2 = p1 + p3 + p1 − p2 − 2p3 = 2p1 − p2 − p3 = 3p1 − 1

π2
4 − π2

2 = p1 + p2 + 2p3 + p1 − p2 − 2p3 = 2p1
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There are two cases we have to distinguish. First, suppose
p1 ≥ 1/3. Then π2

3 − π2
2 ≥ 0, and so (9.8) tells us that

q̇2 = q1(1− p1)− q2[(3p1 − 1) + 2p1] = q1(1− p1)− q2(5p1 − 1)

On the other hand (9.8) delegates for p1 < 1/3, that

q̇2 = q1(1− p1) + q3(1− 3p1)− 2q2p1 = (q1 + q3)− p1(q1 + 2q2 + 3q3)

To summarize

q̇2 =

{
(q1 + q3)− p1(q1 + 2q2 + 3q3) if p1 < 1/3
q1(1− p1)− q2(5p1 − 1) if p1 ≥ 1/3

(9.10)

i=3:

π2
1 − π2

3 = −p1 + p3 − p1 − p3 = −2p1

π2
2 − π2

3 = −p1 + p2 + 2p3 − p1 − p3 = −2p1 + p2 + p3 = 1− 3p1

π2
4 − π2

3 = p1 + p2 + 2p3 − p1 − p3 = p2 + p3 = 1− p1

Again there are two cases we have to treat separately, again
defined via the threshold value p1 = 1/3. Suppose p1 <
1/3, so that π2

2 − π2
3 > 0. (9.8) states then

q̇3 = 2q1p1−q3[(1−3p1)+(1−p1)] = 2q1p1−q3(2−4p1) = 2p1(q1+2q3)−2q3

For p1 ≥ 1/3 we have

q̇3 = 2q1p1 + q2(3p1 − 1)− q3(1− p1) = p1(2q1 + 3q2 + q3)− (q2 + q3)

Summarizing these two equations gives us

q̇3 =

{
2p1(q1 + 2q3)− 2q3 if p1 < 1/3

p1(2q1 + 3q2 + q3)− (q2 + q3) if p1 ≥ 1/3
(9.11)

i=4: Since [bd] weakly dominates all the other pure strategies,
(9.8) boils down to

q̇4 = q1(1+p1)+2q2p1 +q3(1−p1) = p1(q1 +2q2−q3)+(q1 +q3) (9.12)

The frequency with which pure strategy [bd] is observed in
population 2 will consequently increase monotonically.

In population one, the dynamic is much easier, since A strictly
dominates the other two pure strategies, which are furthermore
payoff equivalent. Hence π1

1 − π1
2 ≡ π1

1 − π1
3 and therefore

ṗ1 = (1− p1)(1 + q1 + q3) (9.13)
ṗi = −pi(1 + q1 + q3) i ∈ {2, 3}

It is obvious that solution trajectories of (9.13) converge to the
population state where all individuals play the pure strategy
A. Now that we have a complete picture of the pairwise differ-
ence dynamic, we can observe that evolutionary pressures will
eliminate the dominated strategies B and C form population 1
and [ac] from population 2. Since we are mainly interested in
the long run pattern of the strategy frequencies, we do not lose
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much when we restrict ourselves to the dynamics of p1,q2, q3 and
q4. Moreover, since p1 gains in frequency monotonically we can
assume that p1 ≥ 1/3 is the case, since all solution trajecto-
ries must reach this value at some point in time. On the face
∆(S1)×∆([ad], [bc], [bd])34 the dynamical system for population
2 becomes q̇2

q̇3
q̇4


|p1≥1/3

=

 q2(1− 5p1)
q2(3p1 − 1)− q3(1− p1)

2p1q2 + q3(1− p1)

 (9.14)

The frequency with which pure strategy [ad] is played in popu-
lation 2 is decaying on trajectories starting in this region. Fur-
thermore the differential equation that describes the motion of
q2 only depends on p1, which is a growing positive function.
Define the function φ2(t) to be a solution of q̇2. Certainly, such
a function exists, is continuously differentiable, and further sat-
isfies φ2(0) = q2(0) some known initial value lying in the unit
interval. Choose q2 > 0, and |t| < δ. We can approximate the
value of φ2(t

′) for t′ ∈ [0, δ), by a first-order Taylor polynomial

φ2(t
′) ≈ φ2(0) + φ̇2(0)t

′ = q2(0) + q2(0)(1− 5p1(0))t
′

where p1(0) ∈ (1/3, 1) is a known initial value. Solving this
approximation explicitly for t′, we get some feeling how fast q2
reaches 0. Let h(p1(0)) be the solution of the equation t′ =

1
5p1(0)−1

, which is well defined and has a unique solution. From

Figure 17. Points of time when q2 vanishes, in depen-
dence of the initial value of p1.

Figure 17 one can see that even for initial values close to 1/3,
we expect q2 to reach zero approximately after one unit of time

34This is the set {q ∈ ∆(S2)|q1 = 0}.



EVOLUTIONARY DYNAMICS AND RATIONALITY 91

has passed. The time span decreases as p1 has more weight
initially. From the law of motion it is clear that q2 must get
eliminated in the long run from population 2, so that only the
pure strategies [bc], [bd] remain in the strategy set. We can
also say something about the correlation between the growth of
p1 and the decay of q2. Fix a positive point in time t, which
might be close to 0, such that φ2(t

′) > 0 holds for all t′ ∈
(t − ε, t + ε), where ε > 0 and adequately chosen. The growth
rate of q2 is then d ln(φ2(t′))

dt
= 1 − 5p1(t

′), so clearly a negative
number. The larger p1 gets, the faster is the decay of q2, so that
evolutionary pressures will even accelerate the extinction of q2.
An infinitesimal small increase of p1 leads then to a percentage
change in the growth rate of

∂ (d ln(φ2(t
′))/dt)

∂p1

p1(t
′)

d ln(φ2(t′))/dt
=

5p1(t
′)

5p1(t′)− 1
= 1 +

1

5p1(t′)− 1

Hence q2 reacts over proportional on changes of p1. In more
interpretable terms, a one-percent increase in the strategy fre-
quency p1 leads to a more than one percent fall in the strategy
frequency q2.
The evolution of q4 is fairly easy to describe. We see that q̇4 ≥ 0
for all choices of p1, q2, q3. From previous analysis we know that
p1 converges to 1, while q2 converges to 0. Henceforth, in the
long run q4 must reach a stationary state. Furthermore, observe
that

q̇4 − q̇3 = (q2 + 2q3)(1− p1) ≥ 0

The difference between strategy frequencies q3 and q4 is even
becoming larger, as long as p1 < 1. Hence it is not clear that
q3 will be played by a fraction of individuals in population 2.
The dynamic of strategy frequency q3 is positively influenced by
p1 and q2. We observe that, as soon as q2 ≤ q3(1−p1)

3p1−1
, q3 starts

decreasing. In the region where p1 ≥ 1/2 the ratio 1−p1
3p1−1

lies
always below 1. In particular, all agents in population 2 will
switch to pure strategy [bd], if q2 = 0. It is therefore crucial for
the understanding of the dynamic, to know whether q2 reaches
0 before p1 reaches 1, or not. However, we already know that q2
decays faster than p1 grows. When we start from a region where
p1 and q2 were initially played by many agents (this means
q2 >

q3(1−p1)
3p1−1

and p1 > 1/2), then q3 will increase. If p1 is chosen
sufficiently large, trajectories will hit the boundary, from which
on q3 keeps on increasing and q2 decays at exponential rate of
4. Note that in this case q3 and q4 grow at the same rate, until
q2 ultimately vanishes.
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We make this more precise now. One can identify four principle
regions that have to be distinguished and studied separately.

Region I: 0 ≤ q2 < q3 and 1/3 ≤ p1 ≤ 1/2.
We get

q2(3p1 − 1)− q3(1− p1) < q3(3p1 − 1)− q3(1− p1)

= 2q3(2p1 − 1)

≤ 0

Hence q3 is monotonically decreasing in this region. We
know that q2 falls and p1 grows over time, where the former
decays at a more rapid pace than the latter. Hence, the
speed at which q3 falls must be slowing down as evolution
proceeds. Trajectories that do not start from an initial
value of q3 too close to zero, are going to leave this region,
as p1 will exceed 1/2 at some point of time.

Region II: 0 ≤ q2 < q3 and 1/2 < p1 ≤ 1.
This region has to be divided in two subregions.
(II.a) q2 ∈ [0, q3(1−p1)

3p1−1
). In this case we know that q3 is de-

creasing. Note that the given interval will become
degenerate (melt to the single point 0), as p1 con-
verges to 1. This implies that the region shrinks over
time, and might be “small” in general. (i.e. Choose
p1 = 0.9 then this interval covers a line segment
which connects the points 0 and some number be-
low 1/17 ≈ 0.05)

(II.b) q2 ∈ [ q3(1−p1)
3p1−1

, q3). There we observe q̇3 ≥ 0, so that
q3 grows over time.

Region III: 0 ≤ q3 ≤ q2 and 1/3 ≤ p1 ≤ 1/2.
Again this has to be divided into two subregions:

(III.a) q2 ∈ [q3,
q3(1−p1)
3p1−1

) on which q̇3 ≤ 0 is true.
(III.b) q2 ∈ [ q3(1−p1)

3p1−1
, q3] where q3 is growing over time. For

p1 → 1 this interval becomes the whole connected set
[0, 1], hence the lower bound of it approaches 0.

