
Topology in

dynamical Lattice QCD simulations

DISSERTATION
zur Erlangung des Doktorgrades

der Naturwissenschaften (Dr. rer. nat.)
der Fakultät für Physik

der Universität Regensburg

vorgelegt von

Florian Gruber

aus Straubing

August 2012



Promotionsgesuch eingereicht am 20. August 2012

Die Arbeit wurde angeleitet von: Prof. Dr. A. Schäfer

Prüfungsausschuss: Vorsitzender: Prof. Dr. S. Ganichev

1. Gutachter: Prof. Dr. A. Schäfer

2. Gutachter: Prof. Dr. T. Wettig

weiterer Prüfer: Prof. Dr. I. Morgenstern



Contents

List of Publications III

Introduction V

1. Foundations of QCD 1

1.1. The QCD action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Path integral formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Chiral symmetry and the chiral anomaly . . . . . . . . . . . . . . . . . . 4
1.4. Topology and the QCD vacuum . . . . . . . . . . . . . . . . . . . . . . . 8

2. Lattice QCD 15

2.1. Gluons on the lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2. Quarks on the lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3. Improved gauge actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4. Chiral symmetry on the lattice . . . . . . . . . . . . . . . . . . . . . . . 21
2.5. More on fermion actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6. Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Topology and Lattice QCD 33

3.1. Lattice de�nition of the topological charge . . . . . . . . . . . . . . . . . 33
3.2. Index theorem on the lattice . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3. Topology in Lattice QCD . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4. Filtering methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. Comparison of �ltering methods 49

4.1. Measure for the local similarity . . . . . . . . . . . . . . . . . . . . . . . 49
4.2. APE vs. stout smearing . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3. Laplace �ltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5. Cluster analysis of the topological charge density 57

5.1. Topological charge density clusters . . . . . . . . . . . . . . . . . . . . . 57
5.2. Cluster analysis for a single �lter . . . . . . . . . . . . . . . . . . . . . . 60
5.3. Matched cluster analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6. Dynamical overlap fermions 65

6.1. Details on the simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 65

I



Contents

6.2. Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3. Index theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4. Status of the con�gurations . . . . . . . . . . . . . . . . . . . . . . . . . 72

7. Topology of dynamical lattice con�gurations 73

7.1. Lattice con�gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2. Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3. Two point correlation function of the topological charge density . . . . . 77

8. QCD vacuum in external magnetic �elds: zero and �nite temperature 83

8.1. Excursus: �nite temperature . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2. External magnetic �eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3. Details on the con�gurations . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4. Induced anisotropy of the gluonic �eld strength . . . . . . . . . . . . . . 86
8.5. Topological charge density in an external magnetic �eld . . . . . . . . . 88
8.6. Euler-Heisenberg Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . 91

9. Conclusion 95

A. Appendix 99

A.1. Euclidean geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2. Gamma matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3. Grassmann algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4. Fujikawa Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.5. Computer programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 119

Acknowledgements 121

II



List of Publications

Peer-reviewed journals

[1] Falk Bruckmann, Nigel Cundy, Florian Gruber, Thomas Lippert and Andreas
Schäfer. Topology of dynamical lattice con�gurations including results from dy-
namical overlap fermions. Phys.Lett., B707:278�285, 2012.

[2] Falk Bruckmann, Florian Gruber and Andreas Schäfer. Filtered topological struc-
ture of the QCD vacuum: E�ects of dynamical quarks. Phys.Lett., B687:92�97,
2010.

[3] Falk Bruckmann, Florian Gruber, Karl Jansen, Marina Marinkovic, Carsten Ur-
bach and Marc Wagner. Comparing topological charge de�nitions using topology
�xing actions. Eur.Phys.J., A43:303�311, 2010.

Conference proceedings

[4] Falk Bruckmann, Nigel Cundy, Florian Gruber, Thomas Lippert and Andreas
Schäfer. Topology of dynamical lattice con�gurations including results from dy-
namical overlap fermions. PoS, LATTICE2011:258, 2011.

[5] Falk Bruckmann, Florian Gruber and Andreas Schäfer. Comparing the vacuum
structure of quenched and dynamical con�gurations. PoS, LAT2009:224, 2009.

[6] Falk Bruckmann, Florian Gruber, Christian. B. Lang, Markus Limmer, Thilo
Maurer, Andreas Schäfer and Stefan Solbrig. Comparison of �ltering methods in
SU(3) lattice gauge theory. PoS, Con�nement8:045, 2009.

III





Introduction

On July 4, 2012, the CMS [7] and ATLAS [8, 9] experiments at the Large Hadron Col-
lider announced independently that they had found a previously unknown elementary
particle with a mass around 125GeV, that is over a hundred times heavier than the
hydrogen atom. From the decay products one knows that it has to be a boson and,
hence, serves as a candidate for the long sought-after Higgs boson. Before a �nal result
can be presented more data has to be gathered and analyzed, but both experiments
are con�dent to present the �nal answer soon.
The Higgs boson is the last particle in the Standard Model of particle physics that has

not been observed experimentally yet. It plays an important role in the electroweak
interaction where it explains the masses of Z and W bosons through the so-called
Higgs mechanism [10, 11, 12, 13]. Furthermore, it gives rise to the masses of leptons
like quarks and electrons and, thus, it is often said that the Higgs boson is the �origin
of mass�.
This statement is, however, not entirely correct as almost 99 percent of the observed

mass is due to the strong interaction called Quantum Chromodynamics (QCD) which
governs the dynamics of quarks and gluons � the constituents of hadrons like the proton
and the nucleon. The proton, for example, consists of two up and one down quarks with
a total mass of around 10MeV (gluons are massless), but the experimentally measured
mass is 938MeV [14].
QCD is a highly nonlinear theory and it turns out that the coupling of quarks and

gluons depends on the energies of the interacting particles. For very high momentum
transfers one has a weakly coupled theory and QCD can be treated perturbatively (in
an expansion in terms of the coupling constant). This property is also called asymptotic
freedom and its discovery awarded the Nobel prize in physics 2004 (Gross, Wilczek and
Politzer).
The second fundamental property of QCD is con�nement, which describes the exper-

imental observation that there are no free color-charged (strongly interacting) particles
in nature. They are all bound in color-neutral hadrons. There is, however, no rigorous
mathematical proof that QCD is con�ning. This is related to the fact that the coupling
is strong at low energies and perturbation theory is not applicable. Nonperturbative
methods are needed instead.
Lattice QCD is such an nonperturbative approach. Thereby, space-time is replaced by

a Euclidean hypercubic lattice. The quark �elds reside on the lattice sites and the gluons
are the links between the sites. Observables are then formulated on this lattice and
their quantum mechanical expectation values can be evaluated. The great advantage of
this approach is that it can be systematically improved by reducing the lattice spacing,
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Chapter 0: Introduction

and, with a su�cient number of lattice spacings, it is possible to extrapolate the results
to the continuum limit, i.e. to a vanishing lattice spacing. Lattice QCD has been
applied very successfully. It provides us with numerical evidence for con�nement and
many other results, such as the mass spectrum of light hadron, which is in excellent
agreement with experiment.
The main focus of this thesis are topological structures in the QCD vacuum � the

nonperturbative ground state of QCD � as seen in Lattice QCD simulations. The
topology is in this context not only an abstract mathematical concept. There is a
deep relation to the underlying physics and con�nement. Furthermore, it is strongly
tied to chiral symmetry, one of the fundamental symmetries of the QCD Lagrangian.
In particular, the spontaneous breaking of chiral symmetry can be traced back to the
topology of the gauge �elds. There is, however, a fundamental problem on a lattice: Any
gauge �eld con�guration can be continuously transformed to a trivial con�guration and
one would not have distinct topological structures. Nevertheless, there are remnants of
the continuum topology if the lattice spacing is small enough and one of the main tasks
is to identify these structures without introducing lattice artifacts or method-dependent
ambiguities.

This thesis is structured as follows: In the �rst three chapters we introduce all
concepts which are necessary to understand the relation of topology, chiral symmetry
and the QCD vacuum. We start with a chapter on the foundations of QCD. Therein,
we focus on the path integral formalism and chiral symmetry, which is one of the
fundamental symmetries of QCD, and, furthermore, give a brief introduction to the
topology of gauge �elds. Then we show in the second chapter how QCD is formulated
on a space-time lattice focusing, amongst other things, on the realization of chiral
symmetry for di�erent discretizations of the fermion action. This is followed by a
chapter on topology in Lattice QCD, where basic de�nitions are presented and �ltering
methods to extract the relevant topological excitations from Lattice QCD con�gurations
are introduced.
The main part is divided according to the various projects within this thesis. In

Chapter 4 we compare di�erent �ltering methods and show how these could be matched
to reduce ambiguities from a single �lter. A cluster analysis of the topological charge
density for this matched �ltering has been carried out in Chapter 5. The latter two
chapters are based on our publications Ref. [2] and Ref. [6]. In Chapter 6 we present
the topological structure in lattice simulations with exact chiral symmetry. The con-
�gurations from this project are used in Chapter 7, where we compare various lattice
discretizations of the fermion action. As chiral symmetry is realized quite di�erently
in these simulations, we use our exactly chiral con�gurations as a benchmark. The
outcome of this project has been published in Ref. [1] and Ref. [4]. In the last chapter
we investigate the properties of the QCD vacuum under extreme conditions. To this
end, we employ a very strong external magnetic �eld and measure its impact on the
vacuum structure at zero and �nite temperature. Finally, we give our conclusions.
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1
Foundations of QCD

The following chapter gives a short introduction to the principles of Quantum Chro-

modynamics (QCD). The main focus is on the basic formulas and concepts which are
necessary to understand the path integral formulation and the connection between chi-
ral symmetry and the topology of gauge �elds. The presented material has been chosen,
such that all necessary quantities are de�ned. For a more pedagogical introduction, we
refer to standard textbooks like Refs. [15, 16, 17].
Throughout this thesis the Euclidean formulation is used (see Appendix A.1). Fur-

thermore, a summation over repeated indices is assumed if not explicitly written.

1.1. The QCD action

Quantum Chromodynamics describes the interaction of quarks and gluons. Quarks are
massive fermions, which can be represented by Dirac spinors

ψ
(α,a)
f (x) and ψ̄

(α,a)
f (x), (1.1)

where ψ̄ denotes the corresponding antiparticle to ψ. f ∈ {u, d, s, c, b, t} is the �avor
index, α = 1, 2, 3, 4 is the spinor or Dirac index and a = 1, . . . , Nc(= 3 for QCD)
is the color index. Accordingly, each quark �avor has 4Nc �eld components at each
space-time point x.
The quark �avors di�er in mass and have electric charges qf = 2/3 or qf = −1/3

(qu, qc, qt = 2/3 and qd, qs, qb = −1/3). One �nds in nature that there are two light
�avors (up and down) and four heavier �avors with a very distinct hierarchy of masses.
The mass di�erence of the two light quarks is very small compared to the typical
hadronic scale. Thus, one can assume that they are mass-degenerate. For most calcu-
lations it is su�cient to take only the contributions of the two light �avors (and the
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Chapter 1: Foundations of QCD

heavier strange quark) into account. In this case one speaks of Nf = 2(+1) results. In
many cases it is further justi�ed to neglect electromagnetic e�ects, because the electro-
magnetic coupling is much smaller than the strong coupling and so there is an exact
iso-spin symmetry between up and down quarks.

The interaction between quarks is mediated by massless, color-charged boson �elds
called gluons

Aab
µ (x). (1.2)

These �elds carry a space-time index µ = 1, 2, 3, 4 and two color indices a, b = 1, . . . , Nc.
For �xed µ and x they can be represented by hermitian traceless Nc×Nc matrices (This
is also known as the adjoint representation). Consequently, we can express the gluon
�elds as a linear combination of the generators of the su(Nc) Lie algebra

Aµ(x) =

N2
c−1∑

a=1

Aa
µ(x)T a, (1.3)

with real-valued color components Aa
µ(x). The generators obey the general commutator

relation
[T a, T b] = ifabcT c, (1.4)

where fabc are the totally antisymmetric structure constants and they are normalized
as

tr{T aT b} =
δab
2
. (1.5)

For Nc = 3 these matrices are the eight Gell-Mann matrices and for Nc = 2 the three
Pauli matrices.

The dynamics of quarks and gluons are governed by the QCD action. This is a
functional of the �elds, consisting of two parts. The �rst one contains the quarks and
their interaction with gluons and the second describes the dynamics of gluons only:

SQCD[ψ, ψ̄,A] = SF [ψ, ψ̄A] + SG[A]. (1.6)

The fermion part for a single �avor and mass mf reads in a compact vector notation
(color and spinor indices are suppressed) as follows

SF [ψ, ψ̄,A] =

∫
d4x ψ̄f (x)

(
γµDµ +mf

)
ψf (x), (1.7)

where γµ are the (Euclidean) γ-matrices (see A.2) and

Dµ = ∂µ + iAµ(x) (1.8)

is the covariant derivative. Eq. (1.7) looks formally like the fermion part of the QED
action, but it has additional color degrees of freedom in the �elds A and ψ. Varying
the above equation with respect to ψ̄ leads to the QCD Dirac equation

(γµDµ +mf )ψf (x) = 0. (1.9)

2



1.2. Path integral formulation

The gauge principle of QED is generalized to QCD by requiring the action to be
invariant under local rotations in color space. The fermions transform as

ψ(x)→ ψ′(x) = g(x)ψ(x) and ψ̄(x)→ ψ̄′(x) = ψ̄(x)g(x)†, (1.10)

where g(x) is a unitary, hermitian Nc×Nc matrix with unit determinant det g(x) = 1.
Hence, g(x) is an element of the special unitary group SU(Nc). The gauge-invariance
of the action SF implies that the gauge �elds transform in analogy to QED as

Aµ(x)→ A′µ(x) = g(x) Aµ(x)g(x)† + i
(
∂µg(x)

)
g(x)†. (1.11)

The gluonic part of the action is easily derived as a generalization of the QED gauge
action. Correspondingly, the �eld strength tensor is de�ned as the commutator of two
covariant derivatives

Fµν =
1

i
[Dµ, Dν ] = ∂µ Aν −∂ν Aµ−i[Aµ,Aν ] =

∑

a

F aµνT
a. (1.12)

The commutator term [Aµ,Aν ] vanishes for QED but for su(Nc)-valued �elds it does,
in general, not. A gauge-invariant, scalar combination of the �eld strength tensor is
needed for the action. The simplest way to achieve this is

SG[A] =
1

2g2

∫
d4x tr

{
Fµν(x)Fµν(x)

}
=

1

4g2

∫
d4xF aµν(x)F aµν(x), (1.13)

where the trace is taken over the color indices and g denotes the strong coupling con-
stant. This expression formally looks like the QED photon action, but, due to the
nonvanishing commutator, cubic and quartic terms in the gauge �elds emerge. These
terms give rise to gluon self-interactions and to the highly nonlinear nature of QCD.

