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We investigate spin transport of heavy holes in III-V semiconductor quantum wells in the presence of
spin-orbit coupling of the Rashba type due to structure-inversion asymmetry. Similarly to the case of electrons,
the longitudinal spin conductivity vanishes, whereas the off-diagonal elements of the spin-conductivity tensor
are finite giving rise to an intrinsic spin-Hall effect. For a clean system we find a closed expression for the
spin-Hall conductivity depending on the length scale of the Rashba coupling and the hole density. In this limit
the spin-Hall conductivity is enhanced compared to its value for electron systems, and it vanishes with
increasing strength of the impurity scattering. As an aside, we also derive explicit expressions for the Fermi
momenta and the densities of holes in the different dispersion branches as a function of the spin-orbit coupling
parameter and the total hole density. These results are of relevance for the interpretation of possible
Shubnikov–de Haas measurements detecting the Rashba spin splitting.
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I. INTRODUCTION

In the last years, the emerging field of spin electronics has
become a major branch of solid state physics and comprises
by now all kinds of spin-dependent phenomena in semicon-
ductor structures and related systems.1–3 Most recently, the
possibility of spin-Hall currents has attracted considerable
theoretical interest.4–19 In these studies a spin currentsas
opposed to a charge currentd driven by an electric field per-
pendicular to it was investigated, where the spinful intinerant
charge carrriers are bulk valence-band holes in III-V zinc
blende semiconductors4–9 or conduction band electrons in
quantum wells10–19 of the same type of materials. In the
present work we extend these studies to the case of heavy
holes in quantum wells being subect to spin-orbit coupling of
the Rashba type due to structure-inversion asymmetry.20–24

From a historical perspective, the notion of the spin-Hall
effect in systems of itinerant spinful charge carriers was con-
sidered first by Dyakonov and Perel25 in the early 1970’s,
and in a more recent paper by Hirsch.26 In these studies the
predicted spin-Hall effect is due to spin-orbit effects influ-
encing scattering processes upon static impurities. Following
the terminology used in Refs. 10 and 5 this is referred to as
the extrinsic spin-Hall effect since it necessarily requires
spin-dependent impurity scattering. This is in contrast to the
intrinsic spin-Hall effect studied theoretically very recently
in Refs. 4–19. which is entirely due to spin-orbit coupling
terms in the single-particle carrier Hamiltonian and occurs
even in the absence of any scattering process. We note that
this distinction between intrinsic and extrinsic effects be-
comes ambiguous in the limit of weak spin-orbit coupling
when life time effects of carrier quasiparticles have to be
taken into account.11

Yet another type of spin-Hall effect was studied recently
by Meier and Loss27 in a two-dimensional Heisenberg model
consisting of nonitinerant spins, in contrast to the itinerant-
carrier systems mentioned before. In the case of conduction-
band electrons in III-V semiconductor quantum wells, the
intrinsic spin-Hall effect results from spin-orbit coupling of
the Rashba typesdue to structure-inversion asymmetry28d

and/or the Dresselhaus typesdue to bulk-inversion
asymmetry29d. Moreover, the interplay of these two effects
leads to particularly interesting transport effects.30,31,12 For
bulk valence band holes the effects of spin orbit coupling
underlying the intrinsic spin-Hall effect are incorporated in
Luttinger’s effective Hamiltonian32 giving rise to two differ-
ent dispersion branches differing in their effective masses
and known as heavy and light holes. Within this description,
these states form for a given wave vector multiplets of total
angular momentum 3/2 resulting from thes=1/2 spin de-
gree of freedom of the holes and thel =1 orbital anglar mo-
mentum of thep-type atomic orbitals forming the valence
band.33 In a quantum well, a splitting between the heavy and
light holes occurs due to the size quantization in the growth
direction of the heterostructure. For a sufficiently narrow
quantum well and for not too high densities and tempera-
tures, only the lowest heavy hole subbands are significantly
occupied. Here the angular momentum of the heavy hole
states points predominantly along the growth direction,21

corresponding to the total angular momentum states ±3/2, an
approximation we shall adopt in the present work.

