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We study the correlation energy, the effective anisotropy parameter, and quantum fluctuations of the pseu-
dospin magnetization in bilayer quantum Hall systems at total filling factorn51 by means of exact diagonal-
izations of the Hamiltonian in the spherical geometry. We compare exact-diagonalization results for the
ground-state energy with finite-size Hartree-Fock values. In the ordered ground-state phase at small layer
separations the Hartree-Fock data compare reasonably with the exact results. Above the critical layer separa-
tion, however, the Hartree-Fock findings still predict an increase in the ground-state energy, while the exact
ground-state energy is in this regime independent of the layer separation indicating the decoupling of layers
and the loss of spontaneous phase coherence between them. We also find accurate values for the pseudospin
anisotropy constant, whose dependence of the layer separation provides another very clear indication for the
strong interlayer correlations in the ordered phase and shows an inflection point at the phase boundary. Finally,
we discuss the possibility of interlayer correlations in biased systems even above the phase boundary for the
balanced case. Certain features of our data for the pseudospin anisotropy constant as well as for quantum
fluctuations of the pseudospin magnetization are not inconsistent with the occurrence of this effect. However,
it appears to be rather weak at least in the limit of vanishing tunneling amplitude.

DOI: 10.1103/PhysRevB.67.035328 PACS number~s!: 73.43.Cd, 73.43.Nq
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I. INTRODUCTION

Quantum Hall ferromagnets are a rich and fascinat
field of solid-state physics.1–3 They can be realized in term
of the spins of electrons confined to layers in a strong p
pendicular magnetic field, or in terms of a pseudospin giv
by some additional discrete degree of freedom such as
layer spin in bilayer systems.4–11 Bilayer quantum Hall sys-
tems at total filling factorn51 have attracted particular in
terest recently due to spectacular results by Spielm
et al.,12,13 who studied tunneling transport across the lay
in samples with very small single-particle tunneling ga
These experiments have stimulated a large number of t
retical efforts toward their explanation, and also more g
eral studies of such bilayer quantum Hall systems.14–33

The main finding of Ref. 12 is a pronounced peak in t
differential tunneling conductance, which evolves if the lay
separationd in units of the magnetic length, is decreased
below a critical value. This critical ratiod/, agrees closely
with the boundary between a ground-state phase suppo
quantized Hall transport and a disordered phase as e
lished in earlier experiments by Murphyet al.11 using double
well samples of similar geometry. Therefore, these two
servations can be assumed to be manifestations of one
the same quantum phase transition. Moreover, recent ex
diagonalization studies17 on bilayers atn51 have revealed a
quantum phase transition, very likely to be of first ord
between a phase with strong interlayer correlations t
phase with weak interlayer correlations. The position of t
transition agrees quantitatively with the critical value fou
by Spielmanet al.

In the ordered phase at smalld/, the strong interlayer
correlations are dominated by thespontaneous interlaye
phase coherencebetween the layers. This keyword describ
0163-1829/2003/67~3!/035328~7!/$20.00 67 0353
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the fact that in the ground-state of such a system electr
predominantly occupy single-particle states in the low
Landau level, which are symmetric linear combination
states in both layers. This type of single-particle states
preferred if a finite tunneling amplitude is present. Howev
by a large body of experimental and theoretical work,4–33

this phenomenon is assumed to be a spontaneous symm
breaking, i.e., it remains even in the limit of vanishing tu
neling amplitude. The latter effect is clearly a many-bo
phenomenon.

In the present work, we report on further exac
diagonalization results in quantum Hall bilayers at total fi
ing factorn51. Our studies include the effective pseudosp
anisotropy parameter, quantum fluctuations of the ps
dospin magnetization, and the ground-state energy. E
cially the last quantity shows very clearly the occurrence
the quantum phase transition and the decoupling of the la
above the criticald/,, where the spontaneous interlay
phase coherence is lost. Moreover, we study the effects
bias potential applied to the layers. In particular, we addr
the question of possible interlayer correlations in biased s
tems even above the phase boundary of the balanced cas
effect which was predicted recently by Hanna20 and by
Joglekar and MacDonald23 based on time-dependent Hartre
Fock calculations. Some features of our data are not inc
sistent with this prediction. However, this effect appears
be rather weak at least in the limit of vanishing tunneli
amplitude and not too large biasing, consistent with the p
dictions of Refs. 20,23.

