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We study the correlation energy, the effective anisotropy parameter, and quantum fluctuations of the pseu-
dospin magnetization in bilayer quantum Hall systems at total filling faetal by means of exact diagonal-
izations of the Hamiltonian in the spherical geometry. We compare exact-diagonalization results for the
ground-state energy with finite-size Hartree-Fock values. In the ordered ground-state phase at small layer
separations the Hartree-Fock data compare reasonably with the exact results. Above the critical layer separa-
tion, however, the Hartree-Fock findings still predict an increase in the ground-state energy, while the exact
ground-state energy is in this regime independent of the layer separation indicating the decoupling of layers
and the loss of spontaneous phase coherence between them. We also find accurate values for the pseudospin
anisotropy constant, whose dependence of the layer separation provides another very clear indication for the
strong interlayer correlations in the ordered phase and shows an inflection point at the phase boundary. Finally,
we discuss the possibility of interlayer correlations in biased systems even above the phase boundary for the
balanced case. Certain features of our data for the pseudospin anisotropy constant as well as for quantum
fluctuations of the pseudospin magnetization are not inconsistent with the occurrence of this effect. However,
it appears to be rather weak at least in the limit of vanishing tunneling amplitude.

DOI: 10.1103/PhysRevB.67.035328 PACS nunider73.43.Cd, 73.43.Nqg

[. INTRODUCTION the fact that in the ground-state of such a system electrons
predominantly occupy single-particle states in the lowest
Quantum Hall ferromagnets are a rich and fascinating.andau level, which are symmetric linear combination of
field of solid-state physick:® They can be realized in terms states in both layers. This type of single-particle states is
of the spins of electrons confined to layers in a strong perpreferred if a finite tunneling amplitude is present. However,
pendicular magnetic field, or in terms of a pseudospin giverby a large body of experimental and theoretical Wbk
by some additional discrete degree of freedom such as ththis phenomenon is assumed to be a spontaneous symmetry
layer spin in bilayer systenfs!! Bilayer quantum Hall sys- breaking, i.e., it remains even in the limit of vanishing tun-
tems at total filling factorv=1 have attracted particular in- neling amplitude. The latter effect is clearly a many-body
terest recently due to spectacular results by Spielmaphenomenon.
et al,*>3who studied tunneling transport across the layers In the present work, we report on further exact-
in samples with very small single-particle tunneling gap.diagonalization results in quantum Hall bilayers at total fill-
These experiments have stimulated a large number of thedrg factor v=1. Our studies include the effective pseudospin
retical efforts toward their explanation, and also more genanisotropy parameter, quantum fluctuations of the pseu-
eral studies of such bilayer quantum Hall systéfs? dospin magnetization, and the ground-state energy. Espe-
The main finding of Ref. 12 is a pronounced peak in thecially the last quantity shows very clearly the occurrence of
differential tunneling conductance, which evolves if the layerthe quantum phase transition and the decoupling of the layers
separatiord in units of the magnetic length is decreased above the criticald/¢, where the spontaneous interlayer
below a critical value. This critical ratid/{ agrees closely phase coherence is lost. Moreover, we study the effects of a
with the boundary between a ground-state phase supportifgas potential applied to the layers. In particular, we address
qguantized Hall transport and a disordered phase as estathie question of possible interlayer correlations in biased sys-
lished in earlier experiments by Murpley al'! using double tems even above the phase boundary of the balanced case, an
well samples of similar geometry. Therefore, these two obeffect which was predicted recently by HaRhand by
servations can be assumed to be manifestations of one addglekar and MacDonaldbased on time-dependent Hartree-
the same quantum phase transition. Moreover, recent exadtock calculations. Some features of our data are not incon-
diagonalization studié$on bilayers atv=1 have revealed a sistent with this prediction. However, this effect appears to
guantum phase transition, very likely to be of first order,be rather weak at least in the limit of vanishing tunneling
between a phase with strong interlayer correlations to amplitude and not too large biasing, consistent with the pre-
phase with weak interlayer correlations. The position of thisdictions of Refs. 20,23.
transition agrees quantitatively with the critical value found Our numerics are performed within the spherical
by Spielmanet al. geometry’* This geometry enables to obtain closed expres-
In the ordered phase at small¢ the strong interlayer sions for the Hartree-Fock ground-state energy even in finite
correlations are dominated by thspontaneous interlayer systems. This quantity can be compared with exact-
phase coherendeetween the layers. This keyword describesdiagonalization results to infer the correlation energy. More-
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over, since the sphere is free of boundaries, this geometnyhered, ¢ are the usual angular coordinates of the location

