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 I. ABSTRACT 
 
 

Living and working in space produces new challenges to astronauts, engineers 

and scientists due to several unique properties of this environment. For instance, 

weightlessness or microgravity is responsible for reduced exercise of skeletal 

muscles resulting in muscle atrophy as well as osteoporosis-like bone loss. Away 

from the Earth’s protective magnetic field, space radiation can damage nucleic acids, 

cells and tissues resulting in radiation sickness or cancer. The NASA FIT project – 

Fungal Pathogenesis, Immunity and Tumorigenesis Studies – involved a 12-day 

Space Shuttle experiment with Drosophila melanogaster flies. Additionally, ground 

based studies involved the exposure of flies to proton irradiation to investigate the 

genetic, cellular and behavioural effects.    

The aims of this project, as part of FIT, were to characterize adaptations of apoptosis 

and immune system functions following space flight as well as ground based proton 

radiation exposure. Furthermore, it was of interest if changes in immune system 

function can be linked to an altered level of apoptosis. RT-PCR gene expression 

studies of Minibrain, Morgue and Wengen, proteins involved in cell death and 

immune system functions, showed a trend towards increased apoptotic activity of 

space flown flies after a bacterial infection in comparison to infected ground control 

flies. Those trends were also observed by measurement of caspase enzyme 

activities in space flown animals. Proton irradiation increased fragmentation of DNA 

in Drosophila hemocytes, which was investigated with the TUNEL assay. Tumor 

suppressor p53 activation in response to proton treatment was shown with a 

Drosophila strain containing a p53 radiation response element in front of a GFP 

protein. Phagocytosis activity was investigated with the Alexa Fluor E.coli 

Phagocytosis Assay and the Clearance Assay, both showing that high proton 

irradiation exposure levels can be responsible for an elevated activity level in 

hemocytes.  
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II. INTRODUCTION 
 

2.1. Space Biology and Space Medicine 
 
2.1.1. Why send humans to space? 
 

Over the past centuries the infinity of space has inspired countless science 

fiction authors to write about humans travelling to other planets, searching for alien 

life and experiencing exciting adventures. However, scientists were also inspired and 

began to develop necessary technologies and skills to enable humans to leave Earth 

to explore the unknown. The achievements over the past 50 years have shown that 

we are capable of travelling to space, sending astronauts to the Moon, and exploring 

other planets.  

Today’s space technology is incorporated into our everyday life, e.g. television 

broadcasting, money transfers, the Global Positioning System, the internet, the 

telephone, the weather forecast and many other applications. Several space 

agencies around the world have focused their space exploration programmes 

towards new goals of sending humans back to the Moon, to Mars and beyond. 

Although it will take some time until the first human being will set foot on Mars, it is 

already possible for someone with sufficient capital to make a trip to space. 

 
2.1.2. Definition – Space Biology 
 

Space Biology research is a fundamental scientific research field studying the 

effects of the space environment on living organisms. These effects are caused by 

the lack of gravity, presence of space radiation and possible other undiscovered 

factors. Studying these effects expands our fundamental knowledge about life on 

Earth and in space, and enables the development of countermeasures to prepare 

astronauts for long duration space flights to the Moon and Mars. Current manned 

long duration missions last about six months onboard the International Space Station 

(ISS), a joint project of five space agencies; the National Aeronautics and Space 

Administration (NASA, USA), the Russian Federal Space Agency (Roskosmos, 

Russian Federation), the Japanese Aerospace Exploration Agency (JAXA, Japan), 

the Canadian Space Agency (CSA, Canada) and the European Space Agency (ESA, 

Europe). Future Moon and Mars missions will expose humans to the space 

environment for up to two years without the possibility to return them quickly to Earth 
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in case of technical or medical incidents. Therefore, fields like Space Biology and 

Space Medicine will have to pave the way for these next steps in space exploration 

to ensure the health of astronauts by conducting the necessary research and 

developing the respective countermeasures.  

 
2.1.3 History of Space Biology and Space Medicine 
 

Space Biology research began to expand as a field of practical interest shortly 

after the end of World War II. An early example of a space biological experiment was 

the exposure of Drosophila melanogaster fruit flies to the extreme upper limits, about 

60 km, of the atmosphere using a balloon. After parachuting back to Earth the flies 

were recovered alive and in apparent good health. In 1948, before the first manned 

space flight in 1961, the monkey, “Albert”, was sent to space. Meanwhile, soviet 

scientists launched nine dogs before the historic flight of the dog “Laika” in 1957. But 

even prior these experiments, which are considered to be the first in Space Biology, 

there has been an interest in the gravitational impact on organisms. Knight in 1806 

and Pfluger in 1883 reported about growing plants and oocytes under hypergravity 

conditions using a centrifuge. In the 1960s the first automated missions with 

biological payloads were launched carrying bacteria, plants, and animal cells to 

space. The breakthrough in systematic and extensive investigations happened in 

1983 with the first Space Shuttle – Spacelab mission. The integration of the Biorack 

into the Space Shuttle provided a wide range of laboratory facilities, for instance 2 

incubators, a -20°C freezer and a glove box (Moore et al., 1996).  

With the increased capability of conducting experiments in space, the question of 

good control samples arose. An Earth-bound control was not sufficient enough due 

to additional effects like high acceleration at the spacecraft launch and re-entry, 

strong vibration and acoustic variables. To further distinguish the impacts of all these 

effects, a centrifuge spinning at Earth gravity, 1g, was necessary to be included 

aboard a spacecraft. Due to the high costs and risk involved in space flight, other 

options to study or simulate the effects of low gravity were investigated. Successful 

methods for small experiments included the clinostat, the random positioning 

machine, the sounding rocket, and drop towers (Cogoli, 1993; Moore et al., 1996). To 

study small animals like rodents the hindlimb suspension is used to simulate space 

flight induced muscle atropy and bone loss (Morey-Holton and Globus, 2005). Bed-
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rest-study and parabolic flights with an aircraft are also conducted with humans to 

simulate the effects of weightlessness (Klaus, 2001; Schmitt and Angerer, 2001). 

 
2.1.4. Medical Issues on Long Duration Missions 
 

Bioastronautics, as a discipline, is the study of biological and medical effects of 

space flight on humans and development of countermeasures to overcome them 

(NASA Bioastronautic Roadmap). The NASA Bioastronautic Roadmap 

(http://bioastroroadmap.nasa.gov) provides information for making informed 

decisions about determining research priorities, setting exposure standards, and 

allocating resources. Since the beginning of the manned space flight era hundreds of 

experiments on astronauts, model organisms and cell cultures have been conducted 

to address the medical risks for astronauts on long-duration missions (Bikle et al., 

2003; Ohnishi and Ohnishi, 2004; Boonyaratanakornkit et al., 2005; Sonnenfeld, 

2003; Grindeland et al., 2005). 

 

Medical Issue Possible Cause 

Reduced muscle mass, strength, and 
endurance 

Weightlessness  
Exercise not sufficient as countermeasure 

Accelerated bone loss and fracture fisk Weightlessness  
Reduced muscle use 

Carcinogenesis Space radiation 

CNS damage Space radiation 

Immune dysfunction Combined space effects 
Negative effect on immune system cells 

Alterations in microbes and host interactions Infector properties change in space 

Renal stone formation Changes in urine chemistry 

 

Table 2.1. Examples for medical challenges arising during space flight 

(http://bioastroroadmap.nasa.gov) 

 

Studies on gene and protein expression unfolded some of the mechanisms behind 

microgravity-induced problems (Nichols et al., 2006). Space radiation, consisting of 

ionizing radiation in the form of charged high-energy particles, seems to pose the 

biggest threat for humans travelling in space. It is directly associated with the 

production of reactive oxygen species such as peroxides and hydroxyl radicals, 

which can attack cellular lipids, proteins and DNA (von Deutsch et al., 2005). Gene 
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expression studies in mice and human blood cells showed that exposure to radiation 

can be predicted by gene expression profiles (Dressman et al., 2007).  

Biological countermeasures, like dietary additives, have been used to reduce 

the levels of some biological consequences resulting from exposure to charged high-

energy particles (Kennedy and Todd, 2003). Ground-based simulation of space 

radiation components and space based measurement of the radiation environment 

are required to understand the associated hazard on organisms and are necessary 

to develop effective countermeasures (Schimmerling, 2003). Lessons learned from 

the International Space Station will contribute to the development of 

countermeasures including shielding and medication consisting of radical 

scavengers, antioxidant consumption, cytokines, and cell transplants (Todd, 2003).  

 
2.1.5. Drosophila melanogaster – a Model for Space Biology Research 
 

The small fruit fly Drosophila melanogaster is a well-characterized organism 

that is ideal for the study of molecular, cellular, developmental, and physiological 

biology (Beckingham et al., 2005). Its size, low maintenance requirements and short 

life-cycle are important characteristics representing the advantages of using 

Drosophila as a tool for space biological research. In 1983, two experiments with 

Drosophila melanogaster males’ onboard the Russian Salyut 6 orbital station showed 

an increased frequency of chromosome nondisjunction and recombination (Flatova 

et al., 1983). In 1995, the IML-2 spaceflight of female fruit flies resulted in a 

stimulation of oogenesis and a slightly delayed development compared to ground 

controls (Marco et al., 1995). Also, young male Drosophila flies showed acceleration 

in aging and an increase in locomotor activity. A decreased amount of mitochondrial 

16S ribosomal RNA was found in the microgravity exposed flies, as well as an 

increase in food uptake suggesting an increase in metabolism (Benguria et al., 

1996). Following another Space Shuttle flight with Drosophila, post mission analysis 

of sex-linked recessive lethal mutations was two to three times higher in flight than in 

ground control samples (Ikenaga et al., 1997). In a ground based experiment with 

Drosophila, Schneider S-1 cells grown in a clinostat, mitochondria abnormalities and 

clustering similar to space flown Jurkat cells were observed, indicating a microtubular 

dysfunction (Schatten et al., 2001).  

In 2006, The NASA FIT experiment – Fungal Pathogenesis, Immunity and 

Tumorigenesis studies – was conducted to study the effects of the space 
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environment on higher organisms, of particular interest was immune system function. 

During a 12-day space flight Drosophila melanogaster fruit flies were allowed to 

complete all or part of their development in space (Fahlen et al., 2006). Currently, 

post mission analysis is still under way, but some of the first results are presented as 

part of this thesis. Another part of the FIT experiment involved ground based studies 

of the effects of proton irradiation on fruit flies. Ionizing radiation poses a threat to 

cells, tissues and organs potentially resulting in DNA damage or cancer. Human 

space travel away from Earth’s protective magnetic field consequently results in a 

higher exposure of astronauts to ionizing space radiation. Results of these ground 

based studies with Drosophila are also part of this work. This approach will help to 

distinguish the multiple effects of the space environment on cells by exposure of 

model organisms to space radiation without the additional microgravity condition. 

 

 
2.2. Apoptosis 

 

 
Heterophagic programmed cell death or apoptosis is an important mechanism 

in development and homeostasis of tissues for the removal of either superfluous, 

infected, transformed, or damaged cells by activation of an intrinsic suicide program. 

Maintaining an intact cell membrane during apoptosis allows adjacent cells to engulf 

dying cells, while avoiding the release of its contents, which would trigger a local 

inflammatory reaction. Characteristic morphologies of apoptotic cells include 

fragmentation of the cell into membrane-bound apoptotic bodies, nuclear and 

cytoplasmic condensation, and endolytic cleavage of the DNA. During embryonic 

development and metamorphosis in Drosophila melanogaster, apoptosis occurs in 

many cells to remove or remodel larval tissues and organs. Molecular 

characterization of mutants with defects in cell death has led to the identification of a 

region in the Drosophila genome (75C), which contains the three main initiators for 

apoptosis in Drosophila: Reaper, Head involution defective (Hid), and Grim. 

Independent regulation of these genes allows fine control of developmental 

apoptosis and activation of the subsequent caspases (Bangs et al., 2000). The 

Reaper gene encodes a protein that contains a putative sequence, the death 

domain, which appears to be essential for conferring the cell death-promoting activity 

of the Reaper protein. Similar death domains have been identified in vertebrate 
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proteins including the Tumour-necrosis-factor-receptor (TNFR) family. The Hid 

protein does not contain a death domain, but co-expression of Hid and Reaper 

results in increased cell death compared to Reaper alone, suggesting that Hid acts in 

synergy with Reaper to regulate Drosophila cell death. Grim appears to have a 

similar role like Hid, since it also lacks a death domain (Vernooy et al., 2000). 

Apoptosis leads to the activation of a family of cysteine proteases known as 

caspases. The only family of proteins able to inhibit caspase activation or activity is 

IAP, inhibitors-of-apoptosis. IAPs contain a special motif known as a baculovirus-

IAP-repeat (BIR) as well as a RING finger domain. The Drosophila genome encodes 

four BIRPs, including Diap-1, Diap-2, Deterin, and Bruce (Jones et al., 2000). For 

example, Diap-1 is bound and regulated by the main apoptosis initiator proteins 

forming a complex, which inactivates its functions (Goyal et al., 2000). IAP function is 

essential for cell survival, and its deregulation is observed in many forms of human 

cancer (Hay, 2000). A fine balance in regulating apoptosis activators and inhibitors is 

required for proper development, metamorphosis, aging and homeostasis in 

Drosophila (Yin and Thummel, 2004). Comparison of the apoptotic mechanisms in 

the fruit fly Drosophila melanogaster, the worm Caenorhabditis elegans, and 

vertebrates shows structural similarities in caspases, IAPs, IAP antagonists and 

caspase activators. However, differences in their functions have also been shown, 

for instance, the regulation of the apoptosome by cytochrome c and the role of the 

Bcl-2 family (Kornbluth and White, 2005). 

 

2.2.1. The Caspase Family  

 
Caspase proteases play important roles in the regulation of apoptotic cell death. 

They are synthesized as inactive zymogens, known as pro-caspases, and activated 

in response to death stimuli. They transform and amplify these signals by cleaving 

and thereby activating effector caspases. Caspases that act as signal transducers 

(apical or upstream caspases) have long pro-domains containing specific sequence 

motifs, death-effector-domains (DEDs), or caspase-recruitment-domains (CARDs). 