Region IV: 0 ≤ q3 ≤ q2 and 1/2 < p1 ≤ 1.
A trajectory that falls in this region will show an increasing
tendency of q3. This can be seen by q̇3 > q3(3p1−1)−q3(1−
p1) = 2q3(2p1 − 1)

The dynamics on these regions is visualized in Figure 18.35
Trajectories that start in Region IV will enter Region II, as
p1 grows over time. Starting from Region III we observe a de-
creasing tendency of q3. Moreover this negative influence is the

35Note that the phase portrait in Figure 18 is not a correct description of the
evolutionary pattern in population 2, since q4 is left out. However, one can gain a
lot of information about the dynamical system from it.
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Figure 18. Vector Field induced by the pairwise differ-
ence dynamic. Note that only the vectors in the colored
regions are feasible motions.

larger, the larger q2 is initially. As time proceeds q2 falls and
the decaying of q3 slows down. Finally trajectories have to enter
Region IV, from which they pass over to Region II.
Trajectories that start in Region I induce also a loss of the strat-
egy frequency q3. As p1 grows, they will enter Region II. Once
they arrived there, q3 gains weight again.
It seem like all trajectories have to end up in Region II, thus
end up in an area where q2 becomes arbitrary small, and p1

converges to 1. We have to be aware that q4 is also growing
in the background. Thus, the growth of q3 is only due to our
ignorance of the superior strategy [bd]. However, our discussion
was not without any sense, as we can see from Figure 19. There
we have set q2 = 0, to see what evolution imposes, when only
the two equilibrium strategies are left in population 2. Without
loss of generality we can focus ourselves on the evolution of p1

and q3, thus we are fine with a two dimensional phase diagram.
We see that the vectors are nearly straight lines if q3 is initially
small. One can clearly see that the agents in population 2 fa-
vor [bd] over [bc], as the outflow of strategy [bc] dominates its
inflow, but this tendency is not strong enough to create a com-
plete specialization in this player population if p1 is chosen to
be large enough. This suggests that population 2 will remain
in a polymorphic state, where strategies [bd] and [bc] are both
played, provided p1 is sufficiently large. To see this, we can
give a formal statement. The dynamical system is completely
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Figure 19. Vector Field induced by the pairwise differ-
ence dynamic and the BNN dynamic, restricted to the
pure strategies A, [bc], [bd]

described by three differential equations

ṗ1 = (1− p1)(1 + q3)

q̇3 = −q3(1− p1)

q̇4 = q3(1− p1)

One sees that ṗ1− q̇4 = (1−p1) ≥ 0 with equality in Nash equi-
librium. Thus, p1 always grows faster than q4 what in particular
implies that it has to reach its equilibrium value before q4 does.
Starting from a point on the plane on which q3+q4 = 1 holds and
where q3 has sufficiently positive weight, we will observe a posi-
tive fraction of individuals in population 2 that play the strictly
dominated action c in the limit state of the pairwise difference
dynamic. Thus, also the pairwise difference dynamic does not
allow us to discard the suboptimal strategy [bc], where some
positive fraction of individuals in player population 2 choose
a strictly dominated action (admittedly at an information set
that will never be reached on a game path). Much more all
interior trajectories must end up at some point in the set NE,
which was shown to be an SESet under the replicator dynamic.
Since we know that the pairwise difference dynamic is closely
related to the replicator dynamic,36 one might conjecture that
SESets are also asymptotically stable under pairwise compari-
son dynamics. Anyway, we have to emphasize that we now have

36and therefore to every monotone selection dynamic, see Samuelson and Zhang
(1992) or Cressman (2003)



EVOLUTIONARY DYNAMICS AND RATIONALITY 95

encountered two evolutionary dynamics that are not adequate
equilibrium selection techniques for more complicated games.

The last missing evolutionary dynamic we have discussed is
the BNN dynamic. From its derivation we know that the excess
payoff vector is a necessary ingredient to calculate its vector
field. In population one this is a fairly simple exercise, since
pure strategy A dominates the other two disposable strategies,
which additionally are payoff equivalent. Hence we get

π̂1
1(p, q) = π1

1(q)− π̄1(p, q) = (1− p1)(1 + q1 + q3) (9.15)
π̂1
i (p, q) = −p1(1 + q1 + q3) i ∈ {1, 2} (9.16)

Under the BNN dynamic only those strategies have a chance
to grow that earn a payoff above the population’s average. Its
differential equations have a convenient form in this example:

ṗ1 = (1− p1)
2(1 + q1 + q3) (9.17)

ṗi = −pi(1− p1)(1 + q1 + q3) i ∈ {1, 2} (9.18)

It is clear from these expressions that only pure strategy A
grows over time, so that population 1 will be completely spe-
cialized on this strategy in the long run. This convergence is
even monotonically, and independent of the behavior in popula-
tion 2, so without loss of generality we can concentrate ourselves
on the evolution of pure strategy A. In population 2 things are
a little bit more complicated. Strategy [ac] is strictly dominated
by [bd], and moreover all pure strategies available to this player
population weakly dominate it. Hence, we have π2

1(p) ≤ π2
h(p)

for all h ∈ {1, 2, 3, 4} and p ∈ ∆(S1). It follows directly that
also its excess payoff must be non-positive, in all possible con-
stellations (p, q).
Pure strategy [bd] is always a best response in population 2,
so that π2

4(p) ≥ π2
h(p) for all h ∈ {1, 2, 3, 4} and p ∈ ∆(S1).

Henceforth, its excess payoff can never be negative.
For the remaining two pure strategies in population 2 we cal-
culate

π̂2
2 = (1− q2)(−p1 + p2 + 2p3)− q1(−p1 + p3)− q3(p1 + p3)− q4(p1 + p2 + 2p3)

= (−p1 + p3)(1− q1 − q2) + (1− q2)(p2 + p3)− (p1 + p3)(q3 + q4)− q4(p2 + p3)

= (q3 + q4)(−p1 + p3 − p1 − p3) + (p2 + p3)(1− q2 − q4) , since 1− q1 − q2 = q3 + q4

= −2p1(q3 + q4) + (p2 + p3)(q1 + q3)

= −p1(q1 + 3q3 + 2q4) + (q1 + q3) , since p2 + p3 = 1− p1
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This expression is non-negative if p1 ≤ q1+q3
q1+3q3+2q4

, for q1+q3 6= 0.
For strategy [bc] we get

π̂2
3 = (1− q3)(p1 + p3)− q1(−p1 + p3)− q2(−p1 + p2 + 2p3)− q4(p1 + p2 + 2p3)

= (−p1 + p3)(−q1 − q2)− q2(p2 + p3) + (1− q3 − q4)(p1 + p3)− q4(p2 + p3)

= (q1 + q2)(p1 + p3 + p1 − p3)− (p2 + p3)(q2 + q4) , since 1− q3 − q4 = q1 + q2

= p1(2q1 + 3q2 + q4)− (q2 + q4) , since p2 + p3 = 1− p1

≥ 0

⇒ p1 ≥
q2 + q4

2q1 + 3q2 + q4
, if q2 + q4 6= 0

To summarize these calculations, we write

π̂2(p, q) =


−2p1(q3 + q4)− (p2 + p3)(q2 + q4)
−2p1(q3 + q4) + (q1 + q3)(p2 + p3)
2p1(q1 + q2)− (p2 + p3)(q2 + q4)
2p1(q1 + q2) + (q1 + q3)(p2 + p3)


The pure strategy [ac] always earns a payoff below the popula-
tion’s average, which implies a monotone decay of its frequency.
Suppose that at some point in time pure strategy [ac] gets ex-
tinct from population 2. Since it is a strictly dominated strat-
egy, and there does not exist a second pure strategy that per-
forms equally worse in all possible situations that might arise in
the game (i.e. there does not exist a “clone” of [ac]), no individ-
ual, behaving according to BNN, will rediscover it. Therefore it
remains unused forever (in terms of behavioral rules: There is
no inflow). By monotonicity, [ac] must get extinct at some point
of time, so without loss of generality we can restrict ourselves
to an analysis of the faces of ∆(S2) on which q1 = 0 holds.
The superior strategy [bd] always earns a payoff above the pop-
ulation’s average, which implies that there is a steady inflow of
agents applying this strategy. Furthermore π2

4(p) − π2
i (p) ≥ 0

for all p ∈ ∆(S1) and i ∈ {1, 2, 3, 4}, so that its excess payoff
dominates the excess payoff of all other available pure strategies
in population 2. Consequently, the inflow must exceed the out-
flow leading to a monotone growth of the frequency with which
[bd] is used.
For the remaining two pure strategies, note that π2

3(p)−π2
2(p) =

2p1−p2−p3 = 3p1−1, which is nonnegative for p1 ≥ 1/3. Thus,
if p1 exceeds 1/3 strategy [bc] becomes a best reply, together
with [bd] (which is always an optimal choice).
Setting q1 = 0 in the expression for the excess payoff vector, and
rearranging terms, shows that π̂2

2(p, q) = q3(1−3p1)−2p1q4 and
π̂2

3(p, q) = q2(3p1−1)− (1−p1)q4. Since p1 increases monotoni-
cally, every trajectory must exceed the value 1/3 at some point
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in time. The BNN dynamic for strategy frequency q2 turns then
to

q̇2 = −q2
(
[π̂2

3(p, q)]+ + [π̂2
4(p, q)]+

)
≤ 0 (9.19)

for all social states (p, q), with p1 ≥ 1/3. If p1 < 1/3 then
frequency q2 eventually increases some time, until p1 exceeds
this value. Then q2 monotonically decays according to equation
(9.19). For strategy frequency q3 we observe the law of motion

q̇3 = [π̂2
3(p, q)]+(1− q3)− q3[π̂2

4(p, q)]+ (9.20)

for p1 ≥ 1/3. If p1 < 1/3 would apply, then the BNN dy-
namic boils down to q̇3 = −q3([π̂2

2(p, q)]+ + [π̂2
4(p, q)]+), so that

q3 decays and might even get extinct, for sufficiently small ini-
tial values of q3. However, as p1 grows over time, it must pass
the barrier of 1/3, making [bc] a best reply in population 2, so
that some agents might discover this strategy again. Therefore
a study of the dynamic when p1 ≥ 1/3 is needed to under-
stand the evolutionary pattern. Suppose q2 = 0. Then q3 and
q4 evolve according to the laws of motion q̇3 = −q3(1 − p1)q3,
q̇4 = (1−q4)(1−p1)q3 = −q̇3. Thus, q3 is monotonically falling,
and q4 absorbs its decay. The difference between the frequen-
cies with which these two strategies are applied must become
larger over time, as one can also see from q̇3 − q̇4 = 2q̇3 =
−2(q3)