Experimental investigations of such systems include stud-
ies of spin polarization and transitions to an insulating state
induced by magnetic fields.34 Moreover, the spin splitting
due to spin-orbit coupling has been studied in detail via
Shubnikov–de Haas oscillations35,36 including also aniso-
tropic properties of the magnetoresistance.37 In recent theo-
retical investigations the anisotropies in the effectiveg
factor,38 spin polarizations,39 and controlled spin rotations
induced by Rashba-type spin-orbit coupling in a spin-FET
setup23 have been considered. In the present work we inves-
tigate the spin-Hall effect for heavy holes in III-V zinc
blende semiconductor quantum wells.

This paper is organized as follows. In Sec. II we discuss
the Rashba model for heavy holes in III-V semiconductor
quantum wells. As an aside, we also give explicit expressions
for the Fermi momenta and the densities of holes in the
different dispersion branches as a function of the spin-orbit
coupling parameter and the total hole density. Apart from the
present investigations, we expect these results to be also of
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relevance for the interpretation of possible Shubnikov–de
Haas measurements40,41 in such hole systems. Section III is
devoted to the discussion of our results on spin-Hall trans-
port, and we close with conclusions in Sec. IV.

II. RASHBA SPIN-ORBIT COUPLING FOR HEAVY HOLES

We consider the following single-particle Hamiltonian in-
corporating spin-orbit coupling due to structure-inversion
asymmetry for heavy holes in III-V semiconductor quantum
wells of appropriate growth geometry20–24

H =
pW2

2m
+ i

a

2"3sp−
3s+ − p+

3s−d, s1d

using the notationsp±=px± ipy, s±=sx± isy, wherepW , sW de-
note the hole momentum operator and Pauli matrices, respec-
tively. These Pauli matrices operate on the total angular mo-
mentum states with spin projection ±3/2 along the growth
direction; in this sense they represent a pseudospin degree of
freedom rather than a genuine spin 1/2. In the above equa-
tion, m is the heavy-hole mass, anda is Rashba spin-orbit
coupling coefficient due to structure inversion asymmetry
across the quantum well grown along thef001g direction
chosen as thez axis. For a symmtrically grown quantum
well, the coefficienta is essentially proportional to an elec-
tric field applied across the well and therefore experimentally
tunable.20–22 This Hamiltonian has two dispersion branches
given by

«±skd =
"2k2

2m
± ak3 s2d

with eigenfunctions

krWukW, ± l =
eikW·rW

ÎA

1
Î2

S 1

7 iskx + ikyd3/k3D , s3d

wherekW is the hole lattice momentum andA is the area of the
system. We note that the validity of above model given by
the Hamiltonians1d is restricted to sufficiently small wave
numbers and densities. In fact, the lower of the two disper-
sion branchess2d is sfor a.0d not bounded from below for
large wave numbers and has non-negative eigenenergies only
for kø"2/2ma with a maximum atk="2/3ma. The un-
bounded decrease of the single-particle energies with in-
creasing wave number fork."2/3ma is clearly an unphysi-
cal feature of the model. Therefore, the following
considerations are restricted to sufficiently small densities
such thatsat zero temperatured only states with wave num-
berskø"2/3ma are occupied.

For a given Fermi energy« f and vanishing temperature,
the above two dispersion branches give rise to two different
Fermi wave numberskf

± fulfilling

« f =
"2skf

±d2

2m
± askf

±d3 s4d

with kf
+,kf

− skf
+.kf

−d for positive snegatived a. Subtracting
these two equations one finds

0 =
"2

2m
fskf

+d2 − skf
−d2g + afskf

+d3 + skf
−d3g s5d

or, cancelling a factor ofskf
++kf

−d,

kf
+kf

− = −
"2

2ma
skf

+ − kf
−d − skf

+ − kf
−d2. s6d

Note that in the relationss5d and s6d the Fermi energy does
not enter explicitly. In fact, the quantity which can be imme-
diately controlled experimentally is not the Fermi energy but
the hole densityn given by

n =
1

4p
fskf

+d2 + skf
−d2g . s7d

Combining Eqs.s6d and s7d, one obtains

kf
+ − kf

− = −
"2

2ma
F1 −Î1 −S2ma

"2 D2

4pnG , s8d

kf
+kf

− = 4pn − S "2

2ma
D2F1 −Î1 −S2ma

"2 D2

4pnG . s9d

Note that forkf
± ø"2/3ma the radicand in the above equa-

tions is always positive. Using

4pn = skf
+ + kf

−d2 − 2kf
+kf

− s10d

one derives from the above equations the following explicit
expression forkf

± as a function of the densityn and the
Rashba parametera:

kf
± = 7

1

2

"2

2ma
F1 −Î1 −S2ma

"2 D2

4pnG
+ H−

1

2
S "2

2ma
D2F1 −Î1 −S2ma

"2 D2

4pnG + 3pnJ1/2

.

