
ar
X

iv
:1

20
4.

33
62

v1
 [

cs
.I

R
]

 1
6

A
pr

 2
01

2

Event based classification of Web 2.0 text streams

Andreas Bauer

Media Computer Science

University of Regensburg

andreas.bauer@extern.uni-regensburg.de

Christian Wolff

Media Computer Science

University of Regensburg

christian.wolff@sprachlit.uni-regensburg.de

Abstract

Web 2.0 applications like Twitter or Facebook create
a continuous stream of information. This demands
new ways of analysis in order to offer insight into
this stream right at the moment of the creation of the
information, because lots of this data is only relevant
within a short period of time. To address this prob-
lem real time search engines have recently received in-
creased attention. They take into account the contin-
uous flow of information differently than traditional
web search by incorporating temporal and social fea-
tures, that describe the context of the information dur-
ing its creation. Standard approaches where data first
get stored and then is processed from a peristent stor-
age suffer from latency. We want to address the fluent
and rapid nature of text stream by providing an event
based approach that analyses directly the stream of in-
formation. In a first step we want to define the dif-
ference between real time search and traditional search
to clarify the demands in modern text filtering. In a
second step we want to show how event based features
can be used to support the tasks of real time search
engines. Using the example of Twitter we present in
this paper a way how to combine an event based ap-
proach with text mining and information filtering con-
cepts in order to classify incoming information based
on stream features. We calculate stream dependant
features and feed them into a neural network in order
to classify the text streams. We show the separative
capabilities of event based features a base for a real
time search engine.

Keywords: information retrieval, text mining, event
processing, web2.0, text streams, real time search,
neural network, stream features

1 Introduction

Instantaneous information sharing offered by services
like Twitter, Facebook or Tumblr led to a major in-
crease of user generated content. This creates a con-
tinuous stream of information which poses new chal-
lenges regarding processing, analysis, information re-
trieval and filtering. While traditional search engines
like Google, Bing or Yahoo are focused on deliver-
ing information which covers the whole range of rele-
vants facts regarding a given search query, real time
search engines like new Google+, Twitter Search or
topsy.com intend to deliver insight into the continu-
ous information stream right at the moment when the
information is created, i.e. the tolerance for latency
compared to traditional search engines is very low[15].

In this paper real time search engines are considered
as being a system that removes irrelevant items from
a continuous stream of data. Hence real time search
engines are very similar to information filtering sys-
tems as described in [2]. We do not consider the type
of real time engines, where real time means the in-
stantaneous delivery of items from a corpus, e. g.
Solr.

In this paper we want to layout the basis for an event
based information filtering system that analyzes real
time text streams like the ones produces by Twitter
or Facebook. Hence our approach can be considered
as the groundwork for a real time search engine. The
contributions are made with this paper

• Introduction of atomic information events

• Mapping of text streams to different information
event types

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/11555985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1204.3362v1

• Calculation of stream based event features

• Training and evaluation of neural networks with
stream based features

• Evaluation of the performance of the trained net-
works

The paper is structured as follows. In chapter 2 we
give an overview of the already existing literature and
research. Chapter 3 defines the problem definition,
while chapter 4 provides the theoretical basis. In
chapter 5 we show the application and evaluate our
approach.

2 Related work

This paper combines several research areas. [2] pro-
vides the basic framework for our research. The paper
defines the basics of information filtering and intro-
duces basic concepts we also use in this paper, e.g.
analysis of text streams, standing queries, removal of
information from the stream, user profiles, etc. [20]
introduce a way of real-time, top-k and profile based
information filtering with sliding time windows based
on the traditional tf/idf weighting method. The goal
and approach of their paper is similar to this paper’s
goal. Our approach differs as we use neural networks
to learn measures of interest and use stream based
features for calculating similarity measures. ”Topic
Detection and Tracking” addresses similar questions
like information filtering. Noteworthy in the context
of Twitter topic detection is [8]. They use an ag-
ing theory based approach for judging new Tweets.
[10] also use a similar setup for detecting interesting
Tweets. But first they use incremental Naive-Bayes-
Classifier and second they do not focus on the usage
of events and stream features.

Stream processing and data stream mining is also
closely related to the topics of this paper. [3] describe
a data streaming approach for sentiment analysis in
Twitter data. They apply multinomial näıve Bayes,
stochastic gradient descent and Hoeffding trees in or-
der to identify sentiments from Tweets. In contrast to
this paper we focus on filtering Tweets, we use neural
networks and in our setup the trained networks are
only applied to a short sliding time window and then
are rebuilt from scratch. [17] combines incremental
decision trees and streamed text features in order to
filter Tweets from Twitter lists. It also includes real
time aspects as it uses the Twitter Streaming API,
but its goal mainly to filter Tweets from group lists
with less frequent changes.

