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1 Summary 

Eukaryotic ribosome biogenesis is a very complex process that includes synthesis of the 

structural components (ribosomal RNAs (rRNAs) and proteins (r-proteins)), processing and 

folding of rRNA precursors, as well as assembly of the r-proteins onto the rRNA. Ribosome 

biogenesis starts with the transcription of the genes encoding the rRNAs (rDNA) in the 

nucleolus by RNA polymerase I and III, and includes transport of pre-ribosomal particles 

(pre-ribosomes) through the nucleus and export into the cytoplasm, where the final 

maturation steps occur. In addition to the structural components, these processes require the 

function of ~75 small nucleolar RNAs and of more than 150 non-ribosomal proteins termed 

biogenesis factors, which transiently interact with different pre-ribosomes. It could be shown 

that several subsets of biogenesis factors form protein modules, which are supposed to 

constitute building blocks of pre-ribosomes and/or to function together in ribosome 

biogenesis.  

In this work, a protein complex consisting of the proteins Rrp5p, Noc1p and Noc2p from 

Saccharomyces cerevisiae could be reconstituted from heterologously expressed proteins. 

Noc1p and Noc2p are biogenesis factors of the large ribosomal subunit (LSU), whereas 

Rrp5p is required for maturation of both the large and the small ribosomal subunit (SSU). 

Analyses of pairwise interactions between the proteins, as well as negative stain electron 

microscopy of the purified complex provided further insights into architectural and structural 

features of the Rrp5p/Noc1p/Noc2p biogenesis factor module.  

Ex vivo purifications of the module components and analyses of co-purified RNAs and 

proteins indicated that the Rrp5p/Noc1p/Noc2p module is predominantly associated with the 

first specific pre-LSU particles. In addition, Rrp5p, Noc1p and Noc2p showed association 

with early, common ribosomal precursor particles, which are formed before the pathways 

leading to the small and the large ribosomal subunit are separated. Furthermore, the module 

components co-purified specific regions of rDNA chromatin from cells treated with 

crosslinking reagents, and Rrp5p and Noc1p were identified as components of chromatin 

transcribed by RNA polymerase I. Accordingly, the Rrp5p/Noc1p/Noc2p module appeared to 

be associated with nascent rRNA precursor transcripts, providing further evidence that the 

module is recruited very early in ribosome biogenesis.  

Individual inactivation or depletion of Rrp5p, Noc1p or Noc2p in vivo resulted in severely 

decreased levels of LSU specific pre-rRNA species and the appearance of aberrant pre-

rRNA fragments. In addition, analyses of truncated noc1 alleles indicated that impaired 

interactions of Noc1p with Noc2p, Rrp5p or pre-rRNA result in similar pre-rRNA processing 

phenotypes, suggesting that in absence of the Rrp5p/Noc1p/Noc2p module pre-ribosomes 

are destabilised and pre-rRNAs are prone to degradation. Furthermore, in vivo depletion of 

one module component and subsequent analyses of the association of the respective non-

depleted proteins with pre-rRNA indicated a mutually independent binding of Rrp5p and 

Noc1p/Noc2p to pre-ribosomes. Accordingly, the module most probably has several binding 

sites on pre-ribosomal particles.  

In summary, the results presented here suggest that formation of the Rrp5p/Noc1p/Noc2p 

module plays a role in the structural organisation of early LSU precursor particles and 
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thereby contributes to their stability, possibly by preventing inappropriate access of endo- 

and exonucleases to pre-rRNA. Besides, potential mechanisms of the Noc1p/Noc2p 

independent function of Rrp5p in SSU biogenesis, and a model for the recruitment of the 

Rrp5p/Noc1p/Noc2p module to pre-ribosomes are discussed.  

Future studies will be required to determine the structure and architecture of this biogenesis 

factor module in detail. Furthermore, analyses of the RNA binding and folding activities of the 

module components, and of the impact of the module on the recruitment of r-proteins and/or 

other biogenesis factors to early pre-ribosomes will help to understand the precise molecular 

function of the Rrp5p/Noc1p/Noc2p module in ribosome biogenesis. As all three proteins 

have homologues in higher eukaryotes, it will be interesting to investigate if formation and 

function of this module are conserved in evolution. 
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Zusammenfassung 

Die eukaryotische Ribosomenbiogenese ist ein hochkomplexer Prozess, der die Synthese 

der strukturellen Komponenten (ribosomale RNAs (rRNAs) und Proteine (r-Proteine)), 

Prozessierung und Faltung der rRNA Vorläufer, sowie die Assemblierung der r-Proteine auf 

der rRNA beinhaltet. Die Ribosomenbiogenese beginnt in einem spezialisierten Teil des 

Zellkerns, dem Nukleolus, mit der von den RNA Polymerasen I und III katalysierten 

Transkription der Gene, die die rRNAs (rDNA) codieren. Außerdem umfasst sie den 

Transport prä-ribosomaler Partikel (Präribosomen) durch den Zellkern und deren Export ins 

Cytoplasma, wo die finalen Reifungsschritte stattfinden. Zusätzlich zu den strukturellen 

Komponenten erfordern diese Prozesse die Funktion von etwa 75 kleinen nukleolären RNAs 

und von mehr als 150 nicht-ribosomalen Proteinen, die als Biogenesefaktoren bezeichnet 

werden und vorübergehend mit verschiedenen Präribosomen interagieren. Es konnte gezeigt 

werden, dass verschiedene Gruppen dieser Biogenesefaktoren Proteinkomplexe oder 

„Module“ bilden, die vermutlich vorgeformte Bausteine von Präribosomen darstellen und/oder 

in der Ribosomenbiogenese zusammenwirken.  

In dieser Arbeit konnte ein Proteinkomplex, der aus den Proteinen Rrp5p, Noc1p und Noc2p 

der Hefe Saccharomyces cerevisiae besteht, aus heterolog exprimierten Proteinen 

rekonstruiert werden. Noc1p und Noc2p sind Biogenesefaktoren der großen ribosomalen 

Untereinheit (large ribosomal subunit, LSU), wohingegen Rrp5p sowohl für die Reifung der 

großen, als auch der kleinen ribosomalen Untereinheit erforderlich ist. Die Untersuchung 

paarweiser Wechselwirkungen zwischen diesen Proteinen, sowie elektronenmikroskopische 

Analysen der gereinigten und mit Schwermetall kontrastierten Proteinkomplexe lieferten 

zusätzliche Erkenntnisse bezüglich architektureller und struktureller Eigenschaften des 

Rrp5p/Noc1p/Noc2p Biogenesefaktormoduls.  

Ex vivo Reinigungen der Modulkomponenten und Analysen der co-gereinigten RNAs und 

Proteine deuteten darauf hin, dass das Rrp5p/Noc1p/Noc2p Modul vor allem mit den ersten 

spezifischen Vorläufern der großen ribosomalen Untereinheit assoziiert ist. Daneben zeigten 

Rrp5p, Noc1p und Noc2p Assoziation mit früheren, gemeinsamen Vorläuferpartikeln der 

großen und kleinen ribosomalen Untereinheiten. Außerdem konnten aus Extrakten chemisch 

quervernetzter Hefezellen spezifische Bereiche des rDNA Chromatins zusammen mit den 

Modulkomponenten aufgereinigt werden, und Rrp5p und Noc1p wurden als Bestandteile von 

RNA Polymerase I transkribiertem Chromatin identifiziert. Demzufolge scheint das 

Rrp5p/Noc1p/Noc2p Modul mit naszierenden rRNA Vorläufertranskripten assoziiert zu sein, 

was einen weiteren Hinweis dafür liefert, dass das Modul sehr früh in der 

Ribosomenbiogenese rekrutiert wird.  

In vivo Inaktivierung oder Depletion einzelner Proteine führte zu stark verringerten Mengen 

LSU spezifischer prä-rRNA Spezies und zur Bildung aberranter prä-rRNA Fragmente. 

Desweiteren wiesen Untersuchungen verschiedener verkürzter noc1 Allele darauf hin, dass 

beeinträchtigte Interaktionen von Noc1p mit Noc2p, Rrp5p oder prä-rRNA zu einem 

ähnlichen prä-rRNA Prozessierungsphänotyp führen. Dies lässt vermuten, dass 

Präribosomen in Abwesenheit des Rrp5p/Noc1p/Noc2p Moduls destabilisiert sind und 

abgebaut werden. Außerdem lieferten Experimente, in denen eine Modulkomponente in vivo 
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depletiert wurde und anschließend die Assoziation der nicht depletierten Proteine mit prä-

rRNA untersucht wurde, Hinweise dafür, dass Rrp5p und Noc1p/Noc2p unabhängig 

voneinander an Präribosomen binden können. Demzufolge hat das Modul aller 

Wahrscheinlichkeit nach mehrere Bindestellen an Präribosomen. 

Zusammenfassend führen die hier geschilderten Ergebnisse zu der Schlussfolgerung, dass 

die Ausbildung des Rrp5p/Noc1p/Noc2p Moduls zur strukturellen Organisation früher LSU 

Vorläuferpartikel und somit zu deren Stabilisierung beiträgt, möglicherweise indem 

unerwünschter Zugang von Endo- und Exonucleasen zu prä-rRNA verhindert wird. 

Außerdem werden mögliche Mechanismen für die Noc1p/Noc2p unabhängige Funktion von 

Rrp5p in der Biogenese der kleinen ribosomalen Untereinheit und ein Modell für die 

Rekrutierung des Rrp5p/Noc1p/Noc2p Moduls an Präribosomen diskutiert.  

Zukünftige Studien sind erforderlich um die Struktur und Architektur dieses 

Biogenesefaktormoduls im Detail aufzuklären. Außerdem sollten Untersuchungen bezüglich 

der RNA Bindungs- und Faltungsaktivitäten der Modulkomponenten, sowie des Einflusses 

des Moduls auf die Rekrutierung von r-Proteinen und/oder anderer Biogenesefaktoren an 

frühe Präribosomen dazu beitragen, die detaillierte molekulare Funktion des 

Rrp5p/Noc1p/Noc2p Moduls in der Ribosomenbiogenese zu verstehen. Da alle drei Proteine 

Homologe in höheren Eukaryoten haben, könnte die Ausbildung und Funktion des Moduls in 

der Evolution konserviert sein. 
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2 Introduction 

2.1 The function and structure of ribosomes 

Ribosomes are ribonucleoprotein particles that catalyse the translation of messenger RNA 

(mRNA) into proteins (Siekevitz, 1952, Wilson and Nierhaus, 2003; Schmeing and 

Ramakrishnan, 2009) and are conserved in all domains of life. They consist of a small 

ribosomal subunit (SSU) that binds the mRNA and contains the decoding centre, which 

facilitates codon-anticodon recognition between mRNA and tRNAs loaded with amino acids, 

and a large ribosomal subunit (LSU) that catalyses formation the peptide bond in the peptidyl 

transferase centre (Fig. 2-1). Notably, not only the interaction between the subunits, but also 

binding of mRNA, tRNA and formation of the peptide bond is predominantly mediated by the 

RNA components of the ribosome (ribosomal RNA, rRNA) (Ban et al., 2000; Carter et al., 

2000; Wimberly et al., 2000; Yusupov et al., 2001; Ben-Shem et al., 2010, 2011), thus 

classifying the ribosome as a ribozyme (Cech, 2000). In contrast, the protein components (r-

proteins) are mainly required to stabilise the structure of the subunits and for the interaction 

of the ribosome with translation factors (Stark et al., 2002; Wilson and Nierhaus, 2005), albeit 

some r-proteins also modulate codon-anticodon recognition (Ogle et al., 2001, 2002).  

 
 
Fig. 2-1 Crystal structure of the 80S ribosome from Saccharomyces cerevisiae 

A) The middle panel shows the ribosome from the „side‟ along the mRNA tunnel viewed from the entry 
site/aminoacyl tRNA binding site (A-site). RNA and protein components of the SSU are coloured cyan and blue, 
those of the LSU in yellow and orange, respectively. Expansion segments of the eukaryotic rRNA are coloured 
red. The left and right panels show the 80S ribosome viewed from the 40S and 60S side and were obtained by 
rotating the middle structure by 90° and 270° along the z-axis, respectively. (continued on next page) 
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Fig. 2-1 (continued): Landmark structures of the SSU (head, platform (Pt), body (Bd)) and the LSU (central 
protruberance (CP), phospho-stalk (P-stalk), L1-stalk) are indicated. Adapted from Jenner et al. (2012) B, C) The 
large and the small ribosomal subunits are shown from the solvent side (40S view/60S view) or from the subunit 
interface. Conserved elements are depicted in gray, eukaryotic specific RNA and protein elements are coloured 
red. tRNA binding sites in the decoding centre (A-, P-, E-sites) and the peptidyl transferase centre (PTC) are 
indicated. Adapted from Ben-Shem et al. (2011).  

Although the function and core structure of ribosomes is highly conserved in evolution, 

eukaryotic ribosomes are significantly larger (~ 40%) than their prokaryotic counterparts, and 

according to their sedimentation coefficient these are referred to as 80S and 70S ribosomes, 

respectively. The difference in size results from additional RNA elements inserted into the 

conserved rRNA regions, as well as ~ 25 additional ribosomal proteins (r-proteins) and 

extensions in conserved r-proteins (Spahn et al., 2001; Ben-Shem et al., 2010, 2011) found 

in eukaryotic ribosomes. These additional elements are predominantly located in solvent 

accessible regions of the 80S ribosome rather than in the subunit interface, the decoding 

centre or the peptidyl transferase centre (Fig. 2-1). This is consistent with the conserved, 

basal mechanism of translation and suggests a role of these additional elements in initiation, 

termination or regulation of translation, processes which are significantly different in 

prokaryotes and eukaryotes (Schmeing and Ramakrishnan, 2009; Sonenberg and 

Hinnebusch, 2009; Jackson et al., 2010).  

In eukaryotes, the small, 40S subunit (30S in prokaryotes) contains the 18S rRNA and 32 r-

proteins (rpS), whereas the large, 60S subunit (50S in prokaryotes) contains three ribosomal 

RNAs (5S, 5.8S, 25S/28S rRNAs) and 46 r-proteins (rpL) (Planta and Mager, 1998; Gerbasi 

et al., 2004). Notably, 5.8S and 25S/28S pre-rRNAs are homologous to the prokaryotic 23S 

rRNA (Jacq, 1981) and developed by insertion of a spacer sequence into the conserved 

rRNA region, which is removed during eukaryotic ribosome biogenesis. Consistently, 5.8S 

rRNA and 5‟ end of 25S rRNA form the same secondary structure („domain I‟, Fig. 2-2) as the 

5‟ part of 23S rRNA. In general, the conserved rRNA regions form highly similar secondary 

structures in prokaryotes and eukaryotes, which can be divided into three and six domains 

for the small and the large ribosomal subunit, respectively (Fig. 2-2 A + B). Notably, in case 

of the SSU the secondary structure domains (5‟- , central, 3‟ domain) constitute distinct 

elements of the tertiary structure (body, platform, head), whereas the LSU shows a 

monolithic tertiary structure, in which all secondary structure domains are intertwined and 

establish multiple interactions (Fig. 2-2 C). 

Fig. 2-2 Comparison of the secondary and tertiary structure organisation of the RNA components of the 
large and the small ribosomal subunit (next page) 

A) Schematic presentation of the secondary structure of the prokaryotic 16S (left) and 23S (right) rRNA from 
Thermus thermophilus. Major secondary structure domains are indicated. Adapted from Ramakrishnan and 
Moore (2001). B) The conserved RNA elements of the eukaryotic 18S (left), 5.8S and 25S rRNAs (right) from S. 
cerevisiae are depicted in blue, black and yellow, respectively, and adopt a highly similar secondary structure as 
their prokaryotic counterparts. The domains are labelled in the same colour as in (A) and separated by black bars. 
Eukaryotic expansion segments are coloured red. For practical reasons, the LSU rRNA is split between domains 
III and IV (dashed line), and two expansion segments (a, b) are depicted separately. The dashed boxes mark the 
„central pseudoknot‟ formed within the 16S/18S rRNA. C) Crystal structures of RNA components of the 40S and 
60S subunits from S. cerevisiae viewed from the solvent side (40S view/60S view) and the subunit interface. The 
RNA is coloured according to the secondary structure domains in (B), 5S rRNA in magenta. While distinct tertiary 
structure elements of the 18S rRNA (body (bd), platform (pt), head) are correlated with the secondary structure 
domains, the LSU shows a monolithic tertiary structure, in which all secondary structure domains are intertwined 
and establish multiple interactions. (B) was adapted from Jenner et al. (2012), (C) was derived from the structure 
published in Ben-Shem et al. (2011).  
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2.2 Ribosome biogenesis in eukaryotes 

2.2.1 Overview 

Ribosome biogenesis is a highly complex and energy consuming process that requires the 

action of all three eukaryotic RNA polymerases. In a rapidly growing yeast cell, 60% of total 

transcription is devoted to ribosomal RNA, and 50% of RNA polymerase II transcription and 

90% of mRNA splicing are devoted to r-proteins to ensure the production of around 2000 

ribosomes per minute (Warner, 1999). Ribosome biogenesis starts with the transcription of 

the genes encoding the rRNAs in a specialized nuclear compartment, the nucleolus, and 

ends with final maturation steps in the cytoplasm, where mature ribosomes translate mRNAs 

into proteins (Fig. 2-3). Amongst others, this process includes RNA modification, processing 
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and folding events, assembly of the r-proteins onto the rRNAs and transport and export of 

ribosomal precursor particles (pre-ribosomes) through/from the nucleus. In addition to the 

structural components, more than 70 small nucleolar RNAs (snoRNAs) and more than 150 

proteins termed biogenesis factors, which transiently interact with different pre-ribosomes, 

are required to generate functional ribosomes. Most knowledge about eukaryotic ribosome 

biogenesis available today was obtained from studies in Saccharomyces cerevisiae, as this 

model organism is well accessible for genetic manipulations, cell biological techniques and 

biochemical approaches. Importantly, the majority of ribosome biogenesis factors are 

conserved in evolution, and a growing number of studies in higher eukaryotes indicate that 

ribosome biogenesis follows general mechanisms with some species specific differences 

(Henras et al., 2008). In this work, all statements are referred to the situation in S. cerevisiae, 

unless otherwise stated. 

 
Fig. 2-3 Schematic overview of eukaryotic ribosome biogenesis 

Ribosome biogenesis starts in the nucleolus with the transcription of rRNA genes yielding a common precursor 
particle. In the course of maturation, numerous ribosome biogenesis factors are associated with different pre-
ribosomal particles, which are transported from the nucleolus through the nucleoplasm into the cytoplasm, where 
the mature subunits enter the translation cycle (see main text for details). Adapted from Tschochner and Hurt 
(2003).  

2.2.2 The genes encoding the ribosomal RNAs are transcribed in the 

nucleolus 

The nucleolus is a substructure within the nucleus that is visible in light microscopy as a dark 

spot in the nucleoplasm and is not separated by a membrane. Higher resolution analyses 

with electron microscopy identified three subcompartments of the nucleolus, the fibrillar 

centers (FC), dense fibrillar components (DFC) and granular components (GC) (for recent 
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reviews see (Raška et al., 2006, Hernandez-Verdun et al., 2010)) (Fig. 2-4). Further studies 

analysing DNA and protein composition of these nucleolar regions, as well as morphological 

studies in mutant yeast strains showed that these structures are linked to ribosome 

biogenesis (Oakes et al., 1998; Léger-Silvestre et al., 1999; Trumtel et al., 2000). In detail, 

there is evidence that the rRNA genes (rDNA) are localised in the FCs, whereas RNA 

polymerase I (Pol-I), which transcribes the rDNA, was detected at the boundary between FC 

and DFC. Accordingly, it was suggested that the DFC contains the nascent Pol-I transcripts 

as well as the earliest pre-ribosomal particles, which subsequently undergo further 

maturation steps in the GC before transport to the nucleoplasm and export to the cytoplasm.  

 
 

Fig. 2-4 Morphology of the nucleolus in Saccharomyces cerevisiae 

Yeast cells were subjected to cryo-fixation and freeze substitution and subsequently analysed by transmission 
electron microscopy. Left panel: Overview of a yeast cell. The nucleus is surrounded by the nuclear envelope 
(bright line) and consists of a heavily contrasted region, the nucleolus (NU), and a brighter region (CH). An 
invagination of the plasma membrane (arrow) and part of the endoplasmatic reticulum (RE) are indicated. Right 
panel: A detailed view of the nucleus shows different substructures within the nucleolus, where different steps of 
ribosome biogenesis take place (see main text for details), namely the fibrillar centres (FC) near the nuclear 
envelope, the dense fibrillar components (DFC) surrounding the FCs and extending through the nucleolar region, 
and the granular components (GC) filling the remainder of the nucleolus. Nuclear pores are marked by asterisk. 
Scale bars correspond to 200 nm. Adapted from Léger-Silvestre et al. (1999). 

In yeast, the genes encoding the ribosomal RNAs are organised in so called „rDNA repeats‟ 

that are located in ~ 150 copies on chromosome XII (Petes, 1979; Long and Dawid, 1980) 

(Fig. 2-5 A). In each rDNA repeat, the 18S, 5.8S and 25S rRNA coding regions are arranged 

in an operon like structure, the 35S rDNA, which is separated from the 5S rDNA by a non-

coding sequence termed intergenic spacer (IGS) (Philippsen et al., 1978). 35S and 5S rDNA 

are transcribed by RNA polymerase I (Pol-I) and RNA polymerase III (Pol-III), respectively 

(Sentenac, 1985). As RNA polymerase II (Pol-II), which synthesizes mRNAs, these enzymes 

are multi-subunit protein complexes, and all three polymerases have a common core of 

shared subunits but also several specific subunits (Paule and White, 2000). Note that in all 

eukaryotes the rRNA genes are arranged in multi-copy cluster(s) and 18S, 5.8S and 25S 

rRNA genes are generally organized in one transcription unit, probably to satisfy the high 

demand for ribosomal RNA and to ensure equal transcription levels, whereas strict co-

localization with the 5S rRNA gene on one rDNA repeat is not observed in most other 

species, including Schizosaccharomyces pombe (Haeusler and Engelke, 2006). 
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Fig. 2-5 The rRNA gene locus in Saccharomyces cerevisiae 

A) The genes encoding the ribosomal RNAs are organised in so called „rDNA repeats‟ that are located in ~ 150 
copies on chromosome XII. In each rDNA repeat, the 18S, 5.8S and 25S rRNA coding regions are arranged in an 
operon like structure, the 35S rDNA, which is separated from the 5S rDNA by a non-coding sequence termed 
intergenic spacer (IGS1/2). The directions of Pol-I and Pol-III transcription are indicated by arrows, and positions 
of relevant DNA elements are marked. The 35S rDNA promoter contains the „upstream element‟ (UE) and the 
„core element‟ (CE), a sequence encoding a Rnt1p cleavage site (arrowhead) is located at the end of the 35S 
rDNA, IGS1 contains a T-rich element (circle), a Reb1 binding site (square) and the replication fork barrier 
(hexagon), and IGS2 contains an autonomous replication sequence (diamond) as well as another Reb1 binding 
site. B) Electron micrograph of a Miller chromatin spread showing a transcribed rDNA repeat. Pol-I molecules on 
the rDNA are marked by arrows, the nascent rRNA by arrowheads. Scale bar represents 0.5 µm. Adapted from 
Osheim et al. (2004). 

Efficient initiation of Pol-I transcription in vivo requires the action of four transcription factors 

(core factor (CF), upstream activation factor (UAF), TATA box binding protein (TBP), Rrn3p) 

and two regulatory cis elements in the Pol-I promoter region, namely the core element (CE), 

locating to positions -28 to + 8 relative to the transcription start site (TSS) and the upstream 

element (UE; -146 to -51 relative to the TSS) (Musters et al., 1989; Kulkens et al., 1991) (Fig. 

2-5 A). Rrn3p can bind to the Pol-I subunit Rpa43p, and only Pol-I molecules associated with 

Rrn3p are competent for transcription initiation in vitro (Yamamoto et al., 1996; Milkereit and 

Tschochner, 1998; Peyroche et al., 2000). CF, consisting of Rrn6p, Rrn7p and Rrn11p (Keys 

et al., 1994; Lalo et al., 1996), binds to the core element, and can recruit an Rrn3p-Pol-I 

complex to rDNA, possibly via direct interaction between Rrn6p and Rrn3p (Peyroche et al., 

2000). UAF, consisting of Rrn5p, Rrn9p, Rrn10p and Uaf30p and the two histones H3 and 

H4 (Keys et al., 1996; Keener et al., 1997; Siddiqi et al., 2001), binds to the upstream 

element, and TBP can interact with Rrn6p and Rrn9p, thereby bridging CF and UAF, which 

appears to be required for stable association of CF with rDNA (Steffan et al., 1998). 

Accordingly, the current model for transcription initiation suggests that UAF, TBP and CF 

build a platform on the Pol-I promoter, to which an Rrn3p-Pol-I complex is recruited, resulting 
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in high level transcription of 35S rDNA. Besides, several other factors are described to play 

additional roles in Pol-I transcription, for instance Hmo1p, which maintains an accessible 

rDNA structure (Gadal et al., 2002a) or elongation factors as Fcp1p, Spt4p, Spt5p or Paf1C 

(Fath et al., 2004; Schneider et al., 2006; Zhang et al., 2009, 2010). Termination of Pol-I 

transcription termination depends on several cis elements downstream of the 3‟ end of the 

35S rRNA coding region (T-rich element, Reb1-binding site, replication fork barrier; Fig. 2-5 

A) (Lang and Reeder, 1993, 1995; Lang et al., 1994; El Hage et al., 2008), and on trans 

acting factors that bind to these elements (Nsi1p, Fob1p) (Prescott et al., 2004; Huang et al., 

2006; El Hage et al., 2008; Reiter et al., 2012). Furthermore, release of the 35S rRNA by 

endonucleolytic cleavage of the nascent transcript by Rnt1p or an alternative, unknown 

nuclease, and subsequent exonucleolytic degradation of the downstream transcript could 

also contribute to the dissociation of Pol-I from the rDNA (Prescott et al., 2004; El Hage et 

al., 2008; Kawauchi et al., 2008).  

Notably, even in exponentially growing cells only ~ 50% of the 35S rDNA repeats are actively 

transcribed, whereas the other half is transcriptionally silent and packaged into nucleosomes, 

which appears to be important for the integrity of the rDNA locus (Ide et al., 2010). Active 

repeats are simultaneously transcribed by a large number of Pol-I molecules (up to 120 

molecules per 35SrDNA (Osheim et al., 2009)), which can be visualized in Miller chromatin 

spreads (Miller and Beatty, 1969) by electron microscopy (Fig. 2-5 B). 

2.2.3 Processing and modification of ribosomal RNAs 

The primary transcript of Pol-I contains the sequences of the 18S, 5.8S and 25S rRNAs, 

separated by two internal transcribed spacer (ITS1, ITS2) regions and flanked by external 

transcribed spacer regions (5‟ ETS, 3‟ ETS), which are sequentially removed via a complex 

series of endo- and exonucleolytic processing events to generate the mature rRNAs (Fig. 2-

6).  

Endonucleolytic cleavage in the 3‟ETS region at site B0 by Rnt1p releases the 35S pre-

rRNA, and endonucleolytic cleavages at sites A0 and A1 by so far unknown nucleases 

generate the 5‟ end of 18S rRNA. Then, cleavage at site A2, possibly by Rcl1p (Horn et al., 

2011), separates the SSU specific 20S pre-rRNA from the LSU specific 27SA2 pre-rRNA. 

Cleavage of the 20S pre-rRNA at site D by the endonuclease Nob1p in the cytoplasm 

removes the remainder of the ITS1 sequence and generates the 3‟ end of mature 18S rRNA 

(Udem and Warner, 1973; Fatica et al., 2003; Lamanna and Karbstein, 2009, 2011; Pertschy 

et al., 2009). Further processing of the 27SA2 pre-rRNA occurs via two mutually exclusive 

pathways, both resulting in the same 25S rRNA sequence, but yielding alternative forms of 

5.8S rRNA that differ in length by 6 nucleotides at the 5‟ end (5.8SS/5.8SL). Accordingly, 

eukaryotic cells possess at least two different populations of ribosomes that contain either 

5.8SS or 5.8SL rRNA, which might play a role in transcribing different mRNAs, but so far no 

specific functions could be demonstrated. The major pathway (~ 80%), resulting in the 5‟ end 

of 5.8SS rRNA, involves endonucleolytic cleavage at site A3 by RNase MRP (Schmitt and 

Clayton, 1993; Chu et al., 1994; Lygerou et al., 1996) yielding 27SA3 pre-rRNA, and 

subsequent exonucleolytic trimming to site B1S by Rat1p or Rrp17p (Henry et al., 1994; 
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Oeffinger et al., 2009). Alternatively, processing at site B1L, most likely by a so far unknown 

endonuclease (Faber et al., 2006), generates the 5‟ end of 5.8SL rRNA. Concomitant with the 

formation of the 5‟ ends of the 5.8S rRNAs, the 3‟ end of 25S rRNA is formed by 

exonucleolytic trimming involving Rex1p (Kempers-Veenstra et al., 1986; van Hoof et al., 

2000), yielding the alternative 27SBS/27SBL pre-rRNAs that are further on processed in the 

same way. First, endonucleolytic cleavage at site C2 by an unknown nuclease separates 

7SL/S and 26S pre-rRNAs that are subsequently converted to 5.8SL/S and 25S rRNA by 

exonucleolytic trimming. Formation of the 5‟ end of 25S rRNA by Rat1p and/or Rrp17p 

appears to be completed in the nucleus (Geerlings et al., 2000; Oeffinger et al., 2009), 

whereas formation of the 3‟ end of 5.8S rRNA apparently includes nuclear steps as well as a 

final, cytoplasmic trimming event. The former involve the exosome (Allmang et al., 1999b), a 

ubiquitous multi-subunit complex with 3‟->5‟ exonuclease activity provided by Rrp44p, as well 

as Rrp6p, a component specific for nuclear exosomes, and Rex1p, whereas the latter 

requires only Ngl2p (Briggs et al., 1998; Allmang et al., 1999a; van Hoof et al., 2000; Faber 

et al., 2002; Thomson and Tollervey, 2010). Note that in yeast processing at sites A0, A1 and 

A2 frequently occurs co-transcriptionally on the nascent 35S pre-rRNA (Kos and Tollervey, 

2010), releasing 20S pre-rRNA while the LSU specific rDNA is still transcribed by Pol-I (see 

also section 2.2.5). In this case, Rnt1p cleavage releases 27SA pre-rRNA which 

subsequently undergoes the same maturation as described above.  

In an alternative, minor pathway (Fig. 2-6 C), A3 processing can occur first, resulting in the 

formation of 27SA3 pre-rRNA, which subsequently undergoes normal maturation, and 23S 

pre-rRNA, which can then be processed at sites A0, A1 and A2 to yield 22S, 21S and 20S 

pre-rRNAs, respectively.  

In addition to pre-rRNA processing events, numerous modifications, predominantly 

pseudouridinylations and 2‟-O-methylations, are introduced at specific sites of the rRNA 

sequences early during ribosome biogenesis (Retèl et al., 1969; Brand et al., 1977; Kos and 

Tollervey, 2010). These reactions are catalysed by two different classes of small nucleolar 

ribonucleoprotein particles (snoRNPs), box H/ACA snoRNPs (Ganot et al., 1997; Ni et al., 

1997) and box C/D snoRNPs (Cavaillé et al., 1996; Tycowski et al., 1996), respectively. The 

snoRNPs consist of a variable snoRNA that guides the snoRNP to a specific modification site 

by base pairing with rRNA, and of common protein components specific for each class. For 

box H/ACA snoRNPs, these are the catalytic subunit Cbf5p as well as the core proteins 

Gar1p, Nhp2p and Nop10p, and box C/D snoRNPs contain the catalytic subunit 

Nop1p/fibrillarin as well as Nop56p, Nop58p and Snu13p. Although single modifications are 

not essential, there is growing evidence that the sum of modifications is important for the 

function of the ribosome, and also affects ribosome biogenesis (King et al., 2003; Liang et 

al., 2007, 2009). 

 
Fig. 2-6 (continued from next page): C) Alternative pre-rRNA processing pathways bypassing A2-site processing 
and yielding 27SA3 and 23S or 21S pre-rRNA (see main text for details). Normally, 27SA3 is subsequently 
processed via the B1s pathway yielding 25S and 5.8Ss rRNAs. However, mutant analyses indicated that 27SA3 
pre-rRNA can also be substrate for processing site B1L (dashed line), yielding 25S and 5.8SL rRNAs (e.g.Torchet 
and Hermann-Le Denmat, 2000). Adapted from Hierlmeier et al. (2012). 
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Fig. 2-6: pre-rRNA processing in Saccharomyces cerevisiae  

A) The 35S rRNA gene contains the sequences of 18S, 5.8S and 25S rRNAs separated by two internal 
transcribed spacer (ITS1, ITS2) regions and flanked by external transcribed spacer regions (5‟-ETS, 3‟-ETS). 
Processing sites of precursor rRNAs are indicated (A0, A1, etc.). Positions of antisense oligo probes (o205, etc.) 
used for Northern hybridisation and primer extension analyses are indicated with bars. B) Canonical pre-rRNA 
processing pathways (see main text for details). (continued on previous page) 
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2.2.4 Nuclear surveillance of ribosome biogenesis and degradation of aberrant 

ribosomal precursor RNAs 

To ensure that only functional ribosomes are produced, and to prevent that ribosome 

biogenesis factors are sequestered into aberrant pre-ribosomal particles, which would result 

in a rapid block of ribosome biogenesis, these are efficiently degraded in the nucleus by 

different nucleases (for recent reviews see Houseley et al., 2006; Vanacova and Stefl, 2007; 

Houseley and Tollervey, 2009). The major quality control mechanism involves the TRAMP 

complex and the nuclear exosome, which is also involved in formation of the 3‟ end of 5.8S 

rRNA (section 2.2.3). The TRAMP (Trf/Air/Mtr4 polyadenylation) complex polyadenylates 

aberrant pre-rRNAs (Fang et al., 2005; LaCava et al., 2005; Vanácová et al., 2005), which is 

the signal for subsequent degradation by the nuclear exosome (Mitchell et al., 1997; Allmang 

et al., 2000). TRAMP complexes contain one of the poly-A polymerases Trf4p (TRAMP4) or 

Trf5p (TRAMP5), one of the Zn-knuckle proteins Air1p or Air2p, and the putative RNA 

helicase Mtr4p. Recently it could be shown that Air2p binds to RNA and bridges between 

Trf4p and Mtr4p, which is crucial for the activation of the exosome (Holub et al., 2012). 

Notably, the different TRAMP4/5 complexes appear to act on aberrant LSU and SSU pre-

rRNAs, respectively (Dez et al., 2006, 2007; Houseley et al., 2006; Wery et al., 2009). 

Although, the mechanism how TRAMP complexes distinguish aberrant from productive pre-

rRNA species is still unknown, a kinetic discrimination model was suggested, according to 

which biogenesis factors that are not appropriately released from aberrant pre-ribosomal 

particles could recruit the TRAMP complex (Dez et al., 2007).  

Furthermore, Rat1p, the 5‟->3‟ exonuclease involved in formation of the 5‟ ends of 5.8SS and 

25S pre-rRNAs (section 2.2.3) and removal of excised 5‟ETS and ITS1 sequences (Petfalski 

et al., 1998), also functions in the degradation of aberrant pre-rRNAs (Fang et al., 2005), 

raising the question, how the processing and degradation functions are regulated. Recently, 

it was suggested that trimming of the ITS1 sequence by Rat1p could be precisely stopped at 

site B1S by formation of a defined RNA structure stabilised by RNA-protein interactions ((Pöll 

et al., 2009; Sahasranaman et al., 2011); see also section 2.2.6 for more details). In this way, 

pre-rRNA processing could switch to degradation of aberrant pre-ribosomes if this structure 

cannot be formed. In general, all exonucleases involved in rRNA processing act on several 

substrates (section 2.2.3), indicating that they have no pronounced sequence specificity. 

Accordingly, access of the nucleases to pre-rRNA has to be tightly controlled to prevent 

unspecific degradation. This could be achieved by the structural organisation of pre-

ribosomes, resulting in inaccessible 5‟ and 3‟ RNA ends by base-pairing, protein binding 

and/or orientation to the core of the particles. 

2.2.5 Maturation of the small ribosomal subunit 

Besides the nucleases involved in pre-rRNA processing and the snoRNP protein 

components (section 2.2.3), a large number of additional biogenesis factors, which 

transiently interact with different pre-ribosomal particles, is required for the formation of 

mature ribosomal subunits. However, to date, the precise molecular function of most of those 

remains elusive. Many ribosome biogenesis factors, in particular those associated with early 
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pre-ribosomes, are supposed to play a role in the structural organisation of pre-ribosomes 

and thus to stabilise pre-rRNAs and to facilitate RNA processing and folding, as well as r-

protein assembly (see below and section 2.2.6 for details). Furthermore, a few biogenesis 

factors are homologous to r-proteins and are thus supposed to act as place holders in pre-

ribosomes until the respective r-proteins are incorporated (e.g. Rlp24p (Saveanu et al., 

2001), Mrt4p (Rodríguez-Mateos et al., 2009)). In addition, some biogenesis factors function 

as export adaptors and are required for the transport of LSU and/or SSU precursors through 

the nuclear pore. Only a subset of biogenesis factors has predicted enzymatic functions like 

GTPase, ATPase or helicase activity (reviewed in Kressler et al., 2010), and just in few 

cases this was experimentally validated. In this chapter, the focus is set on early, nucleolar 

SSU maturation events, whereas later nucleoplasmic and cytoplasmic biogenesis events as 

well as nuclear export are just briefly summarised (reviewed in detail in (Henras et al., 2008; 

Panse and Johnson, 2010; Karbstein, 2011). 

Initial studies by Trapman and Planta (1975) identified a particle showing a sedimentation 

coefficient of 90S and containing 35S pre-rRNA as the common precursor to the large and 

the small ribosomal subunits. To generate the SSU specific 20S pre-rRNA from the 35S pre-

rRNA by processing at sites A0, A1 and A2, the function of ~ 50 biogenesis factors (see 

below) and three snoRNAs (U3 (Kass et al., 1990; Savino and Gerbi, 1990; Hughes and 

Ares, 1991), U14 (Zagorski et al., 1988; Li et al., 1990), snR30 (Morrissey and Tollervey, 

1993)), as well as the presence of many r-proteins of the small subunit (Ferreira-Cerca et al., 

2005) are required.  

Of these snoRNAs, which belong to the box C/D (U3, U14) and box H/ACA (snR30) 

snoRNAs, only U14 guides a RNA modification, but all of them can form base pairing 

interactions with pre-rRNAs in regions where no RNA modifications are introduced, which is 

supposed to facilitate correct processing and folding of pre-rRNA (Beltrame and Tollervey, 

1995; Liang and Fournier, 1995; Borovjagin and Gerbi, 2000; Karbstein, 2011). This has 

been most extensively studied for U3 snoRNA, which has several binding sites within the 5‟ 

ETS region as well as in the 18S rRNA sequence (Fig. 2-7; (Beltrame and Tollervey, 1992, 

1995; Hughes, 1996; Méreau et al., 1997; Sharma and Tollervey, 1999; Dutca et al., 2011; 

Kudla et al., 2011). The former appear to be crucial for initial binding to pre-rRNA, whereas 

the latter are incompatible with the base pairings found in the „central pseudoknot‟, a 

characteristic RNA structure of the mature SSU, which involves base pairing between distant 

regions of the 18S rRNA (Fig. 2-7 A). Accordingly, U3 snoRNA (Fig. 2-7 B) prevents 

premature formation of secondary and tertiary rRNA structure elements found in mature 

ribosomes (Fig. 2-7C), and could hence maintain the pre-rRNA accessible for the assembly 

of r-proteins. In addition, snoRNAs could specifically recruit biogenesis factors (e.g. 

helicases, nucleases) to distinct regions of the pre-rRNA as suggested for snR30 (Fayet-

Lebaron et al., 2009), and establish RNA structures required for processing events.  
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Fig. 2-7: The function of the U3 snoRNA in ribosome biogenesis 

A) The 5‟ end of the 18S rRNA forms a structure termed „central pseudoknot‟ with the central region of 18S rRNA 
by base pairing interactions (see also Fig. 2-2). Nucleotide positions are numbered from the 5‟ end of 18S rRNA. 
B) Schematic view of the of the U3 snoRNA secondary structure. C) Predicted base pairing interactions of U3 
snoRNA with pre-rRNA in the 5‟ ETS region and in the 18S rRNA sequence, which are not compatible with the 
formation of the central pseudoknot. Note that not all U3-rRNA interactions are experimentally validated. Yellow 
and red lines mark nucleotides involved in formation of the central pseudoknot. Nucleotide positions in the 5‟ ETS 
region are numbered from the 5‟ end of 35S pre-rRNA. Processing at site A1 generates the 5‟ end of 18S rRNAan 
numbering of 18S rRNA nucleotides is as in (A). Adapted from Henras et al. (2008). 

Already two decades ago, it was proposed that in analogy to the spliceosome, binding of the 

snoRNAs and other factors to 35S pre-rRNA could form a large RNP complex, a 

„processome‟ facilitating ribosome biogenesis (Fournier and Maxwell, 1993). Ten years later, 

the Baserga group purified a large RNP containing the U3 snoRNA, which sedimented at 

~80S and contained, besides ten known U3 snoRNA interacting proteins, a set of 17 

previously unknown proteins (named „U three proteins‟; Utps) that also affect SSU 

maturation, as well as some rpS, and hence referred to it as the „SSU processome‟ (Dragon 

et al., 2002). In parallel, using several affinity tagged biogenesis factors the Hurt group 

(Grandi et al., 2002) isolated early pre-ribosomal particles which sedimented at ~ 90S and 

contained U3 snoRNA and pre-rRNAs containing the 5‟ETS sequence. However, since pre-

rRNAs were just analysed in distinct primer extension reactions, it remained unclear, 

whether, and in which ratios, these particles contain 35S and/or 23S pre-rRNAs, and thus if a 

single precursor or a mixture of several, subsequent pre-ribosomes was isolated. 

Furthermore, several rpS, but only few rpL, were identified in these particles, as well as 35 

non-ribosomal proteins, which were largely overlapping with the ones identified in the „SSU 
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processome‟. Notably, the additional non-ribosomal proteins found in these particles were in 

a later report also classified as SSU processome components, as they localise to the 

nucleolus, co-purify the SSU processome components U3 snoRNA and Mpp10p, and affect 

18S synthesis (Bernstein et al., 2004). Accordingly the particles identified by the Baserga 

and Hurt laboratories could represent the same, common 90S precursor to the large and 

small ribosomal subunits described by Trapman and Planta (1975).  

