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We present a theory for the Kondo spin- 1
2 effect in strongly correlated quantum dots. The theory is applicable

at any temperature and voltage. It is based on a quadratic Keldysh effective action parametrized by a universal
function. We provide a general analytical form for the tunneling density of states through this universal function
for which we propose a simple microscopic model. We apply our theory to the highly asymmetric Anderson
model with U = ∞ and describe its strong-coupling limit, weak-coupling limit, and crossover region within a
single analytical expression. We compare our results with a numerical renormalization group in equilibrium and
with a real-time renormalization group out of equilibrium and show that the universal shapes of the linear and
differential conductance obtained in our theory and in these theories are very close to each other in a wide range
of temperatures and voltages. In particular, as in the real-time renormalization group, we predict that at the Kondo
voltage the differential conductance is equal to 2/3 of its maximum.
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The Kondo state of a quantum dot (QD) continues to attract
significant interest from both experiment and theory. The zero-
dimensional platform available in modern nanotechnology
provides a great advantage over bulk metals with magnetic
impurities where the Kondo effect was originally observed.1

Indeed, the possibility to enrich the physics with nonequilib-
rium as well as to independently tune various parameters of
QD structures allows one to access different aspects of the
Kondo physics predicted theoretically. One of these aspects is
the universality of the zero bias anomaly or Kondo resonance in
the differential conductance which, as has also been confirmed
in experiments,2,3 turns out to be a universal function of
the temperature and voltage with the energy scale given
by the Kondo temperature TK. Another advantage of the
QD framework is the possibility to study the fate of the
many-particle Kondo resonance in the presence of external
fields or when the QD is coupled to contacts with nontrivial
ground states. Recent experiments have demonstrated the
universality of the Kondo effect also within these advanced
setups, e.g., with ferromagnetic contacts4 and external mag-
netic fields.5 Other aspects of the Kondo state, such as its
use for spin manipulations6 or ferromagnetic-superconducting
correlations,7 have been addressed in modern experiments.

The whole diversity of the Kondo physics in QDs can
be well captured within the single-impurity Anderson model
(SIAM).8 Many theoretical concepts have been developed
to solve SIAM for QDs in the Kondo state in equilibrium
and nonequilibrium. All these theories can be, in general,
classified with respect to their applicability to two possible
regimes of the Kondo state: the weak-coupling regime, when
the temperature is higher than the Kondo temperature, T > TK,
and the strong-coupling regime, when T < TK. Among the
theories which can access only the weak-coupling regime
are, e.g., semianalytical perturbation theories9 well above TK,
or advanced analytical slave-bosonic Keldysh field integral
theories10,11 which extend the applicability range close to TK.
In the strong-coupling regime for temperatures T � TK there
are slave-bosonic numerical mean field theories.12,13 From
high temperatures to temperatures not too much below TK

the noncrossing approximation (NCA)14,15 is a numerical tool

which, however, predicts a wrong scaling, TNCA �= TK. A less
quantitatively reliable theory, based on the method of equations
of motion, may be used for a qualitative description in the
whole temperature range. It has been applied, e.g., to QDs in
an external magnetic field.16 The whole temperature range can
be comprehensively numerically described in equilibrium by
the numerical renormalization group (NRG) method,17 which
is quite flexible with respect to different physical setups and has
been used, e.g., for QDs coupled to ferromagnetic contacts.18

In nonequilibrium the recently developed semianalytical real-
time renormalization group (RTRG) method19 is a promising
theory.

The whole spectrum of modern theoretical methods is, in
principle, enough to describe many fundamental properties of
the Kondo state in spin- 1

2 QDs in different regimes. However,
a simple single analytical theory which could provide a
reliable quantitative description of the Kondo physics at
any temperature and voltage and which would elucidate its
universality is highly desirable.

Here we make a fundamental step towards such a theory
using the Keldysh field integral formulation in the slave-
bosonic representation. Namely, we provide the tunneling
density of states (TDOS) in the Kondo regime, Eqs. (5) and (6),
and reduce the problem to finding a universal function of the
temperature and voltage which enters this general form of the
TDOS.