1.2. Path integral formulation

So far we have only de�ned a classical �eld theory of quarks and gluons. Hence, we
need a prescription to quantize this �eld theory. The path integral o�ers a very elegant
way to make this transition from a classical theory to a quantum theory. (For a good
introduction, see Ref. [15] or Ref. [16]).

The expectation value of a quantum mechanical operator Ô[
¯̂
ψ, ψ̂, Â], which can be

any function of the �eld operators (quantum mechanical operators are denoted by hat),
is given in the path integral formalism by (�avor, color and spinor indices suppressed):

〈Ô[ψ̂,
¯̂
ψ, Âµ]〉 =

1

Z

∫
[Dψ][D ψ̄][DA]O[ψ, ψ̄,Aµ]eiS[ψ,ψ̄,Aµ], (1.14)

where the partition function

Z =

∫
[Dψ][D ψ̄][DA]e−S[ψ,ψ̄,Aµ] (1.15)

3



Chapter 1: Foundations of QCD

has been introduced. The integration measure is formally de�ned as

[Dψ] =
∏

f,a,α,x

dψ
(a,α)
f (x), (1.16)

[D ψ̄] =
∏

f,b,β,x

dψ̄
(b,β)
f (x), (1.17)

[DA] =
∏

µ,a,x

dAa
µ(x). (1.18)

The r.h.s. of Eq. (1.14) contains only classical �elds, whereas the l.h.s. is the expec-
tation value of a quantum mechanical operator. Therefore, the path integral provides
a transition to a quantum theory which enters through the integration over all possible
�eld con�gurations weighted by the classical action.
The quark �elds in the path integral cannot be represented by ordinary c-numbers.

In order to obey Fermi statistics, one has to introduce anticommuting, Grassmann-
valued �elds (see Appendix A.3). It is hard do calculate with these numbers dirictly
and, thus, is is better to integrate out fermionic degrees of freedom. By using the basic
rules of Grassmann integration (see Appendix A.3) and the special structure of the
fermion action, the so-called fermion determinant is obtained1

∫
[D ψ̄][Dψ]e−SF [ψ̄,ψ] =

∫
[D ψ̄][Dψ]e−ψ̄( /D+m)ψ = Det( /D +m) (1.19)

and, therewith, the partition function reads

Z =

∫
[Dψ][D ψ̄][DA]e−S[ψ,ψ̄,Aµ] =

∫
[DA]e−SG[Aµ] Det( /D +m). (1.20)

The common matrix identity log detM = tr logM further yields

Z =

∫
[DA]e−Seff (1.21)

with the e�ective action

Seff = SG[Aµ]− tr log{ /D +m}. (1.22)

1.3. Chiral symmetry and the chiral anomaly

Symmetry is one of the fundamental concepts of physics. According to Noether's the-
orem every symmetry is connected to a conservation law and constrains the dynamics
of a physical system.
It is not only the presence of a symmetry which is interesting, but also its breaking.

Such broken symmetries can be found everywhere in physics from hydrodynamics to

1We write Det in order to distinguish this functional determinant from the usual determinant det for
matrices.
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1.3. Chiral symmetry and the chiral anomaly

magnetism. For QCD, in particular, the chiral symmetry and its spontaneous (and ex-
plicit) breaking is of central importance, as this e�ect is responsible for an overwhelming
part of the hadron mass.
Before explaining chiral symmetry, we have a look at a related concept, namely

helicity, which is de�ned for any particle with spin as the projection of the spin vector
onto the momentum vector. A particle is called right-handed if this projection is positive
and left-handed if it is negative. The problem of this de�nition is that it is not a Lorentz-
invariant concept for massive particles. The helicity will �ip sign after performing a
transformation from the rest frame to a frame which moves faster than the particle.
Chirality, by contrast, is a Lorentz-invariant concept which uses the eigenstates of

the γ5-matrix.
γ5ψ = ±ψ. (1.23)

Both concepts coincide in the massless limit and, thus, one calls states with an eigen-
value +1 right-handed and with −1 left-handed.
A general Dirac spinor has left- and right-handed components which can be projected

out by the projection operators

P+ = PR =
1 + γ5

2
and P− = PL =

1− γ5

2
. (1.24)

The quark and anti-quark �elds can be decomposed due to their chirality eigenstates:

ψ =

(
ψR
ψL

)
and ψ̄ =

(
ψ̄R ψ̄L

)
, (1.25)

where
ψR/L = PR/Lψ. (1.26)

Inserting this representation into the action functional of QCD, it divides into three
parts. One with only left-handed �elds, one with only right-handed �elds and the mass
term which couples left- and right-handed �elds:

SQCD[ψ, ψ̄,A] = S[ψL, ψ̄L,A] + S[ψR, ψ̄R,A] + Smass[ψ, ψ̄]. (1.27)

In the absence of a mass term, transformations of the kind R→ L and L→ R do not
alter the theory. This symmetry is called parity which is a special case of a global chiral
rotation

ψ → eiγ5θψ. (1.28)

The massless QCD action is even invariant under a local (in�nitesimal) chiral sym-
metry transformation:

ψ(x)→
(
1 + iθ(x)γ5

)
ψ(x) and ψ̄(x)→ ψ̄(x)

(
1 + iθ(x)γ5

)
(1.29)

for the �avor singlet and

ψ(x)→
(
1+iθa(x)Taγ5

)
ψ(x) and ψ̄(x)→ ψ̄(x)

(
1+iθa(x)Taγ5

)
(1.30)
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Chapter 1: Foundations of QCD

for the �avor multiplet. In the latter, Ta denote the generators of �avor symmetry
group SU(Nf ) and not the color symmetry group SU(Nc). Accordingly, the action is
invariant under a local U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A
symmetry.2

Mass terms break this symmetry explicitly, but there should be remnants of this
symmetry which in�uence the observed hadron spectrum. The bare mass terms in the
QCD action are small compared to the hadronic scale and thus only small e�ects are
expected. It turns out, however, that many e�ects are not compatible with this small
mass term. For example, the mass di�erence of the proton and its parity partner,
the N?, is approximately 600MeV � mu/d [18]. Hence, other mechanisms are needed
which prevent this symmetry of being realized in nature.

The solution to this problem is the spontaneous breaking of chiral symmetry (sponta-
neous χSB). Following the textbook of Peskin and Schroeder [16], one can qualitatively
explain the spontaneous χSB in analogy to superconductivity: In a superconductor
a small attractive force between electron pairs leads to the formation of Cooper-pairs
which result in a nonvanishing condensate of bound electron pairs. In QCD we have
a strong attractive interaction between quarks and anti-quarks. The energy cost of
creating a quark anti-quark pair is small leading to a nonvanishing expectation value
of those pairs. These pairs must have zero total momentum and zero angular momen-
tum which can only be realized if a left-handed quark and right-handed anti-quark or
left-handed anti-quark and right-handed quark are combined. Thus,

〈0|ψ̄ψ|0〉 = 〈0|ψ̄RψL + ψ̄LψR|0〉 6= 0. (1.31)

This ground state is, however, only symmetric under parity transformations and not
under a general chiral transformation, and a nonvanishing expectation value mixes
states with di�erent chirality.

Therefore, the U(3)L × U(3)R symmetry3 is broken to a U(3)R=L symmetry and,
according to the Goldstone theorem, one has to have massless bosons. This role is
played by pions, kaons and the η-particle, which are not massless, but much lighter
than typical hadron masses. Hence, we call them pseudo-Goldstone bosons.

U(3) has nine degrees of freedom and one expects nine pseudo-Goldstone bosons,
but there are only eight found in nature. The ninth would-be Goldstone boson, the η′,
is much too heavy to be compatible with this symmetry breaking. The only possible
explanation is that the theory does not possess the aforementioned SU(3)L×SU(3)R×
U(1)V × U(1)A symmetry and one subgroup of this symmetry has to be broken in
another way. It turns out that this is the U(1)A axial symmetry and the reason for the
absence of this symmetry is the well-known chiral anomaly.

One talks about quantum anomalies if a symmetry of the classical action functional
is not present in the corresponding quantum theory. The path integral formalism o�ers
a simple interpretation of such anomalies: As the integrand containing the classical ac-

2U(1)V denotes the vector symmetry (ψL → eiθψL and ψR → eiθψR) and U(1)A denotes the axial
symmetry (ψL → eiθψL and ψR → e−iθψR).

3At most the Nf = 3 lightest �avors can be taken as �massless�.
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1.3. Chiral symmetry and the chiral anomaly

tions functional will always obey the symmetries of the classical theory by construction,
it can only come from the measure.
This is the gist of Fujikawa's method to derive the chiral anomaly [16, 19, 20, 21]

(see Appendix A.4). In this elegant but elaborate calculation one carefully de�nes the
integration measure in terms of eigenfunctions Φn of the Dirac operator, which leads
to a nontrivial transformation

[D ψ̄′][Dψ′] = exp
{
− 2i

∫
d4x θ(x)

∑

n

Φ†n(x)γ5Φn(x)
}

[D ψ̄][Dψ.] (1.32)

This looks almost like a unitary transformation, but it is not. It can immediately
be seen for a global chiral rotation, where θ(x) = const., that the contributions of
eigenvectors with nonzero eigenvalue vanish as φ and γ5φ are orthogonal.4 The zero
modes, however, contribute with

∫
d4xΦ†n(x)γ5Φn(x) = ±1 depending on the chirality

of the mode. Thus, one gets
∫
d4x

∑

n

Φ†n(x)γ5Φn(x) = nR − nL ≡ − index(D), (1.33)

where nL/R counts the number of left-/right-handed zero modes which de�ne the index
of the Dirac operator.
For a local transformation the calculation is more tricky, as the sum over eigenstates

has to be regularized in an appropriate manner (see Appendix A.4). The �nal result is

∑

n

Φ†n(x)γ5Φn(x) = − 1

16π2
tr{FµνF̃µν}, (1.34)

where

F̃µν = 1
2εµνρσFρσ. (1.35)

is the dual �eld strength tensor. This equation also holds for a global chiral rotation
and yields together with Eq. (1.33) a relation between the space of zero modes of the
Dirac operator and the underlying gauge �eld:

index(D) = nL − nR =
1

16π2

∫
d4x tr{FµνF̃µν} ≡ Qtop. (1.36)

Accordingly, every gauge �eld con�guration can be characterized by an integer number.
Smooth deformations of the �eld cannot change this integer which is for that reason
called topological invariant or topological charge Qtop. The relation between index and
topological charge is the famous Atiyah-Singer index theorem [22].
In conclusion, one can interpret the chiral anomaly as an e�ect of the topology of

the background �eld. Due to the anomaly we have less symmetries than the classical
theory pretends to have. As a result the spontaneous chiral symmetry breaking does
not prevent the η′ from acquiring a large mass.

4φ and γ5φ are eigenvectors of complex conjugated eigenvalues and, as a result, they are orthogonal.
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Chapter 1: Foundations of QCD

1.4. Topology and the QCD vacuum

The Atiyah-Singer index theorem is a good example of how purely mathematical con-
cepts enter physics. Topology, in particular, has a growing impact in many �elds of
physics including solid-state physics, cosmology and hydrodynamics. In this section we
have a closer look on topological concepts in physics and QCD.

1.4.1. Topology in a nutshell

Topology is a branch of mathematics which deals with general properties of mathe-
matical objects or spaces. It provides us with tools to characterize these objects and
to classify them according to properties that are common or stable under continuous
deformations. In this sense one can de�ne topological equivalence classes and calls two
objects topologically equivalent if there exists a continuous, invertible mapping between
them. Such mappings are so-called homeomorphisms.

Before we discuss the situation in QCD, we start with a simpler example of a two-
dimensional unit vector �eld in some domain D (all vectors can be represented by a
phase eiα(x)). The Stokes' theorem ties the �elds inside the domain to the �elds on
the boundary. Each possible �eld con�gurations can, then, be classi�ed by the winding
number:

µ =
1

2π

∮

∂D
dl eiα(l). (1.37)

This number counts how often the vector �eld is rotated when going around the
boundary. Various examples, thereof, can be found in Fig. 1.1. The �eld has to be
smooth to ensure �nite action and it has to be periodic when going around the circle.
(In principle, the periodicity follows also from the �rst condition.). Thus, trying to
deform con�gurations with di�erent winding number into the other fails because there
will be at least one point that violates these conditions. Consequently, the winding
number de�nes a topological equivalence class.

Topological equivalence classes of this kind play an important role in the theory
of vortices, which occur in �uids, spin-glasses or magnets. The relation to Stokes'
theorem enables a nice interpretation of the winding number: It counts the number

n = 1n = 0 n = −1 n = 2

Fig. 1.1: Visualization of di�erent winding numbers of a unit vector �eld at the boundary
of a domain.
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1.4. Topology and the QCD vacuum

of �eld vortices inside the domain. This simple example will now be extended to a
four-dimensional, non-Abelian gauge theory.

