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We investigate ramifications of the persistent spin helix symmetry in two-dimensional hole gases in
the conductance of disordered mesoscopic systems. To this end we extend previous models by going
beyond the axial approximation for III-V semiconductors. We identify for heavy-hole subbands an
exact spin-preserving symmetry analogous to the electronic case by analyzing the crossover from
weak anti-localization to weak localization and spin transmission as a function of extrinsic spin-orbit
interaction strength.
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Control over spin relaxation is essential to the op-
erational capabilities of spin-based semiconductor de-
vices [1, 2]. A major advance in this respect has been the
identification of an SU(2) symmetry that confines spin
evolution to a characteristic topology denoted “persis-
tent spin helix” (PSH) and prevents spin relaxation [2, 3].
The latter could be identified by means of optical ex-
periments [4, 5] in two-dimensional electronic systems
with linear-in-momentum Bychkov-Rashba [6] and Dres-
selhaus [7] type spin-orbit interactions (SOIs) (here de-
pending on the parameters α and β, respectively) of equal
magnitude. As had already been suggested in Refs. [8, 9],
this symmetry at α = β also becomes manifest in the
weak localization (WL) feature in magnetoconductance
traces of disordered materials with finite SOI, as opposed
to weak antilocalization (WAL) mediated by spin relax-
ation [10]. Recent experiments confirmed theoretical pre-
dictions that the WL signature persists for n-doped sys-
tems even in the presence of nonnegligable intrinsic SOI
that scales as k3 [11–13].

The question naturally arises whether the phenomenon
of suppressed spin relaxation also exists in p-doped con-
ductors. Here we hence investigate the generalization of
the PSH symmetry arguments in the context of struc-
turally confined heavy-hole (HH) states in III-V semi-
conductors forming a two-dimensional hole gas (2DHG).
In these materials the spin is subject to strong SOIs
which typically enhances spin relaxation. This feature
is mainly attributed to the carrier density dependence
of the spin splitting, that has been investigated ana-
lytically by means of diagrammatic perturbation theory
within the spherical approximation for one or more sub-
bands [14]. Other works consider weak (anti-) localiza-
tion in hole gases based on a semianalytical [15] as well
as a semiclassical and numerical [16] treatment of 4 × 4
Luttinger-Kohn models [17]. Here we focus on strong
confinement described by an effective 2 × 2 model of
the HH ground state. Our treatment is not restricted
to the spherical or axial approximations, which signifi-
cantly widens the range of observable phenomena com-
pared to prior models. The low dimensionality allows for

the identification of relevant symmetries that are used to
deduce optimum parameter regimes for controlling spin
relaxation. The structure of our model is given by the
Hamiltonian

H = Hkinσ0 +Ω2DHG · σ, (1)

where Hkin denotes the kinetic energy, σ0 the identity
matrix, σ the vector of Pauli matrices, and Ω2DHG the
effective spin-orbit field coupling to the spin. In con-
trast to the corresponding expression Ω2DEG for elec-
trons, where k-linear terms are dominant [9], to lead-
ing order Ω2DHG is characterized by a cubic momentum
dependence. This is in agreement with existing 2DHG
models and results from coupling of the HH to the light
hole (LH) subbands [18, 19]. The result (1) is obtained
via a perturbative expansion of the standard Luttinger-
Kohn Hamiltonian [17] in the basis given by the subband
edge states in growth direction along the [001] crystal
axis [20]. Our model is adequate to describe systems in
which the energy level closest to the HH ground state is
the LH ground state of the quantum well. This applies
to typical zinc-blende structure materials, as can be in-
ferred from their material properties and calculated band
structures given e.g. in Ref. [20]. In Eq. (1) σ represents
the subspace spanned by the HH states of spin angular-
momenta ±3/2 and the hole spin-orbit field is given by

Ω2DHG = βHHk (2)

