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Disorder-induced noncollinear ferromagnetism in models for„III,Mn …V semiconductors
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Department of Physics and Astronomy, University of Basel, CH-4056 Basel, Switzerland

and Department of Physics, The University of Texas, Austin, Texas 78712
~Received 30 September 2002; published 24 January 2003!

We study the ground-state properties of kinetic-exchange models for~III,Mn !V semiconductors with ran-
domly distributed Mn ions. Our method is embedded in a path integral spin-wave-type formalism leading to an
effective action for Mn spins only with full Matsubara frequency dependence. The zero-frequency contribution
to this action is equivalent to static perturbation theory and characterizes the stability of a given spin configu-
ration, while the component linear in frequency can be interpreted as the joint Berry phase of the Mn and
carrier system. For simple parabolic-band carriers the collinear ferromagnetic state with all Mn spins in parallel
is alwaysstationarybut genericallyunstable. This instability can be characterized in terms of inverse partici-
pation ratios and is due to long-ranged nonlocal spin fluctuations. We also present results for the ground-state
magnetization as a function of an external field. For carrier dispersions involving anisotropy induced by
spin-orbit coupling the collinear state is not even stationary and therefore also not the ground state. This
interplay between the anisotropy in the carrier system and the disorder in the Mn positions reflects recent
findings by Zarand and Janko@Phys. Rev. Lett.89, 047201~2002!# obtained within the RKKY approximation.
The stationarity of the collinear state~with the magnetization pointing in one of the cubic symmetry directions!
is restored in the continuum orvirtual crystal approximation where disorder is neglected.

DOI: 10.1103/PhysRevB.67.045202 PACS number~s!: 75.50.Pp, 75.30.Ds, 75.50.Lk
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I. INTRODUCTION

For several years, diluted ferromagnetic semiconduc
have been in the focus of research in solid-state physics
reviews, see Refs. 1–8. This is, on the one hand, bec
these systems provide interesting and challenging phys
problems on their own right. On the other hand, this gr
deal of interest is due to possible applications of these m
rials in the emerging field of spintronics9,10 since they offer
the perspective of combining ferromagnetism with t
readily tunable transport properties of semiconductors.

An important achievement in this field was the fabricati
of diluted Mn-doped GaAs via low-temperature molecu
beam epitaxy by Ohno and collaborators in 1996.11 This ma-
terial showed a Curie temperature of 110 K, a result wh
has been reproduced in the meantime by several o
groups. Moreover, very recently reports on Mn-doped~III,V !
semiconductors having Curie temperatures of room temp
ture or higher have appeared, and also other combination
magnetic ions and/or host materials look prospective.12–19

These recent developments have also already genera
large amount of theoretical research on diluted ferromagn
semiconductors.5–8,20–53 Such studies include electron
structure calculations based on density functio
techniques8,51–53and investigations using specific models f
such systems.5–7,20–50In particular, very recently a series o
studies has appeared on disorder-related phenomena in
ferent models for diluted ferromagnet
semiconductors.29–32,36–48In the present work we emplo
kinetic-exchange models for carrier-mediated ferrom
netism occurring in Mn-doped~III,V ! semiconductors which
have been the basis of a large body of previous work.5,20–34

The general Hamiltonian reads

H5Hkin1(
I
E d3r J~rW2RW I !sW~rW !•SW I . ~1!
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These models show several features in accordance with
periments. They consist of a kinetic termHkin for free
valence-band carriers~holes! whose spin densitysW(rW) is an-
tiferromagnetically exchange coupled to localized Mn sp
SW I of lengthS55/2 at locationsRW I by an spatially extended
couplingJ(rW), which we take to be of the form

J~rW !5
Jpd

~2pa0
2!3/2

e2r 2/2a0
2
. ~2!

The regularization parametera0 reflects the spatial range o
the exchange coupling.46 In a minimal description of carrier-
induced ferromagnetism the kinetic term represents jus
simple parabolic band characterized by an effective m
m* . Moreover, we will also consider the case of a mo
realistickW•pW Hamiltonian26,54,55describing the valence-ban
structure of~III,V ! semiconductors such as GaAs.

Differently from earlier work20–27,31we will not make use
of the virtual crystal approximation; i.e., we will not ap-
proximate the localized Mn moments by a continuum b
retain them as individual and randomly distributed spi
This additional feature of the model grossly enriches
physical properties and gives rise to the occurrence ofnon-
collinear ferromagnetism.30 This noncollinearity in the orien-
tations of localized magnetic moments even in the grou
state of the system is very likely to be an ingredient in t
interpretation of recent experiments by Potashniket al.56

who found a strong dependence of the magnetic propertie
Mn-doped GaAs on the annealing history of the samp
Similarly strong dependences are also found in transp
measurements56 and in crystallographic properties.57

Our theoretical method and results to be presented h
can be embedded in a path integral approach to the part
function of the underlying model. A part of the results w
©2003 The American Physical Society02-1
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already discussed in Refs. 5 and 30. In the present pape
add further details to the formalism and present new res
on the frequency dependence of the action kernel and
role of an external magnetic field.