1.4.2. Instantons

In this section we introduce the prime example of a topological object in gauge theory:
the instanton. Starting with a four-dimensional Euclidean Yang-Mills (or pure gauge)
theory, based on the gauge group SU(N), we demand that the action

SYM = SG
(1.13)

=
1

2g2

∫
tr{F 2

µν(x)} d4x (1.38)

is �nite, otherwise we do not have a physically meaningful theory. This requirement
implies that the �eld strength has to vanish at in�nity and therefore Aµ approaches a
pure gauge �eld

Aµ(x)
∣∣∣
|x|→∞

= i
(
∂µg(x)

)
g(x)†. (1.39)

All elements at the boundary are group elements of the gauge group instead of algebra-
valued �elds and Aµ(x) changes smoothly around the boundary. Furthermore, one can
rewrite the Yang-Mills action with the dual �eld strength tensor of Eq. (1.35) and gets
[23, 24]:

SYM =
1

2g2

∫
1

2
tr{
(
Fµν(x)± F̃µν(x)

)2
︸ ︷︷ ︸

≥0

} ∓ tr{FµνF̃µν}d4x, (1.40)

where it has been used that F 2
µν = F̃ 2

µν . The �rst term in the integrand cannot be
negative due to the square and it vanishes if the gauge �eld is (anti-)selfdual

Fµν = ±F̃µν , (1.41)

Therewith, a lower bound for the action can be derived

SYM ≥
1

2g2

∣∣∣
∫

tr{FµνF̃µν}d4x
∣∣∣, (1.42)

which is also called Bogomolnyi-Prasad-Sommerfeld bound. Selfdual solutions saturate
this bound and it can be shown with the aid of the Bianchi identities that the selfduality
condition Eq. (1.41) is equivalent to the classical Yang-Mills equations of motion

DµFµν = 0. (1.43)

The selfduality condition is only a �rst order di�erential equation and, thus, it is much
simpler to solve than the equations of motion. Such a solution is fully nonperturbative,
as S → ∞ for g → 0 and, hence, it serves as a starting point for studying nonpertur-
bative phenomena.

9



Chapter 1: Foundations of QCD

Belavin, Polyakov, Shvarts and Tyupkin [25] found such a selfdual solution for the
gauge group SU(2).5 It reads as follows:

AI
a,µ(x) =

2(x− x0)ν
(x− x0)2 + ρ2

ηaµν . (1.44)

where x0 is the center of the solution, ρ its size parameter and

ηaµν =





εaµν µ, ν = 1, 2, 3
δaµ ν = 4
−δaν µ = 4

0 µ = ν = 4

(1.45)

is the so-called 't Hooft tensor [26], which determines the color structure of the �eld
Aa
µ(x). This solution is called (BPST-)instanton.
An anti-selfdual solution can be obtained immediately by replacing ηaµν → η̄aµν ,

where the entries in the temporal direction (ν = 4 or µ = 4) have �ipped signs:6

AA
a,µ(x) =

2xν
x2 + ρ2

η̄aµν . (1.46)

Accordingly, this is called anti-instanton.
Let us further discuss some of the most important properties of (anti-)instantons.

Eq. (1.44) implies that Aµ approaches indeed a pure gauge con�guration for |x| → ∞.
Furthermore, using the de�nitions one gets the action density of an (anti-)instanton
(cf. Ref. [27]):

SA/I(x) =
1

4g2
(F aµν(x))2 =

1

g2

48ρ4

(x2 + ρ2)4
. (1.47)

It decays as x−8 with distance x from center which means that the object is strongly
located in space-time and this is why it can be considered as a pseudo-particle that
represents an �instantaneous� space-time event.
Integrating the action density Eq. (1.47) yields a total action [28]

SA/I =
8π2

g2
(1.48)

for both instantons and anti-instantons. It is important to note that the total action
does not depend on the size parameter or the location of the center. Using the saturated
Bogomolny bound Eq. (1.42) together with Eq. (1.48) one gets the topological charge
of an (anti-)instanton:

Qtop =
1

16π2

∫
d4x tr{FµνF̃µν} =

{
1 Fµν = +F̃µν (instanton)

−1 Fµν = −F̃µν (anti-instanton)
(1.49)

5In order to obtain a SU(3) solution one can use the fact that there are SU(2) subgroups embedded
in SU(3).

6Without loss of generality one can set x0 = 0.
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1.4. Topology and the QCD vacuum

From the index theorem Eq. (1.36) one can further conclude that there exists at least
one left-handed zero mode in the presence of an instanton.
Instantons play an important role in the nonperturbative approach to QCD. They

have been proposed as building blocks of the QCD vacuum, using the instanton solution
as a basis for a semiclassical expansions of the path integral.

1.4.3. Topology of gauge �elds � a closer look

In this section we have a closer look at the mathematical framework of topology in
gauge theories.
In the derivation of the index theorem and for the instantons one �nds an integer

number, which characterizes the gauge �elds, namely the topological charge Qtop. It
is obvious that an integer cannot change continuously if the underlying gauge �eld is
smoothly transformed. This was the motivation to call it a topological quantity, but
there is a much deeper relation to the gauge �elds. To see this, one has to rewrite
tr{FµνF̃µν} in the de�nition of the topological charge as a total derivative of a four-
current [24]:

Qtop =
1

16π2

∫
d4x εµνρσ(Aaν∂ρA

a
σ +

1

3
fabcA

a
νA

b
ρA

c
σ) ≡

∫
d4x∂µKµ(A), (1.50)

where we have de�ned the Chern-Simons current Kµ

Kµ(A) =
1

16π2
εµνρσ(Aaν∂ρA

a
σ +

1

3
fabcA

a
νA

b
ρA

c
σ) . (1.51)

The resulting integral can be reduced by virtue of Gauss' law to a surface integral over
the boundary of R4, which is isomorphic to the three-sphere S3:

Qtop =

∫

S3
∞

d3σK⊥
(
Aµ = ig(x)†∂µg(x)

)
. (1.52)

Thus, Qtop depends only on the boundary gauge �elds of our space, which are, due
to the considerations from above, pure gauge �elds and group elements of SU(N).
This integral is a generalization of the winding number and it is well studied in alge-
braic topology and di�erential geometry. It is known under many di�erent names like
Pontryagin index, topological charge, second Chern class, winding number or instanton
number. An explicit calculation of this Pontryagin index can be quite di�cult for a
generic gauge group and goes far beyond the scope of this thesis. Thus, we just want
to state that for SU(N) it is always an integer number.
The topological charge is a global quantity characterizing the complete vacuum state,

but one is also interested in the local topological charge density

qtop(x) =
1

16π2
tr{Fµν(x)F̃µν(x)}, (1.53)

because this quantity is strongly tied to chiral symmetry breaking through the local
version of the Atiyah Singer index theorem and to con�nement. Hence, if there ever will
be a full solution to QCD, it has to predict how this density is distributed in space-time.
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Chapter 1: Foundations of QCD

1.4.4. Models of the QCD vacuum

In the low energy regime of QCD there still exist many unsolved problems. This situa-
tion is rather subtle from the perspective of quantum mechanics, where one usually tries
to solve the ground state �rst and on that basis more complicated states are tackled.
In QCD no analytic solution to the ground state, the QCD vacuum, has been found.

This state is highly nonperturbative and one needs nonperturbative methods like Lat-
tice QCD (see next chapter), which o�ers numerical results from �rst principles. An-
other approach is to start with a model of the QCD vacuum and try to explain the
observed phenomena. Such models are often inspired by topological concepts and some
are able to describe many aspects of con�nement and chiral symmetry. A complete
overview of all models is not possible and only a small selection thereof is presented.
We focus on models based on instantons, as they provide direct access to the topo-
logical charge density. There are also other topological defects like center vortices or
monopoles, for them we refer the reader to the standard literature.

The dilute instanton gas

One of the �rst �topological� models was the dilute instanton gas. Based on the lo-
calization property of instantons, one constructs an approximate ground state by a
superposition of separated instanton and anti-instanton solutions. Such a solution is
very close to the minimum of the classical action and, therefore, this model corresponds
to a semi-classical expansion of the path-integral.
The success of this model lies in the fact that it provides a very intuitive explanation

for chiral symmetry breaking [27]: A single (anti-)instanton is accompanied by a left-
(right-)handed zero mode (see above). If N instantons and N − Qtop anti-instantons
are combined to state with topological charge Qtop, then all zero modes have to be
arranged such that there are Qtop exact zero modes and 2N − Qtop near-zero modes.
Therewith, a nonvanishing density of eigenmodes around zero is generated. This density
is connected to the chiral condensate via the famous Banks-Casher relation [29]:

〈ψ̄ψ〉 = lim
m→0

1

V

∫
dλρ(λ)

m

λ2 +m2
= −πρ(0)

V
, (1.54)

where ρ(λ) is the spectral density:

ρ(λ) = 〈
∑

n

δ(λ− λn)〉. (1.55)

The dilute instanton gas has two major drawbacks. On the one hand, it has been
shown by 't Hooft in one of his seminal papers [26] that it is not clear what suppresses
arbitrary big instantons which would contradict the diluteness assumption, and, on the
other hand, one cannot explain con�nement in this model.

The instanton liquid

A further development of the instanton gas is the instanton liquid. In this model one
replaces the diluteness condition by an interaction between instantons. Hence, it is

12



1.4. Topology and the QCD vacuum

possible to avoid the infrared divergence of big instantons, while keeping the chiral
symmetry-breaking mechanism. The instanton liquid model has been very successful in
describing hadronic properties, but it also failed to explain con�nement. Nonetheless,
it still serves as a starting point for other models. For further reading and special
instanton models see, e.g., Refs. [30, 31, 32, 28].
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2
Lattice QCD

When calculating physical quantities in QCD, divergencies occur which make it nec-
essary to introduce an upper momentum scale µ to get �nite results. If a physical
observable depends only on processes with momentum q � µ, it should be indepen-
dent of the cuto� and the limit µ → ∞ exists. This process goes under the name
regularization.
A space-time lattice provides such a cuto�, as the lattice spacing a ∝ 1/µ. On

a lattice one can in principle evaluate the path integral for any physical observable.
Taking the continuum limit a→ 0 then corresponds to removing the cuto�.
In this chapter we introduce the basic formulations and notations of quarks and

gluons on a lattice and show how the path integral is evaluated with Monte Carlo
techniques. For an extensive introduction we refer to the classic textbooks [33, 34, 35,
36, 37].

2.1. Gluons on the lattice

The basic formulation of Lattice QCD or, more generally lattice gauge theory, goes back
to the seminal work of Kenneth Wilson [38]. His starting point for a lattice regularized
formulation of QCD is the so-called parallel transporter (P exp denotes the path-ordered
exponential)

U(x, y) ≡ P exp
{
− i
∫ y

x,C
Aµ(s)dsµ

}
, (2.1)

which connects the quark �elds ψ(x) and ψ(y) along some contour C:

ψ(y) = U(x, y)ψ(x). (2.2)
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Chapter 2: Lattice QCD

Fig. 2.1: Illustration of the basic objects on the lattice (see text): gauge link (red), pla-
quette (blue), general parallel transporter (purple) and general Wilson loop
(green).

The parallel transport will, in general, depend on the path C and the di�erence between
two paths is obviously given by

U(x, x) ≡ P exp
{
− i
∮

C
Aµ(s)dsµ

}
, (2.3)

where C is now a closed loop. Accordingly, this object is called Wilson loop.

A (Euclidean) space-time lattice with Ns spatial and Nt temporal sites and a lattice
spacing a is introduced whose sites are labeled by the coordinates xµ = a ·nν . The
lattice spacing a does not have a physical meaning a priori, it can be determined from
physical observables a posteriori. To this end, one evaluates a physical quantity like a
hadron mass M on the lattice and relates it to the experimental value Mepx = Ma−1.

The quark �elds reside on the lattice sites, which will be connected through the gauge
�elds by means of parallel transport between adjacent points (see also Fig. 2.1):

Uµ(x) ≡ U(x, x+ µ̂) = P exp
{
− i
∫ x+µ̂

x
A(s)ds

}
≈ e−igaAµ(x+

µ̂
2 ), (2.4)
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2.1. Gluons on the lattice

where µ̂ = a · eµ denotes the unit vector in µ-direction and the integral in the exponen-
tial has been approximated by its central value times the lattice spacing. This object
is also called (gauge) link, because it connects two lattice sites. The integral can be
approximated in other ways, but they will lead to the same result for a → 0. From
the de�nition it is easy to see that the hermitian conjugate of a link U †µ(x) is just the
parallel transporter in the opposite direction:

U †µ(x) = U(x+ µ̂, x) ≡ U−µ(x+ µ̂). (2.5)

These links replace the gauge �elds Aµ as the fundamental degrees of freedom. This
is advantageous because the links are members of the gauge group SU(Nc) whereas
the gauge �elds are elements in the corresponding Lie-algebra. The gauge symmetry
Eq. (1.11) takes a very simple form:

Uµ(x)→ U ′µ(x) = g(x)Uµ(x)g†(x+ µ̂), (2.6)

where g(x) ∈ SU(Nc). The �elds transform in analogy to Eq. (1.10):

ψ(x)→ ψ′(x) = g(x)ψ(x) and ψ̄(x) → ψ̄′(x) = ψ̄(x)g†(x). (2.7)

It is easy to see that the trace of a product of links along a closed contour on the
lattice corresponds to the lattice version of the Wilson loops

W (C) =
1

Nc
tr
{ ∏

(µ,x)∈C

Uµ(x)
}
, (2.8)

The factor 1/Nc is just conventional and normalizes the Wilson loop of Aµ = 0 to
1.1 According to the transformation property Eq. (1.11) and using the cyclicity of the
trace, one easily sees that all Wilson loops are gauge-invariant. We want to remark,
that we will also call the product of links itself Wilson loop, but it will be clear from
context which object is meant.
A product of links along a square, is called plaquette Uµν(x) (sometimes alsoW 1×1

µν (x)
or Pµν(x)) and plays a very important role in the discretization of the gauge action
Eq. (1.13). A simple exercise yields (cf. Ref. [37]):

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x) = exp{ia2Fµν(x) +O(a3)}

≈ 1 + ia2Fµν(x)− a4

2
F 2
µν(x), (2.9)

which allows for a lattice version of the gauge action:

SWG [U ] ≡ 2

g2

∑

x

∑

µ>ν

Re tr{1− Uµν(x)}. (2.10)

This is the famous Wilson gauge action or plaquette action. It can easily be shown that
this action leads to the correct continuum expression of the gauge action

SWG [U ]
(2.9)
= a4

∑

x

1

2g2

∑

µ,ν

tr{F 2
µν(x) +O(a2)} a→0−→

∫
d4x

1

2g2

∑

µ,ν

tr{F 2
µν(x)}. (2.11)

1The trace of an element g of SU(Nc) is bounded from above, tr{g} ≤ Nc.

