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Topographical fingerprints of many-body interference in STM junctions on thin insulating films
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Negative differential conductance is a nonlinear transport phenomenon ubiquitous in molecular nanojunctions.
Its physical origin can be the most diverse. In rotationally symmetric molecules with orbitally degenerate
many-body states it can be ascribed to interference effects. We establish in this paper a criterion to identify
the interference blocking scenario by correlating the spectral and the topographical information achievable
in a scanning tunneling microscopy (STM) single-molecule measurement. Simulations of current-voltage
characteristics as well as constant-height and constant-current STM images for a Cu-phthalocyanine on a thin
insulating film are presented as experimentally relevant examples.
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I. INTRODUCTION

Negative differential conductance (NDC) is a fundamental
property of two-terminal devices since the discovery of the
first tunnel diode.1 The realization of NDC within an atomic
scale device2–7 can consequently be regarded as a milestone
in the process of miniaturization which drives the information
technology.

Scanning tunneling microscopy (STM) experiments have
played an important role in this research field, giving several
examples of NDC observed with a variety of nanojunctions.
A number of physical scenarios have been proposed for
the explanation of the experimental findings: among others,
the existence of sharp resonances on both electrodes,3,8 the
voltage-dependent increase in the tunneling barrier height,9,10

the orbital matching between molecule and tip,11,12 or even just
the symmetry matching between surface states in the substrate
and molecular states.13 Last but not least, vibrational-mediated
NDC has also been observed in single-molecule devices14 and
proposed to test position-dependent Franck-Condon factors in
suspended carbon nanotubes.15

Recently also interference phenomena in single-molecule
junctions have attracted intense theoretical16–27 and
experimental28–31 investigations. These junctions allow us to
tackle the fundamental question of the quantum mechanical
nature of the electronic transport at the nanoscale and exhibit
dramatic modulations of the current desirable for applications.
The quest for specific fingerprints of the electronic inter-
ference which go beyond the bare current or conductance
suppression30 remains, though, a crucial issue. We establish
in this article a criterion to identify the interference blocking
scenario by correlating the spectral and the topographical in-
formation achievable in an STM single-molecule measurement
(see Figs. 1–3).

In a recent publication we predicted the occurrence of
NDC due to interference blocking21–23 in an STM single
benzene junction on a thin insulating film.32 Benzene, however,
is not easily accessible in STM experiments and it is not
obvious to what extent the findings of Ref. 32 apply to larger,
experimentally relevant molecules (see, e.g., Refs. 33 and 34).
A major result of this article is an analytical expression for the
current as a function of the applied bias voltage encompassing
various transport regimes [see Eqs. (11) and (12)], which
provides both the criteria for the occurrence of interference

blocking NDC and the interpretation of its topographical fin-
gerprints. Specifically, interference NDC is expected to occur
in molecules which exhibit an electron affinity (ionization
potential) E0 − E1 (E−1 − E0) very close to the work function
φ0 of the substrate and, due to their rotational symmetry, have
an orbitally degenerate anion (cation) many-body eigenstate
(here E0 and E±1 denote the many-body ground-state energy
of the neutral molecule and of the anion or cation). The
necessary decoupling from the substrate, originally obtained
through a thin insulating layer,33 can also be achieved by
combining two different molecules in a monolayer directly
adsorbed on a metal surface.7 Recently, this setup has been
used to demonstrate position-dependent local gating,35 thus
suggesting an alternative possibility to achieve the mentioned
interference conditions. Topographical fingerprints to identify
the interference blocking scenario are predicted for both
the constant-height and the constant-current scanning modes.
Interference is associated, in the first case, with a flattening of
the current map in the molecule region, with a corresponding
loss of the characteristic nodal plane pattern (see Fig. 3), and,
in the second case, with an enhanced sensitivity of the apparent
height of the molecule to the operating current (see Fig. 6).
As we will prove later, both phenomena have the same origin;
i.e., in the interference blocking regime, the bottleneck process
defining the current pattern is a substrate and not a tip tunneling
event. The analytical results apply to a wide class of molecular
junctions. In particular, we present simulations concerning a
CuPc junction.