Real time search and real time information filtering is
addressed in [32], who describe a system where they
use current information available about the Twitter
stream and the user, in order to build an information
retrieval system based on tf/idf, which filters tweets
from an incrementally growing Tweet corpus. Also
[27] introduces a way using trending detection within
the Twitter stream in order to filter unrelevant infor-
mation. The Microblog track from the TREC 2011
conference is also related, but this track focused on
the retrieval of Tweets from a non-dynamic corpus.
The task was also called real time retrieval, but more
in the sense of finding all relevant Tweets up to a
given timestamp. This contrast from our approach as
we focus on real time filtering. Also related to this
paper is [14] who propose a learning to rank approach
for Tweets. This is similar in terms of feature engi-
neering and machine learning. But we use a rather
dynamic, continuous way of learning and we use an
artifical target function, while they propose the anal-
ysis of a static Twitter corpus with manual annotated
gold standard.

3 Problem definition

The continuous flow of information from Web 2.0
sources opens the application for a new type of search
engines that deliver results based on content that gets
generated during the information seeking episode and
are not based only on a periodically updated docu-
ment corpus like in classic search engines. The so
called real time search engines deal with a contin-
uously changing document corpus and address the
problem that they permanently have to rank and clas-
sify incoming new items and present the updated re-
sult immediately to the user. This is in contrast to
classic web search where the ranking of a document
is precomputed in some way based on a given rele-
vance schema and a static corpus size at the time of
computation. Of course current web search engines
update their corpus many times each second and con-
stantly recalculate the metrics for their search engine,
but this applies to their overall corpus, i.e. the overall
corpus is growing each second but it’s not assured that
the corpus regarding a real time search need is also
growing every second. Regarding a real time search
episode the content crawled by classic search engines
doesn’t update so frequently thus only the aforemen-
tioned Web 2.0 stream can provide new documents for
the corpus of the real time search. Real time search
engines incorporate a micro corpus which is being up-
date during and is only relevant for the time of the

2

user search. The fact that classic web search engines
blend real time search results into their classic web
search results shows the importance of real time con-
tent. 1 shows the decay in relevance of information
events over time. Hence a processing close to the cre-
ation of an information event is sensible.

Figure 1: value time curve [18]

Our research focus in on the continuous removal of
irrelevant data from a text stream. The information
filtering episode we consider is that a user is inter-
ested in a certain topic. It is not given that the user
has an elaborated personal web profile or if she has
one then it might not be related to the information
filtering episode. E.g. the user mainly tweets about
machine learning and data mining, but for her infor-
mation filtering episode she is interested in the US
preelections. Thus her personal Twitter profile won’t
necessarily match.

While the interaction in the Web 2.0 entails not only
text, but also multimedia, we focus only on textual in-
formation streams in this paper. The properties of a
continuous text stream is the main challenge for real-
time search engines and demands special attendance.
We focus on the Twitter stream due to its availability,
but in later research we want to apply our approach
also to other text streams.

Characteristics of Web 2.0 text streams based on re-
sults from [12] and [39] show the peculiarities, which
have to be considered.

• Recency

• Timeliness

• Data Volume

• Temporal Validity

• Temporal relevance

• Social interaction

• Shortness

• Dynamic corpora (terms, documents)

To our knowledge only few information is publicly

Aspect Real time search classic search
Corpus dynamic static
Corpus up-
date

continuous periodic

temporal rele-
vance

short arbitrary

Query modifi-
cation

rare frequent

Content gen-
eration

spontaneous,
ad-hoc

elaborated

Document
length

short arbitrary

Table 1: Comparison features real time vs. classic
web search [39]

available on how real time search engines assess in-
coming information. Google’s realtime search - be-
fore it was closed down in July 2011 and later inco-
porated into Google+ - was supposed to use an algo-
rithm similar to PageRank, where not the link struc-
ture was taken into account, but the reputation of
the user [38]. http://www.topsy.com also relies on a
influence factor of the content creating users. Other
search engines like SocialMention.com, kurrently.com
or 48ers seem to take into account key word filtering
as well as social features, but nothing is known about
their approaches. The measure of all real time search
is Twitter itself. Their corpus is of course sublime,
as they have all the Twitter data, but we think our
approach adds an interesting aspect to this topic.

As a summary table 1 summarizes the main differ-
ences between real time and classic web search.