17



Chapter 2: Lattice QCD

2.2. Quarks on the lattice

While it is straightforward to discretize gauge �elds, we encounter a severe problem
for the fermions. The term in the action containing the covariant derivative (in the
µ-direction) can be written in terms of �nite di�erences as

ψ̄(x)Dµψ(x)→ 1

2a

(
ψ̄(x)Uµ(x)ψ(x+ µ̂)− ψ̄(x)U−µ(x)ψ(x− µ̂)

)

= ψ̄(x)
(Uµ(x)δx+µ̂,y − U−µ(x)δx−µ̂,y

2a

)
ψ(y). (2.12)

This expression is obviously gauge invariant and leads to the lattice fermion action

SF =
∑

x,y

ψ̄(x)
[
D(x, y, U) +mδx,y

]
ψ(y) (2.13)

with the naive lattice Dirac operator (we will not use the Feynman slashed notation
for lattice Dirac operators)

D(x, y, U) =

4∑

µ=1

γµ
Uµ(x)δx+µ̂,y − U−µ(x)δx−µ̂,y

2a
. (2.14)

While this looks like a valid discretization it gives rise to 15 unphysical fermion
modes.2 As a consequence, the particle content is not correct and the continuum limit
of the theory is spoiled. The reason for the fermion doubling is the absence of the chiral
anomaly in the naive lattice discretization. We have seen in the previous chapter that
the anomaly arises from chiral zero modes leading to a non-trivial Jacobian. For naive
fermions each zero eigenvalue is 16-fold degenerate. Eight associated zero modes have
positive chirality and the other eight have negative chirality [41]. Their contributions
always cancel, leading to an anomaly-free theory.
Wilson circumvented the doubling problem by introducing an additional term in the

action, which removes the unwanted poles in the propagator and is irrelevant in the
continuum limit. His version of the massless lattice fermion action reads:

SWF [ψ,ψ, U ] = a4
∑

x,y

ψ(x)DW (x, y, U)ψ(y) (2.15)

with the Wilson Dirac operator

DW (x, y, U) = D(x, y, U)− a

2

4∑

µ=1

Uµ(x)δx+µ̂,y − 2δx,y + U−µ(x)δx−µ̂,y
a2

(2.16)

The Wilson term is nothing but the discretization of the covariant Laplace operator ∆
times a/2. This term vanishes in the continuum limit a → 0 and gives the doublers a

2These modes occur as additional poles in the momentum space fermion propagator, that sit at each
corner of the Brillouin zone. For a nice introduction we refer to Refs. [39, 40] or the standard
textbooks.
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mass of the order of the inverse cuto�. Thereby, the doubling modes get in�nitely heavy
and decouple from the theory. Unfortunately, we have to pay a high price for removing
the doublers: We have to give up chiral symmetry for all �nite lattice spacings. This
issue will be addressed in Sec. 2.4.
These are all ingredients to write down a lattice regularized version of the QCD

partition function

Z =

∫
[DUµ][D ψ̄][Dψ] e−S[ψ̄,ψ,U ] (2.17)

with the lattice action

S[ψ̄, ψ, U ] = SWF [ψ,ψ, U ] + SWG [U ]

=
2

g2

∑

x

∑

µ>ν

Re tr{1− Uµν(x)}+ a4
∑

x,y

ψ(x)DW (x, y, U)ψ(y). (2.18)

2.3. Improved gauge actions

Many results obtained from Wilson's formulation of Lattice QCD are in a good quali-
tative agreement with experiment. If one wants to obtain quantitative results, one has
to spend an enormous amount of computing time and make sure that all systematic un-
certainties are under control. The quantitative di�erences result from lattice artifacts
(especially �nite lattice spacing) and explicit chiral symmetry breaking terms, which
lead to large errors in the continuum extrapolation.
Regrettably, we are unable to simulate at an arbitrary small lattice spacing due to

computational limitations. Therefore, we need ways to improve the original approach.
One of the most successful approaches is the Symanzik improvement program [42,
43], which is standard in modern Lattice QCD. The idea is quite simple: One adds
irrelevant operators3 as counter-terms to remove O(an) contributions from the action
and observables. The situation is very similar to higher order discretization schemes,
which use more than just a nearest-neighbor �nite di�erence. The counter terms can
improve the scaling towards the continuum limit if they are determined properly. Better
scaling enables a better extrapolation to the continuum limit and, hence, reduces the
number of di�erent lattice spacings one has to simulate.
The simplest irrelevant terms for the gauge actions have dimension six. These are

Wilson loops made of six links, which are either planar 2×1 loopsW 2×1
µν or out-of-plane

parallelograms W 1×1×1
µνρ (see Fig. 2.2). The general form of such an action reads

Simp
G = β

∑

x

{
c0

∑

µ<ν

(
1− 1

Nc
Re tr W 1×1

µν (x)
)

+ c1

∑

µ,ν

(
1− 1

Nc
Re tr W 2×1

µν (x)
)

+ c2

∑

µ6=ν 6=ρ

(
1− 1

Nc
Re tr W 1×1×1

µνρ (x)
)}

. (2.19)

3An irrelevant operator in the action has mass dimension bigger than 4 and, therefore, it has to be
multiplied by some power of the lattice spacing.
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(a) 2× 1 loop W 2×1
µν (b) Two possible parallelograms W 1×1×1

µνρ

Fig. 2.2: Illustration of di�erent types of Wilson loops contributing to the improved action
of Eq. (2.19).

In principle, the three coe�cients c0, c1 and c2 are free parameters. They are not unique
and depend on certain improvement criteria.
Let us �rst neglect the non-planar contribution by setting c2 = 0. In order to get

the correct coe�cient of the leading order in a we demand the normalization

c0 + 8c1 = 1. (2.20)

This normalization is, however, only a convention. Any other factor can be absorbed
in the renormalization of the coupling g2 = 2Nc

β .
The Symanzik action [44, 45] and the Iwasaki action [46, 47] are of this type and

their coe�cients read:4

c1 =

{
− 1

12 Symanzik

−0.331 Iwasaki
(2.21)

There are many other improved actions, like the Lüscher-Weisz action where also par-
allelogram terms are used. For the sake of brevity we refer to Refs. [44, 45, 48, 49].
A completely di�erent approach is the so-called tad-pole improvement [50, 51, 52].

To understand its idea, one has to look at the lattice representation of the links

Uµ(x) = eiaAµ(x) = 1 + iaAµ(x)− a2

2 A2
µ(x) + . . . . (2.22)

The term of O(a2) seems to be harmless, but this is only true on a classical level. In a
quantum theory it gives rise to divergent tadpole diagrams ∝ 1/a2. Accordingly, their
contribution is O(1). In order to reduce the tadpole contribution, one can factor out
an average link �eld u0

Uµ(x)→ 1
u0
Uµ(x). (2.23)

The average of a link is not rigorously de�ned, but typically the expectation value of
the link in Landau gauge or the expectation value of the plaquette are used

u0 =
(

1
Nc
〈Re tr{Uµν}〉

)1/4
. (2.24)

4A detailed derivation of the coe�cients can be found in the original publications.
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The tad-pole coe�cient u0 has to be determined self-consistently for each action and
coupling. Hence, extra work is needed before the �nal lattice simulation can be carried
out. Nevertheless, a great advantage is that once the parameters are set, they lead to
an improvement without additional computational e�ort.
Tad-pole and gauge action improvements are often used in combination, leading to

a much better scaling towards the continuum limit than a single method.

2.4. Chiral symmetry on the lattice

2.4.1. No-go theorem

When deriving the Wilson fermion action, we had to sacri�ce chiral symmetry in order
to remove the fermion doublers. This is not an accident, but a fundamental problem of
the lattice formulation. It can be traced back to the famous no-go theorem of Nielsen
and Ninomiya [53], which will be brie�y discussed in the following.
Let us consider the general form of the free action of a massless fermion on the lattice:

SF = a4
∑

x,y

ψ(x)D(x− y)ψ(y). (2.25)

The no-go theorem states that it is impossible for the translation-invariant Dirac oper-
ator D(x− y) to ful�ll the following conditions simultaneously on a torus:

1. D is a local operator, which means that

‖D(x− y)‖ ≤ Ae−c|x−y|. (2.26)

for A and c > 0 being constants.

2. The Fourier transform D̃(p) has the correct continuum limit:

D̃(p) = iγµp
µ +O(ap2) for p� π

a
. (2.27)

3. There are no fermion doublers.

4. D is chirally symmetric and, accordingly, D and γ5 anticommute:

{D, γ5} = Dγ5 + γ5D = 0. (2.28)

The �rst three conditions are essential properties of the theory and should hold in any
case. Consequently, one has to give up the chiral symmetry. In the Wilson action
Eq. (2.15) an additional O(a) term is introduced to remove the fermion doublers. At
the same time this term breaks chiral symmetry at any �nite lattice spacing and the
no-go theorem does not apply. The price of the additional term is manifold, like an
additive mass renormalization, which requires a lot of �ne tuning to reach the physical
point. Furthermore, the relation of chiral symmetry and topology is spoiled in its
original sense and it is a priori not clear how harmful this is.
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2.4.2. Ginsparg-Wilson relation

The no-go theorem raises the question if there is a lattice version of chiral symmetry,
which keeps essential continuum properties and leads to a correct continuum limit. To
this end, Ginsparg and Wilson suggested to modify the chiral symmetry condition of
Eq. (2.28) as follows [54]:

{D, γ5} = aD 2Rγ5D, (2.29)

where R is a local operator usually set to 1
2 (for details see [39]). This Ginsparg-Wilson

relation, however, implies that the fermion action is not invariant under the usual chiral
transformation (cf. Eq. (1.29)):

δ(ψDψ) = (δψ)Dψ + ψD(δψ) = iθψ(γ5D +Dγ5)ψ
2.29
= iθψ(aDγ5D)ψ 6= 0. (2.30)

The remedy for this problem is to change the notion of chiral symmetry on the lat-
tice and to make the transformation dependent on the gauge �eld by introducing an
additional term −a

2D[U ] [55]. The modi�ed chiral symmetry reads as follows:

ψ → ψ + δψ and ψ → ψ + δψ, (2.31)

with the in�nitesimal variations

δψ = iθγ5

(
1− a

2
D
)
ψ and δψ = iθψ

(
1− a

2
D
)
γ5 (2.32)

for the �avor singlet transformation and

δψ = iθaT aγ5

(
1− a

2
D
)
ψ and δψ = iθaT aψ

(
1− a

2
D
)
γ5 (2.33)

for the �avor multiplet (cf. Sec. 1.3). It is straightforward to show that the fermion
action is invariant and that the usual chiral symmetry transformation is restored in the
continuum limit.

Furthermore, the chiral anomaly is recovered in contrast to the naive fermion action.
Like in the continuum, one �nds that the fermion measure is not invariant under the
modi�ed chiral symmetry. According to Ref. [55] we get (a = 1):

δ(dψdψ) = iθTr{γ5D}(dψdψ) +O(θ2)

= iθ2Nf index(D)(dψdψ) +O(θ2), (2.34)

where it has been used that solutions of the Ginsparg-Wilson relation hold [40, 55]:

Tr{γ5D} = 2(nL − nR) ≡ 2 · index(D). (2.35)

Hence, all Ginsparg-Wilson fermions satisfy an exact index theorem (see Sec. 3.2). The
challenge is to �nd an explicit solution.
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2.4.3. Overlap fermions

A very general solution of the Ginsparg-Wilson relation is

D =
1

a
(1−V ), (2.36)

with a unitary matrix V .
The most prominent solution is the so-called overlap operator Dov. It was �rst intro-

duced by Neuberger [56, 57] and reads as follows:

Dov =
1

a

(
1− A√

A†A

)
with A = 1−aDker (2.37)

where the kernel Dirac operator Dker has to be local and doubler-free, like the Wilson
Dirac operator from Eq. (2.16) (This special choice is also called Neuberger operator).
The conceptual clarity of this formulation has a cost. The major drawback is the

numerical expense, due to the need to calculate the inverse square root of a huge
matrix or sign function (sign(A) ≡ A/

√
A†A). All known solutions of the Ginsparg-

Wilson relation share this problem and lattice simulations with exactly chiral fermions
are one of the biggest challenges in todays Lattice QCD.

2.5. More on fermion actions

In this section we give an overview of alternative formulations of lattice fermions. The
selection in not complete and we will only focus on the actions which are used in this
thesis.

2.5.1. Nonperturbatively improved clover Wilson fermions

Naive Wilson fermions break chiral symmetry at �nite lattice spacing by an irrelevant
dimension-�ve operator. This term is suppressed by one power of the lattice spacing
and, therefore, we expect lattice artifacts to be of O(a).
The Wilson term is not the only possible dimension �ve term. One �nds one further

term which can be included in the action

SSW = a5 cSW
ig

4

∑

x

ψ̄(x)σµνFµν(x)ψ(x) (2.38)

The coe�cient cSW is called Sheikholeslami-Wohlert coe�cient [58]. Correspondingly,
the complete fermion action reads

Sclover
F = SWilson + SSW, (2.39)

which yields a modi�ed Dirac operator

Dclover(x, y, U) = Dnaive(x, y, U)− a
(
∆x,y + cSW

ig

4
σµνFµν(x)δx,y

)
. (2.40)
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The term Fµν is a suitable lattice discretization of the �eld strength tensor, which will
be discussed in detail in the next chapter. This action is, due to the clover leaf pattern
of this term, also known as the clover Wilson action. The main advantage of is that the
additional term can be used to eliminate O(a) lattice artifacts, yielding results with a
much nicer scaling towards the continuum limit.
The coe�cient cSW can be found in various ways. It can either be determined in

(lattice) perturbation theory [58, 49] or nonperturbatively [59] by suitable measure-
ments. The latter is even capable of removing all O(a) contributions from the action.
Nonetheless, chiral symmetry is explicitly broken and all subtleties are inherited from
the standard Wilson formulation.