Our numerics are performed within the spheric
geometry.34 This geometry enables to obtain closed expr
sions for the Hartree-Fock ground-state energy even in fi
systems. This quantity can be compared with exa
diagonalization results to infer the correlation energy. Mo
©2003 The American Physical Society28-1
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JOHN SCHLIEMANN PHYSICAL REVIEW B67, 035328 ~2003!
over, since the sphere is free of boundaries, this geom
allows to take into account a neutralizing background in
nite systems without any ambiguity.

This paper is organized as follows. In Sec. II, we descr
our finite-size Hartree-Fock calculations of the ground-st
energy in the spherical geometry. In Sec. III, we present
exact-diagonalization results, compare them with Hartr
Fock theory, and perform a detailed analysis of bias poten
effects. We close with conclusions in Sec. IV.

II. FINITE-SIZE HARTREE-FOCK THEORY IN THE
SPHERICAL GEOMETRY

In this section, we present details of our finite-si
Hartree-Fock calculations in the spherical geometry.34 Simi-
lar results for the case of bilayers at filling factorn52 were
already briefly discussed in Ref. 35. The notation follows
discussion of then52 system in Ref. 36. The technical a
vantage of the spherical geometry used here lies in the
that it allows to obtain closed results for electron pair dis
bution function even in finite systems.

We consider a gas of Coulomb-interacting electrons i
quantum Hall bilayer system at total filling factorn51. We
assume a vanishing amplitude for electron tunneling betw
the layers, consistent with the experimental situation in R
12. The layer degree of freedom is described in the us
pseudospin language,1 where the pseudospin operator
each electron is given bytW /2 with tW being the vector of Paul
matrices. Thez componenttz/2 measures the difference i
occupation between the two layers, whiletx/2 describes tun-
neling between them. The total pseudospin of all electron
denoted byTW .

Differently from the pseudospin, the true electron sp
are assumed to be fully aligned along the magnetic fi
perpendicular to the layers; therefore, an inessential Zee
term in the Hamiltonian is, along with the constant cyclotr
energy, neglected. In Ref. 17 a finite width of the quant
wells forming the bilayer system was taken into account
order to make quantitative contact to the experiments of R
12. However, a finite well width mainly changes the positi
of the phase transition but does not alter any qualitative
ture. In the present work, we therefore concentrate for s
plicity on the case of zero well width. For this case, t
critical layer separation in the limit of vanishing tunnelin
amplitude was found by exact-diagonalization calculation17

to bed51.3,. This value holds in the thermodynamic limi
but is remarkably rapidly approached in finite-size system17

For instance, the phase boundary in a system of just 12 e
trons deviates from the infinite-volume value by just a fe
percent.

In the gauge commonly used in the spherical geomet34

the single-particle wave functions in the lowest Landau le
have the form

^rWum&5F Nf11

2p,2Nf
S Nf

Nf

2
1mD G 1/2

3FcosS q

2 Deiw/2GNf/21mFsinS q

2 De2 iw/2GNf/22m

,

~1!
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whereq, w are the usual angular coordinates of the locat
rW on the sphere with radiusurWu5,ANf/2. mP$2Nf/2,
2Nf/211, . . . ,Nf/2% labels the different angular momen
tum states, andNf is the number of flux quanta penetratin
the sphere. The Hartree-Fock ansatz for a spatially homo
neous state ofN5Nf11 electrons is

uC&5 )
m52

Nf

2

Nf 2S (
sP$T,B%

zscms
1 D u0&, ~2!

whereu0& is the fermionic vacuum.cms
1 , sP$T,B%, creates

an electron in the top/bottom layer in angular moment
statem, and zs are the components of a normalized tw
spinor describing the layer degree of freedom. From t
state we obtain the pair distribution functions

g~rW12rW2!5^Cu(
iÞ j

@d~rW12rW i
ˆ !d~rW22rW j

ˆ !#uC&

5S Nf11

2p,2Nf
D 2F12S 12

urW12rW2u2

2,2Nf
D NfG , ~3!

h~rW12rW2!5^Cu(
iÞ j

@d~rW12rW i
ˆ !t i

zd~rW22rW j
ˆ !t j

z#uC&

5S Nf11

2p,2Nf
D 2

~^zutzuz&!2

3F12S 12
urW12rW2u2

2,2Nf
D NfG . ~4!