Some caspases also become activated as a consequence of pro-domain-dependent 

homodimerization. Once activated, long pro-domain caspases cleave and activate 

short pro-domain caspases, known as downstream or executioner caspases, that 

rely on cleavage by other caspases for activation (Vernooy et al., 2000).  
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Drosophila encodes three long pro-domain caspases, Dredd, Dronc (Dorstyn et al., 

1999a), and Dream, as well as four caspases with short pro-domains, Dcp-1, Drice 

(Fraser et al., 1997), Decay (Dorstyn et al., 1999b), and Daydream. The initiator 

caspase Dronc cleaves and activates two short pro-domain caspases, Dcp-1 and 

Drice. Drice plays an important, non-redundant role as a cell death effector, whereas 

Dcp-1-null mutants show normally occurring cell death (Muro et al., 2006). In specific 

tissues the transcription of Dronc during programmed cell death is regulated by the 

hormone ecdysone (Kumar and Doumanis, 2000).  

The apoptosome refers to the adaptor protein complex that mediates the 

activation of an initiator caspase. In mammalian cells, Caspase-9, Caspase-8, and 

Caspase-2 rely on the Apaf-1-apoptosome, DISC, and PIDDosome, respectively, for 

activation. In Drosophila, activation of the Caspase-9 homolog Dronc requires 

assembly of an apoptosome comprised of the proteins Dark, Hac-1 and dApaf-1. The 

induced conformation model suggests that the activated conformation of a given 

initiator caspase is attained through direct interaction with the apoptosome or through 

homo-oligomerization facilitated by the apoptosome (Bao and Shi, 2007). 

Diap-1, Drosophila-inhibitor-of-apoptosis-protein-1 also referred to as Thread, a 

member of the inhibitor of apoptosis (IAP) family, is required to prevent excessive 

accumulation of the first continuously produced form of processed Dronc by 

ubiquitinating and thus, targeting it for proteasomal degradation. Pro-apoptotic 

signalling stimulates autoubiquitination of Diap-11 and frees Dronc to activate 

downstream caspases (Stafford, 2005; Olson et al., 2002). 

 

 
 

Figure 2.1. The Drosophila apoptosis pathway. Red proteins are pro-apoptotic and green 
are anti-apoptotic. Dashed lines represent less well-established interactions. (Stafford et 
al., 2005) 

 

Mitochondrial release of Cytochrome-c constitutes a pro-apoptotic output as 

part of the apoptosome complex. In mammals, a second protein, Apoptosis-inducing-

factor (AIF), is released from mitochondria, which translocates from the mitochondria 

into the nucleus upon receipt of a death signal and causes large-scale fragmentation 
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of the DNA. The Drosophila homologue of AIF is CG7263 (Vernooy et al., 2000). The 

Bcl-2 family of proteins represents a group of major cell death regulators, directly 

engaging caspases through the apoptosome complex. Drosophila encodes two clear 

Bcl-2 family members, which are known as Debcl, a pro-apoptotic factor, and Buffy 

(Colussi et al., 2000; Brachmann et al., 2000), which exhibits a weak anti-apoptotic 

function. After cell death initiation, degradation of DNA occurs by the Caspase-

activated-DNase, CAD (Inohara et al., 1998; Inohara et al., 1999; Yokoyama et al., 

2000). 

Caspases can also play important non-apoptotic roles, such as the 

differentiation of sensory organ precursors (Kuranaga et al., 2006), sperm 

individualization (Arama et al., 2003), border cell migration (Geisbrecht and Montell, 

2004), and the morphology of sensory and tracheal cells (Oshima et al., 2006). 

Recent investigations in Caenorhabditis elegans, Drosophila and mice suggest that 

caspases also function as regulatory molecules for immunity and cell-fate 

determination. In the developing imaginal discs, a large number of cells undergo 

apoptosis and proliferation to regulate the organ size. Caspase activation in dying 

cells might induce the secretion of Wg or Dpp towards neighboring cells to increase 

their proliferation (Kuranaga and Miura, 2007). 

 

 

 
Table 2.2. Apoptois involved proteins and the consequences of changing their gene 
expression (Twomey and McCarthy, 2005) 

 
 

2.2.2. Minibrain, Morgue, Wengen 
 

The three genes Minibrain, Morgue and Wengen are part of the apoptotic 

machinery in Drosophila. Microarray analysis by a colleague has indicated changes 
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in gene expression levels of space flown animals. Therefore, these three genes were 

further investigated in this study.  

Minibrain is the founding member of the Dual-specificity tyrosine-

phosphorylation-regulated kinases (DYRKs) family, which are involved in regulating 

key developmental and cellular processes such as neurogenesis (Fischbach and 

Heisenberg, 1984), cell proliferation, cytokinesis and cellular differentiation. Its 

human orthologue maps to the Down Syndrome critical region, belongs to the 

nuclear subclass and affects post-embryonic neurogenesis (Lochhead et al., 2003) 

According to Flybase, Minibrain is also involved in olfactory learning, circadian 

rhythm, visual behaviour (Tejedor et al., 1995), protein amino acid phosphorylation, 

and induction of apoptosis. 

Morgue serves as an enhancer of grim-reaper-induced apoptosis by regulating 

ubiquitiniation processes. It encodes an F box and an ubiquitin E2 conjugase domain 

that lacks the active site required for ubiquitin linkage. Morgue can target Inhibitor-of-

Apoptosis-Proteins (IAPs) for ubiquitination and proteasome-dependent turnover by 

acting either in an SCF ubiquitin E3 ligase complex, or as an ubiquitin E2 conjugase 

enzyme variant in conjunction with a catalytically active E2 conjugase (Wing et al., 

2002). 

Wengen, a member of the tumor necrosis factor (TNF) receptor family, is a type 

I membrane protein that can physically interact with dTraf2, an upstream activator of 

Dif and Relish. In mammals, the TNF family proteins play an important role in the 

regulation of cellular proliferation, differentiation and programmed cell death. Eiger is 

a type II membrane protein, which can be cleaved and released from the cell surface 

and bind to the receptor Wengen. Eiger and Wengen are expressed in distinctive 

patterns during embryogenesis and Eiger is also responsive to genotoxic stress. 

Overexpression of Eiger or Wengen causes apoptotic cell death (Kauppila et al., 

2003). 

 
2.2.3. p53 
 

Although the p53 tumor suppressor protein was identified nearly three decades 

ago and plays a pivotal role in human cancer, its complexity continues to surprise the 

research community. p53 derives from a multigene family that also includes p63 and 

p73 (Kaghad et al. 1997; Schmale and Bamberger 1997). All three proteins express 

an array of isoforms as a result of multiple promoter usage and alternative splicing 



17 

adding further complexity to their role in development, cancer, and aging (Zaika et al. 

2002; Mills, 2005; Bourdon et al. 2005). 

The mammalian p53 protein functions as a tumor suppressor by controlling cell cycle 

progression and cell survival in response to genotoxic stresses like DNA damage 

and hypoxia. Cell cycle arrest occurs through induction of p21, which prevents entry 

into S phase by inhibiting G1 cyclin-dependent kinase activity. However, p21 is not 

required for p53-dependent apoptosis, but rather protects against it in some cell 

types. Induction of apoptosis is critical for the tumor suppressor function of p53 and 

initiated by transcriptional activation of pro-apoptotic genes Fas, IGF-BP3, and Bax 

as well as a set of genes that may promote apoptosis through the formation of 

reactive oxygen species (Ollmann et al., 2000).  

Drosophila’s Dmp53 is required for radiation-induced apoptosis, but not for normal 

levels of cell death that occur in the absence of DNA-damaging agents. It activates 

transcription of pro-apoptotic targets including Hid, Reaper, Sickle, and the Tumor-

necrosis-factor-family member Eiger (Sogame et al., 2003; Brodsky et al., 2000; 

Brodsky et al., 2004). p53 and Chk2 also regulate DNA repair genes, including two 

components of the non-homologous end-joining repair pathway, Ku70 and Ku80. 

Additionally, Chk2- and p53-independent pathways can activate caspases and 

induce apoptosis in response to ionizing radiation (Wichmann et al., 2006).  

p63 and p73 encode proteins with transactivation, DNA-binding, and tetramerization 

domains, and some isoforms are capable of transactivating p53 target genes and 

inducing apoptosis.  The high level of sequence similarity between p63, p73 and p53 

proteins, particularly in the DNA binding domain, allows p63 and p73 to transactivate 

p53-responsive genes causing cell cycle arrest and apoptosis. However, they are not 

functionally entirely redundant and the primary role of each p53 family member 

illustrates that each protein has its own unique functions (Murray-Zmijewski et al., 

2006). 

As cells undergo apoptosis, they are recognized and removed from the body by 

phagocytosis. This final step in the cell-death program protects tissues from 

exposure to the toxic contents of dying cells and also serves to prevent further tissue 

damage by stimulating production of anti-inflammatory cytokines and chemokines. 

The clearance of apoptotic-cell corpses is important for normal development during 

embryogenesis, the maintenance of normal tissue integrity and function, and the 

resolution of inflammation (deCathelineau and Henson, 2003). 
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2.3. Immune system 

 

Because it lacks an adaptive immune response, Drosophila melanogaster 

serves as a great model for studying aspects of the innate immune system, which is 

divided into cellular and humoral defense mechanisms. The cellular defense 

responses are carried out by three classes of circulating immune surveillance cells, 

called hemocytes: plasmatocytes, crystal cells, and lamellocytes.  

Like humans, Drosophila protects itself against microbes and parasites via epithelial 

barriers, but once within the body cavity, microbes may be phagocytosed by 

plasmatocytes. Larger pathogens, such as eggs of parasitic wasps, are inactivated 

by encapsulation, carried out by lamellocytes (Govind and Nehm, 2004). Crystal cells 

participate in immune responses and wound healing through melanization. 

Plasmatocytes and crystal cells are found in all developmental stages, while 

lamellocytes have only been observed in larvae and increase during immune 

challenge (Milchanowski et al., 2004). Hemocyte-mediated defense responses are 

regulated by signaling factors and effector molecules that control cell adhesion and 

cytotoxicity (Lavine and Strand, 2002). The transcription factors GATA, Friend-of- 

GATA, and Runx family proteins, as well as the signal transduction pathways 

Toll/NF-κB, Serrate/Notch, and JAK/STAT, are required for specification and 

proliferation of blood cells during normal hematopoiesis, as well as during the 

hematopoietic proliferation (Evans et al. 2003; Meister et al., 2004).   

Humoral defense mechanisms include the production of antimicrobial peptides, 

the cascades that regulate coagulation and melanization of hemolymph, and the 

production of reactive oxygen and nitrogen intermediates. Potentially damaging 

endogenous and/or exogenous challenges sensed by specific receptors initiate 

signals via the Toll and/or the Imd signaling pathway. Toll does not act as a pattern 

recognition receptor in Drosophila, but instead its activation depends on the 

presence of the processed, active form of the growth-factor-like polypeptide Spätzle. 

The effector NF-κB transcription factor of the Imd pathway is Relish, which upon 

immune activation is cleaved by the Dredd Caspase (Elrod-Erickson et al., 2000). 

Sickle is also required for Relish activation, while Defense-repressor-1 acts as an 

inhibitor of the Dredd caspase. Transcription factors Dorsal, Dorsal-related immune 

factor Dif, and Relish activate genes that are involved in the production of 
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antimicrobial peptides, melanization, phagocytosis, and the cytoskeletal 

rearrangement required for appropriate responses (Kim and Kim, 2005). 

 
 

 
 
 

Figure 2.2. The Toll, Imd and JAK-STAT pathways controlling the expression of genes 
related to physiological responses to infection. Spätzle is processed by a serine protease 
cascade upon infection and binds to Toll. This activates an intracellular signalling cascade 
culminating in degradation of Cactus and nuclear translocation of the NF-κB-like 
transcription factors, Dorsal and Dif. The Imd pathway branches into the JNK and IKK 
signalling modules at dTAK1. Relish, phosphorylated by the IKK complex, is cleaved to a 
smaller, active form with transactivating activity in the nucleus. The JNK pathway leads to 
activation of dAP1 (Kim and Kim 2005). 
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Objectives  

The aim of this work was to extend fundamental space life sciences research in 

apoptosis and immune system adaptations in response to space flight conditions and 

ground based proton irradiation. Studying gene expression of apoptosis relevant 

proteins, activity measurement of caspases and measurement of phagocytotic 

activity were used to characterize the differences between space flown, proton 

irradiated and ground control Drosophila melanogaster flies. It was also of interest, if 

an altered level of apoptosis could be linked to a change in phagocytotic activity of 

hemocytes. 
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III. MATERIALS AND METHODS 
 

3.1. Common materials and fly lab methods 

 
3.1.1. Chemicals 

 
All chemicals were of analytical or molecular biology grade. 

 

3.1.2. Common Solutions 

 

PBS (10x) 

NaCl  81.8 g 

KCl  2.01 g 

KH2PO4  2.04 g 

K2HPO4   11.32 g 

pH  7.5 

dH2O to 1000 ml 

 

Tegosept 

10% Nipagin (Methyl-4-hydroxy benzoate)  

in 95% Ethanol. 

 

 
3.2. Common Drosophila laboratory methods 
 

3.2.1. Fly food 
 
Dextrose medium 

 

Torula yeast  64 g 

Cornmeal   122 g 

Agar   18.6 g 

Dextrose   258 g 

Tegosept   40 ml 

 

All solid components were mixed in 2000 ml distilled water and heated on a 

hotplate while being stirred with a magnetic stirring bar. After boiling for about 5 
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minutes, the mixture was allowed to cool to 60°C. 4 0 ml of the antifungal agent 

Tegosept were added to the food, mixed, and poured either into bottles or vials, 

which were closed with cotton or foam plugs. The dextrose food was used as 

standard food for most assays. 

 

Semi-defined or blue food  

 

Agar      2 g 

Brewer’s yeast     16 g 

Yeast extract     4 g  

Peptone      4 g  

Sucrose      6 g  

Glucose      12 g  

MgSO4      0.1 g  

CaCl2      0.1 g  

Propionic acid     1.2 ml 

10% p-hydroxybenzoate in 95% ethanol 2.0 ml  

Blue food dye     1.0 ml 

 

All solid components were mixed in 2000 ml distilled water and heated on a 

hotplate while being stirred with a magnetic stirring bar. After boiling for about five 

minutes, the mixture was allowed to cool to 60°C. 1 .2 ml of propionic acid, 2 ml of 

10% p-hydroxybenzoate and 1 ml of food dye were mixed with the food and 

poured either into bottles or vials, which were closed with cotton or foam plugs. 

Late 3rd instar larvae will be distinguished from earlier 3rd instar larvae by the 

absence of blue food dye in the gut.  Late 3rd instar larvae stop feeding and 

wander for about 12 hours before pupating and the food containing the visible 

blue dye is cleared from the gut after about 6 hours, thus making it possible to 

distinguish 3rd instar larvae that are close to pupation from earlier 3rd instar larvae.   