2.5.2. Twisted mass fermions

An alternative formulation of QCD are twisted mass fermions [60, 61, 62], where an
additional isospin-breaking mass term is introduced into the theory. The action of this
theory for two �avors and in a compact vector notation (in �avor space) reads:

Stm
F = a4

∑

x,y

Φ(x)(DW (x, y, U)12 +m12 δx,y + iµγ5τ
3δx,y)Φ(y). (2.41)

τ3 =
(

1 0
0 −1

)
is the third Pauli matrix that acts in �avor space, and µ is a real and

positive parameter which is also called the twisted mass parameter. Therefore, we can
write the twisted mass Dirac operator in the form

Dtm(x, y, U,m, µ) = DW (x, y, U)12 +m1f δx,y + iµγ5τ
3δx,y. (2.42)

The validity of this approach is not directly obvious and conceptual problems arise
from isospin breaking, but there are some nice practical advantages of this approach.
One can, for example, show that the resulting fermion determinant is strictly positive
for any mass m. This is not necessarily true for conventional Wilson fermions, as
one might �nd gauge con�gurations with a zero or negative determinant that lead
to a non-positive probability distribution (such con�guration are called exceptional
con�gurations). The reason for this is that the twisted mass term acts as an infrared
regulator which introduces a lower bound for the fermion determinant [37]

det{Dtm} > 2µ > 0. (2.43)

Furthermore, it has been shown that there is a very simple way to achieve O(a) im-
provement by tuning the twisted mass term to maximal twist (see Refs. [62, 63]).
In order explain this maximal twist, one has to change the parametrization of the

action. The usual mass term and the twisted mass term can be combined as follows

m12 +iµγ5τ
3 = Meiaγ5τ3

, (2.44)

where we have de�ned the polar mass M =
√
m2 + µ2 and the twist angle α =

arctan(µ/m). Maximal twist corresponds to α = π/2 or setting m = 0 in the unrenor-
malized theory (in the renormalized theory one has to set the mass to some critical
value). Doing so, one �nds that the spectrum is automatically O(a)-improved.
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The combination of O(a)-improvement, absence of exceptional con�gurations and
the simple form of the action have made twisted mass simulation very popular. As a
variant of Wilson fermions, they break chiral symmetry explicitly and, hence, one needs
�ne-tuning to reach the chiral limit. The major drawback is the additional breaking
of isospin symmetry at �nite lattice spacing. Some physical quantities are strongly
a�ected, like the mass of the neutral and charged pseudo-scalar particle, others are
not. Accordingly, this e�ect has to be studied empirically.

2.5.3. Staggered fermions

Staggered fermions, also known as Kogut-Susskind fermions [64], follow a completely
di�erent strategy. Instead of improving the �nite-di�erence approximation, one can
rewrite the naive fermion action to obtain a formulation which has only 4 doublers
instead of 16, while keeping remnants of chiral symmetry. In the following we give
a short introduction to staggered fermions. For more details we refer to standard
textbooks on lattice �eld theory, e.g. Refs. [37, 34, 35, 36], or the detailed review article
from the MILC Collaboration [65].
The construction of the staggered fermion action starts from the naive fermion action

(cf. Eq. (2.14)):

SF [ψ, ψ̄] = a4
∑

x

ψ̄(x)
( 4∑

µ=1

γµ
ψ(x+ µ̂)− ψ(x− µ̂)

2a
+mψ(x))

)
. (2.45)

to which the following transformation is applied

ψ′(x) = Γ(x)ψ(x) and ψ̄′(x) = ψ̄′(x)Γ†(x), (2.46)

with a space-time dependent matrix

Γ(x) = γx4
4 γx3

3 γx2
2 γx1

1 . (2.47)

xµ denote the components of the lattice coordinate vector x = (x1, x2, x3, x4). It is
straightforward to show that this transformation leaves the mass term invariant, but
changes the �nite di�erence expression

ψ̄(x)γµψ(x± µ̂) = ψ̄′(x)ηµ(x)1ψ′(x± µ̂) (2.48)

where the so-called staggered phases

ηµ(x) = (−1)x1+x2+...+xµ−1 and η1(x) = 1 (2.49)

have been introduced. The resulting Dirac operator is diagonal in spinor space and,
thus, all four components of the transformed �eld are described by the same action
functional. Hence, three components can be omitted, leading to the usual form of the
staggered fermion action

Sstag
F [χ, χ̄, U ] = a4

∑

x

χ̄(x)
( 4∑

µ=1

ηµ(x)
Uµ(x)χ(x+ µ̂)− U †µ(x− µ̂)χ(x− µ̂)

2a
+mχ(x)

)
,

(2.50)
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where χ(x) and χ̄(x) are Grassmann-valued �elds without spinor structure (but with
color components). Accordingly, the spin-diagonal staggered Dirac operator reads as
follows

Dstag(x, y, U) =
4∑

µ=1

ηµ
Uµ(x)δx+µ̂,y − U−µ(x)δx−µ̂,y

2a
+m1 δx,y. (2.51)

Due to the fact that we keep only one of four spinor components, we reduce the number
of doublers from 16 to 4, which is at least closer to the real particle content. In order
to see the e�ect of this transformation on chiral symmetry, we apply the staggered
transformation from above (Eq. (2.46)) to ψ̄γ5ψ:

ψ̄(x)γ5ψ(x) = ψ̄′(x)(−1)x1+x2+x3+x4 1ψ′(x). (2.52)

This implies to de�ne

η5(x) = (−1)
∑
µ xµ = (−1)x1+x2+x3+x4 (2.53)

as the staggered analog of the γ5-matrix. The massless staggered action is obviously
invariant under the transformation (θ ∈ R):

χ(x)→ eiθη5(x)χ(x) and χ̄(x)→ χ̄(x)eiθη5(x). (2.54)

This is the staggered version of the global chiral symmetry transformation. The main
problem of the formulation becomes clear if one reintroduces quark degrees of free-
dom in order to obtain the usual hadron interpolators. To this end, one has to use
special combinations of the (staggered-)quark �elds around a hypercube, which lead
to four quark �elds with di�erent (lattice spacing dependent) mass terms. In order
to distinguish these �elds from the �avor degrees of freedom, one calls them tastes.
The consequence of these tastes is that there is no one-to-one correspondence of the
staggered particle spectrum to the continuum theory and we �nd four candidates for
a single particle in the staggered spectrum which all have di�erent masses. These dif-
ferences can be very large. Even at small lattice spacings they can be of the order of
the hadron mass and, thus, we would have a theory with a completely di�erent mass
spectrum. As a consequence, many improvements of the naive staggered action have
been proposed to get a better agreement with the continuum theory.
The main idea behind these improvements is that the violations result from the

distribution of the tastes on neighboring lattice sites. Therefore, they are strongly
a�ected by gluon momenta of the order π/a, i.e., by ultraviolet modes. One strategy to
reduce taste violations is to suppress the coupling to these ultraviolet modes. Examples
for such improved actions are the asqtad (O(a2) tad-pole improved) staggered action,
the HISQ (highly improved staggered quark) action or stout smeared staggered action.
For the sake of brevity we refer the reader to Ref. [65].
Staggered fermions have been the subject of a heated debate for many years. The

main concern is a technical trick, which is used to get closer to the particle content
in nature, i.e., two light quarks and one heavy quark. One replaces each fermion
determinant, which occurs after integrating out the fermions in the path integral, by

26



2.6. Monte Carlo simulations

its fourth root. This yields an e�ective action with the correct number of tastes, but
the conceptual problems of this approach are manifold and we refer to some recent
discussions in Refs. [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. Many results
are, nevertheless, in good agreement with experiment (see, e.g., [65]) and staggered
fermions are used and promoted by several groups in the lattice community.

2.5.4. Chirally improved fermions

As already mentioned above, it is computationally very expensive to use Ginsparg-
Wilson fermions. Therefore, one can try to �nd an approximated solution to the
Ginsparg-Wilson relation to get an operator with nicer chiral properties, but less com-
putational e�ort. These chirally improved fermions [79] are based on the most general
form of a Dirac operator, which reads for the gauge group SU(3) as follows:

DCI(x, y, U) =
16∑

k=1

αk(x, y, U)Γk

with αk(x, y, U) =
∑

p∈Pk(x→y)

ckp
∏

µ∈p
Uµ, (2.55)

where Γk are the 16 generators of the Dirac algebra (see Appendix A.2) and α
k(x, y, U)

are the sums of link products along the paths Pk(x→ y) connecting lattice site x and
y. The operator of Eq. (2.5.4) can be inserted in the Ginsparg-Wilson relation and
by solving the resulting algebraic equations for ckp, one can, in principle, construct an
exactly chiral operator.
Obviously, it is impossible to include all paths, as there are in�nitely many. One can,

however, truncate the set of all possible paths and try to �nd a proper approximation
respecting the �rst three properties of the no-go theorem. For a good introduction we
refer to the textbook of Gattringer and Lang [37] and the original publication [79].

2.6. Monte Carlo simulations

So far, we have only presented the basic concepts and de�nitions of the discretized
theory. The following section is dedicated to a more practical question: How do we
evaluate the path integral in this lattice formulation?
Due to the lattice discretization, one has a �nite number of group integrals, but the

number of degrees of freedoms is too big to be tractable explicitly. Thus, one uses
statistical methods to approximate the expectation values of observables. Given an
ensemble of N gauge �eld con�gurations Un, distributed according to

P (U) = Det(D[U ]−m) exp{−S[U ]}, (2.56)

one can estimate the expectation value of an observable O by a �nite sum:

〈O〉 ≈ 1

N

∑

Un

O[Un] +O
(

1√
N

)
, (2.57)
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where O[Un] is the value of the observable evaluated on a single con�guration Un. The
weight ensures that those con�gurations which are close to a minimum of the action,
are more likely and contribute more to the integral.
One of the main challenges is the generation of such ensembles Un. This is where the

main part of the computing time has to be spent. Especially the fermion determinant
causes problems, as we have to deal with a computationally expensive inversion of a
huge matrix. Hence, early Lattice QCD results have been obtained in the quenched

approximation, where the determinant is set to a constant.
In order to justify this approximation in the case of Wilson fermions, one can use the

hopping parameter expansion (see Ref. [34] or Ref. [37]). In doing so, one parameterizes
DW ∝ (1−κH), where H includes all nearest neighbor terms and κ = (2am + 8)−1.
This leads to an expansion of the fermion determinant of the form

Det(1−κH) = exp
{

tr log(1−κH)
}

= exp
{
−
∞∑

n=1

1

n
κn tr{Hn}

}
, (2.58)

for which a simple interpretation is possible: tr{Hn} includes all closed loops of links
of length n (in lattice units). These are weighted by κn ∝ 1/mn and, thus, suppressed
for heavy, static quarks. Many features of QCD have been veri�ed within the quenched
approximation, but one has to deal with unavoidable systematic errors. Dynamical
simulations are, therefore, essential.
This section shall give an overview over the algorithms used to generate quenched

and dynamical ensembles. We will close with a short discussion of the autocorrelation
of gauge con�gurations within an ensemble.

2.6.1. Quenched approximation

The basic algorithm for the generation of a gauge ensembles is the so-called Metropolis

algorithm [80]. As all standard textbooks discuss this method in detail, we will give
only a short summary and refer to, e.g., Ref. [37]. The Metropolis algorithm consists
of subsequent Monte Carlo updates, which can be broken down into three steps:

Step 1: Replace one link variable with a random one respecting detailed balance, i.e.,
a symmetric probability:

P
(
Uold
µ → Unew

µ

)
= P

(
Unew
µ → Uold

µ

)
(2.59)

Step 2: Determine the change of the action ∆S = Snew−Sold and accept the new link
if e−∆S is greater than a random number from the interval [0, 1), otherwise reject
it.

Step 3: Take the next link and repeat from step 1.

The second step is essential. Only accepting new links which lower the action, would
continuously reduce the action and drive the �elds to a classical solution. The random
acceptance introduces noise, which correspond to quantum �uctuations.
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2.6. Monte Carlo simulations

The single update is used in the Metropolis algorithm to generate an ensemble of
statistically independent con�gurations. The ensemble generation can be subdivided
into di�erent parts:

1. Start with an arbitrary con�guration.

2. Perform Monte Carlo updates until thermal equilibrium is reached, i.e., all con-
�gurations have the correct probability distribution.

3. Save each (or every n-th) con�guration for further measurements or calculate the
desired observable �on-the-�y�.

4. Calculate expectation values.

There are many variants of this algorithm, but the basic steps are common to all of
them.

2.6.2. Hybrid Monte Carlo simulations

If one wants to go beyond the quenched approximation, the situation gets more com-
plicated, as we have to deal with nonlocal fermion determinants. Algorithms based on
local updates are not a good choice, because a local change of the gauge links involves
an evaluation of a global quantity. Therefore, one prefers global updates. In the fol-
lowing we illustrate the basic algorithm, which became the standard solution to this
problem.
Consider the Hamiltonian of a scalar �eld theory with action functional S(φ)

H(π,Φ) =
∑

x

p2(x)

2
+ S(Φ(x)), (2.60)

which induces a �eld evolution in a �ctitious time τ through the well known Hamilton
equations (the �dot� denotes the τ -derivative):

Φ̇(x) = p(x) and ṗ(x) = −∂S(Φ)

∂p(x)
. (2.61)

Each set of initial values {p0(x),Φ0(x)} de�nes a unique trajectory and the set of all
these trajectories describes the classical partition function

Z =

∫
[D p][D φ] e−H(p,Φ) = N

∫
[D p][D φ]e−S(Φ). (2.62)

An exact integration of the Hamilton equations conserves the Hamiltonian. Hence, the
phase space is sampled corresponding to the canonical partition function if the momenta
are refreshed periodically with Gaussian distributed random numbers. Expectation
values are then obtained by averaging over a su�cient number of trajectories. In
analogy to a system of molecules with a periodic external driving force one calls this a
(Hybrid) Molecular Dynamics algorithm [81, 82].
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As the Hamilton equations have to be evolved numerically (with a reversible integra-
tion scheme like the leapfrog integrator), �nite step size errors are introduced. These
errors would lead to a wrong sampling and, in turn, to wrong results. Therefore, one
uses a Metropolis accept/reject step at the end of each trajectory, which accounts for
the deviation of the �nal Hamiltonian from the initial one. The combination of these
two ideas lead to the name Hybrid Monte Carlo algorithm (HMC) [83].

In the case of lattice gauge theory we need some further ingredients. On the one hand,
the Hamilton equations have to be solved such that one remains in the gauge group
and, on the other hand, one needs an e�cient method to calculate the determinant for
the change in the action. The latter can be achieved by the use of pseudo-fermions.
Those are bosonic degrees of freedom that arise after rewriting the fermion determinant
as5

Det(D[U ] +m) =

∫
[D Φ̄][DΦ]e

−Φ̄ 1
D[U ]+m

Φ
, (2.63)

yielding an e�ective action

Seff = SG[U ]− ln Det(D[U ] +m) = SG[Uµ]− Φ̄ 1
D[U ]+mΦ. (2.64)

At the beginning of each trajectory all pseudo-fermion �elds are refreshed following the
probability distribution Eq. (2.63) (pseudo-fermion heat-bath) and then one evolves
the gauge �elds with the resulting e�ective action. Accordingly, a matrix inversion
has to be performed in every step of the molecular dynamics trajectory, which is the
numerically most expensive part of the algorithm.