In order to add some new ideas to this interesting
and rising topic we like to introduce an intuitive ap-
proach for ranking real time content, which combines
document-features as well as term weighting with text
mining and event processing. While the first three as-
pects are well established in the areas of information
retrieval and ranking, the latter allows to react on real
time content and to determine features for incoming
items as they occur. The combination of these four re-
search areas allow us to address the problems that are
posed by the characteristics of Web 2.0 text streams
3.

We want to introduce an event based approach to
tackle these problems. This approach uses method-
ologies from event processing which apply naturally to
the demands of streamed text data. The advantage of
event processing is that you do not have to build tem-

3

http://www.topsy.com

poral data structures and window based calculations
yourself, but you can use sophisticated stream engines
which offer advanced functionalities like sliding win-
dows or pattern matching. We combine this with the
foundations of information retrieval and information
filtering to answer questions 1-4.

There are many research papers on analysing ([5],
[23]), classifying ([17],[3]) or ranking (TunkRank, etc.)
with continuous text streams - foremost twitter - , but
all have in common that a several human estimators
had to provide classes or rankings in order to train
the models. We try to overcome this task by using
stream properties for training the ranking function
and for ranking the text stream snippets. This is fore-
most important as our research focus lies on ad-hoc,
short-term filtering and monitoring tasks for Web 2.0
text streams where we assume that during the time of
the information episode no elaborated user preference
model is available. This is in contrast to user profile
based search or collaborative search, where you can
use historical data of the user itself or a group of users
in order to build a user model that can be used in the
search. We exclude this fact in this paper and save the
analysis for later research. In this paper we assume
that it is not always possible to include a user profile
because either the profile is simply not available, not
yet elaborated enough to be taken into account or is
not related to the filtering task. Hence the proposed
approach shows one component for a real time infor-
mation filtering systems. The query matching part
also will be presented in another research paper.

4 Event based information filtering for

continuous web 2.0 text streams

In the next section we want to introduce the basics for
an event based information filtering and retrieval sys-
tem for real time text streams from web 2.0 sources,
show why an event driven approach is well suited for
this.

In the first part of this chapter we show how to map a
raw tweet onto several independent event types, which
in turn are fed into individual streams for the analysis.
In the second step we show how you can apply quan-
titative and qualitative stream filtering and pattern
matching methods in order to extract relevant events
from the several streams. Then in the third part we
show how we use these filtered events for ranking sin-
gle events within the stream and how we use this ap-
proach for classifying tweets into several categories.
The evaluation and examination follows in section 6.

Event based information filtering Before we
start to explain our event based system, we want to
clarify the notion of the term event we use through
out this paper. While event is a very generic term
and is overloaded with different meanings in differ-
ent research areas, we use the notion coming from the
research area of event processsing systems. This fore-
most based on the definition of [31] and [26] and is
already widely used in areas of logistics or financial
services. We want to introduce the concept of atomic
information events for information retrieval and filter-
ing.

In our approach we consider the text stream infor-
mation as consisting of smaller, simpler events, i.e.
each Tweet, Blog post or Facebook update is made
up of several tinier events that belong to different
event classes like token events, location events or link
events. This allows us to analyse not only the stream
of incoming ”raw events” like Tweets, but also we can
analyse the underlying ”simple” events that are the
building blocks of the raw event and combine them to
more complex events.

One might argue that using the term event instead
of the term token does not have any relevance for
text mining and information filtering/retrieval. But
we emphazise that the use of the event metaphor offers
several advantages. First the term event is a semantic
construct, which underpins the temporal and dynamic
character of data stream. It suitable to describe the
state of informations from their time being created to
the time it makes its way to permament part of the
web. During this time the information event’s sig-
nal is the strongest and offers the most potential for
analysis. Second for a real time filtering system it is
sensible to only consider a limited time horizon as rel-
evant. Hence events that leave this horizon have lost
the majority of their importance. This is supported
by the temporal semantics implied with events. Third
events are only evaluated once within an event pro-
cessing network, i.e. after they have entered the net-
work they run through all standing queries and pat-
terns that are in place and then leave the processing
workflow. This supports instantaneuos processing of
the data stream. Fourth an event is not bound to a
distinct processing step. The system can be flexibly
extended as events are not bound to a specific event
processing agent. Last the event based approach of-
fers the ability of processing information right in its
natural and actual context. The context for infor-
mation, that has already been persisted, has to be
artifically recreated, i.e. there is a notable amount

4

of overhead for putting the information in its original
state. Thus the usage of information events is highly
efficient compared to persisted information items and
allows the creation of executable knowledge right at
the creation time of information.