Moreover, we give a detailed discussion of the gradien
the carrier ground-state energy with respect to fluctuation
the orientations of the localized Mn moments. For the cas
isotropic systems with simple parabolic-band carriers
collinear ferromagnetic state with all Mn spins in parallel
alwaysstationary ~i.e., it has a vanishing energy gradien!,
but in general notstable.30 In the present work we show th
possibility of complanar spin structures which are loca
minima on the energy landscape of such systems. For
case of models with spin-orbit anisotropy in the carrier s
tem we find that the collinear state is not even stationary
does therefore not represent an energy minimum. This fi
ing resembles recent results by Zarand and Janko.40

Another study related to the present one was reported
recently by Korzhavyiet al.48 These authors investigate, b
both experimental and theoretical means, the influence o
antisite defects on the ground-state structure of the Mn lo
magnetic moments. As a result, As antisite defects are fo
to favor the formation of disordered local moment config
rations of Mn spins with antiparallel orientation and the
fore reduce the net magnetization. However, differently fr
the results of the present investigations, the Mn spins in
disordered local moment configurations are restricted to h
~at random! either spin up or down with respect to som
given quantization axis; i.e., they are collinear to each ot

This paper is organized as follows. In Sec. II we revie
our general theory of magnetic fluctuations in the kine
exchange models studied here and add further technica
tails. In Sec. III we report on numerical results concern
the instability of the collinear ferromagnetic state in t
parabolic-band model. In Sec. IV we discuss several res
arising from the very general gradient expression for
ground-state energy obtained in Sec. II. In Sec. IV A 1
demonstrate the occurrence ofcomplanaror helical energy
minima in the parabolic-band model. An important furth
finding is discussed in Sec. IV A 2 where the collinear st
is shownnot even to be stationarywith respect to magnetic
fluctuations if anisotropy induced by spin-orbit coupling
present. In Sec. IV B we report on numerical steepe
descent studies of the true energy minima below the collin
state and on the influence of an external magnetic field
Sec. V we discuss the small-frequency dependence of
effective-action kernel derived in Sec. II. We close with co
clusions in Sec. VI.

II. MAGNETIC FLUCTUATIONS: GENERAL THEORY

A. Path integral approach

We now describe a path integral approach to the parti
function of fluctuations around a given magnetic state of
Mn spins. Our method is similar to the one used in Ref.
with the differences that we do not approximate the Mn m
netic moments by a continuum but retain them as individ
localized spins, and we study fluctuations around more g
eral noncollinear magnetic states. The state we consider
04520
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tensor product of spin-coherent states for each Mn locatioI

with a polarization direction VW I
5(sinqIcoswI ,sinqIsinwI ,cosqI). We introduce local coor-
dinates for each Mn site whoseẑ direction coincides with
VW I . The spin operatorsTW I with respect to these local base
are related to the original operatorsSW I via

S SI
x

SI
y

SI
z
D 5S cosw I 2sinw I 0

sinw I cosw I 0

0 0 1
D

3S cosq I 0 sinq I

0 1 0

2sinq I 0 cosq I
D S TI

x

TI
y

TI
z
D . ~3!

To parametrize fluctuations around the magnetic state g
by the directionsVW I we use the usual Holstein-Primako
representation of the spin operatorsTW I ,

T15A2S2bI
1bIbI , Tz5S2bI

1bI . ~4!

Formulating the partition function as a path integral and r
resenting the Mn spin Holstein-Primakoff bosons in
coherent-state parameterization one arrives after integra
out the carrier degrees of freedom at the following effect
action:

Seff5E
0

b

dt(
I

@ z̄I]tzI #2tr@ ln~GMF
21 1dG21!#. ~5!

zI(t) stands for the bosonic Holstein-Primakoff field para
etrizing the fluctuations of the Mn spinI around its mean
directionVW I . The integration over the imaginary timet goes
from zero to the inverse temperatureb, and the trace in the
second contribution is over fermionic carrier degrees of fr
dom and imaginary time. The the fluctuation-free~i.e., mean-
field! part GMF

21 of the integral kernel is given by

GMF
21 5]t2m2Hkin1S(

I
J~rW2RW I !Fcosq Is

z

1
1

2
~e2 iw Isinq Is

11e1 iw Isinq Is
2!G , ~6!

wherem is a chemical potential andsz ands65sx6 isy are
carrier spin operators. In the case of a simple parabolic b
they are just proportional to Pauli matrices while, for i
stance, in the case of a six-bandkW•pW Hamiltonian they have
a more complex form.26,54

The fluctuation part of the inverse Green’s function in
to quadratic order in the Holstein-Primakoff variables rea
dG215dG1

211dG2
21 with
2-2
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dG1
215

1

2 (
I

J~rW2RW I !Fe2 iw IA2SS z̄Icos2
q I

2
2zIsin2

q I

2 D s1

1e1 iw IA2SS zIcos2
q I

2
2 z̄Isin2

q I

2 D s2

2A2Ssinq I~zI1 z̄I !s
zG , ~7!

dG2
2152(

I
J~rW2RW I !FzI z̄Icosq Is

z1
1

2
zI z̄Isinq I

3~e2 iw Is11e1 iw Is2!G . ~8!