II. MODEL

We describe the STM single-molecule junction as a system-
bath model,

H = Hmol + Hsub + Htip + Htun, (1)

where Hmol is the Hamiltonian for the isolated molecule, in
which, to fix the ideas, we distinguish a single-particle com-
ponent H0 and a two-particle component V , both expressed
in terms of creation and annihilation operators {dασ ,d†

ασ } for
the atomic orbitals ψα , where α indicates both the site and
the atomic species. Hsub and Htip account for the substrate
and the tip, respectively, which we assume as reservoirs of
noninteracting electrons with different spatial confinement.
Finally, Htun describes the tunneling coupling between the
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FIG. 1. (Color online) Artistic view of an STM single-molecule
junction. We show in yellow (light gray) the metallic leads (tip and
substrate), in red (dark gray) the thin insulating film, and in green
(medium gray) the schematic representation of a CuPc.

metallic leads and the molecule:

Htun =
∑

χk�mσ

t
χ

k�mc
†
χkσ d�mσ + H.c., (2)

where χ = S,T indicates the substrate or the tip, k the
momentum, and σ the spin of the electron in the lead. Due to
their rotational symmetry, the molecular orbitals are classified
using the projection � of the angular momentum along the
principal rotation axis of the molecule. A further quantum
number m is introduced to account for possible degeneracies in
the spectrum of the angular momentum. Finally, the tunneling
amplitudes t

χ

k�m take the form

tS
�k�m

= ε�m〈S�kσ |�mσ 〉,
(3)

tT
kz�m

= ε�m〈T kzσ |�mσ 〉,

FIG. 2. (Color online) Left: Current through a CuPc single-
molecule junction as a function of the substrate (and tip) work
function φ0 and of the sample bias Vb. The tip apex position is
set at (x,y,z − d) = (+5, − 5,7) Å, with the origin taken on the
metal-insulator interface and in correspondence with the center of
the molecule and with d being the thickness of the insulating layer
(see Fig. 1). The tip and substrate resonant lines (with positive and
negative slopes, respectively) divide the parameter space into four
regions. T (S) indicates a region in which the current is proportional
to the tip (substrate) tunneling rate. Right: Current obtained from a
cut of the left-hand plot corresponding to φ0 = 4.1 eV. The numbers
in the current-voltage plot refer to the current maps in Fig. 3. The
current scale is the same for the left and right panels.

FIG. 3. (Color online) Constant-height current maps calculated
for different bias voltages. The color bar on the left (right)-hand side
corresponds to maps 1 and 3 (maps 2 and 4). The 5-Å-long white
line sets the scale of the images. The numbers in the maps refer to
the biases indicated in the right panel in Fig. 2. The current map
in the interference blockade regime (map 4) appears to be flat in
the molecule region. The characteristic nodal plane pattern appears
instead to be much more pronounced at the positive and negative
bias resonances (maps 1 and 3) and even in the Coulomb blockade
region (map 2). The tip apex is placed at 7 Å above the molecular
plane, while the substrate biases are, respectively Vb1 = 0.1153 V,
Vb2 = −0.5303 V, Vb3 = −0.7201 V, and Vb4 = −0.9118 V.

where ε�m is the energy eigenvalue of the single-particle
Hamiltonian H0 associated with state |�mσ 〉. For the substrate
and tip states we assume the model described in Ref. 32: a
three-dimensional momentum is necessary for the extended
substrate states, while only the momentum in the transport
direction characterizes the tip states which are confined in the
x and y direction around the tip position.

Our method of choice for treating the dynamics in the
regime of weak coupling between system and leads is the
Liouville equation method. We start from the Liouville
equation for the total density operator ρ(t) of the whole system,
consisting of the molecule, the tip, and the substrate. We
focus on the time evolution of the reduced density operator
σ = TrS+T {ρ}, formally obtained by taking the trace over the
unobserved degrees of freedom of the tip and the substrate. A
detailed discussion and derivation of the equation of motion
for the reduced density operator of the system can be found,
e.g., in Refs. 36 and 21, and its adaptation to the STM setup on
thin insulating films in Ref. 32. For a general discussion about
the reduced density matrix and related equations of motion,
see also Refs. 37 and 38.