4.1 Event mapping and stream creation

First we build several independent streams from
the raw torrent of tweets. For this we process
the structured metadata part of the tweet and the
un/semistructured part of the tweet separately. The
metadata information such as location, followers or
friend count, number of tweets or local time can be
mapped directly to distinct event types. These events
are all composed of the following parts [31]:

• header / description attributes:
unique event identifier
timestamp and time granularity
event source

• payload: actual event information

For our event based information filtering/text analysis
system we map a Tweet onto the following event types

• Token score event

• Link events

• Retweets events

• Hashtags events

• Cooccurrence events

• Metadata events: status, follower count, followee
count

The mapping process of a tweet is split into two parts
and is performed by Event Processing Agents (EPA)
[31], which are placed in the text stream. The one for
the structured, directly accessible metadata part, i.e.
information that can be directly extracted from the
tweet without further processing. In theory you could
spare this step and operate directly on the properties
of the raw event, i.e. the Tweet. But in order to have
clear semantics which support and ease the definition
of the processing logic for the Twitter stream it is rec-
ommended to map the information on separate event
types. Additionally this offers the advantage that you
can directly operate on the event information without
additional filtering for the desired attribute and sec-
ond you avoid unnecessary payload overhead, which
can have impacts on performance when you take into

account that several thousand events per second are
processed.

The second step deals with extracting and mapping
of the un/semistructured text part of a tweet. In this
case un- or semistructured means, that the informa-
tion within the text itself has to be made processable
for an event processing engines. In order to access
the information buried within the text, we apply on
the one hand standard text mining preprocessing and
on the other hand we extract additional semantics
from the text based on the characteristics of tweets.
The first step is used for creating linguistic base event
types like TokenEvents or CooccurrenceEvents and
includes tokenization, stemming and stop word re-
moval. At the end of this process we get a normalized
token which you can use to populate, e.g. a Token-
Event, with its payload.

The second step uses known semantics of Tweets that
were introduced by Twitter or Twitter users to pro-
vide additional information. This includes mentions
(@ sign), hashtags (#), retweets and links. We use
regular expressions in order to extract the informa-
tion. Each encountered item is mapped onto the cor-
responding event type. The aforementioned seman-
tics are typical for Twitter, but this approach can be
used for every event source that provides extractable
semantic features.

At the end of the process we end up with several inde-
pendent information streams which can be analyzed
separately, but can also be joined by their common
event attributes, e.g. the unique of the Tweet the
events were derived from, or finally employed for event
pattern matching.

4.2 Leveraging stream properties and
event patterns for ranking and clas-
sification

In this section we want to describe how to use stream
features for real time classification purposes.

In our analysis we employ event processing techniques
to select and build features for the machine learning
algorithm. The features are then fed into an artifical
neural network (ANN). [16] gives an overview of the
advantages of using Neural Networks for text classi-
fication. We use a neural network because they are
well suited for pattern detection, are capable to deal
with dynamic and incomplete data. All three proper-
ties are typical for our setup, as we look for patterns
in a sampled and dynamic text stream.

5

After the network is trained the new events, that have
arrived within the defined time window, are assessed
and the top percentile is kept for further evaluation.
The results of this step can be considered again as
new events that can be fed into other event process-
ing agents. Combined with events from EPAs, that
deal with query evaluation or context definition, the
information events can be combined to a final result
that is presented to the user. But to keep the focus
clear for this paper, we concentrate on the description
of the basics of the event based systems and one of its
application - the usage for training machine learning
algorithms.

4.2.1 Defining quantitative measures for text

stream analytics

By mapping the features of a Tweet onto separate
event types and feeding the events into separate
streams, we now can directly operate on the events
with established stream processing methods. These
entail the calculation of stream statistics on sliding
windows, detecting patterns like drops and burst,
recognition of event sequences and correlating of dif-
ferent streams. Furthermore we can use the capabil-
ities of stream engines to provide statistical informa-
tion (standard deviation, variance) on different prop-
erties of a stream. Combining these features we are
able to create a focused research corridor which allows
us to judge Twitter messages as they occur. In this
paper we mainly focus on volume based features.

Stream characteristics An important factor for
any filtering system is its real world applicability. In
our experimental setup we used an event frequency of
100 Tweets per seconds. The system is implemented
in Java and uses a maximum heap size of 4GB. The
experiments were conducted on a Mac with a Dual 3.2
ghz processor. Throughout the experiments the event
speed could be keept constant. Besides the training
time of the neural network, the delay for processing
the incoming events, i.e. the time the event processing
agent needed to map the stream features onto training
features, was about 2 seconds.

Twitter in reality processes approx. 4000 Events per
seconds. At peek times it is about twice as much.
In general approx. 40% of all Tweets are English.
Hence a system has to process 1600 to 3200 Tweets
per seconds. As we only had access to the Twitter
gardenhose with 10% of all Tweets and as only 40%

of those Tweets are English, we chose to use an event
speed of 100 Tweets per second. For testing purposes
the system was also able to go up to 500 Tweets per
second in its basic setup, i.e. the multithreading ca-
pabilities of the stream engine were not fully exploited
yet.

