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We study the ground-state properties of kinetic-exchange model8ldin )V semiconductors with ran-
domly distributed Mn ions. Our method is embedded in a path integral spin-wave-type formalism leading to an
effective action for Mn spins only with full Matsubara frequency dependence. The zero-frequency contribution
to this action is equivalent to static perturbation theory and characterizes the stability of a given spin configu-
ration, while the component linear in frequency can be interpreted as the joint Berry phase of the Mn and
carrier system. For simple parabolic-band carriers the collinear ferromagnetic state with all Mn spins in parallel
is alwaysstationarybut genericallyunstable This instability can be characterized in terms of inverse partici-
pation ratios and is due to long-ranged nonlocal spin fluctuations. We also present results for the ground-state
magnetization as a function of an external field. For carrier dispersions involving anisotropy induced by
spin-orbit coupling the collinear state is not even stationary and therefore also not the ground state. This
interplay between the anisotropy in the carrier system and the disorder in the Mn positions reflects recent
findings by Zarand and JankBhys. Rev. Lett89, 047201(2002] obtained within the RKKY approximation.
The stationarity of the collinear stateith the magnetization pointing in one of the cubic symmetry direciions
is restored in the continuum airtual crystal approximation where disorder is neglected.
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I. INTRODUCTION These models show several features in accordance with ex-
periments. They consist of a kinetic terfx,;, for free

For several years, diluted ferromagnetic semiconductorgajence-band carriergholes whose spin densitg(r) is an-
have been in the focus of research in solid-state physics; fGfferromagnetically exchange coupled to localized Mn spins

reviews, see Refs. 1-8. This is, on the one hand, becau B o= .
these systems provide interesting and challenging physicﬁ of length S=5/2 at locationsR, by an spatially extended

problems on their own right. On the other hand, this greafouplingJ(r), which we take to be of the form

deal of interest is due to possible applications of these mate-

rials in the emerging field of spintronit¥’ since they offer - pd 12282

the perspective of combining ferromagnetism with the IN)=——57,8 " @
readily tunable transport properties of semiconductors. (2map)

An important achievement in this field was the fabrication
of diluted Mn-doped GaAs via low-temperature molecular
beam epitaxy by Ohno and collaborators in 1$96his ma-
terial showed a Curie temperature of 110 K, a result whic

The regularization parameteay, reflects the spatial range of
the exchange couplirftf.In a minimal description of carrier-
hinduced ferromagnetism the kinetic term represents just a

- : mple parabolic band characterized by an effective mass
has been reproduced in the meantime by several othesr'*p P y

groups. Moreover, very recently reports on Mn-dogéic\/ ) m*. Mozeciver, we will also consider the case of a more
semiconductors having Curie temperatures of room temperdealistick- p Hamiltoniart®>***describing the valence-band
ture or higher have appeared, and also other combinations sfructure of(lll,V) semiconductors such as GaAs.
magnetic ions and/or host materials look prospectve’ Differently from earlier work®=2"3we will not make use
These recent developments have also already generatedf the virtual crystal approximation; i.e., we will not ap-
large amount of theoretical research on diluted ferromagnetiproximate the localized Mn moments by a continuum but
semiconductors=®2°-53 Sych studies include electronic retain them as individual and randomly distributed spins.
structure calculations based on density functionalThis additional feature of the model grossly enriches its
technique%®1~>3and investigations using specific models for physical properties and gives rise to the occurrenceani-
such systems.”2°-In particular, very recently a series of collinear ferromagnetism° This noncollinearity in the orien-
studies has appeared on disorder-related phenomena in difitions of localized magnetic moments even in the ground
ferent models for diluted ferromagnetic state of the system is very likely to be an ingredient in the
semiconductord®~3235-48|n the present work we employ interpretation of recent experiments by Potashatkal>®
kinetic-exchange models for carrier-mediated ferromagwho found a strong dependence of the magnetic properties of
netism occurring in Mn-dope€ll,V ) semiconductors which Mn-doped GaAs on the annealing history of the sample.
have been the basis of a large body of previous wéfk3*  Similarly strong dependences are also found in transport