s11d

The differenceDn of densities of holes in the two dispersion
branches

Dn =
1

4p
fskf

+d2 − skf
−d2g, s12d

can be expressed as

Dn =
− 1

4p

"2

2ma
F1 −Î1 −S2ma

"2 D2

4pnG
3H− 2S "2

2ma
D2F1 −Î1 −S2ma

"2 D2

4pnG + 12pnJ1/2

.

s13d

Such a difference in densities in the two dispersion branches
could be experimentally detected in Shubnikov–de Haas
measurements, as it was shown earlier for the case of
electrons.40,41 We note that the above results for the Fermi
momenta andDn depend only on the total hole denstyn and
length scalema /"2 given by the Rashba coupling.42 Winkler
et al.22 have studied both theoretically and experimentally
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the magnitude of the Rashba spin orbit coupling in GaAs-
based quantum well samples with heavy-hole densities of a
few 1014 m−2 and have found typical values for the charac-
teristic length scalema /"2 of a few nanometers. In Fig. 1 we
have plotted the Fermi wave numberskf

± and the difference
Dn of holes in the two dispersion branches as a function of
ma /"2 at a total hole density ofn=331014 m−2.

On the other hand, solving Eq.s8d for a gives a conve-
nient expression for the Rashba coefficient as a function of
the total hole density and the difference of the Fermi wave
numbers

a =
"2

2m

− 2skf
+ − kf

−d
skf

+ − kf
−d2 + 4pn

. s14d

Finally, writing Eq. s4d in the form

« fS 1

kf
±D3

=
"2

2m

1

kf
± ± a s15d

one obtains by adding these two equations

2m

"2 « fFS 1

kf
+ −

1

kf
−D2

+
1

kf
+kf

−G = 1, s16d

which does not explicitly depend on the Rashba parametera.
From this relation, it follows with the help of Eq.s6d

« f = a
skf

+kf
−d2

kf
− − kf

+ . s17d

Using Eqs.s8d and s9d it is straightforward to obtain from
this expression an explicit relation between the Fermi energy
e f and the hole densityn at a given Rashba parametera.

III. SPIN-HALL TRANSPORT

We now investigate the possibilty of spin-Hall transport
of heavy holes in III-V semiconductor quantum wells in the
presence of Rashba-type spin-orbit coupling. We are inter-

ested in spin currentssas opposed to charge currentsd as the
linear response of the system to an electric field applied in
the plane of the well. As we shall see below, in such a system
the spin current is always perpendicular to the driving elec-
tric field and therefore Hall type. We concentrate on the case
of zero temperature.

The single-particle spin current operator is defined by

jWS,z =
3"

2

1

2
sszvW + vWszd =

3"

2

pW

m
sz, s18d

where the factor of 3/2 reflects the angular momentum quan-
tum numbers of the heavy holes. The hole velocity operator
readsvW = ifH ,rWg /" with rW being the position operator or, in
terms of components,

vx =
px

m
+

a

"3f6pxpys
x + 3spy

2 − px
2dsyg, s19d

vy =
py

m
+

a

"3f3spx
2 − py

2dsx + 6pxpys
yg. s20d

A rigorous expression for the spin conductivity, i.e., the lin-
ear transport coefficient for spin currents driven by a spa-
tially homogeneous in-plane electric field, is given by the
Kubo formula with full frequency dependence for an electric
field43

sxy
S,zsvd =

e

Asv + ihdE0

`

eisv+ihdto
kW,m

ff«mskWdg

3kkW,muf jx
S,zstd,vys0dgukW,ml, s21d

where we have concentrated on the off-diagonalxy compo-
nents. Moreover, we have assumed zero temperatureT=0
and noninteracting carriers, which allows us to formulate the
two-body Green’s function entering the conductivity Kubo
formula in terms of single-particle operators.e= ueu is the
elementary charge andff«mskWdg is theT=0 Fermi distribution
function for energy«mskWd at wave vectorkW in the dispersion
branch mP h+,−j. The spin-current operatorsin the Dirac
pictured for spin moment polarized along thez direction and
flowing in thex direction is given by

jx
S,zstd = eiHt/" jx

S,zs0de−iHt/" =
3"