allows to take into account a neutralizing background in fi-7 on the sphere with radiu$’|=¢€N42. me{—N,/2,

nite systems without any ambiguity. —Ny/2+1,... Ny/2} labels the different angular momen-
This paper is organized as follows. In Sec. Il, we describqum states, andl, is the number of flux quanta penetrating

our finite-size Hartree-Fock calculations of the ground-stat§ne sphere. The Hartree-Fock ansatz for a spatially homoge-
energy in the spherical geometry. In Sec. Ill, we present oURqous state ofl = N4+1 electrons is

exact-diagonalization results, compare them with Hartree-
Fock theory, and perform a detailed analysis of bias potential
effects. We close with conclusions in Sec. IV. wy="I1 N, 2( > z(,cr;(,) |0), ()
N oe{T,B}
m

S

¢
II. FINITE-SIZE HARTREE-FOCK THEORY IN THE 7

SPHERICAL GEOMETRY +

where|0) is the fermionic vacuumc,,,, o€{T,B}, creates

In this section, we present details of our finite-sizean electron in the top/bottom layer in angular momentum
Hartree-Fock calculations in the spherical geom&gimi-  statem, and z, are the components of a normalized two-
lar results for the case of bilayers at filling facter2 were  spinor describing the layer degree of freedom. From this
already briefly discussed in Ref. 35. The notation follows thestate we obtain the pair distribution functions
discussion of the/=2 system in Ref. 36. The technical ad-
vantage of the spherical geometry used here lies in the fact o N
that it allows to obtain closed results for electron pair distri- 9(f— ) =(W| X [8(F1—T)8(Fo—F))]|W¥)
bution function even in finite systems. .

We consider a gas of Coulomb-interacting electrons in a 2

. T Ng+1 |7y — o2\
guantum Hall bilayer system at total filling facter=1. We = = —l1-—= )
assume a vanishing amplitude for electron tunneling between 277€2N(,, 2€2N¢,
the layers, consistent with the experimental situation in Ref.

12. The layer degree of freedom is described in the usual -~ -~
pseudospin languadewhere the pseudospin operator of h(T1=Fo)=(W| 2, [8(F1—F)778(To— ) 71| W)
each electron is given b2 with 7 being the vector of Pauli ')
matrices. Thez componentr?/2 measures the difference in N.+1 |2
occupation between the two layers, whité2 describes tun- = ( ¢ - (7] z))?
neling between them. The total pseudospin of all electrons is 27T€2N¢
denoted byT. o\ Ny
Differently from the pseudospin, the true electron spins wl1-[1- LESF! ) 1 @
are assumed to be fully aligned along the magnetic field 2(32N¢ '

perpendicular to the layers; therefore, an inessential Zeeman

term in the Hamiltonian is, along with the constant cyclotronHere, the indices, | refer to electrons and the Pauli matrices
energy, neglected. In Ref. 17 a finite width of the quantums* act on the layer spins. The expressjopn—r’,| is the chord
wells forming the bilayer system was taken into account indistance on the sphere. Note that in the limit of large num-
order to make quantitative contact to the experiments of Refers of flux quantaN » One obtains from Eq(3) the well-

12. However, a finite well width mainly changes the positionknown expression for the infinite system in planar geometry,
of the phase transition but does not alter any qualitative fea-

ture. In the present work, we therefore concentrate for sim- 1 \2
plicity on the case of zero well width. For this case, the lim g(r)=( (1—e 2%, (5)
critical layer separation in the limit of vanishing tunneling Ng—ce ml?

amplitude was found by exact-diagonalization calculafibns

to bed=1.3¢. This value holds in the thermodynamic limit, To calculate the energy of the Coulomb interaction it is con-

but is remarkably rapidly approached in finite-size systéms. venient to consider the linear combinatioW.=(Vs