Features In order to learn a model which can be
used for classification, we have to select and calculate
appropriate features. The possible features that can
be used are already limited by the characteristics of a
single Tweet. Thus our features do not fundamentally
differ from those, e.g. used by [30].

The features are not calculated on a static document
corpus but are based on sliding time windows, i.e. all
features reflect their state within the defined sliding
time window, e.g. if we define a sliding time win-
dow length of 30 seconds the features represent their
state within those 30 seconds. This additionally cov-
ers problems with concept and topic drift within a
stream as we steadily adapt to the new stream char-
acteristics.

We have event specific features, like hashtag/link pres-
ence and bursty features count, which are directly de-
pendent on the text of the event, as well as stream
specific features like token score. The latter are not
directly calculated based on the event itself, but de-
pend on the stream state for the entierty of a given
event type, i.e. the token score of a single term within
a Tweet is derived from the stream state of that token
within the sliding time window. In a textual analysis
like this the score of a token depends on the occur-
rences of this token within the considered sliding time
window.

• Score for 5 token within a Tweet

• Scale normalized score for follower, friend and
status count

• Presence of link

• Presence of hashtag

• Frequency variation for 5 token (compared to
window two minutes ago)

4.3 Neural network setup and topology

The next step in our approach is to feed the features
into an artifical neural network (ANN) in order to
learn the target function for the current inspected
time slot.

6

For this we first have to define a target function which
the neural network can learn. As it is usually impos-
sible to provide an adequate amount of labelled data
for classification in the desired time frame of only a
few seconds, we chose an artifical target value, which
can be defined for every single tTweet. We also pre-
fer this approach, as in reality you cannot rely on
extensive user labelled data (unless you are Google).
In this setup we use the presence of a Retweet of a
Tweet within a sliding time window of 120 seconds,
i.e. the Tweet itself and its Retweet occur within the
aforementioned time window. The interpretation of
a Retweet being a measure of interestingness is also
supported by [30], [37] and [29].

After we have trained an classifier for the analyzed
time window, we apply the classifier to new Tweets.
In addition the new Tweets are used to train a
new classifier from scratch. With this procedure we
can provide a continuous classificagion of incoming
Tweets.

The size of the input layer of the neural network is
defined by the number of features described in the
section above. We use a 3-layer neural network where
the input layer consists of 15 input features, a hidden
layer with 10 neurons and an output layer with a sin-
gle neuron. The size of the hidden layer was chosen
by taking the average of the output of an incremen-
tal pruning approach, i.e. for identifying a reasonable
size of the hidden layer several several runs were con-
ducted which included a pruning step. The learning
algorithm is resilient backpropagation, the activation
function is sigmoidal for the hidden layer and SoftMax
for the output layer. The latter is due to the fact that
we want to treat the outcome as the posterior prob-
ability of the Tweet belonging to a class. The error
function is linear as this fits well to a softmax activa-
tion function and the penality calculation is based on
cross entropy [4]. We used the Encog Neural Network
library by Jeff Heaton.

Overview of the employed features.

• Hashtag indiciator (binary)

• Link indicator (binary)

• Score of top 4 tokens within a Tweet (numeric)

• Frequency variation of sliding time window for
top 4 tokens

• Scale normalized amount of Tweets by user

• Scale normalized amount of friends by user

• Scale normalized amount of followers by user

Measure Random Real world
data

f-measure avg. 0.4556 0.6515
precision avg. 0.4991 0.6085
recall avg. 0.4396 0.7024
Number of ob-
served sliding
windows

20-200 20-200

Training sam-
ples avg.

8147 9917

Table 2: Results of experiments

• Scale normalized length of Tweet

The output layer has the size of one, as we deal with
an information filtering problem where it is the main
goal to devide the value of a piece of information into
categories of relevance and non-relevance for further
processing. So with the target function defined above
we labelled data as relevant or not relevant and use
this information for training.

The training and ranking for sliding time windows will
work as follows:

1. Define a sliding window size length(ti)

2. Calculate streams features for sliding window ti

3. Normalize each features by calculating the scale
normalized value

4. Define a target value for each Tweet (e.g. retweet
as as sign of significance and interestigness)

5. Setup a new ANN for sliding windowti
6. Split the captured events of sliding windowti into

test and training test

7. Train, crossvalidate and test the ANN

8. Calculate a score for each captured event of slid-
ing window ti using the trained ANN

9. Return a sorted list of the scored events

10. Combine the scored events with query in order to
filter the relevant tweets

5 Experiments and Evaluation

In order to show the applicability of our approach we
evaluate the method described in the section above on
selfsampled Twitter data.