Let us now consider a molecule deposited on a substrate
having a nondegenerate neutral ground state |NE0� = �0Sz =
0〉 and an orbitally degenerate anion ground state |N + 1E1� =
±�1Sz = ±1/2〉. Assume that the neutral state minimizes
the grand canonical Hamiltonian HG = H − μ0N , where
μ0 = −φ0 is the equilibrium chemical potential of the leads,
φ0 the corresponding work function, and N the electron
number operator for the molecule. If E1 − E0 ≈ μ0, there
is a bias window in which the transport characteristics are
dominated by a dynamics which involves the neutral and
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FIG. 4. Schematic representation of the many-body states par-
ticipating in the transport. On the vertical axis we report the
grand canonical energies E′

0 := E0 − Nμ0 and E′
1 := E1 − (N +

1)μ0, where μ0 is the equilibrium chemical potential for the
leads. (a) We adopt the angular momentum representation; (b) the
decoupling basis is introduced for the anionic states (see text for
details).

anionic ground states only. In Fig. 4(a) we give a schematic
representation of the many-body states participating in the
transport and the associated transition rates, where, for the sake
of simplicity, we neglect the spin degree of freedom. According
to the general theory presented in [32], the corresponding
generalized master equation for the reduced density matrix
in the angular momentum basis reads

σ̇
NE0
�0�0

= −
∑
χτ�

R
χτ

�−�0, �−�0
(�E)f +

χ (�E)σ NE0
�0�0

+
∑
χτ��′

R
χτ

�−�0, �′−�0
(�E)f −

χ (�E)σ N+1E1τ
�′�

(4)

σ̇
N+1E1τ
��′ = −1

2

∑
χ�′′

[
R

χτ

�−�0, �′′−�0
(�E)σ N+1E1τ

�′′�′ ,

σ
N+1E1τ
��′′ R

χτ

�′′−�0, �′−�0
(�E)

]
f −

χ (�E)

+
∑
χτ

R
χτ

�−�0, �′−�0
(�E)f +

χ (�E)σ NE0
�0�0

,

where �, �′, and �′′ = ±�1, span the angular momenta of
the anionic ground state and �E = E1 − E0 is the energy
difference between the anionic and the neutral ground states.
Moreover, f +

χ (x) is the Fermi function for the lead χ ,
f +

χ (x) := f (x − μχ ), and f −
χ (x) := 1 − f +

χ (x). Note that we
assume an asymmetric potential drop where μT = μ0 − ceVb

with c = 0.86 and μS − μT = eVb. The rate R
χτ

�−�0, �′−�0
is

defined as

R
χτ

��,��′(�E) =
∑
mm′

〈N + 1E1�τ |d†
�� mτ |NE0�00〉

×�
χ

��m,��′m′(�E)

×〈NE0�00|d��′ m′τ |N + 1E1�
′τ 〉, (5)

where

�
χ

��m,��′m′(�E) = 2π

h̄

∑
k

(
t
χ

k��m

)∗
t
χ

k��′m′δ
(
ε

χ

k − �E
)
,

(6)
and we have introduced the notation �� = � − �0, ��′ = �′ −
�0 for the variation in angular momenta associated with the
tunneling process.

Due to the rotational symmetry of the molecule and the
different spatial confinement of the leads, the rate matrices
acquire the form

RS
��,��′ = RSδ��,��′ ,

(7)

RT
��,��′ = RT exp

(
−i

�� − ��′

��
φ��

)
,

where, for simplicity, we did not write the energy dependence
of RS or the energy and tip position dependence of RT and of
the phase φ��. Moreover, the latter is defined as

φ�� = arg

(∑
m

tT
k̃��m

〈NE0�00|d��mτ |N + 1E1�τ 〉
)

. (8)

Due to their particular structure, the rate matrices, (7), are both
diagonalized by the same basis transformation.

While the substrate rate matrix is invariant under whatever
unitary transformation, the tip rate matrix acquires a peculiar
diagonal form since one of its eigenvalues vanishes. The basis
transformation, within each spin sector of the anionic ground
state, reads( |c〉

|d〉
)

= 1√
2

(
e−iφ�� e+iφ��

e−iφ�� −e+iφ��

) ( | +�1〉
| −�1〉

)
(9)

and it depends on the position of the tip via the phase φ��.
Due to the diagonal form of the rate matrices, in this basis
the dynamics is described only by means of populations. In
particular, the decoupled states |N + 1E1dτ 〉 are only coupled
to the neutral ground state |NE0�00〉 via substrate-molecule
tunneling events. Both tunneling couplings are still open
instead for the coupled states |N + 1E1cτ 〉 [see Fig. 4(b)].
The corresponding master equation reads

⎛
⎜⎝

σ̇ N

σ̇ N+1τ
c

σ̇ N+1τ
d

⎞
⎟⎠ =

⎡
⎢⎣2RT

⎛
⎜⎝

−2f +
T 2f −

T 0

f +
T −f −

T 0

0 0 0

⎞
⎟⎠ + RS

⎛
⎜⎝

−4f +
S 2f −

S 2f −
S

f +
S −f −

S 0

f +
S 0 −f −

S

⎞
⎟⎠

⎤
⎥⎦

⎛
⎜⎝

σ N

σ N+1τ
c

σ N+1τ
d

⎞
⎟⎠ , (10)

where, for simplicity, we have omitted the arguments (�E) of
the Fermi functions and the tunneling rates Rχ and suppressed
the indexes E0, �0, and E1 in the elements of the density matrix.