Here, the indicesi , j refer to electrons and the Pauli matric
tz act on the layer spins. The expressionurW12rW2u is the chord
distance on the sphere. Note that in the limit of large nu
bers of flux quantaNf one obtains from Eq.~3! the well-
known expression for the infinite system in planar geome

lim
Nf→`

g~r !5S 1

2p,2D 2

~12e2r 2/2,2
!. ~5!

To calculate the energy of the Coulomb interaction it is co
venient to consider the linear combinationV65(VS
6VD)/2 of the interactionsVS andVD between electrons in
the same layer and different layers, respectively.36 Using the
above pair distribution functions one obtains for the ene
per particle

«HF5«el
HF2

1

2
B5

1

2
@2F11~^zutzuz&!2~H2F2!#. ~6!

Here,«el
HF is the Hartree-Fock energy of the interaction b

tween electrons. The quantity

B5
e2

e,

Nf11

2ANf/2
F12

1

2ANf/2

d

,
1S 11

1

Nf

d2

2,2D 1/2G
~7!
8-2
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arises from the direct~Hartree! contribution ofV1 and can-
cels against a neutralizing homogeneous background of
the total electron charge which is present in each layer
ensures charge neutrality. In this work we have always s
tracted this term from the ground-state energies consid
here. The quantity

H5
e2

e,

Nf11

2ANf/2
F11

1

2ANf/2

d

,
2S 11

1

Nf

d2

2,2D 1/2G
~8!

stems from the direct term ofV2 , and

F65
e2

e,

Nf11

2A2Nf
F I ~1!6S 1

a D Nf11/2

I ~a!G ~9!

represent the exchange~Fock! contributions fromV6 with

I ~a!5E
0

a

dx
xNf

A12x
a5

1

11
1

Nf

d2

2,2

. ~10!

In the above equations,e2/(e,) is the Coulomb energy scal
with (2e) being the electron charge ande the dielectric
constant of the semiconductor material. Note that all
above contributions to«HF depend on the layer separatio
d/, as well as on the number of flux quantaNf , i.e., on the
system size.

In the Hartree-Fock ground-state of an unbiased sys
all spins lie in thexy plane of the pseudospin space, i.
^zutzuz&50, and we end up with

«0
HF52

1

2
F1 . ~11!

III. RESULTS

In this section, we report on our results from exact n
merical diagonalizations of the many-body Coulomb Ham
tonian in the spherical geometry.34 In such a system the
ground-state has vanishing total angular momentum34 and,
for unbiased bilayers, the smallest possible value of thz

component of the total pseudospinTW , i.e.,Tz50 for an even
number of electrons anduTzu51/2, otherwise.

A. Ground-state and correlation energy in the unbiased
system

Figure 1 shows the exact and the Hartree-Fock grou
state energy@both in units of the Coulomb energy sca
e2/(e,)] as a function ofd/, for several numbers of elec
tronsN. In both cases, the contribution from the neutralizi
background~7! is subtracted. At zero layer separation, w
recover the case of a quantum Hall monolayer with the la
spin playing the role of the electron spin. Here, the grou
state is the well-known spin-polarizedn51 monolayer
ground-state described exactly by Hartree-Fock theory. In
spherical geometry, the finite-size ground-state energy
particle is given by
03532
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«HF52
e2

e,

22Nf

ANf/2S 2Nf12

Nf11 DNf→`
→

2
e2

«,
Ap

8
, ~12!