+ λD

{
−γ̄k2Fk + δ[k3xx̂+ k3yŷ − 3kxky(kyx̂+ kxŷ)]

}
+ λR

{
δk2F(kyx̂+ kxŷ) + γ̄[−k3yx̂− k3xŷ + 3kxkyk]

}
with the intrinsic Dresselhaus parameters

βHH = −
√
3Ck

(
1

2
−

2~2
〈
k2z
〉
γ3

m0∆HL

)
, (3)

λD =

√
3~2

2m0∆HL

[
Ck +

√
3b8v8v41

〈
k2z
〉]

, (4)

the structural, electrical field 〈Ez〉 dependent Bychkov-
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Rashba parameter,

λR =
3~2

2m0∆HL
〈Ez〉 r8v8v41 , (5)

and the Luttinger parameters γ̄ = (γ3 + γ2)/2 and
δ = (γ3 − γ2)/2 as in Ref. [21]. We denote the material
constants Ck, r

8v8v
41 and b8v8v41 consistent with Ref. [20].

By going beyond the axially symmetric situation, δ =
0, the above expression is a generalization to previous
models [18, 19, 22]. This allows for the description
of a broader range of materials and to avoid neglect-
ing anisotropies that are of importance, for instance,
in the plasmon spectra of HH systems [23]. Vertical
confinement is modeled by a potential well with per-
pendicular wavenumber

〈
k2z
〉

that displays a splitting

∆HL = 2γ2~2
〈
k2z
〉
/m0 between HH and LH-bands. For

further analysis the terms proportional to the small pa-
rameter Ck are neglected in Eqs. (3,4), since for a nar-
row confinement they are dominated by the terms pro-
portional to b8v8v41

〈
k2z
〉
in realistic materials, as shown in

Table 6.3 in Ref. [20].
Furthermore, the linear Dresselhaus term (3) effec-

tively rescales the axially symmetric part of the cubic
Dresselhaus contribution. Equation (2) results from se-
quential perturbative expansions up to third order in k
and to first order with respect to the inverse splitting
∆HL

−1 and to Ez imposed on the crystal. The identi-
fication of enhanced spin relaxation times in this work
is closely connected with broken axial symmetry, since
here a conserved quantity related to the spin degree of
freedom can only be constructed in the presence of terms
with both two- and threefold rotational symmetry in the
extrinsic and the intrinsic SOI. Although our findings
suggest that obtaining an exact PSH symmetry may be
limited by the parameters of realistic systems, an approx-
imate symmetry in the leading-order Fourier components
of Ω2DHG causes a weakly perturbed crossover from WAL
to WL, similar to electronic systems with cubic intrinsic
SOI [11].
The effect of the spin symmetry on the magnetocon-

ductance G can be analyzed by organizing the transmis-
sion entering the Landauer-Büttiker framework [24, 25],

h

e2
G =

 ∑
n,m;σ=σ′

+
∑

n,m;σ 6=σ′

 |tnσ,mσ′ |2 =: TD + TOD,

(6)
according to their spin quantum numbers σ, σ′ in terms
of diagonal spin-preserving channels TD and a spin off-
diagonal contribution TOD. Here, σ, σ′ = ±1 refer to
an arbitrary basis defined in the ballistic leads of a two-
terminal device representing our numerical model, while
n,m are integers that define the transverse channel of the
in- and outgoing states due to a hard-wall confinement
of the leads. The lead wavefunctions |φn,σ〉 and |φm,σ′〉
enter into the Fisher-Lee relation for the amplitudes

tnσ,mσ′ ∝
∫
∂Leads

d2r 〈φn,σ| y1〉 〈y1|GR |y2〉 〈y2 |φm,σ′〉,
where the integration is taken over the lead cross sec-
tions [26]. GR = (EF −H+ 0+)