 
3.2.2. Keeping stocks 
 

Mucus-producing bacteria, mites and molds belong to the worst enemies of 

Drosophila stocks. To avoid contamination and overcrowded cultures only about 

20 or so flies per vial were transferred, or flipped, on a regular schedule into a 

new vial containing fresh food. Stocks, that were not in everyday use, were stored 
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at 18ºC on a 4-5-week generation cycle. Inspection of the flies on transfer was 

necessary to ensure that both sexes were present and that their phenotype was 

as expected. 

 
3.2.3 Egg collection 
 

Two to four day old flies were allowed to lay eggs on apple juice agar plates 

containing some yeast paste. Eggs were washed off the plates with distilled water 

into a filter, transferred onto a microscope glass slide and counted under the 

dissection microscope. The desired number of eggs was collected with a piece of 

filter paper and put onto food in a vial. 

 
3.2.4 Virgin collection 
 

Virgin collection was performed to collect females that had not mated with a 

male, which was important for experiments, where the animals need to be 

developed to specific stages at a certain time point like in the irradiation 

procedure. Although variations between stocks exist, the general rule is that 

females will not accept a male mate until they are 10-12 hours old (i.e., after 

eclosion from the pupa). Thus, flies were collected between 8 and 10 hr after 

eclosion, anesthetized, separated into males and females, and stored until 

needed. 

 
3.2.5 Sexing flies 
 

Sorting flies by their gender was needed for most assays. As well, the set up 

for crosses required the sexing of flies. Males and females were distinguished 

from each other by three main rules. 

Only males have a sex comb, a fringe of black bristles on the forelegs. The tip of 

the abdomen is elongate and somewhat pointed in females and more rounded in 

males. The abdomen of the female has seven segments, whereas that of the 

male has only five segments. 

 
3.2.6 Line expansion 
 

To increase the number of flies of a certain strain to conduct experiments, 

these animals were transferred into bottles. The egg-laying can be accelerated by 

adding some yeast paste to the food. Storing the flies at 25°C and flipping them 
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into new bottles every one or two days resulted in the fast expansion in the 

number of flies.  

 
3.3. Irradiation setup 
 

On three separate occasions fruit flies were irradiated at a synchrotron 

housed at the Loma Linda University Medical Center in California. This proton 

irradiation facility is primarily used to treat cancer patients, however, is also 

available for animal research, and was used in this study. Vials of flies were 

transported by car to and from Loma Linda. The facility was used for proton 

irradiation with an energy of 250 MeV, a proton rate of about 1 Gy/minute and 

proton dosages between 0 to 60 Gy, respectively. Embryos were collected and 

irradiated on apple juice plates, while larvae up to 3rd instar, grown in polystyrene 

vials, were exposed in a vertical position, parallel to the proton path. Wandering 

late 3rd instar larvae and pupae were irradiated in vials set in horizontal position. 

 

 
 

Figure 3.1. Proton irradiation setup at Loma Linda University Medical Center 

 

The following table presents the necessary timing for preparation prior to 

irradiation. This setup was used to expose animals at different developmental 

stages depending on the desired assay.  
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 hrs STAGE 
Wed 08 0 Eggs       
Thu 09 24 1sts Eggs      
Fri 10 48 2nds 1sts Eggs     
Sat 11 72 3rds 2nds 1sts Eggs    
Sun 12 96 3rds 3rds 2nds 1sts Eggs   

Mon 13 120 Pupae 3rds 3rds 2nds 1sts 
Eggs-
11pm  

Tue 14 *2-6am  Pupae Pupae 3rds 3rds 2nds 1sts 
Eggs-
11pm 

Wed 15  Pupae Pupae Pupae 3rds 3rds 2nds 1sts 
Thu 16  Pupae Pupae Pupae Pupae 3rds 3rds 2nds 
Fri 17  Pupae Pupae Pupae Pupae Pupae 3rds 3rds 
Sat 18  Adults Pupae Pupae Pupae Pupae Pupae 3rds 
Sun 20   Adults Pupae Pupae Pupae Pupae Pupae 
Mon 21    Adults Pupae Pupae Pupae Pupae 
Tue 22     Adults Pupae Pupae Pupae 
Wed 23      Adults Pupae Pupae 
Thu 24       Adults Pupae 
Fri 25        Adults 

AGE AT 
IRRADIATION 
11/14-4am 
10,20,30Gy 

 
0-24 hour-
old pupae 

wandering 
3rds, with 
food in the 
gut   

early 3rds, 
still 
crawling in 
food 

2nds 1sts Eggs  

AGE AT 
IRRADIATION 
11/15-4am 
40, 60Gy 

 
24-48 hour-
old pupae 

0-24 hour-
old pupae 

wandering 
3rds, with 
food in the 
gut 

early 3rds, 
still 
crawling in 
food 

2nds 1sts Eggs 

 
Table. 3.1. Setup for preparation, timing and developmental stage of animals used in 
irradiation experiments. 1st, 2nd, 3rd corresponds to the respective larval instar stage. 

 
 

3.4. Nucleic Acid Methods 
 

3.4.1. RNA isolation from adult flies 
 

RNA extraction from adults was performed following the Qiagen RNeasy 

Mini Handbook 06/2001. Three to four flies were put into an Eppendorf tube 

containing 350 µl RLT-buffer (see protocol, contains guanidine thiocyanate) and 

3.5 µl betamercaptoethanol. Using sterile, RNase-free pestles and a battery 

powered homogenizer the prepared flies were homogenized by grinding them up 

against the tube inside and the following solution spun done in microfuge at 

11000g for 3 minutes. The supernatant was transferred to a new tube, about 300 

µl 70 % ethanol was added, mixed and the solution transferred to a column tube, 

which was spun for 30 seconds at 8000g. The resulting elute was discarded and 

700 µl of RW1-buffer (see protocol, contains ethanol) were added to the column. 

Spinning was repeated and the column was transferred onto a new tube. To wash 

the column 500 µl RPE-buffer (see protocol) was added twice and removed by 

spinning at 8000g for 30 seconds. The last spinning step was performed to dry 
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the filter and the RNA is eluted out of the column into a fresh tube by adding 50ul 

of RNase-free water and spinning at 8000g for 1 minute. 

  
3.4.2. cDNA from RNA  
 
Master Mix cDNA Archive Kit:    1x 

 

10X Reverse transcription Buffer    10 µl 

25X dNTPs      4 µl 

10X random primers     10µl 

MultiScribe™ Reverse Transcriptase, 50 U/µL  5 µl 

Nuclease-free H2O      21µl 

Total Volume per Reaction    50 µl 

 

The High-Capacity cDNA Archive Kit from Applied Biosystems was used for 

reverse transcription of total extracted RNA to single-stranded cDNA, which was 

subsequently needed for Real-Time-Polymerase Chain Reaction (RT-PCR). First, 

a master mix depending on the number of samples was prepared. Next, 50 µl of 

extracted RNA were added to 50 µl master mix in a PCR tube and the following 

program was run in a thermal cycler: 10 minutes at 25°C, 2 hours at 37°C. The 

resulting cDNA product was either stored at 4°C for  immediate use or at -20°C for 

long duration storage.  

 
3.4.3. Quantification of cDNA concentration 
 

cDNA concentration was measured via optical density (OD) at a wavelength 

of 260 nm. 2 µl of the respective sample were added to 98 µl DNase-free water, 

transferred into a quartz cuvette and the absorbance at 260nm was determined 

using a spectrophotometer. cDNA concentration was calculated using the 

conversion factor, OD260 = 1 => 50 µg/ml, and the respective sample was diluted 

to the desired concentration. 

 
3.4.3. Real-Time Polymerase Chain Reaction – RT-PCR   

 

DNA samples for RT-PCR were obtained according to 3.4.1 and 3.4.2. The 

reaction was performed following Applied Biosystems 7300/7500/7500 Fast Real-

Time PCR System Manual (www.appliedbiosystems.com). 
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Master Mix for genes of interest: wengen, minibrain and CG1887  1x 

 

Taqman Mix   12.5 µl 

Forward-Primer Ribo 0.225 µl 

Reverse-Primer Ribo 0.225 µl 

Probe Ribo   0.0625 µl 

Primer/Probe  1 µl 

RNase free H20  6 µl 

cDNA 1µg/µl  5 µl 

 

Master Mix for gene of interest: morgue  1x 

 

Taqman Mix    12.5 µl 

Forward-Primer Ribo  0.225 µl 

Reverse-Primer Ribo  0.225 µl 

Probe Ribo    0.0625 µl 

Forward-Primer morgue  0.225 µl 

Reverse-Primer morrgue  0.225 µl 

Probe morgue   0.0625 µl 

RNase free H20   6 µl 

cDNA 1µg/µl   5 µl 

 

Samples were diluted to the desired cDNA concentration of 1 µg/µl and used 

for RT- PCR analysis. A master mix was prepared depending on the number of 

samples as well as on the gene of interest and loaded onto a 96-well RT-PCR 

plate. Taqman mix refers to the TAqMan Universal PCR Master Mix by Applied 

Biosystems. This master mix also includes the primer/probe set for a ribosomal 

protein, RpS15Ab-RA, which serves as an internal control and is need for 

normalization of the sample results.  

 
 
ATAAGTAATTTGACATTTTCATTAATTAGTTTTGAACTACATCTAAGAGAAGTACTTACGGAAGTTTTCAAGTAAAGGTTT
TTTCCCTTTTTCACGTTTGCGTGACGGTCGTGTAAAACAGTTTTGGCAAACAAATCCAGCTATGGTGCGTATGAACGTA
TTGGCCGATGCCCTGAAGTGCATAAACAACGCCGAGAAGCGTGGCAAGCGGCAGGTGCTGCTGCGTCCCTGCTCCA
AGGTGATCATCAAGTTCCTGACCGTGATGATGAAGCATGGCTATATCGGCGAATTCGAGATCGTCGAGGATCACCGT
GCCGGCAAGATCGTTGTCAACCTGACCGGTCGGCTAAACAAGTGCGGCGTCATCTCGCCCCGCTTCGATGCGCCCA
TCAACGACATCGAGAAGTGGACCAACAATCTGTTGCCCTCGCGTCAGTTTGGTTACGTTGTGCTCACCACCTCTGGCG
GCATCATGGACCACGAGGAGGCTAGGAGAAAACATTTGGGAGGCAAAATTCTCGGCTTCTTCTTCTAGAGACACCAA
GTTCACATCGTAGAGGGATGGAGTTTGATATGTAGATTGACGTTTTATTTCACCGACCATGCATCCAACTATGTACTTT
GTGCACAGGAAACAAAGGGCGAAAACGCTACTACGTTCATTCAGAAAACAAACGACGATGAATGTTCACAAAGTTACG
CGAAATAAAATGAAAAATTTGGACATCTAATATCGAAA 
 
DNA Sequence of the ribosomal Protein RpS15Ab-RA  
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cDNA was transferred into the respective wells either with a single or a 

multi-channel pipette. The plate was loaded onto the Real-Time 7500 PCR 

System machine, Applied Biosystems, and the following amplification program 

was run: 

 
Figure 3.2.: by Applied Biosystems Applied Biosystems Real-Time PCR Rapid Assay 
Development Guidelines. Publication 117GU16-01. 

 
After the run was completed, the Ct values for the gene of interest and the 

internal control were exported into an Excel spread sheet for analysis. The 

Comparative Ct Method or 2 –∆∆Ct Method has been used to calculate and 

visualize the changes in gene expression in between different samples or 

treatments (Livak et al 2001). For the 2 –∆∆Ct Method, first, the Ct- value of the 

internal control is subtracted from the Ct-value of the gene of interest. Next, this 

∆Ct of the untreated sample is subtracted from the ∆Ct of the treated sample. 

This ∆∆Ct value is used to calculate the 2 –∆∆Ct, which represents the fold change 

of the gene of interest between the treated and untreated sample. The values 

between 0 and 1 need to be converted for a simplified visulaisation, since they 

represent negative fold changes. For instance, a fold change of 0.5 can also be 

expressed as a fold change of –2.  

 

For the herein presented experiments expression changes of specific genes in 

response to a bacterial infection in a flight and a ground samples were analysed. 

Therefore, the 2 –∆∆Ct Method was used to show the difference of an infected 

flight sample to a PBS infected flight sample and similar calculation was 
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conducted for the ground sample. The two data points were plotted as fold 

changes next to each other for direct comparison. 

 
3.5. Protein Methods 
 

3.5.1. Fatbody Dissection and Protein Extraction 

 

CAB= Caspase Assay Buffer 

 

HEPES-KOH pH 7.5 20 mM 

KCl    10 mM 

MgCl2   1.5 mM 

Sodium EDTA  1 mM 

Triton X-100   0.5 % 

PMSF   2 mM 

(PMSF = phenylmethylsulphonyl fluoride) 

 

Six wandering 3rd instar larvae grown in blue food were rinsed in water and 

placed on a microscope slide, which was sitting on the lid of a bench-top-cooler to 

maintain constant low temperature during dissection. A few drops of CAB were 

added to the slide, the bench-top-cooler-lid placed under a Leica MZ 125 

dissection microscope, and the posterior tip was cut open to extract all organs of 

the larva. Carefully the fatbodies of all six larvae were separated and collected in 

an Eppendorf tube containing 100 µl cold CAB. Using a cold sterile pestle the 

fatbodies were homogenized and spun down for 5 minutes at 12000 g and 4°C. 

The supernatant was removed to a fresh tube and stored on ice for immediate 

use or in the -80°C freezer. 

 
3.5.2. Caspase Enzymatic Activity Measurement 
 
Caspase reaction mix 

CAB   85 µl 

Protein lysate 10 µl 

Substrate   5 µl 
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Negative control 

CAB  95 µl 

Substrate  5 µl 

 

Caspase activity was assayed using the chromophore para-Nitroaniline 

(pNA) attached to the substrate sequence. Cleavage of the substrate by the 

caspase results in the release of the chromogen, which can be monitored as a 

change in absorbance at 405 nm.  