Remarkably, formation of the SSU processome occurs already co-transcriptionally on the 

nascent 35S pre-rRNA (Mougey et al., 1993; Osheim et al., 2004; Wery et al., 2009), which 

can be visualized in electron micrographs of Miller chromatin spreads as knob like structures 

at the ends of the nascent transcripts (Miller and Beatty, 1969) (see below; Fig. 2-9). These 

„terminal balls‟ or „terminal knobs‟ are not formed when the 5‟ETS region is mutated or when 

U3 snoRNA or other SSU processome components are depleted in the cells (Mougey et al., 

1993; Dragon et al., 2002; Osheim et al., 2004). Furthermore, in cells depleted of SSU 

processome components, levels of 35S and 23S pre-rRNA are elevated, whereas levels of 

32S, 20S and 27SA2 are reduced, indicating impaired processing of sites A0, A1, A2 and 

alternative processing of 35S pre-rRNA at site A3 (Baudin-Baillieu et al., 1997; Dunbar et al., 

1997; Venema et al., 2000; Bernstein et al., 2004; Gallagher et al., 2004). In addition, pre-

rRNAs appear to be destabilized and degraded via the TRAMP/exosome pathway in these 

conditions (Dez et al., 2007; Wery et al., 2009).  

 
 

Fig. 2-8: Model for the assembly of the SSU processome on pre-rRNA 

The UTP-A/t-UTP complex can bind independent of all other analysed SSU processome components to nascent 
pre-rRNA. This facilitates subsequent assembly of other SSU processome components in different branches via 
hierarchical and cooperative pathways. See main text for details. Left and right panels are adapted from Pérez-
Fernández et al. (2007; 2011), respectively. 

Many components of the SSU processome form „modules‟, which can be isolated from cell 

extracts independent of pre-ribosomal particles after these have been sedimented by high 

speed centrifugation. These modules, e.g. the „U three protein complexes‟ UTP-A (containing 

Utp4p, Utp5p, Utp8p, Utp9p, Utp10p, Utp15p, Utp17p/Nan1p), UTP-B (Utp1p/Pwp2p, Utp6p, 

Utp12p/Dip2p, Utp13, Utp18p, Utp21p) and UTP-C (Utp22p, Rrp7p, Cka1p, Cka2p) (Dosil 

and Bustelo, 2004; Gallagher et al., 2004; Krogan et al., 2004), the U3 snoRNP (U3 snoRNA, 

Nop1p, Nop56p, Nop58p, Snu13p, Rrp9p) (Venema et al., 2000), and other complexes like 

Mpp10p/Imp3p/Imp4p (Granneman et al., 2003), Noc4p/Nop15p (Milkereit et al., 2003; Kühn 
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et al., 2009) and Rcl1p/Bms1p (Wegierski et al., 2001), are supposed to constitute building 

blocks of 90S/SSU processome particles. Furthermore, it could be shown that binding of 

these modules to pre-ribosomes follows, at least in part, a hierarchical order, albeit parallel 

pathways exist and stable association of the modules with pre-ribosomes apparently involves 

additional cooperative effects (Fig. 2-8). Accordingly, binding of UTP-A to pre-rRNA is 

required for recruitment of all other analysed components, followed by different binding 

branches (Pérez-Fernández et al., 2007). In one, UTP-B and U3 snoRNP bind in a 

cooperative manner (Dosil and Bustelo, 2004) and enable subsequent binding of Bms1p, 

Mpp10p/Imp3p/Imp4p and other factors (Pérez-Fernández et al., 2011). In an alternative 

branch, Rrp5p binds first to enable recruitment of UTP-C and Rok1p (Vos et al., 2004a; 

Pérez-Fernández et al., 2011), and other factors like Sof1p and Mrd1p apparently enter in 

Rrp5p and U3 snoRNP independent branches (Bax et al., 2006b; Segerstolpe et al., 2008). 

Furthermore, there is evidence that other factors required for A0, A1 and A2 processing as 

Utp23p and snR30 snoRNA could bind independent of UTP-A to pre-rRNA (Hoareau-Aveilla 

et al., 2012). Distinct regions of snR30 are either involved in base pairing interactions with 

pre-rRNA or likely to mediate interactions with proteins, respectively, suggesting that snR30 

might recruit SSU processome components to pre-rRNA (Fayet-Lebaron et al., 2009). As 

described above, snoRNAs are also supposed to maintain the pre-rRNA accessible for the 

assembly of r-proteins. Congruently, a subset of r-proteins that bind to the 5‟ (body) and 

central (platform) domain of the 18S rRNA (Fig. 2-2) and whose depletion causes similar pre-

rRNA processing phenotypes as depletion of SSU pocessome components (Ferreira-Cerca 

et al., 2005), is also associated with 90S/SSU processome particles, although much weaker 

than with mature 40S subunits (Ferreira-Cerca et al., 2007). While these r-proteins have no 

impact on the binding of the UTP-A and UTP-B complexes to pre-rRNA, some platform 

binding r-proteins are required to recruit the biogenesis factor Noc4p to pre-ribosomes 

(Jakob et al., 2012). Noc4p in turn is required for the assembly of r-proteins bound to the 3‟ 

domain (head) of 18S rRNA (Fig. 2-2), which only affect later maturation steps (Ferreira-

Cerca et al., 2005). Furthermore, the association of some early binding SSU processome 

modules with pre-ribosomes appeared to be stabilized by later binding factors (Pérez-

Fernández et al., 2011). Accordingly, a complex interaction network between biogenesis 

factors, snoRNAs, pre-rRNA and r-proteins in combination with structural rearrangements 

during formation of the SSU processome could enable the structural organisation of the pre-

rRNA to stabilise pre-ribosomal particles and to facilitate processing at sites A0, A1 and A2 

as well as assembly of r-proteins onto the pre-rRNA.  

As mentioned above, co-transcriptional formation of the SSU processome can be observed 

in electron micrographs of Miller chromatin spreads as „terminal knobs‟ on the nascent 

transcripts, and these structures are not formed when the 5‟ETS region is mutated or when 

U3 snoRNA or other SSU processome components are depleted in the cells. Congruently, 

SSU processome components were shown to be associated with rDNA in an RNA 

dependent manner (Wery et al., 2009). Based on this and kinetic analyses of pre-rRNA 

processing in UTP-A mutant strains (Dez et al., 2007) it seems unlikely that the UTP-A/t-UTP 

complex binds directly to rDNA and affects Pol-I transcription in yeast, as previously 

suggested by Gallagher and co-workers (2004). Remarkably, human homologs of UTP-A 
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components apparently have adopted such functions (Prieto and McStay, 2007; Freed et al., 

2012). Co-transcriptional binding of (some) SSU processome components to pre-rRNA 

appears to be conserved in all eukaryotes, as formation of the terminal balls was observed in 

algae, fungi, insects, amphibians and mammals (Herbert Spring, 1974; Trendelenburg, 1974; 

McKnight and Miller Jr., 1976; Trendelenburg and Gurdon, 1978; Saffer and Miller, 1986; 

Scheer and Benavente, 1990). In all analysed species except S. cerevisiae, terminal knobs 

of similar size are observed on all nascent transcripts that increase in length along the rDNA 

repeat (Fig. 2-9 A). In yeast, however, transcripts located in the middle third of rDNA repeats 

show a larger knob than transcripts in the last third, most of which are, in addition, shorter 

than expected for the full length 35S rDNA transcript (Fig. 2-9 B) (Osheim et al., 2004). 

These observations are interpreted in a way that the SSU processome is fully assembled on 

the nascent pre-rRNA, resulting in its compaction into large „SSU knobs‟ and facilitating 

rRNA processing at sites A0, A1 and A2 (Osheim et al., 2004; Wery et al., 2009). In this way, 

pre-40S particles are separated from the LSU specific nascent transcripts, which 

subsequently also form terminal balls („LSU knobs‟) that are supposed to contain LSU 

biogenesis factors (Fig. 2-9 C). However, to date this was experimentally validated for only 

two factors, Nop53p (Granato et al., 2008) and Nop15p (Wery et al., 2009).  

 
 

Fig. 2-9: pre-rRNA processing can occur co-transcriptionally in Saccharomyces cerevisiae 

A) Electron micrograph of a Miller chromatin spread showing a transcribed rDNA repeat from Xenopus. The 
transcripts increase in length along the gene and small particles are visible at their ends. B, C) Electron 
micrograph of a Miller chromatin spread showing a transcribed rDNA repeat from S. cerevisiae (same as in Fig. 2-
5) and schematic tracing thereof. Transcripts in the first third of the gene increase in length and show small 
particles on their ends (indicated by arrows (B)/in gray (C)). Transcripts in the middle part of the gene appear 
shorter than expected and large particles (arrowheads/red) are visible at their ends. In contrast, transcripts in the 
last third of the gene exhibit smaller particles (triangles/blue) at their ends. D) Schematic interpretation of the data 
in (A, B), see main text for details. Scale bars correspond to 1 µm (A) and 0.5 µm (B). (A) was adapted from 
Raška et al. (2006), (B-D) was adapted from Osheim et al. (2004). 



INTRODUCTION 
 

20 
 

Co-transcriptional pre-rRNA processing could be confirmed by rapid metabolic labelling 

techniques (Kos and Tollervey, 2010). These experiments showed that in exponentially 

growing yeast cells ~ 70% of the transcripts are co-transcriptionally cleaved, and furthermore 

that 2‟-O-methylation also frequently occurs co-transcriptionally, indicating co-transcriptional 

binding of the respective guide snoRNAs. Accordingly, pre-40S particles are generated either 

by co-transcriptional cleavage of the nascent pre-rRNA or from common, 35S pre-rRNA 

containing, 90S pre-ribosomes in case that processing starts only after Pol-I transcription has 

been completed. In either case, the SSU processome components dissociate rapidly from 

the pre-40S particles (Schäfer et al., 2003).  

The subsequent maturation events yielding mature 40S subunits, which largely occur in the 

cytoplasm, are briefly summarized in the following paragraph (for more detailed reviews see 

(Henras et al., 2008; Karbstein, 2011)). Only a few (~ 10) biogenesis factors are required for 

these steps, including Enp1p, the D site nuclease Nob1p (Lamanna and Karbstein, 2009, 

2011) and its associated proteins Pno1p/Dim2p, Dim1p that catalyses methylation of two 

adenosine residues at the 3‟ end of the 18S rRNA (Lafontaine et al., 1994), the potential 

export factors Ltv1p and Rrp12 (Ito et al., 2001; Oeffinger et al., 2004; Seiser et al., 2006), 

the kinases Rio1p and Rio2p and a GTPase-like protein Tsr1p. Notably, most of these 

factors are already associated with 90S pre-ribosomes (Chen et al., 2003; Schäfer et al., 

2003), and Enp1p, Pno1p and Dim1p are essential for early pre-rRNA processing events 

(Lafontaine et al., 1995; Fatica et al., 2003; Vanrobays et al., 2004). Mapping of binding sites 

on pre-rRNAs by cross-linking studies (Granneman et al., 2010) and cryo-EM studies (Strunk 

et al., 2011) indicated that the late acting SSU biogenesis factors are placed on the pre-40S 

particles containing 20S pre-rRNA in a way that prevents premature translation initiation. 

Recently, two independent studies provided evidence that a specific translation initiation 

factor (eIF5B/Fun12p) is required for processing of site D to generate the 3‟ end of 18S rRNA 

(Lebaron et al., 2012; Strunk et al., 2012), and suggested that the final SSU maturation steps 

could involve a translation like cycle as a quality control mechanism for the newly 

synthesized subunits. 

2.2.6 Maturation of the large ribosomal subunit 

In contrast to the pre-40S maturation pathway, LSU maturation proceeds via several distinct 

pre-60S particles that are characterised by the different pre-rRNA species (see Fig. 2-6) as 

well as by the set of associated biogenesis factors. Analyses of pre-rRNA processing 

phenotypes in yeast strains that depend on conditional alleles of the different biogenesis 

factors helped to understand for which maturation steps the respective factors are required, 

but nevertheless, the molecular function of most factors remains elusive. Over the last 

decade, tandem-affinity purification approaches combined with mass spectrometric analyses 

(Rigaut et al., 1999) were extensively used to analyse the composition of the different LSU 

precursors, and identified probably most of the required biogenesis factors. These results, in 

combination with intracellular localisation studies of immuno-gold labelled biogenesis factors 

by electron microscopy provided insights into the migration of pre-ribosomes from the 

nucleolus to the cytoplasm. Accordingly, the first specific pre-60S particles containing 27SA2 
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pre-rRNA and the diagnostic biogenesis factor Npa1p (Dez et al., 2004) are localised in the 

nucleolus at the border between DFC and GC (see Fig. 2-4), consistent with the localisation 

of snoRNP core proteins, which predominantly act on nascent pre-rRNA or 90S particles, in 

the DFC (Léger-Silvestre et al., 1999). Subsequent maturation steps including cleavage at 

site C2 are likely to occur in the GC, where Rlp7p, a factor required for this step is localised 

(Gadal et al., 2002b), followed by transport into the nucleoplasm, where pre-ribosomes 

accumulate when late acting biogenesis factors like Nog2p are inactivated (Saveanu et al., 

2001) and export into the cytoplasm is impaired. However, just few biogenesis factors are 

associated only with pre-ribosomes containing a specific pre-rRNA (e.g. Npa1p (27SA2) 

(Dez et al., 2004), Nsa1p (27SB) (Kressler et al., 2008)), whereas most stay associated with 

subsequent intermediates and some even from very early nucleolar to late nucleoplasmic or 

cytoplasmic pre-60S particles (e.g. Nsa3p (Nissan et al., 2002), Nog1p (Saveanu et al., 

2003)). In addition, the different pre-rRNA species have rather long life times (15-95 sec (Kos 

and Tollervey, 2010)). Hence it is complicated to precisely determine the composition of 

subsequent precursor particles. Nevertheless, numerous studies suggest that different 

groups of biogenesis factors are specifically associated with early, intermediate and late pre-

60S particles and indicated that the complexity of pre-ribosomes in terms of biogenesis factor 

composition decreases in the course of maturation (e.g. Fatica et al., 2002; Nissan et al., 

2002, 2004; Saveanu et al., 2003; Dez et al., 2004; Lebreton et al., 2008). 

In this chapter, the focus is set on early, nucleolar LSU maturation steps, which are most 

important within the scope of this work, whereas intermediate and late maturation steps are 

just briefly summarised (for more detailed reviews see Henras et al., 2008; Kressler et al., 

2010; Panse and Johnson, 2010). 

Only few LSU biogenesis factors have been found to co-purify 35S pre-rRNA or SSU 

processome components (see below) or were identified as components of 90S/SSU 

processome particles (Grandi et al., 2002). While this is not surprising in case that co-

transcriptional processing occurs (~ 70% of transcripts (Kos and Tollervey, 2010)), it 

indicates that LSU biogenesis factors bind either just weakly and/or immediately before A2 

site cleavage to 90S pre-ribosomes, or exclusively to the resulting pre-60S particles. This 

would be consistent with the general assumption that the delay of the early, SSU maturation 

specific cleavage events at sites A0, A1 and A2 observed in mutants of most LSU biogenesis 

factors is an indirect effect, possibly due failure of recycling of biogenesis factors required for 

these steps (Venema and Tollervey, 1999).  

Some of the LSU biogenesis factors that are apparently already associated with 90S pre-

ribosomes are Npa1p, Ssf1p, Ytm1p, Erb1p, Nop7p, Rpf2p and Rrs1p (Fatica et al., 2002; 

Dez et al., 2004; Zhang et al., 2007; Sahasranaman et al., 2011). The latter two are required 

for the assembly of 5S rRNA, rpL5 and rpL11 into pre-ribosomes, which can apparently 

occur very early during ribosome biogenesis, as rpL5 and rpL11 co-purify a pre-rRNA 

containing the 5‟ETS region and are thus bona fide components of 90S pre-ribosomes 

(Zhang et al., 2007). Rpf2p, Rrs1p, rpL5 and rpL11 interact directly with each other and can 

be isolated as a complex with 5S rRNA from cells defective in ribosome biogenesis, but it 

remains unclear if this RNP is recruited en bloc to, or is formed on pre-ribosomes. The 

earliest pre-60S particles purified via Npa1p (Dez et al., 2004) contain amongst others a 
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group of factors whose depletion causes reduced levels of all LSU specific pre-rRNAs (e.g. 

Nop4p/Nop77p (Bergès et al., 1994), Noc1p, Noc2p (Milkereit et al., 2001)), as well as 

several factors that affect specific maturation steps, e.g. conversion of 27SA3 to 27SBS pre-

rRNA generating the 5‟ end of 5.8SS rRNA („A3-factors‟, see below) or separation of 5.8S and 

25S precursors by processing of 27SB pre-rRNAs in the ITS2 region („B-factors‟, see below).  

 

While few is known about the initial processing at site A3 by RNAse MRP or the minor 

pathway starting with processing of site B1S, the role of the „A3-factors‟ (Ytm1p, Erb1p, 

Nop7p, Rlp7p, Nsa3p/Cic1p, Nop15p, Rrp1p) has been extensively studied (Dunbar et al., 

2000; Pestov et al., 2001; Adams et al., 2002; Oeffinger et al., 2002; Fatica et al., 2003; 

Oeffinger and Tollervey, 2003; Horsey et al., 2004; Miles et al., 2005; Sahasranaman et al., 

2011; Granneman et al., 2011; Jakovljevic et al., 2012). These analyses provided insights 

into several aspects of ribosome biogenesis, for instance (i) how biogenesis factors interact 

with pre-ribosomes, (ii) the interplay between r-protein assembly and rRNA processing and 

(iii) regulation of nuclease activity, which are likely to represent general mechanisms that 

also play a role in other maturation steps. In absence of each individual „A3-factor‟, levels of 

27SBS pre-rRNA, which is generated by exonucleolytic trimming by Rat1p and/or Rrp17p 

(section 2.2.3), are severely reduced and shorter fragments thereof are detected 

(Sahasranaman et al., 2011). For four „A3-factors‟, as well as for Nop4p/Nop77p, binding 

sites on pre-rRNA could be mapped in a UV cross linking approach (Granneman et al., 

2011), which locate to the ITS2 region (Nop15p, Nsa3p/Cic1p) and domains I (Erb1p), III 

(Nop7p) and both II and III (Nop4p/Nop77p) of 25S rRNA, respectively, and partially overlap 

with r-protein binding sites (Fig. 2-10 B). In mature ribosomes, 5.8S rRNA and domain I of 

25S rRNA form base pairing interactions involving both their 5‟ and 3‟ regions, and domain III 

is in close contact to domain I (Fig. 2-10 A + D; see also Fig. 2-2) (Ben-Shem et al., 2010, 

2011). Six of the seven „A3-factors‟ (except Rrp1p) show interdependent binding to pre-

ribosomes (Sahasranaman et al., 2011), indicating proximity of these factor on pre-

ribosomes, and Ytm1p, Erb1p and Nop7p form a protein complex that can be isolated from 

cells and reconstituted in vitro (Krogan et al., 2004; Miles et al., 2005; Tang et al., 2008). In 

addition, these six „A3-factors‟ require for stable association with pre-ribosomes prior 

assembly of rpL7 and rpL8 (Jakovljevic et al., 2012), which are bound to domains II and I of 

25S rDNA (Fig. 2-10 D), respectively, and depletion of which phenocopies the rRNA 

processing defects of the „A3-factors‟ (Pöll et al., 2009). Furthermore, rpL7 and rpL8 are also 

required for stable assembly of several other r-proteins (Jakovljevic et al., 2012). Both affect 

binding of four r-proteins bound to domain I (rpL17, rpL26, rpL35, rpL37; Fig. 2-10 E), and in 

addition, rpL7 and rpL8 specifically affect stable assembly of four and six other r-proteins of 

domains II and I, respectively. Rlp7p, and thus probably also the other interdependent „A3-

factors‟, also affect assembly of rpL17, rpL26, rpL35, rpL37 to pre-ribosomes 

(Sahasranaman et al., 2011). Hence, rpL7 and rpL8 appear to be important for the formation 

of domains II and I, respectively, and the „A3-factors‟ provide an example how r-protein 

assembly and the function of biogenesis factors can be interconnected.  
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Fig. 2-10 The role of the ‘A3-factors’ in ribosome biogenesis 

A) In pre-rRNAs containing the ITS1 region, the 5‟ region of the 5.8S rRNA sequence (blue) is predicted to base 
pair with the 3‟ part of ITS1 (left), which prevents interaction with domain I of 25S rRNA (red) as found in the 
mature ribosome (right; see also Fig. 2-2). B, C) The binding sites of Rat1p, Nop4p/Nop77p and the „A3-factors‟ 
Nop7p, Erb1p, Nop15p and Cic1p/Nsa3p on 5.8S rRNA, 25S rRNA (domains I, II, III) and in the ITS2 region as 
determined by CRAC analyses (Granneman et al., 2011) are schematically depicted. In addition, the binding sites 
of 4 r-proteins as found in mature 80S ribosomes are marked (Ben-Shem et al., 2011). Dashed lines in (B) 
indicate (potential) interactions within pre-ribosomes mediated by the biogenesis factors, solid lines in (C) indicate 
interactions between domains I, II and III in the mature ribosome that are stabilized by the respective r-proteins. 
The different secondary structures of the 5‟ end of 5.8S rRNA are indicated. D) Crystal structure of the RNA 
components of 60S subunits from S. cerevisiae viewed from the solvent side (as in Fig. 2-2). 5S rRNA is coloured 

in black, 5.8S rRNA in dark blue, domains I, II, III and V of 25S rRNA in light blue, green, cyan and orange, 
respectively. rpL7 and rpL8 are shown as space filling models in dark green and dark blue, respectively, and 
binding sites of Erb1p and Nop7p (see also (B)) on domains I and III are highlighted. D). Positions of the indicated 
r-proteins on 5.8S rRNA (blue) and domain I of 25S rRNA (brown) in the mature ribosome. (A, D) are adapted 
from Jakovljevic et al. (2012), (B, C) from Granneman et al. (2011), (E) from Sahasranaman et al. (2011). See 
main text for details. 

In addition, formation of 27SB pre-rRNA apparently requires rearrangements within the 

ITS1/5.8S region, as there is evidence that in 35S/27SA pre-rRNAs the 5‟ end of 5.8S rRNA 

forms a stable structure with the 3‟ part of ITS1 (Yeh et al., 1990; Henry et al., 1994; van 

Nues et al., 1994), which has to be released to allow base pairing with domain I of 25S rRNA 

as found in mature ribosomes (Fig. 2-10 A) (Ben-Shem et al., 2010, 2011). The proteins 

rpL17, rpL26, rpL35 and rpL37 make contacts to both domain I and 5.8S rRNA, and rpL17, 
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rpL35 and rpL37 make additional contacts with domains II and/or III (Fig. 2-10 E). In this way, 

these (and other) r-proteins probably stabilise the 5.8S/25S hybrid and organise the relative 

positioning of domains I, II and III in mature ribosomes (Fig. 2-10 C). Based on the results 

described above, it was suggested that the „A3-factors‟ and Nop4p/Nop77p, amongst others, 

could establish these RNA structures in early pre-ribosomes by forming an extensive 

interaction network (Fig. 2-10 B) and thereby facilitate assembly of the r-proteins, which then 

take over the function in stabilisation of tertiary rRNA structures (Fig. 2-10 C) (Granneman et 

al., 2011; Sahasranaman et al., 2011).  

Formation of a stable 5.8S/25S hybrid at the 5‟ end of 5.8S rRNA (Fig. 2-10 E) was proposed 

to precisely stop exonucleolytic trimming by Rat1p or Rrp17p at site B1S (Pöll et al., 2009; 

Sahasranaman et al., 2011). As Rat1p is also involved in degradation of aberrant pre-rRNAs 

(Fang et al., 2005), this provides a potential link between r-protein assembly, rRNA 

processing and surveillance pathways (Sahasranaman et al., 2011; Jakovljevic et al., 2012). 

Notably, binding of Rat1p, but not of Rrp17p, to pre-ribosomes appeared to be independent 

of „A3-factors‟, and Rat1p and Rrp17p were found to be associated predominantly with pre-

60S particles containing 27SA2 or 27SB pre-rRNA, respectively (Oeffinger et al., 2009; 

Sahasranaman et al., 2011). Major binding sites of Rat1p were mapped to the 5.8S rRNA 

(Fig. 2-10 B), the 5‟ part of ITS2 and domain I of 25S rRNA, rather than to the Rat1p 

substrate regions between A3-B1S or C2-C1, but no binding sites could be mapped for 

Rrp17p (Granneman et al., 2011). Accordingly, Rat1p is supposed to be recruited prior to its 

time of action to pre-ribosomes, waiting for a trigger event, and then to rapidly degrade its 

substrates. In contrast, Rrp17p is apparently only recruited to pre-60S particles containing 

27SA3 pre-rRNA, which are ready for exonucleolytic trimming, and subsequently stays 

associated with pre-ribosomes containing 27SB pre-rRNA until processing at site C2 occurs, 

which provides the next substrate for Rrp17p (see section 2.2.3). 

The subsequent nuclear and cytoplasmic LSU maturation steps are briefly summarized in the 

following paragraphs (for more detailed reviews see Henras et al., 2008; Kressler et al., 

2010; Panse and Johnson, 2010). Endonucleolytic cleavage of 27SB pre-rRNA within the 

ITS2 sequence requires the function of at least 14 biogenesis factors („B-factors‟), which are 

recruited to pre-ribosomes in part in a hierarchical manner and/or are mutually 

interdependent for stable association with pre-ribosomes (Saveanu et al., 2003, 2007; 

Talkish et al., 2012). Accordingly, Nop2p and Nip7p, which are part of very early pre-60S 

particles associated with Npa1p (Dez et al., 2004), are required to enable binding of Rpf2p, 

Rrs1p and Spb4p in one branch, and for instance Rlp24p, Nog1p, Nsa2p in a second branch. 

Both branches are required for binding of Nog2p to pre-ribosomes, which was suggested to 

provide a check point in LSU maturation and to trigger processing at site C2 (Talkish et al., 

2012). However, this remains a matter of debate, since in cells depleted of Nog2p not only 

27SB, but also 7S pre-rRNAs are accumulated (Saveanu et al., 2001). Thus delay of C2 

cleavage in absence of Nog2p could be a secondary effect due to impaired release other „B-

factors‟ from later pre-ribosomes in these conditions. Consistent with this, prior to or 

concomitant with the conversion of 27SB in 7S and 26S pre-rRNA, most biogenesis factors 

that have been associated with the early pre-60S particles are released and a set of new 

factors, for instance Rea1p, Rix1p, Ipi1p, Ipi3p and Arx1p (Nissan et al., 2002, 2004; Krogan 
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et al., 2004) is recruited. There is evidence that some of these release events are energy 

dependent processes that require the functions of the AAA-type ATPases Rix7p and Rea1p 

(Kressler et al., 2008; Ulbrich et al., 2009; Bassler et al., 2010).  

The remaining steps in LSU biogenesis include formation of the 3‟ and 5‟ ends of 5.8S and 

25S rRNA (see section 2.2.3), transport of the precursor particles through the nuclear pores 

into the cytoplasm involving export factors like Nmd3p, Mex67p-Mtr2p or Arx1p (Ho and 

Johnson, 1999; Ho et al., 2000; Gadal et al., 2001; Bradatsch et al., 2007; Yao et al., 2007, 

2008; Hung et al., 2008), assembly of lacking r-proteins (e.g. „phospho-stalk‟ proteins, see 

below) and some structural rearrangements to acquire the mature 60S structure. The latter 

could be recently confirmed in cryo-EM analyses of pre-60S particles purified via Arx1p 

(Bradatsch et al., 2012), which predominantly represent the latest nucleoplasmic and early 

cytoplasmic LSU precursors. The overall structure of the „Arx1 particles‟ is similar to mature 

60S subunits, albeit some landmark structures as the „central protuberance‟ or the „phospho 

stalk‟ (see Fig. 2-1), which mediates interaction with translation factors in mature ribosomes 

(e.g. eEF2 (Bargis-Surgey et al., 1999); for a review see (Gonzalo and Reboud, 2003)), are 

not (fully) established. Furthermore, additional densities were observed at several regions 

relevant for the function of mature 60S subunits, which could be in part assigned to 

biogenesis factors, e.g. Arx1p being located in front of the peptide exit tunnel and Tif6p in the 

subunit interface, where the export adaptor Nmd3p is also supposed to bind (Sengupta et al., 

2010). The binding site of Arx1p was confirmed in cryo-EM analyses of in vitro assembled 

complexes of mature 60S subunits with recombinantly expressed late acting biogenesis 

factors (Greber et al., 2012), which could also define nearby binding sites of the Arx1p 

release factors Rei1p and Jjj1p (Hung and Johnson, 2006; Meyer et al., 2010). In summary, 

these results strongly suggest that cytoplasmic pre-60S particles are not competent for 

translation.  

To obtain functional 60S subunits, the remaining biogenesis factors are removed in a 

coordinated way involving several ATPases and GTPases (Lebreton et al., 2006; Lo et al., 

2010), and lacking r-proteins are assembled (rpL24 (Kruiswijk et al., 1978); „phospho stalk‟ 

proteins (Krokowski et al., 2005; Kemmler et al., 2009; Lo et al., 2009; Rodríguez-Mateos et 

al., 2009). As one of the last steps downstream of the „phospho-stalk‟ assembly requires the 

action the GTPase Efl1p (Elongation factor 2 like protein), it was hypothesized that this could 

be a translation like event, providing a quality control step at the end of LSU biogenesis, 

analogous to the final SSU maturation steps (see section 2.2.5). However, and in contrast to 

the surveillance and degradation of aberrant nuclear pre-rRNAs (see section 2.2.4), to date 

only few is known about the degradation of non-functional (pre-) ribosomes in the cytoplasm. 

The cytoplasmic exosome appears to be involved in degradation of both aberrant SSU and 

LSU (precursor) particles, and the former is suggested to occur by a similar translation 

dependent mechanism as in the „no go decay‟ of mRNAs, on which ribosomes are stalled 

due to structural barriers (Cole et al., 2009; Soudet et al., 2010). In contrast, aberrant (pre-) 

60S particles seem to be trapped near the nuclear envelope and degraded independent of 

translation (LaRiviere et al., 2006; Cole et al., 2009). 
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2.2.7 The role of Rrp5p, Noc1p and Noc2p in ribosome biogenesis 

Rrp5p, which is a component of 90S/SSU processome particles (Dragon et al., 2002; Grandi 

et al., 2002) and required for the recruitment of the UTP-C complex (Pérez-Fernández et al., 

2007), is one of only few biogenesis factors described to affect both the maturation of the 

large and the small ribosomal subunits, besides for instance Rrp12p (Oeffinger et al., 2004) 

or Prp43p (Lebaron et al., 2005; Combs et al., 2006; Leeds et al., 2006). Rrp5 was initially 

identified in a screen for genes being synthetic lethal with snR10 (Venema and Tollervey, 

1996), an unessential snoRNA affecting pre-rRNA processing at sites A1 and A2 (Tollervey 

and Guthrie, 1985; Tollervey, 1987). This study showed that Rrp5p is not only required for 

processing at sites A0, A1 and A2 yielding the 18S rRNA precursor, but also for A3 

processing and hence for formation of the 5‟ end of 5.8SS rRNA (Venema and Tollervey, 

1996). Rrp5p shows a distinct bipartite structure with the N-terminal part containing twelve 

repeats of the S1 RNA binding motif (Bycroft et al., 1997) and the C-terminal part containing 

seven tetratricopeptide repeat (TPR) motifs (Fig. 3-6), which often mediate protein-protein 

interactions (Lamb et al., 1995). Interestingly, the function of Rrp5p in LSU and SSU 

maturation pathways could be pinpointed to its N- and C-terminal parts, respectively, and in 

vivo co-expression of the respective Rrp5p variants complements the essential function of 

Rrp5p (Torchet et al., 1998; Eppens et al., 1999). In addition, in vitro studies showed that 

Rrp5p can directly interact with RNA and suggested binding sites of Rrp5p within the ITS1 

region of pre-rRNA, in particular between processing sites A2 and A3, but also upstream of 

A2 (De Boer et al., 2006; Young and Karbstein, 2011). As expected, the S1 motifs are crucial 

for stable RNA interaction in vitro (De Boer et al., 2006), but interestingly they appeared to 

have distinct functions, since the N-terminal part of Rrp5p containing the first nine S1 motifs 

bound RNA with high affinity but unspecifically, whereas the C-terminal part containing the 

last three S1 motifs and the TPR repeats showed specific RNA binding but with low affinity 

(Young and Karbstein, 2011). 

In contrast to Rrp5p, Noc1p/Mak21p and Noc2p specifically affect the maturation of the large 

ribosomal subunit (Edskes et al., 1998; Milkereit et al., 2001). Noc2p was identified in a 

screen for factors that influence export of pre-ribosomes from the nucleus to the cytoplasm 

and found to form heteromeric complexes with Noc1p and Noc3p, which can be isolated 

under high salt conditions from yeast cell extracts (Milkereit et al., 2001). All three proteins 

have homologs in higher eukaryotes (see below), and Noc1p and Noc3p contain a highly 

conserved region of ~ 45 amino acids, the „NOC domain‟, which is also found in Noc4p, a 

component of the SSU processome (Milkereit et al., 2001). Noc4p forms a protein complex 

with Nop14p/Noc5p (Milkereit et al., 2003), and the interaction was shown to depend on a 

part of Noc4p containing the „NOC domain‟ (Kühn et al., 2009). Noc1p is predominantly 

localised in the nucleolus and co-sediments on sucrose gradients with 35S and 27S pre-

rRNA, whereas Noc3p shows mainly nucleoplasmic localisation and co-sediments with 27S 

and 7S pre-rRNA (Milkereit et al., 2001). Noc2p shows an intermediate distribution both 

within the nucleus and on sucrose gradients, and synthetic lethal effects between mutant 

noc2/noc1 and noc2/noc3, but not between noc1/noc3 alleles are observed. Hence, it was 

suggested that Noc1p/Noc2p and Noc2p/Noc3p complexes act on early, nucleolar and later, 
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nucleoplasmic pre-60S particles, respectively (Milkereit et al., 2001), which is supported by 

several studies analysing the protein composition of LSU precursors of different maturation 

states (Nissan et al., 2002; Dez et al., 2004; Kressler et al., 2008). Consistently, in 

conditional noc1, noc2 and noc3 mutant strains pre-60S particles are accumulated in the 

nucleolus (noc1, noc2 mutants) and/or in the nucleoplasm (noc2/noc3 mutants) (Milkereit et 

al., 2001). Analyses of the pre-rRNA processing phenotypes in these mutant strains showed 

decreased levels of all LSU precursor RNAs and no apparent processing block at a specific 

maturation step. In addition, overexpression of the „NOC domain‟ in wild type cells, which 

abolishes cell growth, had no apparent effect on pre-rRNA processing, but resulted in 

nuclear accumulation of pre-60S particles (Milkereit et al., 2001). Hence, it was concluded 

that the Noc1/2/3p proteins have no direct effect on pre-rRNA processing, but rather are 

required for intranuclear transport and export of pre-60S particles and/or for other maturation 

events that facilitate transport of pre-60S particles. When the functions of the Noc1/2/3p 

proteins are impaired, LSU precursors are apparently prone to degradation. 

Rrp5p, Noc1p and Noc2p have homologs in higher eukaryotes (Venema and Tollervey, 

1996; Milkereit et al., 2001) and the human homologs have been identified as nucleolar 

components in a large scale proteome analysis of human nucleoli (Andersen et al., 2002). In 

addition, for human (h)Rrp5p/NFBP (Sweet et al., 2008) and hNoc2p/NIR (Wu et al., 2012) a 

function in ribosome biogenesis could be shown, as well as association with precursor RNA 

and U3 snoRNA (Turner et al., 2009; Wu et al., 2012). Besides, all human homologs adopted 

additional functions, as it is reported that hRrp5p/NFBP interacts with NF-KB (Sweet et al., 

2003, 2005), that hNoc1p/CBP stimulates transcription from the hsp70 promoter (Lum et al., 

1990, 1992, Imbriano et al., 2001) and that hNoc2p/NIR acts as an inhibitor of acetyl 

transferases and modulates p53 and TAp63 activity (Hublitz et al., 2005; Heyne et al., 2010). 

Hence, hNocp2/NIR could add another link between the p53 stress response pathway and 

ribosome biogenesis in higher eukaryotes (for reviews, see Deisenroth and Zhang, 2010; 

Chakraborty et al., 2011). 

2.3 Objectives 

In contrast to the early SSU maturation steps, which require formation of the SSU 

processome from its modular building blocks, knowledge about the earliest LSU specific 

maturation events in terms of both recruitment and function of the respective biogenesis 

factors is still very limited (see sections 2.2.5, 2.2.6). As described above in detail (section 

2.2.7), Rrp5p, Noc1p and Noc2p affect very early LSU maturation steps and/or appear to be 

associated with early pre-60S particles. In addition, a recent study, in which interactions 

between ribosome biogenesis factors after shut down of Pol-I transcription were analysed, 

indicated that Noc1p could form a protein complex with Noc2p and Rrp5p independent of 

pre-ribosomal particles (Merl et al., 2010). Hence, a Rrp5p/Noc1p/Noc2p module might act 

as an entity in early steps of LSU biogenesis.  

One goal of this work was to verify if Rrp5p, Noc1p and Noc2p can in fact form a protein 

complex. To this end, the baculo virus/SF21 insect cell expression system was employed, 

which enables co-expression of recombinant proteins in the context of eukaryotic cells. The 
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reconstituted complex was further characterised by size exclusion chromatography and 

electron microscopy to obtain first insights into its architecture and structure.  

To study the physiological relevance and function of the Rrp5p/Noc1p/Noc2p module, the 

following aspects were analysed in vivo, employing different genetic, cell biological and 

biochemical approaches. First, to determine if the module components affect the same 

maturation steps, the impact of the individual proteins on ribosome biogenesis was directly 

compared in conditional noc1, noc2 and rrp5 mutant strains by analysing the resulting pre-

rRNA processing phenotypes. Second, the RNA and protein composition of pre-ribosomes 

associated with the module components was analysed to elucidate if Rrp5p, Noc1p and 

Noc2p act on the same or on different pre-ribosomal particles. Third, the binding 

interdependencies between the module components to pre-ribosomal particles was 

investigated, to determine which proteins directly interact with pre-ribosomes and to establish 

a potential binding hierarchy. Fourth, to address if the module components are already co-

transcriptionally recruited to pre-rRNA, the association of Rrp5p, Noc1p and Noc2p with 

rDNA chromatin was analysed. Finally, the obtained results were combined to infer the 

function of the Rrp5p/Noc1p/Noc2p module in the maturation of the large ribosomal subunit. 
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3 Results 

3.1 Ribosomal precursor RNAs are destabilised in absence of 

functional Noc1p, Noc2p or Rrp5p 

3.1.1 Processing of pre-rRNA is differently affected in temperature sensitive 

noc1 and noc2 than in noc3 mutant strains  

Initial characterisation of the yeast proteins Noc1p, Noc2p and Noc3p indicated that a 

Noc1p/Noc2p complex is associated with early, nucleolar pre-ribosomes, whereas a 

Noc2p/Noc3p complex is associated with later, nucleolar and nucleoplasmic pre-ribosomes 

(section 2.2.7; (Milkereit et al., 2001)). These findings were further supported by studies 

analysing the protein composition of pre-ribosomes of different maturation states (Nissan et 

al., 2002; Kressler et al., 2008). However, in temperature sensitive (ts) noc1-1, noc2-1 and 

noc3-1 mutant strains pre-rRNA processing was apparently not blocked at different stages, 

but rather steady state levels of pre-rRNAs appeared to be similarly affected, possibly due to 

secondary effects, e.g. impaired release of biogenesis factors from aberrant pre-ribosomes 

(Milkereit et al., 2001).  

To test, if noc1, noc2 or noc3 specific effects have been masked in steady state analysis, 

pre-rRNA processing was kinetically analysed by metabolic labelling of RNAs in yeast strains 

that depend on chromosomally encoded temperature sensitive noc1-6, noc1-7 or noc2-1 

alleles (TY2068, TY2069, TY23; listed in section 5.1.1), or on a plasmid encoded ProteinA-

noc3-1 allele (TY71). The noc1-6 and noc1-7 alleles were obtained from the same plasmid 

library of random noc1 mutant alleles as noc1-1 (Milkereit et al., 2001) and integrated at the 

endogenous NOC1 gene locus by homologous recombination (sections 5.2.2.4/5). For 

unknown reasons, this approach was not successful for the noc1-1 and the noc3-1 alleles, 

and the protein A epitope appeared to be essential for the ts phenotype of the noc3-1 allele 

(data not shown). Compared to the respective wild type strains, these strains showed normal 

growth at 24°C, but significantly impaired growth at higher temperatures, although with allele 

specific differences (Fig. 3-1 A + B). For metabolic labelling, cultures of the respective mutant 

or wild type control strains (TY543, TY772) were shifted for 1h from permissive (24°C) to 

restrictive temperature (37°C) and transferred to minimal medium containing 3H-uracil to 

radiolabel newly synthesized RNAs (pulse), followed or not by incubation with excess 

unlabelled uracil (chase) to monitor processing of labelled RNAs (section 5.2.5.9). Total RNA 

was isolated from the cells, separated by gel electrophoresis and analysed by 

autoradiography.  

In wild type strains, most of the radioactivity was incorporated in mature 25S, 18S, 5.8S and 

5S rRNAs and tRNAs after 15 min of 3H-uracil labelling (Fig. 3-1 C + D, lanes 1, 16). 