For instance, the phase boundary in a system of just 12 elect Vp)/2 of the interactiond/s andVp between electrons in

trons deviates from the infinite-volume value by just a fewthe same layer and different layers, respectiv&lysing the

percent. above pair distribution functions one obtains for the energy
In the gauge commonly used in the spherical georétry per particle

the single-particle wave functions in the lowest Landau level

have the form 1 1
" =eff— 5B=S[-F.+((272))*(H-F.)]. (®

N 1/2 2
i Ng+1 ¢ e _ _
(Flm)= ——| Ng Here, e, is the Hartree-Fock energy of the interaction be-
2mEN, 7+m tween electrons. The quantity
9\ Ng2tm 9\ INg2-m ) 2\ 12

X cos(i e'¢’2 sin(E g l¥l2 , _ & Nytl 1- 1 9+ 1+id_)

et 2UNg2[ " 2Ny2 ¢ Ny 2¢2

) ()
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arises from the direatHartreg contribution ofV_ and can- -03
cels against a neutralizing homogeneous background of half
the total electron charge which is present in each layer and
ensures charge neutrality. In this work we have always sub- -05 ¢
tracted this term from the ground-state energies considered
here. The quantity

04 | Hartree—Fock

exact
diagonalization

5
%o,
5
1/2 g 7
e Ny+1 1 d [ 1 dz)] s
= — - — e — D
et 2N 2|7 2YNy2 ¢ Ny 2¢2 =
tS) o
[
stems from the direct term &f_, and
e? N¢,+ 1 1\Ng+1/2 o 1 8 Iayér sep?aratio1n B
F.= 6€ ZW ( )+ l(a) (9)
¢ FIG. 1. The ground-state energy as a function of the layer sepa-
represent the exchangBock) contributions fromV.. with ration in units of the magnetic length for different numbérof
- electrons. The exact diagonalization data is compared with finite-
w xNo 1 size Hartree-Fock results. In both cases, the contribution from the
f dx a= . (10 neutralizing background has been subtracted. In the ordered phase
1 d? below the critical value ofd/¢ the results agree reasonably and
N_¢ ﬁ coincide for vanishing layer separation. Above the critical layer

separation the exact ground-state energy is independeiit afor-
In the above equations?/(ef) is the Coulomb energy scale responding to uncoupled=1/2 monolayers, while Hartree-Fock
with (—e) being the electron charge ardthe dielectric  theory still predicts an artificial increase in ground-state energy.
constant of the semiconductor material. Note that all the

above contributions te"F depend on the layer separation e2 22N,
d/¢ as well as on the number of flux quartg , i.e., on the ghF=— v T \/7 (12
system size. € Nz
In the Hartree-Fock ground-state of an unbiased system ¢ N,+1
all spins lie in thexy plane of the pseudospin space, i.e., )
(z]7z)=0, and we end up with with N,=N—1 being the number of flux quanta.
At finite layer separation the Hartree-Fock ground-state
e 1 becomes unexact, but provides still a reasonable approxima-
€0 T §F+ . (1D tion to the exact ground-state energydif¢ is smaller than

the critical value ofd/¢=1.3. In other words, the correlation
Il RESULT energy given by the difference between the exact ground-
- RESULTS state energy and the Hartree-Fock value is small. For larger

In this section, we report on our results from exact nu-layer separationd/¢=1.3 Hartree-Fock theory still predicts
merical diagonalizations of the many-body Coulomb Hamil-an increase of the ground-state energy with increasing layer
tonian in the spherical geomet#.In such a system the separation, while the exact ground-state energy becomes in-
ground-state has vanishing total angular momenrtuamd,  dependent ofd/€. The latter result is again a particulary

for unbiased bilayers, the smallest possible value ofzhe clear signature of the decoupling of the two layers and the
component of the total pseudosﬁ?‘mi.e.,TZ=0 for an even loss of spontaneous phase coherence between them above

number of electrons and?| =1/2, otherwise. the critical layer separation. The discrepancy betweer_1 the
exact ground-state energy and the Hartree-Fock result in the

disordered phase, i.e., the large correlation energy, shows
that this quantum phase transition is a correlation phenom-
enon that cannot be described within simple Hartree-Fock