2(1 − p1) which decays at the doubled speed of q3. If
p1 would increase at a smaller pace than q4 does, q4 reaches
1 before the former can. Hence, q3 must vanish form popu-
lation 2, what would distinguish the BNN dynamic extremely
from all other dynamics we have discussed so far. In popula-
tion one the dynamic only depends on the frequency q3. We
calculate ṗ1 − q̇4 = (1 − p1)[(1 − p1)(1 + q3) − (q3)

2] ≤ 0 ex-
actly if p1 ≥ 1 − (q3)2

1+q3
= (q3−1/2(1−

√
5))(q3−1/2(1+

√
5))

1+q3
. Thus, for

(q3−1/2(1−
√

5))(q3−1/2(1+
√

5))
1+q3

≤ p1 ≤ 1, we see that ṗ1 ≤ q̇4, what
means that p1 grows slower than q4 does. One should note
that the lower bound converges to 1 with the same speed as q3
converges to 0. Hence, as evolution proceeds it becomes more
likely to observe a faster growth of p1 as q4. The region where
1/3 ≤ p1 ≤ 1 − (q3)2

1+q3
is the yellow shaded area in Figure 19,

where also a phase diagram of the planar system (ṗ1, q̇3) is pro-
vided. Vectors in this area are longer than vectors outside this
region, indicating a faster growth of p1, what is in accordance
with our computations. The larger q3 the stronger is the ten-
dency toward p1, and the adjustment speed becomes slower the
larger p1 is. Comparing the vector field with the pairwise differ-
ence dynamic shows that the force pointing in direction of p1 is
much stronger in the BNN dynamic. On the other hand, if we
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choose q3 to be rather small, vectors are nearly straight lines.
Thus, as p1 grows trajectories loose speed, and in particular
the decay of strategy frequency q3 slows down. We can further
observe that trajectories leave the yellow shaded region where
p1 grows faster than q4 fairly late, in the sense that the weight
of p1 must be “large” before curves exit it. Then the increase
of q4 speeds up relative to the increase of p1 until the latter
reaches its equilibrium value 1. Thus, it seems that the BNN
dynamic does also not select the superior strategy [bd] out of
the Nash component of population 2, although the evolutionary
pressure toward this dominant strategy is much stronger than
in all other dynamics we have discussed.

To conclude this analysis we formulate the following state-
ment:

Observation 1. Neither the replicator dynamic, nor the inno-
vative dynamics (BNN and pairwise difference) lead population
2 into a state of complete specialization. One might conjecture
that the SESet is an asymptotically stable set under all the dis-
cussed evolutionary dynamics.

One might criticize our example in the direction that opti-
mizing individuals in population 1 actually are not confronted
with making a choice in the game. A globally dominates all
other pure strategies in this player population, thus there is not
really a decision to make. To take this critique into account we
re parametrize the payoffs of Game 2.

9.3. Game 3. Consider the two-population extensive form game
in Figure 20. Our example is the structurally the same bima-
trix game as Game 2, but the payoff matrices changed slightly to

A =

 1 1 −1 −1
−1 0 −1 0
−1 1 −1 1

 for population 1 and B =


−1 0 1
−1 1 2
1 0 1
1 1 2


for population 2, respectively. The normal form representation
of the whole extensive form game is then the 3× 4 Table 5.

[ac] [ad] [bc] [bd]
A (1,-1) (1,-1) (-1,1) (-1,1)
B (-1,0) (0,1) (-1,0) (0,1)
C (-1,1) (1,2) (-1,1) (1,2)

Table 5. Normal form representation of Figure 20
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Figure 20. Game 3: A game in extensive form with one
proper subgame

9.3.1. Static Analysis. Note that the probability with which
we observe action a in subgame Γv1 is simply Pr(a) = q1 + q2,
and so is Pr(b) = q3 + q4. The mixed strategy (normal form)
payoff functions are then for population 1

π1(q) =

 π1
1(q)
π1

2(q)
π1

3(q)

 =

 q1 + q2 − q3 − q4
−q1 − q3

−q1 + q2 − q3 + q4


and for population 2

π2(p) =


π2

1(p)
π2

2(p)
π2

3(p)
π2

4(p)

 =


−p1 + p3

−p1 + p2 + 2p3

p1 + p3

p1 + p2 + 2p3


We compute the best-response correspondences of the player
populations. Start with population 1. The pure strategy A is a
best reply if and only if

π1
1 > π1

2

π1
1 > π1

3

}
⇔ q1 + q2 − q3 − q4 > −q1 − q3

q1 + q2 − q3 − q4 > −q1 + q2 − q3 + q4

The second condition is satisfied iff q1 > q4. Since −q1 + q2 −
q3 + q4 ≥ −q1 − q3, the second condition is more demanding
than the first. Hence, if it is satisfied the first one will also be
satisfied.
From the payoff matrix A one sees directly that B can never
dominate all other strategies, since it is weakly dominated by
C.
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C is in turn a pure best reply if and only if it satisfies the system
of inequalities

π1
3 > π1

1

π1
3 > π1

2

}
⇔ −q1 + q2 − q3 + q4 > q1 + q2 − q3 − q4

−q1 + q2 − q3 + q4 > −q1 − q3
The first condition states that q4 > q1 and the second condition
forces q2 + q4 > 0. If condition 1 is satisfied then in particular
q4 > 0, so that condition 2 is satisfied. Hence condition 1 is
stronger than condition 2.
Some probability distribution between A and C is a best re-
sponse exactly if q1 = q4, and any point in the mixed strategy
space ∆(S1) is a best response if q3 = 1. To summarize these
observations we define the correspondence BR1 : ∆(S2) →→
∆(S1) through37

BR1(q) =


{(1, 0, 0)} if q1 > q4
{(0, 0, 1)} if q4 > q1

{(α, β, 1− α− β), 0 ≤ α, β ≤ 1} if q3 = 1
{(α, 0, 1− α), 0 ≤ α ≤ 1} if q1 = q4 > 0

(9.21)
Now we turn to player population 2. Strategy [ac] is strictly
dominated by [bd], so can never be an optimal choice. Moreover,
[ad] and [bc] are weakly dominated by [bd]. The best response
correspondence for player population 2 is then

BR2(p) =

 {(0, 0, 0, 1)} if 0 < p1 < 1
{(0, δ, 0, 1− δ), 0 ≤ δ ≤ 1} if p1 = 0
{(0, 0, γ, 1− γ), 0 ≤ γ ≤ 1} if p1 = 1

(9.22)

A Nash equilibrium is a pair of population states (p∗, q∗) such
that p∗ ∈ BR1(q∗) and q∗ ∈ BR2(p∗). Combining the cor-
respondences (9.21) and (9.22), we see that the set of Nash
equilibria in this game is given by

NE = {[(1, 0, 0), (0, 0, 1, 0)]} ∪ E

whereE := {(p, q) ∈ ∆(S1)×∆(S2)|p3 = 1, q = (0, δ, 0, 1− δ), δ ∈ [0, 1]}.
The concept of subgame perfection leads to a drastic reduction
of the set of equilibrium points. Indeed, subgame perfection
rules out any Nash component, where the second pure strategy
in population 2 has some positive weight. The set of equilib-
rium population states that pass the subgame perfection test is
then

SPNE = {[(1, 0, 0), (0, 0, 1, 0)] , [(0, 0, 1), (0, 0, 0, 1)]}

37With the mixed strategy p=(1,0,0) we identify the pure strategy A of players
belonging to population 1.



EVOLUTIONARY DYNAMICS AND RATIONALITY 101

Even this set contains an equilibrium point that is not plausi-
ble in terms of rationality. The social state [(1, 0, 0), (0, 0, 1, 0)]
consists of a population state in the second player population in
which all agents choose action b at information set v1 and action
c at information set v2. However, c is strictly dominated by d
at information set v2! Only the fact that all agents in popula-
tion 1 choose A makes it possible that this strategy distribution
in population 2 can be optimal, since then the information set
v2 of population 2 is de facto never reached when the game is
played.

In a dynamic analysis we will want to see, to which equilib-
rium point evolutionary selection leads. It will be useful to have
some expressions by hand. The average payoffs are

π̄1(p, q) = pTAq = p1(q1 + q2 − q3 − q4)− p2(q1 + q3) + p3(−q1 + q2 − q3 + q4)

π̄2(p, q) = qTBp = q1(−p1 + p3) + q2(−p1 + p2 + 2p3) + q3(p1 + p3) + q4(p1 + p2 + 2p3)

Excess payoffs are defined as the difference between the payoff
that strategy h earns in population k minus the average payoff
obtained in this population. Formally,

π̂1(p, q) = Aq −

 1
1
1

 pTAq =

I3 −

 1
1
1

 pT
Aq

π̂2(p, q) =

I4 −


1
1
1
1

 qT
Bp

where Il is the l × l identity matrix.
We know that strategy B is weakly dominated in population 1
by a combination of A and C, and additionally π1

2 ≤ 0. There
exists some strategy distribution, such that the weakly domi-
nated strategy has non-negative excess payoff. Performing some
manipulations we can write

π̂1
2(p, q) = −p1(q1 + q2 − q3 − q4)− (1− p2)(q1 + q3)− p3(−q1 + q2 − q3 + q4)

= (q1 + q3)(p3 + p2 − 1)− p1(q1 + q2 − q3 − q4)− p3(q2 + q4)

= −p1(2q1 + q2 − q4)− p3(q2 + q4)

The second term on the right hand side is always non-positive.
To make this expression non-negative, we need that 2q1+q2 ≤ q4
and if the inequality is strict p1 ≥ − q2+q4

2q1+q2−q4p3. For a numerical
illustration suppose we have the data q1 = 0.05, q2 = 0.15, q4 =
0.3, then π̂1