Besides, substantial amounts of the common 35S pre-rRNA, as well as the LSU specific 27S 

pre-rRNA and the SSU specific 20S pre-rRNA were detected, which were almost completely 

converted to mature rRNAs after 30 min of chase with unlabelled uracil (Fig. 3-1 C, lanes 1-

3, 16-18; see Fig. 2-6 for a rRNA processing scheme).  
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Fig. 3-1: Kinetic analysis of pre-rRNA processing in temperature sensitive noc1, noc2 and noc3 mutant 
strains 

A) The effect of the indicated genomic (noc1-6, noc1-7 and noc2-1) or ectopic (ProtA-noc3-1) mutant alleles (see 
main text for details) on cell growth at different temperatures was analysed in comparison to the respective wild 
type alleles. Therefore, exponentially growing cultures of the indicated strains (24°C, YPD) were adjusted to 
OD600 = 1, and 10-fold serial dilutions thereof were spotted on YPD plates and incubated for three days at the 
indicated temperatures (section 5.2.2.6). B) Exponentially growing cultures (24°C, YPD) of the indicated strains 
were adjusted to OD600 = 0.1 – 0.2 and shifted to 37°C. Cell growth was followed by measuring OD600 for 6-7 h 
(section 5.2.2.7) and is shown in semi-logarithmic scale. Dashed lines are extrapolations of the initial growth rates 
at 37°C. C, D) Yeast strains bearing the indicated noc1, noc2 and noc3 mutant alleles as well as two different wild 

type (WT) strains were grown to exponential phase (OD600 = 0.3 – 0.4) in YPDA at 24°C and then shifted to 
37°C for 1h. Subsequently, aliquots of cells were incubated with 

3
H-uracil containing medium (15 min, 37°C; 

pulse) to radiolabel newly synthesized RNAs, followed or not by incubation with medium containing excess of 
unlabelled uracil (15 or 30 min, 37°C; chase (C); see section 5.2.5.9 for details). Total RNA was isolated from the 
cells and the incorporated activity was determined using a scintillation counter. Aliquots of RNA corresponding to 
200,000 cpm (100,000 in case of TY23) were separated on an agarose gel (C) or a poly-acrylamide gel (D), 
transferred to positively charged membranes and analysed by autoradiography. Bands corresponding to mature 
rRNAs, tRNAs and major pre-rRNA species are indicated on the left, bands predominantly detected in the mutant 
strains are indicated on the right. A band of unclear origin that is stable over the entire chase period in WT and 
mutant strains is marked by asterisk.  

In noc1, noc2 and noc3 mutant strains, production of 18S rRNA was slightly delayed, but 

finally reached similar levels as in the wild type strains. In contrast, production of 25S and 

5.8S rRNAs was severely impaired, as even after 30 min chase no (noc1-7, noc2-1) or only 

minor amounts (noc1-6, noc3-1) of these rRNAs could be detected (Fig. 3-1 C + D, compare 

lanes 4-6/7-9/10-12/13-15 with 1-3/16-18), in agreement with the essential function of Noc1p, 

Noc2p and Noc3p in LSU maturation (Edskes et al., 1998; Milkereit et al., 2001). 
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Furthermore, in all mutant strains radiolabelled 35S pre-rRNA was initially accumulated 

compared to the wild type strains, and substantial amounts were still detected after 30 min 

chase, indicating that Pol-I transcription was not directly affected and/or that 35S processing 

was delayed. Levels of 20S pre-rRNA were slightly reduced and several additional bands 

migrating between the 25S and 20S (pre-)rRNA bands were detected, most likely 

corresponding to 23S, 22S, 21S pre-rRNAs resulting from delayed processing of A0, A1 and 

A2 sites (Fig. 3-1 C + D, compare lanes 4/7/10 with 1/16). In contrast, levels of 27S pre-rRNA 

were severely reduced in noc1 and noc2, but not in the noc3 mutant strains (Fig. 3-1 C + D, 

compare lanes 4-6/7-9/10-12 and 13-15 with 1-3/16-18). This indicated that processing of 

27SB pre-rRNA in the ITS2 sequence at site C2 is specifically impaired in the noc3 mutant 

strain, and that the respective pre-ribosomes are relatively stable. A similar phenotype is 

frequently observed in mutants of biogenesis factors associated with intermediate pre-

ribosomes containing 27SB pre-rRNA (e.g. Spb4p (De la Cruz et al., 1998; García-Gómez et 

al., 2011b), Nog1p, Rlp24p, Nsa2p (Saveanu et al., 2003, 2007)), with which Noc3p is also 

supposed to be associated (Milkereit et al., 2001; Nissan et al., 2002; Kressler et al., 2008). 

Some additional bands in the high and low molecular weight range were also observed in all 

mutant strains, possibly due to turnover of aberrant pre-rRNAs. 

In summary, these results indicated that in absence of functional Noc1p and Noc2p no stable 

LSU precursors are formed and the pre-rRNAs are rapidly degraded, as suggested 

previously (Milkereit et al., 2001). Furthermore, these experiments provided clear evidence 

that inactivation of Noc3p affects pre-rRNA processing at later steps than inactivation of 

Noc1p and Noc2p. These differences in the pre-rRNA processing phenotypes of noc3 

mutants versus noc1 and noc2 mutants could not be detected in previous work (Milkereit et 

al., 2001), but correlate very well with the described association of a Noc1p/Noc2p complex 

with pre-ribosomes of an earlier maturation state than a Noc3p/Noc2p complex (Milkereit et 

al., 2001; Nissan et al., 2002; Kressler et al., 2008). As the noc3-1 strain showed still 

significant growth at 37°C, different noc3 mutant alleles and/or strains expressing NOC3 

under control of a conditional promoter should be analysed in future studies to clarify the 

function of Noc3p in LSU biogenesis. 

3.1.2 Levels of rRNA precursors are significantly reduced after in vivo 

depletion of Noc1p, Noc2p or Rrp5p 

Previous studies indicated that Rrp5p could form together with Noc1p and Noc2p a protein 

module that exists in cells independent of pre-ribosomal particles (Merl et al., 2010). 

Furthermore, in vivo depletion of Rrp5p resulted in severely reduced levels of all pre-rRNAs 

(Venema and Tollervey, 1996), similar as observed in the temperature sensitive noc1 and 

noc2 strains (Milkereit et al., 2001), indicating that Noc1p, Noc2p and Rrp5p might function 

together in LSU biogenesis. To directly compare the effect of the respective proteins on 

ribosome biogenesis, rRNA processing was analysed in yeast strains, in which expression of 

the individual proteins is regulated by the galactose inducible/glucose repressible GAL1/10 

promoter (pGAL). These strains (TY775, TY776, TY2299) grew equally well as the 

corresponding wild type strains on plates containing galactose as carbon source, but did not 
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grow on glucose containing plates (Fig. 3-2 A). More detailed growth analysis showed that 

growth rates in glucose containing medium were similar in wild type and pGAL-NOC1/-

NOC2/-RRP5 strains during the first nine hours of cultivation, but were significantly 

decreased after twelve hours of cultivation (Fig. 3-2 B). Consistent with this, levels of Noc1p 

and Noc2p were reduced to ~ 1/3 and ~ 1/10 of the endogenous levels after nine and 13 

hours cultivation in glucose and further decreased with longer depletion times, whereas the 

levels of other proteins were not or significantly less affected (Fig. 3-2 C, compare signal 

intensities of Noc2p and of the cross reacting protein; see also lower panel showing the 

Poinceau stained membrane). 

 
Fig. 3-2: Analysis of growth defects resulting from in vivo depletion of Noc1p, Noc2p and Rrp5p 

Yeast strains in which the indicated genes are under control of their endogenous promoter or of the galactose 
inducible/glucose repressible GAL1/10 promoter (pGAL) were grown to exponential phase in galactose containing 

full medium (YPGA) at 30°C. A) For growth tests, 1 OD of cells was resuspended in 1 ml sterile H2O and 10-fold 
serial dilutions thereof were spotted on the indicated plates containing glucose or galactose as carbon source and 
incubated for three days at 30°C. B) Alternatively, the indicated strains were shifted to glucose containing medium 
(YPDA) for 0, 13 or 18 h, diluted to OD600 ~ 0.1 - 0.2 in YPDA and incubated at 30°C. Cell growth was followed 
by measuring OD600 for 6-9 h and is shown in semi-logarithmic scale. The wild type strain TY1 was included as a 
control. At several time points after shift to YPDA medium, two aliquots corresponding to 2OD of cells were 
harvested for protein and RNA analyses (see Fig. 3-3). C) Proteins were isolated by denaturing protein extraction 
(section 5.2.6.4), protein amounts corresponding to 0.5 OD cells were separated by SDS-PAGE (section 5.2.6.5) 
and analysed by Western blotting (section 5.2.6.7) using purified anti-Noc1 (upper left panel) and anti-Noc2 
(upper right panel) antibodies, respectively. The anti-Noc2 antibody showed cross reaction with another protein 
(marked by a cross), levels of which were unchanged over the time course of Noc2p depletion. Prior to detection, 
membranes were stained with Poinceau S solution to check protein loading (lower panel). Depletion of Rrp5p was 
not analysed since no anti-Rrp5 antibody was available. 

Steady state levels of pre-rRNAs in the pGAL-NOC1/-NOC2/-RRP5 and in a wild type control 

strain were analysed by Northern blotting at several time points after shift to glucose 

containing medium. The pre-rRNA processing phenotypes in the pGAL-NOC1 and pGAL-

NOC2 strains were virtually identical. During the first 13-15 h of cultivation in glucose 

containing medium, levels of 35S pre-rRNA were strongly accumulated relative to the wild 

type control, accompanied by elevated levels of 23S pre-rRNA, indicating a delay in early 

pre-rRNA processing events at A0, A1 and A2 (Fig. 3-3 A + B). This effect was observed 
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before in numerous mutants affecting the LSU maturation pathway (Venema and Tollervey, 

1999; Van Beekvelt et al., 2001, and discussion therein; (Pöll et al., 2009); see also Wild et 

al., 2010). All LSU precursor species (27SA2, 27SB and 7S pre-rRNAs) were drastically 

reduced, whereas decrease in 20S pre-rRNA was less severe (Fig. 3-3 A-C, E). 

Consequently, levels of mature LSU components 25S and 5.8S rRNA were significantly 

diminished, whereas levels of the mature SSU component 18S rRNA showed only moderate 

reduction (Fig. 3-3 D + F). After 20 - 24h cultivation in glucose containing medium, levels of 

35S pre-rRNA were still higher than in the wild type strain, whereas all other pre-rRNA 

species could hardly be detected (Fig. 3-3 A-C). Altogether, and consistent with the analysis 

of temperature sensitive noc1 and noc2 mutants (section 3.1.1; Milkereit et al., 2001), these 

experiments indicated a pronounced destabilization of LSU precursors after depletion of 

Noc1p and Noc2p with secondary effects on SSU pre-rRNAs, whereas synthesis of the 

primary Pol-I transcript was apparently not directly affected.  

 
Fig. 3-3: Analysis of pre-rRNA processing defects resulting from in vivo depletion of Noc1p, Noc2p and 
Rrp5p (see next page)  
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Fig. 3-3 (continued from previous page): The indicated strains were grown in YPDA medium for 24 h and aliquots 
of cells were harvested at the indicated time points as described in Fig. 3-2. Total RNA was isolated by phenol-
chloroform extraction (section 5.2.5.1), separated on agarose (A-D) or acryl amide (E-G) gels (sections 5.2.5.2/3) 
and analysed by Northern blotting by sequential hybridization with the indicated probes (sections 5.1.5, 
5.2.5.4/5/7; for binding sites of o202 – o2474 see Fig. 2-6, 3-7). RNA amounts corresponding to 0.07 and 0.14 OD 
cells were analyzed on acryl amide and agarose gels, respectively. Bands corresponding to mature rRNAs and 
major pre-rRNA species are indicated. Bands specifically appearing after depletion of biogenesis factors are 
marked with a cross. 

Depletion of Rrp5p caused initial accumulation of 35S and 23S pre-rRNA and drastically 

reduced levels of 27S(A+B), 7S, but also of 20S pre-rRNAs (Fig. 3-3 A-C, E), and 

consistently levels of 25S and 18S rRNAs were equally reduced (Fig. 3-3 D + F), confirming 

the previously described role of Rrp5p in LSU and SSU biogenesis (Venema and Tollervey, 

1996). Furthermore, and in contrast to Noc1p and Noc2p depletion, levels of 5.8SS pre-rRNA 

were specifically reduced relative to 5.8SL pre-rRNA (Fig. 3-3 F), reflecting the described 

influence of Rrp5p on processing of site A3 (Venema and Tollervey, 1996). Besides, several 

aberrant pre-rRNA fragments were detected, most likely resembling the described 31S‟, 

30S‟, 24S, 17S‟, 12S‟ RNAs (Fig. 3-3 A-D). After 20-24h cultivation in glucose containing 

medium, levels of all (precursor) rRNAs including 35S pre-rRNA were more strongly reduced 

than after depletion of Noc1p and Noc2p. This could either be due to different depletion 

kinetics of the proteins or, alternatively, reflect an additional role of Rrp5p in stabilisation of 

the 35S pre-rRNA. 

In summary these experiments showed that in vivo depletion of Noc1p, Noc2p and Rrp5p 

resulted in severely reduced levels of LSU pre-rRNAs indicating that each individual protein 

is required to form stable pre-LSU particles. In addition, and in agreement with previous 

studies, Rrp5p specifically influenced A3 site processing in the LSU maturation pathway, and 

showed a pronounced effect on SSU biogenesis. 

3.2 Reconstitution and characterisation of a Rrp5p/Noc1p/Noc2p 

protein complex 

3.2.1 Noc1p, Noc2p and Rrp5p form protein complex  

To directly test if Rrp5p can form a protein module with Noc1p and Noc2p as it was indicated 

by previous studies (Merl et al., 2010), the complex should be reconstituted from proteins co-

expressed proteins in SF21 insect cells using recombinant baculo viruses (Berger et al., 

2004; Fitzgerald et al., 2006). Furthermore, pair wise interactions between the proteins 

should be analysed to determine architectural features of the potential complex. Therefore, 

recombinant baculo viruses encoding combinations of yeast NOC1, NOC2 and RRP5 genes 

with always one gene being fused to the sequence coding for the Flag epitope were 

generated (described in section 5.2.1) and used to co-express the respective proteins in 

SF21 insect cells. Flag-tag fusion proteins were affinity purified from the respective cell 

extracts (section 5.2.7.1), and (co-)purified proteins in the final elution fractions were 

separated by SDS-PAGE followed by Coomassie staining and mass spectrometric analysis. 

In addition, cell lysates and purified fractions were analysed by Western blot to monitor 

protein expression and purification efficiencies. These analyses showed that all viruses 
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induced expression of the expected proteins (Fig. 3-4 B, compare lanes 1, 4, 7, 10, 13) and 

indicated similar purification efficiencies of the bait proteins in all experiments (Fig. 3-4 B, 

compare eluate/lysate signal ratios). 

 
Fig. 3-4: Reconstitution of the Rrp5p/Noc1p/Noc2p module from proteins co-expressed in insect cells 

The indicated combinations of Flag-tagged bait proteins and potential interaction partners were co-expressed in 
SF21 insect cells infected with recombinant baculo viruses containing the plasmids K1232, K1504, K1658 or 
K1677 (section 5.1.4). Cleared lysates of 50 x 10

6
 infected cells and uninfected control cells (SF21) were split in 

two aliquots and incubated either with anti-Flag affinity matrix or with IgG coupled sepharose. After washing, 
bound material was eluted with buffer containing Flag peptide (see section 5.2.7.1 for details). Aliquots of the 
lysates (L), the eluates from the anti-Flag matrix (E) and the IgG sepharose (ctrl.) were analysed by (A) 
Coomassie stained SDS-PAGE (0.05 % of lysates and 23 % of the eluted material were loaded on the gel) or (B) 
Western Blotting using anti-Flag (0.015 % L, 0,3 % E/ctrl), anti-Noc1p and anti-HA antibodies (0.006 % L, 1.2 % 
E/ctrl). Coomassie stained proteins were identified by mass spectrometry and indicated as follows: *: HA-Rrp5p; °: 
Flag-Noc2p; +: (Flag-) Noc1p; x: N-terminal Flag-Noc1p fragment. 

When Flag-Noc2p was co-expressed with Noc1p and HA-Rrp5p, all three proteins were 

efficiently enriched in the elution fraction after anti-Flag affinity purification but not in the 

control purification (Fig. 3-4, lanes 13-15), indicating direct interactions between the proteins 

and potential formation of a Rrp5p/Noc1p/Noc2p complex. When pairs of proteins were 

expressed, Flag-Noc2p efficiently co-purified Noc1p (Fig. 3-4, lanes 7-9), but not HA-Rrp5p 

(Fig. 3-4, lanes 10-12) from cell extracts, suggesting that Noc2p cannot stably interact with 

Rrp5p in absence of Noc1p. In contrast, HA-Rrp5p was efficiently enriched together with 

affinity purified Flag-Noc1p (Fig. 3-4, lanes 4-6). In summary, these experiments could not 

only confirm that Noc1p interacts with Noc2p in a robust and specific way (Milkereit et al., 

2001), but also suggested that Noc1p can directly interact with Rrp5p. In this way, Noc1p can 

bridge between Noc2p and Rrp5p to form a hetero-trimeric protein complex, which might act 

as a functional entity in ribosome biogenesis. 
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Fig. 3-5: Analyses of reconstituted biogenesis factor modules by gel filtration and electron microscopy 

Affinity purified Flag-Noc2p-Noc1p-Rrp5p (A), Flag-Noc2p-Noc1p (B) and Flag-Noc1p-Rrp5p (C) complexes 
(obtained as in Fig. 3-4) were applied on a Superose 6 gel filtration column, and after washing with 800 µl (A) or 
700 µl (B, C) buffer, 50 µl fractions were collected (see section 5.2.7.2 for details). Aliquots of the eluates applied 
to the column (load; 20% in A, 5% in B and C) and of the chromatography fractions (2-24; 40%) were analysed by 
Coomassie stained SDS-PAGE (*: HA-Rrp5p; °: Flag-Noc2p; +: (Flag-) Noc1p; x/y: N-terminal Flag-Noc1p/Flag-
Noc2p fragments). Elution of marker proteins in independent gel filtration runs is indicated at the bottom of the 
panels. D) Electron micrograph of an uranyl acetate stained aliquot of the Flag-Noc2p-Noc1p-Rrp5p complex after 
Superose 6 gel filtration (fraction 10 in (A); for experimental details see section 5.2.7.3). Arrows and arrowheads 
indicate particles of 12 nm and 8 nm diameter, respectively. The lower panel shows an enlarged view of the 
boxed area. Scale bars are 70 nm.  

For further characterisation, the affinity purified Flag-Noc2/Noc1p/HA-Rrp5p complex was 

applied onto a Superose 6 size exclusion column. Analysis of the gel filtration fractions by 

SDS-PAGE and Coomassie staining showed that the bait protein was purified in excess over 

Rrp5p and Noc1p. Free Flag-Noc2p (Fig. 3-5 A, frct. 18+20) was well separated from a 

complex bound population of Flag-Noc2p (theoretical MW (Noc2p) = 81 kDa) that co-eluted 

with Noc1p (theoretical MW = 116 kDa) and HA-Rrp5p (theoretical MW (Rrp5p) = 193 kDa) 
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at an apparent MW of > 670 kDa (Fig. 3-5 A, frct. 8-12), indicating that the complex could 

contain some proteins in a higher order stoichiometry. 

To address this question, affinity purified Flag-Noc2p/Noc1p and Flag-Noc1p/HA-Rrp5p sub-

complexes were also analysed by gel filtration on a Superpose 6 column. In the former case, 

both Flag-Noc2p and Noc1p eluted in fractions 14-18, but in different ratios (Fig. 3-5 B, 

compare band intensities of Noc1p and Flag-Noc2p). Besides, an N-terminal fragment of 

Flag-Noc2p exclusively eluted in fraction 18. These findings indicated that elution of the Flag-

Noc2p/Noc1p complex peaked in fractions 14-16 (MWapp ~ 440 – 670 kDa), whereas excess, 

free Flag-Noc2 and fragments thereof peaked in fractions 16-18 (MWapp ~ 200 – 440 kDa), 

compatible with formation of Flag-Noc2p homo-oligomers and a potential higher order 

stoichiometry of Noc1p in the Flag-Noc2p/Noc1p complex. In case of the Flag-Noc1p/HA-

Rrp5p complex, results were less clear, since both proteins eluted over a large range of 

fractions. However, HA-Rrp5p predominantly eluted in fraction 14 – 16 (MWapp ~ 440 – 670 

kDa) together with a subpopulation of Noc1p, possibly representing the Flag-Noc1p/HA-

Rrp5p subcomplex. In contrast, fractions 4 – 12 predominantly contained Flag-Noc1p and 

just minor amounts of HA-Rrp5p, indicating large excess of the bait protein in the affinity 

purified fraction and formation of large Flag-Noc1p homo-oligomers of undefined size (MWapp 

> 670 kDa), which showed only minor association with Rrp5p. The tendency of Noc1p to 

form homooligomers and aggregates could be confirmed when Flag-Noc1p was expressed 

alone, and was also observed for Flag-Noc2p and Flag-Rrp5p in absence of their genuine 

interaction partners (data not shown), which prevented clear conclusions about the 

oligomerisation state of the single proteins in the respective (sub-)complexes.  

Analysis of the Flag-Noc2p/Noc1p/Rrp5p complex after gel filtration by electron microscopy 

showed particles of ~ 8 nm and ~ 12 nm in diameter (Fig. 3-5 D), the latter of which is well 

compatible with the apparent molecular weight of ~ 670 kDa of the complex estimated by 

size exclusion chromatography. However, it remained unclear whether the differently sized 

particles represent different orientations of the complex on the grid, or particles differing in 

protein composition.  

In summary, these experiments provide strong evidence that Rrp5p, Noc1p and Noc2p form 

a large hetero-oligomeric protein complex. Clearly, further experiments will be necessary to 

determine in detail the structure of the complex and the stoichiometry of its components. 

3.2.2 The N-terminus of Rrp5p mediates stable interaction with Noc1p 

Previous studies showed that the function of Rrp5p in LSU and SSU biogenesis can be 

separated into its N- and C-terminal parts, respectively, and that co-expression of the 

respective Rrp5p variants can complement for deletion of RRP5 (Torchet et al., 1998; 

Eppens et al., 1999). Since Rrp5p can directly interact with Noc1p (see above; Fig. 3-4) and 

both proteins affect LSU maturation (Fig. 3-3; (Venema and Tollervey, 1996; Edskes et al., 

1998; Milkereit et al., 2001)), the Rrp5p-Noc1p interaction might also be mediated by the N-

terminal part of Rrp5p. To test this hypothesis, different truncated HA-Rrp5p variants (Fig. 3-

6 A) were co-expressed with Flag-Noc1p in SF21 cells and analysed for co-purification with 

Flag-Noc1p. Cell lysates and elution fractions after anti-Flag affinity purification were 
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analysed by SDS-PAGE followed by Western blotting or Coomassie staining to monitor 

expression of the respective protein variants and (co-)purification efficiencies.  

 
 
Fig. 3-6: Analyses of the interactions between Noc1p and truncated Rrp5p variants  

A) Overview of the rrp5 alleles analysed in this study and schematic presentation of the corresponding protein 

variants. The positions of the first and last amino acids relative to the full length protein (FL) are indicated. Black 
bars illustrate the S1 RNA binding motifs, grey bars the tetratricopeptide repeats, respectively (see section 2.2.7; 
adapted from (Eppens et al., 1999)). B) The indicated combinations of Flag-Noc1p and truncated HA-Rrp5p 
variants were co-expressed in SF21 insect cells infected with recombinant baculo viruses containing one of the 
plasmids K1658, K1727-1730, K1732 or K1733 (see section 5.1.4). Flag-Noc1p was purified with anti-Flag affinity 
matrix from lysates of 50 x 10

6
 infected cells and eluted with buffer containing Flag peptide (section 5.2.7.1). 

Aliquots of the lysates (L) and eluates (E) were analysed by SDS-PAGE and Coomassie staining (upper panel; 
0.04% L, 20% E) or Western Blotting using anti-Flag and anti-HA antibodies (lower panels; 0.006% L, 1 % E). 
Coomassie stained proteins were identified by mass spectrometry and indicated as follows: *: HA-Rrp5p variants; 
+: Flag-Noc1p; x: N-terminal Flag-Noc1p fragments. 

The bait protein was generally well enriched and, as expected, full length HA-Rrp5p (FL) was 

efficiently co-purified (Fig. 3-6 B, lanes1+2). The longest N-terminal fragment of Rrp5p (S1-9, 

aa 1-1087) was equally well co-purified as Rrp5p-FL (Fig. 3-6 B, compare lanes 3/4 with 1/2), 

but co-purification of a shorter N-terminal fragment (S1-6; aa 1-777) was already severely 

reduced (Fig. 3-6 B, lanes 5/6 with 1/2). Further truncated N-terminal (S1-6ΔN, S3-6) or C-

terminal Rrp5p fragments (S10-TPR, TPR) were not or very inefficiently co-purified with Flag-

Noc1p (Fig. 3-6 B, lanes 7-14).  

Hence it was concluded that the N-terminal part of Rrp5p (aa 1-1087), which is important for 

the function of Rrp5p in LSU maturation is required and sufficient to mediate a stable 

interaction with Noc1p.  
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3.3 Analyses of in vivo interactions of the Rrp5p/Noc1p/Noc2p 

module components with pre-ribosomes 

3.3.1 Noc1p and Rrp5p are stably associated with similar 90S and pre-60S 

particles 

After reconstitution of the Rrp5p/Noc1p/Noc2p complex and characterisation of its 

architecture, it should be analysed into which pre-ribosomes the module is incorporated in 

vivo. Previous studies analysing the protein composition of different pre-ribosomal particles 

indicated that Rrp5p and Noc1p are associated with early LSU precursors purified via Nsa3p, 

Ssf1p or Nop7p but not with later pre-ribosomes purified via Nsa1p (Nissan et al., 2002; 

Kressler et al., 2008). In addition, Noc1p and Noc2p sedimented together with 35S pre-rRNA 

on sucrose gradients at ~ 90S, and Rrp5p was shown to be part of U3 snoRNA and 35S pre-

rRNA containing pre-ribosomal particles (see sections 2.2.5, 2.2.7). However, it remained 

unclear whether the function of Rrp5p in LSU and SSU biogenesis (Venema and Tollervey, 

1996; Eppens et al., 1999) involves the interaction of Rrp5p with different populations of LSU 

and SSU precursor particles, respectively. Since detailed knowledge on the composition of 

Rrp5p- or Noc1p-bound pre-ribosomes was still lacking, we decided to perform a thorough 

comparative characterization of pre-ribosomes associated with Noc1p or Rrp5p. 

Therefore, TAP-tag fusion proteins of Noc1p and Rrp5p were affinity purified from yeast cell 

extracts in a one-step procedure under mild buffer conditions to preserve pre-ribosomal 

particles (described in section 5.2.7.4). Western blot analysis showed that both Noc1p-TAP 

and Rrp5p-TAP were purified with similar efficiencies (Fig. 3-7J, compare signal intensities in 

lanes 2/5 and 3/6). To characterise co-purified pre-ribosomes on RNA level, total RNA was 

extracted from aliquots of the cell lysates and the purified fractions and analysed by Northern 

blotting or in primer extension reactions (Fig. 3-7, A-I). Consistent with a direct interaction of 

Noc1p and Rrp5p, these analyses showed that both proteins co-purified the same RNA 

species with very similar efficiencies. The most highly enriched RNA in both purifications was 

27SA2 pre-rRNA (Fig. 3-7 B), the first specific pre-LSU RNA species resulting from 

processing of the common precursor rRNA at site A2 (see section 2.2.3). Co-purification of 

27SB(L+S) pre-rRNAs, the downstream processing intermediates, was much less efficient as 

judged by Northern blotting (Fig. 3-7 C) and primer extension (Fig. 3-7 D) analyses. This is in 

agreement with previous studies, which indicated that Noc1p and Rrp5p are part of early pre-

60S particles (De Boer et al., 2006; Kressler et al., 2008), but depleted in intermediate pre-

60S particles purified via Nsa1p (Kressler et al., 2008). Interestingly, the less abundant 

27SBL pre-rRNA was preferentially enriched in the Noc1p purification (Fig. 3-7 D, compare 

27SBL/27SBS signal ratios in lanes 2, 5), indicating that different release mechanisms might 

play a role in the two alternative processing pathways yielding 27SBL and 27SBS pre-rRNAs. 

Furthermore, both Noc1p and Rrp5p co-purified with similar efficiencies 35S and 32S pre-

rRNAs (Fig. 3-7 B), as well as U3 snoRNA (Fig. 3-7 A), in agreement with previous studies 

that indicated association of Noc1p and Rrp5p with 90S/SSU processome particles (Milkereit 

et al., 2001; Dragon et al., 2002; Grandi et al., 2002; Vos et al., 2004a). In contrast, RNA 

components of later pre-LSU (7S pre-rRNA, Fig. 3-7 E) or specific pre-SSU (20S pre-rRNA, 
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Fig. 3-7 H) particles were not efficiently enriched in either purification. Quantitation of the 

respective co-purification efficiencies showed that they were in the range of those for the 

mature 25S, 5.8S and 18S rRNAs (Fig. 3-7F, G, I) that were used to determine the internal 

background in these experiments.  

 
Fig. 3-7: Comparison of pre-ribosomal particles associated with Noc1p or Rrp5p 

Yeast strains expressing chromosomally encoded Noc1p-TAP (TY483) or Rrp5p-TAP (TY615) and an untagged 
control strain (TY1) were grown to exponential phase (OD600 = 0.8) in rich medium. TAP-tagged proteins were 
affinity purified from cell extracts using IgG-coupled magnetic beads (section 5.2.7.4). After washing, the beads 
were split for the analysis of co-purified RNAs and proteins. RNA isolated from aliquots of cell extracts (Input) and 
precipitates (IP) was separated on acryl amide (A, E, G) or agarose (B, C, F, H, I) gels and analysed by Northern 
blotting. Alternatively, the isolated RNA was used as template in primer extension reactions (D) (section 5.2.5.8). 
Binding sites of the different probe (o202 – o1819) and the detected (pre-) rRNA species are schematically shown 
on the right. A signal potentially arising from 27SA3 pre-rRNA is marked by asterisk. Purification of the bait 
proteins was controlled by Western blotting (J) against the Protein A moiety of the TAP tag using PAP detection 
reagent. Equal signal intensities in Input and IP correspond to 2% and 11% precipitation efficiency in Northern 
(0.067 % In, 3.33 % IP) and Western blot (0.11 % In, 1% IP) analysis, respectively.  
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In summary, these results clearly indicated that Noc1p and Rrp5p are stably associated with 

highly overlapping populations of early pre-ribosomes. Since in S. cerevisiae a significant 

pool of the common precursor transcript (35S pre-RNA) is co-transcriptionally cleaved into 

20S and 27SA2 pre-rRNAs (Osheim et al., 2004; Kos and Tollervey, 2010), co-precipitation 

of 27SA2 and 35S pre-rRNA implies that Noc1p and Rrp5p are recruited to the earliest LSU 

precursor particles. 

To characterize in more detail the composition of the pre-ribosomes associated with Noc1p 

and Rrp5p, the proteins in the purified Noc1p-TAP and Rrp5p-TAP fractions were analysed 

by comparative mass spectrometry using iTRAQ reagents ((Ross et al., 2004; Merl et al., 

2010); see section 5.2.7.6). In this way, co-purified proteins can not only be identified, but in 

addition, this method enables determination of the relative abundances of the identified 

proteins in two purifications. In these analyses (Fig. 3-8 shows the results of a representative 

purification), a specific set of around 30 LSU biogenesis factors was reproducibly identified 

(Fig. 3-8 A). Most of those factors were previously described to be required for early steps in 

LSU maturation, as the processing of the 5‟ end of 5.8S rRNA and production and/or 

stabilization of 27SB pre-rRNA (e. g. Rix7p, Ssf1p, Ebp2p, Rrp1p, Ytm1p, Erb1p, Rlp7p, 

Nop7p, Nsa3p, Brx1p, Nop4p, Rrs1p, Dbp9p; see section 2.2.6 for details and references). In 

contrast, no biogenesis factors characteristic for later pre-60S or pre-40S particles (e.g. 

Rea1p, Arx1p, Nmd3p, Rix1p, Ipi1p, Ipi3p, Drg1p, Lsg1p or Efl1p, Rio2p, Ltv1p; see sections 

2.2.5/6) were identified, consistent with the low levels of 20S and 7S pre-rRNAs in the Noc1p 

and Rrp5p purifications (Fig. 3-7 E + H). However, around 20 components of the 90S/SSU 

processome particle, including C/D box and H/ACA box snoRNP components, were 

reproducibly identified in the purified Noc1p-TAP and Rrp5p-TAP fractions (Fig. 3-8 B), in 

agreement with the observed co-purification of 35S, 32S pre-rRNAs and U3 snoRNA with 

both proteins (Fig 3-8 A + B). Interestingly, peptides of several subunits of Pol-I, which 

transcribes the 35S rRNA gene, were also identified in both purifications. Comparison of the 

relative abundances of the co-purified proteins identified in the Noc1p-TAP and Rrp5p-TAP 

fractions did not show a clear enrichment of any protein in the one or the other purification 

(iTRAQ ratios ~ 0.5 – 1.5; see Fig. 3-8 A+B). However, Rrp5p was clearly overrepresented in 

the Rrp5p-TAP fraction (Fig. 3-8 A), which might indicate the existence of a cellular pool of 

Rrp5p that is not involved in Noc1p-related interactions with pre-ribosomes. Alternatively, 

module bound Rrp5p could be less stably associated with pre-ribosomes than Noc1p, and 

hence preferentially be released during the purification procedure.  

In summary, these results showed that Noc1p and Rrp5p are associated with pre-ribosomes 

that are very similar in their RNA composition (U3 snoRNA; 35S, 32S, 27SA2, 27SB pre-

rRNAs), as well as in their content of SSU processome components and early LSU ribosome 

biogenesis factors. This allows the conclusion that Noc1p and Rrp5p interact as a protein 

complex with the common 90S precursor of the large and the small ribosomal subunits, and 

with subsequent early pre-60S particles. However, it remained unclear whether the specific 

function of Rrp5p in SSU biogenesis is achieved in a complex with Noc1p and Noc2p or by a 

second population of Rrp5p independent of Noc1p/Noc2p.  
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Fig. 3-8: Comparative proteome analysis of pre-ribosomes associated with Noc1p and Rrp5p 

Proteins from aliquots of Noc1p-TAP and Rrp5p-TAP purifications (see Fig. 3-7) were digested using trypsin and 
the resulting peptides were labelled with iTRAQ(R) reagents 116 (Noc1p purification) and 117 (Rrp5p 
purification), subsequently pooled, separated by reversed phase nano HPLC and spotted on a MALDI-MS/MS 
target (see section 5.2.7.6 for experimental details). The top 8 peptides of the MS run in each spot were selected 
for fragmentation in MS/MS mode to determine the identity of the peptide and the ratio of the iTRAQ reporter 
group signal intensities (117/116). For proteins identified with more than one peptide with an ion score confidence 
interval (c.i) > 95% the average iTRAQ ratio (117/116 := RRP5/NOC1) was calculated. LSU biogenesis factors (A) 
and SSU processome components (B) identified in both purifications are listed according to their average iTRAQ 
ratio (error bars are standard deviations of the average ratios; numbers of identified peptides are indicated in 
brackets). The average iTRAQ ratios of ribosomal proteins of the large (rpL) and the small (rpS) subunit identified 
with more than one peptide are shown in (A). C) Peptide count analysis of RNA polymerase subunits identified in 
both purifications. Only peptides of Pol-I specific subunits (A12.2, A49, A135, A190) and of common subunits 
(AC40, ABC23) were identified with a c.i. score of more than 95% (one peptide each, iTRAQ ratios ~ 1). 
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3.3.2 In vivo interaction studies of truncated Rrp5p variants with pre-

ribosomal particles 

To further characterise the interaction of Rrp5p with pre-ribosomal particles, and to address 

the question if different populations of Rrp5p act in the LSU and SSU biogenesis pathways, 

the association of different truncated Rrp5p variants with pre-ribosomes was analysed. 

Based on previous studies, showing that distinct N- and C-terminally truncated Rrp5p 

variants provide the function of Rrp5p in SSU and LSU maturation in trans (Torchet et al., 

1998; Eppens et al., 1999; Torchet and Hermann-Le Denmat, 2000), yeast strains were 

constructed in which chromosomal deletion of RRP5 is complemented by ectopic expression 

of different combinations of trans-complementing rrp5-ΔX alleles (rrp5-S1-9-GFP/rrp5-S10-

TPR-TAP (TY2304), rrp5-S1-9-GFP/rrp5-TPR-TAP (TY2305), rrp5-S1-9-TAP/rrp5-TPR-GFP 

(TY2306); Fig. 3-9 A) or of full length RRP5-TAP (TY2307). The different Rrp5p-TAP variants 

were purified from the respective cell extracts under the same mild conditions as described 

above to preserve pre-ribosomal particles (described in section 5.2.7.4). 

All bait proteins were expressed in similar amounts and were purified with similar efficiencies 

as judged by Western blot (Fig. 3-9 B). To determine the association of the different Rrp5p 

variants with pre-ribosomal particles, total RNA was isolated from aliquots of the cell extracts 

and the purified fractions, and analysed by Northern blotting and primer extension reactions 

(Fig. 3-9 C). Consistent with previous studies (Torchet et al., 1998; Eppens et al., 1999), 

cellular levels of mature rRNAs were similar in the trans-complementing strains (TY2304-

2306) and the control strain expressing full length Rrp5p (TY2307; Fig. 3-9 C i-iv, compare 

lanes 1-4), except a change in 5.8SL/5.8SS ratios in strain TY2304. However, pre-rRNA 

processing was significantly altered in the trans-complementing strains (Fig. 3-9 C v-x). 

When Rrp5p-S1-9/Rrp5p-TPR variants were co-expressed (TY2305, TY2306), 32S pre-

rRNA was strongly accumulated, 27SA2 and 20S pre-rRNAs could hardly be detected and 

large amounts of 21S pre-rRNA were present (Fig. 3-9 C vi, viii, x, compare lanes 2-4). 

Primer extension analysis indicated that levels of 27SA3 were slightly elevated compared 

with the control strain, whereas 27SB pre-rRNAs levels were similar as in the control strain 

and ratios of 27SBL/27SBS were not changed (Fig. 3-9 C viii, compare lanes 2-4). The 

additional stop in primer extension reactions arises most likely from methylation of 

nucleotides A1779 and A1780 of the 18S rRNA in accumulated 32S pre-rRNA ((Lafontaine et 

al., 1995, 1998); see also Torchet et al. (2000) and discussion therein). These results are in 

agreement with previous studies indicating that in strains depending on the Rrp5p-S1-

9/Rrp5p-TPR or Rrp5p-ΔS10-12 variants, 32S pre-rRNA is cleaved at site A3 rather than at 

site A2 and that 27SA3 pre-rRNA could be processed at site B1L (Torchet et al., 1998; 

Torchet and Hermann-Le Denmat, 2000; Vos et al., 2004b). In contrast, the yeast strain 

depending on co-expression of Rrp5p-S1-9/Rrp5p-S10-TPR (TY2304) showed similar levels 

of 35S, 32S, 20S and 27SB pre-rRNAs as the control strain, but no 27SA2 pre-rRNA was 

detectable and ratios of 27SBL/27SBS pre-rRNAs were elevated (Fig. 3-9 C vi-vii, x, compare 

lanes 1+4). This indicated that processing at sites A0, A1 and A2 resulting in 20S and 27SA2 

pre-rRNA occurred normally in this strain, but that the subsequent conversion of 27SA2 into 

27SB pre-rRNA was significantly accelerated with preference for the B1L pathway. 
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Accordingly, Rrp5p could play a role in the structural organization of the 5‟ end of the 27SA2 

pre-rRNA and thereby contribute to its stability and the regulation of the mode of processing.  

 
 

Fig. 3-9: Analyses of the interactions of truncated Rrp5p variants with pre-ribosomal particles  

Yeast strains in which genomic deletion of RRP5 is either rescued by expression of ectopically encoded Rrp5p-

FL-GFP (TY2307; FL), or by the split co-expression of the Rrp5p fragments Rrp5p-S1-9-GFP/Rrp5p-S10-TPR-
TAP (TY2304; S10-TPR), Rrp5p-S1-9-GFP/Rrp5p-TPR-TAP (TY2305; TPR) or Rrp5p-S1-9-TAP/Rrp5p-TPR-
GFP (TY2306; S1-9) were grown in YPDA medium to exponential phase (OD600 = 0.8-1.0). The different rrp5 
alleles are schematically shown in (A) (see Fig. 3-6 for details). Rrp5p-TAP variants were purified from cell lysates 
using IgG-coupled magnetic beads. After washing, the beads were split for the analysis of co-purified RNAs and 
proteins, respectively. B) Precipitated proteins were eluted under basic conditions and aliquots of the cell lysates 
(In) and eluates (E) were analysed by Western Blotting using rabbit anti-Noc1p antibodies to detect both Noc1p 
(+) and the Protein-A moiety of the Rrp5p-TAP variants (*). C) RNAs isolated from aliquots of cell extracts (Input) 
and precipitates (IP) were separated on agarose (i, iv, vi, vii, x) or acryl amide (ii, iii, v, ix) gels and analysed by 
Northern Blotting using the indicated probes (o202 – o2474; for binding sites see Fig. 3-7). Alternatively, the 
isolated RNA was used as template in primer extension reactions using o211 as primer (viii). Bands 
corresponding to mature rRNAs and major pre-rRNA species are indicated. X marks an additional stop in primer 
extension reactions that most likely arises from methylation of nucleotides A1779 and A1780 of the 18S rRNA in 
accumulated 32S pre-rRNA, which does normally not occur in wild type strains before A2 cleavage has taken 
place (see main text for details). Equal signal intensities in Input and IP correspond to 11% and 4% precipitation 
efficiency in Western (0.11 % In, 1% IP) and Northern blot (0.067% In, 1.67% IP) analysis, respectively. 

Analysis of the RNAs in the purified fractions showed that Rrp5p-FL co-purified RNA 

components of 90S and pre-60S particles (U3 sno-rRNA, 35S, 32S, 27SA2, 27SB pre-

rRNAs; Fig. 3-9 C v-x, compare lanes 4, 8) with similar efficiencies as described above (Fig. 
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3-7). However, direct comparison with purifications of the truncated Rrp5p variants was 

complicated by the different steady state levels of pre-rRNAs in the trans-complementing 

strains. Among the truncated Rrp5p variants, Rrp5p-S1-9 co-purified the highest amounts of 

the analysed RNAs (Fig. 3-9 C v-x, compare overall signal intensities in lanes 5-8), 

consistent with in vitro studies indicating high affinity RNA interaction of Rrp5p-S1-9 but not 

of Rrp5p-S10-TPR (Young and Karbstein, 2011). Nevertheless, U3 snoRNA and 35S pre-

rRNAs were co-purified with Rrp5p-S1-9 and Rrp5p-S10-TPR with similar efficiencies as with 

Rrp5p-FL, and less efficient, but still significant with Rrp5p-TPR (Fig. 3-9 C i-vi, compare 

signal ratios IP/Input of U3, 35S with those of mature rRNAs). In contrast, significant 

amounts of pre-LSU specific RNAs (27SA2, 27SB pre-rRNAs) were only detected in the 

Rrp5p-S1-9 purification (Fig. 3-9 C vi-viii), suggesting that both N- and C-terminal Rrp5p 

variants are associated with common 90S pre-ribosomes, but only the N-terminal S1-9 

variant is segregated into pre-60S particles. Consistently, and in agreement with the 

experiments shown in Fig. 3-6, Noc1p was co-purified with Rrp5p-S1-9 with similar 

efficiencies as with Rrp5p-FL (Fig. 3-9 B, compare lanes 5/6 and 7/8). Only minor amounts of 

Noc1p were detected in Rrp5p-S10-TPR and -TPR purifications (Fig. 3-9 B, lanes 2, 4), 

which might indicate a weak interaction of these Rrp5p variants with pre-ribosomes 

containing Noc1p. 