We show the f-measures, precision and recall curves
for our setup over an information filtering episode.

7

Figure 2: Measure for experiments with real data

For this paper we chose a corpus of Tweets collected
on March 2nd 2012 8.00 - 18.00 CET. The corpus con-
tains 839.095 Tweets that we collected with keyword
tracking from the gardenhose streaming API of Twit-
ter. For repeatability purposes we saved the Tweets
to a database. Furthermore we ran a language de-
tection algorithm [36] on it, as we only want to use
English Tweets.

The whole setup works in a streamed fashion due
to its natural event based character. We defined a
sliding time window of 120 seconds. To stabilize the
stream the output of the sliding window will be fed
into the neural network every 10 seconds. The neu-
ral network gets trained from scratch for every sliding
time window again. As the ratio of positives Tweets
(Tweets that were retweeted within the sliding time
window) and negative Tweets is very skewed (approx.
2%:98%), we use oversampling in order to overcome
the imbalance in the dataset. [41] showed that this
approachs works despite its potential drawbacks like
overfitting. To avoid overfitting we split the samples
coming from the sliding time window into three in-
dependant sets, one for training, one for testing and
one validation. We used a 5-fold cross validiation ap-
proach and one fifth of the data was used for the test-

ing of the trained model. Additionally we apply early
stopping of the neural network after two increase in a
row of the training error. And finally we set a max-
imum training time of 10 seconds. All measures are
intended to keep a good performance for our setup
and within the real time constraints of the setting. A
summary of the result can be found in table 2

Finally we use the trained network to evaluate newly
arriving Tweets. The outcome of the neural network
for each new Tweets can be considered as the proba-
bility of the new Tweet being similar to the pattern
of the training set. We do not consider the outcome
as the probability of a Tweet being retweeted, but as
the similarity of a Tweet to another Tweet that has
been retweeted and thus has been considered interest-
ing. This result can be the input for further process-
ing with the event processing network and hence can
be combined with results from other event processing
agents.

To have a reasonable comparison of the performance
of the system, we show the f-measures, precision and
recall of our setup compared to the measures of naive
random approach, where the target values are the
same like in the runs with real data, but the features

8

Figure 3: Measures for random experiment

were initialized randomly on scale 0 to 1. 2 shows that
our approach performs better than the random setup
3. Even though we have to mention that the training
and test errors between our system and the random-
ized approach not as distinct as the f-measure, it can
be proved that the selected features are appropriate
for the selected task. Furthermore it becomes obvious
that our approach offers a stable output performance
over the evaluated time frame (we only depict the re-
sults of sliding window number 20-200, in order to
keep the graphs comprehensible). In 3 you can see
that precision values are almost exactly 0.5 what you
can expect by guessing a binary classification. The
recall values of the random approach differ extremly
compared which underpins the assumption that there
is a regular pattern within the stream that can be
learned. This can be proved by the higher and more
regular values produced from our approach.

The last indicator that our approach works is the Co-
hen kappa statistics. Over the recorded sliding time
windows the kappa value for our approach was approx.
0.4, which indicates according to [24] a fair to mod-
erate classification performance. To verify the setup
the kappa for the randomized data had an expected
kappa statistics average of 0.

6 Conclusions and Future Work

In this paper we presented a event based approach for
training an artifical neural network with information
events. We showed how to map a Tweet on differ-
ent event types, analyse these information events with
event processing techniques and how to combine this
with machine learning approaches. We showed how
to calculate the features for the neural network and
evaluated the described setup using standard perfor-
mance criteria.

It could be shown that despite being a very noisy me-
dia the information from the Twitter stream can be
used to train a neural network model which gives rea-
sonable f-measures. Even though the kappa statistics
values are only fair to moderate, our approach gives
good inidicators for being usuable in an event based
filtering system. In the future we want to elaborate
the distinctiveness of different feature set, apply other
learning algorithms like SVM or online learning algo-
rithms. Besides this computational approach we want
to investigate the heuristic based pattern approach
for the analysis of information events, i.e. we want to
build a net of standing queries that look for interest-
ing events within an information stream.

9

In this scenario we selected a measure of potential in-
terestigness, but the target function is not limited to
this scenario. The experiments showed the separative
power of our event based features. Thus we will try
different target functions, e.g. to detect spam. Finally
as this method gives only a relevance estimate for all
Tweets within the stream, we want to incorporate fur-
ther filtering methods in order to adapt the system to
the user and deliver only information events that are
relevant for a particular user. We also intend to en-
large this approach to more elaborate web content like
blogs or news feeds

References

[1] O Alonso, J. Strötgen, R. Baeza-Yates, and
M Gertz. Temporal information retrieval: Chal-
lenges and opportunities. TWAW Workshop,
WWW, pages 1–8, 2011.