We apply our theory to the highly asymmetric spin- 1
2 SIAM

with a strong electron-electron interaction, U = ∞ (extension
to finite U is straightforward), and finite μ0 − εd (εd is the
single-particle QD energy level, μ0 is the equilibrium chemical
potential) at any temperature and voltage. The knowledge on
this model up to now has been restricted by slave-bosonic
mean field theories12,13 deeply below TK or, above TK, by
NCA (Refs. 14 and 15) and the Keldysh field theory.10

An exact description of the universal linear conductance
can be accessed within NRG. However, little attention has been
paid to its prediction for the linear conductance in the highly
asymmetric SIAM. But what is more important is that NRG
fails out of equilibrium and the only nonequilibrium theory
able to cover the whole voltage range, RTRG,19 is applicable
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only to the s-d model. Thus, out of equilibrium the situation
with the highly asymmetric SIAM with U = ∞ is even worse.

Within the present work we eliminate this lack of knowl-
edge on the Kondo regime of the highly asymmetric spin- 1

2
SIAM with U = ∞ by deriving an analytical expression for the
TDOS which provides (1) linear and differential conductance
in the whole range of temperatures and voltages with the cor-
rect scaling TK; (2) Fermi-liquid theory (quadratic temperature
and voltage dependence of the differential conductance) at
low energies; (3) analytical ratio between the corresponding
Fermi-liquid coefficients. This ratio has been intensively
discussed in the literature20,21 for the symmetric spin- 1

2 SIAM.
However, little is known on this ratio for the highly asymmetric
spin- 1

2 SIAM with U = ∞; (4) a prediction identical to the
one made in the RTRG19 for the s-d model that in the deep
nonequilibrium crossover region, at the Kondo voltage, the
differential conductance is equal to 2/3 of its maximum; and
(5) excellent agreement with Hamann’s analytical theory22 for
the s-d model at high temperatures.

Let us briefly recall the slave-bosonic approach used in
Ref. 10. The original QD spin- 1

2 fermionic operators of the
Anderson Hamiltonian, dσ , d†

σ (σ = ↑, ↓), are expressed in
terms of new spin- 1

2 fermionic, fσ ,f †
σ , and slave-bosonic, b,b†,

operators. Since the double occupancy is forbidden, these oper-
ators satisfy the constraint, Q̂ = Î with Q̂ ≡ b†b + ∑

σ f †
σ fσ .

In practical calculations of observables this restriction is taken
into account in the Keldysh field integral23 representation of
a given QD observable Ô = F(d†

σ ,dσ ) via the replacement
of the QD Hamiltonian ĤQD with ĤQD + μQ̂, where μ is a
positive real parameter with respect to which one takes the
limit μ → ∞ at the end of the calculation,

〈Ô〉(t) = 1

N0
lim

μ→∞eβμ

∫
D[χ̄ ,χ ]e(i/h̄)Seff [χ̄ cl,q(t̃);χ cl,q(t̃)]

×F[χ̄ cl(t),χ̄q(t); χ cl(t),χq(t)]. (1)

Here χ cl(t) and χq(t) [and χ̄ cl(t), χ̄q(t)] are the classical
and quantum components (and their conjugate partners) of
the QD slave-bosonic field which is the coherent state field
of the slave-boson annihilation operator b, Seff is the Keldysh
effective action which depends on μ and governs the dynamics
of the QD coupled to the contacts, β ≡ 1/kT is the inverse
temperature, and N0 is the normalization constant given in
Ref. 10.

The Keldysh effective action is a nonlinear
functional of the slave-bosonic fields. It represents
the sum of the standard quadratic free slave-bosonic
action S0[χ̄ cl(t),χ̄q(t); χ cl(t),χq(t)] and the complex
nonlinear tunneling action ST[χ̄ cl(t),χ̄q(t); χ cl(t),χq(t)] =
−ih̄ tr ln[−iG(0)−1 − iT ], where the matrix G(0) and the
matrix T are defined in Ref. 10: The matrix G(0) describes
the isolated QD and contacts, while T accounts for the
QD-contacts tunneling coupling. The dependence of the
tunneling action on the slave-bosonic fields χ cl(t) and χq(t)
comes through the matrix T .