In summary, these results indicated that Rrp5p could have two (or more) interaction 

interfaces with pre-ribosomes, potentially upstream and downstream of the A2 processing 

site in the ITS1 region as suggested by Young and Karbstein (2011). These interaction 

interfaces most likely participate differentially in the LSU and SSU specific functions of 

Rrp5p, respectively. 

3.3.3 In vivo interaction studies of Noc1p variants with pre-ribosomal particles 

3.3.3.1 Noc1p domain assignment and generation of noc1 alleles lacking different 

domains  

In order to gain further insights into the interaction of Noc1p with pre-ribosomal particles and 

with the other module components Noc2p and Rrp5p, a similar domain mapping approach 

should be employed as for Rrp5p. As so far only very limited information was available 

concerning functional domains of Noc1p (Edskes et al., 1998; Milkereit et al., 2001), 

sequences of Noc1p proteins from six different species from yeast to human were compared 

to identify conserved regions within the protein (Fig. 3-10). In agreement with previous 

analyses showing that the N-terminal (aa 1-228) and C-terminal (aa 899-1025) parts of 

Noc1p are not essential for growth in yeast (Edskes et al., 1998), these regions showed a 

low degree of conservation and were defined as domains D1 and D7. The region covering 

amino acids 726-795, which includes the „NOC domain‟ (aa 726-770) that is conserved 

throughout species in Noc1p, Noc3p and Noc4p proteins (see section 2.2.7; (Milkereit et al., 

2001, 2003)), showed the highest degree of conservation and was defined as domain D5. In 

consequence, the relatively low conserved downstream region (aa 796-898) was defined as 

domain D6. Domains D2, D3 and D4 were assigned based on blocks of highly conserved 

amino acids separated by stretches of lower conservation (Fig. 3-10).  
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Fig. 3-10: Definition of different Noc1p domains based on amino acid conservation determined by multiple 
sequence alignment 

(see next page)  
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Fig. 3-10 (continued from previous page): The sequences of Noc1p from Saccharomyces cerevisiae (S.c.), 
Schizosaccharomyces pombe (S.p.), Caenorhabditis elegans (C.e.), Drosophila melanogaster (D.m.), Mus 
musculus (M.m.) and Homo sapiens (H.s.) were compared using the program AlignX (Clustal W based) from the 
Vector NTI software package and the blosum62mt2 matrix. The resulting consensus sequence (cons.) is shown. 
Colour code: red letter on yellow ground: identical amino acid (aa) in all sequences; blue on cyan: identical aa in 
at least 50% of sequences; black on green: similar aa in at least 50% of sequences; green on white: residue 
weakly similar to consensus residue; black on white: residue not similar to consensus residue. The previously 
described NOC domain (Milkereit et al., 2001) is marked as dashed box and predicted nuclear localisation signals 
using the program predictNLS (https://www.predictprotein.org) are underlined in red. Positions of mutated amino 
acids in the noc1-6 and noc1-7 alleles are indicated by black and red dashes, respectively. The assigned domains 
D1 – D7 (see main text for details) are indicated on the right, the domain boundaries are marked by black lines 
and the number of the last amino acid is indicated. Lower panel) The average similarity of the aligned sequences 
to the consensus sequence was determined for each residue using AlignX (based on similarity scores of 1, 0.5, 
0.2 and 0 for identical, similar, weakly similar and not similar aa) and the average value of blocks spanning 10 aa 
was blotted against the position of the centre of the block. The assigned domains are indicated below the graph 
including the ratio of absolutely conserved to total amino acids per domain. 

Sequencing of the noc1-6 and noc1-7 alleles described above (section 3.1.1) showed that 

both alleles contain numerous mutations, but most of those affect non conserved residues 

and are located in the non-essential domains D1 and D7 of Noc1p (Fig. 3-10), whereas no 

mutations were found in D5, underlining the importance of the NOC domain. Only two highly 

conserved amino acids were mutated in each allele, locating to D2 in noc1-6 and to D3 and 

D4 in noc1-7. As these alleles showed slightly different growth and pre-rRNA processing 

phenotypes (Fig. 3-1), the respective domains might have different functions and thus 

appeared to be particularly interesting for interaction studies of truncated Noc1p variants. 

Therefore, a library of noc1-ΔX alleles in which one or more domains are deleted (Fig. 3-11 

A) were generated by PCR and cloned into a yeast shuttle vector under control of a 

constitutive promoter to enable expression of the respective Noc1p-ΔX variants with an N-

terminal Protein A tag in yeast cells (see section 5.2.4.14; plasmids are listed in section 

5.1.4). To determine if and which protA-noc1-ΔX alleles are able to complement for deletion 

of NOC1, a NOC1-shuffle strain (TY772) was transformed with the respective plasmids and 

growth was analysed on plates containing 5-FOA (see section 5.2.2.5 for details). Only 

transformation with plasmids encoding ProtA-Noc1p-FL, -Δ1, -Δ7 and –Δ1,7 variants yielded 

colonies on FOA containing plates (data not shown), and the resulting strains grew on 

selection plates lacking leucin, but not on plates lacking uracil (Fig. 3-11 B). Accordingly, and 

consistent with previous studies (Edskes et al., 1998), only domains D1 and D7 are 

dispensable for the essential function of Noc1p. However, strains depending on the 

respective protA-noc1-ΔX alleles were not able to grow at higher temperature (37°C) and 

deletion of D7 caused growth defects even at lower temperatures, which was enhanced by 

additional deletion of D1 (Fig. 3-11 B), indicating that some functions of Noc1p are already 

impaired in these mutants. 
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Fig. 3-11: The N- and C-terminal domains of Noc1p are not essential for growth 

A) The indicated noc1 alleles that lack one or more domains (see Fig. 3-10) were generated by PCR and cloned 
into the plasmid pNOP-PA (V17) carrying the LEU2 auxotrophy marker (see section 5.2.4.14 for experimental 
details). The resulting plasmids (K1442-1444, K1452-1458; listed in section 5.1.4) allow constitutive expression of 
Protein A tagged Noc1p variants in yeast cells. The number of Noc1p amino acids in the corresponding protein 
variants and the calculated mass including the Protein A epitope tag (115 aa) are indicated. B) A genomic noc1Δ 
yeast strain (TY772) expressing NOC1 from a plasmid carrying the URA3 auxotrophy marker, was transformed 
with one of the plasmids K1442-1444, K1452-1458 and grown on SDC-Leu plates at 24°C for 5 days. Colonies 
were streaked onto FOA containing SDC-Leu plates incubated at 24°C for 5 days (see section 5.2.2.5 for details). 
Resulting colonies, which were only obtained from cells transformed with plasmids K1442, K1444, K1452 or 
K1455, were grown in YPDA medium at 24°C to exponential phase. For growth tests, 1 OD of cells was 
resuspended in 1 ml sterile H2O and 10-fold serial dilutions thereof were spotted on the indicated plates and 
incubated for three days at the indicated temperatures. The parental strain (TY772) and a temperature sensitive 
noc1-7 strain (TY2075) were included as controls.  

3.3.3.2 Analysis of the association of truncated Noc1p variants with Noc2p, Rrp5p 

and rRNA precursors 

Next, the in vivo association of the ProtA-Noc1p-ΔX variants with pre-ribosomes was 

analysed to investigate whether different domains are important for specific interactions of 

Noc1p. To prevent that wild type Noc1p competes with the ProtA-Noc1p-ΔX variants for 

potential interaction partners, the different variants were expressed in a pGAL-NOC1 strain 

(TY2154), in which expression of Noc1p can be switched off (see section 3.1.2). In addition, 

TY2154 expresses genomically encoded Rrp5p-Myc, Noc2p-GFP and Noc3p-HA fusion 

proteins to allow detection in Western blotting analyses. To deplete wild type Noc1p, cultures 

were grown in glucose containing full medium for 22h at 24°C. These conditions turned out to 

be optimal to achieve efficient depletion of Noc1p but to maintain relatively high levels of pre-

rRNAs and to enable detection of weak interactions.  
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Fig. 3-12: Analyses of the interactions of ProtA-Noc1p-ΔX variants with Noc2p and Rrp5p 

Yeast strain TY2154, which expresses genomically encoded Rrp5p-Myc, Noc2p-GFP and Noc3p-HA fusion 
proteins and in which NOC1 is under control of the galactose inducible/glucose repressible GAL1/10 promoter (for 
details see sections 5.1.1 and 5.2.2.4/5), was transformed with plasmids encoding the indicated ProtA-Noc1p-ΔX 
variants (K1442-1444, K1452-1458; „+‟ and „-„ indicates complementing and not complementing Noc1p variants, 
respectively) or the corresponding empty vector V17 (ctrl.), and cultivated in selective medium (SGCA-Leu, 24°C). 
Cells were shifted to glucose containing full medium (YPDA) and incubated for 22h at 24°C to deplete untagged 
wild type Noc1p from the cells (final OD600 = 0.7 – 1.1). ProtA-Noc1p-ΔX variants were affinity purified from cell 
extracts using IgG sepharose (see section 5.2.7.5 for experimental details). After washing, the beads were split 
for the analysis of co-purified proteins and RNAs (see Fig. 3-13). Proteins in the cell extracts (Input) and the 
purified fractions (IP) were separated by SDS-PAGE and analysed by Western blotting using PAP detection 
reagent or the indicated anti-bodies. rpS8 was used as a specificity control for the purification. All samples were 
derived from the same experiment and analysed on the same membrane. Equal signal intensities in Input and IP 
correspond to 1% purification efficiency. A band arising from a 21.5 kDa polypeptide with N-terminal Prot-A tag 
that is expressed from the empty vector is marked by asterisk and positions of marker proteins are indicated on 
the right. 

The ProtA-Noc1p-ΔX variants were purified from cell extracts under mild conditions 

(described in section 5.2.7.5), and proteins in the cell extracts and the purified fractions were 

analysed by Western blotting to monitor expression and (co-)purification of the bait proteins 

and of the interaction partners Noc2p and Rrp5p. In general, the ProtA-Noc1p-ΔX variants 

were expressed in similar levels as ProtA-Noc1p-FL (Fig. 3-12, Input lanes), albeit the non-

complementing variants appeared to be slightly less abundant. All bait proteins were 

efficiently enriched after purification, but substantial amounts of bait protein fragments were 

also detected in the purified fractions (including ProtA-Noc1p-FL) (Fig. 3-12, compare signals 

in Input and IP lanes). It remained unclear whether this was due to degradation during the 

purification procedure or if cellular degradation intermediates were purified, which might arise 

from elevated levels of ProtA-Noc1p variants resulting from their ectopic expression from the 

non-native pNOP1 promoter. ProtA-Noc1p-FL, as expected, co-purified efficiently Noc2p and 

Rrp5p from cell extracts, but not Noc3p (Fig. 3-12, lanes 3, 4). All complementing variants 

(ProtA-Noc1p-Δ1, -Δ7, -Δ1,7) also co-purified Noc2p and Rrp5p, but in part with reduced 

efficiencies, especially in case of ProtA-Noc1p-Δ1,7 (Fig. 3-12, lanes 5, 6, 17-20). Besides, 

Noc2p was efficiently enriched with ProtA-Noc1p-Δ1-3 and, to a lesser extent, also with 

ProtA-Noc1p-Δ2, -Δ3, but not or just inefficiently with further N-terminally truncated (-Δ1-4, -

Δ4) or C-terminally truncated (-Δ5-7) Noc1p variants (Fig. 3-12, lanes 7-16, 21, 22). In 
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contrast, of all non-complementing Noc1p variants only ProtA-Noc1p-Δ2 showed some co-

purification of Rrp5p (Fig. 3-12, lanes 7-16, 21, 22).  

These analyses indicated that domains D1-D3 and D7 of Noc1p are dispensable for stable 

interaction with Noc2p, suggesting that the region surrounding the „NOC domain‟ (D4-

D5/(D6), aa 531-795/(898)) might be sufficient therefor. This is reminiscent of the interaction 

of Noc4p with Nop14p/Noc5p that was shown to be mediated by the C-terminal part (aa 316-

553) of Noc4p, which also contains the „NOC domain‟ (Kühn et al., 2009). In contrast, the 

interaction of Noc1p with Rrp5p apparently requires additional elements in Noc1p, as only 

domains D1 and D7 were individually dispensable for stable interaction with Rrp5p, whereas 

combined deletion of D1 and D7, as well as further truncations of Noc1p significantly 

weakened this interaction. Accordingly, stable interaction of Noc1p with Rrp5p might involve 

several contact sites all over the Noc1p primary sequence or require a folding state of Noc1p 

that cannot be achieved in the truncated variants. Alternatively, Noc1p variants not co-

purifying Rrp5p might not be imported into the nucleus. Bioinformatical analysis using the 

program predictNLS (https://www.predictprotein.org; Rost laboratory) identified a potential 

nuclear localisation sequence (NLS) that is partially conserved and located in domain D7 of 

yeast Noc1p (Fig. 3-10). However, as domain D7 is not essential for growth (Fig. 3-11 B; 

(Edskes et al., 1998)), this cannot be the exclusive nuclear import mechanism for Noc1p. 

Accordingly, Noc1p could be co-imported with other proteins, but the obvious candidates 

Noc2p and Rrp5p do not contain a predicted NLS, either. Alternatively, Noc1p could contain 

a hidden NLS in one of its essential domains, but as the intracellular localisation of the ProtA-

Noc1p-ΔX alleles was not analysed in this work, this question remains elusive.  

 

To investigate the association of ProtA-Noc1p-ΔX variants with pre-ribosomes, RNA was 

isolated from aliquots of cell extracts and the purified fractions, and analysed by Northern 

blotting and primer extension reactions. Strains expressing non-complementing ProtA-

Noc1p-ΔX variants showed very similar pre-rRNA processing phenotypes as the control 

strain transformed with an empty plasmid, which in general resembled the ones described in 

Fig. 3-3. However, the effects on pre-rRNA levels were less severe, probably due to growth 

at lower temperature resulting in slower Noc1p depletion kinetics and/or reduced turnover of 

aberrant pre-ribosomes.Levels of LSU precursor rRNAs (27SA2, 27SB) were reduced when 

compared to the strain expressing ProtA-Noc1p-FL (Fig. 3-14 A, compare signals in lanes 1, 

3, 7, 9, 13, 15, 21), but the ratios between 27SBL and 27SBS appeared to be unaffected (Fig. 

3-14 B, lanes 1, 3, 11). In contrast, levels of 35S pre-rRNA were elevated and accumulated 

relative to 27S pre-rRNAs, (Fig. 3-14 B, compare 35S/27S signal ratios in Input lanes). 

Effects on 7S and 20S pre-rRNAs and levels of mature rRNAs were also very similar to those 

described in Fig. 3-3 (data not shown). Notably, only expression of ProtA-Noc1p-Δ1, but not 

of –Δ7 and –Δ1,7 variants, resulted in similar pre-rRNA levels as in the ProtA-Noc1p-FL 

strain (Fig. 3-13 A, compare lanes 3, 5, 17, 19), indicating that rRNA processing is partially 

impaired in those strains. As observed before for Noc1p-TAP (Fig. 3-7), ProtA-Noc1p-FL co-

purified most efficiently 27SA2 pre-rRNA, but also 35S, 32S and 27SB pre-rRNAs, with a 

preference for the 27SBL species (Fig. 3-13 A + B, lanes 3, 4). All complementing Noc1p 

variants co-purified the same pre-rRNA species as ProtA-Noc1p-FL, although with lower 
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efficiencies, especially in case of ProtA-Noc1p-Δ1,7 (Fig. 3-13 A (lanes 5, 6, 17 – 20) + B 

(lanes 5-10). Of all non-complementing Noc1p variants, only ProtA-Noc1p-Δ2 showed minor 

co-purification of pre-rRNAs (Fig. 3-13 A + B, lanes 11, 12), indicating that domain D2 is not 

required for nuclear import of Noc1p, whereas this cannot be excluded for domains D3-D6 at 

this point. Thus, co-purification of pre-rRNA and Rrp5p was correlated in all analysed ProtA-

Noc1p-ΔX variants, indicating that Noc1p might be indirectly associated with pre-

ribosomes/pre-rRNA via Rrp5p. Alternatively, robust interactions with both Rrp5p and pre-

rRNA might involve overlapping domains within the essential part of Noc1p. Finally, failure of 

nuclear import of the truncated variants might interfere with establishment of interactions with 

both Rrp5p and pre-rRNA.  

 
 
Fig. 3-13: Analyses of the interactions of ProtA-Noc1p-ΔX variants with pre-rRNA 

A) RNAs isolated from aliquots of cell lysates (In) and purified fractions (IP) obtained from the experiment 
described in Fig. 3-12 were separated on agarose gels and analysed by Northern blotting by subsequent 
hybridization using the indicated probes (o207, o210; binding sites are depicted in Fig. 3-7). Except for ProtA-
Noc1p-Δ1-3, which was derived from a separate purification including the empty vector and the ProtA-Noc1p-FL 
controls (dashed boxes), all samples were analysed on the same gel. B) From selected samples, the isolated 
RNA was used as template in primer extension reactions using oligo o211 as primer to detect the different 5‟ ends 
of 27S pre-rRNAs.  

In summary, these experiments indicated that for all protA-noc1-ΔX alleles that cause growth 

defects or do not allow growth, pre-rRNA processing is disturbed and the corresponding 

protein variants are impaired in their interaction with Noc2p and/or Rrp5p and pre-ribosomal 

particles. This suggests that formation of the Rrp5p/Noc1p/Noc2p module as well as its 

association with pre-ribosomes is a prerequisite for correct pre-rRNA processing and thus 

required for ribosome synthesis and cell growth.  
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3.3.4 Analysis of the binding hierarchy of the Rrp5p/Noc1p/Noc2p module 

components to pre-ribosomes  

Interaction studies of truncated Noc1p variants showed that for all analysed ProtA-Noc1p-ΔX 

variants the association with pre-rRNAs and Rrp5p was correlated (section 3.3.3.2) and 

analogous studies with truncated Noc2p variants indicated correlation of pre-rRNA, Rrp5p 

and Noc1p co-purification with ProtA-Noc2p-ΔX variants (Hierlmeier, 2008 (diploma thesis)). 

Furthermore, Rrp5p was described to have RNA binding activity and to interact with specific 

sequences of the ITS1 region of 35S pre-rRNA in vitro (De Boer et al., 2006; Young and 

Karbstein, 2011), raising the possibility that binding of the Rrp5p/Noc1p/Noc2p module to 

pre-ribosomes in vivo might occur via direct RNA interaction of Rrp5p. To test this, the 

binding hierarchy of the module components to pre-ribosomes was analysed. 

Therefore, yeast strains were constructed in which RRP5 is under control of the endogenous 

or the conditional GAL1/10 promoter and NOC1 (TY2302, TY2343) or NOC2 (TY2303, 

TY2301) are genomically fused to the TAP-tag. In addition, yeast strains were generated that 

express genomically encoded Rrp5p-TAP fusion protein and in which NOC1 (TY2499, 

TY2501) or NOC2 (TY2500, TY2502) are under control of the endogenous or the GAL1/10 

promoter. These strains were grown for 10h, 18h or 24h in glucose containing medium to 

shut off expression of Rrp5p, Noc1p or Noc2p, respectively, and the TAP-tagged bait 

proteins were purified from the respective cell extracts under mild conditions to preserve pre-

ribosomal particles (described in section 5.2.7.5).  

To determine the association of the bait proteins with pre-ribosomes, RNA was isolated from 

aliquots of the cell extracts and the purified fractions and analysed by Northern blotting. As 

described above in detail (section 3.1.2, Fig. 3-3), depletion of Rrp5p, Noc1p and Noc2p 

resulted in severely reduced levels of pre-LSU rRNA species, accompanied by the 

appearance of aberrant pre-rRNA fragments in case of Rrp5p depletion (Fig. 3-14 A, B, C, 

compare Input lanes of WT and pGAL strains). However, levels of 35S pre-rRNA were 

similar as in the corresponding non-depleted control strains, which was a prerequisite to 

determine association of the bait proteins with pre-ribosomal particles.  

Fig. 3-14: Analysis of the binding hierarchy of the Rrp5p/Noc1p/Noc2p module components to pre-
ribosomal particles (next page) 

Yeast strains expressing chromosomally encoded Noc1p-TAP (TY2302/TY2343) or Noc2p-TAP 
(TY2303/TY2301) in which the RRP5 gene is either under control of the endogenous (WT) or the inducible GAL 
1/10 promoter (pGAL) were cultivated for 10h and 18h in glucose containing rich medium (YPDA; final OD600 = 
0.5 – 1). Analogous experiments were carried out with strains expressing chromosomally encoded Rrp5p-TAP 
with NOC1 (TY2499/TY2501) or NOC2 (TY2500/TY2502) under the control of the endogenous (WT) or the GAL 
1/10 promoter. These strains were cultivated for 10h,18h and 24h in glucose containing rich medium (final OD600 
= 0,5 – 1). The respective background strains expressing no tagged protein (TY1, TY616), which served as 
controls, were cultivated for 18h in glucose containing rich medium. TAP-tagged proteins were affinity purified 
from cell extracts using IgG sepharose (section 5.2.7.5). After washing, the beads were split for the analysis of co-
purified RNAs and proteins. RNAs isolated from aliquots of cell extracts (Input) and immuno-purified fractions (IP) 
were separated on acrylamide or agarose gels and analysed by Northern blotting by subsequent hybridization 
using the indicated probes (o202 – o1819; binding sites are depicted in Fig. 3-7). All input and IP samples of the 
purification of one bait protein in the different strains were analysed on the same gel. Purification of the bait 
proteins was controlled by Western Blotting (WB) against the ProteinA moiety of the TAP tag using anti-ProteinA 
antibody. Equal signal intensities in Input and IP correspond to 2% and 1.5% purification efficiency in Northern 
Blots of agarose and acrylamide gels, respectively. In Western Blots, equal signal intensities in Input and IP 
correspond to 20% (Rrp5-TAP), 33% (Noc1-TAP) and 17% (Noc2-TAP) purification efficiencies. Aberrant pre-
rRNA fragments resulting from depletion of biogenesis factors are indicated (X). A) Depletion of Rrp5p; B) 
Depletion of Noc1p; C) Depletion of Noc2p; D) untagged control strains. 
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Noc1p-TAP co-purified U3 snoRNA, 35S, 32S, 27SA2 and 27SB pre-rRNAs from extracts of 

cells not depleted of Rrp5p with similar efficiencies as described above (compare Fig. 3-14 A 

and Fig. 3-7). Notably, from extracts of cells depleted of Rrp5p, 35S pre-rRNA and U3 

snoRNA were even more efficiently co-purified with Noc1p-TAP (Fig 3-15 A, compare signal 

ratios of lane 6/2 with 8/4), and several aberrant pre-rRNA fragments resulting from Rrp5p 

depletion were also efficiently enriched in the Noc1p purification (Fig. 3-15 A, bands marked 

with X). From extracts of cells expressing Rrp5p, Noc2p-TAP co-purified not only U3 

snoRNA, 35S, 32S, 27SA2 pre-rRNAs in similar efficiencies as Noc1p-TAP, but also 

substantial amounts of 27SB pre-rRNAs and some 7S pre-rRNA (Fig 3-15 A, compare lanes 

9 and 13 with 1 and 5), consistent with the association of a Rrp5p/Noc1p/Noc2p complex 

with early, and a Noc2p/Noc3p complex with intermediate pre-60S particles. Similar as 

observed for Noc1p, Noc2p-TAP co-purified even more efficiently U3 snoRNA and 35S pre-

rRNA as well as aberrant pre-rRNA fragments after depletion of Rrp5p (Fig 3-15 A, compare 

signal ratios of lane 14/10 with 16/12). Altogether, these results indicated that Noc1p and 

Noc2p can bind independent of Rrp5p to pre-ribosomal particles containing U3 snoRNA and 

35S pre-rRNA or fragments thereof. 

From extracts of cells expressing Noc1p and Noc2p, Rrp5p-TAP co-purified the same RNA 

species (U3 snoRNA, 35S, 32S, 27SA2 and 27SB pre-rRNAs) in similar efficiencies as 

described above (compare Fig 3-15 B, C lanes 1/6 with Fig. 3-7). After depletion of Noc1p or 

Noc2p, U3 snoRNA, 35S and 23S pre-rRNAs were even more efficiently enriched in the 

Rrp5p purification (Fig. 3-14 B, C, compare signal ratios of lanes 2/7, 4/9, 5/10) indicating 

Noc1p/Noc2p independent recruitment of Rrp5p to pre-ribosomes and a possible prolonged 

dwelling time of Rrp5p in the corresponding RNPs. Notably, a significant population of Rrp5p 

was associated with pre-ribosomes containing 23S pre-rRNA, possibly by direct interaction 

with pre-rRNA between processing sites A2 and A3 (De Boer et al., 2006; Young and 

Karbstein, 2011). In addition, several aberrant pre-rRNA fragments were specifically enriched 

in the Rrp5p purification (Fig. 3-14 B, C, bands marked with X), underlining inaccurate 

processing and/or destabilisation of pre-rRNAs in absence of Noc1p and Noc2p.  

In summary, these results suggested that LSU precursors that are depleted of either Noc1p, 

Noc2p or Rrp5p are specifically sensitive to pre-rRNA degradation pathways, and indicated 

that the Rrp5p/Noc1p/Noc2p module has several binding sites on pre-ribosomes. 

3.3.5 Comparative analysis of the effect of Rrp5p and Noc1p on the 

recruitment of the UTP-C complex to pre-ribosomes  

The experiments described so far strongly suggested that a Rrp5p/Noc1p/Noc2p module is 

associated with 90S and early pre-60S particles and contributes to the stability of these LSU 

precursors. However, it remained unclear if the specific function of Rrp5p in SSU biogenesis 

such as impact on A0, A1, A2 processing (Venema and Tollervey, 1996) or recruitment of the 

UTP-C complex to pre-ribosomes (Pérez-Fernández et al., 2007), are achieved in the 

context of the Rrp5p/Noc1p/Noc2p module or by a separate, Noc1p/Noc2p independent 

population of Rrp5p. To address this question, the effect of Rrp5p and Noc1p on the UTP-C 

recruitment was compared in a similar approach as described above. Therefore, yeast 
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strains were constructed in which the UTP-C component Utp22p is expressed as TAP-tag 

fusion protein and in which RRP5 (TY2322, TY2318) or NOC1 (TY2417, TY2418) are under 

control of the endogenous or the conditional GAL1/10 promoter. Strains were cultivated in 

glucose containing medium for 10, 18 or 24h to deplete Rrp5p or Noc1p, respectively, and 

Utp22p-TAP was purified from the cell extracts. Analysis of the RNAs in the cell extracts and 

the purified fractions by Northern blotting showed that the expected rRNA processing 

phenotypes were established in strains depleted of Rrp5p or Noc1p (Fig. 3-15 A+B, compare 

Input lanes of WT and pGAL strains; for details, see sections 3.1.2 and 3.3.4).  

 
Fig. 3-15: Analysis of the effects of Rrp5p and Noc1p on the binding of the UTP-C component Utp22p to 
pre-ribosomal particles 

Analogous experiments as described in Fig. 3-14 were carried out with strains expressing chromosomally 
encoded Utp22p-TAP with RRP5 (TY2322/TY2318) or NOC1 (TY2417/TY2418) under the control of the 
endogenous (WT) or the GAL 1/10 promoter. A) Depletion of Rrp5p. B) Depletion of Noc1p. Equal signal 

intensities in Input and IP correspond to 2% and 1.5% purification efficiency in Northern Blots of agarose and 
acrylamide gels, respectively. In Western Blots, equal signal intensities in Input and IP correspond to 50% 
purification efficiencies.  

As expected, Utp22p-TAP co-purified most efficiently U3 snoRNA, 35S, 32S as well as 23S, 

22S and 21S pre-rRNAs from cells expressing Rrp5p and Noc1p (Fig. 3-15 A (compare 

lanes 1/5, 2/6) + B (compare lanes 1/6, 2/7)). These results confirmed the association of 

Utp22p/UTP-C with 90S pre-ribosomes and indicated its association with particles arising 
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from processing of site A3 prior to processing of sites A0-A2 (Grandi et al., 2002; Pérez-

Fernández et al., 2007). After in vivo depletion of Rrp5p, co-purification efficiency for U3 

snoRNA was significantly reduced. On the other hand, co-purification of 35S pre-rRNA was 

hardly affected, and a non-canonical pre-rRNA fragment migrating faster than 18S rRNA 

specifically co-purified with Utp22p-TAP (Fig. 3-15 A, compare lanes 2/6, 4/8). These 

experiments indicated that Rrp5p is required for stable binding of Utp22p (and the UTP-C 

complex) to 90S pre-ribosomes containing U3 snoRNA. However, Utp22p apparently shows 

residual, Rrp5p-independent affinity to pre-ribosomal particles containing the entire 35S pre-

rRNA or fragments of it. Accordingly, the latter could represent non-productive pre-

ribosomes.  

In contrast, after in vivo depletion of Noc1p, U3 snoRNA, 35S, 32S and 23S pre-rRNAs co-

purified with Utp22p-TAP with significantly increased efficiencies (Fig. 3-15 B, compare lanes 

2/7, 4/9, 5/10), strongly indicating Noc1p independent binding of Utp22p to pre-ribosomes 

and a possible prolonged dwelling time of Utp22p in the corresponding RNPs. Notably, after 

depletion of Rrp5p, but not of Noc1p, total cellular levels of Utp22p were apparently reduced 

(Fig. 3-15 A+B, compare lanes 1-4 and 1-5 of WB), whereas the ratio of free Utp22p versus 

pre-ribosome associated Utp22p seemed to be increased (Fig 3-16 A, compare ratios of 

Utp22-TAP signal (WB) to overall pre-rRNA signal (o207, o210, o1819) in lanes 6 and 8), 

suggesting that free Utp22p might be unstable and get degraded.  

In summary, these experiments provided clear evidence that Noc1p is not required for the 

function of Rrp5p in the recruitment of the UTP-C complex to pre-ribosomes. 

3.4 Evidence for co-transcriptional recruitment of Rrp5p, Noc1p 

and Noc2p to pre-ribosomes 

3.4.1 Noc1p and Rrp5p are part of RNA polymerase I transcribed chromatin 

In the proteome analyses of fractions co-purified with Noc1p-TAP and Rrp5p-TAP, several 

Pol-I specific subunits (A12.2, A49, A135, A190) and shared Pol-I/(II/)III subunits (AC40, 

ABC23) were identified (Fig. 3-8 C; one peptide each with iTRAQ ratios ~ 1), but no subunits 

specific for Pol-II or Pol-III. Since Pol-I synthesizes the primary pre-rRNA transcript, this 

observation provided first evidence that recruitment of Rrp5p and Noc1p to pre-ribosomal 

particles could occur co-transcriptionally.  

Remarkably, comparative proteome analyses of chromatin associated with Pol-I or Pol-II 

identified Rrp5p and Noc1p as specific components of Pol-I transcribed chromatin (Fig. 16; 

data generously provided by J. Perez-Fernandez and A. Bruckmann; adapted from 

(Hierlmeier et al., 2012)). In these experiments, Pol-I and Pol-II were purified from the 

chromatin fractions of cells treated with formaldehyde using Protein A fusion proteins of the 

Pol-I subunit Rpa135p and the Pol-II subunit Rpb2p. Proteins in the purified fractions were 

analysed by comparative mass spectrometry using iTRAQ reagents and the results of six 

independent experiments were subjected to statistical analyses using clustering algorithms to 

identify specific components of Pol-I and Pol-II transcribed chromatin (Fig. 3-16 A). These 

analyses resulted in five groups of proteins that are either preferentially enriched in the Pol-I 
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(cluster A + B) or the Pol-II purification (cluster D + E) or equally abundant in both 

purifications (cluster C). Cluster C contained some common components of Pol-I and Pol-II 

chromatin (e.g. shared subunits Rpo26p, Rpc10p) and general chromatin components 

(Rvb1p, Rsc8p) as well as a large number of obviously unspecific contaminants (e.g. 

ribosomal proteins, chaperones, components of the cytoskeleton). Cluster D and E contained 

five Pol-II specific subunits as well as Pol-II elongation factors (e.g. Spt5p, Spt6p) and 

proteins involved in co-transcriptional mRNA metabolism (e.g. Yra1p, Sub2p), but only few 

putative contaminants like chaperones (Hsp82p, Ssb1p) (Fig. 3-16 E + F).  
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Fig. 3-16 A specific set of LSU and SSU biogenesis factors is part of RNA polymerase-I transcribed 
chromatin (previous page) 

(Figure from (Hierlmeier et al., 2012); data generously provided by J. Perez-Fernandez and A. Bruckmann) 
Yeast strains expressing chromosomally encoded Protein A fusion proteins of the Pol-I subunit Rpa135p 
(TY2423) or the Pol-II subunit Rpb2p (TY2424) were grown in rich medium to exponential phase (OD600 ~ 0.5 – 
0.8) and cross linked using formaldehyde. Chromatin fractions were prepared and the bait proteins were purified 
using IgG coupled magnetic beads (see section 5.2.7.9 for experimental details). The co-purified proteins were 
subjected to comparative mass spectrometric analysis using iTRAQ reagents. For proteins identified with at least 
one peptide with an ion score confidence interval of more than 95%, the (average) iTRAQ ratio (Pol-II vs. Pol-I 
purification) was calculated to determine the relative abundance of the respective protein in the Pol-I purification 
compared to the Pol-II purification. The results of six independent experiments were subjected to statistical 
analysis using clustering algorithms to determine groups of proteins specifically associated with Pol-I or Pol-II 
transcribed chromatin. Only proteins identified in at least 4 out of 6 experiments were included. A) Overview of the 
cluster analysis of six independent comparative Pol-II/Pol-I purifications with the five main clusters indicated on 
the right. The color code for the log2 transformed iTRAQ ratios of Pol-II vs. Pol-I purifications is indicated. grey: 
protein not identified in this experiment; blue: enriched in Pol-I purifications; yellow: enriched in Pol-II purifications; 
black: equally abundant in Pol-I and Pol-II purifications. B, C, E, F) Detailed view of the clusters A, B, D and E, 
respectively, including a classification of the identified proteins. rDNA: shown to co-immunoprecipitate rDNA; 
Pol1: Pol-I subunit; SSU/Sno: part of SSU-processome/90S pre-ribosome or snoRNPs involved in ribosome 
biogenesis; LSU: Large ribosomal subunit biogenesis factor; mRNP: part of co-transcriptionally formed mRNP; 
elongation: Pol-II elongation factor; Pol2-assoc.: shown to associate with Pol-II. LSU biogenesis factors are 
shown in red if they were already identified in the Noc1p/Rrp5p proteome analyses shown in Fig. 3-8. Identified 
components of the Rrp5p-Noc1p-Noc2p module are highlighted (*). D) Proteins in cluster C are classified and 
listed according to their physiological function. The numbers of identified proteins are indicated in brackets. 

In contrast, cluster A contained eight Pol-I specific subunits, a protein associated with rDNA 

(Hmo1p (Merz et al., 2008)) as well as five components of snoRNPs and/or the SSU 

processome, supposed to be co-transcriptionally recruited to rRNA (Fig. 3-16 B). 

Accordingly, the purified Rpa135p-TAP and Rpb2p-TAP fractions were specifically enriched 

for protein components characteristic for Pol-I and Pol-II transcribed chromatin, respectively. 

In agreement with that, cluster B contained some proteins described to be associated with 

rDNA chromatin (Pwp1p (Suka et al., 2006), Fpr4p (Kuzuhara and Horikoshi, 2004)), as well 

as twelve additional components of the SSU processome, but only few putative contaminants 

(e.g. Tkl1p, rpL15, rpL18) (Fig. 3-16 C). Notably, in addition to Noc1p and Rrp5p, twelve 

other biogenesis factors of the large ribosomal subunit were also found in cluster B, and 

eleven of those have also been identified as components of pre-ribosomes associated with 

Noc1p and Rrp5p (Fig. 3-8). Apparently, the sensitivity of this approach was limited, as not 

all Pol-I and Pol-II subunits or SSU processome components could be detected, and 

consistently some LSU ribosome biogenesis factors like Noc2p may have been missed in 

these analyses.  

In summary, these results indicated that Noc1p and Rrp5p as well as a specific set of early 

acting LSU biogenesis factors are part of Pol-I transcribed chromatin suggesting that these 

factors are co-transcriptionally recruited to nascent pre-rRNA. 

3.4.2 Rrp5p, Noc1p and Noc2p are associated with specific parts of rDNA 

chromatin 

To test in a more direct way if Rrp5p, Noc1p and Noc2p are part of rDNA chromatin, the 

association of these proteins with rDNA was analysed in chromatin immunopurification 

(ChIP) experiments using yeast strains that express TAP-tag fusion proteins of Rrp5p, Noc1p 

and Noc2p, respectively. In addition, two strains expressing either TAP-tag fusion proteins of 

the UTP-A component Utp4p, which was described to bind co-transcriptionally to pre-
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ribosomes (Dragon et al., 2002; Wery et al., 2009), or of Nog2p, a LSU biogenesis factor 

associated with pre-60S particles of later maturation states (Saveanu et al., 2001; see also 

section 2.2.6), were included as controls in these experiments.  

 
 
Fig. 3-17 Analysis of the association of Rrp5p, Noc1p and Noc2p with 35S rDNA chromatin 

A) Primer pair positions on the rRNA gene to perform quantitative PCR (qPCR) analysis of Chromatin 
immunoprecipitation (ChIP) experiments. The relative positions of the rDNA amplicons analysed by qPCR (1-8) 
are indicated. For normalisation, an amplicon in the PDC1 gene (9) was used. B) ChIP experiments were 
performed with yeast strains in which Noc1p (TY483), Noc2p (TY577), Rrp5p (TY615), Utp4p (TY1540) or Nog2p 
(TY1965) are expressed as tandem affinity purification (TAP) tag fusion proteins, and with a control strain 
expressing no tagged protein (TY543). Cells were grown in YPDA medium at 30°C to exponential phase (OD600 
= 0.5-0.7) and cross linked using formaldehyde (final concentration 1%) for 15‟ at 30°C. ChIP analysis was 
performed as described in section 5.2.7.7. The amounts of specific DNA fragments present in the input and 
retained on the beads were determined by qPCR with primer pairs amplifying the regions 1-8 of the rDNA de 
picted in the schematic representation and of the PDC1 gene (primer pair 9). In each experiment the precipitation 
efficiencies (% IP (rDNA)) for the respective amplified DNA regions were calculated and normalised to the PDC1 
precipitation efficiencies (% IP (rDNA) / % IP (PDC1)). The graph shows the average of three biological replicates 
including standard deviations. A black line depicts the internal background as a result of the normalisation to the 
precipitated PDC1 DNA. 

The bait proteins were purified from the chromatin fractions of formaldehyde treated cells 

(described in section 5.2.7.7), and DNA in the chromatin and the purified fractions was 

analysed by qPCR to determine co-purification efficiencies of different DNA regions (section 

5.2.4.7). Therefore, seven primer pairs amplifying different regions of the Pol-I transcribed 

35S rDNA were employed (Fig. 3-17 A), as well as primer pairs amplifying regions of the Pol-

III transcribed 5S rDNA or the Pol-II transcribed PDC1 locus, respectively, that were used to 

determine the internal background of unspecifically co-purified DNA in each purification.  
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Consistent with previous studies (Wery et al., 2009), Utp4p-TAP co-purified specifically DNA 

spanning the ITS2 region and at the 5‟ end of the 25S rRNA coding region of rDNA (Fig. 3-17 

B, compare amplicons 4-7 with 8 and 9). Notably, 5S rDNA was significantly more enriched 

than PDC1 DNA in this purification, which might be due to increased non-specific 

crosslinking of Utp4p to nucleolar chromatin. In contrast, none of the analysed DNA regions 

was specifically enriched in the Nog2p-TAP purification or in the untagged control. Similar as 

Utp4p, Rrp5p-TAP specifically enriched DNA spanning the ITS2 region and the 5‟ end of the 

25S rRNA coding region of rDNA, albeit with reduced efficiencies when related to the PDC1 

background. However, enrichment over the 5S background was similar in both cases (Fig3-

18 B, compare amplicons 4-7 with 8 and 9). In contrast, Noc1p-TAp and Noc2p-TAP co-

purified specifically DNA regions encoding the 3‟ end of 25S rRNA, indicating association of 

Noc1p, Noc2p and Rrp5p with specific parts of 35S rDNA chromatin. 

As the association of UTP-A and UTP-B components with rDNA chromatin was reported to 

be mediated by the nascent Pol-I transcript (Wery et al., 2009), this might also be the case 

for Noc1p, Noc2p and Rrp5p.To test this, analogous ChIP experiments were performed as 

described above, except that the chromatin fractions were split before the purification step 

and subjected to RNase or mock treatment (described in section 5.2.7.8). Furthermore, a 

strain expressing the Pol-I subunit Rpa135p as Protein A fusion protein (TY2423) was 

included as additional control. 

qPCR analyses of the purifications from mock treated chromatin showed for all biogenesis 

factors the same pattern of specifically associated rDNA with similar enrichment over the 

PDC1 background as described above (Fig. 3-18 A, „-RNase‟ sets; compare with Fig. 3-17 

B). As expected, the Pol-I subunit Rpa135p co-purified DNA all over the 35S rDNA locus 

including the promoter region, but not of the 5S or PDC1 region. In addition, Rpa135p co-

purified rDNA with substantial higher efficiencies than the ribosome biogenesis factors (Fig. 

3-18 A, compare amplicons 1-7 with 8/9 in „-RNAse‟ sets).  