Figure 1 shows the exact and the Hartree-Fock groundtheory. In the Hartree-Fock ansatz used here all electrons are
state energyboth in units of the Coulomb energy scale in the same pseudospin state implementing phase coherence
e?/(et)] as a function ofd/¢ for several numbers of elec- between the layers. This coherence is lost above the critical
tronsN. In both cases, the contribution from the neutralizingd/€, and the system behaves, at least in terms of its ground-
background(7) is subtracted. At zero layer separation, we state energy, like two decoupled monolayers with filling fac-
recover the case of a quantum Hall monolayer with the layetor v=1/2. Therefore, the failure of the Hartree-Fock theory
spin playing the role of the electron spin. Here, the groundmight appear as a consequence of the artificial phase coher-
state is the well-known spin-polarized=1 monolayer ence. However, as it is well known, the Hartree-Fock ap-
ground-state described exactly by Hartree-Fock theory. In thproach is generally inadequate to describe quantum Hall
spherical geometry, the finite-size ground-state energy peanonolayers aiv=1/2, which have a very peculiar and highly
particle is given by correlated ground-state.

A. Ground-state and correlation energy in the unbiased
system

035328-3



JOHN SCHLIEMANN PHYSICAL REVIEW B67, 035328 (2003

o
M

B. The pseudospin anisotropy parameter

and bias potential effects 14 electrons

o
Y

The difference in the Coulomb interaction for electrons in
the same layer and in different layers provides a strong
mechanism balancing the charges between the layers. In the
pseudospin language this can be expressed approximately by
an effective easy-plane anisotropy contribufida the en-

001 o cgom

04 | —+d=1.0/
&—= d=2.0!

energy per electron e(T°) [¢*/¢l]
S
n

ergy per particle, -0.3
(%) 04
— 2
e,=8m{B NI (13 o5 f—=
introducing an anisotropy paramet@rand(T? denotes the 08— 3 4+ 5 & 7 s
expectation value of thez component of the total z—component of total pseudospin

pseudospiri! For vanishing tunneling between the layers as . .

considered here this operator represents a good quantum F!G. 2. The energy of the lowest state having a given quantum

number, and eigenstates can be labeled using their value B\slmberTZ as a function of this quantity for various layer separation
1 - _ Z_

TZ. In this case, the above energy contribution can be viewelf} @ Systém oN=14 electrons.I*=0 corresponds to the ground-

just as a charging energy of a capacitor formed by the twgtate of the balanced system at a given layer separation, and each

: # .
isolated layers. In the absence of quantum correlations, ang'™ve s for not too largd™ well described by a parabola.

for a large system, the anisotropy parameter takes the value Let us now analyze the anisotropy parameter in terms of

e? d exact-diagonalization results. The lowest states with a given
— =, (14)  value of T* have vanishing total angular momentum on the
et ¢ spheré* ie., they are spatially homogeneous. Figure 2
corresponding to the classical total charging energyEpf Shows the energy of these lowest state in the sector of a
—Ne,=Q?%(2C) with Q= —eT? being the charge of the 9iven value ofT* as a funct|on off*for N=14 elgctron.s and
capacitor, C= eA/(4xd) its capacity, andA=2m¢2N its several layer separations. At all layer separations, in the or-
area. In the presence of quantum correlations the effectivéered as well as in the disordered phase, the dependence of
anisotropy parameter will deviate from this value for two the energy ofT*is, for not too largeT”, parabolic, validating
different reasonsti) Interlayer correlationscan modify the ~the phenomenological ansatz3). ) _

value of 8, and (i) even in the absence of correlatiobe- Figure 3 shows values for78°3 obtained from para-
tweenthe layersjntralayer correlationscan have an impact Polic fits of £5(T%) using T*€{0,1,2,3 for N=12 andN

on A if the ground states of the two mutually uncorrelated =14 electrons as a function af/ (. If higher values ofT*
layers change nontrivially if electrons are transferred fromare included the quality of the fits considerably decreases.
one layer to the other, i.e., T* is changed. The latter effect

8’7T€2ﬁc|:

is independent of the layer separation. Therefore, in the ab- 8 ‘ ‘ ‘ T
sence of interlayer correlations and for a given valud of 5
the contribution to the ground-state energy which depends on &
the layer separation is just given by a simple classical elec- é
trostatic expressioff, which can be derived similarly as Eq. B 2y ]
(), ks
]
| (172 5
g =8m(?B, N (15) E l ¥ oo N=12 electrons
8. S N=l;4 electrons
with 58 | /J F 8nlB,(N=12)
% —— 8B, (N=14)
8me?p ¢ Not1 1+ t d (1+ ! dz)m} 0 & : : : ‘
T LT —, T—0= = N ) 0 1 2 3 4 5
et N¢/2 2 N¢/2€ N</> 2¢? (i6) layer separation d/I