Today many variants of the HMC exist which try to improve on various parts of the
algorithm. The central subjects of improvement is the autocorrelation of con�gurations,
which is discussed in the next section.

2.6.3. Autocorrelation

The aforementioned algorithms are stochastic processes, that generate a sequence of
gauge �elds

U1 → U2 → U3 → . . . (2.65)

Subsequent con�gurations, obtained from such a process, are not independent if they are
generated in a computer, they are correlated. This, however, leads to biased expectation
values of observables and wrong statistical errors. Correspondingly, it is of central
importance to know the autocorrelation of the con�gurations, which can be de�ned for
an observable O as (we follow Ref. [37])

C(Oi, Oi+t) =
〈

(Oi − 〈Oi〉)(Oi+t − 〈Oi+t〉)
〉
, (2.66)

5The integral converges only if D[U ] +m is positive de�nite. Therefore, one usually replaces it by
the genuine two �avor operator D†D, which is always positive de�nite.
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where Oi = O[Ui] is the observable obtained in the con�guration Ui. This correlation
function is only dependent on the time separation between two con�gurations and,
hence,

C(Oi, Oi+t) = CO(t). (2.67)

The correlation falls of exponentially with the computer time t (Monte Carlo time),
which leads to the de�nition of the exponential autocorrelation time

CO(t) ∝ CO(0) exp

{
− t

τO,exp

}
. (2.68)

The autocorrelation times di�er for each observable, but it is in general not easy to
determine autocorrelation times accurately. One is forced to make more or less crude
estimates and, in order to avoid unwanted statistical correlations, usually the longest
autocorrelation time is taken and only con�gurations, which are separated by several
autocorrelation times, are used for the �nal measurements. One �nds empirically that
the longest autocorrelation time is usually related to the topology of the underlying
gauge �eld. This will be discussed in the next chapter.
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3
Topology and Lattice QCD

Nonperturbative methods are needed to investigate the topology of gauge �elds. One
possibility is to develop phenomenological models of the QCD vacuum which are related
to the topological structure. Lattice QCD, in turn, is based on �rst principles. The
problem is, however, that one cannot uniquely de�ne topology on a lattice because any
con�guration can be transformed to the trivial one without passing through forbidden
con�gurations (e.g. con�gurations with in�nite action).

Nevertheless, there are remnants of the continuum topology if the lattice spacing
is small enough. In this case it is possible to classify the gauge con�guration by a
discretized version of the topological charge. Action barriers are found between con�g-
urations with di�erent topological charges and one has to pass through con�gurations
which are less likely in an importance sampling to overcome these barriers. With de-
creasing lattice spacing (and decreasing mass) these barriers grow and we approach a
continuum-like situation with in�nitely high barriers.

This chapter starts with a discussion of various de�nitions of the topological charge
on a space-time lattice and the lattice version of the index theorem. Then we show some
applications of topological concepts in Lattice QCD and close with �ltering methods
to extract the topological charge (density) from noisy Monte Carlo con�gurations.

3.1. Lattice de�nition of the topological charge

It is straightforward to obtain a formal expression for the topological charge density
from Eq. (1.53) on a space-time lattice:

qlat
top(x) =

1

16π2
tr
(
F lat
µν (x)F̃ lat

µν (x)
)
, (3.1)
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where F lat
µν (x) is a suitable discretization of the �eld strength tensor. The �eld strength

tensor has already been mentioned when discussing the nonperturbative clover action.
Now we have a closer look at it.
When deriving the Wilson gauge action in Sec. 2.1, we realized that the plaquette is

related to the �eld strength tensor: Uµν(x) = 1 + ia2Fµν(x) +O(a4). Therefore,

a2F lat
µν (x) = i

2

[(
Uµν − U †µν

)
− 1

Nc
tr
{
Uµν − U †µν

}]
+O(a2). (3.2)

The hermitian conjugate removes the unwanted constant on the r.h.s and the trace is
subtracted to ensure the tracelessness of the �eld strength tensor.
Though being computationally very cheap, it is often impractical to use this de�nition

for studying topological properties. Even for very smooth1 con�gurations and �ne
lattices we often do not get values close to an integer total topological charge Qtop =∑
qtop(x). Hence, we will use a more sophisticated de�nition, which was �rst introduced

by Bilson-Thomson et al. [84]. In the spirit of the Symanzik improvement program (cf.
Sec. 2.3) they suggested to add irrelevant operators which cancel O(an) contributions.
The resulting �eld strength tensor can be written in a very general form as follows:

a2F imp
µν (x) =

∑

i

kiC
m×n
µν

∣∣∣
herm. traceless

, (3.3)

where we introduced the averaged clover term Cm×nµν (x) of m×nWilson loops starting
at lattice site x:

Cm×n
µν (x) = 1

8

(
+

)
m

n
m

n

,

and |herm. traceless denotes the hermitian traceless projection in analogy to Eq. (3.2).
After choosing the desired order of improvement and the clover terms which should be
included in the de�nition, one has to solve a system of algebraic equations to determine
the coe�cients ki. A convenient choice is to use only symmetric 1× 1, 2× 2 and 3× 3
Wilson loops in the sum of Eq. (3.3) which allows for an O(a4)-improved �eld strength
tensor:

F imp
µν (x) = k1C

1×1
µν + k2C

2×2
µν + k3C

3×3
µν , (3.4)

where the coe�cients are determined to be [84]:

k1 = 1.5, k2 = −0.15 and k3 = 1/90. (3.5)

The improved �eld strength F imp
µν de�nes an improved topological charge density

qimp
top (x) =

1

16π2
tr
(
F imp
µν (x)F̃ imp

µν (x)
)
. (3.6)

1�Smoothness� is not uniquely de�ned in this context.
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This de�nition is called the gluonic or �eld theoretic de�nition of the topological charge
density. It can be calculated very e�ectively on a lattice, but there is still one draw-
back. Though giving almost integer topological charge Q =

∑
x q(x) on smooth gauge

con�gurations, one gets ambiguous results for Q on typical Monte Carlo con�gurations.
Short-range �uctuations of the gauge �eld dominate the measurement and one needs
e�cient ways to remove these �uctuations. Some of these �ltering methods will be
discussed at the end of this chapter.

3.2. Index theorem on the lattice

The importance of the Atiyah-Singer index theorem has been discussed at length in
Sec. 1.3. It relates the topological charge of the gauge �elds to the index of the Dirac
operator (di�erence of zero modes with positive and negative chirality):

Qtop = index(D) = nL − nR. (3.7)

Both sides of this equation are, however, ambiguous on the lattice: The topological
charge Qtop is not (exactly) equal to an integer, as discussed above, and there are no
chiral zero modes for Wilson or staggered fermions or any other non-chiral fermion.
This conceptual problem does not occur for Ginsparg-Wilson fermions. Solutions of

the Ginsparg-Wilson relation DGW have either exact zero modes with de�nite chirality

DGWψ0 = 0 ⇒ γ5ψ0 = ±ψ0, (3.8)

or nonzero modes without chirality

DGWψλ = λψλ ⇒ γ5ψλ = 0. (3.9)

This property allows for a new de�nition of the topological charge [39]:

Qferm
top ≡ index(D)

(2.35)
=

1

2
Tr{γ5D} = −1

2
Tr{γ5(2−D)} (3.10)

where the trace (with capital �T�) runs over spin, color and lattice indices and where
we have used that 2−D has an index with opposite sign of D. This looks similar to the
index theorem, but the gist is completely di�erent: We de�ne the fermionic topological
charge via the index, which is strictly integer on any gauge con�guration.
From the de�nition Eq. (3.10) it is straightforward to obtain an expression for the

fermionic topological charge density if one takes the trace only over spinor and color
indices [39]:

qferm(x) ≡ 1

2
tr{γ5(2−D(x, x))} =

∑

λ

(1− λ

2
)〈ψλ(x)|γ5|ψλ(x)〉 . (3.11)

While the global topological charge is entirely determined by the zero modes, the non-
zero modes contribute to the local density, as 〈ψλ(x)|γ5|ψλ(x)〉 6= 0. Moreover, it can
be shown that [39]

qferm(x) =
1

16π2
tr
(
Fµν(x)F̃µν(x)

)
+O(a2) (3.12)
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for su�ciently smooth con�gurations. Therefore, this provides an elegant de�nition of
the topological charge in lattice simulations.

Though being a nice and well studied quantity, we want to close this section with some
cautionary remarks on this de�nition. The Ginsparg-Wilson relation does not have a
unique solution and, in general, each solution has a di�erent spectrum. Accordingly,
we will get consistent results only for su�ciently smooth con�gurations [39]. Even
if we specify a certain solution, which is usually done by using the overlap operator,
we are left with the freedom to choose the mass parameter in the kernel operator.
Di�erent mass parameters yield a di�erent local structure and might change the global
topological charge [85, 86]. This ambiguity will always be present as long as the
con�gurations are not generated with a dynamical chiral Dirac operator, which would
�x the remaining parameter.

As a side remark we want to add that any acceptable discretization of the Dirac
operator with good chiral properties exhibits remnants of this index theorem. The
zero eigenvalues of the continuum Dirac operator will only move slightly away from
zero, but they remain real and no other near-zero eigenvalues will appear [39]. Thus,
it is possible to identify these quasi-zero modes on the lattice with zero modes in the
continuum. These modes have either positive or negative chirality, though not exactly
+1 or −1 and, due to this property, we are able to relate them to the index and the
topological charge.

For other Dirac operators one can �nd similar de�nitions which use some kind of
projection of low lying modes to �chiral zero modes�. The chirally improved Dirac
operator, for instance, has complex eigenvalues, which come in conjugate pairs and real
eigenvalues. The eigenvectors of the complex eigenvalues obey

∑

λ 6=0,x

〈ψλ|γ5|ψλ〉 = 0, (3.13)

while for real modes this quantity is approximately but not actually equal to ±1. Corre-
spondingly, one can achieve an integer topological charge by rescaling the contribution
of the real quasi-zero modes to the sum in (3.11):

qferm
CI (x) =

∑

λ, complex

(1− λ

2
)〈ψλ(x)|γ5|ψλ(x)〉+

∑

λ, real

1

|ρ5,λ|
〈ψλ(x)|γ5|ψλ(x)〉, (3.14)

where we have introduced the chirality of the eigenmodes

ρ5,λ =
∑

x

〈ψλ(x)|γ5|ψλ(x)〉. (3.15)

Rescaling of the eigenmodes with the latter ensures that each mode contributes either
+1 or −1 to the topological charge, depending on the sign of its chirality. Other modes
only modify the topological structure, but not the global charge.

The fermionic and the gluonic de�nition have both been used with great success in
various research �elds. Some of these are presented in the following.
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3.3. Topology in Lattice QCD

3.3. Topology in Lattice QCD

There are many di�erent research topics in Lattice QCD, which are related to topology.
We will concentrate on those topics which are relevant for our work.

3.3.1. Autocorrelation in Monte Carlo simulations

The QCD vacuum is thought to be a superposition of distinct vacua with di�erent topo-
logical charges, this is why a gauge �eld ensemble should sample the con�guration space
in an appropriate manner, which means that one should get a Gaussian distribution of
the topological charge centered around Qtop = 0.

Tunneling between two di�erent topological sectors in a Markov chain is not easy.
Small changes of the gauge �eld do not alter the global charge and large changes have a
bad acceptance rate in the Metropolis accept/reject step. This situation becomes worse,
when aiming for smaller lattice spacings and lighter fermion masses. In these cases one
faces the problem that the simulation gets stuck in a topological sector. Accordingly,
the autocorrelation time of the topological charge τtop increases dramatically. This may
lead to a wrong distribution of the topological charge and, hence, to incorrect results
for physical observables which are not necessarily connected to topology. This e�ect is
also known as the critical slowing-down of topological modes.

The origin of this slowing-down can be explained qualitatively in a very simple man-
ner: In the continuum Qtop is invariant under smooth deformations due to an action
barrier separating di�erent topological sectors. At �nite lattice spacing and for a �nite
volume we can overcome this barrier, but it increases for decreasing lattice spacing. As
a consequence one has to pass through con�gurations with very large action to change
the topological sector in a Monte Carlo update. This is, however, related to a large
error of the numerical integration of the equations of motion and the new con�guration
is likely to be rejected.

An example for the evolution of the topological charge for the Wilson gauge action is
shown in Fig. 3.1. The con�gurations are generated with a HMC algorithm with a rel-
atively short trajectory length. The space of con�gurations is sampled in a rather slow
manner, resulting in a step-like behavior of the topological charge. Physical observables
could be biased in this situation, leading to wrong results. As a consequence it is of
high importance to get a good estimate of the autocorrelation, not to underestimate
the statistical errors [87].

The topological charge is among the observables with the largest autocorrelation
times and serves as a good measure for the quality of an ensemble. This is the reason
why modern simulation algorithms are designed to increase the transition probability
between topological charge sectors.

3.3.2. Simulations at �xed topology

A rather new approach to Lattice QCD are simulations at �xed topology, i.e., simula-
tions where the topological charge does not change at all. According to the arguments
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Fig. 3.1: Typical evolution of the topological charge during a Monte Carlo simulation (a)
and its distribution in this ensemble (b). The con�gurations were generated with
a HMC algorithm (164 lattice, Wilson gauge action, β = 6.18, which corresponds
to a ≈ 0.07 fm). The topological charge has been measured by the index of the
overlap operator. The step-like structure of the topological charge indicates
a rather slow sampling of the con�guration space. As a net e�ect one would
measure a nonvanishing expectation value of Qtop and any measurement (of a
physical observable) may be biased towards a wrong result.

in the previous section this seems quite odd, but one can show that the additional
error for physical observables at �xed topology is proportional to the inverse volume
and, hence, it will vanish in the in�nite volume limit (see Ref. [88] and Ref. [89] for
an explicit calculation). This e�ect can be qualitatively explained as follows: An in�-
nite volume will include subvolumes with di�erent net topological charge. Therefore, a
spatial averaging includes also an average over topological sectors.