After RNase treatment of the chromatin, Rpa135p co-purified specifically the same 35S 

rDNA regions as in the mock treated sample, consistent with direct, RNA independent 

interaction of Pol-I with rDNA, however with severely reduced efficiencies (Fig. 3-18 A, 

compare „+RNAse‟ and „-RNAse‟ sets). In agreement with that, Western blot analyses of 

proteins in the chromatin and purified fractions indicated that also the purification efficiency of 

Rpa135p was reduced in these conditions (Fig. 3-18 B, compare signal ratios of lanes 5/3 

and 6/4). This suggested that the population of the bait protein that is accessible to affinity 

purification was strongly reduced after RNase treatment of the chromatin fraction, possibly 

due to formation of aggregates (J. Griesenbeck, unpublished observations).  

In contrast, none of the analysed rDNA regions was more efficiently enriched than the PDC1 

DNA in purifications of Noc1p-TAP, Noc2p-TAP, Rrp5p-TAP or Utp4p-TAP from chromatin 

treated with RNase, suggesting RNA dependent association of these ribosome biogenesis 

factors with rDNA chromatin (Fig. 3-18 A, compare „+RNase‟ sets). However, only Rrp5p-

TAP and Utp4p-TAP were purified in similar efficiencies from untreated and RNase treated 

chromatin (Fig. 3-18 B, compare signal ratios of lanes 23/21, 24/22 and 29/27, 30/28), 

whereas for unclear reasons Noc1p-TAP and Noc2p-TAP could hardly be detected in the 
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purified fractions from RNase treated chromatin (Fig. 3-18 B, compare lanes 11, 12 and 17, 

18), which prevented clear interpretation of the qPCR data in these cases.  

 
Fig. 3-18: Analysis of RNA dependent association of Rrp5p, Noc1p and Noc2p with 35S rDNA chromatin 

A) ChIP experiments were performed with the indicated strains as in Fig. 3-17, with the exception that the 
chromatin fractions were subjected to RNAse A and T1 („+‟) or mock treatment („-„) prior to immunoprecipitation 
(see section 5.2.7.8 for details). The amounts of specific DNA fragments present in the input and retained on the 
beads were determined by qPCR using the same primer pairs in Fig. 3-17. In each experiment the precipitation 
efficiencies (% IP (rDNA)) for the respective amplified DNA regions were calculated and normalised to the PDC1 
precipitation efficiencies (% IP (rDNA) / % IP (PDC1)). The graph shows the average of two biological replicates 
including standard deviations. A black line depicts the internal background as a result of the normalisation to the 
precipitated PDC1 DNA. B) The yield of immunoprecipitated Pol-I and biogenesis factors in ChIP experiments 
with and without RNase treatment was analysed by Western blotting. Relative amounts to the chromatin input per 
IP of the insoluble material after sonication (P), the soluble chromatin fraction (Chr) without (pre) or after 
incubation at 25°C with (+) or without (-) RNAses, and the precipitated material (IP) from RNAse treated (+) or 
untreated (-) chromatin are indicated. Upper panels: The bait proteins were detected with anti-ProtA antibody and 
a fluorophor coupled secondary antibody (TY577) or with PAP detection reagent (all other cases) (see section 
5.2.6.7 for details). The bands of the TAP-tagged proteins are marked (x). Dashed boxes show a digitally 
enhanced view of the same blot. Lower panel: Tubulin was detected as a loading control. Rabbit IgG chains 
detected in the IP lanes by cross reaction of the secondary antibody are indicated (°). 
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Accordingly, these experiments could only provide evidence that Rrp5p and Utp4p are 

associated with rDNA chromatin in an RNA dependent manner, strongly suggesting co-

transcriptional recruitment of these proteins to nascent pre-rRNA. This is also likely to be the 

case for Noc1p and Noc2p, but remains to be experimentally validated.  
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4 Discussion 

4.1 Rrp5p, Noc1p and Noc2p form a protein complex that is 

associated with the earliest LSU precursor particles 

Previous studies indicated that the LSU biogenesis factors Noc1p and Noc2p form a protein 

complex (Milkereit et al., 2001) that might in addition interact with Rrp5p, a biogenesis factor 

required for both LSU and SSU maturation, independent of pre-ribosomal particles (Merl et 

al., 2010). In this work, a protein complex consisting of the proteins Noc1p, Noc2p and Rrp5p 

could be reconstituted from recombinantly expressed proteins, and low resolution images of 

the purified complex could be obtained. Architectural analyses showed that Noc1p can 

establish direct interactions with Noc2p and Rrp5p (Fig. 3-4) and thus enables formation of a 

bridged hetero-trimeric protein complex. Notably, the N-terminal part of Rrp5p, which is 

crucial for the function of Rrp5p in LSU maturation, is required and sufficient for stable 

interaction with Noc1p (Fig. 3-6), suggesting that the Rrp5p/Noc1p/Noc2p module might act 

as an entity in biogenesis of the large ribosomal subunit.  

In agreement with that, in vivo all module components were similarly stably associated with 

the first specific LSU precursor particles containing 27SA2 pre-rRNA (Fig. 3-7, 3-14) resulting 

from pre-rRNA processing within the ITS1 sequence, which frequently occurs co-

transcriptionally in yeast (Kos and Tollervey, 2010). In addition, Rrp5p, Noc1p and Noc2p 

were also part of common 90S pre-ribosomes containing 35S pre-rRNA and U3 snoRNA 

(Fig. 3-7, 3-14), consistent with the observed co-sedimentation of Noc1p and Noc2p with 35S 

pre-rRNA at ~ 90S (Milkereit et al., 2001) and co-precipitation of U3 snoRNA with human 

Noc2p/NIR (Wu et al., 2012). As it was previously suggested for Rrp5p (De Boer et al., 

2006), release of Rrp5p and Noc1p from pre-ribosomal particles occurred concomitant with 

or immediately after downstream pre-rRNA processing events yielding 27SB pre-rRNAs, and 

apparently involved different mechanisms in the alternative B1L and B1S processing 

pathways (Fig. 3-7). In contrast, Noc2p was also stably associated with intermediate pre-60S 

particles containing 27SB pre-rRNA (Fig. 3-14), most likely in complex with Noc3p (Milkereit 

et al., 2001; Nissan et al., 2002). However, it remained elusive if Noc2p stays associated with 

pre-ribosomes when Noc1p and Rrp5p are released, or if the Rrp5p/Noc1p/Noc2p module 

leaves (en bloc) and a Noc2p/Noc3p complex enters these particles. Consistent with the co-

purified RNA species, in proteome analyses of pre-ribosomes purified via Noc2p (U. 

Ohmayer, manuscript in preparation; J. Ossowski, 2010 (diploma thesis); M. Sauert, 2010 

(diploma thesis)), a similar set of early acting LSU biogenesis factors was identified as in pre-

ribosomes purified via Rrp5p or Noc1p (Fig. 3-8), and in addition several biogenesis factors 

described to be specifically associated with intermediate pre-60S particles containing 27SB 

pre-rRNA (e.g. Noc3p, Nsa1p, Sbp4p (Kressler et al., 2008; García-Gómez et al., 2011b)). In 

contrast to the Rrp5p and Noc1p purifications (Fig. 3-8), only few SSU processome 

components were identified in the Noc2p purifications. This is probably due to limitations in 

sensitivity in the mass spectrometric analyses, since the ratio of 90S pre-ribosomes to pre-
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60S particles in Noc2p purifications is much smaller than in Noc1p and Rrp5p purifications as 

judged by RNA analyses (Fig. 3-14).  

In summary, these results strongly suggest that the Rrp5p/Noc1p/Noc2p module is already 

incorporated into 90S pre-ribosomes and stays associated with the first specific LSU 

precursor particles after cleavage in the internal transcribed spacer 1.The same scenario 

probably also applies for other LSU biogenesis factors that were identified in pre-ribosomes 

associated with Noc1p and Rrp5p, and that were also shown to co-purify some U3 snoRNA 

or 35S pre-rRNA (e.g. Brix1p, Ebp2 (Shimoji et al., 2012), Ssf1p (Fatica et al., 2002), Nop7p 

(Harnpicharnchai et al., 2001), Nsa3p (Nissan et al., 2002)), raising an apparent 

contradiction to previous analyses suggesting that 90S pre-ribosomes are largely devoid of 

LSU biogenesis factors (Grandi et al., 2002). However, these findings are in agreement with 

the hypothesis that several 90S/SSU processome particles of different composition and 

maturation state are present in the cell (see (Granneman and Baserga, 2004) for a detailed 

discussion). Accordingly, one population of common 90S particles contains 35S pre-rRNA as 

well as SSU processome components and LSU biogenesis factors. After pre-rRNA 

processing within the ITS1 region precursor, which occurs in yeast with fast kinetics (Kos 

and Tollervey, 2010), these are segregated into the specific pre-40S and pre-60S particles, 

respectively. As a consequence, particles purified via SSU processome components (Fig. 3-

15; Grandi et al., 2002) comprise a mixture of early, common 90S pre-ribosomes and 

predominantly later, specific SSU processome particles (containing 23S, 22S, 21S pre-

rRNAs), which explains the observed apparent lack of LSU biogenesis factors in 90S pre-

ribosomes. Analogously, LSU biogenesis factors like Noc1p and Noc2p co-purify 

predominantly pre-60S rRNA and other LSU biogenesis factors and only minor amounts of 

35S pre-rRNA and SSU processome components.  

Components of the SSU processome can co-transcriptionally bind to nascent pre-rRNA 

(Wery et al., 2009), resulting in compaction of the RNA and formation of knob like structures 

at the ends of the nascent transcripts, which can be visualised by electron microscopy and 

are referred to as „terminal balls‟ or „SSU knobs‟ (Miller and Beatty, 1969, Mougey et al., 

1993; Dragon et al., 2002; Osheim et al., 2004). In exponentially growing yeast cells, ~ 70% 

of the nascent transcripts are co-transcriptional processed in the ITS1 region, resulting in 

loss of the „SSU knobs‟ (Osheim et al., 2004; Kos and Tollervey, 2010). Subsequently, new 

structures termed „LSU knobs‟ are formed on the nascent pre-60S rRNA that are supposed 

to result from co-transcriptional binding of LSU biogenesis factors to pre-rRNA ((Osheim et 

al., 2004); see Fig. 2-9). 

Several experiments described here provided evidence that Rrp5p, Noc1p and Noc2p can 

co-transcriptionally bind to the nascent pre-rRNA. First, Rrp5p, Noc1p and Noc2p co-purified 

not only U3 snoRNA, but also (numerous) protein components of the SSU processome that 

are supposed to be co-transcriptionally recruited to pre-rRNA (see above). Second, Rrp5p 

and Noc1p co-purified several subunits of Pol-I (Fig. 3-8), and were identified as specific 

components of Pol-I transcribed chromatin (Fig. 3-16). Third, Rrp5p, Noc1p and Noc2p were 

associated with specific regions of the 35S rDNA, which in case of Rrp5p could be shown to 

be sensitive to RNase treatment (Fig. 3-17, 3-18). Accordingly, Rrp5p, Noc1p and Noc2p are 

good candidates to be components of the „LSU knobs‟. Notably, the size of the reconstituted 
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complex (particles of ~ 8 & 12nm diameter, Fig. 3-5) is smaller than the size of the „LSU 

knobs‟ (~ 15-20 nm diameter (Osheim et al., 2004)). This indicates that other LSU factors 

that are part of pre-ribosomes co-purified with Noc1p and Rrp5p and which were identified as 

components of Pol-I transcribed chromatin (Fig. 3-16) and/or to co-purify 35S pre-rRNA or 

U3 snoRNA (see above) could also be part of the „LSU knobs‟, as previously suggested for 

Nop53p (Granato et al., 2008) and Nop15p (Wery et al., 2009). 

4.2 The function of Rrp5p, Noc1p and Noc2p in ribosome 

biogenesis  

4.2.1 Formation of the Rrp5p/Noc1p/Noc2p module is required for the stability 

of LSU precursor particles 

Analyses of pre-rRNA processing phenotypes in yeast cells in which the function of Noc1p or 

Noc2p was impaired due to the use of temperature sensitive alleles confirmed that the 

function of Noc1p and Noc2p is specific for the LSU maturation pathway, as formation of 25S 

and 5.8SrRNAs, but not of 18S rRNA was inhibited (Fig. 3-1; (Edskes et al., 1998; Milkereit 

et al., 2001)). Furthermore, these experiments and steady state analyses of pre-rRNA 

processing phenotypes after in vivo depletion of Noc1p or Noc2p (Fig. 3-3), showed severely 

reduced levels of all LSU specific precursor RNAs but no direct effect on the levels of the 

common 35S pre-rRNA. These results indicated that Noc1p and Noc2p are required for the 

formation of stable pre-60S particles, which are otherwise prone to degradation. A similar 

destabilization of pre-60S particles was observed after in vivo depletion of Rrp5p (Fig. 3-3), 

albeit accompanied by equally reduced 20S levels, consistent with the described function of 

Rrp5p in LSU and SSU biogenesis (Venema and Tollervey, 1996). Accordingly, association 

with the Rrp5p/Noc1p/Noc2p module appears to be essential for the stability of early LSU 

precursor particles. In agreement with that, characterisation of several truncated noc1-ΔX 

alleles showed that perturbation of any interaction of Noc1p with Noc2p, Rrp5p or pre-rRNA 

is accompanied by defects in pre-rRNA processing, destabilisation of pre-rRNAs and 

impaired growth (Fig. 3-11, 3-12, 3-13).  

Analyses of the binding hierarchy of the module components to pre-ribosomes showed that 

Noc1p and Noc2p are still associated with U3 snoRNA, 35S pre-rRNA and fragments thereof 

after in vivo depletion of Rrp5p (Fig. 3-14). Analogously, Rrp5p was still associated with U3 

snoRNA, 35S pre-rRNA and fragments thereof after in vivo depletion of Noc1p and Noc2p 

(Fig. 3-14). These findings indicated that the Rrp5p/Noc1p/Noc2p module has several 

interaction interfaces on pre-ribosomes, possibly by direct binding of pre-rRNA as described 

for Rrp5p in in vitro systems (De Boer et al., 2006; Young and Karbstein, 2011). In 

agreement with these reports, a major in vivo interaction site for Rrp5p is likely to be located 

in the ITS1 region between processing sites A2 and A3, as Rrp5p was stably associated with 

27SA2 but not 27SB pre-rRNA in wild type cells, and as Rrp5p co-purified efficiently 23S, but 

not 20S pre-rRNA from cells depleted of Noc1p or Noc2p (Fig. 3-14). In this way, Rrp5p 

could modulate the local structure of the ITS1 region to enable subsequent processing steps 

and to regulate their order as previously discussed (Fig. 3-9; (Torchet and Hermann-Le 



DISCUSSION 
 

66 
 

Denmat, 2000; Eppens et al., 2002; Bax et al., 2006a)). This could explain the impact of 

Rrp5p on both A2 and A3 site cleavage (Venema and Tollervey, 1996), although no direct 

interactions of Rrp5p with the respective endonucleases (Rcl1p, RNase MRP) are apparent 

(Horn et al., 2011) or have been described so far. The existence of (an) additional binding 

site(s) on pre-rRNA upstream of the A2 processing site (Young and Karbstein, 2011) was 

supported by the observation that C-terminal fragments of Rrp5p co-purified significant 

amounts of 35S pre-rRNA, but no specific LSU precursor rRNAs (Fig. 3-9). 

In contrast to Rrp5p, RNA binding activity of Noc1p and Noc2p has not been analysed to 

date. However, as Noc1p and Noc2p are associated with very early pre-ribosomes, it is not 

unlikely that these proteins establish direct contacts with pre-rRNA. Furthermore, 

recombinantly expressed and purified human Noc1p/CBF showed specific DNA binding 

activity in vitro (Lum et al., 1990), suggesting that Noc1p could have a general affinity for 

nucleic acids. Potential binding sites for Noc1p/Noc2p are expected to be downstream of the 

A3 processing site, as neither Noc1p nor Noc2p co-purified significant amounts of 23S pre-

rRNA from cells depleted of Rrp5p (Fig. 3-14), and/or downstream of the B1L/S processing 

sites, as Noc1p was specifically associated with 27SBL pre-rRNA (Fig. 3-7). Consistently, 

depletion of Noc1p and Noc2p showed no direct or specific effects on A2 or A3 site 

cleavage, respectively (Fig. 3-3, 3-13). As the binding interdependency of Noc1p and Noc2p 

to pre-ribosomes was not directly addressed, it remained unclear if one or both proteins 

make contacts to pre-ribosomes/pre-rRNA. However, the combined results of the 

experiments analysing the in vivo interactions of truncated Noc1p variants (Fig. 3-12, 3-13) 

and the association of Noc1p with pre-ribosomes after depletion of Rrp5p (Fig. 3-14) 

provided indirect evidence that Noc1p could interact with pre-ribosomes/pre-rRNA 

independent of Noc2p. First, deletion of domain D2 just slightly affected the interaction of 

Noc1p with Noc2p, whereas the interactions with Rrp5p and pre-rRNA were severely 

weakened, but still detectable, indicating that ProtA-Noc1p-Δ2 is localized to the nucleolus. 

Second, Rrp5p was not required for the association of Noc1p with pre-rRNA. Accordingly, 

interaction with Noc2p is not sufficient for stable association of Noc1p with pre-rRNA, 

suggesting a direct interaction between Noc1p and pre-ribosomes/pre-rRNA. Analogous 

studies with truncated Noc2p variants indicated that the interaction of Noc2p with Noc1p and 

with pre-ribosomes is not strictly correlated, either (Hierlmeier, 2008 (diploma thesis)). 

Therefor, both Noc1p and Noc2p could establish (weak) direct interactions with pre-

ribosomes/pre-rRNA resulting in stable association of the Noc1p/Noc2p sub-module with pre-

ribosomes. Future experiments will be required to determine if and how Noc1p and Noc2p 

bind to pre-rRNA (see section 4.3). 

In summary, these results suggested that the Rrp5p/Noc1p/Noc2p module can establish an 

extensive interaction network with the earliest pre-60S particles, and could thereby contribute 

to the structural organisation of these particles similar as it was suggested for the‟A3 factors‟ 

(see section 2.2.6; (Granneman et al., 2011; Sahasranaman et al., 2011)). In this way, or 

merely by covering different regions of pre-rRNAs, the respective RNA species could be 

protected from undesired access of, and degradation by endo- and exonucleases to enable 

the formation of stable LSU precursors. This function of the Rrp5p/Noc1p/Noc2p module is 

likely to be shared with, or to be achieved in cooperation with other LSU biogenesis factors 
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that are part of Noc1p and Rrp5p associated pre-ribosomes and whose depletion results in a 

similar destabilisation of all LSU precursor RNAs (e.g. Ssf1p (Fatica et al., 2002), Dbp9p 

(Daugeron et al., 2001), Rrs1p (Tsuno et al., 2000), Nop4p (Bergès et al., 1994)). A common 

function of early acting LSU biogenesis factors is also supported by the observation that in 

corresponding yeast mutant strains residual non-degraded pre-60S particles fail to leave the 

nucleolar compartment as described for Noc1p and Noc2p (Milkereit et al., 2001; Gadal et 

al., 2002b; Fatica et al., 2003; Miles et al., 2005), albeit the mechanism of this retention 

remains unclear.  

It was reported that overexpression of the conserved „NOC domain‟, found in Noc1p, Noc3p 

and Noc4p, prevents cell growth and leads to nuclear accumulation of pre-60S particles, but 

has no apparent effect on levels of 35S, 27S and 20S pre-rRNAs (Milkereit et al., 2001). 

Accordingly, it was suggested that the „NOC domain‟ might mediate the interaction of pre-

ribosomes with an intra-nuclear transport system. Although this is one possible scenario, the 

results presented here provide another potential explanation. As the region of Noc1p 

containing the „NOC domain‟ appeared to be important for the interaction with Noc2p (and 

Rrp5p) (Fig. 3-12), overexpression of the „NOC domain‟ could interfere with the formation of 

the Noc1p/Noc2p submodule and/or the Rrp5p/Noc1p/Noc2p module, without directly 

affecting the association of module components with pre-ribosomes. Accordingly, the single 

proteins could still cover different pre-rRNA regions and thus prevent access of nucleases 

and stabilise pre-ribosomes/pre-rRNAs. However, the Rrp5p/Noc1p/Noc2p module could 

then no longer contribute to the structural organisation of the pre-ribosomes, thereby 

preventing further maturation steps, e.g. conversion of 27SA2 to 27SB pre-rRNA, and 

concomitant transport through the nucleolus. Since the pre-rRNA processing phenotypes 

after overexpression of the „NOC domain‟ was not analysed in detail, this effect may have 

been overlooked. It should be noted that such a retention model of immature or aberrant pre-

ribosomes was also suggested by Milkereit and colleagues as an alternative explanation for 

the nucleolar accumulation of LSU precursors after inactivation of Noc1p and Noc2p 

(Milkereit et al., 2001). Future experiments will be necessary to distinguish between these 

options. 

Finally, structural organisation of pre-60S particles could facilitate binding of other biogenesis 

factors and/or r-proteins that are required for subsequent maturation steps, in a similar way 

as suggested for the SSU maturation pathway. There, the binding hierarchy of early acting 

biogenesis factors (e.g. UTP-A, UTP-B, UTP-C complexes, U3 snoRNP, Noc4p/Nop15p etc., 

see section 2.2.5; (Dosil and Bustelo, 2004; Gallagher et al., 2004; Pérez-Fernández et al., 

2007, 2011), as well as their impact on r-protein assembly (Jakob et al., 2012), has been 

extensively studied, resulting in a well defined map describing their binding 

interdependencies. Analogous studies should help to determine the binding hierarchy of LSU 

factors to the earliest pre-60S particles and to determine their functions. As described in 

detail in the introduction (section 2.2.6), the „A3 factors‟ have a specific function in generation 

of the 27SBS pre-rRNA but do not affect levels of 27SA2 pre-rRNA (except for Erb1p (Pestov 

et al., 2001)), and contribute to the assembly of some r-proteins (Sahasranaman et al., 

2011). Furthermore, recruitment of the „A3 factors‟ to pre-ribosomes was described to 

depend on previous assembly of the r-proteins rpL7 and rpL8, whereas this was not the case 
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for Rrp5p, Noc1p and Noc2p (Jakovljevic et al., 2012). Accordingly, binding of the 

Rrp5p/Noc1p/Noc2p module might be an upstream requirement for the assembly of r-

proteins and the recruitment of the „A3 factors‟.  

Since all three proteins are conserved from yeast to human, and as human Noc2p/NIR and 

hRrp5p/NFBP affect ribosome biogenesis (see section 2.2.7; (Sweet et al., 2008; Wu et al., 

2012), the function of the module may also be conserved in evolution. 

4.2.2 The function of Rrp5p in the maturation of the small ribosomal subunit  

In contrast to Noc1p and Noc2p (section 4.2.1), Rrp5p is not only required to form stable pre-

60S particles, but has an additional function in the maturation of the small ribosomal subunit, 

as processing at sites A0, A1 and A2 is impaired in absence of Rrp5p (Venema and 

Tollervey, 1996). The functions in LSU and SSU maturation are separated into the N- and C-

terminal part of Rrp5p, respectively, and can be provided in trans by expressing the 

respective truncated Rrp5p variants (Torchet et al., 1998; Eppens et al., 1999). Congruently, 

the N-terminal part of Rrp5p was required and sufficient to mediate stable interaction with 

Noc1p (Fig. 3-6), and was associated with 90 S particles and also with pre-60S particles (Fig. 

3-9), whereas the C-terminal part did not interact with Noc1p and was apparently only 

associated with 90S pre-ribosomes (Fig. 3-6, 3-9). Furthermore, Rrp5p was described to be 

required for the recruitment of the UTP-C complex to pre-ribosomes (Pérez-Fernández et al., 

2007), which could be confirmed with a different experimental approach in this work (Fig. 3-

15). In contrast, analogous experiments indicated that Noc1p is not required for binding of 

UTP-C to pre-ribosomes (Fig. 3-15), underlining that Noc1p does not primarily affect SSU 

maturation.  

In summary, these results showed that formation of the Rrp5p/Noc1p/Noc2p module is not 

required for the function of Rrp5p in SSU maturation, suggesting that this function is provided 

by „free‟ Rrp5p not being part of the module. Although comparison of pre-ribosomes co-

purified with Noc1p and Rrp5p strongly suggested that Rrp5p is stably associated with pre-

ribosomes in the context of the module (section 4.1), some results indicated that such a 

population of „free‟ Rrp5p could weakly or transiently be associated with pre-ribosomes, 

either prior to or overlapping with module bound Rrp5p. First, Rrp5p was purified in large 

excess from cell extracts relative to Noc1p and other biogenesis factors (Fig. 3-8). Second, 

after treatment of cells with cross-linking reagents, Rrp5p was associated with similar rDNA 

regions (ITS2, 5‟ end of 25S rDNA) as components of the SSU processome (Fig. 3-17; (Wery 

et al., 2009)), whereas Noc1p and Noc2p were associated with the 3‟ region of 25S rDNA, 

similar as the LSU biogenesis factor Nop15p (Fig. 3-17; (Wery et al., 2009)). These specific 

patterns of rDNA association were suggested to result from gradual compaction of the SSU 

knobs and LSU knobs along the 35S rDNA with the most highly compacted particles being 

close to 5‟ and 3‟ ends of 25S rDNA, respectively (Wery et al., 2009). Third, the C-terminal 

part of Rrp5p, which provides the function in SSU maturation, was associated with 90S pre-

ribosomes but not with pre-60S particles (Fig. 3-9).  

Accordingly, pre-ribosomes could be associated with a population of „free‟ Rrp5p, and 

different scenarios are conceivable, how this Rrp5p population could act in ribosome 
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biogenesis: (i) The same Rrp5p molecule could first act in SSU maturation, stay associated 

with the pre-ribosomal particle, and subsequently recruit Noc1p/Noc2p and act in LSU 

biogenesis in the context of the module. (ii) A population of „free‟ Rrp5p could exclusively act 

in SSU maturation, whereas a Rrp5p/Noc1p/Noc2p module could provide the function in LSU 

maturation. However, the former one appears to be more likely, as there is good evidence 

that Rrp5p stably interacts with the ITS1 region of pre-rRNA between processing sites A2 

and A3, which could establish an RNA folding state that enables processing at these sites, 

and could contribute to the stability and/or life time of 27SA2 pre-rRNA (discussed in detail in 

section 4.2.1). Accordingly, exchange of different Rrp5p populations associated with this pre-

rRNA region is unlikely, and as processing of site A2 and A3 is required for SSU and LSU 

maturation, respectively, this suggests that the same population of Rrp5p acts in both 

pathways. Alternatively, two populations of Rrp5p could act in SSU biogenesis, one recruiting 

UTP-C and facilitating A0, A1 cleavage, and another one stably binding between A2 and A3 

and facilitating A2, and subsequently, A3 processing. 

4.2.3 A model for the binding of Rrp5p, Noc1p and Noc2p to pre-ribosomes 

Based on the results discussed above in detail, the following model is proposed how binding 

of Rrp5p, Noc1p and Noc2p to pre-ribosomes could occur in vivo. Initially, Rrp5p can co-

transcriptionally and independent of Noc1p and Noc2p bind to nascent pre-40S rRNA, 

probably weakly and upstream of the A2 processing site, and subsequently recruit the UTP-

C complex into evolving SSU processome particles (SSU knobs). After formation of the SSU 

processome, pre-rRNA processing at sites A0, A1 and A2 can occur co-transcriptionally 

while Pol-I transcribes the 5‟ region of 25S rDNA. This results in separation of the SSU-

processome components from pre-60S rRNA, but probably not of Rrp5p, as Rrp5p can make 

stable RNA contacts between A2 and A3 and is required for processing of A2 and A3. At this 

stage, Noc1p and Noc2p can be recruited to the nascent pre-60S rRNA, possibly via 

interaction of Rrp5p with Noc1p, and establish direct contacts to pre-rRNA (downstream of 

B1L). This results in formation of the Rrp5p/Noc1p/Noc2p module and enables the structural 

organisation of the pre-60S rRNA and the formation of the „LSU knobs‟, most likely in 

cooperation with other co-transcriptionally recruited LSU biogenesis factors. After 

transcription of the 25S rDNA has been completed, LSU precursors containing 27SA2 pre-

rRNA and amongst others the Rrp5p/Noc1p/Noc2p module components are released.  

In case that no co-transcriptional cleavage occurs, Rrp5p, Noc1p and Noc2p probably bind in 

the same order to the nascent transcript or, alternatively, to released 35S pre-rRNA, resulting 

in common 90S pre-ribosomes associated with the Rrp5p/Noc1p/Noc2p module. After 

processing at site A2, the module is segregated into the LSU maturation pathway. 

Accordingly, in this situation at least some functions of Rrp5p in SSU biogenesis (A2 

processing) would be achieved in the context of the module. 

A sequential assembly of the Rrp5p/Noc1p/Noc2p module members with pre-ribosomes 

would explain (i) why Rrp5p and Noc1p co-purified pre-ribosomes of very similar 

composition, although Rrp5p has a distinct function in SSU maturation, which does not 

require formation of the Rrp5p/Noc1p/Noc2p module, (ii) why Rrp5p was purified in excess 
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relative to Noc1p and other biogenesis factors and (iii) why Rrp5p was associated with 

similar rDNA regions as SSU processome components, in contrast to Noc1p or Noc2p.  

However, this model requires that the module is disassembled after its function in LSU 

maturation has been completed, at least into Rrp5p and a Noc1p/Noc2p submodule. As 

Noc1p co-purified slightly more efficiently 27SB pre-rRNA than Rrp5p did (Fig. 3-7), this 

could be the case. Nevertheless, this is not directly compatible with (i) the apparent existence 

of the Rrp5p/Noc1p/Noc2p module in cells in which ribosome biogenesis is shut down (Merl 

et al., 2010), and (ii) efficient reconstitution of the module in the heterologous expression 

system (Fig. 3-4). One possible explanation for this apparent discrepancy would be that 

structural rearrangements within the pre-ribosome concomitant with or immediately after 

formation of the 27SB pre-rRNA (as discussed in section 2.2.6) could disrupt the 

Rrp5p/Noc1p interaction. Thus Rrp5p would be released prior to Noc1p/Noc2p from the pre-

60S particle, and could immediately bind to another nascent 35S pre-rRNA molecule. In 

analogy, subsequently released Noc1p/Noc2p, either as submodule or as single proteins, 

would be rapidly recruited to pre-ribosomes containing Rrp5p. Alternatively, the same 

recycling pathway could occur by post-transcriptional modification of one or more module 

components. For instance, phosphorylation of Rrp5p in pre-60S particles could reduce its 

affinity to Noc1p and cause its release from the respective pre-rRNPs, while 

dephosphorylation of Rrp5p could occur in the context of the SSU processome, allowing 

subsequent recruitment of Noc1/Noc2p. Accordingly, when ribosome biogenesis is impaired, 

i.e. in absence of pre-ribosomal particles, the populations of free Rrp5p and Noc1p/Noc2p 

would increase. In the former case, this would directly allow formation of the module 

independent of pre-ribosomes, whereas in the latter, prior dephosphorylation of free Rrp5p 

by the respective phosphatase would be expected to be required therefor. Both scenarios 

are also compatible with the reconstitution of the module from recombinantly expressed 

proteins. Future experiments analysing the release mode and the modification state of the 

module components will be required to test this model and to identify potential modification 

enzymes. 

4.3 Outlook 

In this work, a reconstituted Rrp5p/Noc1p/Noc2p complex could be isolated in high purity and 

visualized in low resolution by electron microscopy. Obviously, future work should aim to 

obtain higher resolution images, e.g. by cryo-EM, to determine the structure of the complex 

in more detail. The ultimate goal should of course be crystallisation of the complex and 

determination of its structure by X-ray crystallography. Structural studies will also help to 

better understand the architecture of the module in regard of the stoichiometry of its 

components. Here, it could be shown that Noc1p interacts with Noc2p and the N-terminal 

part of Rrp5p to form a hetero-trimeric complex. Furthermore, analyses of in vivo interactions 

of truncated Noc1p variants (Fig. 3-12) indicated that the region of Noc1p surrounding its 

„NOC domain‟ could be sufficient for interaction with Noc2p, supporting the suggestion that 

the „NOC domain‟ might be a general protein-protein interaction motif whose binding 

specificity can be modulated by few amino acids (Kühn et al., 2009). These aspects should 
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be further investigated using recombinantly (co-)expressed proteins by analysing pairwise 

interactions between different truncated protein variants and the effect of point mutations on 

specific interactions.  

Furthermore, the RNA binding activity of the Rrp5p/Noc1p/Noc2p module and its 

components should be addressed. Detailed in vitro studies were performed with Rrp5p 

(Young and Karbstein, 2011), indicating strong, unspecific affinity of the N-terminal part and 

weak, but specific affinity of the C-terminal part for model RNAs. Analogous studies should 

help to investigate if Noc1p and/or Noc2p can interact with RNAs and if so, to determine the 

important protein domains and RNA motifs or structures. In addition, comparison of the RNA 

binding properties of the complex and the single proteins, as well as analyses of a potential 

RNA folding activity of the module and its components will help to better understand the 

binding mode of the module in vivo, and to verify if the module can contribute to the structural 

organisation of pre-ribosomes. In a complementary approach, the in vivo RNA binding sites 

of Rrp5p, Noc1p and Noc2p should be analysed, for instance using the CRAC method 

(Granneman et al., 2009). 

Finally, a potential impact of Rrp5p, Noc1p and Noc2p on the recruitment of other biogenesis 

factors or on the assembly of r-proteins remains elusive. To address this question, the 

composition of pre-ribosomes in cells depleted of one of the module components could be 

analysed in comparison to the wild type situation to determine if specific factors or r-proteins 

are absent, but clearly, such experiments will be complicated by the destabilisation of the 

early pre-60S particles in this situation. In combination with analogous experiments after 

depletion of other early associated LSU biogenesis factors it should be possible to obtain a 

detailed map of the binding events in the earliest pre-60S particles, similar as for the SSU 

processome. 
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5 Material and Methods 

5.1 Material 

5.1.1 Yeast strains 

TY name genotype origin 

1 BSY420 mat A, ade2-1, can1-100, his3200, leu2-
3,112, trp1-1, ura3-1 

Milkereit et al, 2001 

23 noc2-1  mat alpha, ura3, his3, leu2 noc2::noc2-1 Amberg et al., 1992 

71 noc3-1 mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc3::HIS3, 
pNOPPA-noc3-1 (LEU2) 

Milkereit et al, 2001 

206 BY4741 mat A, his31, leu20, met150, ura30  Euroscarf  

483 BSY420 NOC1-TAP mat A, ade2-1, can1-100, his3200, leu2-
3,112, trp1-1, ura3-1, noc1:: NOC1-TAP-
TRP1 

Anja Ackermann 

543 CG379 mat alpha, ade5-1, his7-2, leu2-3,-112, 
trp1-289, ura3-52 

Cadwell et al., 1997 

577 CG379 NOC2-TAP mat alpha, ade5, his7-2, leu2-112, trp1-
289, ura3-52, noc2:: NOC2-TAP-TRP1 

Juliane Merl 

615 RRP5-TAP mat alpha, ADE2, ADE3, his3, leu2, trp1, 
ura3, rrp5::RRP5-TAP-TRP1 

gift from J. Baßler, 
Heidelberg 

616 RRP5 shuffle 
(YJV148) 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, pURA3 RRP5 (URA3) 

Venema and Tollervey, 
1996 

772 NOC1-Shuffle mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
YCplac33-pNOC1-NOC1 (URA3) 

Milkereit et al, 2001 

773 NOC2-Shuffle mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc2::HIS3, 
YCplac33-pNOC2-NOC2 (URA3) 

Milkereit et al, 2001 

774 NOC3 shuffle mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc3::HIS3, 
YCplac33-pNOC3-NOC3 (URA3) 

Milkereit et al, 2001 

775 pGAL-NOC1 mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
YCplac22-pGAL-NOC1 (TRP1) 

Ester Draken 

776 pGAL-NOC2 mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc2::HIS3, 
YCplac22-pGAL-NOC2 (TRP1) 

Ester Draken 

1540 CG379 UTP4-TAP mat alpha, ade5-1, his7-2, leu2-3,-112, 
trp1-289, ura3-52, utp4::UTP4-TAP-
URA3 

Steffen Jakob 

1965 CG379 NOG2-TAP mat alpha, ade5-1, his7-2, leu2-3,-112, 
trp1-289, ura3-52, nog2::NOG2-TAP-
URA3 

Juliane Merl  

2068 noc1-6 (genomic) mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::noc1-6 

this study; derivate of 
TY772 by genomic 
integration of noc1-6 allele 
(PCR on K113 with 
o2073/o2074) at NOC1 
locus 
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2069 noc1-7 (genomic) mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::noc1-7 

this study; derivate of 
TY772 by genomic 
integration of noc1-7 allele 
(PCR on K114 with 
o2073/o2074) at NOC1 
locus 

2070 noc1-6 (genomic) 
Rrp5-Myc 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::noc1-6, 
rrp5::RRP5-Myc9-natNT2 

this study; derivate of 
TY2068 by genomic 
integration of a tagging 
cassette (PCR on K1062 
with o287/o288) 

2071 noc1-6 (genomic) 
Rrp5-Myc Noc3-HA 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::noc1-6, 
rrp5::RRP5-Myc9-natNT2, noc3::NOC3-
HA3-hphNT1 

this study; derivate of 
TY2070 by genomic 
integration of a tagging 
cassette (PCR on K1063 
with o1901/o1902) 

2072 noc1-6 (genomic) 
Rrp5-Myc Noc3-HA 
Noc2-GFP 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::noc1-6, 
rrp5::RRP5-Myc9-natNT2, noc3::NOC3-
HA3-hphNT1, noc2::NOC2-GFP-kanMX 

this study; derivate of 
TY2071 by genomic 
integration of a tagging 
cassette (PCR on V47 with 
o908/o909) 

2073 noc1-7 (genomic) 
Rrp5-Myc 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::noc1-7, 
rrp5::RRP5-Myc9-natNT2 

this study; derivate of 
TY2069 by genomic 
integration of a tagging 
cassette (PCR on K1062 
with o287/o288) 

2074 noc1-7 (genomic) 
Rrp5-Myc Noc3-HA 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::noc1-7, 
rrp5::RRP5-Myc9-natNT2, noc3::NOC3-
HA3-hphNT1 

this study; derivate of 
TY2073 by genomic 
integration of a tagging 
cassette (PCR on K1063 
with o1901/o1902) 

2075 noc1-7 (genomic) 
Rrp5-Myc Noc3-HA 
Noc2-GFP 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::noc1-7, 
rrp5::RRP5-Myc9-natNT2, noc3::NOC3-
HA3-hphNT1, noc2::NOC2-GFP-kanMX 

this study; derivate of 
TY2074 by genomic 
integration of a tagging 
cassette (PCR on V47 with 
o908/o909) 

2079 NOC1-shuffle Rrp5-
Myc 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
rrp5::RRP5-Myc9-natNT2, YCplac33-
pNOC1-NOC1 (URA3) 

this study; derivate of 
TY772 by genomic 
integration of a tagging 
cassette (PCR on K1062 
with o287/o288) 

2080 NOC1-shuffle Rrp5-
Myc Noc3-HA 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
rrp5::RRP5-Myc9-natNT2, noc3::NOC3-
HA3-hphNT1, YCplac33-pNOC1-NOC1 
(URA3) 

this study; derivate of 
TY2079 by genomic 
integration of a tagging 
cassette (PCR on K1063 
with o1901/o1902) 

2081 NOC1-shuffle Rrp5-
Myc Noc3-HA Noc2-
GFP 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
rrp5::RRP5-Myc9-natNT2, noc3::NOC3-
HA3-hphNT1, noc2::NOC2-GFP-kanMX, 
YCplac33-pNOC1-NOC1 (URA3) 

this study; derivate of 
TY2080 by genomic 
integration of a tagging 
cassette (PCR on V47 with 
o908/o909) 

2154 pGAL-NOC1 Rrp5-
Myc Noc3-HA Noc2-
GFP 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
rrp5::RRP5-Myc9-natNT2, noc3::NOC3-
HA3-hphNT1, noc2::NOC2-GFP-kanMX, 
YCplac22-pGAL-NOC1 (TRP1) 

this study; derivate of 
TY2081 by plasmid 
shuffling with T33 

2201 PA-NOC1 mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
pNOPPA-Noc1-FL (LEU2) 

this study; derivate of 
TY772 by plasmid shuffling 
with K1442 



MATERIAL AND METHODS 
 

74 
 

2202 PA-noc1-delta1 mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
pNOPPA-noc1-delta1 (LEU2) 

this study; derivate of 
TY772 by plasmid shuffling 
with K1452 

2203 PA-noc1-delta7 mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
pNOPPA-noc1-delta7 (LEU2) 

this study; derivate of 
TY772 by plasmid shuffling 
with K1455 

2204 PA-noc1-delta1,7 mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
pNOPPA-noc1-delta1,7 (LEU2) 

this study; derivate of 
TY772 by plasmid shuffling 
with K1444 

2299 pGAL-RRP5 mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, YCplac22-pGAL-RRP5 
(TRP1) 

this study; derivate of 
TY616 by plasmid shuffling 
with K1517 

2301 pGAL-RRP5 NOC2-
TAP 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, noc2::NOC2-TAP-URA3, 
YCplac22-pGAL-RRP5 (TRP1) 

this study; derivate of 
TY2299 by genomic 
integration of a tagging 
cassette (PCR on V97 with 
o621/o622) 

2302 RRP5 shuffle 
NOC1-TAP 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, noc1::NOC1-TAP-TRP1, 
pURA3 RRP5 (URA3) 

this study; derivate of 
TY616 by genomic 
integration of a tagging 
cassette (PCR on K132 
with o177/o178) 

2303 RRP5 shuffle 
NOC2-TAP 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, noc2::NOC2-TAP-TRP1, 
pURA3 RRP5 (URA3) 

this study; derivate of 
TY616 by genomic 
integration of a tagging 
cassette (PCR on K132 
with o621/o622) 

2304 rrp5-S10-TPR-TAP 
rrp5-S1-9-GFP 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, pRS314-rrp5-S10-TPR-TAP 
(TRP1) pRS315-rrp5-S1-9-GFP (LEU2)  

gift from J. Baßler, 
Heidelberg 

2305 rrp5-deltaS-TAP 
rrp5-S1-9-GFP 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, pRS314-rrp5-deltaS-TAP 
(TRP1) pRS315-rrp5-S1-9-GFP (LEU2) 

gift from J. Baßler, 
Heidelberg 

2306 rrp5-S1-9-TAP rrp5-
deltaS-GFP 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, pRS314-rrp5-deltaS-GFP 
(TRP1) pRS315-rrp5-S1-9-TAP (LEU2) 

gift from J. Baßler, 
Heidelberg 

2307 RRP5-TAP mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, pRS315-RRP5-TAP (LEU2) 

gift from J. Baßler, 
Heidelberg 

2318 pGAL-RRP5 
UTP22-TAP 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, utp22::UTP22-TAP-URA3, 
YCplac22-pGAL-RRP5 (TRP1) 

this study; derivate of 
TY2299 by genomic 
integration of a tagging 
cassette (PCR on V97 with 
o2261/o2262) 

2322 RRP5-Shuffle 
UTP22-TAP 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, utp22::UTP22-TAP-kanMX, 
pURA3 RRP5 (URA3) 

this study; derivate of 
TY616 by genomic 
integration of a tagging 
cassette (PCR on V1890 
with o2952/o2953) 

2343 pGAL-RRP5 NOC1-
TAP 

mat A, ade2, his3, leu2, trp1, ura3, 
rrp5::HIS3, noc1::NOC1-TAP-URA3, 
YCplac22-pGAL-RRP5 (TRP1) 

this study; derivate of 
TY2299 by genomic 
integration of a tagging 
cassette (PCR on V97 with 
o177/o178) 

2417 NOC1-shuffle 
UTP22-TAP 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
utp22::UTP22-TAP-kanMX, YCplac33-
pNOC1-NOC1 (URA3) 

this study; derivate of 
TY772 by genomic 
integration of a tagging 
cassette (PCR on K1890 
with o2952/o2953) 
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2418 pGAL-NOC1 
UTP22-TAP 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
utp22::UTP22-TAP-kanMX, YCplac22-
pGAL-NOC1 (TRP1) 

this study; derivate of 
TY775 by genomic 
integration of a tagging 
cassette (PCR on K1890 
with o2952/o2953) 

2423 BY4741 A135-TEV-
ProtA 

mat A, his31 leu20 met150 ura30 
rpa135::RPA135-TEV-ProtA-kanMX6 

Jochen Gerber  

2424 BY4741 Rpb2-TEV-
ProtA 

mat A, his31 leu20 met150 ura30 
rpb2::RPB2-TEV-ProtA-kanMX6 

Jochen Gerber  

2499 NOC1-Shuffle 
RRP5-TAP 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
rrp5::RRP5-TAP-kanMX, YCplac33-
pNOC1-NOC1 (URA3) 

this study; derivate of 
TY772 by genomic 
integration of a tagging 
cassette (PCR on K1890 
with o287/o288) 

2500 NOC2-Shuffle 
RRP5-TAP 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc2::HIS3, 
rrp5::RRP5-TAP-kanMX, YCplac33-
pNOC2-NOC2 (URA3)  

this study; derivate of 
TY773 by genomic 
integration of a tagging 
cassette (PCR on K1890 
with o287/o288) 

2501 pGAL-NOC1 RRP5-
TAP 

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc1::HIS3, 
rrp5::RRP5-TAP-kanMX, YCplac22-
pGAL-NOC1 (TRP1) 

this study; derivate of 
TY2499 by plasmid 
shuffling with T33 

2502 pGAL-NOC2 RRP5-
TAP  

mat alpha, ade2-1, can1-100, his3200, 
leu2-3,112, trp1-1, ura3-1, noc2::HIS3, 
rrp5::RRP5-TAP-kanMX, YCplac22-
pGAL-NOC2 (TRP1) 

this study; derivate of 
TY2500 by plasmid 
shuffling with T34 

 

5.1.2 E. coli strains 

name  genotype  origin 

XL1blue  
recA1, endA1, gyrA96 thi-1, hsdR17, supE44, relA1, 
lac [F´ proAB lacIqZΔM15 Tn10 (TetR)]  

Stratagene  

BW23473  
Δ(argF-lac)169, ΔuidA3::pir+ , recA1, rpoS396(Am), 
endA9(del-ins)::FRT, rph-1, hsdR514, rob-1, creC510  

Imre Berger  

DH10Bac-eYFP  

pMON7124 (bom+, tra-, mob-), bMON14272 – eYFP, 
F– mcrA (mrr-hsdRMS-mcrBC) 80lacZΔ M15 lacX74 
recA1 endA1 araD139 (ara, leu)7697 galU galK – 
rpsL nupG  

Imre Berger  

 

5.1.3 SF21 insect cells 

The SF21 cell line is developed from primary explants of pupal tissue from the insect 

Spodoptera frugiperda (Vaughn et al., 1977). Cells were purchased from Invitrogen. 