. . FIG. 3. The anisotropy parametetr823 obtained from exact-
which converges to the expressii¥) for N=N,+1—%.  giagonalization data as a function of the layer separationNor
Thus, if no interlayer correlations are present, the contribu= 1 andN= 14 electrons. Both data sets for tifis the bulk limit)
tion to the effective anisotropy parameter with a nontrivialintensive quantity agree very well and show an inflection point near
dependence on the layer separation is given by the abovfie phase transition ad/¢~1.3. The corresponding values for
classical expression, with a possible additional contributiors¢2g,, [cf. Eq. (16)] are also shown which descrifep to a
independent of the layer separation which arises from intraconstanx the expected behavior in the absence of interlayer corre-
layer quantum effects. lations.
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We therefore concentrate on the system sides12 andN
=14, where a sufficient number of moderate valuesTor
(as compared to its maximuid/2) are available. We have
also plotted in Fig. 3 the classical electrostatic expression
(16) for both systems sizes.

The anisotropy parametg is in the bulk limit an inten-
sive quantity. Both data sets for@28 shown in Fig. 3 are
nearly identical establishing that is only very weakly de-
pendent on the system size for already quite small systems
which are accessible via exact diagonalization techniques. As
to be expecteg increases with increasing layer separation.
Moreover, it shows an inflection point near the critical value
d/€=1.3, which we interpret as a further signature of the
guantum phase transition. Above the inflection point the an-
isotropy parameteB as obtained from exact-diagonalization dn dit

data has the same curvature . Below the inflection . . .
B FIG. 4. The pseudospin fluctuation T)? as a function of the

point atd/¢~1.3 both data sets differ clearly, in particular, : ) ’ -

; . . layer separation for different sectors ®f in a system ofN=14
in curvature, which indicates the presence of strong inter-, . trons
layer correlations in this regime. However, we should stress '

that the concrete form of these deviations from the CIaSSiC%jround-state was analyzed by studying the pseudospin

behavior_, namely, the occurence of an inflection point anq agnetization(T*) along with their fluctuation £T*)2
change in curvature, is the result of the present numeric L ((T%2)—(T%)2 as a function of the tunneling gap. Here

study and has not been predicted on other theoreﬂc%e report on results foAT* at zero tunneling as a function

grounds. f d/¢ in the ground-state within various sectors Bf.

. The results of _Sec. .”I A have_ established the absence_ ‘These states are the absolute ground-state of the system at an
interlayer correlations in an unbiased system above the critiy

) : ; X . appropriate bias voltage between the layers.
cal d/¢. I.f m_te_rlayezr correla_ltlons vanish also in a biased The ordered phase at small layer separations is character-
system(with finite T%) the anisotropy paramet@found by ;o4 by Jarge fluctuations of the pseudospin magnetization
exact numerical diagonalizations should be the samg.as

o ’ A > and, therefore, by a large susceptibility of this quantity with
up to a rigid shift(being independent of the layer separation respect to interlayer tunnelifg.At zero tunnelingT? is a
arising from intralayer effects. As seen in Fig. 3 this is for

: 9 good quantum number, whileT*)=(TY)=0, and for the
d=1.3¢ to a quite good degree of approximation, but noty ctuations it holdsAT*=ATY with AT?=0. Figure 4

perfectly, the case. In particulgB increases with increas- shows AT*)2 within the ground-state of several sectors of

ing system size, while the exact-diagonalization values aPrz 45 a function ofd/¢ for N=14 electrons. At zero layer
pear to decrease. The small discrepancy betwand 5 separation one has

(after subtracting a rigid shjfimight, therefore, be seen as an
indication for the presence of interlayer correlations in biased N/N
systems even above the critical layer separation of the bal- (ATX)2=§[§ 54—1) —(T??
anced system, as predicted recently in Ref. 23. However, if
so, this effect appears to be rather small, at least in the limiand for finite layer separatiom\(T*)? decreases for all values
of vanishing tunneling and not too large biasing, consistenof T? with increasingd/¢ to rather small values. This decay
with the predictions of Refs. 20,23. mainly occurs in the vicinity of the critical valug~1.3¢. In