The general Hamiltonian reads measurement8 and in crystallographic propertiés.
Our theoretical method and results to be presented here
H:Hkin+2 J d3r J(r— §|)§(F) ) §| _ (1) can be embedded in a path integral approach to the partition
[ function of the underlying model. A part of the results was
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already discussed in Refs. 5 and 30. In the present paper wiensor product of spin-coherent states for each Mn locdtion
add further details to the formalism and present new resultgith a polarization direction Q,

on the frequency dependence of the action kernel and the (sjn 9,cosq, ,sin9;sing, ,cosd;). We introduce local coor-

role of an external magnetic field. . . dinates for each Mn site whosedirection coincides with
Moreover, we give a detailed discussion of the gradient of -~ h . £ with h local b
the carrier ground-state energy with respect to fluctuations ifit1 - The spin operator$, with respect to these local bases

the orientations of the localized Mn moments. For the case okre related to the original operatdss via
isotropic systems with simple parabolic-band carriers the

collinear ferromagnetic state with all Mn spins in parallel is I~ cose, —sing, 0O
always stationary (i.e., it has a vanishing energy gradignt ! .
but in general nostable® In the present work we show the S sing;  cosg; 0
possibility of complanar spin structures which are local I~ 0 0 1
minima on the energy landscape of such systems. For the !
case of models with spin-orbit anisotropy in the carrier sys- cosd, 0 sind, T
tem we find that the collinear state is not even stationary and !
does therefore not represent an energy minimum. This find- X 0 & 0 l. 3
ing resembles recent results by Zarand and J4hko. —sind;, 0 cosy, T2
|

Another study related to the present one was reported on
recently by Korzhavykt al*® These authors investigate, by
both experimental and theoretical means, the influence of A0 parametrize fluctuations around the magnetic state given
antisite defects on the ground-state structure of the Mn locaby the directions(}, we use the usual Holstein-Primakoff
to favor the formation of disordered local moment configu-
rations of Mn spins with antiparallel orientation and there-
fore reduce the net magnetization. However, differently from T"=2S-b/'bb,
the results of the present investigations, the Mn spins in the
disordered local moment configurations are restricted to havEormulating the partition function as a path integral and rep-
(at random either spin up or down with respect to some resenting the Mn spin Holstein-Primakoff bosons in a
given quantization axis; i.e., they are collinear to each otheicoherent-state parameterization one arrives after integrating

This paper is organized as follows. In Sec. Il we reviewout the carrier degrees of freedom at the following effective
our general theory of magnetic fluctuations in the kineticaction:
exchange models studied here and add further technical de-
tails. In Sec. lll we report on numerical results concerning B .
the instability of the collinear ferromagnetic state in the Seﬁ=f dr>, [20,2]-t[IN(GyE+6G™Y)]. (5
parabolic-band model. In Sec. IV we discuss several results 0 !
arising from the very general gradient expression for the
ground-state energy obtained in Sec. Il. In Sec. IV A 1 wez(7) stands for the bosonic Holstein-Primakoff field param-
demonstrate the occurrence admplanaror helical energy  etrizing the fluctuations of the Mn spiharound its mean
minima in the parabolic-band model. An important further direction(}, . The integration over the imaginary timegoes
finding is discussed in Sec. IV A 2 where the collinear statefrom zero to the inverse temperatye and the trace in the
is shownnot even to be stationanyith respect to magnetic second contribution is over fermionic carrier degrees of free-
fluctuations if anisotropy induced by spin-orbit coupling is dom and imaginary time. The the fluctuation-fge., mean-
present. In Sec. IVB we report on numerical steepestfield) partGﬁ of the integral kernel is given by
descent studies of the true energy minima below the collinear
state and on the influence of an external magnetic field. In
Sec. V we Q|scuss the s_mall—frequency dependenge of the Gﬁ:ﬁr—ﬂ—ﬁkiﬁ SE JIr—R)
effective-action kernel derived in Sec. Il. We close with con- [
clusions in Sec. VI.

T?=S—Db/b,. (4

costs?

+ =(e '1sin®;st +etesing;s7)

N| -

()

1. MAGNETIC FLUCTUATIONS: GENERAL THEORY

A. Path integral approach where u is a chemical potential angf ands™=s*+isY are

We now describe a path integral approach to the partitioff@rrier spin operators. In the case of a simple parabolic band
function of fluctuations around a given magnetic state of thdhey are just proportional to Pauli matrices while, for in-
Mn spins. Our method is similar to the one used in Ref. 25stance, in the case of a six-bakdp Hamiltonian they have
with the differences that we do not approximate the Mn mag-a more complex forni®>4
netic moments by a continuum but retain them as individual The fluctuation part of the inverse Green’s function in up
localized spins, and we study fluctuations around more gerio quadratic order in the Holstein-Primakoff variables reads
eral noncollinear magnetic states. The state we consider is &G 1= 6G; '+ 6G, ! with
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» Y, 0 The contributionS{Z). bilinear in the Holstein-Primakoff
e '4 \/2—3( Z|CO§7—Z|5"‘27) s variables is quite complex for general Mn spin orientations
Q, . In particular, numerical evaluations of this quantity are
_ Y — % extraordinarily tedious and computationally expensive. We
+e+"p'\/2_3( Z|C0527—Z|5'”2?)5 therefore shall concentrate on the collinear state where all
Mn spins point, say, along thedirection. Then the second-