The stationary current flowing through the STM junction is
calculated as the average 〈IS〉 = Tr{σ statIS} = −〈IT 〉, where
σ stat is the stationary solution of Eq. (10) and Iχ are the current
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operators, which are directly obtained from Eq. (4) following,
for example, Refs. 21 and 32. Despite its simplicity, Eq. (10)
describes the system in a variety of different regimes which
leave their fingerprints in the current-voltage characteristics
and in the corresponding STM images.

III. RESULTS

Given Eq. (10), the stationary current flowing through the
system is found in closed analytical form, which represents
one major result of this work. It reads

I ( �Rtip,Vb) = 2eRSf +
S σ N

(
1 − σ N+1τ

c

σ N+1τ
d

)
, (11)

where e is the (negative) electron charge, and for the stationary
populations, it holds that

σ N =
(

1 + 2
RSf +

S + 2RT f +
T

RSf −
S + 2RT f −

T

+ 2
f +

S

f −
S

)−1

,

σ N+1τ
c

σ N+1τ
d

= RSf +
S + 2RT f +

T

RSf −
S + 2RT f −

T

· f −
S

f +
S

. (12)

Depending on the rate RT at the tip position and the bias and
the Fermi functions at the bias, both topographical and spectral
information is embedded in Eq. (11).

In the right panel in Fig. 2 we report the IV characteristics
calculated for a Cu-phthalocyanine on a metal-insulator
substrate (a 7-Å-thick insulator with relative dielectric constant
εr = 5.9) with an effective work function φS = 4.1 eV. We
set up the single-particle Hamiltonian for the molecule in the
tight-binding approximation and calculate the hopping terms
following the Slater-Koster scheme.39 Moreover, we adopt
the constant interaction approximation and assume a charging
energy that fits the experimentally evaluated electron affinity
E0 − E1 of CuPc of 4 eV.

At a low bias the current is suppressed by Coulomb
blockade. As the bias increases on the positive side (con-
ventionally under this condition electrons flow from the
tip to the substrate), the current undergoes a sudden jump
corresponding to the opening of the neutral-anion transition at
the tip-molecule interface (E1 − E0 = μT ). On the negative
bias side the Coulomb blockade is also lifted, but this time
at the substrate resonance point (E1 − E0 = μS), and the
current shows a sharp peak whose width scales with the
temperature (kBT = 6 meV in all presented plots). At higher
negative biases the current is blocked due to interference
and the decoupled anionic state is the sink of the system. A
crucial condition for the interference blocking to occur is that
E1 − E0 	 E0 − E−1, ensuring that the substrate-molecule
anion resonance anticipates the tip-molecule cation one, which
would otherwise dominate the transport characteristics.

Analogous interference blocking involving degenerate
many-body states has been encountered in a variety of
systems.19,21–23 Nevertheless, the STM setup described here
uniquely allows us to correlate the interference current
blocking with specific topographical fingerprints. In Fig. 3
we present different constant-height current maps (the tip is al-
ways positioned 7 Å above the molecular plane) corresponding
to the different points labeled in the right panel in Fig. 2. Maps 1

I (
pA

)

5 7 9 11

10
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10
0
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2

10
4 1
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FIG. 5. Current vs tip-molecule distance calculated for different
biases. Numbers in the legend correspond to the different cases
illustrated in Fig. 3: Vb1 = 0.1153 V, Vb2 = −0.5303 V, Vb3 =
−0.7201 V, and Vb4 = −0.9118 V. Note, in particular, the wide
plateau associated with the interference blockade regime (line 4)
and its crossing with the Coulomb blockade line for Ztip − d = 7 Å.

and 3 are calculated for the tip and substrate resonant tunneling
conditions, and maps 2 and 4 for the Coulomb and interference
blockade regimes, respectively. Striking is the flattening of the
current map obtained in the interference case (map 4) when
compared to all other regimes.