The value forg atd/€ =1 is by a factor of about 2 larger the upper right panelM*= 1) yet another transition occurs at
than the effective anisotropy parameter found recently fronlarger layer separations, which appears to be a peculiarity of
exact diagonalization studies of a vertical pair of paraboli-this system size. Note that the quantyf* is, on the other
cally confined quantum dots in the quantum Hall regfhia hand, bounded from below by the standard uncertainty rela-
the latter case, this effective anisotropy parameter agred@®on AT*ATY=(ATX)?=T%2.
quite reasonably with results from numerical Hartree-Fock As seen in Fig. 4 the phase transition seems to occur
calculations. On the other hand, the values foshown in  rather at the same region df ¢ in all sectors ofT?, with
Fig. 3 agree very reasonably within a discrepancy of lesapparently a slight tendency to move to larger layer separa-
than 10% with data reported in Ref. 9 for an infinite systemtions with increasingr?. Therefore, in the case of vanishing
Those values were obtained from an approximate effectivetunneling gap, the critical layer separation depends only very
field theory neglecting correlation effects beyond Hartreeweakly on a bias voltage between the layers. Thus, if there is
Fock exchange. Therefore, the data of Ref. 9 does not shoan increase of the critical layer separation in biased systems
an inflection point signalling a ground-state phase transitionas predicted in Refs. 20,23, this effect is rather small. This is

consistent with the results of the preceding section, and with
C. Quantum fluctuations of the pseudospin magnetization Refs. 20,23.
In Ref. 17 the quantum phase transition between a Recently, Nomura, and YoshioKehave introduced a pa-

pseudospin-polarized phase-coherent state and a disordeneumeterS defined by(fz):S(S+ 1) to describe the “effec-

, 17
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0.5 ‘ ‘ ‘ ‘ ‘ ‘ tion are studied as functions of the layer separation in units
of the magnetic length.
The exact ground-state energies are compared with results

041 N=14 | of finite-size Hartree-Fock calculations described in Sec. Il.
T°o0 The availability of closed expressions for pair distribution
03 | - ] functions and Hartree-Fock energies even in finite systems is
z a specific property of the spherical system geometry used
[45)

here. The exact ground-state energiesth a contribution

02 ] from a neutralizing background being subtragtisdndepen-
dent ofd/¢ above the critical layer separation. This demon-
strates the decoupling of layers and the loss of spontaneous

0.1} ; .
phase coherence between them in the disordered phase.
We have also performed a very detailed analysis of the
0 5 5 : 5 p >3 3 effective pseudospin anisotropy parameter. We have found

accurate numerical values for this quantity as a function of
the layer separation, and compared it with a classical elec-
FIG. 5. The effective pseudospin lengdiper particle as a func- trostatic expression valid in the absence of interlayer corre-
tion of d/¢. This data obtained in the spherical geometry agreedations. This comparison establishes the strong interlayer cor-
very well with recent results for a toroidal system Ref. 30. relations in the ordered phase at small layer separations, and
the quantum phase transition is signaled by an inflection
tive length” of the pseudospin in a given state. Figure 5point of the anisotropy parameter at the phase boundary.
showsS divided by the number of particles fdt=14 elec- Moreover, we have analyzed the possibility of interlayer cor-

trons andT?=0 (corresponding to the upper left panel of relations in biased systems even above the phase boundary of
Fig. 4). This plot can be compared directly with data of Ref. the unbiased case. Certain features of our data are not incon-

30 obtained in the toroidal geometry, establishing a Verymstent with the occurrence of this effect, which, however,

good agreement between exact-diagonalization results on ggppears to be quite small at least in the limit of vanishing

tunneling amplitude.
sphere and on the torus. In summary, our results show that the quantum phase

transition in quantum Hall bilayers at total filling facter
IV. CONCLUSIONS =1 shows its signatures in various physical quantities and

We have investigated ground-state properties of biIay(aFep“':'ser'tS a subtle correlation effect.
guantum Hall systems at total filling factor=1 and vanish-
ing single-particle tunneling gap by means of exact numeri-
cal diagonalizations in finite systems. Specifically, the | thank Anton A. Burkov, Steven M. Girvin, Yogesh N.
ground-state energy, the pseudospin anisotropy parametdoglekar, Allan H. MacDonald, and, in particular, Charles B.
and the quantum fluctuations of the pseudospin magnetizadanna for many useful discussions.
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