The frozen substrate obtained from the “Calbiochem Caspase Substrate Set III, 

colorimetric Kit” was warmed to RT to be liquid and ready for the assay. 10 µl of 

protein lysate obtained from the fatbody dissections contains about 30-40 µg 

protein, which was sufficient for a good signal. CAB and lysate were added to a 

well on a 96-well plate, followed by the substrate, which activates the enzymatic 

reaction. After brief mixing the plate-reader was started to execute the following 

program: 

 

Platereader measurements at OD405: 

 

Intervall Repeats Elapsed time 

10 sec 12 2 min 

30 sec 56 30 min 

1 min 30 1 h 

10 min 3 1 h 30 min 

 

In all negative control runs no change in absorbance was observed, therefore no 

subtraction of negative control values from measured sample data was 

necessary. Each supernatant obtained from one fatbody dissection contained 

about 80 µl protein lysate. 70 µl were needed to test each of the seven Caspase 

substrates in a separate reaction. The remaining 10 µl were use to measure the 

protein concentration. 
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3.5.3. Protein concentration  
 

Protein concentration was measured following the QuantiPro BCA Assay 

protocol by Sigma. First, a Bovine Serum Albumin (BSA) working solution with a 

concentration of 50µg/ml BSA was prepared. QuantiPro Buffer QA and QuantiPro 

Buffer QB were mixed with Copper(II) sulfate solution according to the protocol to 

produce the QuantiPro Working Reagent, which needs to be freshly prepared 

before every use. The protein samples obtained from larval fatbody dissections 

were diluted 1:250 in 250µl PBS. The BSA working solution is used to prepare six 

standards with protein concentrations 0, 1, 2, 5, 10 and 20 µg/ml, respectively, in 

PBS. All samples and standards were mixed 1:1 with the QuantiPro Working 

Reagent and incubated at 60°C for 1 hour. The tubes  were allowed to acclimate 

to room temperature and absorbance of the reactions was measured at 562nm. 

The values for the standards were plotted in Excel and a linear regression served 

as a standard curve. The equation of this regression was used to determine the 

absolute protein concentration in the samples. 

 

3.6. Immunohistochemistry 

 
3.6.1. Fixing of embryos 
 
Fixative solution  

EGTA (pH 7.4)   50 mM 

Formaldehyde  4 % 

In PBS 

 

Drosophila embryos were washed in distilled water, dechorionated for 2.5 

minutes in 50% bleach (v/v in water) and rinsed thoroughly with water again. The 

fixative solution was mixed 1:1 with heptane and about 1.5-2 ml was added to a 

screw-top glass tubes. The embryos were fixed in these glass tubes for 20-30 

minutes while being gentle shaken. Then, the top aqueous layer was removed 

leaving the embryos in the interphase. One volume of methanol was added and 

devitellinization of embryos performed by strong shaking. Successfully 

devitellinized embryos were sunken to the bottom of the tube. The heptane and 

methanol were aspirated and and the embryos washed with four to five times with 
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methanol. In this condition the embryos can be stored at -20°C in methanol or 

ethanol for at least one year. 

 
3.6.2. Antibodies 

  
All antibodies purchased at Santa Cruz Biotechnologies. 
 

PBT 

Triton X-100  0.1% 

In PBS 

 

PBT + BSA  

BSA   2% 

In PBT 

 

Antibody staining against GFP is necessary, since the fixative solution used 

in 5.6.1 quenches the individual fluorescence of the GF protein. The first antibody 

binds against GFP and the secondary antibody against the primary to re-establish 

fluorescence. The embryos were rehydrated in a 1:1 PBT and methanol solution 

for 15 minutes and another 15 minutes in pure PBT. Blocking was performed in 

PBT + BSA for 1-2 hours on the rocker. The incubation with the first antibody was 

conducted over night at 4°C and was followed by an intense washing step with 

PBT for 1 hour the next day. Incubation with the second antibody was performed 

for 2 hours at 4°C, as well as covered from light t o protect the fluorescence of the 

secondary antibody. The same washing step was conducted as after the first 

antibody incubation and mounting the embryos in propidium iodide on a 

microscope glass slide resulted in an additional DNA staining. The embryos were 

sealed with a coverslip and kept at 4°C in the dark  until analysis with the 

fluorescence microscope.   

 
3.6.3. TUNEL 
 
PPP solution 

Phenylthiourea  1 crystal (~1mg) 

PMSF  1mM 

PBS   600 µl 
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Fixation solution 

PPP    600 µl 

Formaldehyde  16% 

 

Permeabilisation solution 

Triton X-100  10% 

Na citrate  10% 

dH2O 

 

TUNEL mix (by Roche Applied Sciences) 

Enzyme solution 5 µl 

Label solution 45 µl 

 

DNA staining solution 

DAPI  1.5 µg/ml 

In Vectashield 

 

The TUNEL kit protocol (Manual Version June 2005) and solutions used in 

this experiment were purchased from Roche Applied Sciences; In Situ Cell Death 

Detection Kit, TMR red. First, 3rd instar larvae were washed with PBS in a 9-well 

plate. Three to four larvae were bled per well on a 10-well slide, which was 

prepared in a wet-chamber (pertidish with wet kimwipes). Bleeding was 

conducted by peeling back the cuticle of a larva with a pair of forceps into 30 µl of 

PPP prepared in the well. Within 15-30 minutes the cells adhere to the surface of 

the slide. 30-50 µl of the freshly made fixation solution is added to the well after 

removal of the PPP. After 1 hour of incubation the wells were rinsed two times 

with PBS and the slide was put directly on ice. 50 µl of permebilisation solution 

were added to the well for exactly 2 minutes. To stop the reaction the well was 

rinsed three times with PBS and the slide put back into the wetchamber. The area 

around the well was dried and tilting slide further removed PBS in the well. 5 µl 

Tunel mix were added to the well, which was covered with parafilm and 

aluminium foil and incubated at 37°C for 15-20 minu tes. Finally, the wells were 

washed with PBS, each mounted with a drop of Vectashield solution containing 

DAPI for DNA staining and stored at 4°C in the dark  until analysis with the 

fluorescence microscope. 
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3.7. Infection methods 

 

3.7.1. Preparation of bacterial culture 

 

Luria broth liquid medium (LB medium) 

LB Broth BP 1427-500 by Fisher  20g 

dH2O    1L 

 

Luria broth plates (LB plates) 

LB Agar BP1425-500 by Fisher 40g 

dH2O    1L 

 

For preparation of Luria Broth plates and liquid medium the solid 

components were mix, stirred and then autoclaved in distilled water for 30 

minutes. Medium for the plates was allowed to cool to 55°C before streptomycin 

was added. For the liquid medium streptomycin (Sigma) was added at room 

temperature.  

Inoculation of a single colony of E.coli strain HB101 from an agar plate or glycerol 

stock into 5 ml of LB containing 5 µl of 50 mg/ml streptomycin solution was 

conducted under sterile conditions in fume hood.  

Bacteria were grown overnight at 37°C with vigorous  shaking. On the next day 

the bacterial culture is transferred to a 15 ml tube and pelleted by centrifugation. 

The supernatant was discarded and the cell-pellet resuspended in 5 ml PBS. This 

washing step was repeated and 50 µl of the remaining cell suspension were 

diluted with 950 µl of PBS to determine the optical density at 600 nm wavelength. 

Using the conversion factor, OD600 = 1 => 1 x 109 cells/ml, the concentration of 

the original bacterial culture in PBS was calculated and diluted to the desired 

concentration.   

 
3.7.2. Storage of bacterial culture 
 

Glycerol stocks were prepared for long term storage of E.coli bacteria at –

80°C. Therefore, 5 ml LB media (see 3.7.1.) were in oculated from a single colony 

and incubated over night at 37°C with vigorous shak ing. 800 µl of these growing 

E.coli culture were transferred to a sterile screw-cap tube and 200 µl of 80% 

autoclaved glycerol added. After brief vortexing the stock was stored at -80°C. To 
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grow cells out of this stock, do not thaw it but rather touch the surface with a 

sterile tip and place it into 5 ml of LB medium. 

 
3.7.3. Clearance Assay  
 
LB + 1% Trition 100 

 

The infection protocol for adult Drosophila flies was adapted from Dionne et 

al., 2002. 12 female flies per individual time point and a bacterial solution of E.coli 

HB101 (5.7.1.) with a concentration of 2 x 108 cells/ml were required. First, the 

injection volume of a pulled glass needle attached to the picospritzer injection 

system was calibrated. Using a vaccum set at 60 psi approximately 5 µl of the 

bacterial solution were drawn up into the needle. In the field of view under a 

dissecting the tip was placed into a small Petri dish containing hydrocarbon oil 

and a bubble is injected into the oil. By adjusting the injection time a sphere of 

457 µl in diameter was created containing a volume of 50nl. The calibrated 

needle was used to inject CO2 anaesthetized flies with the bacterial solution as 

well as control flies with PBS. The flies were moved to fresh vials and allowed to 

recover. After 3-6 hours three septic and three antiseptic flies were homogenized 

in separate Eppendorf tubes that contained 200 µl of LB + 1% Trition 100. Proper 

dilutions were plated onto streptomycin LB- agar plates and incubated over night 

at 37°C. The grown colonies were counted and calcul ated back to remaining 

bacteria per fly. 24 and 72 hours after infection the homogenization and plating 

steps were representing two additional timepoints. As further controls, uninfected 

flies were used at least once to insure the absence of contamination. The actual 

amount of injected bacteria was tested by direct inoculation of the LB medium 

with the calibrated needle and picospritzer.  

 

3.7.4. Alexa Fluor E.coli Phagocytosis Assay 

 

Schneider’s Culture Medium with FBS 

Fetal Bovine Serum (FBS)  12% 

 

The following protocol was developed and tested in this lab. Three 

siliconized 1.5 ml Eppendorf tubes were prepared with 350 µl chilled Schneider’s 
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Culture Medium with FBS. As well, 50 µl chilled Schneider’s Culture Medium was 

added to one well of a 9-well Pyrex dish, where five larvae were bled into 

respectively. 50 µl of this mix was transferred into one of the prepared Eppendorf 

tubes. These steps were continued two more times and all tubes placed on a 

rocker in a 25°C incubator for 20 minutes. 0.5 µl of an Alexa Fluor 594-

prelabelled bacterial suspension purchased from Invitrogen containing about 

109cells/ml was added to the first Eppendorf tube, which was labelled as the 45-

minute time point, and returned to the rocker. 20 minutes later the second tube 

was infected, labelled as 25 minute time point and returned to the rocker. Another 

20 minutes later the last tube was treated the same and labelled as 5 minute time 

point. Five minutes after treatment of the last tube 100 µl Trypan Blue were 

added to all Eppendorf tubes, which were returned to the rocker for another 45 

minutes. Next, two times 100 µl aliquots of each tube were transferred to a single 

well of a Teflon coated glass slide, where the hemocytes adhered to for 30 

minutes, while being protected from light. 200 µl were aspirated from each well 

and discarded. Gently, the cells were washed with 10 µl PBS and 5 µl 0.2% 

Trypan Blue in PBS were added to each well quenching any extracellular Alexa 

Fluor labelled E.coli bacteria. Finally, a coverslip was placed over the slide and 

images for analysis were taken under the fluorescence microscope.  

 
3.8. Behavioural study – Climbing assay 
 

A 10 cm high, clear, plastic-vial containing 10-15 female flies was set up in 

front of a digital camera and next to an upright ruler. The vial was hit with the 

bottom onto the desk to return all moving flies back onto the food. 10 seconds 

later a picture of the vial is taken next to the ruler focusing on the flies. 

Subsequent image analysis was performed to determine how many flies travelled 

how far up the vial within the 10 seconds after the bump. 
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3.9. Fluorescence Microscopy and Data analysis  
 

Specimens were viewed in a Zeiss Axiophot 2 fluorescence microscope (Carl 

Zeiss, Oberkochen, Germany). Digital colour or black and white photographs were 

taken using an Optronics microscope camera, and the Magnafire Application 

Software 2.0 (Optronics®). All digital images were processed using the Image Pro 

Version 6 and Adobe Photoshop Version 8.0 (Adobe Systems Inc.). The data 

obtained from all experiments was processed and analysed with Microsoft Excel and 

SAS JMP 6 (www.jmp.com). 
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IV. RESULTS 
 

 

4.1. Gene expression analysis following space flight  

 

Drosophila melanogaster strain Hml∆-GAL4, UAS-eGFP, UAS-eGFP/ Hml∆-

GAL4, UAS-eGFP, UAS-eGFP (Sinenko and Mathey-Prevot, 2004), herein referred 

to as HML, was used for a 12-day Space Shuttle flight experiment. One aspect of the 

post-flight-analysis involved the characterization of gene expression differences in 

response to a bacterial infection performed with space flown and ground control 

animals. RNA for microarrays and quantitative Real-Time-PCR was extracted on 

three different days after landing of the Shuttle. Flies of day one after landing have 

completed development and eclosed in space. They contain animals of mixed ages 

including virgins and non-virgins, but only females were used for the infection and 

RNA isolation. Day three flies returned as pupae and eclosed three days after 

landing. Only virgin females were selected for further processing. The last group of 

flies spent most of their pupae stage on Earth, eclosed five days after landing and 

was handled like the day three flies. Except for negative controls, all flies being used 

for RNA extraction were infected with E.coli HB 101 bacteria according to the 

Clearance Assay protocol (3.7.2.). The different immune responses following space 

flight were shown by comparison of bacterial with PBS (3.1.2) infected flies, which 

served as negative controls to compensate for the wound healing response triggered 

by the infection needle. 
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  E.coli  PBS 
  Flight Ground  Flight Ground 

time 0 FE 1- 0 GE 1- 0  FP 1- 0 GP 1- 0 
time 1.5 FE 1- 1.5 GE 1- 1.5  FP 1- 1.5 GP 1- 1.5 DAY1 
time 4 FE 1- 4 GE 1- 4  FP 1- 4 GP 1- 4 

    
time 0 FE 3- 0 GE 3- 0  FP 3- 0 GP 3- 0 

time 1.5 FE 3- 1.5 GE 3- 1.5  FP 3- 1.5 GP 3- 1.5 DAY3 
time 4 FE 3- 4 GE 3- 4  FP 3- 4 GP 3- 4 

    
time 0 FE 5- 0 GE 2- 0  FP 5- 0 GP 2- 0 

time 1.5 FE 5- 1.5 GE 2- 1.5  FP 5- 1.5 GP 2- 1.5 DAY5 
time 4 FE 5 - 4 GE 2- 4  FP 5- 4 GP 2- 4 

 
 

Table 4.1. Samples from flight and ground control and the respective day after landing. 
E.coli column shows flies that were infected after landing. Control flies were infected with 
PBS. The time next to the day indicates the hours after infection that RNA was extracted. 
FE = Flight E.coli; GE = Ground E.coli; FP = Flight PBS; GP = Ground PBS. Numbers = 
day – timepoint.  

 

The microarray experiments were conducted at Stanford University and 

analysed by a member of this group. In support of this analysis, gene lists were 

prepared to highlight the genes and pathways of interest. These gene lists were 

produced using Flybase (http://flybase.bio.indiana.edu/), an internet platform for 

Drosophila research, and additional publications about the respective pathways of 

interest (see Introduction). 