2(p, q) = −p1(0.1 + 0.15 − 0.3) − p3(0.15 + 0.3) =
0.05p1 − 0.45p3 which is non-negative only if p1 ≥ 9p3. So p3 is
not allowed to exceed 1/9 to make this possible. However, this
numerical example demonstrates that even a weakly dominated
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strategies might be “good enough” to be played, even by rational
players.
For the two remaining strategies upon which individuals from
population 1 can decide, we get

π̂1
1 = (1− p1)(2q1 + q2 − q4)− (q2 + q4)p3

π̂1
3 = 2p1(q4 − q1) + p2(q2 + q4)

Now we turn to population 2. Payoffs in this population 2 are
the same as in Game 2, so we can copy the excess payoff vector,
which was given by

π̂2(p, q) =


−2p1(q3 + q4)− (1− p1)(q2 + q4)
−2p1(q3 + q4) + (1− p1)(q1 + q3)
2p1(q1 + q2)− (1− p1)(q2 + q4)
2p1(q1 + q2) + (1− p1)(q1 + q3)


9.3.2. Dynamic Analysis.
The replicator dynamics. We start with describing the evo-
lution in player population 2. The replicator dynamic in this
population is the same as in (9.5). The frequency of pure strat-
egy [ac] develops therefore after the rule

V 2
1 (p, q) ≡ q̇1 = q1π̂

2
1(p, q)

= q1[−2p1(q3 + q4)− (p2 + p3)(q2 + q4)]

This number is never strictly positive, and vanishes for q1 = 0 or
−2p1(q3 +q4) = (p2 +p3)(q2 +q4). Note that the number q2 +q4
is exactly the probability (frequency) with which we observe an
individual from population 2 choosing action d at information
set v2. Analogously is the number q3+q4 the probability that an
individual from population 2 chooses to play b at information set
v1. We can therefore write Pr(b) := q3 +q4 and Pr(d) := q2 +q4,
so that the differential equation boils down to the expression

q̇1 = q1[−2p1 Pr(b)− (p2 + p3) Pr(d)]

We can eliminate the frequencies p2, p3 by using the identity
p2 + p3 = 1− p1.

q̇1 = q1[p1(Pr(d)− 2 Pr(b))− Pr(d)] (9.23)

This vanishes for q1 = 0 or p1 = Pr(d)
Pr(d)−2Pr(b)

, whenever this ratio
exists.
Doing similar computations for pure strategy [ad] gives us the
differential equation

q̇2 = q2[−2p1(q3 + q4) + (q1 + q3)(p2 + p3)] (9.24)
= q2[−p1(2 Pr(b) + Pr(c)) + Pr(c)] where Pr(c) := q1 + q3
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which has fixed points at q2 = 0 or p1 = Pr(c)
2Pr(b)+Pr(c)

. We see
that the share of individuals using the strategy [ad] increases
if p1 is lower than this ratio. This is in accordance with our
computations of the excess payoff vector (as it must be) since
the ratio q1+q3

q1+3q3+2q4
= Pr(c)

2Pr(b)+Pr(c)
.

In the same spirit we can calculate the laws of motion for the
pure strategies [bc], [bd], which take the form

q̇3 = q3[2(q1 + q2)p1 − (p2 + p3)(q2 + q4)]

= q3[p1(2 Pr(a) + Pr(d))− Pr(d)] (9.25)
q̇4 = q4[2p1(q1 + q2) + (q1 + q3)(p2 + p3)]

= q4[p1(2 Pr(a)− Pr(c)) + Pr(c)] (9.26)

where Pr(a) := q1 + q2.

Observation 2. The frequencies q1 and q4 behave monotoni-
cally under the replicator dynamics. q1 is decreasing, while q4
increases over time.

Our goal is to see, whether we can discard the implausible
subgame perfect equilibrium [(1, 0, 0), (0, 0, 1, 0)] using evolu-
tionary arguments. Hence our exercise is to verify the following

Claim 1. The replicator dynamic is the only model that allows
the implausible subgame perfect equilibrium [(1, 0, 0), (0, 0, 1, 0)]
to survive, in a fairly restricitive environment. All other evolu-
tionary dynamics (BNN and pairwise difference) make individ-
uals in population 2 give the superior pure strategy [bd] at least
some weight.

Pick trajectories q3(t), q4(t), such that both frequency are al-
ways bounded away from 0, and compute

d ln(q3(t)/q4(t))

dt
=

q̇3(t)

q3(t)
− q̇4(t)

q4(t)

= p1(2 Pr(a) + Pr(d))− Pr(d)− p1(2 Pr(a)− Pr(c))− Pr(c)

= p1 − 1, since Pr(c) + Pr(d) = q1 + q2 + q3 + q4 = 1

For p1 < 1, the frequency ratio of pure strategies [bc] and [bd] is
strictly decreasing, which means that the growth rate of the fre-
quency with which pure strategy [bd] is used, lies always above
the growth rate of the pure strategy [bc]. The difference between
the two growth rates is a strictly increasing linear function of
the frequency p1, reaching its global minimum at p1 = 0. In
this case equation (9.25) shows that q3 is decreasing, whereas
we know from observation 2 that q4 is always increasing. The
gap between the two strategy frequencies is consequently widen-
ing up. If p1 = 1, both strategy frequencies grow at the same
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rate 2 Pr(a). For any other 0 < p1 < 1, q4 is always growing
faster than q3.
We can also compute that (certainly we choose q2 to be positive)

d ln(q2(t)/q4(t))

dt
= −2p1

which is also monotonically decreasing, unless p1 = 0. We
can make p1 arbitrary close to 1, and still q4 will grow faster
than q3. Consider solution trajectories of the replicator dy-
namics restricted to the face ∆([bc], [bd]) ⊂ ∆(S2). This face
is invariant under the replicator dynamic, since no currently
unused strategies are discovered. The laws of motion on this
face take the simple form q̇3 = q3q4(p1 − 1) = −q̇4. Hence,
q̇3/q̇4 = −1, and trajectories approach monotonically the vertex
of this face, where only [bd] is played by individuals of popu-
lation 2. This adaption mechanism can only be disrupted by
p1 = 1, or q3q4 = 0. In this case all trajectories on this face
are in a resting position. This illustrates nicely the meaning
of p1 = 1. If this degenerate population state occurs, only the
subgame Γv1 is visited on a game path. But on this subgame
the pure strategies [bc] and [bd] are identical, since both state
that action b is chosen there. As both are identical, an indi-
vidual following an imitative behavioral rule will not be able
to distinguish them “in nature”, so both are equally likely to
be chosen by agents. However, for any value of p1 ∈ (0, 1), we
cannot observe a tendency of population 2 to tend to the pop-
ulation state (0, 0, 1, 0). More the contrary is the case.
Let us now consider solution trajectories on the face ∆([ad], [bd]) ⊂
∆(S2). This face is also an invariant set under the replicator
dynamics, and the differential equations boil down to the simple
expressions q̇2 = −2p1q2q4 = −q̇4. Hence, again we can observe
a convergence to the vertex where only the pure strategy [bd]
is used by agents of population 2. This tendency breaks down
only if one of the three involved frequencies vanishes.
Since q1 is monotonically decreasing, by observation 2, the only
remaining interesting case is where trajectories are restricted
to the face ∆([ad], [bc], [bd]) = ∆(S2) \ {[ac]}. The differential
equation for strategy [bc] takes now the form q̇3 = q3(2p1q2 −
(q2 + q4)(1− p1)), which can be rearranged as q̇3 = q3(q2(3p1 −
1) − q4(1 − p1)). If both frequencies q2 and q3 are positive we
can calculate

q̇3
q3
− q̇2
q2

= (2p1 − p2 − p3)(q2 + q3 + q4) = 3p1 − 1

We can observe that the strategy frequency q3 grows faster than
q2 only if p1 > 1/3. For large values of p1, q3 dominates q2 in
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terms of growth rates, and consequently also in terms of pay-
offs. However, q4 is also present, which in turn dominates q3
and q2. On this face we get q̇4 = q4[2p1q2 + q3(1− p1)], and so
d ln(q3/q4)

dt
= −(1−p1). It follows immediately that q4 grows faster

than q3 and thus grows also faster than q2 for p1 > 1/3. We can
conclude after all these considerations that a necessary condi-
tion for observing a growth of q3 alone is that q4 is not present.
Therefore we turn our view to the face ∆([ad], [bc]). On this face
the dynamic reduces to the equations q̇2 = q2q3(1−3p1) = −q̇3,
where the directions of motions are clearly visible. For large val-
ues of p1 we indeed observe a monotone increase in the strategy
frequency q3, so that a population state (0, 0, 1, 0) seems to be
possible.

Now we focus on population 1. Of particular interest is the
evolution of the strategy frequency p1. Its differential equation
is given by

ṗ1 = p1π̂
1
1(p, q) = p1[(1− p1)(2q1 + q2 − q4)− p3(q2 + q4)] (9.27)

On the face ∆(S1)×∆([ad], [bc]) ⊂ ∆(S1)×∆(S2), this reduces
to

ṗ1 = p1(q2(1− p1)− p3q2) = p1q2(1− p1 − p3)

= p1q2p2

Hence, the dynamic does also depend on the frequency with
which pure strategy B is chosen. The differential equation is

ṗ2 = p2[−p1(2q1 + q2 − q4)− p3(q2 + q4)] (9.28)

which gives on the face ∆(S1)×∆([ad], [bc]) the dynamic ṗ2 =
−p2q2(p1 +p3) = p2(p2−1)q2. The frequency with which agents
employ strategy B in population 1 is decreasing, if only the
strategies [ad] and [bc] are observed in population 2. To see the
direction of motion of strategy C, we can use the invariance of
the state space under the replicator dynamic, so that ṗ3 = −ṗ1−
ṗ2 = p3q2p2 on the face ∆(S1) × ∆([ad], [bc]). It is interesting
to see that

ṗ3

p3

− ṗ1

p1

= 0

on ∆(S1)×∆([ad], [bc]). This means that the frequencies with
which C and A are used in population 1 grow at the same rate.
The product p2q2 describes the speed with which p1 is growing.
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By the product rule, we see
d

dt
(p2q2) = ṗ2q2 + p2q̇2

= −p2(q2)
2(p1 + p3) + p2q2q3(1− 3p1)