1 Lo
6Gll=§ E| Jr—R)

_ — order contribution to the effective action reads
— \/Z_SS|n1‘},(z|+z,)sZ , (7)
1 - .
B L =g 2 2 2(Q)Dy (2@, (14
8G, 1=~ J(r—R))| zzcos9,s7+ S2zsind, ’
! where the fluctuation matriDQl(Qn) reads
X (e st +etieigT) |, (8) D15 (2n) =L13(20) +K5(Qp), (15

with
To analyze magnetic fluctuations we expand the ac¢ton
in the bosonic spin variables describing deviations from the

A Liy=6, —iQ,— | d3rJ(r—-R Z*), 16
prescribed direction§), , ) ”( 350 f N(Ir=R)(s) 18
trin(Gyt+ 66 H=trIn(Gye) — >, (= GedG " K.J=§Z

n=1 a,B
€)

We will evaluate the effective action in up to second order in
the fluctuationsz (7). To this end we introduce the Fourier w0 B 31,0 BT > -
transformsz,(Q,,) = f£d7exp(Q,nz(7) with the notation FIoPi= 1 drd(r=R) dae(r) ¥p,(r). (18)

i/ll((tln)b: Z'(?“)’ where(),=2nm/, ninteger, is a bosonic quantities referring to the carrier system are to be evalu-
atsubara frequency. ated for the collinear orientation of Mn spins.

In this subsection we shall can|der a simple parabol_lc- The diagonal contributions to the action kernel summa-
band model where the fluctuation-free part of the carrier.

Green’s function reads in real-space representation rized inL,; stem from the kinetic ternk,z,d,z in the inte-
grand of Eq. (5) and from the lowest-order term

Wog(D Y (1) tr(Gur6G, 1) in Eq. (9). The term given by, arises from
> (10 the bubble contribution-[tr(Gyr6G] ‘Gur6G1 ) 1/2.

Ne(74) —Ne(7p)

i gal.BTEBT al
iQytn,—mg

. @A

Hereng is the Fermi function and

G (F,U;F’,G';w )=— -
MF n = R

Here w,=(2n+1)#/B, ninteger, is a fermionic Matsubara B. Static limit: Perturbation theory

frequency andj,,(r) is the spin component of the carrier The limit of zero Matsubara frequenéy, corresponds to
wave function with labekr and energye ,= 7.+ . These — giaiic perturbations of the mean-field carrier ground state. It
wave functions are the eigenstates of the single-particles jhstryctive to verify this explicitly by elementary perturba-

. . . A1 ; ; . L .
mean-field Hamiltoniatyg=Gyr—d -t u. , tion theory. The unperturbed mean-field Hamiltonian is again
The lowest-order contribution in the effective action OC'HMF=G@—& +p which is subject to a perturbation

curs at zero Matsubara frequency only andinigar in the - .
Holstein-Primakoff variables: Hruel{z,2:}] with

Haucl{z1,2}1= 6G1 [z ,2,}]+ 6G; '[{z,,z}]. (19

Here G, ! and 5G, * have the same form as in Eqg) and
(8) with z,= (T*+iTY)/\2S parametrizing the perturbations
with respect to the prescribed general directiﬁjs'n HmE -

1 — —
Shie=5 2 [0,2(0+9,2(0)], (1)

with g,=gi+ig? and

- - - - el s o We now consider the contributions frofd;,,. to the en-
1_ 3 fluc
gi=12S(e, x¢&,)- j d*r (I(r=R){[(s(r)) e, le,, ergy of the carrier ground state. In linear orderzjrone has
oL L. . the contribution from the expectation value @@;1 which
+[(s(r))-eled <), (120 can be written as
- (- . 1 _ _
9f=\2Se: e¢|><f ErIr—R)(s() ). (13 EW=3 2 [9z+9i2], (20
HereS§(F)) is the expectation»value of the carrier spin den-with g,=g'+ig? given by Eqs(12) and(13). This expres-
sity, e, = (cosg| ,sing;,0) ande,=(0,0,1). sion coincides with Eq(11).%® The expectation values of the
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carrier spin density5(F)) entering Eq(20) via the complex
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rather use the carrier ground state in the presence of a fully

coefficientsg, have to be computed within the ground-statePolarized Mn spin system as the starting point, as done here.

of the unperturbed HamiltonigH), . This operator depends
on the Mn spin direction$), and on the kinetic ternt;,

for the carriers, which has not been specified so far within
this perturbational approach to the ground state energy.