To analyze magnetic fluctuations we expand the action~5!
in the bosonic spin variables describing deviations from
prescribed directionsVW I ,

tr ln~GMF
21 1dG21!5tr ln~GMF!2 (

n51

`
1

n
tr~2GMFdG21!n.

~9!

We will evaluate the effective action in up to second order
the fluctuationszI(t). To this end we introduce the Fourie
transformszI(Vn)5*0

bdt exp(iVnt)zI(t) with the notation

z̄I(Vn)5zI(Vn)̄ , whereVn52np/b, n integer, is a bosonic
Matsubara frequency.

In this subsection we shall consider a simple parabo
band model where the fluctuation-free part of the car
Green’s function reads in real-space representation

GMF~rW,s;rW8,s8;vn!52(
a

cas~rW !c̄as8~rW8!

ivn2ha
. ~10!

Herevn5(2n11)p/b, n integer, is a fermionic Matsubar
frequency andcas(rW) is the spin components of the carrier
wave function with labela and energy«a5ha1m. These
wave functions are the eigenstates of the single-part
mean-field HamiltonianHMF5GMF

21 2]t1m.
The lowest-order contribution in the effective action o

curs at zero Matsubara frequency only and islinear in the
Holstein-Primakoff variables:

Sfluc
(1)5

1

2 (
I

@ ḡIzI~0!1gI z̄I~0!#, ~11!

with gI5gI
11 igI

2 and

gI
15A2S~eWw I

3eW z!•E d3r „J~rW2RW I !$@^sW~rW !&•eWw I
#eWw I

1@^sW~rW !&•eW z#eW z%3VW I…, ~12!

gI
25A2SeW z•S eWw I

3E d3rJ~rW2RW I !^sW~rW !& D . ~13!

Here^sW(rW)& is the expectation value of the carrier spin de
sity, eWw I

5(coswI ,sinwI,0) andeW z5(0,0,1).
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The contributionSfluc
(2) bilinear in the Holstein-Primakoff

variables is quite complex for general Mn spin orientatio
V I . In particular, numerical evaluations of this quantity a
extraordinarily tedious and computationally expensive.
therefore shall concentrate on the collinear state where
Mn spins point, say, along thez-direction. Then the second
order contribution to the effective action reads

Sfluc
(2)5

1

b (
n

(
I ,J

z̄I~Vn!DIJ
21~Vn!zJ~Vn!, ~14!

where the fluctuation matrixDIJ
21(Vn) reads

DIJ
21~Vn!5LIJ~Vn!1KIJ~Vn!, ~15!

with

LIJ5d IJS 2 iVn2E d3rJ~rW2RW I !^s
z~rW !& D , ~16!

KIJ5
S

2 (
a,b

FnF~ha!2nF~hb!

iVn1ha2hb
FI

a↓,b↑FJ
b↑,a↓G . ~17!

HerenF is the Fermi function and

FI
as,bm5E d3rJ~rW2RW I !c̄as~rW !cbm~rW !. ~18!

All quantities referring to the carrier system are to be eva
ated for the collinear orientation of Mn spins.

The diagonal contributions to the action kernel summ
rized in LIJ stem from the kinetic term( I z̄I]tzI in the inte-
grand of Eq. ~5! and from the lowest-order term
tr(GMFdG2

21) in Eq. ~9!. The term given byKIJ arises from
the bubble contribution2@ tr(GMFdG1

21GMFdG1
21)#/2.

B. Static limit: Perturbation theory

The limit of zero Matsubara frequencyVn corresponds to
static perturbations of the mean-field carrier ground state
is instructive to verify this explicitly by elementary perturb
tion theory. The unperturbed mean-field Hamiltonian is ag
HMF5GMF

21 2]t1m which is subject to a perturbatio

Hf luc@$zI ,z̄I%# with

Hf luc@$zI ,z̄I%#5dG1
21@$zI ,z̄I%#1dG2

21@$zI ,z̄I%#. ~19!

HeredG1
21 anddG2

21 have the same form as in Eqs.~7! and
~8! with zI5(Tx1 iTy)/A2S parametrizing the perturbation
with respect to the prescribed general directionsVW I in HMF .

We now consider the contributions fromHf luc to the en-
ergy of the carrier ground state. In linear order inzI one has
the contribution from the expectation value ofdG1

21 which
can be written as

E(1)5
1

2 (
I

@ ḡIzI1gI z̄I #, ~20!

with gI5gI
11 igI

2 given by Eqs.~12! and ~13!. This expres-
sion coincides with Eq.~11!.58 The expectation values of th
2-3
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JOHN SCHLIEMANN PHYSICAL REVIEW B67, 045202 ~2003!
carrier spin densitŷsW(rW)& entering Eq.~20! via the complex
coefficientsgI have to be computed within the ground-sta
of the unperturbed HamiltonianHMF . This operator depend
on the Mn spin directionsVW I and on the kinetic termHkin
for the carriers, which has not been specified so far wit
this perturbational approach to the ground state ene
Therefore the expression~20! holds formally forany band
representation of the carrier system. In particular, Eq.~20! is
valid for the simple parabolic-band model as well as
more sophisticatedkW•pW Hamiltonians. We will come back to
this important fact in Sec. III A.