We now perform a time-independent shift of the classical
components of the slave-bosonic field in the matrix T ,
χ cl(t) → χ cl(t) − δ

√
2, χ̄ cl(t) → χ̄ cl(t) − γ

√
2, while leav-

ing the quantum components χq(t), χ̄q(t) unchanged. Note
that in general γ �= δ̄ since χ cl(t) and χ̄ cl(t) are independent

integration variables. This results in the appearance of nondi-
agonal blocks in the matrix G(0)−1 which now takes the form

G(0)−1 =
(

G
(0)−1
d (σ t |σ ′t ′) M

(0)†
T (σ t |a′t ′)

M
(0)
T (at |σ ′t ′) G

(0)−1
C (at |a′t ′)

)
, (2)

where the inverse of the diagonal blocks, G
(0)
d,C, are the same

as in Ref. 10 and the nondiagonal blocks are given as follows
(for M

(0)†
T γ is replaced with δ):

M
(0)
T (at |σ t ′) = 1

h̄
δ(t − t ′)γ Taσ

(
1 0
0 1

)
, (3)

where a is the set of quantum numbers describing the contact
states and Taσ are the matrix elements of the tunneling
Hamiltonian of SIAM. It is further assumed that a = {q,σ },
where q describes the contacts orbital degrees of freedom, σ

is the contact spin, and Tqσ ′σ = δσ ′σ τ . The matrix T remains,
as in Ref. 10, of diagonal but the off-diagonal blocks change
(for M

†
T γ is replaced with δ):

MT = δ(t − t ′)Taσ√
2h̄

(
χ̄ cl(t) − γ

√
2 χ̄q(t)

χ̄q(t) χ̄ cl(t) − γ
√

2

)
. (4)

Up to this point the theory is formally exact but obviously
cannot be solved. To make it tractable we expand the tunneling
action ST. The crucial difference with respect to Ref. 10 is that
now we do not use the second-order expansion in the variables
χ cl,q(t) (and their conjugates) but instead we expand up to the
second order in the variables χ cl(t) − δ

√
2, χ̄ cl(t) − γ

√
2 and

χq(t), χ̄q(t).
At first sight the second-order expansion of the tunneling

action in the variables χ cl(t) − δ
√

2, χ̄ cl(t) − γ
√

2 and χq(t),
χ̄q(t) may appear inadequate with respect to the Kondo
physics. Indeed, this expansion contains linear terms in the
original slave-bosonic fields χ cl(t), χ̄ cl(t) and χq(t), χ̄q(t).
These terms shift the minimum of the effective action from
the zero slave-bosonic field configuration to a finite one. Thus
the symmetry is broken and the effective action of this type
cannot describe the Kondo state having, as is well known, no
symmetry breaking.

However, the reasoning above misses one important aspect
related to the Hilbert space on which the Keldysh effective
action is defined. The point is that at fixed μ this Hilbert space
is much wider than the QD Fock space having states only with
zero and one electron. It is easy to show that when the Hilbert
space is narrowed to the physical Fock space of the QD, i.e.,
when the limit μ → ∞ is taken, the linear terms in the Keldysh
effective action do not generate any finite contribution to the
physical observables of the QD. Thus they can be discarded
from the outset and the symmetry of the Keldysh effective
action is restored.