−1
is the Green’s func-

tion of the scattering region at fixed Fermi energy EF.
Knap et al. [9] found in n-type systems particular re-

lations between extrinsic and intrinsic SOI magnitude,
for which the Cooperon becomes separable and a WL
signal rather than WAL is observed. In terms of the
structure provided by Eq. (6), TOD vanishes in this case
and correspondingly spin scattering is absent even in
transport in disordered systems. This is equivalent to
the observation that the system displays an exact, dis-
order independent symmetry [2, 3], which allows for a
decomposition within the corresponding constant eigen-
basis {|χσ〉} into Ω·σ =

∑
σ=±1 Eσ(Ω) |χσ〉 〈χσ|. Hence,

when taking the spin trace in Eq. (6) in the basis{
|χσ〉 = (1, σ exp[±iπ/4])†

}
, corresponding to the exis-

tence of the conserved quantity Σ± = σx ± σy or, equiv-
alently, fixed in-plane spin orientation along θ = ±π/4,

one finds that TOD ∝
∑

σ 6=σ′ |〈χσ|χσ′〉|2 =
∑

σ 6=σ′ δσ,σ′

is supressed and TD decomposes into two independent
channels which trivially display WL [9].

In the hole model (2) we find the analogue to the elec-
tronic PSH symmetry if the system parameters fulfill
λR/λD = ±1 and γ̄ = −δ, i.e., γ3 = 0. In these two
cases the direction of Ω2DHG is fixed independently of
the momentum, more precisely by Ω2DHG ∝ [−k2F(kx±
ky) ± 3kxky(kx ± ky) − k3x ∓ k3y](x̂ ± ŷ). We illustrate
these cases in Fig. 1, where the effective spin-orbit field
Ω2DHG is oriented along a fixed direction for both spin-
split subbands [34]. By engineering the quantum well
width and choosing the electrical gate field appropriately,
a regime of enhanced spin lifetime should be accessible
in hole gases. In realistic material systems it is possible
to influence the effective values of γ3 [35]. In particular
at λR/λD = −1 and γ3 = 0, as investigated in Fig. 2, the
symmetric situation is obtained.

The symmetry condition becomes apparent in the mag-
netoconductance of disordered 2DHG systems, as illus-
trated in Fig. 2. There we show results of the numerically
calculated disorder averaged transmission, Eq. (6), for fi-
nite cubic intrinsic SOI λD as a function of the extrinsic
SOI λR, respectively the parameter η = λR/λD, setting
γ3 = 0. Representative examples of the conductance cor-
rection traces are shown in Fig. 2(a), which display typ-
ical WAL and WL lineshapes as a function of magnetic
flux φ from a homogeneous magnetic field perpendicu-
lar to the 2DHG plane. Considering the dependence on
η = λR/λD, we find pronounced signatures of WAL if
η is far from −1. When η approaches the value of −1,
a crossover from WAL to WL occurs as indicated by a
maximum negative conductance correction, in agreement
with the symmetry argument. In Fig. 2(b) our results are
summarized in terms of the conductance at maximum
magnetic flux 〈T (φmax)〉 subtracted from the correction
at zero flux 〈T (0)〉 plotted as a function of η, where we
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Figure 1: (Color online) Fermi surface for the different spin di-
rections obtained from Eq. (1) (violet and blue contours) and
the corresponding direction of the effective spin-orbit field,
Ω2DHG, illustrated by arrows. The SOI parameters establish
a persistent spin helix for holes with uniaxial spin orientation
corresponding to λR/λD = +1 (a) or λR/λD = −1 (b). In
both cases the Luttinger-Kohn parameters are γ̄ = −δ, i.e.,
γ3 = 0.