with Nf5N21 being the number of flux quanta.
At finite layer separation the Hartree-Fock ground-st

becomes unexact, but provides still a reasonable approx
tion to the exact ground-state energy ifd/, is smaller than
the critical value ofd/,51.3. In other words, the correlatio
energy given by the difference between the exact grou
state energy and the Hartree-Fock value is small. For la
layer separationsd/,*1.3 Hartree-Fock theory still predict
an increase of the ground-state energy with increasing la
separation, while the exact ground-state energy become
dependent ofd/,. The latter result is again a particular
clear signature of the decoupling of the two layers and
loss of spontaneous phase coherence between them a
the critical layer separation. The discrepancy between
exact ground-state energy and the Hartree-Fock result in
disordered phase, i.e., the large correlation energy, sh
that this quantum phase transition is a correlation phen
enon that cannot be described within simple Hartree-F
theory. In the Hartree-Fock ansatz used here all electrons
in the same pseudospin state implementing phase coher
between the layers. This coherence is lost above the cri
d/,, and the system behaves, at least in terms of its grou
state energy, like two decoupled monolayers with filling fa
tor n51/2. Therefore, the failure of the Hartree-Fock theo
might appear as a consequence of the artificial phase co
ence. However, as it is well known, the Hartree-Fock a
proach is generally inadequate to describe quantum H
monolayers atn51/2, which have a very peculiar and high
correlated ground-state.

FIG. 1. The ground-state energy as a function of the layer se
ration in units of the magnetic length for different numbersN of
electrons. The exact diagonalization data is compared with fin
size Hartree-Fock results. In both cases, the contribution from
neutralizing background has been subtracted. In the ordered p
below the critical value ofd/, the results agree reasonably an
coincide for vanishing layer separation. Above the critical lay
separation the exact ground-state energy is independent ofd/, cor-
responding to uncoupledn51/2 monolayers, while Hartree-Foc
theory still predicts an artificial increase in ground-state energy
8-3
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B. The pseudospin anisotropy parameter
and bias potential effects

The difference in the Coulomb interaction for electrons
the same layer and in different layers provides a stro
mechanism balancing the charges between the layers. In
pseudospin language this can be expressed approximate
an effective easy-plane anisotropy contribution9 to the en-
ergy per particle,

«a58p,2b
^Tz&2

N2
, ~13!

introducing an anisotropy parameterb, and^Tz& denotes the
expectation value of thez component of the tota
pseudospin.37 For vanishing tunneling between the layers
considered here this operator represents a good qua
number, and eigenstates can be labeled using their valu
Tz. In this case, the above energy contribution can be view
just as a charging energy of a capacitor formed by the
isolated layers. In the absence of quantum correlations,
for a large system, the anisotropy parameter takes the v

8p,2bcl5
e2

e,

d

,
, ~14!

corresponding to the classical total charging energy ofEc
5N«a5Q2/(2C) with Q52eTz being the charge of the
capacitor,C5eA/(4pd) its capacity, andA52p,2N its
area. In the presence of quantum correlations the effec
anisotropy parameter will deviate from this value for tw
different reasons:~i! Interlayer correlationscan modify the
value of b, and ~ii ! even in the absence of correlationsbe-
tweenthe layers,intralayer correlationscan have an impac
on b if the ground states of the two mutually uncorrelat
layers change nontrivially if electrons are transferred fr
one layer to the other, i.e., ifTz is changed. The latter effec
is independent of the layer separation. Therefore, in the
sence of interlayer correlations and for a given value ofTz,
the contribution to the ground-state energy which depend
the layer separation is just given by a simple classical e
trostatic expression,38 which can be derived similarly as Eq
~7!,

«a
cl58p,2bcl

^Tz&2

N2
, ~15!

with

8p,2bcl5
e2

e,

Nf11

ANf/2
F11

1

2ANf/2

d

,
2S 11

1

Nf

d2

2,2D 1/2G ,

~16!

which converges to the expression~14! for N5Nf11→`.
Thus, if no interlayer correlations are present, the contri
tion to the effective anisotropy parameter with a nontriv
dependence on the layer separation is given by the ab
classical expression, with a possible additional contribut
independent of the layer separation which arises from in
layer quantum effects.
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Let us now analyze the anisotropy parameter in terms
exact-diagonalization results. The lowest states with a gi
value of Tz have vanishing total angular momentum on t
sphere34, i.e., they are spatially homogeneous. Figure
shows the energy of these lowest state in the sector o
given value ofTz as a function ofTz for N514 electrons and
several layer separations. At all layer separations, in the
dered as well as in the disordered phase, the dependen
the energy onTz is, for not too largeTz, parabolic, validating
the phenomenological ansatz~13!.