Signatures of interference can be clearly seen also in the
current vs tip-molecule distance represented in Fig. 5. The four
traces correspond to the four different bias conditions indicated
by the numbers 1 to 4 in the right panel in Fig. 2 and the tip
is in the same xy position. At large tip-molecule distances all
traces show the exponentially decaying behavior typical of the
STM measurements (roughly 1 order of magnitude decay per
Å). At shorter distances, all curves saturate due to the form
of the pz orbitals. Contrary to the others, though, the curve
corresponding to the interference blockade regime (case 4)
saturates at larger distances and shows a wide plateau. For this
reason it even crosses the Coulomb blockade trace (case 2) at
a tip-molecule distance of 7 Å, consistent with the result in
Fig. 2.

Finally, we also present in Fig. 6 several constant-current
topographic maps simulated for different biases and different
operating currents. The surfaces presented in the upper panel
correspond to the Coulomb blockade regime; the ones in the
lower panel, to the interference blockade. Due to the particular
choice of the biases, the apparent height of the molecule is
exactly the same if we choose 3 pA as an operating current.
The shape of the molecule is not modified in the interference
blockade regime, as it is for the constant-height current maps
(see Fig. 3). Yet, the enhanced sensitivity of the apparent height
of the molecule with respect to the variation of the operating
current, when compared with the same measurement in the
Coulomb blockade regime. The surfaces presented in Fig. 6
correspond, in fact, for both cases, to operating currents in the
range 2.85–3.15 pA.

IV. DISCUSSION

All the results presented in the previous section can be
understood by analyzing the different limits of Eq. (11). Let
us first consider the Coulomb blockade regime. The latter is
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FIG. 6. (Color online) Isosurfaces of constant current calculated
in the proximity of the Coulomb blockade (upper panel; Vb =
−0.5303 V) and interference blockade (lower panel; Vb = −0.9118
V) regimes. The surfaces correspond, in both cases, to the currents:
I = 3.15, 3.075, 3.0, 2.925, and 2.85 pA.

defined, for Vb < 0, by the inequality E1 − E0 − μS 
 kBT ,
which in turn implies f +

S 	 1 and f +
T 	 1. In this limit and

under the asymmetry relation RT 	 RS typical of an STM
experiment, it is not difficult to prove that

ICB = 4eRT f −
T

f +
S

f −
S

(
1 + 4

f +
S

f −
S

)−1

≈ 4eRT f +
S . (13)

The current is thus proportional to the tip rate. The equality
in Eq. (13) also has a precise physical interpretation. The
charge fluctuations at the substrate lead represent the fastest
phenomenon (f +

S /f +
T 
 1 due to the asymmetric potential

drop at tip-molecule and substrate-molecule contacts) which
sets the ratio between the populations of the states to be the
thermal average, σ N+1τ

c/d /σN = f +
S /f −

S . Finally, the trace sum
rule implies

σ N =
(

1 + 4
f +

S

f −
S

)−1

. (14)

The current is determined instead by the slowest process:
the tunneling event |N + 1E1cτ 〉 → |NE00〉 towards the tip.
Equation (13) follows due to the presence of two spin
channels and the fact that the tip rate for the coupled state
is 2RT . Analogously, for Vb > 0, the Coulomb blockade
condition reads E1 − E0 − μT 
 kBT and the current is again
proportional to the tip rate, namely, I = −4eRT f +

T . Thus,
the constant-height current map reproduces the shape of the
molecular orbital encoded in RT .

The interference blockade regime is confined to the negative
bias and it is defined by the inequality E1 − E0 − μS 	
−kBT , which implies f +

S ≈ 1 and f +
T 	 1. Under these

conditions the current, Eq. (11), reduces to

IIB = e
RSf −

S RT f −
T

RSf −
S + RT f −

T

. (15)

Equation (15) tells us even more clearly, when cast in the
form I−1

IB = (eRSf −
S )−1 + (eRT f −

T )−1, that the current is the
result of two competing processes happening in series: the
thermal unblocking of the decoupled state |N + 1E1dτ 〉 →
|NE00〉 towards the substrate and the tip tunneling event
|N + 1E1cτ 〉 → |NE00〉. Note that in the system dynamics the
two tunneling events are not independent: one cannot happen
if the other did not happen before. In the interference blocking
regime f −