Therefore the expressiof20) holds formally forany band
representation of the carrier systein particular, Eq(20) is

valid for the simple parabolic-band model as well as for

more sophisticate&ﬁ Hamiltonians. We will come back to
this important fact in Sec. Il A.

There are two contribution bilinear iry. The first one is
just the expectation value Gﬁsz_l within the carrier ground
state,

(2D
with

LU:_(S”J dng(F_§|)<§(F)>ﬁ|, (22)
which obviously coincides with Eq16) for Q,=0 andQ,

=éz for all 1. The other bilinear contribution is the second-
order term arising fromG; * which reads

S

4

Ne(7,) —Ne(7p)
Na™ Mg

>

@B
—FelA1) + (costRe(z)} —iIm{z;})FeTAleie
2

> [Re(z}sing,(Fa! Al

2
E@= .

+(costRe{z ) +ilm{z })FebAletien]| |, (23

It is straightforward to see that in the collinear caéq,
= éz for all I, this expression takes the form

E(KZ): % ZKUZJ, (24)

with K|J: KlJ(Qn: O) given by Eq(17)59
We note that the perturbational approach described here

I1I. INSTABILITY OF THE COLLINEAR
FERROMAGNETIC STATE IN THE ISOTROPIC
PARABOLIC-BAND MODEL

A. General discussion of the energy gradient

As already stressed in Sec. Il B, the expresdibh ob-
tained for the ground-state energy in lowest order in the
Holstein-Primakoff variables is very general; i.e., it is for-
mally the same for any representation of the carrier system
(e.g., parabolic band, six-barkdp Hamiltonian, etd.

Let us now examine further the coefficients given in Egs.
(12) and(13) that enter the energy gradiefitl). The imagi-
nary partg|2 is nonzero if and only if the vector

i f rd(F—Ry)(S(F) 25

doesnot lie in the plane spanned béq,l:(cos(p, ,Sing,;,0)

andéz=(0,0,1). Similarly, the real pag,1 is nonzero if and
only if the projection ofm; onto the plane spanned ey ,e,

is not  collinear with the direction ﬁ,
=(sinY,cos¢; ,sinv;sin ¢, ,cosY,) of the Mn spin at sité. In
summary, for a given orientation of the Mn local moments to

be stationary in energy the local directioﬁsp must be par-

allel or antiparallel Withﬁ, at each Mn sité. An example for

such a situation is the collinear ferromagnetic state with all
Mn spins in parallel in a simple parabolic-band model. Here
the spins of all carrier eigenstates are polarized along the

common axis of the Mn spins, and therefcr?e is always
collinear with this direction at each site Thus, this state is
alwaysstationary but as we shall see below, in general not
stable Moreover, the collinear ferromagnetic state turns out
to be not even stationary if anisotropy induced by spin-orbit
interactions is present, as is the case for valence-band holes
in 111-V semiconductors.

B. Numerical results

is We now study the stability of the collinear ferromagnetic

crucially different from the RKKY approximation often used state in a.simple parabolic-bangl model where the carriers are
in the theory of spin glassé8.There the coupling of the characterized byjust one effective mass. As seen before,
carrier spin density to the local moments is treated as a pefl® energy gradient vanishes for such a state, and the qua-
turbation to the nonpolarized carrier Fermi sea. This is justidratic zero-frequencyn(=0) contribution to the effective ac-
fied provided that the free-carrier Fermi energy is large comfion (14) describes the energy of static fluctuations around
pared to the energy scale of the exchange coupling which ithe collinear state. Thus, for this state to be stable, the matrix
conveniently measured in terms of the carrier mean-field®1; (0) must have non-negative eigenvalues only, while the
splitting A=J,4SNy,, where Ny, is the density of Mn occurrence of negative eigenvalues of this matrix indicates
spins. However, for typical parameters(t,Mn)V systems  that the perfectly collinear state is not the ground state. We
the Fermi energy and are fairly of the same order of mag- hote that for any arrangement of the Mn positidRs the
nitude with the former quantity being often even smaller.matrix D;;*(0) contains a zero eigenvalue corresponding to
Therefore the free-carrier ground state is not a good starting uniform rotation of all spins. ID;*(0) is non-negative, its
point for perturbation theory. To explore the true ground stateeigenvalue distribution can be interpreted as a density of
of the system described by the Hamiltonigl) for param-  states(DOS) for magnetic excitations above the collinear
eters realistic for(lll,Mn)V semiconductors one should state.
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FIG. 2. The disorder-averaged participation ratio for the same
fcc lattice situation as in the top panel of Fig. 1. The data are averaged over
i the sample intervals of the histogram. The value at zero energy is

q,=6"(2mL)

500 disorder
realizations

Density of Eigenvalues [40meV ']