Figure 2: (Color online) Signatures of spin-preserving symme-
tries in weak localization of a two-dimensional hole gas. (a)
Disorder-averaged magneto conductance correction 〈T (φ)〉 −
〈T (φmax)〉 as a function of flux φ (in units of φ0 = h/e;
φmax/φ0 = 3.1) for spin-orbit coupling ratios η = λR/λD =
−1.65,−0.017,−1.33,−0.67,−1 (from top to bottom).
(b) Conductance correction 〈T (0)〉 − 〈T (φmax)〉 as a function
of η. Negative magneto conductance reflects suppression of
spin relaxation close to η = −1. System parameters used in
(a) and (b): Disorder average over 1000 impurity configura-
tions for a scattering region of aspect ratio (length to width
W ) 200:80 unit cells with periodic boundary conditions in
transverse direction. Quantum transmission computed for
kFW/π = 13 hole states per spin supported in the leads, elas-
tic mean free path l = 0.04W , γ3 = 0, and fixed Dresselhaus
spin precession length kDW ≈ 1, defined below Eq. (8).

chose φmax = 3.1φ0. The results show that the parameter
regime where a PSH type symmetry occurs is character-
ized by a negative conductance correction, i.e., by a WL
signature.
Our analysis above is confirmed within a diagram-

matic perturbative treatment by exact diagonalization

of the Cooperon Ĉ(Q) in the framework of the effective
model (1). For this purpose the scheme presented in
Refs. [27, 28] for electrons is generalized to holes. The
diagrammatic approach is justified since we assume to be
in the diffusive regime, EFτ � 1, with elastic scattering
time τ . Since we consider the spin ±3/2 subspace, one is
left with [29]

Ĉ(Q) =
~

Dh

(
~Q+ 2

3m0 〈â〉 · S
)2

+Hc

, (7)

where Dh = τv2F/2 is the diffusion constant, Q = k + k′

the Cooperon momentum composed of momenta of the
retarded and advanced propagators with spins 3/2~σ and
3/2~σ′, giving rise to S = 3/2~(σ + σ′). In Eq. (7) the
average over all directions of the velocity vF on the Fermi
surface is denoted by 〈. . . 〉, and â is defined via the re-
lation σ ·Ω2DHG = k · (â ·σ) describing the Rashba and
Dresselhaus SOI. Hc is a Q-independent term which gen-
erally leads to spin relaxation. However it can be shown
that one of the gaps of the eigenmodes in the triplet sec-
tor of the Cooperon vanishes if the aforementioned sym-
metries are present. Since the Cooperon gaps can be in-
terpreted as spin-relaxation rates [27, 28], this supports
the numerical findings of persistent spin states.

The numerical setups on which our simulations are
based are disordered hole systems connected to two ter-
minals, represented by ballistic semi-infinite leads with-
out SOI. The latter is switched on and off adiabatically
over one fifth of the total length of a rectangular scat-
tering region to which the leads are connected. We use
an average over an Anderson-like uniformly distributed
random-box potential Vdis to simulate disorder. The per-
pendicular magnetic field is included by means of the
Peierls substitution. The Hamiltonian is then discretized
on a tight-binding grid in position space and the trans-
mission amplitudes are obtained by an optimized recur-
sive Green’s function algorithm [30]. Since we are inter-
ested in modeling bulk transport, we implemented peri-
odic boundary conditions in the transverse direction to
minimize effects from the boundaries.

Apart from considering the indirect influence of the
PSH symmetry on the WL-WAL transition, it seems nat-
ural to search for a manifestation of a symmetry in TD,
Eq. (6), since its effects could be determined by magnetic
polarization of the leads, allowing for spin transistor op-
eration even in the presence of disorder [2]. Numerically
we can confirm the validity of the latter approach by cal-
culating the normalized quantity TD/(TD + TOD) as a
function η = λR/λD, as shown in Fig. 3. We identify
a pronounced transmission maximum at η = 1 in the
basis corresponding to the +π/4 spin orientation even
in situations where the exact PSH-type symmetry is not
realized. In the given example we chose the Luttinger-
Kohn parameters γ2 = 1 and γ3 = 0.25 which correspond
to such a nonideal setup. For parameters far from η = 1
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Figure 3: Ratio of disorder averaged diagonal transmission
over total transmission 〈TD〉 / 〈T 〉 = 〈TD〉 / 〈TD + TOD〉 as a
function of η for a scattering region with 150:80 aspect ratio
for fixed Dresselhaus spin precession length k−1