 
 

Symbol FlyBase_ID Full_name Synonyms 

skl FBgn0036786 sickle 
CG13701;    CG13701;    CG13701;    CG13701;    CG13701;    Skl;   
 Sickle;    veto; BcDNA:RE14076;    meph: mephisto;    mephisto 

rpr FBgn0011706 reaper 
CG4319;    CG4319;    CG4319;    Rpr;    rp;    Reaper L;    RPR; 
anon-WO0162936.19;    reaper 

grim FBgn0015946 grim CG4345;    Grim;    BcDNA:RE28551;    grim 

corp FBgn0030028 
companion 
of reaper 

CG10965;    CG10965 

dar FBgn0082821 
defender 
against 
reaper 

Defender against reaper 

 
Table 4.2. Examples of some genes involved in apoptosis. As part of the gene lists all 
synonym names for each gene were collected to avoid complications with the analysis.  
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Following the results of the microarray analysis four genes involved in apoptosis 

and immune system functions showed significant gene expression changes and 

were selected for further analysis: Morgue, Wengen, Minibrain and CG1887. 

Quantitative Real-Time-PCR (RT-PCR) was conducted with the same RNA samples 

obtained for microarrays. The RT-PCR results were normalized against the 

ribosomal protein RpS15Ab-RA, chosen to serve as an internal control. It was 

amplified simultaneously together with every sample and every run (Fig. 4.0.).   

First, the ordered primer/probe sets for Morgue, Wengen, Minibrain and CG1887 

were tested with positive controls respectively, before the flight samples were 

amplified. Therefore, three different ways to induce apoptosis were conducted in 

laboratory grown animals that served as positive controls: 

 

- Heatshock of a heatshock sensitive strain, hs-Rpr, expressing the apoptosis 

initiating protein Reaper. 

- Heatshock of a heatshock sensitive strain, hs-Hid, expressing the apoptosis 

initiating protein Hid. 

- Irradiation of HML flies with UV-light. 

 

Flies were heatshocked in their bottles in a 37°C w ater bath for one hour. For 

the irradiation control clear vials with flies were exposed to the UV-light in the laminar 

flow for one hour. The flies were examined following the protocols explained in 3.4. 

These positive control experiments confirmed that the primer/probe sets for 

Minibrain, Wengen and Morgue worked as expected and caused a respective fold 

change compared to the untreated samples (Fig. 4.1; 4.5.; 4.9.). In the positive 

control experiment for CG1887 the fluorescence for this primer/probe set did not 

cross the threshold or Ct-value. Since the primer/probe set for the ribosomal protein, 

which ran in parallel in the same tube, crossed the Ct- value, a problem with the 

primer/probe set for CG1887 was assumed. As well, a repeat with an increased 

amount of initial cDNA was not successful leading to the decision to skip CG1887 for 

further sample analysis.  

The normalized changes in gene expression due to infection compared to the 

PBS control are shown for each gene of interest respectively, and the altered 

response in space flown animals compared to ground controls is being discussed.  
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Fig. 4.0. Positive control sample results from a RT-PCR run. The amplification curves of 
each sample are shown, with cycle number on the X-axis. Several positive control 
samples were loaded and measured in a special RT-PCR 96-well plate. Increase in 
fluorescence, representing the respective amplification, (Y-axis) measured for each well, 
for both the gene of interest and the internal control gene RpS15Ab-RA. Green line shows 
the threshold level. Ct- value of a sample is the cycle number when the fluorescence 
crosses the threshold level. 
 

 
4.1.1. Minibrain 
 

The positive control results for Minibrain are presented in Fig.4.1. and show a 4-

6 fold reduction in expression compared to an untreated negative control  
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Figure 4.1. All three positive controls for Minibrain show decreases in gene expression. A 
fold change of 1 or -1 would indicate the same expression level as in the untreated 
sample (baseline). UV = UV-treated flies; Rpr = heatshocked hs-Rpr flies; Hid = 
heatshocked hs-Hid flies. Foldchange: -2 = -200% 
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The day one RNA samples were obtained from mixed age as well as mixed virgin 

and non-virgin female flies that had completed their full development in space. After 

landing flies were infected with E.coli bacteria following the Clearance Assay protocol 

(3.7.2). Immediately, 1.5 and 4 hours after infection the samples were homogenized 

and the RNA was isolated (3.4.1). Each data point represents an E.coli infected 

sample versus its respective PBS infected control. At time point 0 the flight sample 

shows no change, since a fold change of 1 (or -1) represents the same amount of 

gene expression in the infected and the PBS animal. The ground control animals 

show an increase in expression of about 1.5 fold (Fig. 4.2.). In the following sampling 

the ground group maintains positive change in response to the infection, while the 

change in the flight sample decreases.  
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Figure 4.2. Day 1 infection, Minibrain. Blue columns = flight sample. Purple column = 
ground sample. Both data sets show gene expression changes of infected animals in 
comparison to the respective PBS infected animals. As shown in Table 4.1. 

 

 

Day three flies used for RNA isolation consisted only of virgin females. Following the 

same protocol as for day 1 flies, RNA was extracted and RT-PCR performed. 

Minibrain shows a slight decrease in the flight group and no change in the ground 

control at time 0. At 1.5 hours as well as at 4 hours the flight group expression 

increases slightly, while the ground sample results indicate no change in gene 

expression of Minibrain (Fig. 4.3.). 
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Figure 4.3. Day 3 infection, Minibrain. Blue columns = flight sample. Purple column = 
ground sample. Both data sets show gene expression changes of infected animals in 
comparison to the respective PBS infected animals. As shown in Table 4.1. 

 

Day five flies spent most of their pupae stage already on Earth. Five days after 

landing the eclosed virgin female adults were infected and show just a no change at 

time 0 (Fig. 4.4.). At time 1.5 and 4 hours after infection, the ground control group  

shows a 3 and 4 time positive fold change in Minibrain gene expression compared to 

its PBS treated controls, while the flight group decreases at 1.5 hours and increases 

slightly at 4 hours. 
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Figure 4.4. Day 5 infection, Minibrain. Blue columns = flight sample. Purple column = 
ground sample. Both data sets show gene expression changes of infected animals in 
comparison to the respective PBS infected animals. As shown in Table 4.1. 

 
 

To date only the first set of flight and ground samples was tested for Minibrain gene 

expression changes resulting in the lack of error bars for the calculation. This first set 

of data still gives an idea about potential difference in gene expression Minibrain 

between flight and ground samples triggered by the bacterial infection. Only day 1 
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flies (Fig. 4.2.) of the flight sample show a decrease in Minibrain expression, which 

has also been observed in the apoptosis positive controls of Minibrain (Fig. 4.1.). The 

ground control maintains a positive expression showing a clear difference between 

flight and ground 

At day 3, (Fig. 4.3.) the overall trend in Minibrain gene expression seems to increase 

faster in flight than in the ground sample. Day 5 (Fig. 4.4.) shows a faster increase in 

Minibrain expression in the ground sample than in the flight sample, which seems to 

be relatively stable. Except for day 1 in the flight sample there is no obvious gene 

expression change pointing towards an apoptosis initiation, as seen in the positive 

controls. Since Minibrain is involved in a variety of cellular processes (2.2.2.), a 

change in expression might not primarily be due to an altered apoptosis rate or 

reaction to the infection but also be triggered by other stress factors. This mix of 

inputs might be responsible that no clear pattern can be seen in Minibrain gene 

expression. Further repeats of the experiment are necessary for better interpretation 

of the data as well as to include standard errors for the data points.  

 
 
4.1.2. Morgue 
 

The positive control tests for Morgue (Fig. 4.5.) show a negative change of 2 - 3 

fold compared to an untreated negative control, which confirms the functionality of 

the primer/probe set.  
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Figure 4.5. Positive control test of primer/probe set for Morgue. All three positive controls 
for Morgue show decreases in gene expression. A fold change of 1 or -1 would indicate 
the same expression level as in the untreated sample (baseline). UV = UV-treated flies; 
Rpr = heatshocked hs-Rpr flies; Hid = heatshocked hs-Hid flies. Foldchange: -2 = -200% 

 

The same RNA samples used for Minibrain were tested for gene expression of 

Morgue. Initially, the flight sample shows a huge decrease in gene expression, while 
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the ground sample does not change greatly (Fig. 4.6.). 1.5 hours after infection the 

flight sample shows a slight positive increase in expression, while the ground 

sample’s gene expression is still decreased compared to its respective PBS control. 

4 hours after infection, both samples show a positive change, with the ground sample 

being slightly higher than the flight group. 
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Figure 4.6. Day 1 infection, Morgue. Blue columns = flight sample. Purple column = 
ground sample. Both data sets show gene expression changes of infected animals in 
comparison to the respective PBS infected animals. As shown in Table 4.1. 

 

 

Day three shows an initial difference at time 0 with almost two times decreased 

Morgue expression in flight. While the ground sample remains at a constant positive 

expression level over time, the flight sample shows an increase after 1.5 hours 

followed by another decrease at 4 hours after infection (Fig. 4.7.). 
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Figure 4.7. Day 3 infection, Morgue Blue columns = flight sample. Purple column = 
ground sample. Both data sets show gene expression changes of infected animals in 
comparison to the respective PBS infected animals. As shown in Table 4.1. 

 

At day five, with flies that spent most of their development stages back on Earth, the 

initial difference in expression between flight and ground groups is relatively small 

(Fig. 4.8.). Over time, the ground groups shows a stronger decrease than the flight 
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sample, indicating a possible effect in the flight samples taken place during the 

embryonic and larval stages. Time 1.5 of flight is missing due to an undetermined Ct 

value.  
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Figure 4.8. Day 5 infection, Morgue. Blue columns = flight sample. Purple column = 
ground sample. Both data sets show gene expression changes of infected animals in 
comparison to the respective PBS infected animals. As shown in Table 4.1. 

 
 

As for Minibrain, to date only the first set of flight and ground samples was tested for 

Morgue gene expression resulting in the lack of error bars for the calculation. This 

first set of data still shows potential differences in gene expression of Morgue 

between flight and ground samples triggered by the bacterial infection. Day 1 (Fig. 

4.6.) and day 3 (Fig. 4.7.) flies from flight both show a significantly decreased 

expression of Morgue at time point 0 hours after infection. This negative fold change 

is similar to the trend seen in the apoptosis positive controls for Morgue (Fig. 4.5.). In 

the course of the reaction both flight and ground samples show a positive fold 

change in day 1 and day 3. Only the flight sample in day 3 at the 4 hour time point 

returns to a negative fold change of Morgue expression. In day 5 (Fig. 4.8.) only the 

ground sample shows a steady expression decrease of Morgue in course of the 

reaction indicating possible increase in apoptosis, which is not recognizable in the 

flight sample. Overall, day 1 and day 2 time point 0 data points show the only strong 

evidence for Morgue reacting in combination with apoptosis, similar to the positive 

control experiments. The rest of the data does not indicates any clear patterns, 

making it difficult to draw any conclusions. As well, further repeats of the experiment 

are necessary to verify the data, for better interpretation and to include standard 

errors for the data points.  
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4.1.3. Wengen 
 

The positive control for the Wengen primer/probe set shows a positive change 

of thirty to forty fold compared to an untreated negative control (Fig. 4.9) indicating 

that the primer/probe set is functioning.  
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Figure 4.9. Primer/Probe set test for Wengen. All three positive controls for Wengen 
show decreases in gene expression. A fold change of 1 or -1 would indicate the same 
expression level as in the untreated sample (baseline). UV = UV-treated flies; Rpr = 
heatshocked hs-Rpr flies; Hid = heatshocked hs-Hid flies. Foldchange: -2 = -200% 

 

An increased expression of Wengen in the flight sample at time 0 is followed by a 

constant decrease over time. In contrast, the ground sample shows no significant 

fold changes in the beginning, but increases by two times, 4 hours after infection 

(Fig. 4.10).  
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Figure 4.10. Day 1 infection, Wengen. Blue columns = flight sample. Purple column = 
ground sample. Both data sets show gene expression changes of infected animals in 
comparison to the respective PBS infected animals. As shown in Table 4.1. 

 

 

Day three flies show a decreased expression of Wengen in flight and ground during 

the first two time points, which is converted to a two times positive change in the 
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flight group. The ground group returns from two times negative to a slightly positive 

expression (Fig. 4.11.). 
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Figure 4.11. Day 3 infection, Wengen. Blue columns = flight sample. Purple column = 
ground sample. Both data sets show gene expression changes of infected animals in 
comparison to the respective PBS infected animals. As shown in Table 4.1. 

 

 

Day 5 post infections shows an initial negative change in the flight group, which is 

followed by a positive and a slightly negative expression at subsequent sampling 

times (Fig. 4.12.). On the other hand, the ground group increases its Wengen gene 

expression up to nine times during the last sampling time. 
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Figure 4.12. Day 5 infection, Wengen. Blue columns = flight sample. Purple column = 
ground sample. Both data sets show gene expression changes of infected animals in 
comparison to the respective PBS infected animals. As shown in Table 4.1. 

 

 

As for Minibrain and Morgue, to date only the first set of flight and ground samples 

was tested for Wengen gene expression resulting in the lack of error bars for the 

calculation. This first set of data still shows potential trends in gene expression 

differences in Wengen between flight and ground samples triggered by the bacterial 

infection. Day 1 flight sample at time point 0 (Fig. 4.10.) shows a positive fold change 



49 

showing a possible involvement of apoptosis elements. The increase is not as strong 

as seen before in the positive control but could still be part of an apoptosis initiation 

reaction. Over the course of the reaction to the infection this change returns to 

normal and only the ground sample shows a positive increase after 4 hours. Day 2 

flight sample (Fig. 4.11.) shows an increase in Wengen expression after 4 hours, 

whereas the ground sample expression is slightly negative after 1.5 hours. At day 5 

(Fig. 4.12.), only the ground sample shows a strong positive fold change after 4 

hours. Since no clear pattern of the data can be observed, it is difficult to draw 

detailed conclusions. As well, further repeats of the experiment are necessary to 

verify the data, for better interpretation and to include standard errors for the data 

points.  

 
 
4.2. Caspase activity in space 

 

The activity of cysteine-containing-aspartate-specific proteases, the caspases, 

was measured by the cleavage-speed of enzyme-specific substrates (3.5.2). 

Increased caspase activity typically indicates an elevated level of apoptosis, which 

can be triggered by various stress factors, including space flight related factors. The 

described assay can be performed on adult flies or 3rd instar larvae, but to date just 

one larval flight sample has been run due to the long assay development phase 

necessary to adapt the provided protocol, which was originally designed for 

mammalian samples.  