20 enhanced due to the contribution of the uniform rotation mode in
0.0 ‘ that sample interval.
-0.002 0.000 0.002 0.004 0.006

Energy [eV]

In the calculations discussed so far the Mn positions were
FIG. 1. The disorder-averaged density of states of magnetic e)ghqsen completely at rando'm with uniform d|§tr|but|0n,
citations for a simulation cube of volumé=L3=400 nn? with a  While in a real(lll,Mn)V semiconductor the Mn ions are
Mn density ofNy,=1.0 nm 3 and a density op=0.15 nmi 3 of ~ Supposed to be located on the cation sites forming an fcc
carriers having a band mass of half the bare electron mass. THattice. In the bottom panel of Fig. 1 we show data for the
strength of the exchange interaction between ions and carriers BAmMe system parameters as in the top panel but with the Mn
Jpa=0.05 eV nn1?® with a spatial range of,=0.40nm The two  Positions chosen from an appropriate fcc lattice such that
upper panels show data for different wave vector cutefivith the ~ about 5% of all sites are occupied. Both plots are practically
Mn positions chosen completely at random. The lowest panel conidentical, indicating that our observations do not depend on
tains data for the same situation as the top one but with the Mrhis detail of the modeling.
positions chosen from an fcc lattice. The peaks at zero energy are The shape of the eigenvalue distribution of the fluctuation
due to the_ un_iform rotation mode which strictly occurs in any dis- matrix Dle(O) is quite sensitive in detail to the Mn density
order realization. Nun. the carrier densityp, and the Hamiltonian parameters
1 , m*, J,q anda,. In our numerics, we have extensively in-
~We have evaluated the spectrum Df;"(0) in systems \egtigated this high-dimensional parameter space in regions
given by a simulation cube with periodic boundary condi-reajistic for(111,Mn )V semiconductors. The general finding is
tions averaging over different realizations oj the Mn posi-nat the ground state of the system is generically noncol-
tions. The single-particle wave functions,,(r) are com- linear. To our observation there occur always negative eigen-
puted in a plane-wave basis taking into account wave vectorgalues ofD,;*(0), indicating the instability of the collinear
g with length up to an appropriate cutaff . The same trun- state, provided that large enough wave vector cutoffs and
cated plane-wave basis is used to compute the quar(tli®®ss system sizes are considered.
entering Eq(17). Note that, for fluctuations around the col-  To analyze further the nature of this instability we con-
linear ferromagnetic staté},]l(i w) is always real and sym- sider the participation ratio
metric for realw since all carrier wave functions have for a
given spin projectiorr a coordinate-independent phasad
can therefore also chosen to be jedhis follows from the p(E)z{NVE
fact that the single-particle Hamiltonian describes for each !
spin projection just the problem of a spinless particle in a
potential landscape provided by the Mn ions. SiBgg'(i ) whereq, (E) is thelth component of thénormalized eigen-
is real and symmetric, the components of each of its eigenvector ofDl_Jl(O) with eigenvaluée and the summation goes
vectors have all the same phagnd can be chosen to be over all NV Mn sites. This quantity is an estimate for the
real). Physically this corresponds to the invariance of thefraction of components o&(E) being substantially nonzero.
system under rotations around the magnetization axis of thEor instance, if a vector contains exactly a fractiompafon-
collinear state. zero components of equal modulus, all others being zero, its
The two upper panels of Fig. 1 show results for typicalparticipation ratio igp. The largest participation ratio of unity
system parameters for two different valuesgef The com- is achieved for the zero-energy uniform rotation mode where
parison of both panels shows that the effects of the wavall components of the corresponding eigenvector are equal.
vector cutoff on the low-lying excitations have already satu- Figure 2 shows the disorder-averaged participation ratio
rated for the smalleq.. The by far largest contributions to for the same situation as in the top panel of Fig. 1. The
the DOS lie at positive energies, while a small amount ofnegative-energy modes have clearly higher participation ratio
sightly negative eigenvalues BX;*(0) indicates an instabil- than the eigenvectors at positive energy. This showstlieat
ity of the perfectly collinear state. instability of collinear state is due to long-ranged dynamics

a,(E)

-1
4} , (26)
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involving a large fraction of the spins present in the systemanisotropy?®***°In this case the rotational invariance in spin
Qualitatively the same observations are made for other valspace is broken down to the cubic symmetry of the underly-

ues of system parameters. ing GaAs crystal.
Let us first consider the collinear ferromagnetic state. In
IV. NONCOLLINEAR GROUND STATES AND THE this case we find numerically that the vectoﬁ; are not
INFLUENCE OF A MAGNETIC FIELD parallel (or antiparallel with any given common orientation

. . . . .. of the Mn spins. This finding includes also the crystallo-
In the previous section we have investigated the stability raphic symmetry axe€l,0,0, (1,1,0, and (1,1,) or their
of the collinear ferromagnetic state in the parabolic-ban quivalents e "
klnetlc-ethange model. Th|s_ state Is always stqtlomaey, There are two ways to restore the collinearity between the
has a vanishing energy gradigmiut not necessarily stable. - . . .
deectorsm, and a common orientation of the Mn spins.