D = 1.3 W and
Luttinger-Kohn parameters γ2 = 1 and γ3 = 0.25 for which
no exact spin-preserving symmetry can be established. The
peak of 〈TD〉 / 〈T 〉 at η = 1, coincides with the maximum of
the diabatic transition probability of Eq. (8) (indicated by the
arrow). Average Transmission shown includes 1000 disorder
configurations.

the spin transmission is equally distributed among the
diagonal and off-diagonal channels.
When |η| approaches 1, TD formally corresponds

to the probability of diabatic Landau-Zener tran-
sitions between instantaneous eigenstates |±Ω〉 =
(1,± exp[−i arctan (Ωy/Ωx)])

† of the spin-orbit contribu-
tion (2). The momentum direction is changed by disor-
der scattering such that the spin evolution is subject to
inhomogeneties of the effective spin-orbit field Ω.
At the minima of the anisotropic spin splitting

2 |Eσ(Ω)|, this induces transitions of the type |±Ω〉 →
|∓Ω〉 with Landau-Zener transition probability PD [31,
32]. These transitions enhance the value of TD while com-
pletely suppressing TOD for PD = 1. The spinors {|χσ〉}
underlying Eq. (6) coincide with the diabatic superposi-
tion of the states |±Ω〉. The latter can be checked by
considering 〈χσ|Ω · σ |χσ〉. Within the HH model (2)
the diabatic basis coincides with that of the PSH eigen-
states {|χσ〉} of a 2DEG [2]. For p-type systems we find
a probability [36]

ln(PD)2DHG = ζl|kD| |γ̄ + δ| (1− |η|)2 , (8)

with the elastic mean free path l and a correction factor
ζ entering together with the transport time τ into the
rate of change in angle θ in the relation δθ = π/2δt/(τζ).
Equation (8) is derived under the assumption that γ̄ 6=
−δ. Although the expression for the Landau Zener tran-
sition probability predicts a clear maximum at |η| = 1,
Equation (8) does not cover the description of TD for pa-
rameters where the PSH symmetry is established. It is
nevertheless applicable to realistic material parameters
when γ3 6= 0 and consequently γ̄ 6= δ, which is verified
by a numerical transport analysis.
The analyis of TD can be applied to electronic systems

as well, with an effective spin-orbit field,

Ω2DEG = αk×ẑ+β (kxx̂− kyŷ)+γ
(
−kxk

2
yx̂+ kyk

2
xŷ
)
,

(9)

for transport along the [100] direction in a 2DEG grown
in [001] direction and with

〈
k2z
〉
γ = β [9]. In systems

described by this model the corresponding Landau-Zener
transition probability is given by

ln(PD)2DEG = ζl|kβ | (Γβ/2− 1± η)
2
, (10)

with the Dresselhaus spin precession length k−1
β =(

meffβ/~2
)−1

, ratio of cubic and linear SOI Γβ = k2Fγ/β
and correction factor ζ as it appears in Eq. (8). This
model has been verified by numerical calculations which
are beyond the scope of this work.

In both p- and n-type systems, the signatures in TD are
robust against disorder. Therefore as an experimental
approach to analyzing spin relaxation lengths in trans-
port within HH systems, a detection of the PSH signa-
ture in the longitudinal conductance of a spin-polarized
current is favorable. The mechanism responsible for the
peaks in TD the momentum space analogue to the ef-
fect of a spatially inhomogeneous helix-type Zeeman term
on the spin conductance in dilute magnetic semiconduc-
tors [33]. An alternative measurement method for further
investigation of the HH PSH is represented by magneto-
optical Kerr rotation techniques, which recently allowed
to map the spin topology in electronic systems [5].
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