[2] NJ Belkin and WB Croft. Information filtering
and information retrieval: two sides of the same
coin? Communications of the ACM, 35(12):29–
38, 1992.

[3] A Bifet and E Frank. Sentiment knowledge dis-
covery in twitter streaming data. Discovery Sci-
ence, pages 1–15, 2010.

[4] Christopher M Bishop. Neural Networks for Pat-
tern Recognition. Oxford University Press, USA,
1 edition, January 1996.

[5] D Boyd, S Golder, and G Lotan. Tweet, Tweet,
Retweet: Conversational Aspects of Retweeting
on Twitter. In System Sciences (HICSS), 2010
43rd Hawaii International Conference on, pages
1–10, 2010.

[6] Sergey Brin and Lawrence Page. The anatomy
of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst., April 1998.

[7] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learn-
ing to rank using gradient descent. Proceedings
of the 22nd international conference on Machine
learning, pages 89–96, 2005.

[8] M Cataldi, L Di Caro, and C Schifanella. Emerg-
ing topic detection on Twitter based on tempo-
ral and social terms evaluation. Proceedings of
the Tenth International Workshop on Multime-
dia Data Mining, pages 1–10, 2010.

[9] S Chakravarthy and R Adaikkalavan. Events and
streams: harnessing and unleashing their syn-
ergy! Proceedings of the second international
conference on Distributed event-based systems,
pages 1–12, 2008.

[10] Arifah Che Alhadi, Thomas Gottron, Jerome
Kunegis, and Nasir Naveed. Livetweet: Monitor-
ing and predicting interesting microblog posts. In
Proc. European Conf. on Information Retrieval
Demonstrations, 2012.

[11] J Chen, R Nairn, L Nelson, M Bernstein, and
E Chi. Short and tweet: experiments on rec-
ommending content from information streams.
Proceedings of the 28th international conference
on Human factors in computing systems, pages
1185–1194, 2010.

[12] A Dong, R Zhang, P Kolari, J Bai, F Diaz,
Y Chang, Z Zheng, and H Zha. Time is of the
essence: improving recency ranking using Twit-
ter data. Proceedings of the 19th international
conference on World wide web, pages 331–340,
2010.

[13] A Dong, R Zhang, P Kolari, J Bai, F Diaz,
Y Chang, Z Zheng, and H Zha. Time is of the
essence: improving recency ranking using Twit-
ter data. Proceedings of the 19th international
conference on World wide web, pages 331–340,
2010.

[14] Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou,
and Heung-Yeung Shum. An empirical study on
learning to rank of tweets. In COLING ’10: Pro-
ceedings of the 23rd International Conference on
Computational Linguistics. Association for Com-
putational Linguistics, August 2010.

[15] Miles Efron. Information search and retrieval in
microblogs. Journal of the American Society for
Information Science and Technology, 62(6), June
2011.

[16] M. Govindarajan and RM Chandrasekaran. Clas-
sifier Based Text Mining for Neural Network.
Proceedings of World Academy of Science, En-
gineering and Technology, 2007.

[17] B Güç. Information filtering
on micro-blogging services. e-
collection.ethbib.ethz.ch, January 2010. URL
http://e-collection.ethbib.ethz.ch/eserv/eth:1802/eth

10

http://e-collection.ethbib.ethz.ch/ eserv/eth:1802/eth-1802-01.pdf

[18] Richard Hackathorn. Real-time to
real value, January 2004. URL
http://www.information-management.com/issues/20040101/7913-1.html.
Accessed 02.03.2012.

[19] P Haghani, S Michel, and K Aberer. Evaluating
top-k queries over incomplete data streams. Pro-
ceeding of the 18th ACM conference on Informa-
tion and knowledge management, pages 877–886,
2009.

[20] P Haghani, S Michel, and K Aberer. The gist
of everything new: personalized top-k process-
ing over web 2.0 streams. Proceedings of the
19th ACM international conference on Informa-
tion and knowledge management, pages 489–498,
2010.

[21] Bernard J Jansen, Zhe Liu, Courtney Weaver,
Gerry Campbell, and Matthew Gregg. Real time
search on the web: Queries, topics, and economic
value. Information Processing & Management,
pages 1–16, February 2011.

[22] BJ Jansen, G Campbell, and M Gregg. Real
time search user behavior. Proceedings of the
28th of the international conference extended ab-
stracts on Human factors in computing systems,
pages 3961–3966, 2010.