In the present section we extend our ground-state studi . . .
P g (i) Virtual crystal or continuum approximationf the Mn

using the ener radient expressidr). We will consider . ; ; :
9 g9y g P iy {pins are approximated as an continuum and point all along

the case of simple parabolic bands as well as more sophis ;
cated kinetic carrier Hamiltonians incorporating spin-orbitOne of the crystallographic symmetry ax€s0,0, (1,10,

anisotropy. and(1,1,) or their equivalents, then, are always antiparal-
lel to this direction. This finding explicitly confirms an as-
sumption which earlier spin-wave calculations in the six-
band continuum model were based “nFormally the
1. Helical states in the parabolic-band model continuum limit is reached by putting the parametgin the

We now discuss a particular class of metastable states fFPUPIiNg function(2) to large values. In this limit the disor-
the parabolic-band model. der_ywth respect to the Mn positions is re_m(_)ved. _ _

The energy gradient expressi@i) can be employed in a (i) Zero spm-orblt coupling For vanishing spin-orbit
numerical steepest-descent procedure to search for true egPupling the vectorsn, are antiparallel to any given com-
ergy minima. To this end, one starts with the collinear staténon direction of the Mn spins.
with all spins pointing into the direction and steps down in ~ Thus, in the presence of disorder with respect to the Mn
energy by performing sufficiently small rotations of the Mn Positions and a finite anisotropy induced by the spin-orbit
spins according to some negative eigenvectadgf(0) (or  interaction,the collinear ferromagnetic is never stationary
some linear combination of themNow consider the case and therefore not the ground staféhis statement includes
that only one eigenvector is involved with all componentsthe case that the common direction of the Mn spins is along
having a certain common phase. The resulting orientations gfome crystallographic symmetry axis.
Mn spins will all lie in the same plane spanned by thexis This important result resembles recent findings by Zarand
and a direction in thecy plane that is determined by the and Jank® obtained within the RKKY approximation,
above phase factor. Since the parabolic-band Hamiltonian ¢here the ground state of the system was also found to be
invariant under spin flips with respect to this given plane, theoncollinear(or, as termed there, frustrated o
local spin density(§(F)> and consequently the vectorﬁl Finally we bneﬂy remark on the case that the dlrectlons of
will also lie in this plané! As seen in the previous subsec- all Mn_spms lie in some common plane. According to our
tion, for such a situation the imaginary pgtft of the coeffi. numerics and as to be expected from the above results, the

cients vanishes identically for all When now applying the 0c@l spin densitys(r)) and consequently the vectars do

energy gradient expression in a steepest-decent procedure {it i€ in plane of the Mn spins. Therefore truspmplanar

real partgl1 of the gradient coefficients will just move the states being local energy minima do not exist if spin-orbit

directionsﬁl within this plane, while the imaginary parg§ anisotropy Is present
remain strictly zero. Eventually this procedure will end up in
a stationary state with all Mn spins lying in a plane pre- p_steepest-descent results and the role of an external field in
scribed by the initial departure from the collinear state. the parabolic-band model

These conclusions are confirmed by explicit numerics
where suchcomplanar(or helical) stationary states are in-
deed observed. This states can be seebams fidelocal
minima on the energy landscape.

A. Stationary states

We have employed the energy gradient expres&ldnin
a numerical steepest-descent procedure outlined in Sec.
IV A1 to search for stationary states in the parabolic-band
However, as explained in more detail in the following model. These states can be considereth@sa fideenergy

subsection, such a type of energy minima occurs only ifninima. our results are as follows: In cases where the en-
isotropic models but not in systems with spin-orbit anisot-E9Y Minimum found by this method is close to the collinear
ropy. state(with a magnetization of about 90% of the maximum

value or morg this minimum appears to be uniqutr a

given disorder realizatigrand can therefore be considered as

the true absolute ground state of the system. However, in

) i ) situations where the magnetization is reduced more substan-
We now examine the energy gradigi) with respect o tia|ly (by, say, about 20% or moréhe energy minima found

a six-band k-p Hamiltonian involving spin-orbit are not unique anymore but depend on technical details of