In this way one obtains a Keldysh effective action which is
quadratic with respect to the original slave-bosonic variables
χ cl(t), χq(t) (and their conjugates) and where the shifts δ and
γ have been absorbed into the kernel of the action. After this
transformation the theory becomes formally identical to that
in Ref. 10. The only difference is that now the self-energies in
the quadratic action are parametrized by the shifts δ and γ .
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Therefore, one can immediately write down the general
form for the QD TDOS in the Kondo regime,

νσ (ε) = (
/2π ){[εd − ε + 
�R(ε)]2 + [
�I(ε)]2}−1, (5)

where 
 ≡ 2πνC|τ |2 (νC is the contacts density of states).
The crucial change with respect to Ref. 10 concerns the

retarded self-energy �+(ε) = �R(ε) + i�I(ε) which now has
a nontrivial dependence on α ≡ δγ ,

�+(ε) = 1

2π

∑
x

[
Re ψ

(
1

2
+ W

2πkT

)
−ψ

(
1

2
+ Eα

2πkT
− iμx

2πkT
+ iε

2πkT

)
+ i

π

2

]
, (6)

where the sum is over the contacts (x = L,R), ψ(z) is the
digamma function, μL,R ≡ μ0 ∓ eV/2 (V is the bias voltage),
W is the half-width of the contacts Lorentzian density of states
(W � kT ,eV,μ0) and Eα ≡ α
/2 is a complex energy.

A simple microscopic theory for Eα = ER
α + iEI

α is
obtained using the fact that in the deep Kondo regime
(which we estimate as μ0 − εd � 4
) in equilibrium and at
zero temperature the TDOS has maximum at ε ≈ μ0 and
this maximum is approximately equal to the unitary limit
2/π
. This leads to the two equations [ln(2|E|/kTK)] sin φ =
(π/2 − φ) cos φ and [ln(2|E|/kTK)]2 = π2/4 − (π/2 − φ)2,
where kTK ≡ 2W exp[−π (μ0 − εd)/
] is the Kondo temper-
ature, |E| ≡ √

(ER
α )2 + (EI

α)2, and φ ≡ arctan(EI
α/ER

α ). These
equations show that Eα ≡ Eα/kTK is a universal ratio which
guarantees the correct scaling of the differential conductance.
One gets ER

α ≈ 1.42 and E I
α ≈ 1.05. The universal ratio E I

α/ER
α

provides the universal phase φ ≈ 2/π . Using this model of
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FIG. 1. (Color online) The quadratic slave-bosonic Keldysh field
integral theory (circles) provides the universal equilibrium description
of the Kondo spin- 1

2 effect in the asymmetric SIAM with U = ∞ at
any temperature, i.e., in the weak-coupling regime, strong-coupling
regime, and in the crossover region. The NRG results (solid line) are
provided by T. Costi and L. Merker (research center of Jülich). The
inset compares our theory with that of Hamann (Ref. 22), which is
known to describe well the high-temperature regime. In this plot T̃K

is defined as the temperature at which the differential conductance
maximum reaches half of its unitary limit value. One gets T̃K ≈
1.47TK.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

eV /kT
~

K

0

0.5

1

1.5

2

di
ff

er
en

ti
al

 c
on

du
ct

an
ce

 [
e2 /h

]

Real-time renormalization
group (s-d model)

Keldysh effective action theory (highly
asymmetric SIAM,  U  = ∞,  μ0 −  ε

d
= 8 Γ )

10
0

10
1

10
2

10
3

10
4

10
510

-2

10
-1

10
0

FIG. 2. (Color online) The universal differential conductance as
a function of the bias voltage at T = 0 in the Keldysh field integral
theory for the asymmetric SIAM with U = ∞ (circles) and in the
RTRG theory for the s-d model (solid line). The RTRG data are
provided by M. Pletyukhov and H. Schoeller (University of Aachen).
The inset shows the high-voltage asymptotics of these two models.
Although the asymmetric SIAM and s-d model are different, their
universal shapes of the differential conductance are very close to each
other in the whole range of the bias voltage. In particular, both models
lead to an identical prediction: At the Kondo voltage eV = kT̃K, the
differential conductance is equal to 2/3 of its maximum.

Eα we can calculate the differential conductance at any T

and V .
In Fig. 1 we compare the equilibrium results of our theory

and NRG for the highly asymmetric spin- 1
2 SIAM. In our

theory U = ∞. The NRG results have been obtained for
U = 250
. Increasing U further in NRG does not produce
any significant change in the universal characteristics. In both
models μ0 − εd = 8
. The presence of the universal function
in the QD TDOS leads to the universal temperature dependence
of the differential conductance maximum (linear conductance)
in the whole temperature range. As one can see from the figure,
the universal shape of the linear conductance obtained in our
theory is very close to the one in NRG.