= p2q2 [q2(p2 − 1) + q3(1− 3p1)]

For large initial value of p1 (in particular for p1 > 1/3) this
product is consequently decreasing, implying that the growth
rates of p1 and p3 slow down over time.
To summarize, the dynamical system defined by the replicator
dynamic acting on the face ∆(S1)×∆([ad], [bc]) is given by

q̇2
q̇3
ṗ1

ṗ2

ṗ3

 =


q2q3(1− 3p1)
q2q3(3p1 − 1)

p1q2p2

−p2q2(p1 + p3)
p3p2q2


The Jacobian matrix of this system is

J =


q3(1− 3p1) q2(1− 3p1) −3q2q3 0 0
q3(3p1 − 1) q2(3p1 − 1) 3q2q3 0 0

p1p2 0 q2p2 p1q2 0
−p2(p1 + p3) 0 −p2q2 −q2(p1 + p3) −p2q2

p3p2 0 0 p3q2 p2q2


The first row gives us all derivatives with respect to q2, and so
on. Evaluation of J at the state [(1, 0, 0), (0, 0, 1, 0)], we obtain

J̃ =


−2 0 0 0 0
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


The linearized system reduces therefore to the planar system
q̇2 = −2q2 and q̇3 = 2q2. In particular observe that no motion
takes place in population 1. Let (q̃2(0), q̃3(0)) be initial values
on the face ∆([ad], [bc]), so that q̃2(0)+q̃3(0) = 1 does hold. The
general solution for the first equation is then q̃2(t) = q̃2(0)e

−2t.
Substituting this into the second equation and integrating gives
us

q̃3(t)− q3(0) = 2q̃2(0)

∫ t

0

e−2udu

= q̃2(0)− q̃2(0)e−2t

or equivalently, q̃3(t) = 1 − q̃2(0)e−2t. For t → ∞ we see that
q̃3(t) → 1 and q̃2(t) → 0. This demonstrates that the implau-
sible subgame perfect Nash equilibrium can survive under the
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replicator dynamics, but only if the pure strategy [bd] is not
present in the second player population. Since the replicator
dynamic is not innovative, this strategy will never be discov-
ered by any individual in population 2, and so q4 = 0 holds for
all times, although it would be in the interest of this population
to use [bd].

Observation 3. A population state q = (0, 0, 1, 0) is only pos-
sible when we restrict our attention to the face ∆([ad], [bc]). In
this case, convergence to the postulated population state is ob-
served, when p1 = 1 is chosen.

In the discussion above, we analyzed the game based on its
normal form representation. Following Cressman (2003), we can
also define dynamics restricted to the information sets of player
2. To do this, we have to find a set of probability distributions
on ∆(S2) such that the decisions made at information set v1

are formed independently of the action at information set v2.
Define the conditional probability that action a is chosen at
information set v1, given that c will be played at v2 as the
number Pr(a|c) = q1

q1+q3
. To make the probability that a is

observed at v1 independent of the choice at v2, we need that

Pr(a|c) = Pr(a|d) ⇔ q1
q1 + q3

=
q2

q2 + q4
⇔ q1q4 = q2q3

This condition on population states q ∈ ∆(S2) defines the
Wright manifold (Cressman, 2003), for player population 2. It
is defined via the set

W2 := {q ∈ int [∆(S2)] |q1q4 = q2q3} (9.29)

Claim 2. The Wright manifold of player 2 is an invariant set
under the replicator dynamics.

Proof:

d(q1q4)

dt
= q̇1q4 + q1q̇4

= q1q4(π
2
1 − π̄2) + q1q4(π

2
4 − π̄2)

= q1q4[2p1(q1 + q2 − q3 − q4) + (p2 + p3)(q1 + q3 − q2 − q4)]
d(q2q3)

dt
= q2q3[2p1(q1 + q2 − q3 − q4) + (p2 + p3)(q1 + q3 − q2 − q4)]

OnW2: q1q4 = q2q3, so that d(q1q4)
dt
− d(q2q3)

dt
= d

dt
(q1q4−q2q3) = 0.

q.e.d.
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Recall that Pr(c) := q1 + q3 is the (unconditional) probability
that action c is observed at information set v2. On this manifold
we can compute

Ṗr(c) = q̇1 + q̇3

= 2p1[q3(q1 + q2)− q1(q3 + q4)]− (q2 + q4)(p2 + p3)(q1 + q3)

On the Wright manifold, we have q1(q3 + q4) = (q1 + q2)q3, so
that the first term on the left-hand side vanishes. We see that

Ṗr(c) = −(q2 + q4)(p2 + p3)(q1 + q3) = −(1− p1) Pr(d) Pr(c) (9.30)

on W2. The dynamic of the frequency comes to a rest, if and
only if one of the terms p2 + p3,Pr(d),Pr(c) vanishes. Suppose
that p2+p3 = 0. Then information set v2 is never reached along
a game path, so individuals from population 2 never have actu-
ally to decide whether to play c or not. Evolutionary selection
cannot work for alternatives that do not occur in nature, so the
replicator dynamic leaves Pr(c) unaffected. If Pr(d) = 0, all
individuals choose c at v2, so that Pr(c) = 1. This probability
cannot grow further, hence the dynamic must come to a rest.
Pr(c) = 0 reflects the imitative and non-innovative behavior
modeled by the replicator dynamic.
By equation (9.30) we see that it becomes more likely that ac-
tion d is chosen if population 2 acts on its Wright manifold. By
invariance of this set, we know that, once the population is on
this manifold, it stays there forever. So in the long run we can
predict a steady increase in the usage frequency of action d at
information set v2.
At information set v1, the dynamic with which action a evolves
is defined as

Ṗr(a) = q̇1 + q̇2

= −2p1(q1 + q2)(q3 + q4)− (p2 + p3)[q1(q2 + q4) + q2(q1 + q3)]

= −2p1(q1 + q2)(q3 + q4) = −2p1 Pr(a) Pr(b)

where we used the definition of the Wright manifold. Restricted
on this set, the frequency with which we observe individuals
choosing action b at information set v1 increases over time. On
W2 the evolutionary pattern is consequently fairly simple to
reconstruct. The frequencies of action b and d are rising over
time, so that the strategy [bd] becomes prevalent in population
2. In population 1 we can deduce from equation (9.27) that p1 is
negatively influenced by Pr(d), and increasing in Pr(a). Since
the latter is falling over time, while the former increases, we
observe a decaying tendency of p1. Frequency p3 depends pos-
itively on Pr(d), thus gains support over time. Further we see
that p2 decays as Pr(d) rises. Hence, there is a clear tendency
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toward the subgame perfect equilibrium [(0, 0, 1), (0, 0, 0, 1)] on
the Wright manifold.

Observation 4. On the Wright manifold of population 2, W2,
populations coordinate upon the subgame perfect Nash equilib-
rium [(0, 0, 1), (0, 0, 0, 1)]. The implausible subgame perfect equi-
librium will not be reached on this set.

BNN dynamics. Again we start with population 2. Under
the BNN dynamics a strategy frequency grows only if it earns a
payoff above the population’s average. We know from our dis-
cussion of the excess payoff vector that π̂2

1(p, q) ≤ 0,∀(p, q) ∈
∆(S1)×∆(S2). The BNN dynamic is therefore especially sim-
ple,

q̇1 = −q1
4∑
j=1

[π̂2
j ]+ ≤ 0 (9.31)

The strictly dominated strategy loses support monotonically,
thus must get eliminated in the long run.
Further, we know about the excess payoff vector that strategy
[bd] weakly dominates all other pure strategies, implying that
π̂2

4(p, q) ≥ 0,∀(p, q) ∈ ∆(S1)×∆(S2). This in turn implies that
strategy frequency q4 is monotonically growing over time. The
differential equation describing the evolution of frequency q4 is
given by

q̇4 = [π̂2
4]+ − q4

4∑
j=1

[π̂2
j ]+ (9.32)

The following observation is a direct consequence of our discus-
sion in Game 2.

Observation 5. Once the strictly dominated strategy [ac] dis-
appears from population 2, its usage frequency remains 0 for-
ever.

This facilitates the analysis a little bit, when we restrict our-
selves to a face of ∆(S2) on which q1 = 0. 38 Consider trajecto-
ries that lie on the face ∆([bc], [bd]) initially, so that q3 + q4 = 1
holds. The excess payoff vector is on this face given by

π̂2(p, q) =


−2p1 − (1− p1)q4
q3 − p1(2 + q3)
−(1− p1)q4
(1− p1)q3


38Since the BNN dynamics is innovative, this is not a general result. Only in

our example this observation does hold, and makes life easier.
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so that strategy [bc] never earns a payoff above the average.
The dynamics in population 2 are then

q̇2 = [π̂2
2]+ − q2

{
[π̂2

2]+ + [π̂2
4]+
}

= (1− q2)[q3 − p1(2 + q3)]+ − q2[q3(1− p1)]+

q̇3 = [π̂2
3]+ − q3

{
[π̂2

2]+ + [π̂2
4]+
}

= [(p1 − 1)q4]+ − q3 {[q3 − p1(2 + q3)]+ + [q3(1− p1)]+}
= −q3 {[q3 − p1(2 + q3)]+ + [q3(1− p1)]+}

q̇4 = [π̂2
4]+ − q4

{
[π̂2

2]+ + [π̂2
4]+
}

= [q3(1− p1)]+(1− q4)− q4[q3 − p1(2 + q3)]+

We see that q3 is decreasing on this face. The evolution of q2 is
ambiguous, since it depends also on the behavior of p1. Thus, we
turn our view on population 1, while we restrict the dynamic to
act on ∆(S1)×∆([bc], [bd]). On this space, the vector of excess
payoffs becomes

π̂1(p, q) =

 −q4(1− p1 + p3)
q4(p1 − p3)
q4(2p1 + p2)


The first entry in this vector, π̂1

1, can never be positive. Using
these figures, we receive the system of equations