[23] A Java, X Song, T Finin, and B Tseng. Why
we twitter: understanding microblogging usage
and communities. Proceedings of the 9th We-
bKDD and 1st SNA-KDD 2007 workshop on Web
mining and social network analysis, pages 56–65,
2007.

[24] J.R. Landis and G.G. Koch. The measurement
of observer agreement for categorical data. Bio-
metrics, pages 159–174, 1977.

[25] Tie-Yan Liu. Learning to rank for information
retrieval. Foundations and Trends in Information
Retrieval, Vol. 3: No 3 3 (3):225–331, 2009.

[26] David Luckham. The Power of Events: An In-
troduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison-Wesley
Professional, 1 edition, May 2002.

[27] Michael Mathioudakis and Nick Koudas. Twit-
terMonitor: trend detection over the twitter
stream. In SIGMOD ’10: Proceedings of the 2010
international conference on Management of data.
ACM Request Permissions, June 2010.

[28] K Mouratidis and H.H. Pang. An incremen-
tal threshold method for continuous text search
queries. Data Engineering, 2009. ICDE’09.
IEEE 25th International Conference on, pages
1187–1190, 2009.

[29] N. Naveed, T. Gottron, J. Kunegis, and A.C. Al-
hadi. Bad News Travel Fast: A Content-based
Analysis of Interestingness on Twitter. web-
sci11.org, 2011.

[30] N. Naveed, T. Gottron, J. Kunegis, and A.C. Al-
hadi. Searching microblogs: coping with spar-
sity and document quality. Proceedings of the
20th ACM international conference on Informa-
tion and knowledge management, pages 183–188,
2011.

[31] Peter Niblett Opher Etzion. Event Processing in
Action. pages 1–386, July 2010.

[32] O Phelan, K McCarthy, and B Smyth. Us-
ing twitter to recommend real-time topical news.
Proceedings of the third ACM conference on Rec-
ommender systems, pages 385–388, 2009.

[33] C.J.C.B.R.R. Quoc and V. Le. Learning to rank
with nonsmooth cost functions. Advances in Neu-
ral Information Processing Systems 19: Proceed-
ings of the 2006 Conference, 19:193, 2007.

[34] D Ramage, S Dumais, and D Liebling. Charac-
terizing microblogs with topic models. Interna-
tional AAAI Conference on Weblogs and Social
Media, 2010.

[35] C. J. Van Rijsbergen. Information Retrieval.
Butterworth-Heinemann, Newton, MA, USA,
2nd edition, 1979. ISBN 0408709294.

[36] Nakatani Shuyo. Language detec-
tion library for java, 2010. URL
http://code.google.com/p/language-detection/.

[37] B Suh, L Hong, P Pirolli, and E.H. Chi. Want
to be retweeted? Large scale analytics on fac-
tors impacting retweet in Twitter network. Social
Computing (SocialCom), 2010 IEEE Second In-
ternational Conference on, pages 177–184, 2010.

[38] David Talbot. How google ranks
tweets. Web, January 2010. URL
http://www.technologyreview.com/web/24353/page1/.

[39] Jaime Teevan, Daniel Ramage, and Merredith R.
Morris. #TwitterSearch: a comparison of mi-
croblog search and web search. In Proceedings

11

http://www.information-management.com/ issues/20040101/7913-1.html
http://code.google.com/p/ language-detection/
http://www.technologyreview.com/ web/24353/page1/

of the fourth ACM international conference on
Web search and data mining, WSDM ’11, pages
35–44, New York, NY, USA, 2011. ACM.

[40] C. Tryfonopoulos, M Koubarakis, and
Y. Drougas. Information filtering and query
indexing for an information retrieval model.
ACM Transactions on Information Systems
(TOIS), 27(2):10, 2009.

[41] G.M. Weiss, K McCarthy, and B. Zabar. Cost-
sensitive learning vs. sampling: Which is best for
handling unbalanced classes with unequal error
costs. Proceedings of the 2007 International Con-
ference on Data Mining, pages 35–41, 2007.

[42] Q Zhao and P Mitra. Event detection and visu-
alization for social text streams. proceedings of
ICWSM’2007, pages 26–28.

12

	1 Introduction
	2 Related work
	3 Problem definition
	4 Event based information filtering for continuous web 2.0 text streams
	4.1 Event mapping and stream creation
	4.2 Leveraging stream properties and event patterns for ranking and classification
	4.2.1 Defining quantitative measures for text stream analytics

	4.3 Neural network setup and topology

	5 Experiments and Evaluation
	6 Conclusions and Future Work