S 	 f −
T , but in an STM set up, it typically also

holds that RT 	 RS . To fix the ideas let us first fix the tip
position (thus, the ratio RT /RS) and lower the bias, deep
in the interference blockade, so as to fulfill the condition
RSf −

S 	 RT f −
T . The current is thus proportional to RS and

independent of the tip position. This fact explains the flattening
of the constant-height current map in Fig. 3 and the wide
plateau of the current vs tip-molecule distance in Fig. 5.
Nevertheless, as the tip moves far from the molecule, the tip
rate drops and, as the condition RT f −

T 	 RSf −
S is fulfilled,

the position dependence of the current is recovered (IIB ∝ RT ).
The crossover between the two regimes is estimated by the
relation

RT ( �Rtip,�E) = RSeβ(�E−μS ). (16)

with β = (kBT )−1. For completeness we add that the inter-
ference blockade is the only regime in which the current
loses its canonical dependence on the tip position: the current
in fact saturates to I = −4eRT for large positive biases; it
is I = −2eRT at the tip-molecule resonance and I = 4

5eRT

at the substrate-molecule resonance. The summary of these
results and their extension to the work function and bias voltage
plane is presented in the left panel in Fig. 2, where the letters
T and S indicate regions where the current is proportional to
the tip or substrate rate, respectively.

The enhanced sensitivity of the apparent molecular height
to the value of the operating current of a constant-current scan
performed in the interference blocking regime can also be
explained by analyzing Eqs. (13) and (15). Let us consider a
certain value for the operating current I0. The equations for
the constant-current isosurfaces read

RT = I0

4ef +
S

≡ KCB(I0,Vb),

(17)

RT = I0

ef −
T

(
1 − I0

eRSf −
S

)−1

≡ KIB(I0,Vb),

respectively, for the Coulomb blockade and interference
blockade regimes. If, for a given choice of the parameters I0

and Vb, it holds that KIB = KCB, the two associated constant-
current isosurfaces coincide. This is indeed, by construction,
the case for the bias corresponding to points 2 and 4 in Fig.
2 if the operating current is chosen exactly as the one in the
IV characteristics (3 pA). Nevertheless, for the same choice
of biases, a very different sensitivity of the constant-current
isosurface to the value of the operating current is shown
in the interference blockade and in the Coulomb blockade
cases (compare upper vs lower panel in Fig. 6). By analyzing
the second equation in (17) we can see that KIB diverges
for I0 in the vicinity of the interference current eRSf −

S ,
while KCB shows, in the same limit, a completely regular
behavior. As KIB → ∞ the corresponding isosurface shrinks
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rapidly as shown in Fig. 6. Moreover, the interference current
also represents, in the vicinity of the interference blockade
regime, an upper limit for the operating current accessible
to a constant-current STM scan. In fact, for I0 > eRSf −

S the
constant KIB turns negative and the second equation in (17)
cannot be fulfilled for any position of the tip.

Special consideration should be given to the robustness
of the presented effect. Indeed we have so far presented the
idealized situation in which the rotational symmetry of the
CuPc is assumed to be unperturbed, with a consequently
perfect degeneracy of the anion ground states. Nevertheless,
this perfect degeneracy is not a necessary condition for the oc-
currence of the many-body interference effect described in this
article. As we explicitly showed in a previous publication,21

the interference blocking scenario persists as long as the
quasidegeneracy is present, i.e., the splitting of the interfering
energy levels is smaller than the tunneling coupling. In fact, if
the tunneling coupling is strong enough, the indetermination
principle does not allow us to distinguish between the two
quasidegenerate states in the tunneling event and interference
takes place. Moreover, since the tip tunneling coupling is
controlled, in an STM experiment, by the tip position, the
interference between quasidegenerate states could also be con-
trolled by the tip position. The result would be the tuning, with
the tip-molecule distance, of the NDC at negative bias voltages
associated with the interference blocking. Finally, concerning
the effect of the substrate on the molecular symmetry, we
would like to mention that a strong experimental sensitivity to
molecular symmetry has been proven for derivatives of CuPc
molecules on thin insulating films (see Ref. 40), suggesting
that an almost-complete decoupling of the molecular states is
indeed a good approximation for these systems.