Figure 3 shows values for 8p,2b obtained from para-
bolic fits of «a(Tz) using TzP$0,1,2,3% for N512 andN
514 electrons as a function ofd/,. If higher values ofTz

are included the quality of the fits considerably decreas

FIG. 2. The energy of the lowest state having a given quan
numberTz as a function of this quantity for various layer separati
in a system ofN514 electrons.Tz50 corresponds to the ground
state of the balanced system at a given layer separation, and
curve is for not too largeTz well described by a parabola.

FIG. 3. The anisotropy parameter 8p,2b obtained from exact-
diagonalization data as a function of the layer separation foN
512 andN514 electrons. Both data sets for this~in the bulk limit!
intensive quantity agree very well and show an inflection point n
the phase transition atd/,'1.3. The corresponding values fo
8p,2bcl @cf. Eq. ~16!# are also shown which describe~up to a
constant! the expected behavior in the absence of interlayer co
lations.
8-4
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CORRELATION ENERGY, QUANTUM PHASE . . . PHYSICAL REVIEW B 67, 035328 ~2003!
We therefore concentrate on the system sizesN512 andN
514, where a sufficient number of moderate values forTz

~as compared to its maximumN/2) are available. We have
also plotted in Fig. 3 the classical electrostatic express
~16! for both systems sizes.

The anisotropy parameterb is in the bulk limit an inten-
sive quantity. Both data sets for 8p,2b shown in Fig. 3 are
nearly identical establishing thatb is only very weakly de-
pendent on the system size for already quite small syst
which are accessible via exact diagonalization techniques
to be expectedb increases with increasing layer separatio
Moreover, it shows an inflection point near the critical val
d/,51.3, which we interpret as a further signature of t
quantum phase transition. Above the inflection point the
isotropy parameterb as obtained from exact-diagonalizatio
data has the same curvature asbcl . Below the inflection
point atd/,'1.3 both data sets differ clearly, in particula
in curvature, which indicates the presence of strong in
layer correlations in this regime. However, we should str
that the concrete form of these deviations from the class
behavior, namely, the occurence of an inflection point an
change in curvature, is the result of the present numer
study and has not been predicted on other theore
grounds.

The results of Sec. III A have established the absenc
interlayer correlations in an unbiased system above the c
cal d/,. If interlayer correlations vanish also in a bias
system~with finite Tz) the anisotropy parameterb found by
exact numerical diagonalizations should be the same asbcl
up to a rigid shift~being independent of the layer separatio!
arising from intralayer effects. As seen in Fig. 3 this is f
d*1.3, to a quite good degree of approximation, but n
perfectly, the case. In particular,bcl increases with increas
ing system size, while the exact-diagonalization values
pear to decrease. The small discrepancy betweenb andbcl
~after subtracting a rigid shift! might, therefore, be seen as a
indication for the presence of interlayer correlations in bia
systems even above the critical layer separation of the
anced system, as predicted recently in Ref. 23. Howeve
so, this effect appears to be rather small, at least in the l
of vanishing tunneling and not too large biasing, consist
with the predictions of Refs. 20,23.

The value forb at d/,51 is by a factor of about 2 large
than the effective anisotropy parameter found recently fr
exact diagonalization studies of a vertical pair of parab
cally confined quantum dots in the quantum Hall regime.25 In
the latter case, this effective anisotropy parameter ag
quite reasonably with results from numerical Hartree-Fo
calculations. On the other hand, the values forb shown in
Fig. 3 agree very reasonably within a discrepancy of l
than 10% with data reported in Ref. 9 for an infinite syste
Those values were obtained from an approximate effect
field theory neglecting correlation effects beyond Hartr
Fock exchange. Therefore, the data of Ref. 9 does not s
an inflection point signalling a ground-state phase transit

C. Quantum fluctuations of the pseudospin magnetization

In Ref. 17 the quantum phase transition between
pseudospin-polarized phase-coherent state and a disord
03532
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ground-state was analyzed by studying the pseudo
magnetization ^Tx& along with their fluctuation (DTx)2

5^(Tx)2&2^Tx&2 as a function of the tunneling gap. Her
we report on results forDTx at zero tunneling as a functio
of d/, in the ground-state within various sectors ofTz.
These states are the absolute ground-state of the system
appropriate bias voltage between the layers.