 

5.1.4 Plasmids 

K name features origin generation 

V17 pNOPPA CEN6 ARSH4 LEU2 
pNOP1-ProteinA 

gift from 
Ed Hurt 

 

V47 pYM12 Ori-ColE1 AmpR 
yEGFP-tag-kanMX-
cassette 

(Knop et 
al., 1999) 
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V48 YCplac22GAL CEN4 ARS1 TRP1 
pGAL1/10  

gift from 
M. Künzler 

  

V96 pBS1479 Ori-ColE1 AmpR TAP-
tag-TRP1-cassette  

(Rigaut et 
al., 1999) 

  

      

T17 YCplac33 
NOC1 

CEN4 ARS1 URA3 
pNOC1-NOC1 

(Milkereit 
et al., 
2001) 

  

T19 YCplac33 
NOC3 

CEN4 ARS1 URA3 
pNOC3-NOC3 

(Milkereit 
et al., 
2001) 

  

T33 YCplac22GAL-
NOC1 

CEN4 ARS1 TRP1 
pGAL-NOC1  

Philipp 
Milkereit 

  

T34 YCplac22GAL-
NOC2 

CEN4 ARS1 TRP1 
pGAL-NOC2  

Philipp 
Milkereit 

  

     
113 pNOPPA-noc1-

6 
CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-6 

Philipp 
Milkereit 

 

114 pNOPPA-noc1-
7 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-7 

Philipp 
Milkereit 

  

132 pBS1539 Ori-ColE1 AmpR TAP-
tag-URA3-cassette  

(Puig et 
al., 2001) 

  

1062 pYM21 Ori-ColE1 AmpR 
9xMyc-tag-natNT2-
cassette  

(Janke et 
al., 2004) 

  

1063 pYM24 Ori-ColE1 AmpR 
3xHA-tag-hphNT1-
cassette  

(Janke et 
al., 2004) 

  

1127 pUCDM Ori-R6Kg ChlR loxP 
p10 polh 

(Berger et 
al., 2004) 

  

1129 pSPL Ori-R6Kg SpecR loxP 
p10 polh 

(Fitzgerald 
et al., 
2006) 

  

1130 pFL Ori-ColE1 AmpR 
GentR loxP Tn7L/R 
p10 polh 

(Fitzgerald 
et al., 
2006) 

  

1212 pFL-Flag-TEV Ori-ColE1 AmpR 
GentR loxP Tn7L/R 
p10 polh-FLAG-TEV 

Juliane 
Merl 

  

1213 pFL-Flag-TEV-
Noc2 

Ori-ColE1 AmpR 
GentR loxP Tn7L/R 
p10 polh-NOC2 

Juliane 
Merl 

  

1230 pUCDM-Noc1 Ori-R6Kg ChlR loxP 
p10 polh-NOC1 

Juliane 
Merl 

  

1232 pFL-Flag-TEV-
Noc2-pUCDM-
Noc1 

Ori-ColE1 Ori-R6Kg 
AmpR GentR ChlR 
loxP Tn7L/R p10 polh-
NOC2, polh-NOC1 

Juliane 
Merl 

  

1259 pSPL-6xHis-
Rrp5 

Ori-R6Kg SpecR loxP 
p10 polh-RRP5 

Juliane 
Merl 

  

1442 pNOPPA-
Noc1-FL 

CEN6 ARSH4 LEU2 
pNOP1-PA-NOC1 

this study  yeast NOC1 was generated by PCR 
using oligos o2056 and o2064 and 
cloned into V17 via HindIII/XhoI 
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1443 pNOPPA-noc1-
delta1-3 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta1-3 

this study truncated allele of yeast NOC1 was 
generated by PCR using oligos 
o2059 and o2064 and cloned into 
V17 via HindIII/XhoI 

1444 pNOPPA-noc1-
delta1,7 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta1,7 

this study truncated allele of yeast NOC1 was 
generated by PCR using oligos 
o2057 and o2063 and cloned into 
V17 via HindIII/XhoI 

1445 pGEMT-easy-
noc1-delta1 

Ori-ColE1 AmpR this study truncated allele of yeast NOC1 was 
generated by PCR using oligos 
o2057 and o2064 and cloned into 
pGEMT-easy vector (Promega) 

1446 pGEMT-easy-
noc1-delta1-4 

Ori-ColE1 AmpR this study truncated allele of yeast NOC1 was 
generated by PCR using oligos 
o2060 and o2064 and cloned into 
pGEMT-easy vector (Promega) 

1447 pGEMT-easy-
noc1-delta5-7 

Ori-ColE1 AmpR this study truncated allele of yeast NOC1 was 
generated by PCR using oligos 
o2056 and o2061 and cloned into 
pGEMT-easy vector (Promega) 

1448 pGEMT-easy-
noc1-delta7 

Ori-ColE1 AmpR this study truncated allele of yeast NOC1 was 
generated by PCR using oligos 
o2056 and o2063 and cloned into 
pGEMT-easy vector (Promega) 

1449 pGEMT-easy-
noc1-delta2 

Ori-ColE1 AmpR this study internal deletion allele of yeast NOC1 
was generated by SOE-PCR, using 
o2056/o2066 and o2065/o2064 to 
generate the 5' and 3' fragments, 
which were used as templates in a 
PCR with o2056/o2064. Product was 
cloned into pGEMT-easy vector 
(Promega) 

1450 pGEMT-easy-
noc1-delta3 

Ori-ColE1 AmpR this study internal deletion allele of yeast NOC1 
was generated by SOE-PCR, using 
o2056/o2068 and o2067/o2064 to 
generate the 5' and 3' fragments, 
which were used as templates in a 
PCR with o2056/o2064. Product was 
cloned into pGEMT-easy vector 
(Promega) 

1451 pGEMT-easy-
noc1-delta4 

Ori-ColE1 AmpR this study internal deletion allele of yeast NOC1 
was generated by SOE-PCR, using 
o2056/o2090 and o2069/o2064 to 
generate the 5' and 3' fragments, 
which were used as templates in a 
PCR with o2056/o2064. Product was 
cloned into pGEMT-easy vector 
(Promega) 

1452 pNOPPA-noc1-
delta1 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta1 

this study truncated allele of yeast NOC1 was 
subcloned from K1445 into V17 via 
HindIII/XhoI 

1453 pNOPPA-noc1-
delta1-4 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta1-4 

this study truncated allele of yeast NOC1 was 
subcloned from K1446 into V17 via 
HindIII/XhoI 

1454 pNOPPA-noc1-
delta5-7 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta5-7 

this study truncated allele of yeast NOC1 was 
subcloned from K1447 into V17 via 
HindIII/XhoI 



MATERIAL AND METHODS 
 

78 
 

1455 pNOPPA-noc1-
delta7 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta7 

this study truncated allele of yeast NOC1 was 
subcloned from K1448 into V17 via 
HindIII/XhoI 

1456 pNOPPA-noc1-
delta2 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta2 

this study truncated allele of yeast NOC1 was 
subcloned from K1449 into V17 via 
HindIII/XhoI 

1457 pNOPPA-noc1-
delta3 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta3 

this study truncated allele of yeast NOC1 was 
subcloned from K1450 into V17 via 
HindIII/XhoI 

1458 pNOPPA-noc1-
delta4 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta4 

this study truncated allele of yeast NOC1 was 
subcloned from K1451 into V17 via 
HindIII/XhoI 

1476 pFL-Flag-TEV-
Noc1 

Ori-ColE1 AmpR 
GentR loxP Tn7L/R 
p10 polh-NOC1 

this study yeast NOC1 subcloned from K1230 
into K1212 via SalI/XbaI  

1500 pMA-RQ-
3xHA-
Thrombin 

Ori-ColE1 AmpR 

START-3xHA-
Thrombin-site cassette  

Geneart gene synthesis 

1502 pSPL-3xHA-
ThrombinSS 

Ori-R6Kg SpecR loxP 
p10 polh-HA-
Thrombin-site 

M. Sauert/ 
this study 

START-3xHA-Thrombin-site cassette 
subcloned from K1500 (BglII/PstI) in 
K1129 BamHI/PstI) 

1503 pSPL-3xHA-
Rrp5 

Ori-R6Kg SpecR loxP 
p10 polh-RRP5 

M. Sauert/ 
this study 

yeast RRP5 subcloned from K1259 
into K1502 via BamHI/PstI 

1504 pFL-Flag-TEV-
Noc2-pSPL-
3xHA-Rrp5-
pUCDM-Noc1 

Ori-ColE1 Ori-R6Kg 
AmpR GentR ChlR 
SpecR loxP Tn7L/R 
p10 polh-NOC1, polh-
NOC2, polh-RRP5 

M. Sauert/ 
this study 

in vitro cre-lox recombination of 
plasmids K1213, K1230 und K1503 

1517 YCplac22GAL-
RRP5 

pGAL-RRP5 ARS1 
CEN4 TRP1 

this study yeast RRP5 subcloned from K1503 
into V48 via BamHI/PstI 

1608 pGEMT-easy-
noc1-delta1,2 

Ori-ColE1 AmpR this study truncated allele of yeast NOC1 was 
generated by PCR using oligos 
o2058 and o2064 and cloned into 
pGEMT-easy vector (Promega) 

1609 pGEMT-easy-
noc1-D3-6 

Ori-ColE1 AmpR this study truncated allele of yeast NOC1 was 
generated by PCR using oligos 
o2058 and o2063 and cloned into 
pGEMT-easy vector (Promega) 

1610 pGEMT-easy-
noc1-D4-6 

Ori-ColE1 AmpR this study truncated allele of yeast NOC1 was 
generated by PCR using oligos 
o2059 and o2063 and cloned into 
pGEMT-easy vector (Promega) 

1611 pGEMT-easy-
noc1-delta5 

Ori-ColE1 AmpR this study internal deletion allele of yeast NOC1 
was generated by SOE-PCR, using 
o2056/o2070 and o2091/o2064 to 
generate the 5' and 3' fragments, 
which were used as templates in a 
PCR with o2056/o2064. Product was 
cloned into pGEMT-easy vector 
(Promega) 

1612 pGEMT-easy-
noc1-delta6 

Ori-ColE1 AmpR this study internal deletion allele of yeast NOC1 
was generated by SOE-PCR, using 
o2056/o2072 and o2071/o2064 to 
generate the 5' and 3' fragments, 
which were used as templates in a 
PCR with o2056/o2064. Product was 
cloned into pGEMT-easy vector 
(Promega) 
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1613 pNOPPA-noc1-
delta1,2 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta1,2 

this study truncated allele of yeast NOC1 was 
subcloned from K1608 into V17 via 
HindIII/XhoI 

1614 pNOPPA-noc1-
D3-6 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-D3-6 

this study truncated allele of yeast NOC1 was 
subcloned from K1609 into V17 via 
HindIII/XhoI 

1615 pNOPPA-noc1-
D4-6 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-D4-6 

this study truncated allele of yeast NOC1 was 
subcloned from K1610 into V17 via 
HindIII/XhoI 

1616 pNOPPA-noc1-
delta5 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta5 

this study truncated allele of yeast NOC1 was 
subcloned from K1611 into V17 via 
HindIII/XhoI 

1617 pNOPPA-noc1-
delta6 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc1-
delta6 

this study truncated allele of yeast NOC1 was 
subcloned from K1612 into V17 via 
HindIII/XhoI 

1624 pFL-Flag-TEV-
RRP5 

Ori-ColE1 AmpR 
GentR loxP Tn7L/R 
p10 polh-RRP5 

this study yeast RRP5 subcloned from K1259 
into K1212 via BamHI/PstI 

1658 pFL-Flag-TEV-
NOC1-pSPL-
3xHA-RRP5 

Ori-ColE1 Ori-R6Kg 
AmpR GentR SpecR 
loxP Tn7L/R p10 polh-
NOC1, polh-RRP5 

this study in vitro cre-lox recombination of 
plasmid K1476 and K1503 

1663 pNOPPA-noc3-
1 

CEN6 ARSH4 LEU2 
pNOP1-PA-noc3-1 

(Milkereit 
et al., 
2001) 

  

1677 pFL-Flag-TEV-
NOC2-pSPL-
3xHA-RRP5 

Ori-ColE1 Ori-R6Kg 
AmpR GentR SpecR 
loxP Tn7L/R p10 polh-
NOC2, polh-RRP5 

this study in vitro cre-lox recombination of 
plasmid K1212 and K1503 

1692 pGEMT-easy-
rrp5-S1-6+N 

Ori-ColE1 AmpR this study truncated allele of yeast RRP5 was 
generated by PCR using oligos 
o1972 and o2900 and cloned into 
pGEMT-easy vector (Promega) 

1693 pGEMT-easy-
rrp5-S1-6 

Ori-ColE1 AmpR this study truncated allele of yeast RRP5 was 
generated by PCR using oligos 
o2897 and o2900 and cloned into 
pGEMT-easy vector (Promega) 

1694 pGEMT-easy-
rrp5-S3-6 

Ori-ColE1 AmpR this study truncated allele of yeast RRP5 was 
generated by PCR using oligos 
o2898 and o2900 and cloned into 
pGEMT-easy vector (Promega) 

1695 pGEMT-easy-
rrp5-S4-9 

Ori-ColE1 AmpR this study truncated allele of yeast RRP5 was 
generated by PCR using oligos 
o2899 and o2901 and cloned into 
pGEMT-easy vector (Promega) 

1696 pGEMT-easy-
rrp5-S10-TPR 

Ori-ColE1 AmpR this study truncated allele of yeast RRP5 was 
generated by PCR using oligos 
o2905 and o1973 and cloned into 
pGEMT-easy vector (Promega) 

1697 pGEMT-easy-
rrp5-TPR 

Ori-ColE1 AmpR this study truncated allele of yeast RRP5 was 
generated by PCR using oligos 
o2906 and o1973 and cloned into 
pGEMT-easy vector (Promega) 

1698 pSPL-3xHA-
rrp5-S1-9+N 

Ori-R6Kg SpecR loxP 
p10 polh-rrp5-S1-9 

this study truncated allele of yeast RRP5 was 
generated by PCR using oligos 
o1972 and o2901 and cloned into 
K1502 via BamHI/PstI 
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1699 pSPL-3xHA-
rrp5-S1-6+N 

Ori-R6Kg SpecR loxP 
p10 polh-rrp5-S1-6 

this study truncated allele of yeast RRP5 was 
subcloned from K1692 into K1502 via 
BamHI/PstI 

1700 pSPL-3xHA-
rrp5-S1-6 

Ori-R6Kg SpecR loxP 
p10 polh-rrp5-S1-6-dN 

this study truncated allele of yeast RRP5 was 
subcloned from K1693 into K1502 via 
BamHI/PstI 

1701 pSPL-3xHA-
rrp5-S3-6 

Ori-R6Kg SpecR loxP 
p10 polh-rrp5-S3-6 

this study truncated allele of yeast RRP5 was 
subcloned from K1694 into K1502 via 
BamHI/PstI 

1702 pSPL-3xHA-
rrp5-S4-9 

Ori-R6Kg SpecR loxP 
p10 polh-rrp5-S4-9 

this study truncated allele of yeast RRP5 was 
subcloned from K1695 into K1502 via 
BamHI/PstI 

1703 pSPL-3xHA-
rrp5-S10-TPR 

Ori-R6Kg SpecR loxP 
p10 polh-rrp5-S10-
TPR 

this study truncated allele of yeast RRP5 was 
subcloned from K1696 into K1502 via 
BamHI/PstI 

1704 pSPL-3xHA-
rrp5-TPR 

Ori-R6Kg SpecR loxP 
p10 polh-rrp5-TPR 

this study truncated allele of yeast RRP5 was 
subcloned from K1697 into K1502 via 
BamHI/PstI 

1727 pSPL-3xHA-
rrp5-S1-9+pFL-
Flag-NOC1 

Ori-ColE1 Ori-R6Kg 
AmpR GentR SpecR 
loxP Tn7L/R p10 polh-
NOC1, polh-rrp5-S1-9 

this study in vitro cre-lox recombination of 
plasmid K1476 and K1698 

1728 pSPL-3xHA-
rrp5-S1-6+pFL-
Flag-NOC1 

Ori-ColE1 Ori-R6Kg 
AmpR GentR SpecR 
loxP Tn7L/R p10 polh-
NOC1, polh-rrp5-S1-6 

this study in vitro cre-lox recombination of 
plasmid K1476 and K1699 

1729 pSPL-3xHA-
rrp5-S1-6-
ΔN+pFL-Flag-
NOC1 

Ori-ColE1 Ori-R6Kg 
AmpR GentR SpecR 
loxP Tn7L/R p10 polh-
NOC1, polh-rrp5-S1-6-
ΔN 

this study in vitro cre-lox recombination of 
plasmid K1476 and K1700 

1730 pSPL-3xHA-
rrp5-S3-6+pFL-
Flag-NOC1 

Ori-ColE1 Ori-R6Kg 
AmpR GentR SpecR 
loxP Tn7L/R p10 polh-
NOC1, polh-rrp5-S3-6 

this study in vitro cre-lox recombination of 
plasmid K1476 and K1701 

1731 pSPL-3xHA-
rrp5-S4-9+pFL-
Flag-NOC1 

Ori-ColE1 Ori-R6Kg 
AmpR GentR SpecR 
loxP Tn7L/R p10 polh-
NOC1, polh-rrp5-S4-9 

this study in vitro cre-lox recombination of 
plasmid K1476 and K1702 

1732 pSPL-3xHA-
rrp5-S10-
TPR+pFL-Flag-
NOC1 

Ori-ColE1 Ori-R6Kg 
AmpR GentR SpecR 
loxP Tn7L/R p10 polh-
NOC1, polh-rrp5-S10-
TPR 

this study in vitro cre-lox recombination of 
plasmid K1476 and K1703 

1733 pSPL-3xHA-
rrp5-TPR+pFL-
Flag-NOC1 

Ori-ColE1 Ori-R6Kg 
AmpR GentR SpecR 
loxP Tn7L/R p10 polh-
NOC1, polh-rrp5-TPR 

this study in vitro cre-lox recombination of 
plasmid K1476 and K1704 

1890 pYM13 Ori-ColE1 AmpR TAP-
tag-kanMX-cassette 

(Janke et 
al., 2004) 
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5.1.5 Oligonucleotides 

 

Probes for Northern blotting 

oligo name sequence 

202 U3-sno-254 CCAACTTGTCAGACTGCCATT 

205 o2-18S CATGGCTTAATCTTTGAGAC 

207 o4-A2/A3 TGTTACCTCTGGGCCC 

209 o6-5.8 TTTCGCTGCGTTCTTCATC 

210 o7-E/C2 GGCCAGCAATTTCAAGTTA 

211 o8-C1/C2 GAACATTGTTCGCCTAGA 

212 o9-25S CTCCGCTTATTGATATGC 

1819 ext_ITS1_2 GTAAAAGCTCTCATGCTCTTGCC 

2474 5S-rDNA TTAACTACAGTTGATCGG 

 

Primer for qPCR 

oligo name sequence amplicon 

613 qPCR-PDC1-up CATGATCAGATGGGGCTTGA 
9 

614 qPCR-PDC1-do ACCGGTGGTAGCGACTCTGT 

710 M1 TGGAGCAAAGAAATCACCGC 
7 

711 M2 CCGCTGGATTATGGCTGAAC 

712 M3 GAGTCCTTGTGGCTCTTGGC 
3 

713 M4 AATACTGATGCCCCCGACC 

920 5S ChIP-F1 GCCATATCTACCAGAAAGCACC 
8 

921 5S ChIP-R1 GATTGCAGCACCTGAGTTTCG 

969 Prom ChIP-F2 TCATGGAGTACAAGTGTGAGGA 
1 

970 Prom ChIP-R1 TAACGAACGACAAGCCTACTC 

2011 qPCR6_for CTTGGATGTGGTAGCCGTTT 
2 

2012 qPCR6_rev TCGACCCTTTGGAAGAGATG 

2429 Laf 14 for AAAGAAGACCCTGTTGAGCTTGA 
6 

2430 Laf 14 rev GTATTTCACTGGCGCCGAA 

2481 rDNA8 Th fo GGTGGTAAATTCCATCTAAAGCTAAATATT 
5 

2482 rDNA8 Th re CACGTACTTTTTCACTCTCTTTTCAAA 

2864 IGS2-up-q GCATGCCTGTTTGAGCGTC 
4 

2865 IGS2-do-q CGACCGTACTTGCATTATACC 

 

Oligonucleotides used for genomic integration  

oligo name sequence  

177 noc1-TAP.f 
ATCTGCCGACGATTATGCTCAATATTTAGATCAAGATTC
AGACTCCATGGAAAAGAGAAG 

178 noc1-TAP.r 
TAATTTACAACACCGAAGTGTTTAGTTAATGTATTATTAT
TTTTACGACTCACTATAGGG 

287 RRP5-HA.forward 
GCTACTGAGTATGTCGCTAGCCATGAATCTCAAAAAGCA
GACGAACGTACGCTGCAGGTCGAC 

288 RRP5-HA.reverse 
AACTTAGCCATTTATATTACTTTACAGTTAAAAATCCATC
AGGAAATCGATGAATTCGAGCTCG 
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621 Noc2-TAP FP 
AAGTGATGATGACAACGAAGATGTTGAAATGTCAGACG
CT TCCATGGAAAAGAGAAG 

622 Noc2-TAP RP 
CTATTGAATTCAAGACAAAAAATCAAATCTTGCTGAGTT
GTACGACTCACTATAGGG  

908 NOC2_S2 
CTTAACTATTGAATTCAAGACAAAAAATCAAATCTTGCTG
AGTTGATCGATGAATTCGAGCTCG 

909 NOC2_S3 
CTGGAAAGTGATGATGACAACGAAGATGTTGAAATGTC
AGACGCTCGTACGCTGCAGGTCGAC 

1901 Noc3_S3-forw 
AAGGGGCTACGCTCTCTATCATCTAGATCTAAAGAGTGT
TCTAAA-cgtacgctgcaggtcgac 

1902 Noc3_S2-rev 
TAACGATAATCGTGGCTCTTTATATACTTAATATATAGGA
TCTAG-atcgatgaattcgagctcg 

2073 Noc1-Integr_fw 
gatattaaacctctccagtgtctttgttggtacagtaatcaaaaata 
atgagtgagaacaacggc 

2074 Noc1-Integr_rev 
ttaatttacaacaccgaagtgtttagttaatgtattattattttcta 
gtctgaatcttgatctaa 

2261 Utp22-TAP-F  
GAGATTGCTGCATTCGGGAATGACATGGTTATAAATTTT
GAGACAGATTCCATGGAAAAGAGAAG 

2262 Utp22-TAP-R  
TTTAATATTATACAGATACTTCTAAAAGTTATGATTTTGTT
GTTTATTTACGACTCACTATAGGG 

2952 UTP22-S3-fw  
ATGAGATTGCTGCATTCGGGAATGACATGGTTATAAATT
TTGAGACAGATCGTACGCTGCAGGTCGAC 

2953 UTP22-S2-REV 
GCTGCTTTAATTATTTAATATTATACAGATACTTCTAAAA
GTTATGATTTTGTTGTTTATT 
ATCGATGAATTCGAGCTCG 

 

Oligonucleotides used for cloning 

oligo name sequence 

1972 Rrp5-BamHI_for TTTTTTGGATCCATGGTAGCTTCCACCAAAAG 

1973 Rrp5-PstI_rev TTTTTTCTGCAGTTATTCGTCTGCTTTTTGAG 

2056 Noc1-D1-f_Hind+S gtact AAGCTT GTCGAC atgagtgagaacaacggcaa 

2057 Noc1-D2-f_Hind+S gtact AAGCTT GTCGAC ggacaaaatgatgatgttga 

2058 Noc1-D3-f_Hind+S gtact AAGCTT GTCGAC tctatgatgctaaacaagaa 

2059 Noc1-D4-f_Hind+S gtact AAGCTT GTCGAC aagggtaaacacggtggtaa 

2060 Noc1-D5-f_Hind+S gtact AAGCTT GTCGAC tacgacggccgcaagcgtga 

2061 Noc1-D4-rev_XhoI gtact CTCGAG cta ttccttcctttttatgtccttgt 

2062 Noc1-D5-rev_XhoI gtact CTCGAG cta cttggcacttctgtagacaaatc 

2063 Noc1-D6-rev_XhoI gtact CTCGAG cta aacatctggtctcgatttaacca 

2064 Noc1-D7-rev_XhoI gtact CTCGAG cta gtctgaatcttgatctaaatatt 

2065 Noc1-D3-delta2_f  ttccattggatcctcaagtt tctatgatgctaaacaagaa 

2066 Noc1-D1-delta2_r  ttcttgtttagcatcataga aacttgaggatccaatggaa 

2067 Noc1-D4-delta3_f tcaaaaatcaacctggctta aagggtaaacacggtggtaa 

2068 Noc1-D2-delta3_r  ttaccaccgtgtttaccctt taagccaggttgatttttga 

2069 Noc1-D5-delta4_f  aaagaaagaagaactttaaa tacgacggccgcaagcgtga 

2070 Noc1-D4-delta5_r  cctcttgctgtattggtctg ttccttcctttttatgtcct 

2071 Noc1-D7-delta6_f  ttgtctacagaagtgccaag gaagatgatagcgacgacag 

2072 Noc1-D5-delta6_r ctgtcgtcgctatcatcttc cttggcacttctgtagacaa 

2090 Noc1-D3-delta4_r tcacgcttgcggccgtcgta tttaaagttcttctttcttt 

2091 Noc1-D6-delta5_f aggacataaaaaggaaggaa cagaccaatacagcaagagg 
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2897 Rrp5-S1-BamHI_fw ttTttttt ggatcc ATG ctaattgaacatgtcaactttaaaacg 

2898 Rrp5-S3-BamHI_fw ttTttttt ggatcc ATG attactcaaatctcctcaattgatg 

2899 Rrp5-S4-BamHI_fw ttTttttt ggatcc ATG aagtatctaagaacaaatgatattcc 

2900 Rrp5-S6-PstI_rev ttTttttt ctgcag TTA tttagcgtctttaatcagagaac 

2901 Rrp5-S9-PstI_rev ttTttttt ctgcag TTA aactttaattgtggacatatttatgtc 

2905 Rrp5-S10-BamHI-fw ttTttttt ggatcc ATG tccacaattaaagttggtgatgaa 

2906 
Rrp5-TPR-BamHI-
fw 

ttTttttt ggatcc ATG actgtggatcaactggaaaag 

 

5.1.6 Chemicals 

Chemicals were purchased at the highest available purity from Sigma-Aldrich, Merck, Fluka, 

Roth or J.T.Baker, except agarose electrophoresis grade (Invitrogen), bromine phenol blue 

(Serva), Ficoll (Serva) G418/Geneticin (Gibco), nourseothricin (Werner Bioagents), 

gentamycin (PAA), 5-FOA (Toronto Research Chemicals), X-GAL (Peqlab), milk powder 

(Sukofin), Nonidet P-40 substitute (NP40) (USB Corporation), Tris ultrapure (USB 

Corporation) and Tween 20 (Serva). Isotope labelled compounds were purchased from 

PerkinElmer (5‟,6‟-[3H] uracil), and Hartmann Analytic (γ-32P-ATP). 

Ingredients for growth media were purchased from BD Biosciences (Bacto Agar, Bacto 

Peptone, Bacto Tryptone and Bacto Yeast Extract), Q-Biogene, Bio101, Inc. or Sunrise 

Science Products (Complete supplement mixtures (CSM), Yeast nitrogen base (YNB), amino 

acids, adenine) and Sigma-Aldrich (D(+)-glucose, D(+)-galactose, amino acids and uracil). 

 

5.1.7 Media and buffers 

Unless stated otherwise, all solutions have been prepared in water that has a resistivity of 

18.2 MΩ-cm and total organic content of less than five parts per billion. The pH values were 

measured at room temperature.  

Medium  Composition  

YPD  
(yeast extract, peptone, dextrose)  

1% (w/v) yeast extract  
2% (w/v) peptone  
2% (w/v) glucose  

YPDA  
(YPD plus adenine)  

YPD  
+ 100 mg/l adenine  

YPDU  
(YPD plus uracil)  

YPD 
+ 2 mg/ml uracil  

YPG  
(yeast extract, peptone, galactose)  

1% (w/v) yeast extract  
2% (w/v) peptone  
2% (w/v) galactose  

YPGA  
(YPG plus adenine)  

YPG  
+ 100 mg/l adenine  

SCD  
(synthetic complete dextrose)  

0.67% (w/v) YNB + nitrogen  
0.062% (w/v) CSM-his-leu-trp  
2% (w/v) glucose  
+ 20 mg/l L-histidine  
+ 100 mg/l L-leucine  
+ 50 mg/l L-tryptophan  

SCD-leu 
(SCD minus leucine)  

0.67% (w/v) YNB + nitrogen  
0.062% (w/v) CSM-his-leu-trp 
2% (w/v) glucose  
+ 20 mg/l L-histidine  
+ 50 mg/l L-tryptophan  
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SCD-trp  
(SCD minus tryptophan)  

0.67% (w/v) YNB + nitrogen  
0.062% (w/v) CSM-his-leu-trp 
2% (w/v) glucose  
+ 20 mg/l L-histidine  
+ 100 mg/l L-leucine  

SCD-his  
(SCD minus histidine)  

0.67% (w/v) YNB + nitrogen  
0.062% (w/v) CSM-his-leu-trp 
2% (w/v) glucose  
+ 50 mg/l L-tryptophan  
+ 100 mg/l L-leucine  

SCD-ura  
(SCD minus uracil)  

0.67% (w/v) YNB + nitrogen  
0.062% (w/v) CSM-his-leu-ura 
2% (w/v) glucose  
+ 20 mg/l L-histidine  
+ 100 mg/l L-leucine  

SCG  
(synthetic complete galactose)  

0.67% (w/v) YNB + nitrogen  
0.062% (w/v) CSM-his-leu-trp  
2% (w/v) galactose  
+ 20 mg/l L-histidine  
+ 100 mg/l L-leucine  
+ 50 mg/l L-tryptophan  

LB  
(luria broth)  

1% (w/v) tryptone 
 0.5% (w/v) yeast extract  
0.5% (w/v) NaCl  

SOB 
(super optimal broth) 

2% (w/v) tryptone  

0.5% (w/v) yeast extract  

0.5 g/l NaCl  

0.19 g/l KCl  

2.03 g/l MgCl2 x 6 H2O  

pH 7.0 with NaOH  

 

All media were autoclaved at 121°C for 20 minutes and subsequently stored at RT. To 

prepare plates, 2% (w/v) agar was added to the medium. SCG media lacking single amino 

acids were prepared analogous to SCD selection media. Antibiotics, 5-FOA and IPTG were 

added as stock solutions (see „buffer‟ table) or as powder to the autoclaved medium after 

cooling to ~ 60°C. Working concentrations were 0.1% (w/v) 5-FOA, 200 µg/ml (geneticin), 

300 µg/ml (hygromycin B), 100 µg/ml (nurseothricin), 100 µg/ml (ampicillin), 30 µg/ml 

(chloramphenicol), 50 µg/ml spectinomycin), 10 µg/ml (gentamycin), 10 µg/ml (tetracycline), 

0.5 mM IPTG. Plates were stored at 4°C in the dark. X-GAL was plated onto 

LB+amp/tetra/genta/IPTG plates prior to use (80 µl of a 50 mg/ml stock solution in DMSO).  

 

Medium for insect cell culture was purchased from Life technologies (Sf900 II SFM medium). 
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Buffer  Ingredients  Concentration  

10x PBS  NaCl  
KCl  
KH2PO4  
Na2HPO4  
pH 7.4 with NaOH  

1.37 M  
27 mM  
18 mM  
0.1 M  

1x PBST  NaCl  
KCl  
KH2PO4  
Tween-20 

0.137 M  
2.7 mM  
1.8 mM  
0.05% (v/v) 

4x lower tris (SDS-PAGE) Tris  
SDS 
pH 8.8 with HCl  

1.5 M  
0.4% (w/v)  

4x upper tris (SDS-PAGE) Tris  
SDS  
bromophenol blue  
pH 6.8 with HCl  

0.5 M  
0.4% (w/v)  

4x protein sample buffer 
(Laemmli buffer) 

Tris pH 6.8  
glycerol  
SDS  
β-mercaptoethanol 
bromophenol blue  

0.25 M  
40% (v/v)  
8.4% (w/v)  
0.57 M  

HU buffer  Tris pH 6.8  
SDS  
EDTA pH 8.0  
β-mercaptoethanol  
urea  
bromophenol blue  

0.2 M  
5% (w/v)  
1 mM  
0.21 M  
8 M  

10x electrophoresis buffer  Tris  
glycine  
SDS  

0.25 M  
1.92 M  
1% (w/v)  

transfer buffer (Western Blot)  Tris  
glycine  
methanol  

25 mM  
192 mM  
20% (v/v)  

Poinceau staining solution  Poinceau S  
HOAc  

0.5% (w/v)  
1% (v/v)  

Coomassie staining solution  Coomassie Brilliant Blue R 
250 methanol  
HOAc  

0.1% (w/v)  
45% (v/v)  
10% (v/v)  

destaining solution  methanol  
HOAc  

45% (v/v)  
10% (v/v)  

100x protease inhibitors (PIs)  benzamidine  
PMSF  
solvent: ethanol  
store at -20°C  

0.2 M  
0.1 M  

10x DNA loading buffer  Tris-HCl pH 8.0  
EDTA pH 8.0  
glycerol  
bromophenol blue  
xylene cyanol  

4 mM  
0.4 mM  
60% (v/v)  
 

5x TBE buffer  Tris  
boric acid  
EDTA pH 8.0  

445 mM  
445 mM  
10 mM  

IRN buffer Tris/HCl pH 8.0 
NaCl 
EDTA pH 8.0 

50 mM 
0.5 M 
20 mM 

AE buffer  NaOAc pH 5.3  
EDTA pH 8.0  

50 mM  
10 mM  
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RNA solubilization buffer  
(for agarose gel samples) 

formamide (deionised)  
formaldehyde  
MOPS buffer  
store at -20°C  

50% (v/v)  
8% (v/v)  
1x  

RNA solubilization buffer  
(for acryl amide gel samples) 

formamide (deionised)  
TBE  
check pH; should be pH 7 
Xylen cyanol 
Bromphenol blue 

80% (v/v) 
0.1x 

20x SSC  NaCl  
tri-sodium-citrate dihydrate  
pH 7.0 with HCl  

3 M  
0.3 M  

10x MOPS buffer  sodium acetate trihydrate  
MOPS  
EDTA pH 8.0  
pH 7.0 with NaOH  

20 mM  
0.2 M  
10 mM  

RNA hybridisation buffer Formamide  
SSC 
SDS 
Denhard‟s solution 

50% (v/v) 
5x 
0.5% (w/v) 
5x 

50x Denhard‟s solution Ficoll (Typ 400) 
Polyvinylpyrrolidone  
   (avg. MW 40000) 
BSA (Fraction V) 
store at -20°C 

10mg/ml 
10mg/ml 
 
10mg/ml 

5x Annealing buffer (PEX) Tris/HCl pH 7.5 
NaCl 
EDTA pH 8.0 

50 mM 
1.5 M 
10 mM 

1.25x RT-buffer (PEX) Tris/HCl pH 8.4 
DTT 
MgCl2 
dNTPs 
store at -20°C 

12.5 mM 
12.5 mM 
7.5 mM 
1.25 mM each 

2x PEX loading buffer formamide (deionised)  
EDTA pH 8.0 
Xylen cyanol 
Bromphenol blue 
store at -20°C 

95% (v/v) 
20 mM 

1x PEX loading buffer 2x PEX loading buffer 
H2O 

50% (v/v) 
50% (v/v) 

buffer A100 Tris/HCl pH 8 
KCl 
Mg(OAc)2 
Protease inhibitors 

20mM 
200mM 
5mM 
1x 

buffer A100 +T/T Tris–HCl pH 8 

KCl 
Mg(OAc)2 
Protease inhibitors 
Triton X-100 
Tween-20 

20mM 
200mM 
5mM 
1x 
0.5% (w/v) 
0.1% (w/v) 

buffer AC NH4OAC 
MgCl2 
pH ad 7.4 with HOAc 

100 mM 
0.1 mM 

ChIP Lysis buffer HEPES pH 7.5 
NaCl 
EDTA 
EGTA 
Triton X-100 
Na-Desoxycholate (DOC) 

50 mM 
140 mM 
5 mM 
5 mM 
1 % (w/v) 
0.1 % (w/v) 
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ChIP Wash buffer I HEPES pH 7.5 
NaCl 
EDTA 
Triton X-100 
Na-Desoxycholate (DOC) 

50 mM 
500 mM 
2 mM 
1 % (w/v) 
0.1 % (w/v) 

ChIP Wash buffer II Tris/HCl pH 8.0 
LiCl 
EDTA 
Nonidet P-40 alternative 
Na-Desoxycholate (DOC) 

10 mM 
250 mM 
2 mM 
0.5 % (w/v) 
0.5 % (w/v) 

RD buffer  glucose  
peptone  
malt extract  
yeast extract  
mannitol  
MgOAc  
store at -20°C  

2% (w/v)  
1% (w/v)  
0.6% (w/v)  
0.01% (w/v)  
12% (w/v)  
17.8 mM  

TELit  Tris pH 8.0  
LiOAc  
EDTA pH 8.0  
pH 8.0 with HOAc  

10 mM  
100 mM  
1 mM  

LitSorb  sorbitol  
solvent: TELit  
sterile filtration  

1 M  

LitPEG  polyethylene glycol 
(PEG3350) solvent: TELit  
sterile filtration  

40% (w/v)  

Tfb-I KAc  
MnCl2  
KCl  
glycerol 
pH 5,8 with 0,2 M HOAc 
sterile filtration 

30 mM  
50 mM 
100 mM  
15% (v/v)  
 

Tfb-II MOPS  
CaCl2  
KCl  
glycerol  
pH 7,0 with 1M NaOH  
sterile filtration 

10 mM  
75 mM  
10 mM  
15% (v/v)  
 

ampicilin stock solution  ampicilin  
store at -20°C  

100 mg/ml  

chloramphenicol stock solution  chloramphenicol  
solvent: EtOH 
store at -20°C  

30 mg/ml  

spectinomycin stock solution  spectinomycin 
store at -20°C  

50 mg/ml  

tetracyclin stock solution  tetracyclin  
solvent: 70% (v/v) EtOH 
store at -20°C  

10 mg/ml  

gentamycin stock solution  gentamycin  
store at -20°C  

10 mg/ml  

IPTG stock solution IPTG 
store at -20°C 

1 M 

DTT stock solution DTT (dithiothreitol) 
store at -20°C 

1 M 
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5.1.8 Enzymes 

Enzyme  Origin  

Antarctic Phosphatase  New England Biolabs (NEB) 

Cre Recombinase NEB 

GoTaq Polymerase Bio-Rad 

Herculase II Fusion DNA Polymerase Agilent 

HotStarTaq DNA Polymerase  Qiagen  

iProof High-Fidelity DNA Polymerase  Bio-Rad  

M-MLV Reverse Transcriptase Invitrogen 

Proteinase K  Sigma-Aldrich  

Restriction Endonucleases  New England Biolabs  

RNase A  Invitrogen  

RNase A/T1 cocktail Ambion 

T4 DNA Ligase  New England Biolabs  

T4 Polynucleotide Kinase NEB 

Taq DNA Polymerase  New England Biolabs  

Trypsin, sequencing grade  Roche  

 

5.1.9 Antibodies 

Antibody  Species  Dilution  Origin  

α-rpS8  rabbit  1:5000 Georgio Dieci 

α-Noc1 (serum) 

(to detect recombinant proteins) 

rabbit  1:500 E. Kremmer, GSF München 

α-Noc1 (affinity purified) 

(to detect endogenous proteins) 

rabbit  1:200 E. Kremmer, GSF München 

α-Noc2 (serum) 

(to detect recombinant proteins) 

rabbitv 1:500 E. Kremmer, GSF München 

α-Noc2 (affinity purified) 

(to detect endogenous proteins) 

rabbit 1:100 E. Kremmer, GSF München 

α-HA (3F10)  rat  1:5000  Roche  

α-Myc (9E10)  mouse  1:200  E. Kremmer  

α-Flag  rabbit 1:1000 Sigma-Aldrich 

α-ProteinA rabbit 1:10.000 Sigma-Aldrich 

α-Tubulin rat 1:1000 Abcam 

α-GFP  1:1000 Roche 

IRDye® 800CW Goat 
(polyclonal) Anti-Rabbit IgG 
(H+L), 

goat 1:5000 LI-COR 

α-mouse IgG (H+L) (peroxidase-
conjugated)  

goat  1:5000  Jackson IR/Dianova  

α-rabbit IgG (H+L) (peroxidase-
conjugated)  

goat  1:5000  Jackson IR/Dianova  

α-rat IgG+IgM (H+L) 
(peroxidase-conjugated)  

goat  1:5000  Jackson IR/Dianova  

PAP (peroxidase anti-
peroxidase)  

rabbit  1:5000  Sigma-Aldrich 
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5.1.10 Kits 

Kit  Origin  

Hot Star Taq qPCR kit Qiagen 

iTRAQ labelling kit  Life Technologies 

peqGOLD Plasmid Miniprep Kits Peqlab 

QIAEX II gel extraction kit Qiagen 

QIAquick PCR Purification Kit  Qiagen 

5.1.11 Consumables 

Material  Origin  

1 kb DNA ladder  New England Biolabs  

100 bp DNA ladder  New England Biolabs  

ANTI-FLAG M2 Affinity Gel  Sigma 

BcMag™ Epoxy-Activated magnetic beads  Bioclone Inc.  