2m
szstdpxstd. s22d

From now on we will assume the Hamiltonian generating the
above time evolution to include also scattering potentials
from static random impurities being present in the quantum
well. The right-hand side of Eq.s21d is to be understood in
the limit of vanishing imaginary parth.0 in the frequency
argument. This imaginary part in the frequency reflects the
fact that the external electric field is assumed to be switched
on adiabatically starting from the infinite past of the system,
and it also ensures causality properties of the retarded
Green’s function occurring in Eq.s21d. In general the limit-
ing processh→0 does not commute with other limits and, in
particular, the dc limitv→0 has to be taken with care.43 In
the presence of random impurity scattering, the retarded two-
body Green’s function in Eq.s21d will generically have a

FIG. 1. The Fermi wave numberskf
± and the differenceDn of

hole densities in the two dispersion branches as a function of the
characteristic lengthma /"2 of the Rashba coupling at a total hole
density ofn=331014 m−2.
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frequency argument with positive imaginary part.43 In this
case the limith→0 is unproblematic, and the imaginary part
of the frequency argument is just due to impurity scattering
and/or othersmany-bodyd effects. For the present problem of
impurity scattering of noninteracting carriers being subject to
Rashba-type spin-orbit coupling, the resulting imaginary part
h.0 in the frequency argument is given, to lowest order in
the Rashba coefficient and the impurity potential, by the in-
verse of the momentum relaxation time. This is certainly a
very intuitive result; the formal arguments leading to it is
completely analogous to the ones used in Ref. 11 and can be
given along the following lines: In lowest order in the spin-
orbit coupling and the impurity scattering the time-dependent
spin-current operator reads

jx
S,zstd <

3"

2m
s0

zstdpx
0std, s23d

where the time evolution ofs0
z is only due to the Hamil-

tonian s1d, while px
0std contains the impurity scattering but

not the spin-orbit coupling. Now it is useful to note that, in
order to compute the expectation values in the Kubo formula
Eq. s21d, only matrix elements of the time-dependent mo-
mentum operatorpx

0std which are diagonal in the wave vector
index are needed. This enables to apply superoperator tech-
niques developed in Refs. 44 yielding

fpx
0stdgkW·kW < fe−V0tpx

0s0dgkW·kW = fe−t/tpx
0s0dgkW·kW , s24d

whereV0 is the scattering master operator in lowest order of
the scattering potential.44 This operator is the same as it oc-
curs as the scattering term in the usual Boltzmann equation
when evaluated in lowest oder via Fermi’s golden rule. Thus,
Eq. s24d describes the usual momentum relaxation due to
static impurities in lowest order in the scattering potential.
For impurity potentials being isotropic in real space, the mo-
mentumpx is an exact eigenfunction ofV0, and the eigen-
value is given by the well-known inverse momentum relax-
ation time 1/ts«d sRefs. 44 and 45d which in general depends
on the energy«skWd. To lowest order in the Rashba coupling,
this energy argument can be replaced with the Fermi energy
in the absence of spin-orbit interaction. We note that this
momentum relaxation rate 1/t is the same as obtained in the
standard diagrammatic approach and thus contains the vertex
correction for particle transport.43 However, this vertex cor-
rection vanishes for short-range isotropic scatterers.

The question of vertex corrections to the spin-Hall trans-
port was also examined very recently by Inoue, Bauer, and
Molenkamp,16 and by Dimitrova19 for the case of electrons
being subject to Rashba spin-orbit interaction. There the au-
thors reach the conclusion that for small but finite disorder
the spin-Hall conductivity should identically vanish due to
vertex corrections, while it has its “universal value” ofe/8p
in the case of a perfectly clean system.10–12 Moreover,
Murakami9 has studied vertex correction to spin-Hall trans-
port of holes in bulkp-type semiconductors described by a
Luttinger Hamiltonian.32 There the author concludes that ver-
tex correction vanish identically, validating, the results of
Ref. 31, and ascribes this observation to the fact that the
underlying Hamiltonian is invariant under inversion of mo-

menta, in contrast to the Rashba Hamiltonian. These techni-
cally rather involved issues are to the opinion of the present
authors not entirely settled yet and presently under investi-
gation.