There are two contribution bilinear inzI . The first one is
just the expectation value ofdG2

21 within the carrier ground
state,

EL
(2)5(

I ,J
z̄ILIJzJ , ~21!

with

LIJ52d IJE d3rJ~rW2RW I !^sW~rW !&VW I , ~22!

which obviously coincides with Eq.~16! for Vn50 andVW I

5eW z for all I. The other bilinear contribution is the secon
order term arising fromdG1

21 which reads

EK
(2)5

S

4 (
a,b

FnF~ha!2nF~hb!

ha2hb
U(

I
@Re$zI%sinq I~Fa↓,b↓

2Fa↑,b↑!1~cosq IRe$zI%2 i Im$zI%!Fa↑,b↓e2 iw I

1~cosq IRe$zI%1 i Im$zI%!Fa↓,b↑e1 iw I#U2G . ~23!

It is straightforward to see that in the collinear case,VW I

5eW z for all I, this expression takes the form

EK
(2)5(

I ,J
z̄IKIJzJ , ~24!

with KIJ5KIJ(Vn50) given by Eq.~17!.59

We note that the perturbational approach described he
crucially different from the RKKY approximation often use
in the theory of spin glasses.60 There the coupling of the
carrier spin density to the local moments is treated as a
turbation to the nonpolarized carrier Fermi sea. This is ju
fied provided that the free-carrier Fermi energy is large co
pared to the energy scale of the exchange coupling whic
conveniently measured in terms of the carrier mean-fi
splitting D5JpdSNMn , where NMn is the density of Mn
spins. However, for typical parameters of~III,Mn !V systems
the Fermi energy andD are fairly of the same order of mag
nitude with the former quantity being often even small
Therefore the free-carrier ground state is not a good star
point for perturbation theory. To explore the true ground st
of the system described by the Hamiltonian~1! for param-
eters realistic for ~III,Mn !V semiconductors one shoul
04520
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rather use the carrier ground state in the presence of a
polarized Mn spin system as the starting point, as done h

III. INSTABILITY OF THE COLLINEAR
FERROMAGNETIC STATE IN THE ISOTROPIC

PARABOLIC-BAND MODEL

A. General discussion of the energy gradient

As already stressed in Sec. II B, the expression~11! ob-
tained for the ground-state energy in lowest order in
Holstein-Primakoff variables is very general; i.e., it is fo
mally the same for any representation of the carrier sys
~e.g., parabolic band, six-bandkW•pW Hamiltonian, etc.!.

Let us now examine further the coefficients given in Eq
~12! and~13! that enter the energy gradient~11!. The imagi-
nary partgI

2 is nonzero if and only if the vector

mW IªE d3rJ~rW2RW I !^sW~rW !& ~25!

doesnot lie in the plane spanned byeWw I
5(coswI ,sinwI,0)

andeW z5(0,0,1). Similarly, the real partgI
1 is nonzero if and

only if the projection ofmW I onto the plane spanned byeWw I
,eW z

is not collinear with the direction VW I
5(sinqIcoswI ,sinqIsinwI ,cosqI) of the Mn spin at siteI. In
summary, for a given orientation of the Mn local moments
be stationary in energy the local directionsVW I must be par-
allel or antiparallel withmW I at each Mn siteI. An example for
such a situation is the collinear ferromagnetic state with
Mn spins in parallel in a simple parabolic-band model. He
the spins of all carrier eigenstates are polarized along
common axis of the Mn spins, and thereforemW I is always
collinear with this direction at each siteI. Thus, this state is
alwaysstationary, but as we shall see below, in general n
stable. Moreover, the collinear ferromagnetic state turns o
to be not even stationary if anisotropy induced by spin-or
interactions is present, as is the case for valence-band h
in III-V semiconductors.

B. Numerical results

We now study the stability of the collinear ferromagne
state in a simple parabolic-band model where the carriers
characterized by just one effective massm* . As seen before,
the energy gradient vanishes for such a state, and the
dratic zero-frequency (n50) contribution to the effective ac
tion ~14! describes the energy of static fluctuations arou
the collinear state. Thus, for this state to be stable, the ma
DIJ

21(0) must have non-negative eigenvalues only, while
occurrence of negative eigenvalues of this matrix indica
that the perfectly collinear state is not the ground state.
note that for any arrangement of the Mn positionsRI the
matrix DIJ

21(0) contains a zero eigenvalue corresponding
a uniform rotation of all spins. IfDIJ