The activity of caspases was measured by mixing protein extracts from 3rd 

instar larval fatbody dissections with enzyme-specific substrates (3.5.2.) (Thornberry 

et al., 1997). These substrates are part of the “Calbiochem Caspase Substrate Set 

III, colorimetric” and the specific caspase activity can be assayed by using the 

chromophore para-Nitroaniline (pNA) attached to the substrate sequence. Cleavage 

of the substrate results in the release of the chromogen, which is measured at 405 

nm on a 96 well spectrophotometer plate-reader. The space flown larvae were 

dissected at NASA Kennedy Space Center within 24 hours after landing of the 

shuttle and the protein lysate extracted from the fatbodies stored at –80°C until 

measurement at NASA Ames Research Center. 
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Table 4.3. This table shows the used substrates together with their mammalian target 
caspases. Protocol adaptations for use with Drosophila were conducted. (Calbiochem 
user manual, Caspase Substrate Set III, Colorimetric, Cat. No. 218808) 

 

The first step towards measurement of caspase activity is the establishment of 

a reliable positive control proving that the caspases are able to cleave their 

respective substrates and that the assay is functioning. Therefore, a heatshock 

sensitive strain of Drosophila, hs-Rpr, expressing the apoptosis initiating protein 

Reaper was used. One hour heatshock of 3rd instar larvae in a bottle using a 37°C 

water bath triggered the production of the Reaper protein and initiated the apoptotic 

machinery. Subsequent protein extraction (3.5.1) was conducted using the Caspase 

Assay Buffer (CAB) and the isolated caspases were tested for their activity 

measuring the changing optical density at 405nm on a plate reader (3.5.2). 

Therefore, each sample was incubated separately in a 96 well plate with each of the 

seven Calbiochem substrates (Tab. 4.3.). and measured. For easier visualization of 

the reaction progression polynomial regressions of fourth order were applied. The 

results obtained from the heatshocked hs-Rpr strain, the positive control, were 

compared to freshly dissected, laboratory grown HML 3rd instar larvae, the same 

strain that was used for the space flight experiment. The plate reader results are 

shown in Fig. 4.13. and 4.14., and the normalized results are presented and 

compared in Fig. 4.17. 
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Absolute caspase enzyme activity is normally expressed as moles of a 

substrate converted per unit time. Since the goal for this experiment was the 

measurement of any relative changes in caspase activates triggered by space flight 

conditions, the comparison of the steepness of the slopes after normalization 

Figure 4.13. Plate reader results for one hs-Rpr sample, the positive control. OD at 405nm. 
Caspase activity measured using seven different substrates, each color represents one 
substrate. Corresponding caspases for each substrate shown in left box. High activity in 
most caspases due to steep increase at beginning of the reaction, indicating that the positive 
control works. Results still need to be normalized to a protein concentration of 1mg/ml. 

Figure 4.14. Plate reader results for one HML sample, the baseline for the caspase activity 
assy, OD at 405nm. Caspase activity measured using seven different substrates, each 
color represents one substrate. Corresponding caspases for each substrate shown in left 
box. HML caspases show flatter curves than positive control, indicating less activity. 
Results still need to be normalized to a protein concentration of 1mg/ml. 
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representing the activity of a caspase was sufficient. Therefore, the initial slopes for 

each sample were selected and calculated by applying a linear regression through 

the data points. Since protein concentration of the extracted lysates influences 

caspase activities, the obtained slopes needed to be normalized. Therefore, protein 

concentration measurements for each sample were performed using the Bicinchonic 

Acid (BCA) Protein Assay Kit from Sigma. The slopes were divided through the 

protein concentration of each sample, normalizing the data to 1 mg/ml. Slopes of the 

same caspase substrate in multiple samples of the same strain and condition, for 

instance the positive control hs-Rpr, were taken together and mean and standard 

error were plotted (Fig. 4.15.).  
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As explained above, caspase activity is compared by the cleavage speed of 

each respective caspase substrate. In Fig. 4.15., the positive control hs-Rpr shows 

significantly higher cleavage activities of three caspase substrates, YVAD, WEHD 

and DEVD (Tab. 4.3.), in comparison to the untreated HML sample. The high error 

bars result from fluctuations in-between repeats of the positive control. Showing a 

significant difference between the positive control and the baseline indicated that the 

assay is working. 

Next, laboratory (standard conditions) grown HML flies, not the ground controls, 

from NASA Kennedy Space Center, containing the same generation of animals as 

the flight ones, had been dissected at Kennedy Space Center and the protein lysate 

been stored at –80°C. Therefore, these samples expe rienced the same time and 

Figure 4.15. hs-Rpr and HML sample. Normalized (1 mg/ml) caspase activities, as 
steepness of slopes, for each substrate. Corresponding caspases on x-scale. Blue 
bars = hs-Rpr, the positive control. Purple bars = HML, the baseline control. Error 
bars for positive control big due to fluctuation. Sample number, N, for each 
condition = 3. 
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conditions in storage as the flight and ground samples. These laboratory-grown HML 

samples were the first to be tested for caspase activity, as well as to be checked for 

potential effects due to the long storage time. The results showed slightly less activity 

after normalization than the freshly dissected HML samples indicating a possible 

decrease in activity due to long duration freezing, but further quantification of 

potential effects can only be investigated with long duration storage of activated 

positive controls, like hs-Rpr, which was not performed.  

Finally, the first flight sample (Fig. 4.16) was tested for caspase activity together 

with its respective ground control sample (Fig. 4.17). The normalized results are 

compared in Fig. 4.18. Limitation of time is responsible that to date only one sample 

of flight and its respective ground control were tested resulting in the lack of error 

bars (Fig. 4.18.). Repeats with further samples will be necessary to verify these initial 

results. 

 

 

 

 
Figure 4.16. Plate reader results for first ground sample, OD at 405nm. Caspase activity 
measured using seven different substrates, each color represents one substrate. 
Corresponding caspases for each substrate shown in left box. Results still need to be 
normalized to a protein concentration of 1mg/ml. 
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Figure 4.17. Plate reader results for first flight sample. OD at 405nm. Caspase activity 
measured using seven different substrates, each color represents one substrate. 
Corresponding caspases for each substrate shown in left box. Results still need to be 
normalized to a protein concentration of 1mg/ml. 
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In the flight sample substrates YVAD (1,4), VDVAD (2) and DEVD (3, 6, 7, 8, 

10) appeared to be cleaved faster than in the ground and HML sample (Fig. 4.18.). 

Caspase 2 substrate VDVAD is specific only for this caspase and therefore, the 

observed increase in activity must be due to this enzyme. DEVD can be digested by 

caspases 3, 6, 7, 8, and 10 and also showed increased activity as well, but all of 

these enzymes could be responsible for this effect. Only caspases 6 and 8 can be 

ruled out since their activity was tested with two other substrates, VEID and IETD. 

Figure 4.18. Flight, Ground, HML sample. Normalized (1 mg/ml) caspase 
activities, as steepness of slopes, for each substrate. Corresponding caspases on 
x-scale. Blue bars = HML, the baseline. Purple bars = Flight sample. White bars = 
Ground sample. No error bars in flight and ground due to lack of repeats. 
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Substrate YVAD was also processed faster than its ground and HML sample, 

although caspases 1 and 4 showed no cleavage activity of substrate WEHD. 

Calbiochem caspase substrates were to date mainly used for mammalian samples. 

Therefore, the manual only explains which provided substrate would be cleaved by 

which mammalian caspase. Homologies between mammalian and Drosophila 

caspases are shown in Tab. 4.4. and used to interpret the results of this assay. The 

flight sample shows activated caspases 1, 2, 3, 4, 7 and 10. According to Tab 4.4., 

Drosophila caspases Dronc, Dredd, Drice, and Dcp-1 could have the necessary 

functional homologies to cleave substrates YVAD, VDVAD and DEVD. As explained 

in 2.2.1. caspase activation in Drosophila involves initiator caspases, which activate 

the executioner caspases. The latter group of proteases are the actual effector 

enzymes responsible for the break down process. Since substrates for initiator 

(Dronc, Dredd) and effector caspases (Drice, Dcp-1) were digested at an elevated 

level in the flight compared to the ground sample, it is reasonable to assume that the 

apoptotic machinery seems to be in an activated state due to the space flight 

conditions. 

 

 
Table 4.4. Homologue caspases in Drosophila and mammals (Kuranaga et al., 2007) 

 

Lastly, a difference in protein concentration in the flight sample compared to the 

rest of the samples was observed. While all samples normally showed protein 

concentrations of 1-3 mg/ml after fatboday dissection and caspase extraction, the 

flight sample only contained 0.57 mg/ml protein. This difference was balanced out by 

normalization of the data for the caspase activity measurement. Further samples 

need to be measured to verify this trend, but if confirm, it would be consistent with an 

observed reduction in size of larvae that developed in space. 
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4.3. Apoptosis following Irradiation 
 
 
 In ground based studies of the FIT experiment effects of proton irradiation, a 

major component of space radiation, on cells and organs in Drosophila were 

investigated. The applied proton irradiation covers a wide range of exposure levels 

that would be experienced by astronauts in low-Earth-orbit, potential flights to the 

Moon and Mars and during increased solar activity.  

Apoptosis or programmed cell death is essential for development and maintenance 

of tissues and organs. Apoptosis is also initiated in damaged cells to remove them 

and replace them by new ones. At the cellular level ionizing radiation produces 

reactive oxygen species or other radicals that can attack nucleic acids and proteins 

resulting in cell cycle arrest or apoptosis. The cellular response to proton irradiation 

exposure was studied with focus on apoptosis initiation.  

 
 
4.3.1. The Climbing assay 
 
 

The Climbing Assay, as we discovered in our laboratory, is an easy phenotypic 

indicator to quantify irradiation effects. Following proton irradiation of 3rd instar larvae 

the eclosed female flies showed a decreased activity in jumping and overall motility 

with respect to increasing dosage (Fig. 4.20.). The 0 Gy control demonstrated that 

the activity of flies decreases with days after eclosion. Irradiation exposure 

decreases the initial activity of flies after eclosure. For instance, at day 2 40% 

untreated flies remain within the first centimeter in the vial, while 30 Gy exposure 

results in 80% flies being at the lowest level in the vial. The decrease in motility of the 

proton irradiated flies is most obvious at day 1 after hatching, but also monitored at 

the subsequent days, indicating progressive neurodegeneration. 
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Figure 4.20. Climbing Assay data. Y-axis: %flies observed at specific height in a vial 
10sec after being forced to the vial bottom by knocking it on a table. Color code on the 
left: 1cm = flies within the first centimeter, 2 cm = flies within the second centimeter; and 
so on. X-axis: numbers 1,2,4,9 are days after hatching when the assay was performed. 0-
30Gy shows proton irradiation exposure level.  

 

The exposure to proton irradiation can result in multiple effects on various cells, 

tissues and systems of the fly affecting its ability for locomotion. Changes in signal 

transduction, synaptic transmission as well as neurodegeneration and neuronal 

death are possibly affected by irradiation (Ohnishi and Ohnishi. 2004; Kennedy and 

Todd, 2003). To further pinpoint the place of defect, electroretinograms or ERG’s, 

measuring the neuronal activity, were conducted by a colleague, showing no 

difference between irradiated and untreated control samples, suggesting that signal 

transduction and synaptic transmission is not a problem at these exposed levels. 

 
4.3.2. The TUNEL assay 
 

Terminal transferase dUTP nick end labeling (TUNEL) is a common method for 

detecting DNA fragmentation that results from apoptotic signalling cascades. Nicks 

are breaks of the DNA backbone, potentially caused by irradiation or other space 

flight effects. They can be identified by the terminal transferase, an enzyme that 

catalyzes the addition of dUTPs, which are secondarily labelled with a fluorescent 

marker. The Tunel assay was performed on hemocytes collected from 3rd instar 

larvae at different time points after proton irradiation. Fig.4.22. shows the number of 

apoptotic cells at different time points after irradiation treatment with various 
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intensities. Immediately as well as 12 hours after irradiation no significant change in 

apoptotic cells was observed. At 24 hours the number of cells undergoing 

programmed cell death increased in all three irradiation levels. At 72 hours this 

change disappeared and the cells showed relatively low apoptosis activity. 
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Figure 4.22. TUNEL assay data. Percent of apoptotic hemocytes extracted from 3rd instar 
larvae at different time points and treatments. Healthy and apoptotic cells counted on a 
microscopic slide. Repeats averaged and mean/standard error plotted. X-axis: 0, 10, 20, 
30 = intensity of irradiation in Gy; 0, 12, 24, 72 = hours after irradiation when TUNEL 
assay was performed.   

 

 

The observed delay of 24 hours could indicate the lag time needed for cells to 

respond to the treatment and to activate the apoptotic machinery. Another important 

factor to be considered is the developmental stage of the animals during irradiation 

treatment. Since the Tunel assay can only be performed with 3rd instar larvae, the 

animals used for the later time points must be younger during irradiation (Tab.3.1.). 

Therefore, the larvae used for the 24 hour time point were irradiated as 2nd instar 

larvae, the larvae for the 72 hour time point were 1st instar larvae. It is possible that 

receptivity to irradiation is different depending on the developmental stage of the 

animals. 
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4.3.3. p53 assay 

 

When animal cells are exposed to stressful conditions, the tumor suppressor 

protein p53 restrains growth by promoting an arrested cell cycle or initiating a cell 

death program. Dmp53 function is required for γ-irradiation-induced transcription of 

the apoptosis initiating Reaper region (Sogame et al., 2003). To determine the 

effects of proton irradiation on p53 induction, Drosophila embryos provided by Dr. 

John Abrams, University of Texas, containing a p53 radiation response element in 

front of a Green-Fluorescence-Protein (GFP) were exposed. This response element, 

also referred to as p53RE, is constructed of a 150 bp radiation inducible enhancer 

containing a 20 bp potential p53 binding site. It was characterised and used by 

Brodsky et al., 2000 to understand p53 function. The 2, 5, 10, 15, 20 and 30 Gy 

proton irradiated embryos were examined following protocol 3.6.2. and are shown in 

Fig. 4.23. 

Propidium iodide DNA staining was performed to roughly sort the embryos according 

to their developmental stage (http://flymove.uni-muenster.de/). Only embryos 

containing most of their DNA at the edge (until about stage 9 in embryonic 

development), were used for the analysis.  The DNA and GFP images were overlaid 

using Photoshop. The 0 Gy image shows a faint green background of GFP 

expression. The increased expression of GFP with respect to increased irradiation 

intensity is observed in the majority of the embryos. This effect indicates that the 

p53RE element drives the expression of GFP in response to ionising proton 

irradiation. Therefore, it can be assumed that this element, in its natural position, 

would drive the expression p53 in response to proton irradiation. The faint embryo in 

the 20 Gy image serves as an example that not all embryos show the same 

increased response to the irradiation exposure.  
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Figure 4.23. Merged pictures of propidium iodide stained DNA (red) and p53RE induced 
GFP (green) in embryos of various irradiation levels.  