Finally, the results presented so far for CuPc apply in
general to the class of planar molecules belonging to the Cnv

symmetry group, i.e., invariant under the set of rotations of
angles z2π/n, z = 0, . . . ,n − 1 around a principal rotation
axis perpendicular to the molecular plane and to a set of n

vertical planes (see Fig. 1). Their many-body states, like the
single-particle ones, can be classified using the projection � of
the angular momentum in the direction of the main rotational
axis (conventionally the z axis) that we introduced in Eq. (2).
The generic many-body eigenstates of Hm can thus be written
in the form |NE�Sz〉, where N is the particle number, E the
energy, and Sz and � the projections of the total spin and of the
angular momentum in the z direction, respectively, in units of
h̄. The state |NE�Sz〉 transforms under a rotation of an angle
φ = z2π/n around the main rotation axis as

Rφ|NE�Sz〉 = eiφ(�+Sz)|NE�Sz〉. (18)

where Rφ is the rotation operator. Consequently, it is not
difficult to prove that � is an integer number and − n

2 < � � n
2

for Cnv molecules with even n and − n−1
2 � � � n−1

2 when
n is odd. Since Cnv admits, at a maximum, bidimensional
irreducible representations, we conclude that states with
opposite �, connected by the reflection operation through the n

vertical planes, have symmetry-protected degeneracy and only
states with � = 0 (for even or odd n) or � = 0, n

2 (for even n)
are nondegenerate.

V. CONCLUSIONS

By studying the transport characteristics of an STM single-
molecule junction on a thin insulating film, we identify in this
article a class of molecules that should present strong NDC
and interference blocking features. Moreover, we establish a
criterion to identify the interference blocking scenario based
on topographical fingerprints. In particular, for biases in the
vicinity of the interference blocking regime, a flattening of the
molecular image in constant height and an enhanced sensitivity
of the apparent height to the operating current in the constant-
current mode are expected. The robustness of the effect is
ensured by the observation that quasidegeneracy and not exact
degeneracy of the interfering many-body states is the necessary
condition for the persistence of the phenomenon.
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APPENDIX: TUNNELING RATES AND OVERLAP
INTEGRALS

The derivation of the tunneling rates, up to a number of
small differences, follows the example given in Ref. 32. In
their most general form, they are given by

�
χ

�m, �′m′ = 2π

h̄

∑
k

(
t
χ

k�m

)∗
t
χ

k�′m′δ
(
ε

χ

k − �E
)

(A1a)

= ε�mε�′m′
∑
αβ

〈�mσ |ασ 〉Mχ

αβ〈βσ |�′m′σ 〉, (A1b)

where

M
χ

αβ(�E) = 2π

h̄

∑
k

δ(εχ

k − �E)〈ασ |χ �kσ 〉〈χ �kσ |βσ 〉.

(A2)

The coefficients 〈�mσ |ασ 〉 and the energies ε�m are ob-
tained by diagonalizing the single-particle Hamiltonian of the
molecule, which is set up by using the Slater-Koster tight-
binding approximation.39 The state |ασ 〉 denotes an atomic
orbital located at site α with position vector �Rα = (xα,yα,d)ᵀ.
The corresponding wave functions are approximated by the
contracted Gaussian orbitals g2p(�r) and g3d (�r) to simplify
the calculation of the overlap integrals. The definition of the
Gaussian orbitals, their contraction coefficients di, ei , and their
exponents ai, bi can be found in Refs. 41 and 42. The orbitals
used in this paper then are given by

pz(�r) = n2p �r · êz g2p(�r), (A3)

for a pz orbital. A dxz orbital then accordingly reads

dxz(�r) = n3d �r · êx �r · êz g3d (�r). (A4)

The parameters n2p and n3d ensure normalization. The
electronic states of the tip and the substrate are given by |(χ =
T )�kσ 〉 and |(χ = S)�kσ 〉, respectively. Their wave functions
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can be expressed in the form

�χ (x,y,z) = ψ
χ

‖ (x,y)ψχ

⊥(z), (A5)

where ψ
χ

‖ (x,y) is given by plane waves for χ = S or by
the wave function of the ground state of a two-dimensional
harmonic oscillator for χ = T. The wave functions ψ

χ

⊥(z)
are the exponentially decaying parts of the solutions of
one-dimensional finite potential wells,

ψS
⊥(z) = nS

⊥e−κSz and ψT
⊥(z) = nT

⊥eκT(z−ztip), (A6)

where n
χ

⊥ accounts for normalization and κχ is given by

κχ =
√

2m

h̄2

( − ε
χ

0 − εz

)
. (A7)

For the sake of reproduction, the different contributions to M
χ

αβ

are listed in the following.