2. Nonstationarity of the collinear state in the presence of
spin-orbit anisotropy
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the numerical procedure. In such cases the system is essen-
tially spin-glass like with a complicated energy landscape. 17
This situation occurs typically at larger density ratp$N,,,,
of carriers and Mn spins. For the system shown in Fig. 1 for
instance the magnetization values in the energy minima typi-
cally found are of about 30%—40% of the collinear state.
Finally we consider the role of a magnetic field coupledto z 06 |
the Mn spins,

08 | =—n disorder average

The Mn spin polarization as .
a function of an external
magnetic field

0.4 L/ 1
Hg=A->, O, (27) ’ V=400nm’ m*=0.5m
| 02| Ny=1.0nm° J_—0.05eVnm’
S S p=0.15nm
whereA=gugSB is the vector of Zeeman couplings. Here a,=0.4nm
the magnetic field is coupled only to the Mn spins and not to 0 ‘ ‘ ‘
the band carriers, since their mean-field spin splittig 0 0.0005 0.001 0.0015

=J,4S Ny, is large compared to the Zeeman couplings con- Zeeman field A" [eV]

sidered here. Therefore this contribution to the effective car- 5 3 Thez component of the Mn spin polarizatiof2?
rler'spln splitting is ”eg“g,'b'e’ and one should expect t.he:2|Q|Z/(NMnV) as a function of an external magnetic field for the
collinear state to be stabilized by an external Zeeman fieldame parameters as in the top panel of Fig. 1. The Zeeman coupling
which is equal in magnitude to the smallésegative eigen- s increased in units of 0.1 meV. The thin lines are results for three

value of the fluctuation matri®,;;*(0). Forinstance, from individual disorder realizations while the thick graph is the disorder
the data shown in Fig. 1 this Zeeman field would be aboutverage over 11 realizations.

0.5 meV.

A magnetic field in thez-direction leads to an additional
contribution to the gradient componerms of A%\/2/Ssin®, K/ — S NE(774) — NE(75) FelBiEBlal| ()
which we shall consider in the following. We employ the " 248 (7a— 1p)? ' ’ '

following numerical procedure. Starting from the collinear
state with all Mn spins pointing in thedirection we obtain
a noncollinear energy minimum by the steepest-descent The matrixK’ fulfills an important sum rule which we
method described above. Then we add a magnetic field in th@erive now. As mentioned before, for the collinear state with
z direction and repeat the procedure to reach a new energdll Mn spins pointing in thez direction all carrier eigenstates
minimum. This state is then the new starting point for ahave either spin up or spin down, and one ends up with two
steepest-descent walk with an increased magnetic field. Bgeparated problems for spinless fermions in a potential land-
iterating this procedure we obtain a zero-temperature magnécape. The stationary Schiinger equations for spin down
tization curve as a function of the external field. and spin-up particles read

Our numerical results are as follows: In cases where the
zero-field ground-state magnetization is substantially re-

duced from its maximum value for the collinear stéte. in n2v? - S 31,0 3 S .
the “glassy” regime, the magnetization at finite field de- oy '/’al(r)_i 2,: d I =R e (1) = 809 (1),
pends quantitatively on the step width that is used in increas- (30)

ing the field. Figure 3 shows magnetization data for the same

system parameters as in the data before. As seen from there

the Zeeman field needed to realign all spin alongzdé&ec- £2y2 .S o R _
tion is somewhat larger than the expected valueAdf — —*://m(r)Jr > Z f d3rd(r— R) g (r)=egihp(r).
=0.5 meV, which is a typical hysteresis effect. 2m ! 31)

V. THE SMALL-FREQUENCY DEPENDENCE OF THE ) ) o
ACTION KERNEL AND ADIABATIC DYNAMICS Taking all wave functions to be real and combining these

: . ) equations one finds
In Sec. Il we studied the stability of the collinear ferro-

magnetic state within a parabolic-band model in terms of the

static component of the effective action keriigl;*. Here B wl Bl

we extend these analysis to the regime of small but finite (15— ”a)<"bai|'/'m>_szl Frm (32)
Matsubara frequencieQ,, .

ExpandingK,;(Q,) aroundQ),=0 one has )
where(-|-) denotes a scalar product between spinless wave

Kiy(Qn) =K;(0) +iQ K[+ - - -, (28)  functions. Since both the spin-up and spin-down carrier wave
functions fully span the Hilbert space of a single spinless
with particle, we have
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% (Do) |Up) (Wt ey =(Wa)| o)) =1

2
S S pelBEAal
2 | J
B (mg=ma)® D

(33
and similarly
SZ
> F{LPIRfTel=1, (39
@ (pg=ne)° N
From these sum rules one derifes
;1