Moreover, the differential conductance as a function of
the bias voltage turns out to be also universal. In Fig. 2 we
show the nonequilibrium results of our theory for the same
model as in Fig. 1 and the RTRG results.19 One sees that the
nonequilibrium universal shape of the differential conductance
for the asymmetric spin- 1

2 SIAM with U = ∞ is very close to
that in the s-d model. In particular, in the deep nonequilibrium
crossover both theories predict the same result for the value
of the differential conductance at the Kondo voltage, namely,
2/3 of its unitary limit value. This universal result has been
used24 as a new experimental tool to measure TK.

At low energies we obtain25 the differential con-
ductance analytically, G(T ,V ) = (2e2/h)[1 − cT (T/TK)2 −
cV (eV/kTK)2]. The absence of linear terms in G(T ,V ) proves
that the low-energy sector of our theory is the Fermi liquid. It
is known20,21 that for the symmetric SIAM cV /cT = 3/(2π2).
However, for the highly asymmetric spin- 1

2 SIAM with U =
∞ and finite μ0 − εd little is known on cV /cT . For this
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asymmetric model our theory predicts

cT = 4

3

2 ln(2|Eα|) + 1

|Eα|2 ,
cV

cT

= ca

3

2π2
, (7)

where ca = [4 ln(2|Eα|) + 1]/[4 ln(2|Eα|) + 2] ≈ 0.86.
At T > TK the linear conductance is well described by

the analytical expression25 obtained by Hamann.22 Hamann’s
theory, based on the s-d model, neglects charge fluctu-
ations present in the SIAM. Thus it underestimates the
conductance.26 Our theory agrees well (inset in Fig. 1) with
Hamann’s result until the asymmetry and charge fluctuations
become important at high T .

The results above show that the nonequilibrium universal
behaviors of the highly asymmetric spin- 1

2 SIAM with U = ∞
and symmetric SIAM or s-d model are close to each other.
The difference between them partly results from their funda-
mental physical difference [e.g., the Fermi-liquid coefficients,
like cV , are sensitive to the asymmetry of the SIAM (see
Ref. 27)] and partly from the quality of our theory and the
quality of RTRG. Within our theory the last point is equivalent
to the question whether the theory with constant Eα may be
improved through a dependence of Eα on the voltage and
temperature. In Ref. 25 we show that a very simple dependence
of E I

α on the temperature and voltage may, indeed, notably
change the equilibrium and nonequilibrium results, obtained
using the constant model. Since the function Eα = (kTK)Eα

effectively takes into account higher-order terms in 
, a mi-
croscopic model for the temperature and voltage dependence
ofEα may result from a proper renormalization group theory. In

particular, taking into account the quartic terms in the Keldysh
effective action and performing the one- and two-loop analysis
may provide a renormalization of the quadratic term and, as a
result, a function Eα = f (T/TK,eV/kTK).

In conclusion, we have proven the existence of a universal
function Eα , rigorously appearing in the formalism, and
demonstrated how it determines the QD TDOS. A simple
microscopic model for Eα has been proposed. This has allowed
us to unify the strong-coupling regime, weak-coupling regime,
and crossover region of the Kondo state in equilibrium and
nonequilibrium within a single analytical expression for the
TDOS. To demonstrate the practical importance of our theory
we have applied it to the highly asymmetric spin- 1

2 SIAM with
U = ∞. Our theory has provided the differential conductance
in the whole range of temperatures and voltages with the
correct scaling TK, its Fermi-liquid behavior at low energies,
an analytical expression for the ratio between the Fermi-liquid
coefficients, the prediction that at the Kondo voltage the
differential conductance is equal to 2/3 of its maximum, and
an excellent agreement with known theories at high energies.
At the same time it has raised a challenge to develop a
renormalization group method to improve the quality of the
present theory.
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