1. Substrate-molecule tunneling rates

For two pz orbitals located at sites α and β, MS
αβ reads

MS
αβ = 4π4

h̄3 n2
2p

√
m3

2

∑
ij

didj

aiaj

×
∫ εS

F +φS
0

0

dεz√
εz

J0(k̃S| �Rαβ |)e− k̃2
S
4 (a−1

i +a−1
j )

× F (ai,κS, − d)F (aj ,κS, − d), (A8)

where Jn(x) is the nth-order Bessel function, �Rαβ = �Rα − �Rβ ,

and k̃S =
√

2m

h̄2 (�E − εS
0 − εz). The function F (a,κ,x) results

from the overlap of ψ
χ

⊥(z) with an atomic Gaussian orbital and
is given by

F (a,κ,x) = n
χ

⊥e−ax2

2a
− n

χ

⊥κ

4

√
π

a3
erfc

(
κ + 2ax

2
√

a

)
eκx+ κ2

4a .

(A9)

Here, erfc(x) is the complementary error function. Conse-
quently, it follows, for a dxz orbital located at �Rα and a pz

orbital at �Rβ , that

MS
α,xz;β = − 2π4

h̄3

√
m3

2
n3dn2p cos θαβ

∑
ij

eidj

b2
i aj

×
∫ εS

F +φS
0

0
dεz

k̃S√
εz

J1(k̃S| �Rαβ |)e− k̃2
S
4 (b−1

i +a−1
j )

× F (bi,κS, − d)F (aj ,κS, − d), (A10)

where θαβ is the polar angle of the planar component of
the vector �Rαβ . From MS

α,xz;β one can obtain MS
α,yz;β by

exchanging the corresponding parameters and by replacing
cos θαβ with sin θαβ . The expression MS

α,xz;β,yz vanishes exactly

due to symmetry reasons, and finally, MS
α,xz;β,xz is given by

MS
α,xz;β,xz = − π4

2h̄3

√
m3

2
n2

3d

∫ εS
F +φS

0

0
dεz

k̃2
S√
εz

×
⎡
⎣∑

j

ej

b2
j

F (bj ,κS, − d)e
− k̃2

S
4bj

⎤
⎦

2

≡ MS
α,yz;β,yz. (A11)

2. Tip-molecule tunneling rates

Due to the fact that the planar energy component of the
tip wave function is fixed at ε‖ = h̄ω, there is only one
single integration in energy to evaluate in order to obtain the
tip-molecule tunneling rates. Because of this, they are much
more straightforward to calculate than their substrate-molecule
counterparts:

MT
αβ = 2π

h̄2

∫ −εT
0

0
dεzD(εz)〈ασ |T �kσ 〉〈T �kσ |βσ 〉δ(εT

k − �E
)

= 2π

h̄2

√
m

2

Ltip

�E − εT
0 − h̄ω

〈ασ |T �kσ 〉〈T �kσ |βσ 〉. (A12)

The parameter Ltip stems from the one-dimensional density of
states of the tip and it is canceled later on by the normalization
of the tip wave function. Another effect of the single integration
in energy is that all possible combinations of pz, dxz, and dyz

orbitals are surviving. In order not to go beyond the constraints
of this paper, we only list the overlap integrals needed to
construct the matrices MT

αβ . After introducing the following
parameters and abbreviations—ν2 = mω

2h̄ , �yα = ytip − yα ,

�xα = xtip − xα , and, finally, κT =
√

2m

h̄2 (h̄ω − �E)—we are

able to give the overlap integrals between the different orbitals
located at �Rα and the tip wave function:

〈ασ |T�kσ 〉 = −n2p

√
2πν

∑
j

dj

aj + ν2

× exp

(
− ν2aj

ν2 + aj

(
�x2

α + �y2
α

))
×F (aj ,κT,d − ztip), (A13)

〈αxzσ |T�kσ 〉 = n3d

√
2πν3

∑
j

ej �xα

(bj + ν2)2

× exp

(
− ν2aj

ν2 + aj

(
�x2

α + �y2
α

))
×F (aj ,κT,d − ztip), (A14)

〈αyzσ |T�kσ 〉 = n3d

√
2πν3

∑
j

ej �yα

(bj + ν2)2

× exp

(
− ν2aj

ν2 + aj

(
�x2

α + �y2
α

))
×F (aj ,κT,d − ztip). (A15)
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