21(0) is non-negative, its
eigenvalue distribution can be interpreted as a density
states~DOS! for magnetic excitations above the colline
state.
2-4
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DISORDER-INDUCED NONCOLLINEAR . . . PHYSICAL REVIEW B 67, 045202 ~2003!
We have evaluated the spectrum ofDIJ
21(0) in systems

given by a simulation cube with periodic boundary con
tions averaging over different realizations of the Mn po
tions. The single-particle wave functionscas(rW) are com-
puted in a plane-wave basis taking into account wave vec
qW with length up to an appropriate cutoffqc . The same trun-
cated plane-wave basis is used to compute the quantities~18!
entering Eq.~17!. Note that, for fluctuations around the co
linear ferromagnetic state,DIJ

21( iv) is always real and sym
metric for realv since all carrier wave functions have for
given spin projections a coordinate-independent phase~and
can therefore also chosen to be real!. This follows from the
fact that the single-particle Hamiltonian describes for ea
spin projection just the problem of a spinless particle in
potential landscape provided by the Mn ions. SinceDIJ

21( iv)
is real and symmetric, the components of each of its eig
vectors have all the same phase~and can be chosen to b
real!. Physically this corresponds to the invariance of t
system under rotations around the magnetization axis of
collinear state.

The two upper panels of Fig. 1 show results for typic
system parameters for two different values ofqc . The com-
parison of both panels shows that the effects of the w
vector cutoff on the low-lying excitations have already sa
rated for the smallerqc . The by far largest contributions t
the DOS lie at positive energies, while a small amount
sightly negative eigenvalues ofDIJ

21(0) indicates an instabil-
ity of the perfectly collinear state.

FIG. 1. The disorder-averaged density of states of magnetic
citations for a simulation cube of volumeV5L35400 nm3 with a
Mn density ofNMn51.0 nm23 and a density ofp50.15 nm23 of
carriers having a band mass of half the bare electron mass.
strength of the exchange interaction between ions and carrie
Jpd50.05 eV nm23 with a spatial range ofa050.40 nm The two
upper panels show data for different wave vector cutoffqc with the
Mn positions chosen completely at random. The lowest panel c
tains data for the same situation as the top one but with the
positions chosen from an fcc lattice. The peaks at zero energy
due to the uniform rotation mode which strictly occurs in any d
order realization.
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In the calculations discussed so far the Mn positions w
chosen completely at random with uniform distributio
while in a real ~III,Mn !V semiconductor the Mn ions ar
supposed to be located on the cation sites forming an
lattice. In the bottom panel of Fig. 1 we show data for t
same system parameters as in the top panel but with the
positions chosen from an appropriate fcc lattice such t
about 5% of all sites are occupied. Both plots are practica
identical, indicating that our observations do not depend
this detail of the modeling.

The shape of the eigenvalue distribution of the fluctuat
matrix DIJ

21(0) is quite sensitive in detail to the Mn densi
NMn , the carrier densityp, and the Hamiltonian parameter
m* , Jpd and a0. In our numerics, we have extensively in
vestigated this high-dimensional parameter space in reg
realistic for~III,Mn !V semiconductors. The general finding
that the ground state of the system is generically nonc
linear. To our observation there occur always negative eig
values ofDIJ

21(0), indicating the instability of the collinea
state, provided that large enough wave vector cutoffs
system sizes are considered.

To analyze further the nature of this instability we co
sider the participation ratio

p~E!5FNV(
I

Ua I~E!U4G21

, ~26!

wherea I(E) is theI th component of the~normalized! eigen-
vector ofDIJ

21(0) with eigenvalueE and the summation goe
over all NV Mn sites. This quantity is an estimate for th
fraction of components ofa(E) being substantially nonzero
For instance, if a vector contains exactly a fraction ofp non-
zero components of equal modulus, all others being zero
participation ratio isp. The largest participation ratio of unity
is achieved for the zero-energy uniform rotation mode wh
all components of the corresponding eigenvector are equ

Figure 2 shows the disorder-averaged participation ra
for the same situation as in the top panel of Fig. 1. T
negative-energy modes have clearly higher participation r
than the eigenvectors at positive energy. This shows thatthe
instability of collinear state is due to long-ranged dynami

x-

he
is

n-
n
re

-

FIG. 2. The disorder-averaged participation ratio for the sa
situation as in the top panel of Fig. 1. The data are averaged
the sample intervals of the histogram. The value at zero energ
enhanced due to the contribution of the uniform rotation mode
that sample interval.
2-5
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involving a large fraction of the spins present in the syste.
Qualitatively the same observations are made for other
ues of system parameters.

IV. NONCOLLINEAR GROUND STATES AND THE
INFLUENCE OF A MAGNETIC FIELD

In the previous section we have investigated the stab
of the collinear ferromagnetic state in the parabolic-ba
kinetic-exchange model. This state is always stationary~i.e.,
has a vanishing energy gradient! but not necessarily stable
In the present section we extend our ground-state stu
using the energy gradient expression~11!. We will consider
the case of simple parabolic bands as well as more soph
cated kinetic carrier Hamiltonians incorporating spin-or
anisotropy.