ṗ1 = −p1 {[q4(p1 − p3)]+ + [q4(2p1 + p2)]+}
ṗ2 = [q4(p1 − p3)]+(1− p2)− p2[q4(2p1 + p2)]+

ṗ3 = [q4(2p1 + p2)]+(1− p3)− p3[q4(p1 − p3)]+

Hence, p1 is strictly decreasing. Suppose we start from a region
in our restricted state space, where p1 is close to 1 initially. Then
q2 must be decreasing, since then −2p1 dominates (1 − p1)q3.
Only q4 will gain frequency in population 2, meanwhile q3 loses
support. As p1 gradually declines, it will reach at some point
of time the threshold value q3

2+q3
. Once it falls below this value,

q2 becomes attractive enough for individuals, and there might
be some inflow. For population 2 we have found two possible
paths. One leads to a full specialization on strategy [bd], while
the other leads us away from the face ∆([bc], [bd]). Anyway,
there is no chance to reach the implausible subgame perfect
equilibrium.
Turn now to the second interesting case where we consider the
restricted state space ∆(S1) ×∆([ad], [bc]). On this space, the
BNN dynamics turns to

q̇2 = [q3(1− 3p1)]+(1− q2)− q2 {[q2(3p1 − 1)]+ + [2p1q2 + (1− p1)q3]+}
q̇3 = [q2(3p1 − 1)]+(1− q3)− q3 {[q3(1− 3p1)]+ + [2p1q2 + (1− p1)q3]+}
q̇4 = 2p1q2 + (1− p1)q3
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The superior strategy [bd] will be discovered by agents, as one
can see by the positivity of q̇4. If p1 > 1/3, then there is some
chance that q3 is increasing, although there is certainly some
outflow where agents settle to [bd]. This follows from the law
of motion of q4 which is positively linked with the frequency q3.
Thus, even if we observe q3 rising, q4 will also be rising, making
perfect concentration on the pure strategy [bc] impossible. q2
will definitely fall in this case. Again it is not possible to observe
the implausible subgame perfect equilibrium. Ultimately, we
look at the face ∆([ad], [bc], [bd]). Consider the excess payoff
vector in population 2,

π̂2(p, q) =

 −2p1(q3 + q4) + (1− p1)q3
2p1q2 − (1− p1)(q2 + q3)

2p1q2 + q3(1− p1)


The signs of the entries are not directly visible, with exception of
strategy [bd], which always earns a payoff above the population’s
average. From this fact it is clear that there can never occur
a population state where all agents decide to play [bc], since
[bd] will always attract some agents. Differently put, even if
we would start from the degenerate situation where all agents
play [bc] initially, some of them will discover [bd] and recognize
that it is more profitable than their currently used strategy.
Thus, some will switch to [bd], leading to a growth of q4, and
therefore to a drift away from our initial state. This shows that
the implausible subgame perfect Nash equilibrium cannot be a
stable population state under the BNN dynamic, as there will
always be a tendency that pushes population 2 to another state
where strategy [bd] has some positive support.

Observation 6. The BNN dynamic always makes agents in
population 2 to coordinate upon a state where the superior strat-
egy [bd] receives some positive weight in the composition of the
population.

The reason for this difference to the replicator dynamic is
obvious the innovative property of excess payoff dynamics. The
replicator dynamics allowed strategy [bc] to grow in frequency
only in the case where [bd] is not used. By face invariance,
[bd] will stay unused forever, and in this case p1 is equally well
performing as p3. The more support p1 has the more attrac-
tive becomes strategy [bc], making it possible that the point
[(1, 0, 0), (0, 0, 1, 0)] is reached. As soon as some agents would
use [bd], some imitating individuals would learn that this is in-
deed an exceptionally good choice, and therefore copy it. Only
the fact that such [bd] players are (and always will be) absent
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from the player population 2 allows [bc] to grow.

Pairwise difference dynamic. Since the payoffs in popula-
tion 2 are the same as in Game 2, we can adopt the differential
equations that describe the pairwise difference dynamic from
this example. We know that the pairwise difference dynamic is
an interpolation between the replicator dynamic and the BNN
dynamic. In particular it is an innovative dynamic, so we would
be surprised if the results differ much from the BNN dynamic.
The first similarity between the BNN dynamic and the pairwise
difference dynamic is that for both models observation 5 is valid.
Hence, we can set q1 = 0. As we have done in the study of the
first two dynamics, we look at the evolutionary pattern induced
by the pairwise difference dynamic, by analyzing the interest-
ing faces of the tetrahedron ∆(S2) separately. Start with the
set ∆([bc], [bd]), on which q3 + q4 = 1. The pairwise difference
dynamic describes then the motions in population 2 as q̇2

q̇3
q̇4


|p1<1/3

=

 q3(1− 3p1)
2q3(2p1 − 1)
q3(1− p1)

 ,
 q̇2
q̇3
q̇4


|p1≥1/3

=

 0
q3(p1 − 1)
q3(1− p1)


The frequency with which we observe pure strategy [ad] is in-
creasing if we start from a region where p1 < 1/3. If we are
in the other region, then there is neither inflow nor outflow
of [ad]. This is intuitive, since when p1 is large, [bd] and [bc]
become more attractive than [ad]. However, if p1 is a small
number, [ad] is nearly as profitable as [bd], so some individuals
might get attracted to it.
q3 is in both cases monotonically decreasing, while q4 always
rises. Thus, we can identify two possible evolutionary patterns,
which depend on the frequency p1. If p1 < 1/3, then the state
of population 2 exits the face ∆([bc], [bd]) and turns to an sub-
simplex on which [ad] has some positive weight. The second
possibility arises when p1 ≥ 1/3. Then the solution trajectory
will remain on the face ∆([bc], [bd]) forever, and approach the
vertex where only pure strategy [bd] is played by agents in pop-
ulation 2.
Consider now the face ∆([ad], [bc]), so that q2 + q3 = 1. The
dynamics on this face becomes q̇2

q̇3
q̇4


|p1<1/3

=

 q3 − p1(2 + q3)
2q3(2p1 − 1)

2p1q2 + q3(1− p1)

 ,
 q̇2
q̇3
q̇4


|p1≥1/3

=

 −q2(5p1 − 1)
p1(2q2 + 1)− 1

2p1q2 + q3(1− p1)


If p1 < 1/3, then q̇2 > 0 if and only if p1 <

q3
2+q3

≤ 1/3,∀q3 ∈
[0, 1]. Otherwise, that is for p1 ∈ [ q3

2+q3
, 1/3], q2 is decreasing in
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this region. q3 is decreasing whereas q4 is increasing.
If p1 ≥ 1/3, then q2 is decaying, since 5p1 > 1 in this region.
q̇3 ≥ 0 only if p1 ≥ 1

2q2+1
≥ 1/3. For p1 ∈ [1/3, 1

2q2+1
] q3 is de-

creasing. q4 displays again a tendency to gain support over time.

The remaining interesting case is the behavior of trajectories
restricted to the face ∆([ad], [bc], [bd]), so that q2 + q3 + q4 = 1.
On this set, the pairwise difference dynamic is given by q̇2

q̇3
q̇4


|p1<1/3

=

 q3(1− 3p1)− 2p1q2
2q3(2p1 − 1)

2p1q2 + q3(1− p1)

 ,
 q̇2
q̇3
q̇4


|p1≥1/3

=

 −q2(5p1 − 1)
p1(3q2 + q3)− (q2 + q3)

2p1q2 + q3(1− p1)


If p1 < 1/3, then q̇2 > 0, if for q2, q3 > 0, p1 < q3

2q2+3q3
≤

1/3. In case of q3 = 0, then the frequency of pure strategy
[ad] is clearly falling. [bc] loses support monotonically, as p1 is
restricted to lie below 1/3. [bd] will attract individuals from
population 2, leading to a growing share of individuals who
employ this strategy.
If p1 ≥ 1/3, the share of individuals who adopt pure strategy
[ad] is monotonically decreasing, and q4 keeps its increasing
tendency. q̇3 > 0 if p1 > q2+q3

3q2+q3
(certainly we assume that

q2 + q3 6= 0).

Observation 7. The pure strategy [bd] is always gaining sup-
port under the pairwise difference dynamic. Even though q3
might increase on some faces of the tetrahedron ∆(S2), we can-
not observe a tendency such that the state of player population
2 converges to the vertex (0, 0, 1, 0).

We are now going to look at the pairwise difference dynamic
for population 1. Of particular interest is clearly the evolution
of the frequency p1. We compute

π1
2 − π1

1 = −q1 − q3 − q1 − q2 + q3 + q4 = −2q1 − q2 + q4 = (q4 − q1)− (q1 + q2)

π1
3 − π1

1 = −q1 + q2 − q3 + q4 − q1 − q2 + q3 + q4 = 2(q4 − q1)
If q1 ≥ q4, we see that π1

3 − π1
1 ≤ 0 and π1

2 − π1
1 ≤ 0, so that the

pairwise difference dynamic boils down to

ṗ1 = p2(2q1 + q2 − q4) + 2p3(q1 − q4)
However, we know hat q1 is strictly decreasing as it represents
the frequency with which a strictly dominated strategy is played
in population 2. On the other hand q4 is strictly increasing.
Therefore we will not expect that the above law of motion will
hold for a long time. Even if q4 > q1, there might be some
inflow to strategy A. This is the case when q4 < 2q1 + q2.
On the face ∆(S1)×∆([bc], [bd]), the dynamic reduces to ṗ1 =



114 MATHIAS STAUDIGL

−3p1q4 ≤ 0. The rate with which the frequency p1 decays
(hence 2q4) is accelerating, as q4 grows monotonically over time.
At some point of time p1 < 1/3 must occur. From our dis-
cussion of the dynamics is population 2, we know that in this
case q2 becomes some positive number, and we exit the face
∆(S1) × ∆([bc], [bd]). Therefore we consider trajectories re-
stricted to the space ∆(S1)×∆([ad], [bc]). On this space π1

1 =
π1

3, and π1
1 − π1

2 = q2. The pairwise difference dynamic tells
us that ṗ1 = p2q2 ≥ 0. Assume we have given data such that
p1 < 1/3 holds initially. Then there is some chance that q2 in-
creases initially, leading to a fast increase of p1. Even if q2 is not
growing, p1 rises, but at decreasing pace. Eventually p1 ≥ 1/3,
where the dynamic in population 2 is fairly simple. q2, q3 fall
over time, and we move in direction to the vertex where all mass
is concentrated on pure strategy [bd].
For strategy C in population 1, we calculate π1

3 − π1
2 = q2 + q4.