 

 

4.4. Immune System following Irradiation 

 

Apoptosis initiation in response to proton irradiation was shown in 4.3.3. by 

activation of the tumor suppressor protein p53 and DNA fragmentation (4.3.2.). To 

remove these damaged and dying cells, phagocytosing blood cells or hemocytes 

need to be activated. Hemocyte activity in Drosophila flies exposed to proton 

irradiation was examined and a potential link between the response to infection and 

prior irradiation was investigated.   
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4.4.1. Alexa Fluor E.coli Phagocytosis Assay 
 

To study the activity of larval hemocytes, the Alexa Fluor E.coli Phagocytosis 

Assay was performed after the Space Shuttle flight and after proton irradiation 

treatment (3.7.3). Drosophila melanogaster strain HML was used in flight as well as 

in the ground studies. A Hemolectin promoter drives the expression of the Green-

Fluoresence-Protein (GFP) specifically in flies’ plasmatocytes, and is particularly 

bright due to the 4 copies of GFP in the homozygous line (Goto et al., 2001). Herein, 

the results of the ground based proton irradiation experiments are presented. The 

animals were irradiated at different developmental stages and the Alexa Fluor E.coli 

Phagocytosis Assay was performed at four time points after exposure. Hemocytes 

extracted from 3rd instar larvae were infected with dead Alexa Fluor 594-labelled 

Escherichia coli bacteria from Invitrogen and the respective activity and amount of 

phagocytosing cells was analysed (3.7.4). Remaining external bacteria were 

quenched with the presents of Trypan Blue (Fig 4.24.).  

 

 
 

Figure 4.24. This image shows extracted hemocytes from HML-larvae expressing the 
green fluorescence protein GFP. Only engulfed red Alexa Fluor 594 labelled bacteria are 
shown within the blood cells, since the external cells were quenched with Trypan Blue. 

 
 

The first question addressed with this assay was: How many hemocytes contain 

engulfed E.coli bacteria with respect to irradiation level as well as hours after 

exposure? The absolute number of hemocytes with E.coli bacteria was compared to 

the number of “empty” hemocytes and the ratio calculated. Each time the assay was 

performed, hemocytes were inoculated with E.coli bacteria for 5, 25, and 45 minutes 

and the level of uptake was analysed for each inoculation period. The assay was 
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carried out at 4 time points after irradiation, at 2 hours, 14 hours, 35 hours and 57 

hours. Due to time limitations the assay could not be repeated at another irradiation 

run resulting in the lack of error bars. Still, the presented data show two interesting 

trends helping to understand a potential connection between apoptosis and immune 

system function after irradiation.  

At 2 hours after irradiation the number of phagocytosing hemocytes is relatively 

constant, except for a slightly decreased activity at the 10 Gy level and 5 minutes of 

E.coli inoculation (Fig. 4.25.). Due to a technical failure of the irradiation facility the 

40 and 60 Gy exposure levels for the 2 hour time point could not be completed. 
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Figure 4.25. 2 hour time point. Number of hemocytes containing engulfed bacteria two 
hours after irradiation exposure. For each irradiation level 0, 10, 20, and 30 Gy, the 
hemocytes were inoculated with E.coli bacteria for 5, 25 and 45 min resulting in an 
increased level of “engulfing” hemocytes, showing the time course of the reaction to a 
bacterial infection. 

 
 

At 14 hours after irradiation, the assay was repeated and the data presented in Fig. 

4.26. Phagocytosis activity seems to be constant at 0, 10, 20 and 30 Gy exposures, 

similar to the results of the 2 hour time point. Only at 40 Gy larvae show a decreased 

number of “active” hemocytes at the 5-minute incubation indicating a possible 

delayed activation response, since the overall number of hemocytes did not 

decrease (data not shown). This decrease is recovered at the 25 and 45 min 

inoculation time points at 40 Gy. At 60 Gy and 45 min of inoculation with E.coli, the 

number of  hemocytes containing bacterial cells after 45 minutes decreases below 

the 25 and 45 min inoculation time point. Further investigation is needed to interpret 

this last effect.   
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Figure 4.26. 14 hour time point. Number of hemocytes containing engulfed bacteria 14 
hours after irradiation exposure. For each irradiation level 0, 10, 20, 30, 40 and 60 Gy, the 
hemocytes were inoculated with E.coli bacteria for 5, 25 and 45 min resulting in an 
increasing level of “engulfing” hemocytes, showing the time course of the reaction to a 
bacterial infection. 

 

 

35 hours after irradiation, again, hemocytes from 3rd instar larvae were extracted and 

inoculated with bacteria. It is important to point out that these animals were irradiated 

as 2nd instar larvae and then allowed to develop, so they would be 3rd instar larvae 

for this time point (Tab. 3.1., Irradiation preparation and setup). The difference in age 

and therefore developmental stage could possibly influence the receptivity to 

irradiation treatment and the rate of recovery to irradiation damage. Fig. 4.27. shows 

that the overall phagocytosis rate after 45 min of inoculation with bacteria remains 

constant in all irradiation levels, besides a slight decrease at 60 Gy. However, after 

25 min of inoculation larvae exposed to 20 Gy show a decrease in hemocyte activity. 

As well, the 5 min inoculation shows decrease in activity at 10, 20 and 30 Gy. Taken 

together this data suggests a negative effect on hemocytes at the low irradiation 

levels, but also a recovery and possible activation effect at the 40 and 60 Gy level.  
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Figure 4.27. 35 hour time point. Number of hemocytes containing engulfed bacteria 35 
hours after irradiation exposure. For each irradiation level 0, 10, 20, 30, 40 and 60 Gy, the 
hemocytes were inoculated with E.coli bacteria for 5, 25 and 45 min resulting in an 
increasing level of “engulfing” hemocytes, showing the time course of the reaction to a 
bacterial infection. 

 

As previously explained for the 35 hour time point, also the larvae used for the 57 

hour time point could show an altered receptivity to proton irradiation due to their 

developmental stage during exposure. For this time point 1st instar larvae were 

irradiated and subsequently allowed to develop to 3rd instar larvae, which took about 

57 hours (Tab. 3.1.). At 45 min of inoculation a decrease in activity at 20 and 30 Gy 

is observed but also a recovery effect at 40 and 60 Gy. At 25 min inoculation the 

decreased activity is at its lowest point at 30 Gy but also recovers completely at 40 

and 60 Gy. Similar trends are recognisable for the 5 min inoculation time points. 
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Figure 4.28. 57 hour time point. Number of hemocytes containing engulfed bacteria 57 
hours after irradiation exposure. For each irradiation level 0, 10, 20, 30, 40 and 60 Gy, the 
hemocytes were inoculated with E.coli bacteria for 5, 25 and 45 min resulting in an 
increasing level of “engulfing” hemocytes, showing the time course of the reaction to a 
bacterial infection. 
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Two interesting trends have been observed in this first experiment set up. First, 

ionising radiation can negatively influences hemocyte activity, but is depending on 

the developmental stage of the embryo during irradiation as well as the recovery time 

of the embryo afterwards. For instance, the 2 hour time point (Fig. 4.25.) shows only 

a slight decrease in activity at 10 Gy exposure, while the 14 hour time point (Fig. 

4.26.) shows a significant decrease at 40 and 60 Gy. Second, a positive recovery 

effect of decreased hemocyte activity was observed at the high exposure levels in 

the 35 and 57 hours measurements after irradiation (Fig.4.27; 4.28.). It could be 

possible that a certain level of proton treatment elevates the production or activity of 

hemocytes. As well, it might be possible that the damaged cells produced by 40 and 

60 Gy treatments in the 35 and 57 hours samples, trigger hemocytes to remove 

these damaged cells from the system. This activated state subsequently helps in the 

faster removal of bacterial cells from the system. 

 

The second question addressed with the Phagocytosis Assay was: How many 

bacteria were engulfed per individual hemocyte cell with respect to irradiation level 

as well as hours after exposure? This analysis should investigate, if single hemocyte 

cells are damaged by proton irradiation in way, which would limit their ability to 

function as efficiently as in untreated controls. Even though the overall number of 

phagocytosing cells might not change in a sample (investigated in the first part of the 

experiment = first question), the activity of single cells could still be decreased, 

showing additional effects of irradiation on the hemocytes. For this analysis, each 

single GFP-labelled hemocyte cell imaged with a fluorescence microscope was 

examined and the number of engulfed bacteria per cell was determined. Since 

bacterial cells tend to accumulate closely together in a hemocyte, an average 

bacterial size of 0,624 µm² was estimated to calculate an absolute number of 

bacteria per hemocyte cell.  
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2 hours after irradiation exposure the hemocytes of 3rd instar larvae were inoculated 

with E.coli bacteria for 5, 25 and 45 min (Fig. 4.29.). As explained above, due to a 

technical failure of the facility the 40 and 60 Gy levels could not be conducted for the 

2 hour time point. After 45 min of inoculation the number of bacteria per hemocyte 

seems to be constant. As well, after 5 min of inoculation fluctuation is minor. 

Nevertheless the 25 min inoculation time point shows an elevated number of E.coli 

cells per hemocyte at 10 and 20 Gy, indicating a possible activating effect of low 

level proton irradiation. At 30 Gy this effect is not observed anymore.   
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Figure 4.29. 2 hour time point. Number of bacteria per hemocyte 2 hours after irradiation 
exposure. For each irradiation level 0, 10, 20, 30, 40 and 60 Gy, the hemocytes were 
inoculated with E.coli bacteria for 5, 25 and 45 min resulting in an increasing level of 
engulfed bacteria per hemocyte, showing the time course of the reaction to a bacterial 
infection. 
 

 

At 14 hours after irradiation bacteria per hemocyte numbers were also calculated for 

40 and 60 Gy levels. The 45 min inoculation (Fig. 4.30.) time point shows fluctuation 

with increasing irradiation exposure. A decreased activity at 10 Gy is recovered with 

an increased activity at 20 Gy. At 30 and 40 Gy the levels back at the 0 Gy control 

but the 60 Gy time point shows a strong decreased ability of hemocytes to take up 

bacterial cells. As well, the 25 min inoculation shows fluctuations with an activating 

trend for low and a decreasing trend towards the high irradiation levels. Similar 

results are observed for the 5 min inoculation. These larvae were at the early 3rd 

instar stage when exposed to proton irradiation. 
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Figure 4.30. 14 hour time point. Number of bacteria per hemocyte 14 hours after 
irradiation exposure. For each irradiation level 0, 10, 20, 30, 40 and 60 Gy, the hemocytes 
were inoculated with E.coli bacteria for 5, 25 and 45 min resulting in an increasing level of 
engulfed bacteria per hemocyte, showing the time course of the reaction to a bacterial 
infection. 

 

 

 

The hemocyte activity 35 hours after irradiation is presented in Fig. 4.31. At 0, 10 and 

20 Gy the number of bacterial cells per hemocyte seems to be relatively constant. At 

30 Gy an activating effect after 25 min of inoculation is observed but not seen after 

45 min of inoculation. Both the 40 and 60 Gy exposed larvae show and elevated 

number of bacterial cells per hemocytes in all their inoculation time points compared 

to the 0 Gy control. As already explained before, the larval developmental stage 

could influence the results and need to be considered for interpretation. The 3rd instar 

larvae used for the 35 hour time point, were 2nd instar larvae during irradiation 

treatment (Tab. 3.1.). 



68 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

0 10 20 30 40 60

Gy

B
ac

te
ria

/c
el

l

5min

25min

45min

 
Figure 4.31. 35 hour time point Number of bacteria per hemocyte 35 hours after 
irradiation exposure. For each irradiation level 0, 10, 20, 30, 40 and 60 Gy, the hemocytes 
were inoculated with E.coli bacteria for 5, 25 and 45 min resulting in an increasing level of 
engulfed bacteria per hemocyte, showing the time course of the reaction to a bacterial 
infection. 

 

 

57 hours after only the 10 Gy time point overall resembles the results of the 0 Gy 

control (Fig. 4.32.). The 45 min inoculation time point shows a decreasing trend at 

the low irradiation levels until 30 Gy. At 40 and 60 Gy hemocytes are able again to 

take up the same number of bacteria per hemocyte as in the 0 Gy control and even 

more. After 25 min inoculation the activating trend is also observed in the 40 and 60 

Gy levels as in the 45 min inoculation. Only the 20 Gy time point shows additional 

activation. Already 5 min inoculation resembles this overall activating trend at 40 and 

60 Gy. As explained for the 35 hour time point the larvae needed to be at an earlier 

developmental stage during irradiation, so they would be at the 3rd instar larvae stage 

57 hours after the treatment. Therefore, these larvae were exposed at 1st instar 

stage. 
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Figure 4.32. 57 hour time point. Number of bacteria per hemocyte 57 hours after 
irradiation exposure. For each irradiation level 0, 10, 20, 30, 40 and 60 Gy, the hemocytes 
were inoculated with E.coli bacteria for 5, 25 and 45 min resulting in an increasing level of 
engulfed bacteria per hemocyte, showing the time course of the reaction to a bacterial 
infection. 

 

The decreasing, recovering and activating effects of proton irradiation on hemocytes 

was observed again, similar to the results seen in the first part of the experiment. In 

contrast, the 2 and 14 hour time points (Fig. 4.29.; 4.30.) show increased trends in 

hemocyte activity at low levels of exposure. Still, at 40 and 60 Gy at the 14 hour time 

point the activity decreases. Comparable to the results of the first analysis is the 

recovery effect observed in the 35 and 57 hour time point (Fig. 4.31.; 4.32.). Both 

show an elevated activity at 40 and 60 Gy exposure. It has to be pointed out again 

that these effects could either result from the developmental stage of the larvae 

during irradiation or for instance to effects like hemocyte activation in response to the 

removal of radiation damaged cells. 