A. Stationary states

1. Helical states in the parabolic-band model

We now discuss a particular class of metastable state
the parabolic-band model.

The energy gradient expression~11! can be employed in a
numerical steepest-descent procedure to search for true
ergy minima. To this end, one starts with the collinear st
with all spins pointing into thez direction and steps down in
energy by performing sufficiently small rotations of the M
spins according to some negative eigenvector ofDIJ

21(0) ~or
some linear combination of them!. Now consider the case
that only one eigenvector is involved with all componen
having a certain common phase. The resulting orientation
Mn spins will all lie in the same plane spanned by thez axis
and a direction in thexy plane that is determined by th
above phase factor. Since the parabolic-band Hamiltonia
invariant under spin flips with respect to this given plane,
local spin densitŷ sW(rW)& and consequently the vectorsmW I
will also lie in this plane.61 As seen in the previous subse
tion, for such a situation the imaginary partgI

2 of the coeffi-
cients vanishes identically for allI. When now applying the
energy gradient expression in a steepest-decent procedur
real partgI

1 of the gradient coefficients will just move th

directionsVW I within this plane, while the imaginary partsgI
2

remain strictly zero. Eventually this procedure will end up
a stationary state with all Mn spins lying in a plane pr
scribed by the initial departure from the collinear state.

These conclusions are confirmed by explicit numer
where suchcomplanar~or helical! stationary states are in
deed observed. This states can be seen asbona fidelocal
minima on the energy landscape.

However, as explained in more detail in the followin
subsection, such a type of energy minima occurs only
isotropic models but not in systems with spin-orbit anis
ropy.

2. Nonstationarity of the collinear state in the presence of
spin-orbit anisotropy

We now examine the energy gradient~11! with respect to
a six-band kW•pW Hamiltonian involving spin-orbit
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anisotropy.26,54,55In this case the rotational invariance in sp
space is broken down to the cubic symmetry of the unde
ing GaAs crystal.

Let us first consider the collinear ferromagnetic state.
this case we find numerically that the vectorsmW I are not
parallel ~or antiparallel! with any given common orientation
of the Mn spins. This finding includes also the crystall
graphic symmetry axes~1,0,0!, ~1,1,0!, and ~1,1,1! or their
equivalents.

There are two ways to restore the collinearity between
vectorsmW I and a common orientation of the Mn spins.

~i! Virtual crystal or continuum approximation. If the Mn
spins are approximated as an continuum and point all al
one of the crystallographic symmetry axes~1,0,0!, ~1,1,0!,
and~1,1,1! or their equivalents, themW I are always antiparal-
lel to this direction. This finding explicitly confirms an as
sumption which earlier spin-wave calculations in the s
band continuum model were based on.27 Formally the
continuum limit is reached by putting the parametera0 in the
coupling function~2! to large values. In this limit the disor
der with respect to the Mn positions is removed.

~ii ! Zero spin-orbit coupling. For vanishing spin-orbit
coupling the vectorsmW I are antiparallel to any given com
mon direction of the Mn spins.

Thus, in the presence of disorder with respect to the
positions and a finite anisotropy induced by the spin-or
interaction,the collinear ferromagnetic is never stationar
and therefore not the ground state. This statement includes
the case that the common direction of the Mn spins is alo
some crystallographic symmetry axis.

This important result resembles recent findings by Zara
and Janko40 obtained within the RKKY approximation
where the ground state of the system was also found to
noncollinear~or, as termed there, frustrated!.

Finally we briefly remark on the case that the directions
all Mn spins lie in some common plane. According to o
numerics and as to be expected from the above results
local spin densitŷ sW(rW)& and consequently the vectorsmW I do
not lie in plane of the Mn spins. Therefore trulycomplanar
states being local energy minima do not exist if spin-or
anisotropy is present

B. Steepest-descent results and the role of an external field in
the parabolic-band model

We have employed the energy gradient expression~11! in
a numerical steepest-descent procedure outlined in
IV A 1 to search for stationary states in the parabolic-ba
model. These states can be considered asbona fideenergy
minima. Our results are as follows: In cases where the
ergy minimum found by this method is close to the colline
state~with a magnetization of about 90% of the maximu
value or more!, this minimum appears to be unique~for a
given disorder realization! and can therefore be considered
the true absolute ground state of the system. However
situations where the magnetization is reduced more subs
tially ~by, say, about 20% or more! the energy minima found
are not unique anymore but depend on technical detail
2-6
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the numerical procedure. In such cases the system is es
tially spin-glass like with a complicated energy landsca
This situation occurs typically at larger density ratiosp/NMn
of carriers and Mn spins. For the system shown in Fig. 1
instance the magnetization values in the energy minima t
cally found are of about 30%–40% of the collinear state

Finally we consider the role of a magnetic field coupled
the Mn spins,

HB5DW •(
I

VW I , ~27!

whereDW 5gmBSBW is the vector of Zeeman couplings. He
the magnetic field is coupled only to the Mn spins and no
the band carriers, since their mean-field spin splittingD
5JpdSNMn is large compared to the Zeeman couplings c
sidered here. Therefore this contribution to the effective c
rier spin splitting is negligible, and one should expect t
collinear state to be stabilized by an external Zeeman fi
which is equal in magnitude to the smallest~negative! eigen-
value of the fluctuation matrixDIJ

21(0). For instance, from
the data shown in Fig. 1 this Zeeman field would be ab
0.5 meV.