The ordered phase at small layer separations is chara
ized by large fluctuations of the pseudospin magnetiza
and, therefore, by a large susceptibility of this quantity w
respect to interlayer tunneling.17 At zero tunnelingTz is a
good quantum number, whilêTx&5^Ty&50, and for the
fluctuations it holdsDTx5DTy with DTz50. Figure 4
shows (DTx)2 within the ground-state of several sectors
Tz as a function ofd/, for N514 electrons. At zero laye
separation one has

~DTx!25
1

2 FN

2 S N

2
11D2~Tz!2G , ~17!

and for finite layer separation (DTx)2 decreases for all value
of Tz with increasingd/, to rather small values. This deca
mainly occurs in the vicinity of the critical valued'1.3,. In
the upper right panel (Tz51) yet another transition occurs a
larger layer separations, which appears to be a peculiarit
this system size. Note that the quantityDTx is, on the other
hand, bounded from below by the standard uncertainty r
tion DTxDTy5(DTx)2>Tz/2.

As seen in Fig. 4 the phase transition seems to oc
rather at the same region ofd/, in all sectors ofTz, with
apparently a slight tendency to move to larger layer sep
tions with increasingTz. Therefore, in the case of vanishin
tunneling gap, the critical layer separation depends only v
weakly on a bias voltage between the layers. Thus, if ther
an increase of the critical layer separation in biased syst
as predicted in Refs. 20,23, this effect is rather small. Thi
consistent with the results of the preceding section, and w
Refs. 20,23.

Recently, Nomura, and Yoshioka30 have introduced a pa
rameterS defined by^TW 2&5S(S11) to describe the ‘‘effec-

FIG. 4. The pseudospin fluctuation (DTx)2 as a function of the
layer separation for different sectors ofTz in a system ofN514
electrons.
8-5



5

of
ef
er

ye

er
he
e
tiz

nits

sults
II.
n
s is
sed

n-
ous

.
the
und
of

lec-
rre-
cor-
and
ion
ary.
or-
ry of
con-
er,
ing

ase

nd

.
B.

ee

JOHN SCHLIEMANN PHYSICAL REVIEW B67, 035328 ~2003!
tive length’’ of the pseudospin in a given state. Figure
showsS divided by the number of particles forN514 elec-
trons andTz50 ~corresponding to the upper left panel
Fig. 4!. This plot can be compared directly with data of R
30 obtained in the toroidal geometry, establishing a v
good agreement between exact-diagonalization results on
sphere and on the torus.

IV. CONCLUSIONS

We have investigated ground-state properties of bila
quantum Hall systems at total filling factorn51 and vanish-
ing single-particle tunneling gap by means of exact num
cal diagonalizations in finite systems. Specifically, t
ground-state energy, the pseudospin anisotropy param
and the quantum fluctuations of the pseudospin magne

FIG. 5. The effective pseudospin lengthSper particle as a func-
tion of d/,. This data obtained in the spherical geometry agr
very well with recent results for a toroidal system Ref. 30.
d
l
m

e

.
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tion are studied as functions of the layer separation in u
of the magnetic length.

The exact ground-state energies are compared with re
of finite-size Hartree-Fock calculations described in Sec.
The availability of closed expressions for pair distributio
functions and Hartree-Fock energies even in finite system
a specific property of the spherical system geometry u
here. The exact ground-state energies~with a contribution
from a neutralizing background being subtracted! is indepen-
dent ofd/, above the critical layer separation. This demo
strates the decoupling of layers and the loss of spontane
phase coherence between them in the disordered phase

We have also performed a very detailed analysis of
effective pseudospin anisotropy parameter. We have fo
accurate numerical values for this quantity as a function
the layer separation, and compared it with a classical e
trostatic expression valid in the absence of interlayer co
lations. This comparison establishes the strong interlayer
relations in the ordered phase at small layer separations,
the quantum phase transition is signaled by an inflect
point of the anisotropy parameter at the phase bound
Moreover, we have analyzed the possibility of interlayer c
relations in biased systems even above the phase bounda
the unbiased case. Certain features of our data are not in
sistent with the occurrence of this effect, which, howev
appears to be quite small at least in the limit of vanish
tunneling amplitude.

In summary, our results show that the quantum ph
transition in quantum Hall bilayers at total filling factorn
51 shows its signatures in various physical quantities a
represents a subtle correlation effect.
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