 

4.4.2. Cellsize  
 

As part of the image analysis for the Phagocytosis Assay the cell size of all 

hemocytes was measured following flight and irradiation. Only the irradiation data is 

presented herein (Fig. 4.33.), since the flight data has been collected by a colleague 

and has not been published to date. At 4 time points, 2, 14, 35, and 57 hours after 

proton irradiation exposure, the diameter of the hemocytes extracted from 3rd instar 

larvae was measured, averaged and plotted together with the standard error. Due to 

a technical failure of the irradiation facility the 40 and 60 Gy exposure for the first 

time point could not be conducted. The hemocyte size two hours after irradiations 
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remains constant throughout the exposure levels. 14 hours after irradiation the 

hemocyte size slightly increases at 40 and 60 Gy compared to the lower exposure 

levels. A similar trend as being observed in the previous time point is also 

represented in the 35 hour examination. In here, the increase of hemocyte size 

already starts at 20 and 30 Gy. The last time point, 57 hours after irradiation, shows 

an increasing trend in cell size, which decreases at 40 and 60 Gy. 
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Figure 4.33. Mean hemocyte cell-diameter at different time points following irradiation. At 
4 time points, 2, 14, 35 and 57 hours after proton irradiation exposure, the diameter of the 
hemocytes extracted from 3rd instar larvae was measured, averaged and plotted with the 
respective standard errors. 

 
It is possible that the observed changes in cell size could influence the activity 

of hemocytes phagocytosing bacteria, but further investigations will be necessary to 

confirm this theory. 

 
4.4.3. The Clearance assay 
 

To further investigate phagocytosis changes the Clearance Assay (Fahlen et 

al., 2001; Klein et al., 2000; Penheiter et al., 1997; Brandt et al., 2004) was 

performed as described in 3.7.3. Adult female flies that were irradiated as 3rd instar 

larvae were infected with a specific number of streptomycin resistant E.coli HB101 

bacteria using the picospritzer system. At three time points after infection, 3, 24, and 

72 hours, the remaining number of vital bacteria was evaluated by homogenizing 
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three flies and plating the diluted extract on streptomycin containing agar plates. The 

number of colonies was counted the following day and the efficiency of the 

immunological reaction was visualized and calculated (Fig. 4.34.). Since this assay 

has never been performed following proton irradiation, a first test run (Fig. 4.34. left) 

containing only low sample numbers was conducted, showing no standard error. A 

later repeat with lower irradiation intensities and higher animal numbers (Fig. 4.34. 

right) was successful as well, but showed fluctuations resulting in high error bars.  
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Figure 4.34. Clearance Assay data from first (left) and second (right) run. Adult flies were 
infected with E.coli bacteria and incubated. After 3 (blue), 24 (red) and 72 (yellow) hours 
after infection the number of vital bacteria was determined and plotted as bacteria per fly. 
The X-axis shows the different Gy levels of the exposed animals. 

 
 

The flies survived the irradiation and infection treatment for the necessary amount of 

time period and showed a decreasing trend in number of surviving bacterial cells with 

respect to increased intensities of irradiation. Still, further repeats will need to be 

conducted to reduce the high standard errors (Fig. 3.34. right). If this trend is confirm, 

the effect could consequently mean that the immune system clears the bacterial cells 

faster out of the system, indicating an increased activation due to the irradiation 

treatment.  
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V. DISCUSSION 
 

There is evidence that space flight related factors affect cells, tissues and 

organs in astronauts resulting in muscle atropy, bone loss, immune system changes 

and other medical issues (Moore and Oser, 1996; Nicogosian, et al., 1994). As well, 

behaviour and virulence factors of microorganisms adapt to space flight conditions 

and may cause severe medical issues upon an infection in space. Manned long 

duration space missions leading away from Earth have to be prepared carefully by 

studying all potential threats using model organisms and other available research 

methods (Borchers et al., 2002; Sonnenfeld 2003).  

To study the effects of space flight and space radiation on organisms, several 

hundred Drosophila melanogaster flies were sent to space as part of the FIT 

experiment onboard a 12-day Space Shuttle mission. Due to strictly limited astronaut 

time, the only human involvement comprised of switching the food trays between the 

loaded and empty containers three days into the mission. This act separated the 

developing eggs that had been laid during the first days of the mission from their 

parental generation, resulting in new flies that partly or completely developed in 

space. Due to further technical restrictions none of the adult flies, larvae or embryos 

were fixed in space, but returned to Earth, and depending on the respective assay, 

either were treated immediately or kept until developed to the desired stage.  

Another part of the FIT experiment included ground based irradiation studies, 

simulating space radiation exposure. Drosophila melanogaster flies were exposed to 

proton radiation at the Loma Linda University Medical Center in California. Radiation 

intensities ranged from 1 to 60 Gy covering the amount of exposure that would be 

experienced by astronauts on long duration missions to the Moon, Mars and beyond, 

as well as during solar flares or other increased radiation events. 

The work conducted for this diploma thesis focused on apoptosis and immune 

system functions in either space flown or proton irradiated Drosophila flies. The link 

between these two important cellular mechanisms consists of the need to remove 

dead apoptotic cells by phagocytosis. This final step in the cell-death programme 

protects tissues from exposure to the toxic contents of dying cells and also serves to 

prevent further tissue damage by stimulating production of anti-inflammatory 

cytokines and chemokines. The clearance of apoptotic-cell corpses is important for 

normal development during embryogenesis, the maintenance of normal tissue 



73 

integrity and function, and the resolution of inflammation (deCathelineau and 

Henson, 2003). 

Gene expression studies conducted with microarrays and quantitative Real-

Time-PCR showed changes in three genes, – Minibrain, Wengen and Morgue – 

which are involved in the apoptotic mechanism and immune system, following space 

flight and bacterial infection. Minibrain is involved in a variety of cellular processes 

ranging from regulating key developmental and cellular processes such as 

neurogenesis (Fischbach and Heisenberg, 1984) to cell proliferation, cytokinesis, and 

induction of apoptosis. Wengen, a member of the tumor necrosis factor (TNF) 

receptor family binds Eiger, which is expressed during embryogenesis and in 

response to genotoxic stress. Downstream, Wengen physically interacts with dTraf2, 

which is involved in activation of Dif and Relish, but also activates the JNK pathway 

resulting in initiation of apoptosis (Kauppila et al., 2003). Morgue serves as an 

enhancer of grim-reaper-induced apoptosis by regulating ubiquitiniation processes. 

(Wing et al., 2002). 

To date only the first set of flight and ground samples was tested for Minibrain, 

Wengen and Morgue gene expression changes. This first set of data still gives an 

idea about potential difference in gene expression between flight and ground 

samples triggered by the bacterial infection. Only day 1 flies (Fig. 4.2.) of the flight 

sample show a decrease in Minibrain expression, which has also been observed in 

the apoptosis positive controls of Minibrain (Fig. 4.1.). The ground control maintains 

a positive expression showing a clear difference between flight and ground. Except 

for the day 1 in the flight sample there is no obvious gene expression change 

pointing towards an apoptosis initiation, as seen in the positive controls. Since 

Minibrain is involved in a variety of cellular processes (2.2.2.), a change in 

expression might not primarily be due to an altered apoptosis rate or reaction to the 

infection but also be triggered by other stress factors. This mix of inputs might be 

responsible that no clear pattern can be seen in Minibrain gene expression. Similar 

problems for data interpretation occurred with the genes Morgue and Wengen. Time 

points 0 at day 1 (Fig. 4.6.) and day 3 (Fig.4.7.) of Morgue show the only strong 

evidence for Morgue reacting in combination with apoptosis. Wengen shows a 

positive fold change in the flight sample of day 1 at time point 0 (Fig. 4.10.) indicating 

a possible involvement of apoptosis elements. Further repeats of the experiment are 

necessary for better interpretation of the data. 
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Another factor to be considered causing difficulties to interpret the data is the 

different developmental stages of the larvae after the space flight. Only day one flies 

completely developed in space, but they were of mixed age, which further influenced 

gene expression. Same aged day three and five flies spent parts or complete time of 

their pupae stage on Earth, which means a drastic change in environmental 

conditions during development. These variations might explain different receptivity of 

Drosophila to external factors depending on their developmental stage. 

The possibly elevated apoptosis activation level was differently investigated by 

measuring caspase cleavage speed in 3rd instar larvae. The initiator caspase Dronc 

contains a CARD domain able to digest a substrate at the VDVAD protein sequence. 

As well, substrates for initiator caspase Dredd and executioner caspases Drice and 

Dcp-1 were cleaved faster than ground control samples (Fig. 4.18.; Tab. 4.4.). As 

explained in 2.2.1., caspase activation in Drosophila involves initiator caspases, 

which activate the executioner caspases. The latter group of proteases are the actual 

effector enzymes responsible for the break down process. Since substrates for 

initiator (Dronc, Dredd) and effector caspases (Drice, Dcp-1) were digested at an 

elevated level in the flight compared to the ground sample, it is reasonable to 

assume that the apoptotic machinery seems to be in an activated state due to the 

space flight conditions. In Fig. 5.1., the apoptotic pathways and their effector proteins 

in C.elegans, D. melanogaster and Mammals are being compared. 
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Figure 5.1.. Comparison of the apoptotic pathways of C.elegans (a), D.melanogaster (b) 
and Mammals (c).Functional homologues are represented by the same colour. CED, cell-
death abnormal; EGL, egg-laying defective; DRP, dynamin-related protein; Rpr, Reaper; 
Hid, Head involution defective; dTraf1/2, Drosophila tumor-necrosis-factor-receptor-
associated-factors 1 or 2; BH3, Bcl-2 homology-3 (Kuranaga 2007). 

 

Space radiation is the most dangerous environmental threat causing many of 

the observed problems for long duration space flight (Ohnishi and Ohnishi, 2004). So 

far, mechanical shielding of space ships is only effective to a certain level. Medical 

countermeasures may consist of medications to prevent or lessen the effects of 

space radiation damage for instance with dietary adaptations (Kennedy and Todd, 

2003). In case these countermeasures are not successful, it is important to develop 

therapies to treat the negative effects caused by radiation exposure. 

Ground based studies of the FIT experiment included proton irradiation 

studies of Drosophila examining the effects on the animals’ health, organs and cells. 

In this thesis irradiation effects on apoptosis and immune system function in 

particular were studied. First, a behavioural assay, the Climbing Assay, developed in 

our laboratory, indicated successful proton exposure by showing decreased motility 

of flies being irradiated (Fig. 4.4.3.). These effects might be caused by progressive 

degeneration of neuronal and/or neuromuscular junctions. Application of the Tunel 

assay (4.3.2.) on developing 3rd instar larvae illustrated an elevated level of DNA 

degradation with respect to increased proton exposure and developmental stage of 

the animals indicating an elevated level of apoptosis (Fig.4.22). The expression of 
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the tumor suppressor protein p53 in proton irradiated Drosophila embryos was also 

shown in accordance with previously publishes p53 expression in response to γ-

radiation exposure (Sogame et al., 2003). A p53 radiation responsive element in front 

of a GFP protein (Brodsky et al. 2000) triggered the expression of GFP with 

increasing irradiation levels (Fig. 4.23.).  

Next, phagocytosis activity of Drosophila blood cells, or hemocytes, in response to 

proton irradiation was measured in 3rd instar larvae with the Alexa Fluor E.coli 

Phagocytosis Assay (4.4.1.) and in adults with the Clearance Assay (4.4.3.). The 

Alexa Fluor E.coli Phagocytosis Assay analysis, first, comprised of a comparison of 

the number of hemocytes containing engulfed bacteria with “empty” cells. Second, 

the number of engulfed bacteria per single hemocyte cell was investigated. The first 

analysis showed a decreased activity at a certain irradiation level in all samples. 

Interestingly, in the 35 and 57 hour time point these decreases were reverted to 

normal and increased activity, respectively, at the highest exposure levels (Fig. 4.25; 

4.26.; 4.27; 4.28.). These effects might be caused by the increasing level of DNA 

damage, which subsequently triggers the immune systems’ phagocytosing cells. At 

low level irradiation this pre-infectious activation was not strong enough, but at high 

intensities might result in the observed recovery effect. Investigations of the 

phagocytosis capacity of single hemocytes confirmed this possible triggering effect 

by apoptotic cells. At 35 and 57 hours after irradiation hemocytes were capable of 

taking up more bacteria when irradiated with 40 and 60 Gy compared to non-

exposed animals (Fig. 4.29.; 4.30.; 4.31.; 4.32.). The various profiles of hemocyte 

activity and efficiency following irradiation treatment are very likely influenced by the 

developmental stage of the larvae during irradiation. As explained in 3.3., the larvae 

for the later time points must be younger, 2nd or 1st larvae, so they are 3rd larvae at 

the time when the assay is performed. 

As part of the Alexa Fluor E.coli Phagocytosis Assay the cell diameter of hemocytes 

was determined (4.4.2.). An increasing trend with higher irradiation exposure was 

observed, but it is not known to date if difference in cell size has any influence on 

hemocyte functionality or efficiency (Fig. 4.33.).  

The Clearance Assay (4.4.3.) showed a trend towards an elevated level of 

immune system activity following radiation exposure, and bacterial cells were 

removed faster than in the untreated control sample (Fig. 4.34.). Although these 

results were consistent with the trends observed in the Alexa Fluor E.coli 
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Phagocytosis Assay, further investigations are needed to understand the details and 

connection between these results. Firstly, the Clearance Assay showed elevated 

immune system activity at lower irradiation exposure than the Alexa Fluor E.coli 

Phagocytosis Assay and secondly, the exposed animals were at different 

developmental stages, adults for the Clearance Assay and 3rd instar larvae for the 

Alexa Fluor E.coli Phagocytosis Assay. 

In conclusion, an increased trend in apoptotic activity was observed after space 

flight and in flies exposed to proton irradiation. It is hypothesized that the increased 

apoptosis in flight is caused by an elevated radiation level in space compared to the 

Earth’s surface. Ground based irradiation experiments also showed that immune 

system function was altered compared to untreated samples, which might be linked 

to an elevated number of apoptotic cells, which need to be removed from the system 

by activated hemocytes. Receptivity to proton radiation varied with respect to the 

developmental stage of the flies during exposure.  

Similar space flown experiments to study the effects of the space environment on 

organisms were conducted with Caenorhabditis elegans, for instance during the ICE 

FIRST mission (Selch et al., submitted). Apoptosis in returned worms was not altered 

(Higashitani et al., 2005) and immune system functions are still being analysed. Still, 

several observed gene expression changes were regulated by Insulin-mediated 

pathways, which are known to interact with autophagy indicating possible undetected 

changes of programmed cell death. 

Future experiments onboard the almost finished International Space Station 

will involve astronauts with backgrounds in molecular biology and similar areas of 

expertise capable of conducting more sophisticated research in space to pinpoint, 

which space environment property causes what response in organisms and 

consequently humans. So far, no life threatening medical incidents have occurred, 

that would have led to an abortion of an ISS or Space Shuttle mission, but the fact 

that future mission to the Moon and Mars will not be able to be aborted easily needs 

the development of respective countermeasures against infections or other diseases, 

so astronauts will be able to cure themselves without threatening mission success. 
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