A magnetic field in thez-direction leads to an additiona
contribution to the gradient componentsgI

1 of DzA2/SsinqI ,
which we shall consider in the following. We employ th
following numerical procedure. Starting from the colline
state with all Mn spins pointing in thez direction we obtain
a noncollinear energy minimum by the steepest-desc
method described above. Then we add a magnetic field in
z direction and repeat the procedure to reach a new en
minimum. This state is then the new starting point for
steepest-descent walk with an increased magnetic field
iterating this procedure we obtain a zero-temperature ma
tization curve as a function of the external field.

Our numerical results are as follows: In cases where
zero-field ground-state magnetization is substantially
duced from its maximum value for the collinear state~i.e. in
the ‘‘glassy’’ regime!, the magnetization at finite field de
pends quantitatively on the step width that is used in incre
ing the field. Figure 3 shows magnetization data for the sa
system parameters as in the data before. As seen from
the Zeeman field needed to realign all spin along thez direc-
tion is somewhat larger than the expected value ofDz

50.5 meV, which is a typical hysteresis effect.

V. THE SMALL-FREQUENCY DEPENDENCE OF THE
ACTION KERNEL AND ADIABATIC DYNAMICS

In Sec. III we studied the stability of the collinear ferro
magnetic state within a parabolic-band model in terms of
static component of the effective action kernelDIJ

21 . Here
we extend these analysis to the regime of small but fin
Matsubara frequenciesVn .

ExpandingKIJ(Vn) aroundVn50 one has

KIJ~Vn!5KIJ~0!1 iVnKIJ8 1•••, ~28!

with
04520
en-
.

r
i-

o

-
r-
e
ld

t

nt
he
gy

y
e-

e
-

s-
e

ere

e

e

KIJ8 52
S

2 (
a,b

FnF~ha!2nF~hb!

~ha2hb!2
FI

a↓,b↑FJ
b↑,a↓G . ~29!

The matrix K8 fulfills an important sum rule which we
derive now. As mentioned before, for the collinear state w
all Mn spins pointing in thez direction all carrier eigenstate
have either spin up or spin down, and one ends up with
separated problems for spinless fermions in a potential la
scape. The stationary Schro¨dinger equations for spin down
and spin-up particles read

2
\2¹2

2m*
ca↓~rW !2

S

2 (
I
E d3rJ~rW2RW I !ca↓~rW !5«aca↓~rW !,

~30!

2
\2¹2

2m*
cb↑~rW !1

S

2 (
I
E d3rJ~rW2RW I !cb↑~rW !5«bcb↑~rW !.

~31!

Taking all wave functions to be real and combining the
equations one finds

~hb2ha!^ca↓ucb↑&5S(
I

FI
a↓,b↑ , ~32!

where^•u•& denotes a scalar product between spinless w
functions. Since both the spin-up and spin-down carrier w
functions fully span the Hilbert space of a single spinle
particle, we have

FIG. 3. The z component of the Mn spin polarizationVz

5( IV I
z/(NMnV) as a function of an external magnetic field for th

same parameters as in the top panel of Fig. 1. The Zeeman cou
is increased in units of 0.1 meV. The thin lines are results for th
individual disorder realizations while the thick graph is the disord
average over 11 realizations.
2-7
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(
b

^ca↓ucb↑&^cb↑uca↓&5^ca↓uca↓&51

5(
b

S2

~hb2ha!2 (
IJ

FI
a↓,b↑FJ

b↑,a↓

~33!

and similarly

(
a

S2

~hb2ha!2 (
IJ

FI
a↓,b↑FJ

b↑,a↓51. ~34!

From these sum rules one derives62

(
IJ

KIJ8 5
1

2S
~n↑2n↓!, ~35!

wheren↑ , n↓ are the numbers of up- and down-spin carrie
respectively.

We now consider the limit of large inverse temperatureb
where the bosonic Matsubara frequenciesVn52np/b can
be treated as a continuous variableV. We are interested in
the adiabatic limit of the spin dynamics which is describ
by the low-frequency limit of the effective action~14!. In the
expansion of the Fourier-transformed Holstein-Primak
variables,

zI~V!5zI~0!1VS dzI

dV D
V50

1•••, ~36!

the zero-frequency componentzI(0) corresponds to
Holstein-Primakoff variables constant in imaginary timet.
Here we consider the uniform casezI(t)5ASh exp(ix) for
all I. This describes a uniform rotation of all Mn spin
around the axis (sinx,2cosx,0) by an angle parametrized b
h. As seen in Sec. III the matrixDIJ

21(0) annihilates the
vector of the zero-frequency componentszI(V50)
5bASh exp(ix). Therefore, using the sum rule~35!, the
low-frequency expansion of the effective action~14! reads