On the face ∆(S1) × ∆([ac], [bc]) p3 stays at a constant level.
As soon as q2 or q4 have some weight in population 2, there will
be some inflow, namely individuals that switch from strategy
B to C. If q4 > q1, what has to be true at some point in time,
then there will additionally be some inflow coming from strat-
egy A. Thus the only chance we have to observe coordination
on the implausible subgame perfect Nash equilibrium is on the
restricted state space ∆(S1)×∆([ad], [bc]). But we know that q4
is growing over time, so even if p1 is rising, there is no tendency
in population 2, to specialize on [bc].

Observation 8. The pairwise difference dynamic excludes the
implausible subgame perfect Nash equilibrium [(1, 0, 0), (0, 0, 1, 0)].
As soon as the superior strategy [bd] is discovered in population
2 (and this will happen with certainty), p3 starts to grow. Hence,
there is a clear tendency toward the “intelligent” subgame perfect
Nash equilibrium [(0, 0, 1)(0, 0, 0, 1)].
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Part 5. Appendix

10. Appendix A

The goal of this Appendix is to demonstrate that the Nash
equilibrium in the two population “Matching pennies” game is
asymptotically stable under the BNN dynamic, as was claimed
in Section 8.2.1, Example 8. First, we start writing the system
of differential equations in matrix notation. For population 1
this is

ṗ = σ1(π̂1(p))− p1Tσ1(π̂1(p)) (10.1)

As a second step we will create an appropriate Lyapunov func-
tions, where the outlines for a single population game is given in
Sandholm (2007a). The behavioral rule proposed for the BNN
dynamic will play a fundamental role in this exercise. It was
described via the Lipschitz continuous function

fkij(π
k, p, q) = σkj (π̂

k
j (p, q)), k ∈ {1, 2}

where the monotonicity assumption sgnσkj (π̂
k
j (p, q)) = sgn[π̂kj (p, q)]+

is a defining characteristic, so that its image is contained in R+.
We will further require that the left-hand derivative does exist,
and is positive, hence d

dv+
σkj (v) > 0. We claim that the contin-

uous function

λk(d) :=
2∑
j=1

∫ d

0

σkj (v)dv

satisfies ∇λk(π̂k) = σk(π̂k) for both populations k ∈ {1, 2}. To
see this, we integrate∫ πk

j

0

σkj (v)dv =

∫ πk
j

0

[
v − π̄k

]
+
dv

=

∫ πk
j

π̄k

[
v − π̄k

]
dv, whenever πkj ≥ π̄k

= 1/2(πkj )
2 − π̄kπkj + 1/2(π̄k)2

= 1/2
(
πk − π̄k

)2
, whenever πkj ≥ π̄k

= 1/2
[
πk − π̄k

]2
+

Define the additive separable function

Λ(p, q) : = λ1(p, q) + λ2(p, q) (10.2)

= 1/2
2∑
i=1

[
π1
i (q)− π̄1(p, q)

]2
+

+ 1/2
2∑
i=1

[
π2
i (p)− π̄2(p, q)

]2
+
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Its gradient is the 4 dimensional column vector ∇Λ(p, q) =[
σ1(π̂1(p, q))
σ2(π̂2(p, q))

]
. This map will serve as our Lyapunov func-

tion. First of all, it is clearly visible, that the function assumes
its minimum vale 0 only at the Nash equilibrium, Λ(p, q) =
0⇔ (p, q) = (p∗, q∗). We will now see that this function varies
monotonically for all solutions of the BNN dynamic.

Suppose that the 4 dimensional column vector
[
p(t)
q(t)

]
is

an interior solution trajectory of the BNN dynamic in the two
populations Matching pennies game. Taking time derivatives
of (10.2), we see

d

dt
Λ(p(t), q(t)) = ∇Λ(p(t), q(t))T

[
ṗ(t)
q̇(t)

]
, by the chain rule

=

([
Dpπ̂

1(p, q) Dqπ̂
1(p, q)

Dpπ̂
2(p, q) Dqπ̂

2(p, q)

]T [
σ1(π̂1(p, q))
σ2(π̂2(p, q))

])T [
ṗ(t)
q̇(t)

]
=

[
σ1(π̂1(p, q)), σ2(π̂2(p, q))

]T [ Dpπ̂
1(p, q) DqDπ̂

1(p, q)
Dpπ̂

2(p, q) DqDπ̂
2(p, q)

] [
ṗ(t)
q̇(t)

]

where

Dsπ̂
k(p, q) =

[
∂π̂k

1

∂s1

∂π̂k
1

∂s2
∂π̂k

2

∂s1

∂π̂k
2

∂s2

]
s = (s1, s2)

T ∈ {p, q} , k ∈ {1, 2}

is the Jacobian Matrix of population k’s excess payoff function.
We calculate this matrix in 2 separate steps for population 1.
The same computations are then also valid for population 2,
where only sub-and superscripts have to be adjusted. We denote

the vector
[

1
1

]
as 1.

(1)

Dpπ̂
1 = Dp

[
π1 − 1π̄1

]
= Dp

[
π1 − 1pTπ1

]
=

[
∂π1

1

∂p1
− π1

1 − p1
∂π1

∂p1
− p2

∂π1

∂p2
,

∂π1
1

∂p2
− π1

2 − p1
∂π1

∂p1
− p2

∂π1

∂p2
∂π1

2

∂p1
− π1

1 − p1
∂π1

∂p1
− p2

∂π1

∂p2
,

∂π1
2

∂p2
− π1

2 − p1
∂π1

∂p1
− p2

∂π1

∂p2

]
= Dpπ

1 − 1
(
π1
)T − 1pTDpπ

1
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(2)

Dqπ̂
1 = Dq

[
π1 − 1π̄1

]
=

[
∂π1

1

∂q1
− p1

∂π1

∂q1
− p2

∂π1

∂q2
,

∂π1
1

∂q2
− p1

∂π1

∂q1
− p2

∂π1

∂q2
∂π1

2

∂q1
− p1

∂π1

∂q1
− p2

∂π1

∂q2
,

∂π1
2

∂q2
− p1

∂π1

∂q1
− p2

∂π1

∂q2

]
= Dqπ

1 − 1pTDqπ
1

We are then able to write the derivative matrix in an elegant
way,

Dπ̂(p, q) =

[
Dpπ̂

1(p, q) DqDπ̂
1(p, q)

Dpπ̂
2(p, q) DqDπ̂

2(p, q)

]
= Dπ(p, q)−

[
1 (π1(q)

T
0

0 1 (π2(p)
T

]
−
[

1pTDpπ
1, 1pTDqπ

1

1qTDpπ
2, 1qTDqπ

2

]

= Dπ(p, q)−


1 0
1 0
0 1
0 1


{[

(π1(q))
T

0T

0T (π2(p))
T

]
+

[
pT 0T

0T qT

]
Dπ(p, q)

}

where 0 =

[
0 0
0 0

]
. Substituting this expression into the time

derivative of the Lyapunov function (10.2), shows
d
dt

Λ(p(t), q(t)) =

= [σ1(π̂1), σ2(π̂2)]
T
Dπ(p, q)

[
ṗ(t)
q̇(t)

]

− [σ1(π̂1), σ2(π̂2)]
T


1 0
1 0
0 1
0 1

[ pT 0T

0T qT

]
Dπ(p, q)

[
ṗ(t)
q̇(t)

]

− [σ1(π̂1), σ2(π̂2)]
T


1 0
1 0
0 1
0 1


[

(π1(q))
T

0T

0T (π2(p))
T

] [
ṗ(t)
q̇(t)

]

=

[σ1(π̂1), σ2(π̂2)]
T − [σ1(π̂1), σ2(π̂2)]

T


1 0
1 0
0 1
0 1

[ pT 0T

0T qT

]Dπ(p, q)

[
ṗ(t)
q̇(t)

]

− [σ1(π̂1), σ2(π̂2)]
T


1 0
1 0
0 1
0 1


[

(π1(q))
T

0T

0T (π2(p))
T

] [
ṗ(t)
q̇(t)

]

The first term is equivalent to the transpose of the BNN dy-
namic (10.1) in both populations, written in one vector. Hence,
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the time derivative reduces to the expression

d

dt
Λ(p(t), q(t)) = [ṗ(t), q̇(t)]T Dπ(p, q)

[
ṗ(t)
q̇(t)

]

−
[
σ1(π̂1), σ2(π̂2)

]T


1 0
1 0
0 1
0 1


[

(π1(q))
T

0T

0T (π2(p))
T

] [
ṗ(t)
q̇(t)

]

= h1(p, q) + h2(p, q)

First note, that a property of any excess payoff dynamic is that
the vector of payoffs and the vector field forms an acute angle,
so that the second term h2 ≤ 0, with equality only at the Nash
equilibrium. This was shown in Corollary 2 of Section 8. To
determine the sign of the first term, we exploit the linearity
of the payoff function in this game. It is easily seen that the

derivative matrix Dπ(p, q) is of the form
[

0 A
−A 0

]
, where

A =

[
−1 1
1 −1

]
is the payoff matrix of the matching pennies

game for player population 1. The quadratic form h1 is then
easily calculated, as

[ṗ(t), q̇(t)]T A

[
ṗ(t)
q̇(t)

]
−
[

˙p(t), q̇(t)
]T
A

[
ṗ(t)
q̇(t)

]
= 0

This establishes that the time derivative is negative along inte-
rior solution trajectories, and by definition 7 in Section 6, the
Nash equilibrium is globally asymptotically stable under the
BNN dynamic.39

Our computation demonstrates an important and general tool
to determine the stability of rest points of the BNN dynamics
(and thus of Nash equilibria). For global aysmptotic stability of

the equilibrium point we need that [ṗ(t), q̇(t)]T Dπ(p, q)

[
ṗ(t)
q̇(t)

]
≤

0. For linear games the derivative matrix included in this prod-
uct boils down to the square block matrix, where the blocks are
either matrices with zeros as elements, or the payoff matrices
of a population engaged in the conflict. Thus, stability classi-
fication coincides with determining the definiteness of a square
block matrix.