Many modi�cations of gauge actions have been proposed to �x topology (see, for
instance, Refs. [90, 91, 92]), but to no avail. The �rst approach which could �x it com-
pletely was suggested by Fukaya et al. [93]. They introduced an additional determinant
ratio in the path integral

det
(
D2
W (M)

)

det
(
D2
W (M)− µ2

) , (3.16)

where DW (M) = DW −M . This factor corresponds to an additional heavy particle
with mass M and an associated twisted mass ghost. It turns out that this determinant
suppresses con�gurations with small eigenvalues. Topology on the other hand, can only
change if a near-zero eigenvalue pair becomes an unpaired zero eigenvalue.

A very important e�ect of this suppression is an enormous speedup of Monte Carlo
algorithms, as the condition number2 of the Dirac operator is drastically improved.
This results in a numerically much cheaper inversion of the Dirac operator which is
need in the HMC algorithm. Although one has to spend some extra time to compute

2The condition number is the ratio of the largest and the smallest eigenvalue.
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the determinant of a huge matrix, it is still less expensive than inverting an operator
with small eigenvalues.
There are many open questions concerning ergodicity, autocorrelation and instanton

physics in this approach. Nevertheless, �xed topology simulations draw more and more
attention. Even reliable dynamical overlap simulations seem feasible within this ap-
proach [94, 95, 96]. First results are promising, but these studies do not yet include
the crucial in�nite-volume extrapolation.

3.3.3. Topological susceptibility and two-point function

Topology is not only of technical interest. There are physical quantities which are
strongly related to it. As mentioned in Chap. 1, there is no ninth would-be Goldstone
boson, the η′, due to the chiral anomaly and topological excitations.
Witten and Veneziano [97, 98] found, under certain assumptions (e.g., large-N limit),

that the topological susceptibility

χtop =

∫
d4x 〈q(x)q(0)〉 (3.17)

of the quenched theory ful�lls

χquen.
top =

f2
π

2Nf

(
m2
η +m2

η′ − 2m2
K

)
, (3.18)

where fπ is the pion decay constant. The masses of the kaon and the η-particle vanish
in the chiral limit (mu,d,s → 0) and the r.h.s. of Eq. (3.18) reduces to

χquen.
top =

f2
π

2Nf
m2
η′ . (3.19)

The strange thing about the Witten-Veneziano formula is that each side has to be
evaluated in a di�erent theory. The l.h.s. has to be determined in pure gauge the-
ory (in�nite quark mass limit), because the topological susceptibility vanishes for any
number of massless �avors (cf. [30]), whereas, the r.h.s. is evaluated in the chiral limit.
Despite the conceptual problems of the interpretation of this relation, it has been

shown that the Witten-Veneziano formula is in good agreement with experimental data.
Taking the experimentally measured masses yields

χtop =
f2
π

2Nf

(
m2
η +m2

η′ − 2m2
K

) ∣∣∣
exp
≈ (180MeV)4. (3.20)

This value has been con�rmed in many Lattice QCD simulations using di�erent actions
and di�erent de�nitions of the topological charge (cf. Tab. 3.1).
There are two basic strategies to measure the topological susceptibility. One can mea-

sure it directly according to Eq. (3.17) on each con�guration followed by an ensemble
average or one can use that

χtop =
〈Q2〉
V

. (3.21)
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χ
1/4
top [MeV]

Dürr et al. (2007) [99] 193(1)(8)

Del Debbio et al. (2005) [100] 191(5)(8)

CP-PACS (2001) [101] 197(4)(12)

UKQCD (1998) [102] 187(14)(16)

Tab. 3.1: Results for the topological susceptibility from di�erent publications. The �rst
error contains all statistical errors and the second error is due to the uncertainty
of setting the physical scale on the lattice.

Hence, it can also be determined directly from the distribution of the global topological
charge in the ensemble. The latter option is usually preferred for its simplicity and
precision.
Another quantity of interest is the two-point correlation function of the topologi-

cal charge density 〈q(x)q(0)〉, which is the integrand of the topological susceptibility.
This function is obviously related to the distribution of the topological charge and
contains important information on the underlying structure of the QCD vacuum. The
two-point function has some very special properties, which will be discussed in the fol-
lowing [103, 104]. It is well known that q ∝ FF̃ is odd under time reversal, so 〈q(x)q(0)〉
has to be negative for |x| > 0 in order to satisfy re�exion positivity. Otherwise no valid
continuum limit would exist (Osterwalder-Schrader condition [105, 106]). The topolog-
ical susceptibility, in turn, is positive (or zero) and, correspondingly, a positive contact
term (for |x| = 0) has to cancel the negative contribution to the space-time integral of
Eq. (3.17). The shape of this correlator on the lattice and how to measure it will be
discussed in Chap. 7.

3.3.4. Topological objects on the lattice

So far we have only discussed global properties of topological structures like the topo-
logical charge. While the concepts related to such global quantities are quite settled, we
need more sophisticated methods for analyzing the local topological structure. There
are two essential problems: First of all, the discretization on a lattice introduces multi-
ple scales which limit the translation of continuum objects to the lattice. The SU(2)-
instanton solution, for instance, depends on the size parameter ρinst:

AI
µ(x) =

∑

a

Aa
µ(x)

σa
2

=
∑

a

ηaµν
2xν

x2 + ρ2
inst.

σa
2
. (3.22)

Translating this expression to a lattice by the usual parallel transporter

Uµ(x) = P exp
{
− i
∫ x+µ̂

x
AI(s)ds

}
≈ e−iaAIµ(x) (3.23)

is only valid for a� ρinst. � L. While this is the natural hierarchy of any observable on
the lattice, an additional problem arises. The basic property of the instanton solution
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Fig. 3.2: Long-range structure, e.g. a topological object, hidden by short-range �uctua-
tions (cf. [107]).

is lost: namely an integer topological charge. This is certainly not unexpected, as
discretization errors will always be introduced, but these can be so big that the resulting
object cannot be interpreted in terms of instantons. It can be seen best in the extreme
case of ρinst. = a (strongly localized object). If the object is placed at the center of
a hypercube, we will �loose� it in the discretized version, yielding Qtop ≈ 0 instead of
approximately 1.

The second fundamental problem is related to the Monte Carlo simulation. The
most natural thing would be to study the topological charge density directly with the
lattice de�nition Eq. (3.1). The resulting density is, however, strongly a�ected by
short-range �uctuations of the gauge �eld and, therefore, very large gluon momenta.
These �uctuation make a direct identi�cation of the underlying topological structure
impossible. Thus, methods to �lter out the relevant degrees of freedom are needed.

This issue has been nicely illustrated by de Forcrand [107] (see Fig. 3.2): The topo-
logical excitations are some kind of background excitations, which can be revealed after
removing the ultraviolet noise. This is, however, much more complicated than the vi-
sualization suggests. A simple Fourier decomposition or wavelet transformation of the
scalar density does not yield the correct result and more sophisticated methods are
needed to do this �ltering.

3.4. Filtering methods

It has been pointed out that we need some kind of �ltering when analyzing the topo-
logical structures in Monte Carlo con�gurations. This section introduces some of the
most common �ltering algorithms, thereby covering all methods which have been used
in this thesis.
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3.4.1. Cooling

Cooling [108, 109] has been the �rst method to reduce short-range �uctuations from
Lattice QCD con�gurations. The basic idea behind this procedure is to locally minimize
the action. To this end, one replaces each link by an element of the gauge group that
minimizes the action. In the case of the Wilson gauge action this corresponds to
maximizing the plaquette:

Uµ(x)→ max
Uµ(x)

(Re tr{Uµ(x)Σ(x)}) , (3.24)

where Σ(x), also known as staple, is made up of the links residing around the plaquette.
This update can be applied sequentially (sweeping through all links of the lattice) or

in parallel (update of all links at the same time). If all links are replaced according to
the above prescription, one speaks of a single cooling step. An iterative application of
cooling reduces the action in every step and the con�guration is driven to a classical
minimum of the action.
Cooling has been widely used in lattice studies of the QCD vacuum. There are,

however, some fundamental problems related to this procedure. Instantons, which are
solutions of the classical equation of motion (and, hence, minima of the classical action),
are not stable under cooling in the long run. It is easy to show that the �nite lattice
spacing artifacts of the gauge action cause instantons to shrink and fall through the
lattice (see e.g. Ref. [110]). As a consequence, many variants have been proposed, which
use di�erent gauge actions or additional terms in Re tr{. . .}, which reduce �nite lattice
spacing artifacts (cf. Refs. [111, 110]). In addition, there is a problem concerning short
cooling runs, i.e., for only a few updates: If one throws away the original link variable,
it is a priori not clear what information is lost and in this context cooling is a very
drastic modi�cation of the gauge �elds. Cooling is not used in this thesis. Nevertheless,
all methods, which are based on manipulating the links, share these problems to some
extent. Such �ltering procedures are usually referred to as �smearing� methods.

3.4.2. APE smearing

One of these link-based �ltering methods is APE smearing [112, 113]. The main idea
is to replace each link variable by a weighted sum of itself and the attached (forward)
staples:

Uµ(x) −→ Uµ(x) + γ
∑

µ 6=±ν
Uν(x)Uµ(x+ ν̂)U †ν (x+ ν̂), (3.25)

where γ is a weighting factor. The new link is not a member of the gauge group
anymore and so it has to be projected it back onto the group. Before we discuss this
projection in more detail, we can write down the de�ning equation of a single APE
smearing update:

UAPE
µ (x) ≡ PSU(Nc)

{
(
1−αAPE

)
Uµ(x)+

αAPE

6

∑

µ6=±ν
Uν(x)Uµ(x+ν̂)U †ν (x+ν̂)

}
. (3.26)
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αAPE is called smearing parameter and determines the �ltering strength and PSU(Nc)

denotes the projection back to the gauge group. For this parameterization of the
smearing parameter one has two special cases. If αAPE = 0, we get the original link
and if αAPE = 1, we have no contribution of the old link.

We use the �standard parameter� αAPE = 0.45 throughout this thesis (this value
corresponds to a ratio link-to-staple of 7 : 1). It has been shown that this value provides
the best matching to RG-cycling, a smoothing method based on renormalization group
techniques [114, 115, 116]. Other choices are possible and the resulting con�gurations
will depend on this parameter. It will also strongly depend on the number of sequential
APE smearing steps and, consequently, one has to use this method with great care not
to introduce method-dependent artifacts.

The main problem of APE smearing is the projection. For the special cases of
U(1) and SU(2) a simple rescaling can be applied but, in general, there is no unique
projection. One usually searches for the group element U , that satis�es

PSU(Nc){W} = max
U∈SU(Nc)

(
Re tr{U †W}

)
. (3.27)

This projection relates APE smearing to cooling: Taking αAPE = 1 we throw away
the contribution of the original link and the projection minimizes the plaquette action
locally. For a smaller smearing parameter, we will preserve information from the original
link and, thus, APE smearing is less harmful than cooling.

3.4.3. Stout smearing

Stout smearing [117, 118] solves the problem of the projection in a more elegant manner.
The construction of the smeared link is straightforward and we will present it for
SU(N)-valued links. The starting point is the weighted sum over the staples attached
to the link Uµ(x) denoted by Cµ(x):

Cµ(x) ≡
∑

±ν 6=µ
ρµνΣν(x) =

∑

±ν 6=µ
ρµν

(
Uν(x)Uµ(x+ ν̂)U †ν (x+ ν̂)

)
(3.28)

The coe�cients ρµν are tunable parameters which determine the strength of the �l-

tering. De�ning Ωµ(x) ≡ Cµ(x) ·U †µ(x), where no summation is performed, one can
construct the matrix

Qµ(x) = i
2

(
Ω†µ(x)− Ωµ(x)

)
− 1

2Nc
tr
{

Ω†µ(x)− Ωµ(x)
}
, (3.29)

or in a rather symbolic notation:

Qµ = ρ x x+ µ̂

hermitian,
traceless .
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This matrix is hermitian and traceless and in this case iQ is an element of the su(Nc)
algebra. Every element of the algebra can be uniquely mapped to a group element
of SU(Nc) via the exponential map eiQµ(x) and accordingly, eiQµ(x)Uµ(x) remains in
SU(Nc). Finally, a recursive procedure for n+ 1 steps of stout smearing is de�ned by:

U (n+1)
µ (x) = exp{iQ(n)

µ (x)}U (n)
µ (x) and U (0)

µ (x) = Uµ(x). (3.30)

It is not immediately obvious why this iteration leads to a smoothing of the �elds,
but one can show that stout and APE smearing are equal to lowest order in lattice
perturbation theory for a single smearing step [119].

Another interpretation of the stout smearing algorithm is based on the so-called
Wilson �ow [120, 121, 122]. This �ow de�nes an evolution of the gauge �elds in an
arti�cial time τ (the ��ow time�) according to the �ow equation

∂τVµ(x, τ) = −1/β
(
∂x,µSW [Vµ(x, τ)]

)
Vµ(x, τ) with Vµ(x, 0) = Uµ(x), (3.31)

where SW is the Wilson gauge action3 with the plaquette replaced by 1×1 clover terms
and ∂x,µ its Lie-algebra-valued variation with respect to the link variable Vµ(x, τ). Due
to the minus sign, the action decreases monotonically with the �ow time, leading to
smoother and smoother gauge �elds. Stout smearing can be obtained by solving the �ow
equations using the Euler method with a time step δτ = ρstout. Successive iterations
lead again to smoother gauge �elds.

3.4.4. Improved stout smearing

Stout smearing and APE smearing behave very similar to cooling for a large number of
iterations. It is well known that both smearing methods will destroy instantons for a
su�cient number of iterations. Therefore, it has been proposed by the authors of [124]
to modify the matrix Q in (3.30) by using larger 2 × 1 loops in addition to the usual
1× 1 loops. The de�nition of their improved stout smearing reads as follows:

U imp. stout
µ = eiQµ(U,ρ,ε)Uµ, (3.32)

where

Qµ = ρ
(
5−3ε
2 + 1−ε

12

(
+ +

))

herm.
tracel.

.

3Other choices of the action, which are local and gauge invariant, lead to other �ow de�nitions,
coinciding with the Wilson �ow in the continuum limit. See, for example [123], where the �Symanzik
�ow� has been proposed.
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3.4. Filtering methods

The additional smearing parameter ε determines the weight of the larger loops and,
hence, the magnitude of the lattice artifacts. ε = 1 yields the �usual� stout smearing
and one can tune this parameter such that instantons are preserved in a wide range of
their size parameter [124].
It has been found that the combination ε = −0.25 and ρ = 0.06 yields the desired

behavior. This is why we stick to these parameters throughout this thesis. A second
reason to use this method (and the above parameters) is that there is a strong correla-
tion of the �eld theoretic de�nition of the topological charge density after �ve steps of
improved stout smearing and the fermionic de�nition including all eigenmodes of the
overlap operator [125].