Let us now turn to the evaluation of the spin-Hall conduc-
tivity using the aforementioned approximations. A straight-
forward calculation yields

sxy
S,zsvd = − syx

S,zsvd = −
e

p

9

4

a

m
E

kf
+

kf
−

dk
k4

Sv +
i

t
D2

− S2ak3

"
D2 ,

s25d

where, according to the above arguments, the imaginary part
of the frequency argument is given by the momentum relax-
ation rate 1/t. Moreover, thelongitudinalspin conductivities
sxx

S,z, syy
S,z turn out ot be identically zero. This is similar to the

case of electrons in a quantum well being subject to spin-
orbit coupling of either the Rashba or the Dresselhaus
type.10–12There a longitudinal spin conductivity occurs only
if both the Rashba and the Dresselhaus coupling are
present.12

The remaning integral in the above expressions25d is el-
ementary; however, it leads to a rather cumbersome expres-
sion which shall not be given here. In the dc limitv=0, the
energy scale of the impurity scattering" /t has to be com-
pared with the “Rashba energy”«R=askf

0d3, where kf
0

=Î2m« f /"2 is the Fermi wave number for vanishing spin-
orbit coupling, which is a typical value fork in the inegration
in Eq. s25d. If the impurity scattering dominates over the
Rashba coupling" /t@«R, the spin-Hall conductivity van-
ishes with the leading order correction given by

sxy
S,zs0d =

e

p

9

20

a

m
t2fskf

−d5 − skf
+d5g + OFS «R

"/t
D4G , s26d

where the Fermi wave numbers are given by Eq.s11d. In the
opposite case«R@" /t, the leading contribution to the spin-
Hall conductivity reads

sxy
S,zs0d =

e

p

9

16

"2

ma
S 1

kf
+ −

1

kf
−D + OFS"/t

«R
D4G . s27d

Note that this result for the spin-Hall conductivity depends
only on the length scalema /"2 of the Rashba coupling and
the total hole densityn, but not separately on quantities such
as the Fermi energy and the effective heavy hole mass. If
ma /"2 is small against the inverse square root of the total
hole densitysbut still fulfilling «R@" /td, the spin-Hall con-
ductivity approaches a value ofsxy

S,z=9e/8p. This is the case
if " /t!«R!« f. This above value should be compared with
the universal value ofe/8p found for the spin-Hall conduc-
tivity of electrons being subject to a Rashba coupling domi-
nating possible impurity scattering.10,11 Thus, in this limit,
the hole spin-Hall conductivity is enhanced compared to the
case of electrons by a factor of 9, which is partially due to
the larger angular momentum of the heavy holes. In Fig. 2
we have plotted the spin-Hall conductivity for dominating
Rashba couplingf«R@" /t, see Eq.s27dg as a function of
ma /"2 at a total hole density ofn=331014 m−2. As seen
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there, the spin-Hall conductivity starts out atsxy
S,z=9se/8pd

and increases with increasing Rashba coupling.

IV. CONCLUSIONS

We have studied spin transport of heavy holes in III-V
semiconductor quantum wells in the presence of spin-orbit
coupling of the Rashba type due to structure-inversion asym-
metry. Similarly to the case of electrons, the longitudinal

spin conductivity vanishes, whereas the off-diagonal ele-
ments of the spin-conductivity tensor are finite giving rise to
an intrinsic spin-Hall effect. For a clean system we find a
closed expression for the spin-Hall conductivity depending
on the length scale of the Rashba coupling and the hole
density. In this limit the spin-Hall conductivity is enhanced
compared to its value for electron systems. For dirtier
p-doped quantum wells when the impurity scattering domi-
nates the spin-orbit coupling, the spin-Hall conductivity
naturally vanishes as also found previously for the case of
electrons.11,12 As an aside, we give explicit expressions for
the Fermi momenta and the densities of holes in the different
dispersion branches as a function of the spin-orbit coupling
parameter and the total hole density. These results are ex-
pected to be helpful for the interpretation of possible
Shubnikov–de Haas experiments aiming at the detection of
the Rashba spin splitting.

Note added. After submission of this paper a preprint by
Wunderlich et al.46 appeared reporting on an experimental
observation of the spin Hall effect inp-doped GaAs quantum
wells as studied here.
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