Sfluc
(2)5b~ iV!hS 2SNMnV1

1

2
~n↑2n↓! D1•••, ~37!

whereNMnV is the number of Mn ions in the system. Wit
an analytical continuation to real time, the above express
linear inV is the geometric phase generated by an adiab
uniform rotation of all Mn spins~pointing initially along the
z direction! around an axis in thexy plane by an anglebVh.
The second term in the parentheses stems from the car
which adiabatically follow the Mn spins. Note that this co
tribution comes with a different sign. This is due to the fa
that we are dealing with an effective action for the Mn sp
only where the carriers have been integrated out, and th
fore only the Mn spins are ‘‘actively’’ rotated. In our forma
ism the initial polarization axis of the Mn spins defines t
quantization axis for the carrier spins, and rotating this a
is just a ‘‘passive’’ rotation of the carrier spin coordina
system. Therefore the geometric phase stemming from
carriers has a different sign.
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We now turn to the case of general~i.e., nonuniform!
adiabatic rotations of the Mn spins parametrized by ot
eigenvectors ofDIJ

21(0) than the one discussed above. Th
the geometric phase of the localized spins still stems fr
the frequency-dependent part of the diagonal matrixLIJ(V)
@cf. Eq. ~16!# while the largest contribution to the carrie
phase will arise fromDIJ

21(0) itself and the derivativeKIJ8 .
We therefore expectKIJ8 to be dominantly diagonal when
expressed in the eigenbasis ofDIJ

21(0). In fact, this expecta-
tion is confirmed by numerical evaluations of this quanti
As a measure for the ‘‘diagonality’’ of a given matrixA we
consider

D~A!5S (
i

Aii
2

trA2
D 1/2

. ~38!

This quantity is unity ifA is diagonal and of order the in
verse of the square root of the dimension ofA if all of its
elements are of the same order of magnitude.

We have evaluated the ‘‘diagonality’’D of KIJ8 expressed
in the eigenbasis ofDIJ

21(0) for various sets of system pa
rameters and averaged this quantity over many disorder
alizations with respect to the Mn positions in space. We c
sistently findD substantially larger than the average value
a general matrix. For instance, for the parameters use
Figs. 1 and 2 we findD̄50.560 ~average over all disorde

realizations! with a fluctuationDD5AD̄22D̄250.045. This
is by an order of magnitude larger than the value of a gen
matrix of this dimension which isD51/A40050.05.

VI. CONCLUSIONS

We have studied the ground-state properties of kine
exchange models for carrier-induced ferromagnetism in~II-
I,Mn!V semiconductors with randomly distributed Mn ion
Our method is embedded in a path-integral spin-wave-t
formalism leading to an effective action for the Mn spi
with full Matsubara frequency dependence. The ze
frequency contribution to this action is equivalent to sta
perturbation theory and characterizes the stability of a gi
spin configuration, while the component linear in frequen
can be interpreted as the joint Berry phase of the Mn a
carrier system.

Our perturbational approach to the ground state of
system studied here differs from the RKKY approximati
insofar as we not do do perturbation theory around the fr
carrier ground state but around the carrier ground state in
presence of a fully aligned collinear Mn spin system. This
appropriate since the mean-field spin splitting is for realis
system parametersnot small compared to the Fermi energ
Therefore it cannot be regarded as a small perturbation to
free-carrier ground state, as done in the RKKY approxim
tion. This approximation actually works well for metalli
spin-glass systems where the coupling to local moment
indeed a small perturbation.60

For parabolic-band carriers the collinear ferromagne
state with all Mn spins in parallel is alwaysstationarybut
2-8



in
g

nt
f a

by
ar
b
r
n
-

or

fer,
l
SF,

ch

DISORDER-INDUCED NONCOLLINEAR . . . PHYSICAL REVIEW B 67, 045202 ~2003!
genericallyunstable. This instability can be characterized
terms of inverse participation ratios and is due to lon
ranged nonlocal spin fluctuations. We also have prese
results for the ground-state magnetization as a function o
external field.

For carrier dispersions involving anisotropy induced
spin-orbit coupling the collinear state is not even station
and therefore also not the ground state. This interplay
tween the anisotropy in the carrier system and the disorde
the Mn positions reflects recent findings by Zarand a
Janko40 obtained within the RKKY approximation. The sta
in

ch
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tionarity of the collinear state is restored in the continuum
virtual crystal approximation where disorder is neglected.
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corresponding operator acting on the carrier states is just
operatorK of complex conjugation which changes the sign
sy but leaves the other Pauli matrices invariant. In the case
thexy plane oryz plane the spin-flip operator issxK andszK,
respectively. For a general orientation of this plane one ha
use the appropriate linear combination of these operators. I
Mn spins lie in such a plane, the parabolic-band Hamiltonian
invariant under this spin-flip operation.

62Note that the sum rules, Eqs.~33! and ~34!, are independent of
our choice to take all wave functions to be real since poss
common phases in the up or down spins cancel in each term
the summation overI ,J.
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