BioMax MS Film  Sigma-Aldrich  

Blotting papers MN 827 B  Millipore  

BM Chemiluminescence Blotting Substrate (POD)  Roche  

ColorPlus Prestained Protein Marker, Broad Range (7-175 kDa)  New England Biolabs  

EN3HANCE Spray Surface Autoradiography Enhancer  PerkinElmer  

Extra Thick Blot Paper  Bio-Rad  

FLAG-Peptide Sigma 

FuGENE HD transfection reagent Promega 

glass beads (∅ 0.75-1 mm)  Roth  

IgG SepharoseTM 6 Fast Flow  GE Healthcare  

Immobilion-P Membrane PVDF 0,45 μm  Millipore  

Membrane PositiveTM  MP Biomedicals  

Micro Bio-Spin 6 Columns Bio-Rad 

MobiCol microspin column  (MoBiTec 

HYBOND ECL Nitrocellulose membrane GE Healthcare 

Protein Assay Dye Reagent Concentrate  Bio-Rad  

Protein Marker, Broad Range (2-212 kDa)  New England Biolabs  

rabbit IgG Sigma-Aldrich 

Salmon Sperm DNA (10 mg/ml)  Invitrogen  

Ultima Gold Liquid scintillation cocktail Perkin Elmer 

SimplyBlueTM SafeStain  Invitrogen  

SYBR Green  Roche  

yeast genomic DNA (strain S288C)  Invitrogen  

glycogen Ambion 

5.1.12 Equipment 

Device  Manufacturer  

4800 Proteomics Analyzer MALDI-TOF/TOF  Applied Biosystems  

Avanti J-26 XP centrifuge  Beckman Coulter  

AxioCam MR CCD camera  Zeiss  

Axiovert 200M microscope  Zeiss  

Biofuge Fresco refrigerated tabletop centrifuge  Hereaus  

Biofuge Pico tabletop centrifuge  Hereaus  

C412 centrifuge  Jouan  

Centrikon T-324 centrifuge  Kontron Instruments  
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CT422 refrigerated centrifuge  Jouan  

Electrophoresis system model 45-2010-i  Peqlab Biotechnologie GmbH  

Trans Blot Cell Biorad 

FLA-3000 phosphor imager  Fujifilm  

FPLC-System (Pumps P-500; Controller LCC-501+; 
Fraction Collector FRAC-100)  

Pharmacia Biotech  

Gel Max UV transilluminator  Intas  

IKA-Vibrax VXR  IKA  

Incubators  Memmert  

LAS-3000 chemiluminescence imager  Fujifilm  

MicroPulser electroporation apparatus  Bio-Rad  

NanoDrop ND-1000 spectrophotometer  Peqlab Biotechnologie GmbH  

Odyssey Infrared Imaging System LI-COR 

PCR Sprint thermocycler  Hybaid  

Philips CM12 electron microscope FEI Electron Optics 

Power Pac 3000 power supplies  Bio-Rad  

Rotor-Gene 3000  Corbett Research  

Roto-Shake Genie  Scientific Industries  

Shake incubators Multitron / Minitron  Infors  

slow-scan-CCD-Kamera, Model 0124 TVIPS Tietz 

SMART System  Pharmacia Biotech  

Sonifier 250  Branson  

Speed Vac Concentrator  Savant  

Superose 12 PC 3.2/30  GE Healthcare  

Thermomixer compact  Eppendorf  

Trans-Blot SD Semi-Dry Transfer Cell  Bio-Rad  

Ultrospec 3100pro spectrophotometer  Amersham  

Vacuum blotter  Biorad 

Drystar  H. Hoelzel 

XCell SureLock Mini-Cell electrophoresis system  Invitrogen  

5.1.13 Software 

Software  Producer  

4000 Series Explorer v.3.6  Applied Biosystems  

Acrobat 7.0 Professional v.7.0.9  Adobe  

Axiovision V 4.7.1.0  Zeiss  

Data Explorer v.4.5 C  Applied Biosystems  

GPS Explorer v.3.5  Applied Biosystems  

Illustrator CS3  Adobe 

Image Reader FLA-3000 V1.8  Fujifilm  

Image Reader LAS-3000 V2.2  Fujifilm  

Mascot  Matrix Science  

Microsoft Office 2007  Microsoft  

Multi Gauge V3.0  Fujifilm  

ND-1000 v.3.5.2  Peqlab Biotechnologie GmbH  

Photoshop CS v.8.0.1  Adobe  

Rotor-Gene 6000  Corbett Research  

SigmaPlot Systat 

VectorNTI Invitrogen 
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5.2 Methods  

5.2.1 Heterologous protein expression in SF21 insect cells using recombinant 

baculo viruses 

The baculo virus/SF21 insect cell expression system enables co-expression of recombinant 

proteins in the context of eukaryotic cells. In this way, reconstitution of eukaryotic protein 

complexes is often more easily achieved than by co-expression of the respective proteins in 

E.coli or by in vitro assembly from single, independently expressed and purified proteins. In 

this work, the MultiBac system (Berger et al., 2004; Fitzgerald et al., 2006) was used to 

generate recombinant baculo viruses encoding combinations of different yeast genes.  

 

 
Fig. 5-1: Overview of the MultiBac system  

A) All transfer vectors contain two strong baculo viral promoter sequences (polh, p10) followed by multiple cloning 
sites (expression cassettes EC1, EC2), as well as the LoxP recombination site and different resistance markers 
(GentR, KanR, AmpR, ChlR, SpecR). Only the acceptor vectors pKL and pFL contain Tn7 transposon elements 
required for the integration into the bacmid (see below). B) The transfer vectors can be fused using the Cre-Lox 
system and the resulting fusion plasmids can be selected by the respective combinations of antibiotics. C) 
Schematic presentation of the modified baculoviral genome (bacmid) containing resistance markers, a LoxP 
recombination site into which a plasmid containing the eYFP gene is integrated, and Tn7 transposition 
sequences. Since the latter are part of the lacZ gene encoding the enzyme β-galactosidase, integration of fusion 
plasmids into the bacmid via Tn7 transposition can be monitored by blue/white colony screening. Modified from 
Fitzgerald et al., 2006. 

Briefly, this system employs a four step strategy to generate the recombinant viruses (Fig. 5-

1). First, the genes of interest are inserted by standard cloning techniques into one of four 

transfer vectors (pSPL, pUCDM, pFL, pKL) under control of a strong viral promoter. Second, 

the plasmids are fused in vitro by site specific recombination at LoxP sites using the enzyme 

Cre-recombinase to combine different genes on one plasmid. Third, the fused plasmid is 

integrated in vivo into a modified viral genome (bacmid) via Tn7 transposition sites present in 

pFL and pKL vectors. This is achieved by transformation of the respective plasmid into the E. 

coli strain DH10MultiBac-eYFP, which carries the bacmid and a helper plasmid pMON7124 

encoding the DNA recombinase Tn7 transposase (see Bac-to-Bac® Baculovirus Expression 
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System manual; Invitrogen). Finally, the recombinant bacmid is isolated from the E. coli cells 

and transfected into SF21 insect cells, which subsequently produce recombinant baculo 

viruses. After amplification of the virus stock, the viruses are used to infect cultures of SF21 

cells resulting in expression of the recombinant proteins in insect cells. To monitor 

transfection and infection of insect cells, the bacmid contains in addition the gene encoding a 

fluorescent protein (eYFP). 

5.2.1.1 SF21 insect cell culture 

Maintenance cultures of SF21 insect cells were cultivated in suspension in Sf900 II SFM 

medium (life technologies) at 27°C on an orbital shaker (Heidolph Unimax 2010, 100 rpm) 

and diluted daily to a density of 0.5 x 106 cells per ml. 

For long term storage, aliquots of 60 x 106 cells were harvested by centrifugation (130 x g, 10 

min, RT), resuspended in 1 ml Sf900 II SFM medium supplemented with 30% foetal calf 

serum (FCS) and 10% sterile DMSO and rapidly frozen in cold (-20°C) isopropanol. After 24h 

at -20°C, the cells are either stored at -80°C (up to several months) or in liquid nitrogen (long 

term storage). 

5.2.1.2 Combination of genes and integration into the viral genome 

The coding regions of yeast NOC1, NOC2 and RRP5 (or truncated versions thereof) were 

amplified by PCR and inserted by standard cloning techniques (section 5.2.4.14) into the 

plasmids pUCDM, pFL, pSPL or derivatives thereof. PCR primers and resulting plasmids are 

listed in sections 5.1.5 and 5.1.4, respectively. Fusion plasmids containing combinations of 

genes were obtained by in vitro Cre-Lox recombination (section 5.2.4.12) of the respective 

plasmids. The fusion plasmids were transformed into E. coli DH10-MultiBac-eYFP cells 

(section 5.2.3.4) to integrate the plasmids into the viral genome. After blue/white colony 

screening on LB+Amp+Tetra+Genta+IPTG+X-GAL plates, the recombinant bacmids were 

isolated (section 5.2.3.7) and transfected into SF21 cells (section 5.2.1.3).  

5.2.1.3 Transfection of SF21 insect cells 

To 20 µl of bacmid DNA solution (section 5.2.3.7), 300 µl of Sf900 II SFM medium (life 

technologies) and 10 µl of FuGene transfection reagent (Promega) were added, carefully 

mixed by stirring and incubated for 30 min at RT. For each bacmid to be transfected, 1x106 

SF21 cells were seeded in each of two wells of a 6-well plate and incubated for 30 min to let 

cells adhere to the bottom. The supernatant was removed and 3 ml of fresh Sf900 II SFM 

medium was added to each well, followed by addition of 160 µl of the 

bacmid/medium/FuGene mix to each well. Cells were incubated at 27°C and transfection 

was monitored by fluorescence microscopy. After 48 – 60 h the supernatant containing the 

recombinant baculo viruses (V0 stock) was harvested and stored at 4°C in the dark.  

5.2.1.4 Amplification of recombinant baculo viruses 

Recombinant baculo viruses were amplified by infecting 50 ml SF21 cultures (0.5x106 

cells/ml) with 50-200 µl of the V0 stock (section 5.2.1.3) followed by incubation at 27°C with 

shaking (100 rpm). Cell density was monitored daily at the same time, and as long cells were 

doubling, cultures were diluted to 50 ml of 0.5x106 cells/ml. After growths arrest (< 1x 106 

cells/ml when counted), cultures were incubated another 24 h at 27°C. Cells were pelleted 

(130x g, 10 min, RT) and the supernatant containing the amplified virus (V1 stock) was 

stored at 4°C in the dark. Infection of the cells was monitored by fluorescence microscopy. 

The volume of V0 stock used for virus amplification was adjusted to achieve growth arrest 

after 2 - 4 days.  



MATERIAL AND METHODS 
 

93 
 

5.2.1.5 Expression of recombinant proteins in SF21 insect cells 

200 ml SF21 cell culture (1 x 106 cells/ml) in 1 l Erlmeyer flasks were infected with 5 ml of V1 

virus (section 5.2.1.4) and incubated for 48h at 27°C resulting in a cell density ~ 0.9-1.2 x 106 

cells/ml. Infection of the cells was monitored by fluorescence microscopy. Cells were 

harvested in aliquots of 50 x 106 cells. After centrifugation (130x g, 10 min, room 

temperature), cell pellets were flash frozen in liquid nitrogen and stored at -20°C. 

5.2.2 Work with Saccharomyces cerevisiae  

5.2.2.1 Cultivation of yeast strains  

Strains of the yeast Saccharomyces cerevisiae were cultivated using standard 

microbiological methods (Amberg et al., 2005). Liquid cultures were grown in the appropriate 

medium (section 5.1.7) usually at 30°C, except for temperature-sensitive mutants (24°C) or 

for temperature-shift experiments (24°C, 37°C). Cell growth was monitored by measuring the 

optical density at 600 nm (OD600). For cultivation on solid agar plates containing the 

appropriate medium, single colonies or small aliquots of glycerol stocks were streaked out 

using sterile disposable inoculation loops in order to obtain colonies derived from single 

yeast cells. Plates were incubated upside down at the respective temperatures for 1-5 days. 

Short-term storage of yeast strains was accomplished by keeping the agar plates at 4°C.  

5.2.2.2 Preparation of competent yeast cells  

50 ml of a exponentially growing yeast culture (OD600 ∼ 0.5-0.7) were harvested by 

centrifugation for 5 min at 4000 rpm and RT. Cells were washed with 25 ml sterile H2O and 5 

ml LitSorb before resuspending in 360 µl LitSorb. 40 µl of Salmon Sperm DNA, which were 

incubated for 5 min at 99°C and immediately chilled on ice, were added to the cell 

suspension. After mixing, 50 µl aliquots were transferred to 0.5 ml tubes and stored at -80°C.  

5.2.2.3 Transformation of competent yeast cells  

An aliquot of competent yeast cells (section 5.2.2.2) was thawed on ice. DNA to be 

transformed (100 ng of plasmid DNA or 5-10 μg of linear DNA for integration into the 

genome) was added and the sample was mixed. After addition of six volumes of LitPEG, the 

suspension was mixed thoroughly and incubated for 30 min at RT on a turning wheel. Sterile 

DMSO was added to the sample (1/9 of the total volume), followed incubation at 42°C for 15 

min and centrifugation for 1 min at 3000 rpm and RT. When selecting for auxotrophic 

markers (e.g. TRP1, LEU2, URA3), the cell pellet was directly resuspended in 100 µl sterile 

H2O and plated on SCD- or SCG-plates lacking the corresponding amino acid. If selection for 

antibiotic resistance (e.g. geneticin, hygromycin B) was required, the cell pellet was 

resuspended in 5 ml YPD or YPG and incubated for 2-3 generation times at 30°C (24°C for 

temperature sensitive strains) while shaking to allow the expression of the marker before 

plating on the respective selection media (section 5.1.7). Since selection for antibiotic 

resistance often results in a high number of transient transformants, these plates were 

replica-plated on fresh selection media to identify positive clones.  

5.2.2.4 Generation of strains expressing affinity tag fusion proteins 

Yeast strains expressing endogenously encoded hemagglutinin (HA), Myc, GFP, Protein A or 

tandem affinity purification (TAP) tag fusion proteins were constructed by transformation of 

PCR based (section 5.2.4.6) tagging cassettes and homologous recombination as described 

(Puig et al., 2001, Knop et al., 1999), using different auxotrophy or resistance markers for 

selection. The plasmids and oligonucleotides used are listed in section 5.1.4 and 5.1.5, 

respectively. Resulting strains are listed in section 5.1.1. 
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5.2.2.5 Yeast plasmid shuffle  

The plasmid shuffle (Sikorski and Boeke, 1991) yeast strain TY772 (NOC1-shuffle) was used 

to test if truncated noc1-ΔX alleles can complement the essential function of NOC1. In this 

strain, the chromosomal copy of NOC1 is knocked out with the HIS3 marker gene and the 

deletion is complemented by a wild-type copy of NOC1 on a plasmid containing the counter-

selectable URA3 auxotrophy marker. The mutant alleles were introduced on another plasmid 

(V17) carrying a different selection marker (LEU2), and the cells were cultivated on SCD-Leu 

plates at 24°C. If the mutant allele is able to complement the chromosomal deletion, the 

plasmid containing the wild-type copy can be lost during cultivation. To select for clones 

which have lost the wild type plasmid, single colonies were streaked on SCD-Leu plates 

containing 5-FOA (5-Fluoro-orotic acid), which facilitates counter selection against cells 

carrying a functional URA3 gene. URA3 encodes the enzyme orotidin-5‟-phosphate 

decarboxylase of the uracil-biosynthesis pathway which also converts 5-FOA into the toxic 5-

fluorouracil (Boeke et al., 1984, 1987). Resulting clones were controlled for (i) the presence 

of the mutant vector, (ii) the loss of the wild-type plasmid and (iii) the maintenance of the 

chromosomal deletion via the respective auxotrophic markers. Single clones were further 

cultivated on YPD plates to obtain the mutant strains listed in section 5.1.1.  

Plasmid shuffling was also applied to generate strains that express RRP5, NOC1 and NOC2 

under control of the galactose inducible, glucose repressible GAL1/10 promoter (pGAL). To 

this end, the plasmid shuffle yeast strains TY616 (RRP5-shuffle), TY772 (NOC1-shuffle) and 

TY773 (NOC2-shuffle) were transformed with plasmids K1517 (pGAL-RRP5; TRP1), K37 

(pGAL-NOC1; TRP1) or K11 (pGAL-NOC2; TRP1), respectively, grown on SGC-trp plates 

and followed by counter selection on 5-FOA containing SGC-trp plates. Single clones were 

controlled for (i) the presence of the mutant vector, (ii) the loss of the wild-type plasmid and 

(iii) the maintenance of the chromosomal deletion via the respective auxotrophic markers, as 

well as for galactose dependent cell growth. Single clones were further cultivated on YPG 

plates to obtain the mutant strains listed in section 5.1.1.  

A modified plasmid shuffling protocol was applied to generate strains depending on 

chromosomally encoded temperature sensitive noc1 alleles. To this end, noc1 alleles were 

amplified from the respective plasmids by PCR (section 5.2.4.6) using primers that introduce 

flanking sequences (~ 50 nucleotides) homologous to the chromosomal regions upstream 

and downstream of the START and STOP codon of NOC1. The purified PCR products were 

transformed into TY772 (section 5.2.2.3) followed by incubation in SCD liquid medium at 

24°C for at least 3 generation times (or over night) to allow homologous recombination of the 

PCR product into the endogenous NOC1 locus and loss of the wild type plasmid. For counter 

selection, cells were subsequently grown on 5-FOA containing SCD plates at 24°C. Single 

clones were controlled for (i) the loss of the wild-type plasmid and (ii) the loss of the 

chromosomal deletion via the respective auxotrophic markers, and (iii) temperature sensitive 

growth. Single clones were further cultivated on YPD plates at 24°C to obtain the mutant 

strains listed in section 5.1.1. 

5.2.2.6 Spot test analysis of yeast strains  

Overnight cultures of the yeast strains to be tested were diluted to OD600 = 0.1 with sterile 

H2O. 7-10 μl of this cell suspension and of serial 1:10, 1:100, 1:1,000 and 1:10,000 dilutions 

in sterile H2O were spotted on the appropriate test plates (section 5.1.7). Growth phenotypes 

were monitored after incubation for 2-4 days at 16°C, 24°C, 30°C, and 37°C, respectively.  
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5.2.2.7 Growth kinetic analysis of yeast strains  

Cultures of the yeast strains to be tested were grown to stationary phase overnight. From 

these pre-cultures fresh cultures were inoculated to OD600 = 0.1 in the appropriate medium 

(section 5.1.7) and growth at the desired temperature was monitored by measuring the 

OD600 mostly in 1 h intervals. Since the strains were always kept in the exponential growth 

phase (OD600 ∼ 0.1-0.7) by dilution with the respective medium, the dilution factor had to be 

taken into account for the calculation of the growth kinetics.  

5.2.2.8 Long-term storage of yeast strains  

2 ml of an overnight culture of the yeast strain to be stored were mixed with 1 ml sterile 50% 

(v/v) glycerol and separated into two aliquots. Glycerol stocks were stored at -80°C. 

5.2.2.9 Crosslinking of yeast cells with formaldehyde  

Exponentially growing cells from 45 ml liquid culture were crosslinked by adding 1.25 ml 37% 

(v/v) formaldehyde and subsequent incubation for additional 15 min at the respective growth 

temperature while shaking. Crosslinking was quenched by adding 2.5 ml 2.5 M glycine. The 

culture was further incubated at growth temperature for additional 5 min. Cells were 

harvested by centrifugation in a 50 ml tube for 3 min at 3000 rpm and 4°C. The cell pellet 

was washed with cold water, transferred to a 1.5 ml tube, and frozen in liquid nitrogen before 

storage at -20°C.  

5.2.3 Work with Escherichia coli  

5.2.3.1 Cultivation of bacterial strains  

Liquid cultures were grown in LB medium supplemented with the required antibiotics (section 

5.1.7) at 37°C. Cell growth was monitored by measuring the optical density at 600 nm 

(OD600). For cultivation on solid agar plates containing LB medium and the required 

antibiotics, single colonies or small aliquots of glycerol stocks were streaked out using sterile 

disposable inoculation loops in order to obtain colonies derived from single bacterial cells. 

Plates were incubated upside down at 37°C for 1 day. Short-term storage of bacterial strains 

was accomplished by keeping the agar plates at 4°C.  

5.2.3.2 Preparation of electrocompetent bacterial cells  

In general, the E. coli strain XL1-Blue was used as a host for amplification of plasmid DNA, 

except for derivatives of pUCDM (K1127) or pSPL (K1129), which were propagated in the 

BW23473 strain, as these plasmids contain a replication origin derived from R6Kγ and hence 

require a host expressing the pir gene for propagation (Metcalf et al., 1994).  

In order to increase the efficiency of plasmid DNA uptake, competent cells for electroporation 

were prepared. Cells were grown in 400 ml SOB medium (section 5.1.7) at 37°C to mid-log 

phase (OD600 ∼ 0.35-0.6), chilled on ice for 15 min, and centrifuged for 10 min at 6000 rpm 

and 4°C. To reduce the ionic strength of the cell suspension, cells were washed three times 

with cold sterile H2O and once with sterile 10% (v/v) glycerol. After resuspending the cells in 

1.5 ml sterile 10% (v/v) glycerol, 50 μl aliquots were transferred to 1.5 ml tubes and stored at 

-80°C.  

5.2.3.3 Transformation of competent bacterial cells by electroporation  

An aliquot of electrocompetent bacterial cells (section 5.2.3.2) was thawed on ice. DNA to be 

transformed (1 ng of plasmid DNA or 2 μl of a ligation sample) was added and the sample 

was mixed. After pipetting the suspension into a cold 0.2 cm electroporation cuvette, pulsing 

was performed with program EC2 in a MicroPulser electroporation apparatus. Immediately 
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after the pulse, 1 ml LB medium (section 5.1.7) was added and the sample was transferred 

to a 1.5 ml tube following incubation for 30-60 min at 37°C. 100 μl of the cell suspension 

were plated on LB supplemented with the required antibiotics and incubated overnight at 

37°C. The residual cells were centrifuged for 1 min at 5000 rpm and RT. About 900 μl of the 

supernatant were discarded and the pellet was resuspended in the remaining liquid, plated 

as above, and incubated overnight at 37°C. 

5.2.3.4 Preparation of chemocompetent bacterial cells 

200 ml SOB medium (section 5.1.7) were inoculated from a stationary E. coli culture to an 

OD 600 = 0.2 and incubated at 37°C to a final OD600 ~ 0.5 – 0.6. Cells were harvested in 50 

ml Falcon tubes by centrifugation (4500 rpm, 10 min, 4°C). Each cell pellet was resuspended 

in 15 ml cold Tfb-I buffer, incubated on ice for 20 min and centrifuged as above. The cell 

pellets were resuspended and combined in a total volume of 4 ml cold Tfb-II buffer and 

incubated on ice for 20 min. 100 µl aliquots of the cell suspension were stored at – 80°C.  

5.2.3.5 Transformation of chemocompetent bacterial cells by heat shock 

An aliquot of chemocompetent bacterial cells (section 5.2.3.4) was thawed on ice. DNA to be 

transformed (10 - 100 ng of plasmid DNA) was added the sample was mixed and incubated 

on ice for 5 min. After a heat shock step (42°C, 40 sec), the samples was incubated on ice 

for another 3 min. Subsequently, 1 ml LB medium (section 5.1.7) was added and the sample 

was incubated for 30-60 min at 37°C in case of transformation of XL1-Blue or BW23473 

cells. When E. coli strain DH10MultiBac-eYFP was transformed to integrate plasmids 

carrying yeast genes in the baculoviral genome (bacmid) (section 5.2.1.2), cells were 

incubated at 37°C for 8 h or overnight. 100 µl of the cell suspension were plated on LB 

supplemented with the required antibiotics and incubated overnight at 37°C. The residual 

cells were centrifuged for 1 min at 5000 rpm and RT. About 900 μl of the supernatant were 

discarded and the pellet was resuspended in the remaining liquid, plated as above and 

incubated overnight at 37°C. For blue/white colony screening of transformed DH10MultiBac-

eYFP cells, the plates were in addition supplemented with IPTG and X-GAL. Single clones 

were restreaked on LB-plates containing the required antibiotics, IPTG and X-GAL to assure 

correct integration of the transformed plasmid into the bacmid. 

5.2.3.6 Purification of plasmid DNA from E. coli (mini-preparation) 

Plasmid DNA was isolated from 3-5 ml E. coli cultures with the peqGOLD Plasmid Miniprep 

Kit (Peqlab) according to the manufacturer‟s instructions. Briefly, cells were lysed, and 

plasmid DNA was isolated from the lysate by DNA trapping on a matrix. The plasmid DNA 

was further washed with an alcohol-based solution, and eluted from the matrix with sterile 

water.  

5.2.3.7 Bacmid preparation from E. coli 

Recombinant bacmids containing (combinations of) yeast genes were isolated from 

DH10MultiBac-eYFP cells transformed with the respective plasmids after blue/white colony 

screening (section 5.2.3.5). To this end, 4 ml LB medium containing Tetracyclin (10 µg/ml), 

Gentamycin (10 µg/ml) and Ampicillin (100 µg/ml) were inoculated with a single colony and 

incubated at 37°C overnight. 3 ml of cell culture were harvested in 15 ml Falcon tubes by 

centrifugation (4500 rpm, 5 min, RT). For cell lysis, solutions 1, 2 and 3 of the peqGOLD 

Plasmid Miniprep Kit (Peqlab) were used. The cell pellet was resuspended in 300 µl of 

Solution 1 and transferred to a 1.5 ml reaction tube. To lyse the cells, 300 µl of Solution 2 

were added, the tube was carefully inverted and the sample was incubated for 3 min at RT. 

After addition of 300 µl Solution 3, the tube was carefully inverted and cell debris was 
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removed by centrifugation (13000 rpm, 10 min, RT). The supernatant was transferred in a 

new reaction tube and centrifuged again (13000 rpm, 5 min, RT). The supernatant (~700 – 

750 µl) was transferred in a new reaction tube and 700 µl isopropanol were added, followed 

by centrifugation (13000 rpm, 10 min, RT) to precipitate the DNA. The supernatant was 

discarded and the DNA pellet was washed once with 200 µl cold 70% EtOH. After 

centrifugation (13000 rpm, 5 min, 4°C), the supernatant was completely removed and the 

pellet air dried for ~ 15 - 30 min in the sterile hood. Finally, the bacmid DNA was dissolved in 

30 µl sterile H2O by gentle stirring. 

5.2.3.8 Long-term storage of E. coli strains containing recombinant bacmids 

1 ml of the overnight culture used for bacmid isolation (section 5.2.3.7) was mixed with 0.5 ml 

sterile 50% (v/v) glycerol and stored at -80°C. 

5.2.4 Work with DNA  

5.2.4.1 Native agarose gel electrophoresis  

Native agarose gel electrophoresis was used to separate DNA fragments. Depending on the 

fragment size, electrophoresis was performed with gels composed of 0.8%, 1% or 1.2% (w/v) 

agarose and 0.5x TBE buffer (section 5.1.7) and containing 0.1 µg/ml ethidium bromide. 0.5x 

TBE was used as electrophoresis buffer and gels were run at 100-150 V. For length 

determination, 0.5 μg of a DNA standard (1 kb ladder or 100 bp ladder) was used in a 

concentration of 50 μg/ml in 1x DNA loading buffer. DNA fragments were visualized by 

exposing the gel to UV light (254 nm).  

5.2.4.2 Purification of DNA fragments from agarose gel 

DNA fragments of interest were cut out from agarose gels (section 5.2.4.1) and eluted using 

the QIAEX II gel extraction kit (Qiagen) following the instructions provided by the 

manufacturer. 

5.2.4.3 Phenol-chloroform extraction  

The same volume of a phenol:chloroform:isoamyl alcohol-mixture (25:24:1; Roth) was added 

to the sample. The samples were mixed by vortexing for two times 20 sec. After 

centrifugation for 5 min at 13000 rpm and RT, an aliquot of the upper, aqueous phase was 

transferred to a 1.5 ml tube.  

5.2.4.4 Ethanol precipitation of DNA  

If samples did not yet contain at least 0.25M salt, an equal volume of IRN buffer (section 

5.1.7) was added to the sample. DNA was precipitated by addition of 2.5 volumes of 100% 

ethanol; to precipitate small amounts of DNA, glycogen (5μl of 20mg/ml stock solution) was 

supplemented. Samples were kept at -20°C for at least 1 hour. DNA was pelleted at 13000 

rpm for 20 minutes at 4°C. To remove excess salt, the pellet was washed with ice-cold 70% 

ethanol. The supernatant was discarded, the pellet air-dried and dissolved in TE or water. 

5.2.4.5 DNA quantification using UV spectroscopy  

Concentration of pure DNA samples was measured by UV spectroscopy at 260 nm (1 

OD260 = 50 μg/ml) using a NanoDrop ND-1000 spectrophotometer. To determine 

contamination with proteins, absorbance was concomitantly measured at 280 nm. The ratio 

of OD260/OD280 of pure DNA is between 1.8 and 2.0.  
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5.2.4.6 Polymerase Chain Reaction (PCR)  

The annealing temperatures for all primers used in PCR (section 5.1.5) were estimated with 

the program „calc11‟ (http://www.promega.com/techserv/tools/biomath/calc11.htm).  

DNA fragments for integration in the yeast genome were amplified using GoTaq polymerase 

(Biorad) in 100µl reactions (50-100 ng template plasmid DNA, 0.5 µM of reverse and forward 

primers, 0.2 mM each dNTP, 5 U GoTaq). To account for the long integration primers that 

have only short hybridization sequences on the template plasmids, two-stage PCRs were 

performed. Annealing temperatures and amplification times were individually adjusted 

according to the manufacturer‟s manual. A typical PCR program was 1 cycle 95°C for 3 min, 

10 cycles 95°C for 30 sec, 46°C for 30 sec, 72°C for 2.5 min, 25 cycles 95°C for 30 sec, 

65°C for 30 sec, 72°C for 2.5 min, 1 cycle 72°C for 7 min.  

For amplification of DNA fragments used for cloning, proofreading PCR was performed using 

Herculase II fusion polymerase (Agilent) with yeast genomic DNA (~ 500 ng) or plasmid DNA 

(~ 50 ng) as templates in 50µl reactions (0.25 µM of reverse and forward primers, 0.25 mM 

each dNTP). Annealing temperatures and amplification times were individually adjusted 

according to the manufacturer‟s manual.  

Mutant rrp5 or noc1 alleles with deletions of 5‟ or 3‟ sequences were generated using primers 

that introduce a new START or STOP codon, respectively. Mutant noc1 alleles with deletions 

of internal sequences were generated by spliced overlap extension PCR (SOE-PCR; Ho et 

al., 1989). Briefly, the respective 5‟ and 3‟ parts of the gene were initially amplified by 

separate PCRs. The primers were designed in way that the reverse primer of the 5‟ fragment 

overlaps with the 5‟ end of the 3‟ fragment, and vice versa for the forward primer of the 3‟ 

fragment. The resulting PCR products were purified (see below) and employed as templates 

in a new PCR using the forward primer of the 5‟ fragment and the reverse primer of the 3‟ 

fragment to generate the internal deletion construct.  

5% of each PCR was analysed by agarose gel electrophoresis (section 5.2.4.1) and 

subsequently purified with Qiaquick PCR purification kit (Qiagen) according to the 

manufacturer or precipitated with ethanol (section 5.2.4.4) for cloning or integration, 

respectively. 

5.2.4.7 Quantitative real-time Polymerase Chain Reaction (qPCR)  

Quantitative real-time PCR was used to measure amounts a specific DNA fragment with high 

accuracy. The amount of DNA present at the end of each single PCR cycle was detected by 

measuring the fluorescence of SYBR Green. SYBR Green is a dye that exhibits fluorescence 

when bound to double-stranded DNA, but not in solution. Therefore, the intensity of the 

fluorescence signal allows direct measurement of the actual amount of DNA present in the 

sample. Quantitative real-time PCR reactions were performed in 0.1 ml tubes, the reaction 

volume was 20 µl. The reaction contained 4 µl of DNA sample and 16 µl of master mix. The 

master mix contained 4 pmol of both the forward and the reverse primer, 0.25 μl of a 

1:400000 SYBR Green stock solution in DMSO, 0.4 U HotStarTaq DNA Polymerase and a 

premix. The premix was composed of MgCl2 (final concentration in the reaction: 2.5 mM), 

dNTPs (final concentration in the reaction: 0.2 mM) and 10x PCR buffer (Quiagen) (final 

concentration in the reaction: 1x). Quantitative real-time PCR was performed in a Rotor-

Gene 3000 machine. The data were analysed with Rotor-Gene V6000.  

5.2.4.8 Adenylation of PCR products 

Proofreading polymerases yield blunt ended PCR products. However, for subsequent ligation 

into the pGEMT easy vector system (Promega), a 3‟ A overhang is required, which can be 

introduced by Taq Polymerase. To this end, ethanol precipitated (section 5.2.4.4) PCR 
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product was incubated in a 30 µl reaction containing 0.25 mM dATP, 1x Thermo-Pol buffer 

(NEB) and 2.5 U Taq polymerase (NEB) for 5 min at 72°C. The adenylated PCR product was 

subsequently purified using the QIAquick PCR Purification Kit (Quiagen) according to the 

manual. 

5.2.4.9 Digestion of DNA with restriction endonucleases  

A variety of restriction endonucleases were used to digest DNA in order to prepare defined 

DNA fragments for cloning or to check for presence and correct orientation of inserted DNA 

fragments. Restriction endonucleases were used as suggested by the manufacturer. After 

digestion, the DNA fragments were separated on agarose gels (5.2.4.1) and for cloning the 

desired fragment was purified from the gel (section 5.2.4.2). 

5.2.4.10 Dephosphorylation of DNA fragments 

Religation of the target plasmid can interfere with efficient ligation of the desired insert DNA 

into the plasmid. This problem can be minimized by dephosphorylation of the plasmid DNA 

after restriction enzyme digest. Digested plasmid DNA (section 5.2.4.2) was incubated in 1x 

Antarctic phosphatase buffer (NEB) with 5 U Antarctic phosphatase at 37°C for 1 h, followed 

by incubation at 65°C for 5 min to inactivate the enzyme. The dephosphorylated plasmid 

DNA was directly used for ligation reactions without further purification.  

5.2.4.11 DNA ligation + pGEMT vector 

In order to clone DNA sequences into yeast/bacterial plasmids, the quantity of purified DNA 

fragments digested with restriction endonucleases was measured by UV spectroscopy 

(section 5.2.4.5). A fivefold molar excess of insert DNA compared to the plasmid DNA 

fragment was incubated in a 20 µl ligation reaction using 400 U T4 DNA ligase (NEB) for 2 h 

at RT or overnight at 16°C. 2 µl of the ligation reaction were used for transformation of 

competent bacterial cells (section 5.2.3.3). 

Cloning of adenylated PCR products into the pGEMT vector system (Promega) was done 

according to the manual using a 3:1 molar excess of insert to vector DNA. 

5.2.4.12 in vitro cre-fusion of plasmids 

Plasmids containing the LoxP recombination site can be fused by site specific recombination 

using the enzyme cre-recombinase (Sternberg and Hamilton, 1981; Liu et al., 1998). 

Therefore, equimolar amounts of plasmids (~200 ng of the smaller plasmids) were incubated 

in a total of 10 µl in 1x cre recombination buffer (NEB) with 1 U Cre recombinase (NEB) for 

15 - 30 min at 37°C. Plasmid amounts and incubation times were adjusted to prevent multi 

plasmid fusions. After inactivation of the enzyme (10 min, 70°C), 2 µl of the reaction were 

transformed into electrocompetent E. coli cells (section 5.2.3.3) and selected on LB plates 

containing the required antibiotics. Plasmids were isolated from the resulting colonies 

(section 5.2.3.6) and analysed by restriction enzyme digestion (5.2.4.9). 

5.2.4.13 DNA sequencing and oligonucleotide synthesis  

DNA sequencing was performed by GENEART/Life technologies and the service of primer 

synthesis was provided by Eurofins MWG Operon. Oligonucleotides used in this work are 

listed in section 5.1.5. 

5.2.4.14 Plasmid construction 

To generate plasmids encoding yeast genes for the expression in S. cerevisiae or for the 

integration into baculo viral genomes (5.2.1), the respective genes were amplified by PCR 

(section 5.2.4.6) from yeast genomic DNA or from plasmid DNA using primers that introduce 

recognition sites for restriction endonucleases. The purified PCR products were digested with 
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the respective enzymes (section 5.2.4.9) and ligated into the target vector (section 5.2.4.11), 

which was digested with the same enzymes and dephosphorylated (section 5.2.4.10) to 

prevent plasmid relegation. Alternatively, the PCR products were adenylated (section 

5.2.4.8) and ligated into the pGEMT easy vector. Plasmids isolated from single colonies 

(section 5.2.3.6) obtained from E. coli cells transformed (section 5.2.3.3) with the ligation 

reaction were analysed by restriction enzyme digest. Resulting candidate plasmids were 

verified by DNA sequencing (section 5.2.4.13). If applicable, the genes were subcloned from 

the pGEMT vector into the target plasmids. Plasmids generated in this work are listed in 

section 5.1.4. 

5.2.5 Work with RNA  

5.2.5.1 RNA extraction  

RNA extractions were essentially performed as described previously (Schmitt et al., 1990). 

Samples from which RNA should be extracted (cell pellets, aliquots of cell lysates, affinity 

purified material) were resuspended or diluted in 500 μl AE buffer (section 5.1.7) and mixed 

with 500 μl phenol equilibrated in AE buffer and 50 μl of 10% (w/v) SDS. The samples were 

incubated in a thermomixer for 7 min at 1400 rpm and 65°C and afterwards chilled on ice for 

3 min. After centrifugation for 2 min at 13000 rpm and RT, 3x 150 µl of the aqueous phase 

was collected and mixed with 500 µl phenol equilibrated in AE buffer by vortexing. The 

samples were again centrifuged and 3x 120 µl of the supernatant were mixed with 500 µl 

chloroform by vortexing. Phases were separated by centrifugation and the RNA in 3x 100 μl 

of the supernatant was precipitated by addition of 750 µl NaOAc-EtOH mix (composed of 1 

volume 3 M NaOAc pH 5.3 and 25 volumes of ethanol) and incubation for at least 30 min at -

20°C. In case that RNA should subsequently be analysed in different gel systems, the 

sample was split in appropriate ratios (usually 1/3 for acryl amide, 2/3 for agarose gels) prior 

to incubation at -20°C. The precipitated RNA was dissolved in MOPS (for agarose gels) and 

TBE (for acryl amide gels) based solubilisation buffer (section 5.1.7), respectively, denatured 

by incubation for 15 min at 65°C, and stored at -20°C.  

5.2.5.2 Denaturing agarose gel electrophoresis of high molecular weight RNA 

Denaturing agarose gel electrophoresis was used to separate RNA species longer than 1000 

bases. In this work electrophoresis was routinely performed with gels composed of 1.2% 

(w/v) agarose, 2% (v/v) formaldehyde, and 1x MOPS buffer (section 5.1.7) containing 0.5 

µg/ml ethidium bromide. The electrophoresis buffer was composed of 1x MOPS buffer and 

2% (v/v) formaldehyde. Gels were run for 14-16 h at 40 V.  