39In definition 7 only asymptotic stability is defined. A rest point is globally
asymptotically stable if the open neighborhood U(p∗) stated there coincides with
the state space Θ.
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11. Appendix B

Our task is here to prove the asymptotic stability of the
unique Nash equilibrium in the two-population “Matching Pen-
nies” game under the pairwise difference dynamic, as was claimed
in Section 8.3.1 example 10. The conditional switching rates
that generated the pairwise difference dynamic was proposed
as

fkij(π
k(p), p) =

[
πkj (p)− πki (p)

]
+

For an arbitrary population k ∈ {1, 2 . . . , N}, the behavioral
rule can be summarized in the matrix

F k(πk(p), p) =


[
πk1(p)− πk1(p)

]
+
,
[
πk2(p)− πk1(p)

]
+
, . . . ,

[
πknk

(p)− πk1(p)
]
+

... . . . . . . ...[
πk1(p)− πknk

(p)
]
+
,
[
πk2(p)− πknk

(p)
]
+
, . . . ,

[
πknk

(p)− πknk
(p)
]
+


All entries in the main diagonal of this matrix are certainly
equal to zero for all possible social states. The switching rates
in population k from a pure strategy eki

∈ Sk to some pure
strategy ekj

does therefore only depend on the potential revis-
ing strategy and is independent of the incumbent one. Hence-
forth, we can write the behavioral rule in terms of a contin-
uous function σk(i)j : R → R+, where σk(i)j(π

k
j (p) − πki (p)) :=[

πkj (p)− πki (p)
]
+
. Furthermore, the left side derivative of this

function exists, so d
dv+

σk(i)j > 0.40

The pairwise comparison dynamic in population k = 1, 2, was
already introduced in matrix notation, in equation (8.16). For
two populations simultaneously, we can write

V (p, q) =

[
(F 1)

T
0T

0 (F 2)
T

] [
p
q

]
−
[

diag[p] 0
0T diag[q]

] [
F 1 0
0T F 2

]
1

(11.1)

where 0 =

[
0 0
0 0

]
,41 02 =

[
0
0

]
, 1 =


1
1
1
1

, diag[p] =

[
p1 0
0 p2

]
, and a similar representation is diag[q].

40We keep the index (i) in the description of the function, to remind us in which
column of the behavioral rule we are.

41The transposition of this matrix in formula 11.1 is redundant here. However
we keep it to emphasize that the two distinct populations need not have the same
number of pure strategies. In general, were population 1 has n1, and population
n2 pure strategies, the matrix 0 consists of n1 rows and n2 columns.
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Now, introduce the function

xk(i)j(v) :=

∫ v

0

σk(i)j(s)ds i, j, k ∈ {1, 2}

Per definition it is

d

dv+
xk(i)j(v)

∣∣∣v=πk
j−πk

i
= σk(i)j(π

k
j − πki ) i, j, k ∈ {1, 2}

For population k = 1, 2 we can define the matrix

Xk :=

[
xk(1)1(v) xk(1)2(v)

xk(2)1(v) xk(2)2(v)

]

By construction, the entries in the main diagonal are always
equal to zero. We will show that the continuously differentiable
function

χ(p, q) = [p, q]T
[
X1 0
0 X2

]
1

=
2∑
i=1

2∑
j=1

pix
1
(i)j(π

1
j (q)− π1

i (q)) +
2∑
i=1

2∑
j=1

qix
2
(i)j(π

2
j (p)− π2

i (p))

is a Lyapunov function for the pairwise difference dynamic.
First of all note, that χ : int(Θ) → R+, with minimum value
χ(p, q) = 0, which is reached only when X1 = X2 = 0. By
construction of these matrices, this can be achieved only at the
Nash equilibrium. We are going to show now that the function
is decreasing along interior solution curves of the pairwise dif-
ference dynamic, which establishes the asymptotic stability of
the Nash equilibrium of Matching pennies. Let [p(t), q(t)]T be
such a solution in the interior of the space of social states Θ,
and take the time derivative of our candidate function,

d

dt
χ(p(t), q(t)) = ∇χ(p(t), q(t))T

[
ṗ(t)
q̇(t)

]
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Calculating the gradient vector ∇χ is a fairly simple exercise,
where only the chain rule of Calculus is used heavily.

∂χ(p, q)

∂p1

=
2∑
j=1

x1
(1)j +

2∑
i=1

2∑
j=1

qiσ
2
(i)j(π

2
j (p)− π2

i (p))(
∂π2

j

∂p1

− ∂π2
i

∂p1

)

=
2∑
j=1

x1
(1)j + q1

[
π2

2(p)− π2
1(p)

]
+

(
∂π2

2

∂p1

− ∂π2
1

∂p1

)

+ q2
[
π2

1(p)− π2
2(p)

]
+

(
∂π2

1

∂p1

− ∂π2
2

∂p1

)

=
2∑
j=1

x1
(1)j + (q2

[
π2

1(p)− π2
2(p)

]
+
− q1

[
π2

2(p)− π2
1(p)

]
+
)
∂π2

1

∂p1

+ (q1
[
π2

2(p)− π2
1(p)

]
+
− q2

[
π2

1(p)− π2
2(p)

]
+
)
∂π2

2

∂p1

=
2∑
j=1

x1
(1)j(π

1
j (q)− π1

1(q)) + q̇1
∂π2

1

∂p1

+ q̇2
∂π2

2

∂p1

and analogously one computes

∂χ(p, q)

∂p2

=
2∑
j=1

x1
(2)j(π

1
j (q)− π1

2(q)) +
2∑
i=1

2∑
j=1

qiσ
2
(i)j(π

2
j (p)− π2

i (p))(
∂π2

j

∂p2

− ∂π2
i

∂p2

)

=
2∑
j=1

x1
(2)j(π

1
j (q)− π1

2(q)) + q̇1
∂π2

1

∂p2

+ q̇2
∂π2

2

∂p2

∂χ(p, q)

∂q1
=

2∑
j=1

x2
(1)j(π

2
j (p)− π2

1(p)) +
2∑
i=1

2∑
j=1

piσ
1
(i)j(π

1
j (q)− π1

i (q))(
∂π1

j

∂q1
− ∂π1

i

∂q1
)

=
2∑
j=1

x2
(1)j(π

2
j (p)− π2

1(p)) + ṗ1
∂π1

1

∂q1
+ ṗ2

∂π1
2

∂q1

∂χ(p, q)

∂q2
=

2∑
j=1

x2
(2)j(π

2
j (p)− π2

2(p)) + ṗ1
∂π1

1

∂q2
+ ṗ2

∂π1
2

∂q2

In matrix notation, this is summarized as

∇χ(p, q) =

[
X1 0
0 X2

]
1 +Dπ(p, q)T

[
ṗ(t)
q̇(t)

]
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where

Dπ(p, q) =

[
Dpπ

1(q) Dqπ
1(q)

Dpπ
2(p) Dqπ

2(p)

]
=

[
0 Dqπ

1(q)
Dpπ

2(p) 0

]

=


0 0

∂π1
1

∂q1
(q)

∂π1
1

∂q2
(q)

0 0
∂π1

2

∂q1
(q)

∂π1
2

∂q2
(q)

∂π2
1

∂p1
(p)

∂π2
1

∂p2
(p) 0 0

∂π2
2

∂p1
(p)

∂π2
2

∂p2
(p) 0 0


so that the time derivative of χ becomes

dχ(p(t), q(t))

dt
= 1T

[
(X1)

T
0

0 (X2)
T

] [
ṗ(t)
q̇(t)

]
+ [ṗ(t), q̇(t)]T Dπ(p, q)

[
ṗ(t)
q̇(t)

]
= r1(p, q) + r2(p, q)

We know that r2(p, q) = 0 for any zero sum game, as was shown
in Appendix A.42 To determine the sign of r1(p, q), note that
this term consists of two parts.

r1(p, q) = [1, 1]T
(
X1
)T
ṗ(t) + [1, 1]T

(
X2
)T
q̇(t)

The first summand is
[1, 1]T

(
X1
)T
ṗ(t) = ṗ1(t)

(
x1

(1)1 + x1
(1)2

)
+ ṗ2(t)

(
x1

(2)1 + x2
(2)2

)
=

(
p2

[
π1

1 − π1
2

]
+
− p1

[
π1

2 − π1
1

]
+

)
x1

(1)2

+
(
p1

[
π1

2 − π1
1

]
+
− p2

[
π1

1 − π1
2

]
+

)
x1

(2)1

There are 2 distinct cases we have to consider. Suppose that
π1

2 − π1
1 > 0. In this case x1

(2)1 = 0 by definition of this function
and so r1(p, q)−1T (X2)

T
q̇(t) = −p1 [π1

2 − π1
1]+ ≤ 0. The other

case occurs if π1
2 − π1

1 ≤ 0, in which x1
(1)2 = 0. Hence r1(p, q)−

1T (X2)
T
q̇(t) = −p2 [π1

1 − π1
2]+ ≤ 0. In both cases we obtain a

non-positive number. Clearly the same holds for population 2,
so that we can conclude

r1(p, q) ≤ 0 ∀(p, q) ∈ Θ

with equality only at the Nash equilibrium. The function χ is
indeed a (global) Lyapunov function, and the Nash equilibrium
of the two populations “Matching Pennies” game is (globally)
asymptotically stable under the pairwise difference dynamic.

42Note that r2(p, q) ≡ h1(p, q) from Appendix A.
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