PHYSICAL REVIEW B67, 045202 (2003

We now turn to the case of gener@le., nonuniform
adiabatic rotations of the Mn spins parametrized by other
eigenvectors oD,]l(O) than the one discussed above. Then
the geometric phase of the localized spins still stems from
the frequency-dependent part of the diagonal matiX()

[cf. Eq. (16)] while the largest contribution to the carrier
phase will arise fronD,’Jl(O) itself and the derivativ; .
We therefore expecK/; to be dominantly diagonal when
expressed in the eigenbasistm,ﬂl(O). In fact, this expecta-
tion is confirmed by numerical evaluations of this quantity.
As a measure for the “diagonality” of a given matrix we
consider

12

2 A

trA2

D(A)= (38

wheren, , n  are the numbers of up- and down-spin carriers,This quantity is unity ifA is diagonal and of order the in-

respectively.

We now consider the limit of large inverse temperatgre
where the bosonic Matsubara frequendiés=2n/8 can
be treated as a continuous varialfle We are interested in

the adiabatic limit of the spin dynamics which is described

by the low-frequency limit of the effective actidt4). In the

expansion of the Fourier-transformed Holstein-Primakoff

variables,

dz
2(Q)=2(0)+Q| o (36)
a2/, _,
the zero-frequency componeng (0) corresponds to

Holstein-Primakoff variables constant in imaginary time
Here we consider the uniform casg 7)= /Sy exp(y) for
all I. This describes a uniform rotation of all Mn spins
around the axis (sig,—cosy,0) by an angle parametrized by
7. As seen in Sec. lll the matriD,]l(O) annihilates the
vector of the zero-frequency componentg ({1=0)

= B\/Syexplyx). Therefore, using the sum rulds), the
low-frequency expansion of the effective actidm) reads

(2) _

luc™

1
BQ) 7| =SNyaV+ Z(ny=ny) [+---, (37)

whereN,,,V is the number of Mn ions in the system. With

verse of the square root of the dimension/off all of its
elements are of the same order of magnitude.

We have evaluated the “diagonalityD of K|; expressed
in the eigenbasis olD(Jl(O) for various sets of system pa-
rameters and averaged this quantity over many disorder re-
alizations with respect to the Mn positions in space. We con-
sistently findD substantially larger than the average value of
a general matrix. For instance, for the parameters used in

Figs. 1 and 2 we find = 0.560 (average over all disorder

realization3 with a fluctuationAD = yD2— D2=0.045. This
is by an order of magnitude larger than the value of a general
matrix of this dimension which i®=1/,/400=0.05.

VI. CONCLUSIONS

We have studied the ground-state properties of kinetic-
exchange models for carrier-induced ferromagnetisrfilin
I,Mn)V semiconductors with randomly distributed Mn ions.
Our method is embedded in a path-integral spin-wave-type
formalism leading to an effective action for the Mn spins
with full Matsubara frequency dependence. The zero-
frequency contribution to this action is equivalent to static
perturbation theory and characterizes the stability of a given
spin configuration, while the component linear in frequency
can be interpreted as the joint Berry phase of the Mn and

an analytical continuation to real time, the above expressiogarrier system.
linear inQ is the geometric phase generated by an adiabatic Our perturbational approach to the ground state of the

uniform rotation of all Mn spingpointing initially along the
zdirection) around an axis in they plane by an angIg( 7.

system studied here differs from the RKKY approximation
insofar as we not do do perturbation theory around the free-

The second term in the parentheses stems from the carriecarrier ground state but around the carrier ground state in the

which adiabatically follow the Mn spins. Note that this con-

presence of a fully aligned collinear Mn spin system. This is

tribution comes with a different sign. This is due to the factappropriate since the mean-field spin splitting is for realistic

that we are dealing with an effective action for the Mn spinssystem parametersot small compared to the Fermi energy.
only where the carriers have been integrated out, and ther&herefore it cannot be regarded as a small perturbation to the
fore only the Mn spins are “actively” rotated. In our formal- free-carrier ground state, as done in the RKKY approxima-
ism the initial polarization axis of the Mn spins defines thetion. This approximation actually works well for metallic
guantization axis for the carrier spins, and rotating this axispin-glass systems where the coupling to local moments is
is just a “passive” rotation of the carrier spin coordinate indeed a small perturbatidf.

system. Therefore the geometric phase stemming from the For parabolic-band carriers the collinear ferromagnetic
carriers has a different sign. state with all Mn spins in parallel is alwaysationary but
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genericallyunstable This instability can be characterized in tionarity of the collinear state is restored in the continuum or
terms of inverse participation ratios and is due to long-virtual crystal approximation where disorder is neglected.
ranged nonlocal spin fluctuations. We also have presented

results for the ground-state magnetization as a function of an ACKNOWLEDGMENTS

external field.
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