5.2.5.3 Denaturing acryl amide gel electrophoresis of low molecular weight RNA 

Denaturing acryl amide gel electrophoresis was used to separate RNA species between 100 

and 500 bases. In this work electrophoresis was routinely performed with gels composed of 

6% (w/v) acryl amide (acryl amide: bis-acryl amide 37.5:1), 7 M urea and 0.5x TBE (section 

5.1.7). The electrophoresis buffer was 0.5x TBE. Gels were run for 75 – 90 min at 150 V.  

5.2.5.4 Northern Blotting (Vacuum transfer) 

RNAs separated on agarose gels (section 5.2.5.2) were transferred and immobilised on 

positively charged membranes (Positive™ MPBiomedicals) using different methods (see also 

section 5.2.4.5). In either case, the RNAs were cross-linked to the membranes by 1 min 

exposition to UV light (254/312 nm). Vacuum transfer was used for nonradioactive RNA 

samples. Prior to transfer, the agarose gels were washed once for 5 min in milli-Q water, 

once 20 min in 0.05 M NaOH to partially hydrolyse the RNAs and facilitate the transfer of 
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larger RNAs, and were further equilibrated 20 min in 10xSSC (section 5.1.7). The RNAs 

were transferred from the gel onto the positively charged membrane (Positive™ MP-

Biomedicals) applying a vacuum of 5 bar for 90 min using a vacuum blotter (Biorad). 

5.2.5.5 Northern Blotting (Passive capillary transfer) 

Passive capillary transfer was used for tritium labelled RNA samples (section 5.2.5.9). Prior 

to transfer, agarose gels were treated as described in section 5.2.5.4. Transfer of the RNAs 

from the agarose gel to the membrane was then achieved over-night by drawing the transfer 

buffer (10xSSC) from the reservoir upward through the gel into a stack of pumping paper. 

The RNAs were eluted from the gel and deposited onto the positively charged membrane 

with the help of the buffer stream. 

5.2.5.6 Northern Blot (electro transfer)  

RNAs separated on acryl amide gels (section 5.2.5.3) were transferred and immobilised on 

positively charged membranes (Positive™ MPBiomedicals) by electro transfer. Prior to 

transfer, the gels were stained with 0.5 µg/ml ethidium bromide solution in 0.5x TBE (section 

5.1.7) for 15 min. The RNAs were transferred from the gel onto the positively charged 

membrane in 0.5x TBE using a wet tank blotting apparatus (Biorad) and applying a voltage of 

50 V for 90 min. Subsequently, the RNAs were cross-linked to the dried membrane by 1 min 

exposition to UV light (254/312nm). 

5.2.5.7 Radioactive probe labelling and detection  

Different RNA species immobilised on solid supports can be detected using specific DNA 

probes. Probes used in this work are listed in section 5.1.5. 5‟ ends of all oligo-probes were 

labelled with 32P. 100 pmol of oligo-probe were incubated with 50 mCi of γ-32P-ATP 

(Hartmann Analytik), in 1x PNK buffer (NEB) and 10 U of T4 polynucleotide kinase (NEB) in 

a total volume of 15 µl for 30 - 45 min at 37°C. Reactions were stopped by addition of 1ml of 

0.5M EDTA pH 8. After addition of 50 µl H2O, labelled probes were purified from non-

incorporated nucleotides using a size exclusion column (Spin6-Biorad). Incorporated 

radioactivity was estimated by counting 1 µl of purified labelled probes using a scintillation 

counter (1600TR-Packard). Membranes carrying the RNAs to be isolated (sections 5.2.5.4, 

5.2.5.6) were pre-hybridised at least 1 h at 30°C in RNA hybridisation buffer (section 5.1.7). 

Membranes were then incubated at 30°C over night after addition of 1-2x106 cpm of 

radiolabelled probe per blot. The membranes were washed twice 15 min in 2x SSC at 30°C. 

Signals were acquired exposing the membrane to a Phosphoimager screen (Fujifilm). 

Screens were read out with the FLA-3000 phosphor imager (Fujifilm) and data were 

analysed with the Multigauge V3.0 software (Fujifilm).  

5.2.5.8 Primer extension analysis (PEX) 

Primer extension analyses employ a reverse transcription reaction to determine the 5‟ end of 

RNA molecules. Reactions were performed essentially as described (Venema et al., 1998) 

using 5‟ 32P-labelled antisense oligonucleotides (section 5.1.5) and RNAs dissolved in TBE 

based buffer (section 5.2.5.1) and appropriately diluted in H2O as templates. Normally, RNA 

amounts according to 0.05-0.1 OD of cells, to cell lysates of 0.1 µg total protein content or to 

0.2-0.5 % of precipitated material were used as template in primer extension reactions. 2-5 µl 

of the diluted RNA sample were incubated with 2 µl of the radiolabelled oligonucleotide 

(5.2.5.7) in 1x PEX annealing buffer (section 5.1.7) in total volume of 10 µl for 5 min at 80°C 

to denature the RNA, followed by 90 min incubation at 46°C to anneal the oligonucleotide. 

After addition of 40 µl 1.25x RT buffer, 20 U rRNasin (Promega) and 100 U M-MLV reverse 

transcriptase (Invitrogen), reverse transcription was carried out for 40 min at 46°C. The 
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reaction was stopped and template RNA was degraded by addition of 6 µl 1 M NaOH and 1 

µl 0.5 M EDTA (pH 8.0) and incubation at 56°C for 30-60 min. After addition of 6 µl 1 M HCl, 

2 µl glycogen (2 mg/ml, Ambion), 30 µl 7.5 M NH4OAc and 250 µl EtOH, cDNA was 

precipitated over night at -20°C. After centrifugation (13,000 rpm, 20 min, 4°C) the DNA 

pellet was washed once with 100 µl cold 70% EtOH, dried at 80°C for 3 min and dissolved in 

10 µl 1x PEX loading buffer by incubation at 80°C for 3 min. cDNA was separated on gels 

containing 6% (w/v) acryl amide (acryl amide: bis-acryl amide 37.5:1), 7 M urea and 1x TBE. 

The electrophoresis buffer was 1x TBE. Gels were run for 7-8 h at 350 V, dried for 2 h at 

80°C and signals were acquired exposing the gel to a Phosphoimager screen (Fujifilm). 

Screens were read out with the FLA-3000 phosphor imager (Fujifilm) and data were 

analysed with the Multigauge V3.0 software (Fujifilm).  

5.2.5.9 Analysis of neo-synthesised rRNA 

Cells were grown overnight in YPDA medium at 24°C, diluted to OD600 ~ 0.1 in fresh YPDA 

(50 ml) medium and cultivated at 24°C to an OD600 ~ 0.3 - 0.4. Subsequently, cultures were 

shifted to 37°C. For each sample 1 OD600 of cells was harvested (2000 rpm, 3 min, RT) and 

resuspended in buffer RD (section 5.1.7). 20 μCi of 5‟,6‟-3H uracil (Perkin Elmer) was added 

and the cells were incubated at 37°C for 15 min („pulse‟). For the „chase‟ samples, one 

volume of preheated YPDU (containing 2 mg/ml unlabeled uracil) was added and cells were 

incubated either for additional 15 or 30 min at 37°C. Immediately after the treatment, 

samples were chilled on ice and centrifuged for 1 min at 13000 rpm and 4°C. The 

supernatants were discarded and the cell pellets were stored at -20°C. Total RNA was 

extracted (section 5.2.5.1) and dissolved in MOPS and TBE based buffer, respectively. The 

incorporated activity was determined using scintillation cocktail (Perkin Elmer) in a 

scintillation counter (1600TR-Packard) and aliquots of RNA corresponding to same amounts 

of incorporated activity were separated by denaturing agarose (section 5.2.5.2) or acryl 

amide (section 5.2.5.2) gel electrophoresis. Subsequently, RNA was transferred to a 

membrane (Positive TM, MP-Biomedicals) as described (sections 5.2.5.5, 5.2.5.6). To 

visualize radiolabeled RNA, the membrane was sprayed with a liquid enhancer (EN3HANCE 

spray surface, Perkin Elmer) and subjected to autoradiography (BioMax MS film, FUJI). 

5.2.6 Work with proteins  

5.2.6.1 Determination of protein concentration  

Protein concentrations were determined using the Bio-Rad Protein Assay which is based on 

the method by Bradford (Bradford, 1976). Briefly, 1-5 μl of the protein solution to be tested 

were mixed with 1 ml protein assay dye after diluting the reagent to the working 

concentration according to the instructions of the manufacturer. The approximate protein 

concentrations in µg/µl were calculated by dividing the absorbance at 595 nm by the sample 

volume and multiplying with the factor 23 which was determined using a BSA standard curve.  

5.2.6.2 TCA precipitation  

The volume of the protein sample to be analyzed was adjusted to 100 µl with cold H2O prior 

to mixing with 10 µl cold 100% (w/v) TCA and 2 µl 2% (w/v) DOC (Bensadoun and 

Weinstein, 1976). After incubation for 30 min at 4°C, the precipitated proteins were pelleted 

by centrifugation for 15 min at 13000 rpm and 4°C. The supernatant was discarded and the 

pellet was solubilised in an adequate volume of SDS sample buffer (section 5.1.7). The pH of 

the sample was neutralized using NH3 gas, if necessary. Proteins were denatured by 

incubating the sample for 5 min at 95°C for subsequent separation by SDS-PAGE.  
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5.2.6.3 Methanol-chloroform precipitation  

Protein precipitation for subsequent mass spectrometric analyses was performed using the 

methanol-chloroform precipitation method (Wessel and Flügge, 1984). The volume of the 

sample was adjusted to 150 µl with H2O, followed by the addition of four volumes of 

methanol (600 µl), one volume of chloroform (150 µl), and three volumes of H2O (450 µl). 

After each of these steps the sample was mixed well by vortexing. After incubation for 5 min 

at 4°C, the sample was centrifuged for 5 min at 13000 rpm and 4°C. The supernatant was 

discarded without disturbing the interphase which contains the precipitated proteins. Upon 

addition of another three volumes of methanol (450 µ) and vortexing, the sample was 

incubated for 5 min at 4°C before centrifugation for 5 min at 13000 rpm and 4°C. The 

supernatant was completely removed and the protein pellet dried for 10 min in a Speed Vac 

Concentrator.  

5.2.6.4 Denaturing protein extraction  

Yeast cell pellets (1-2 OD600) were resuspended in 1 ml cold H2O, mixed with 150 µl pre-

treatment solution (1.85 M NaOH, 1 M β-mercaptoethanol), and incubated for 15 min at 4°C. 

Proteins were precipitated with 150 µl 55% (w/v) TCA for 15 min at 4°C and pelleted by 

centrifugation for 10 min at 13000 rpm and 4°C. The supernatant was discarded and the 

pellet was resuspended in 25 - 50 µl HU buffer (section 5.1.7). The pH of the sample was 

neutralized using NH3 gas, if necessary. Proteins were solubilised by incubating the sample 

for 10 min at 65°C for subsequent separation by SDS-PAGE.  

5.2.6.5 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)  

Proteins were separated according to their molecular weight using the vertical discontinuous 

SDS-polyacrylamide gel electrophoresis method by Laemmli (Laemmli, 1970). The 

discontinuous system used in this work consisted of a lower separating gel composed of 8% 

or 10% acrylamide, 375 mM Tris-HCl pH 8.8, and 0.1% (w/v) SDS and an upper stacking gel 

composed of 4% acrylamide, 125 mM Tris-HCl pH 6.8, and 0.1% (w/v) SDS. Gels were run 

for ~1.5 h at 50 mA and 180 V in 1x electrophoresis buffer. Molecular weights of the different 

proteins were estimated using protein markers of known molecular weight.  

5.2.6.6 Western Blot  

Proteins separated by SDS-PAGE (section 5.2.6.5) were transferred to a PVDF or to a 

nitrocellulose membrane using a Trans-Blot SD Semi-Dry Transfer Cell. The gel and the 

PVDF membrane, pre-treated with methanol, were placed in the transfer cell between two 

piles of three blotting papers soaked with transfer buffer (section 5.1.7). In case of transfer to 

a nitrocellulose membrane, gel and membrane were pre-treated with transfer buffer. Transfer 

was performed for 1 h at 24 V. To control the blotting of the proteins before immunodetection 

(section 5.2.6.7), the total protein content was reversibly stained with Poinceau S by 

incubating the membrane in Poinceau staining solution for 2 min and subsequent destaining 

with H2O until the protein bands were visible.  

5.2.6.7 Detection of proteins by chemiluminescence or fluorescence 

To avoid unspecific binding of the antibodies, the membrane (5.2.6.6) was blocked with non-

related proteins from bovine milk prior to specific immunodetection of proteins by incubating 

the membrane in 5% (w/v) milk powder in 1x PBST on a shaker for 1 h at RT or overnight at 

4°C. The antibodies were diluted to an adequate working concentration (section 5.1.9) in 1% 

(w/v) milk powder in 1x PBST. Incubations were performed in 50 ml tubes on a turning wheel 

for 1 h (primary antibodies) or 30 min (secondary antibodies) at RT. Following each antibody 

incubation step, the membrane was washed in 1x PBST for three times 10 min on a shaker.  
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In order to detect the specifically bound antibodies, the membrane was normally incubated 

for 1 min at RT with 1 ml BM Chemiluminescence Blotting Substrate (POD; Roche) which 

was prepared according to the instructions of the manufacturer. This reagent contains 

hydrogen peroxide and luminal, which is a substrate for the horseradish peroxidase 

conjugated to the secondary antibodies. The light, which is emitted during this reaction at the 

corresponding specific positions on the membrane, was detected with a LAS-3000 

chemiluminescence imager using Image Reader LAS-3000 V2.2 followed by quantitative 

analysis using Multi Gauge V3.0 (Fujifilm).  

Alternatively, a secondary antibody coupled to a fluorophor (LICOR, 926-32211) was used to 

detect Protein A tagged proteins. In this case, proteins were transferred to nitrocellulose 

membranes, which exhibit significantly lower background fluorescence than PVDF 

membranes. Incubation with the secondary antibody and subsequent washing steps were 

performed in the dark. Protein signals were visualized using Odyssey Infrared Imaging 

System (LI-COR) followed by quantitative analysis using Multi Gauge V3.0 (Fujifilm).  

5.2.6.8 Coomassie staining  

Polyacrylamide gels (5.2.6.5) were stained with Coomassie Brilliant Blue R-250 in order to 

visualize the total protein content. Briefly, the gel was incubated in Coomassie staining 

solution for 1 h on a shaker at RT. Destaining was performed by incubating the gel in 

destaining solution (section 5.1.7) or H2O for 3-4x 30 min until protein bands showed up 

significantly over the background staining. Optionally, the gel was dried in a vacuum gel 

dryer system for 2 h at 80°C or bands were excised for subsequent protein identification 

using mass spectrometry (section 5.2.6.9).  

5.2.6.9 Protein identification using MALDI-TOF/TOF mass spectrometry  

Protein bands of interest were excised from Coomassie-stained gels (section 5.2.6.9) and 

digested in gel with modified sequencing grade trypsin essentially as described (Shevchenko 

et al., 1996, 2006). Briefly, the excised pieces were cut into small cubes and subsequently 

washed with 50 mM NH4HCO3, 50 mM NH4HCO3/25% (v/v) acetonitrile, 25% (v/v) 

actetonitrile, and 50% (v/v) acetonitrile followed by lyophilization. The dried gel cubes were 

rehydrated with an equal volume of trypsin in 70mM NH4HCO3 (final concentration: 4 μg 

trypsin per 100 μl gel) for 30 min at RT. After addition of another volume of 50 mM NH4HCO3 

and incubation for 16 h at 37°C, the resulting tryptic peptides were eluted by diffusion upon 

shaking the gel cubes two times for 1 h in two volumes of 100 mM NH4HCO3 and once for 1 

h in two volumes of 100 mM NH4HCO3/35% acetonitrile at 37°C. The supernatants of these 

elution steps were pooled in a 1.5 ml tube and the solvents removed by lyophilization. The 

extracted peptides were solubilised in 5 µl matrix solution (2 mg/ml α-cyano-4-

hydroxycinnamic acid (CHCA), 50% (v/v) acetonitrile, 0.1% (v/v) TFA) and manually spotted 

on the MALDI target plate. Peptide mass fingerprints (PMF) and MS/MS analyses were 

performed on a 4800 Proteomics Analyzer MALDI-TOF/TOF mass spectrometer (ABI) 

operated in positive ion reflector mode and evaluated by searching the NCBInr protein 

sequence database with Mascot implemented in GPS Explorer v.3.5 (ABI). 

5.2.7 Additional biochemical methods 

5.2.7.1 Affinity purification of recombinantly expressed FLAG-tag fusion proteins 

Cell pellets according to 50 x 106 infected SF21 cells were thawed on ice and resuspended in 

40 ml ice cold A100+T/T buffer (20 mM Tris–HCl pH 8, 100 mM KCl, 5 mM Mg(OAc)2, 2 mM 

Benzamidine, 1 mM PMSF, 0.5% Triton-X100, 0.1% Tween-20). Cells were lysed by 

sonication in a cooling bath using Branson Sonifier 250 (output 5, duty cycle 40%, 30 sec 
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pulse, 30 sec cooling, 6 repeats) and cell debris was removed by centrifugation (4°C, 20 min, 

3300 x g). The cleared cell lysate was incubated with 50 µl anti-FLAG M2 affinity gel (Sigma-

Aldrich), equilibrated with buffer A100+T/T, for 2h at 4°C on a turning wheel. After 

centrifugation (4°C, 1 min, 130 x g), the supernatant was removed and the beads were 

washed with buffer A100+T/T in batch mode (3x 10 ml, 3x 1ml). To elute the FLAG-tag fusion 

protein, the beads were incubated with 100 µl buffer A100+T/T containing 300 µg/ml FLAG 

peptide (Sigma-Aldrich) for 2h at 4°C on a turning wheel. Finally, the beads were removed 

from the eluate by centrifugation (4°C, 1 min, 16,000 x g) through a MobiCol microspin 

column (MoBiTec).  

5.2.7.2 Gel filtration chromatography  

Affinity purified protein complexes were analyzed using the Smart System (Pharmacia 

Biotech) and a Superose6 PC 3.2/30 gel filtration column (GE Healthcare) equilibrated with 

buffer A100 (20 mM Tris–HCl pH 8, 200 mM KCl, 5 mM Mg(OAc)2, 2 mM Benzamidine, 1 

mM PMSF, 0.1% Tween-20) supplemented with 0.1% Tween-20. Samples were loaded 

using a 50 µl loop and separated over the column at 4°C with a flow rate of 20 µl/min. After 

the void volume had passed, 50 µl fractions were collected. 

5.2.7.3 Electron microscopy 

Protein complex (~ 50 µg/ml) was adsorbed to glow-discharged carbon film for 10 s, followed 

by staining with a 1% (w/v) uranyl acetate solution for two times 10 s. Images of the complex 

were recorded with a Philips CM12 (FEI Electron Optics) electron microscope (120 keV, 

magnification 28,000). Images were taken with a Slow-scan-CCD-Kamera (Modell 0124, 

TVIPS Tietz) (1024 x 1024 pixels).  

5.2.7.4 Affinity purification using IgG coupled magnetic beads 

The cell pellet corresponding to 1 l yeast culture with OD600 = 0.8-1.2 was resuspended in 

1.5 ml of cold A100 buffer (20 mM Tris–HCl pH 8, 100 mM KCl, 5 mM Mg(OAc)2, 2 mM 

Benzamidine, 1 mM PMSF), supplemented with 0.04 U/ml RNasin, per gramm of cell pellet. 

800 µl aliquots of this cell suspension were divided to 2 ml reaction tubes containing 1.4 ml 

glass beads (Ø 0.75–1 mm). Cells were disrupted on an IKA Vibrax VXR basic shaker with 

2200 rpm at 4°C for 15 min, followed by 5 min on ice. This procedure was repeated twice. 

The cell lysate was cleared from cell debris by two centrifugation steps (4°C, 5 min, 16000 x 

g; 4°C, 10 min, 16000 x g). The protein concentration of the cleared lysate was determined 

using the Bradford assay (section 5.2.6.1). Triton X-100 (0.5% final concentration) and 

Tween 20 (0.1% final concentration) was added to the cell lysate. Equal protein amounts of 

cell lysates (typically 1.1 ml with 30-40 mg of total protein) were incubated for 1 hour at 4°C 

with 100 µl of IgG (rabbit serum, I5006-100MG, Sigma) coupled magnetic beads slurry (1 

mm BcMag, FC-102, Bioclone) equilibrated in A100 buffer containing 0.5% Triton X-100 and 

0.1% Tween. The beads were washed four times with 700 µl cold A100+T/T buffer. After the 

fourth washing step, an aliquot of 20% of the beads was separated for the analysis of co-

purified RNA. The remaining beads were washed twice with 700 µl AC buffer (100 mM 

NH4OAc pH 7.4, 0.1 mM MgCl2) to remove remaining salt from the sample. Bound proteins 

were eluted twice with 500 µl of freshly prepared 500 mM NH4OH solution for 20 min at RT. 

Both eluate fractions were pooled, an aliquot of 10% was separated for SDS-PAGE analysis 

and the remaining eluate was lyophilised over night. 

5.2.7.5 Affinity purification using IgG coupled sepharose beads 

Cell lysates were prepared as described above (section 5.2.7.4). Equal protein amounts of 

cell lysates (typically 800 µl with 10 mg of total protein) were incubated for 1-2 hours at 4°C 
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with 60 µl of IgG sepharose slurry (GE Healthcare, 52-2083-00 AH) equilibrated in buffer 

A100+T/T. The beads were washed twice with 1 ml, five times with 2 ml and twice with 10 ml 

cold A100+T/T buffer in a 10 ml column. After washing, the beads were split for analysis of 

purified protein (25%) and co-purified RNA (75%).  

5.2.7.6 Comparative MALDI TOF/TOF mass spectrometry using iTRAQ reagents 

The lyophilised protein samples were resuspended in 20μl dissolution buffer (iTRAQTM 

labelling kit (Life Technologies) and reduced with 5mM Tris-(2-carboxyethyl)phosphine at 

60°C for 1h. Cysteins were blocked with 10mM methyl-methanethiosulfonate (MMTS) at 

room temperature for 10min. After trypsin digestion for 20h at 37°C, tryptic peptides of the 

purifications of interest were labelled with different combinations of the four iTRAQTM 

reagents according to the manual. The differentially labelled peptides were combined and 

lyophilized.  

The combined differentially labelled peptides were dissolved for 2h in 0.1%TFA and loaded 

on a nano-flow HPLC-system (Dionex) harbouring a C18-Pep-Mep column (LC-Packings). 

The peptides were separated by a gradient of 5% to 95% of buffer B (80% acetonitrile/0.05% 

TFA) and fractions were mixed with 5 volumes of CHCA (alpha-cyano-4-hydroxy cinnamic 

acid; Sigma) matrix (2mg/ml in 70% acetonitrile/0.1%TFA) and spotted online via the Probot 

system (Dionex) on a MALDI-target.  

MS/MS analyses were performed on an Applied Biosystems 4800 Proteomics Analyzer. 

MALDI-TOF/TOF mass spectrometer operated in positive ion reflector mode and evaluated 

by searching the NCBInr protein sequence database with the Mascot search engine (Matrix 

Science) implemented in the GPS Explorer software (Applied Biosystems). Laser intensity 

was adjusted according to laser condition and sample concentration. The ten most intense 

peptide peaks per spot detected in the MS mode were further fragmented yielding the 

respective MS/MS spectra.  

Only proteins identified by peptides with a Confidence Interval > 95% were included in the 

analysis. The peak area for iTRAQ reporter ions were interpreted and corrected by the GPS-

Explorer software (Applied Biosystems) and Excel (Microsoft). An average iTRAQ ratio of all 

peptides of a given protein was calculated and outliers were deleted by manual evaluation. 

Hierarchical clustering analysis of datasets derived from several experiments was performed 

with cluster 3.0 software (Eisen et al., 1998) using the „„log2 transform data‟‟ and the „„median 

center arrays‟‟ settings for data adjustment and the Euclidean distance and centroid linkage 

settings for gene and array clustering. Java Treeview was used for cluster visualization (see 

http://www.eisenlab.org/eisen/?page_id = 42). 

5.2.7.7 Chromatin immunoprecipitation (ChIP)  

ChIP was performed mainly as described (Hecht and Grunstein, 1999). Formaldehyde fixed 

cells (section 5.2.2.9) from 50ml of an exponentially growing yeast culture were washed (1 

min, 13000 rpm, 4°C) with 1ml of cold ChIP lysis buffer (section 5.1.7) and suspended in 

350μl of ChIP lysis buffer. Glass beads (Ø 0.75-1.0 mm, Roth) were added and cells were 

disrupted on a VXR basic IKA Vibrax orbital shaker for 3x15min with 2200 rpm at 4°C with 10 

min cooling steps on ice in between. Cell lysates were transferred into a 15 ml tube, adjusted 

to 1 ml with ChIP lysis buffer and sonicated in a cooling bath using Branson Sonifier 250 

(Output 3, duty cycle constant; 6 times 10 pulses of ~1 sec, 30 sec cooling between each 

cycle). This procedure yielded an average DNA fragment size of 500 bp. Cell debris was 

removed by centrifugation (20 min, 13000 rpm, 4°C). The chromatin extracts were split into 

three aliquots. 40μl of each aliquot served as an input control, 200 μl of each aliquot were 

incubated for 2 h at 4°C with 125 µl IgG-Sepharose slurry (GE Healthcare, 52-2083-00 AH) 

to enrich the TAP- tagged proteins. After immunoprecipitation, the beads were washed three 
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times with ChIP lysis buffer, twice with ChIP washing buffer I and twice with ChIP washing 

buffer II followed by a final washing step with TE buffer. 250 μl of buffer IRN were added to 

the beads (IPs) and to the input samples.  

For DNA isolation, Input and IP samples were treated with 2 μl of RNase A (20 mg/ml), 

mixed, and incubated at 37°C for 1 h. 10μl of 10% SDS and 2 μl of Proteinase K (20 mg/ml) 

were added, mixed, and samples were incubated for 1 h at 56°C. Formaldehyde crosslink 

was reverted by incubation at 65°C over night. DNA was extracted with phenol–chloroform–

isoamyl alcohol (section 5.2.4.3). 1 volume of IRN and 2.5 volumes of ethanol were added 

and DNA was precipitated at −20°C for at least 20 min. DNA was collected by centrifugation 

at 16,000 x g for 20 min at 4°C. DNA was dried for 5–10min at room temperature and 

resuspended in 50 μl of TE buffer. 

Relative DNA amounts present in Input and IP were determined by quantitative PCR (section 

5.2.4.7) using a RotorGene 3000 system (Corbett Research) and the comparative analysis 

software module. Primer pairs used for amplification are listed in section 5.1.5. Input DNA 

was diluted 1:500, and IP DNA was diluted 1:20 in H2O prior to analysis. All samples were 

analysed in triplicate qPCR reactions to ensure accuracy of the data. For each amplicon in 

each purification, the precipitation efficiencies (% IP (rDNA)) were calculated and normalised 

to the PDC1 precipitation efficiencies (% IP (rDNA) / % IP (PDC1)).  

5.2.7.8 ChIP after RNase treatment of chromatin 

ChIP experiments after RNase treatment of the chromatin fractions were essentially 

performed as described in section 5.2.7.7. Yeast strains were grown in 120 ml rich medium 

at 30°C to exponential phase (OD600 = 0.5-0.7), subsequently cross linked using 

formaldehyde (final concentration 1%) for 15‟ at 30°C and harvested in two aliquots of 50 ml 

each. From each cell pellet, the chromatin extract was prepared and chromatin fractions from 

the same strains were pooled. Subsequently, two aliquots of the pooled fractions were 

treated either with 10 U of RNase A and 400 U of RNase T1 (RNase A/T1 cocktail, Ambion) 

or an equivalent volume of lysis buffer. After incubating at 25°C for 40 min, input samples of 

the RNase treated and untreated chromatin were taken and immunopurification of the 

remaining solution was performed as described above. After the last washing step, an aliquot 

of the precipitated material (10% or 20%) was prepared for Western blot analysis. Samples 

for Western blot analysis were incubated in 1x Laemmli protein sample buffer (section 5.1.7) 

at 95°C for 15 min to reverse the formaldehyde cross link. DNA workup and analysis by 

qPCR was performed as described in section 5.2.7.7.  

5.2.7.9 Chromatin immunoprecipitation and analysis of co-purified proteins (pChIP)  

pChIP was performed as described (Hierlmeier et al., 2012). Yeast cells were grown at 30°C 

in 500 ml YPD medium to mid exponential phase (OD600 = 0.5-0.8) and treated with 

formaldehyde (0.5 % final concentration, 10 min, 30°C). After quenching of excess 

formaldehyde with Tris-glycine solution (10 mM final concentration, 5 min, 30°C), cells were 

harvested (10 min, 4°C, 2200 x g) and washed twice with 40 ml of ice cold PBS (4°C, 5 min, 

2000 x g) and once with cold lysis buffer (50mM HEPES-KOH (pH 7.5), 200mM NaCl, 

0.5mM EDTA, 1% Triton, 0.1% Na-Deoxycholate, 0.1% SDS, 2 mM Benzamidine, 1 mM 

PMSF). The cell pellet was resuspended in 1.5 ml lysis buffer per gram of cells. 500μl 

aliquots were mixed with 500μl glass beads (diameter 0.75 to 1.0 mm; Roth) and cells were 

disrupted on an IKA Vibrax VXR basic shaker (4ºC, 2200 rpm) for 4 cycles of 10 min with a 2 

min cooling step in between. Extracts were centrifuged (5 min, 4ºC, 850 x g), the supernatant 

was collected and adjusted to 1 ml final volume with lysis buffer. Sonification was performed 

in a cooling bath using a Branson Sonifier 250 for 5 cycles of 10 pulses (Microtip limit 3, 90% 
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Duty cycle) with a 30 sec cooling step in between. Sonicated extract was centrifuged (10 

min, 4ºC, 18000 x g) and the supernatant was collected and used in the affinity purification.  

Equal volumes of cell lysates were incubated over night at 4°C on a turning wheel with 200 µl 

of IgG (rabbit serum, I5006-100MG, Sigma) coupled magnetic beads slurry (1 mm BcMag, 

FC-102, Bioclone) equilibrated in lysis buffer. The beads were washed four times with lysis 

buffer and two times with AC buffer (100 mM NH4OAc pH 7.4, 0.1 mM MgCl2) for 5 min each 

at 4ºC on a turning wheel. Bound proteins were eluted twice with 500 µl of freshly prepared 

500 mM NH4OH solution for 20 min at RT. Eluates were combined and lyophilized and 

subjected to comparative mass spectrometric analysis (section 5.2.7.6).
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7 Abbreviations 
aa  amino acid 

AmpR   resistance marker for ampicillin 

APS   ammonium persulfate 

ATP   adenosine triphosphate 

bp   base pair(s) 

ChIP  chromatin immunoprecipitation 

ChlR  resistance marker for chloramphenicol 

co-IP   co-immunoprecipitation 

cryo-EM  cryo-electron microscopy 

Da   Dalton 

DNA   desoxyribonucleic acid 

dNTP   2-desoxyribonucleotide 5' triphosphate 

EDTA   ethylene diamine tetra acetate 

EGTA   ethylene glycol tetraacetic acid 

ETS  external transcribed spacer 

g   gram(s) 

GentR   resistance marker for gentamycin,  

GFP  green fluorescent protein 

h   hour(s) 

HA  hemagglutinin 

In  Input 

IP  immunoprecipitation 

IPTG  isopropyl-thiogalactoside 

iTRAQ  isobaric tag for relative and absolute quantitation 

ITS 1/2 internal transcribed spacer 1/2 

k   kilo 

kb   kilo base pair(s) 

l   liter(s) 

LB   luria broth 

loxP  Cre-lox recombination site 

LSU   large ribosomal subunit 

lys  lysate 

M   molar (mol/l) 

MALDI  matrix-assisted laser desorption/ionisation 

mg   milligram(s) 

min   minute(s) 

ml   milliliter(s) 

mRNA  messenger RNA 

MS  mass spectrometry 

MS/MS  tandem mass spectrometry 

MW   molecular weight 

NB  Northern blotting 

nm   nanometer(s) 

OD   optical density 

PAGE   poly acryl amide electrophoresis 

PA/ProtA Protein A 
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PCR   polymerase chain reaction 

PEG   poly ethylene glycol 

PEX  primer extension reaction 

pGAL  GAL1/10 promoter 

pH   negative decadic logarithm of [H+] 

Pol-I   RNA polymerase I 

Pol-II   RNA polymerase II 

Pol-III   RNA polymerase III 

polh  baculoviral promoter 

p10  baculoviral promoter 

qPCR  quantitative PCR 

rDNA   ribosomal DNA 

RNA   ribonucleic acid 

RNP   ribonucleoprotein complex 

rpm   rotations per minute 

r-protein  ribosomal protein 

rpL  ribosomal protein of the large subunit 

rpS  ribosomal protein of the small subunit 

rRNA   ribosomal RNA 

RT   room temperature 

s   second(s) 

S   sedimentation coefficient 

SCD  synthetic complete medium containing glucose 

SCG  synthetic complete medium containing galactose 

SDS   sodium dodecyl sulfate 

snoRNA  small nucleolar ribonucleic acid 

snoRNP  small nucleolar ribonucleoprotein 

SOE-PCR spliced overlap extension PCR 

SpecR  resistance marker for spectinomycin 

SSU   small ribosomal subunit 

S1  S1 RNA binding motif 

TAP tag tandem affinity purification tag 

Taq   Thermus aquaticus 

TCA   tri-chloro acetic acid 

TEMED  tetramethylethylenediamine 

Tn7L/R Tn7 transposition sequences 

TOF   time of flight 

TPR  tetratricopeptide repeat  

Tris   tris(hydroxy methyl) amino methane 

ts  temperature sensitive 

U   unit(s) 

WB  Western blotting 

wt   wild-type 

X-Gal  5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside 

YFP  yellow fluorescent protein 

YPD  full medium containing glucose 

YPG  full medium containing galactose 

µ  micro 



TABLE OF FIGURES 
 

128 
 

8 Table of Figures 
 

Fig. 2-1 Crystal structure of the 80S ribosome from Saccharomyces cerevisiae ......................................... 5 

Fig. 2-2 Comparison of the secondary and tertiary structure organisation of the RNA components of 

the large and the small ribosomal subunit .................................................................................... 6 

Fig. 2-3 Schematic overview of eukaryotic ribosome biogenesis.................................................................. 8 

Fig. 2-4 Morphology of the nucleolus in Saccharomyces cerevisiae ............................................................ 9 

Fig. 2-5 The rRNA gene locus in Saccharomyces cerevisiae ..................................................................... 10 

Fig. 2-6: pre-rRNA processing in Saccharomyces cerevisiae ..................................................................... 13 

Fig. 2-7: The function of the U3 snoRNA in ribosome biogenesis .............................................................. 16 

Fig. 2-8: Model for the assembly of the SSU processome on pre-rRNA..................................................... 17 

Fig. 2-9: pre-rRNA processing can occur co-transcriptionally in Saccharomyces cerevisiae ..................... 19 

Fig. 2-10 The role of the „A3-factors‟ in ribosome biogenesis ..................................................................... 23 

Fig. 3-1: Kinetic analysis of pre-rRNA processing in temperature sensitive noc1, noc2 and noc3 mutant 

strains .......................................................................................................................................... 30 

Fig. 3-2: Analysis of growth defects resulting from in vivo depletion of Noc1p, Noc2p and Rrp5p ............. 32 

Fig. 3-3: Analysis of pre-rRNA processing defects resulting from in vivo depletion of Noc1p, Noc2p and 

Rrp5p ........................................................................................................................................... 33 

Fig. 3-4: Reconstitution of the Rrp5p/Noc1p/Noc2p module from proteins co-expressed in insect cells ... 35 

Fig. 3-5: Analyses of reconstituted biogenesis factor modules by gel filtration and electron microscopy .. 36 

Fig. 3-6: Analyses of the interactions between Noc1p and truncated Rrp5p variants ................................ 38 

Fig. 3-7: Comparison of pre-ribosomal particles associated with Noc1p or Rrp5p ..................................... 40 

Fig. 3-8: Comparative proteome analysis of pre-ribosomes associated with Noc1p and Rrp5p ................ 42 

Fig. 3-9: Analyses of the interactions of truncated Rrp5p variants with pre-ribosomal particles ................ 44 

Fig. 3-10: Definition of different Noc1p domains based on amino acid conservation determined by 

multiple sequence alignment ...................................................................................................... 46 

Fig. 3-11: The N- and C-terminal domains of Noc1p are not essential for growth ...................................... 48 

Fig. 3-12: Analyses of the interactions of ProtA-Noc1p-ΔX variants with Noc2p and Rrp5p ...................... 49 

Fig. 3-13: Analyses of the interactions of ProtA-Noc1p-ΔX variants with pre-rRNA ................................... 51 

Fig. 3-14: Analysis of the binding hierarchy of the Rrp5p/Noc1p/Noc2p module components to pre-

ribosomal particles ...................................................................................................................... 52 

Fig. 3-15: Analysis of the effects of Rrp5p and Noc1p on the binding of the UTP-C component Utp22p 

to pre-ribosomal particles ............................................................................................................ 55 

Fig. 3-16 A specific set of LSU and SSU biogenesis factors is part of RNA polymerase-I transcribed 

chromatin..................................................................................................................................... 58 

Fig. 3-17 Analysis of the association of Rrp5p, Noc1p and Noc2p with 35S rDNA chromatin ................... 59 

Fig. 3-18: Analysis of RNA dependent association of Rrp5p, Noc1p and Noc2p with 35S rDNA 

chromatin..................................................................................................................................... 61 

Fig. 5-1: Overview of the MultiBac system .................................................................................................. 91 



PUBLICATIONS 
 

129 
 

9 Publications 
 

Hierlmeier, T., Merl, J., Sauert, M., Perez-Fernandez, J., Schultz, P., Bruckmann, A., Hamperl, S., 

Ohmayer, U., Rachel, R., Jacob, A., et al. (2012). Rrp5p, Noc1p and Noc2p form a protein 

module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucl. Acids 

Res. 

Kühn*, H., Hierlmeier*, T., Merl, J., Jakob, S., Aguissa-Touré, A.-H., Milkereit, P., and Tschochner, H. 

(2009). The Noc-domain containing C-terminus of Noc4p mediates both formation of the 

Noc4p-Nop14p submodule and its incorporation into the SSU processome. PLoS ONE 4, 

e8370. 

Ohmayer*, U., Perez-Fernandez*, J., Hierlmeier*, T., Pöll, G., Williams, L., Griesenbeck, J., 

Tschochner, H., and Milkereit, P. (2012). Local tertiary structure probing of ribonucleoprotein 

particles by nuclease fusion proteins. PLoS ONE 7, e42449. 

Jakob, S., Ohmayer, U., Neueder, A., Hierlmeier, T., Perez-Fernandez, J., Hochmuth, E., Deutzmann, 

R., Griesenbeck, J., Tschochner, H., and Milkereit, P. (2012). Interrelationships between yeast 

ribosomal protein assembly events and transient ribosome biogenesis factors interactions in 

early pre-ribosomes. PLoS ONE 7, e32552. 

Merl*, J., Jakob*, S., Ridinger, K., Hierlmeier, T., Deutzmann, R., Milkereit, P., and Tschochner, H. 

(2010). Analysis of ribosome biogenesis factor-modules in yeast cells depleted from pre-

ribosomes. Nucleic Acids Res. 38, 3068–3080. 

 

*: these authors contributed equally to this work 



 

 



ACKNOWLEDGEMENTS / DANKSAGUNG 
 

131 
 

10 Acknowledgements / Danksagung 

Zu guter Letzt möchte ich mich ganz herzlich bei allen bedanken, die zum Gelingen dieser 

Arbeit beigetragen haben: 

Mein Dank gilt vor allem Prof. Dr. Herbert Tschochner für die Möglichkeit an seinem 

Lehrstuhl zu promovieren, für die interessante Themenstellung und für die ausgezeichnete 

Betreuung während der Doktorarbeit, die neben der wissenschaftlichen Ausbildung auch 

noch Zusatzkurse im alpinen Bereich beinhaltete.  

Im Besonderen möchte ich mich auch bei Dr. Philipp Milkereit für die zahlreichen 

Diskussionen bedanken, die nicht nur wertvolle Vorschläge und Anregungen für den 

Fortgang der Arbeit lieferten, sondern auch maßgeblich dazu beitrugen eine kritische 

Sichtweise zu entwickeln.  

Vielen Dank auch an Dr. Joachim Griesenbeck und alle anderen aktuellen und früheren 

Mitglieder der „Selbsthilfegruppe Noc-Proteine/Ribosomenbiogenese“, die stets mit Rat und 

Tat zur Seite standen. Insbesondere seien hier Dr. Juliane Merl und Martina Sauert erwähnt, 

deren Arbeiten den Grundstein für die Rekonstitution und Charakterisierung des 

Rrp5p/Noc1p/Noc2p Moduls legten.  

Bei Dr. Jorge Perez-Fernandez und Dr. Astrid Bruckmann möchte ich mich für die 

Bereitstellung der Proteomanalysen von Polymerase-assoziertem Chromatin bedanken.  

Mein Dank gilt auch Dr. Jochen Baßler für sein Mentorat und die Zusammenarbeit bei der 

Publikation der Ergebnisse dieser Arbeit. 

Auch allen anderen Mitgliedern des „House of the Ribosome“ sei gedankt für ein 

freundschaftliches und hilfsbereites Arbeitsumfeld. 

Ganz herzlich möchte ich mich bei meiner Labornachbarin Gisela Pöll dafür bedanken, dass 

sie oft Nachsicht walten ließ, wenn im Eifer der Forschung das Chaos überhandnahm, sowie 

für den nie versiegenden Nachschub an Kuchen und anderen Köstlichkeiten, und für die 

Einführung in die Blaubeerreviere.  

Besonderer Dank gilt meinem Vater, der mich stets voll und ganz unterstützt hat und ohne 

den meine gesamte Ausbildung so nicht möglich gewesen wäre.  

Abschließend ein großes Dankeschön an meine Freundin Kathleen, die meist Verständnis 

für lange Labortage oder Schreibtischzeiten aufbrachte, zur rechten Zeit allerdings auch 

einschritt und daran erinnerte, dass daneben noch andere Dinge wichtig sind.  



 

 



 

 

 