3.4.5. Laplace �ltering

A substantially di�erent method is Laplace �ltering [126, 127, 128], which is based on
a spectral decomposition of the links in terms of eigenmodes of the covariant lattice
Laplacian

∆ab
xy =

4∑

µ=1

(
Uabµ (x)δx+µ̂,y + Uab†µ (y)δx−µ̂,y − 2δabδxy

)
, (3.33)

where a, b = 1, . . . , Nc are color indices. The eigenvalue equation reads as follows:

−∆ab
xy ·Φb

n(y) = λn ·Φa
n(x). (3.34)

There are in total Ntotal = Nx × Ny × Nz × Nt × Nc eigenvalues and eigenvectors. If
all are known, the Laplacian can be written as:

−∆ab
xy =

Ntotal∑

n=1

λnΦa
n(x)⊗ Φb†

n (y) . (3.35)

This is nothing but the spectral decomposition of the Laplace operator, which always
exists for a self-adjoint operator. Combining the de�nition (3.33) with Eq. (3.35) and
using y = x+ µ̂ yields

Uabµ (x) = −
N∑

n=1

λnΦa
n(x) ·Φb†

n (x+ µ̂). (3.36)

The eigenvalues are related to some energy scale (squared) and this is why the above
relation can be used as a starting point for a low-pass �lter in the sense of a Fourier
decomposition.
If one truncates the sum in Eq. (3.36) at a small number of modes, one gets the

�ltered gauge �elds ULaplace
µ :

ULaplace
µ (x) = PSU(Nc)

{
−

N∑

n=1

λnΦn(x)⊗ Φ†n(x+ µ̂)

}
with N � NTotal. (3.37)
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Chapter 3: Topology and Lattice QCD

In general, one does not get an element of the gauge group for the truncated spectral
sum and so one has to project the resulting link onto an element of SU(Nc). In the
limit of all eigenmodes, no projection is needed because we recover the original link.
The problem of the de�nition Eq. (3.37) is that the weight for the lowest modes is

quite small, while these modes are very important for the topological structure. We
can cure this by using a symmetry of the lattice Laplacian, which connects the low and
the high end of the spectrum. It has been found in Refs. [129, 130, 131] that

ΦNtot−n(x) = (−1)
∑
µ xµΦn(x). (3.38)

The prefactor is the staggered phase from Sec. 2.5. If we want to include the upper
end of the spectrum in the �lter, we have to reweight the links and replace:

− λn → 16− 2λn. (3.39)

Although it seems quite odd to include also the highest modes for a low-pass �lter,
one gets better convergence properties of the �lter, as the lowest modes will have the
biggest weight. Finally, we get the de�ning equation for the Laplace �ltered links:

ULaplace
µ (x) = PSU(Nc)

{
N∑

n=1

(16− 2λn)Φn(x)⊗ Φ†n(x+ µ̂)

}
. (3.40)

These links can be used to measure any observable, such as the topological charge
density.

3.4.6. Dirac �ltering

Dirac �ltering [132, 133, 134, 135, 136] is also based on a low-mode truncation. The
fermionic topological charge density (cf. Eq. (3.10)) is de�ned as a sum over eigenmodes
of a chiral Dirac operator. While zero modes determine the overall topological charge,
the non-zero modes contribute to the local structure. It has been found that the lowest
modes are localized and smooth. So it makes sense to truncate the sum over the
eigenmodes in the fermionic de�nition of the topological charge (3.10) at the N -th
lowest mode, to get a �ltered topological charge density:

qDirac
top (x) =

N∑

n=1

tr

(
λn
2
− 1

)
ψ†n(x)γ5ψn(x). (3.41)

This fermionic �lter has some crucial advantages. The total topological charge Q =∑
x q(x), for example, is always an integer and equal to the un�ltered charge. More-

over, there is a direct connection of topological objects to zero modes, which has been
sketched in Sec. 1.3. While this is conceptually the �cleanest� de�nition of a �lter, it
faces an enormous computational challenge. The eigenmodes of a chiral Dirac operator,
like the overlap operator, are very expensive to compute and one is limited to relatively
small lattices and even then huge parallel computers are needed.
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3.4. Filtering methods

Fortunately, it has been found in Ref. [125] that there is a strong correlation of the
local structures of the fermionic topological charge density (without �ltering) and the
improved gluonic charge density after 5 steps of improved stout smearing (for ε = −0.25
and ρ = 0.06). As smearing is a local operation, we have only a linear scaling of the
computational costs with the lattice volume and even state-of-the-art lattice ensembles
are accessible with this method.
Finally, we want to remark that the global topological charge and the local (�ltered)

density depend on the mass in the kernel operator. This mass can be chosen freely
(within certain bounds), which can in�uence the resolution of the overlap operator
[39, 85]. This ambiguity can only be removed if the con�gurations are generated with
dynamical overlap fermions, as the simulation �xes the mass parameter.

47





4
Comparison of �ltering methods

In this chapter we systematically compare �ltering methods used to extract topological
structures from Lattice QCD con�gurations. Many di�erent methods have been pro-
posed since the advent of Lattice QCD. Among them are cooling, smearing, Laplace
�ltering and the fermionic de�nition of the topological charge via eigenmodes of a chiral
Dirac operator (see Ref. 3.4 for an overview over �ltering methods). Unfortunately, all
these methods introduce ambiguities and new parameters, which may lead to wrong
conclusions.

In order to get a coherent picture of the topological structure of the QCD vacuum, it
is necessary to control or even remove these ambiguities. To this end, we use a system-
atical comparison of the topological charge densities resulting from di�erent �ltering
methods. The analysis shows that APE and stout smearing yield very similar topologi-
cal charge densities when the parameters are matched properly. To get a better control
over the ambiguities of smearing, it is necessary to complement it by an independent
�ltering method. This is in our case Laplace �ltering. The comparison clearly reveals
that smearing has to be used with care not to destroy relevant topological objects.

Parts of this chapter have been published in Ref. [2] and Ref. [5].

4.1. Measure for the local similarity

For a quantitative comparison of the local topological structure resulting from di�erent
�ltering methods a measure of the similarity is needed. To this end, we have applied the
method of Bruckmann et al. from Ref. [137]. They introduced the following quantity
as a measure of the local similarity of two topological charge densities:

ΞAB ≡
χ2

AB

χAA χBB
. (4.1)
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Chapter 4: Comparison of �ltering methods

lat. size lat. spacing [ fm] βLW mπ[MeV] Nconf

quenched 163 · 32 0.148 7.90 � 80

dynamical 163 · 32 0.150 4.65 ∼ 500 30

Tab. 4.1: Details on the gauge con�gurations used for this comparison. Further informa-
tion can be found in Ref. [138]

χAB is the correlator of two topological charge densities qA(x) and qB(x)

χAB ≡
(
1/V

)∑

x

(
qA(x)− qA

) (
qB(x)− qB

)
. (4.2)

where the mean topological charge q = Q/V is subtracted for various reasons. One
consequence of this subtraction is that one gets rid of (or at least minimizes) possi-
ble additive renormalizations of the lattice topological charge density. Furthermore,
considering two charge densities one of which is strongly structured and one is �at
(q(x) = const. = q), an exactly vanishing correlation is achieved. Without the subtrac-
tion, one would get a nonvanishing correlation.

ΞAB is by de�nition a positive quantity and equals one if the densities di�er only by
a constant scaling factor. It deviates the more from one, the more the densities di�er.
The great advantage of this de�nition is that one does not have to know the (additive
and multiplicative) renormalization factors of the topological charge densities, since
these factors drop out in Eq. (4.1) and one is able to compare the relative di�erence at
each lattice point.
For a further quantitative analysis of the local topological structure resulting from

di�erent �ltering methods A and B, it is useful to de�ne `best matching' pairs of
�lter parameters, by maximizing ΞAB (cf. Ref. [137]). In order to �nd these maximal
values, we keep the APE and stout smearing parameters constant (αAPE = 0.45 and
ρstout = 0.075; see above) and compute ΞAB for up to 50 smearing steps each. Moreover,
we compare the �ltered topological charge densities obtained with up to 500 Laplace
modes and 50 APE smearing steps. More smearing steps have not been applied, as
too much smearing will destroy the local topological structure, whereas more Laplace
modes would be too expensive.
We do this measurement for a dynamical and a quenched ensemble which have been

generated with the Lüscher-Weisz gauge action [44, 45, 48, 49] and a chirally improved
Dirac operator with two mass degenerate light quarks (see Sec. 2.5) [79, 138]. Both
ensembles have almost the same lattice spacing and the same physical volume (cf.
Tab. 4.1), to make the results comparable.

4.2. APE vs. stout smearing

We �rst discuss the matching of APE and stout smearing, see Fig. 4.1. In the absence
of smearing (lower left corner) one has Ξ = 1 as the con�gurations are identical. An
interesting observation is that the maximal values of Ξ lie on some kind of ridge, where
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Fig. 4.1: Comparison of APE with stout smearing for quenched (left) and dynamical
(right) con�gurations. The degree of similarity Ξ (see the de�nition (4.1) is
given by contour lines. Both plots show a pronounced �ridge� of best match-
ing pairs of smearing steps. Depicted are mean values of 80 quenched and 30
dynamical con�gurations, respectively (from Ref. [2]).

Ξ > 0.95 within our range of smearing steps. Thus, the di�erent smearing techniques
reveal almost the same structures. The slope of this line is determined by the ratio of
the smearing parameters.

An almost one-to-one correspondence for the topological density after the same num-
ber of APE and stout smearing steps (i.e. a slope of 1) is achieved when the smearing
parameters are related as α = 6 · ρ [5]. This is consistent with the perturbative result
of Ref. [119] and with the nonperturbative result from Ref. [139]. The latter focused on
rather global observables, which are not related to topology, with up to three smearing
steps. Our nonperturbative result re�ects the local similarity of both methods and
their strongly correlated topological charge densities up to 50 steps.

The described equivalence applies to both dynamical and quenched con�gurations.
There are, however, quantitative di�erences. The ridge is slightly thinner in the dy-
namical case and, therefore, the structures seem to be more sensitive to the level of
�ltering. This can also be seen if we compare the values of Ξ for the best matching
pairs of both methods (values of Ξ on the diagonal of both plots) as shown in Fig. 4.2.
Within the �rst few smearing steps we �nd that the agreement gets worse. The reason
for this is that the 3-loop de�nition of the �eld strength tensor needs su�cient smooth
gauge �elds in order to produce a stable result. Furthermore, both methods may re-
move UV contributions di�erently. Then the agreement gets better and after a few
steps a plateau is reached where Ξ ∼ 0.995. This plateau is quite stable for quenched
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 0.94

 0.96

 0.98

 1

 0  10  20  30  40  50

Ξ
A

S

smearing steps

quenched
dynamical

Fig. 4.2: Ξ for an equal number of APE and stout smearing steps. This corresponds to
the values on the diagonal of Fig. 4.1. For the very weak and strong �ltering
case, the APE-stout smearing correspondence is slightly worse in the dynamical
case and less stable for stronger �ltering. Errors result from an ensemble average
over 80 quenched and 30 dynamical con�gurations, respectively.

con�gurations until it starts to break down after 40 smearing steps. This behavior is
very similar to the dynamical case. Nevertheless, the absolute values of Ξ are lower
and the plateau breaks down after fewer steps (∼ 30 steps).

This observation has some important practical consequence for the study of topolog-
ical structures. If two almost equal methods like APE and stout smearing give di�erent
results, we cannot be sure which artifacts are introduced by the single method and so
one should apply less than 20-30 smearing steps not to introduce too many artifacts,
but more than 4 steps, in order to have a well-behaved improved �eld strength tensor.
These numbers, however, might only hold for topological observables and can strongly
di�er for others.

4.3. Laplace �ltering

APE and stout smearing are deeply related and this is why we need an independent
method like Laplace �ltering (see Sec. 3.4.5). Both methods are based on completely
di�erent principles and one could ask if they reveal similar structures at all. To this end,
we show in Fig. 4.3 a slice of the topological charge density for a quenched con�guration
after 7 APE smearing steps and for 500 Laplace modes. Ξ is approximately 0.85 for
these parameters and this means that both methods yield structures which are not
only qualitatively but also quantitatively almost the same and it makes sense to do a
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Fig. 4.3: Comparison of the same slice of the topological charge density resulting from 7
APE smearing steps (a) and 500 Laplace modes (b) (from Ref. [2])
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Fig. 4.4: Comparison of APE smearing with Laplace �ltering for quenched and dynamical
con�gurations. The degree of similarity Ξ (see the de�nition (4.1)) is given by
contour lines. The values of Ξ are in general lower than for the matching of
APE and stout smearing in the previous section and the quantitative di�erence
between quenched and dynamical con�gurations is bigger. For mild �ltering we
have plotted a line along the best matching parameter that will be used for the
cluster analysis in the next chapter. Shown are mean values of 30 con�gurations
each (from Ref. [2]).

systematic comparison.

We computed Ξ for up to 500 Laplace modes and 50 APE smearing steps (αAPE =
0.45) on a dynamical and a quenched ensemble with 30 con�gurations each. The result
can be found in Fig. 4.4. Again, we �nd some kind of ridge of the best matching values
of Ξ. This ridge is quite pronounced for weak �ltering, but it is hard to identify the
best matching parameters in the strong-�ltering regime, i.e. for less than 50 Laplace
modes and more than 20 smearing steps. Furthermore, there is no set of best match-
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Chapter 4: Comparison of �ltering methods

modes steps ΞAL,quen

500 7 0.86

450 7 0.85

400 8 0.83

350 8 0.82

300 9 0.80

250 9 0.78

200 10 0.75

150 10 0.72

100 11 0.66

75 12 0.61

50 12 0.55

modes steps ΞAL,dyn

500 7 0.74

450 7 0.73

400 8 0.70

350 8 0.69

300 8 0.67

250 9 0.64

200 9 0.61

150 9 0.57

100 10 0.50

75 10 0.46

50 10 0.40

(a) quenched (b) dynamical

Tab. 4.2: Best matching pairs of �lter parameters for Laplace �ltering and APE smearing
(αAPE = 0.45). The values of Ξ have been rounded to two decimal places. The
error from the ensemble average was below 0.006 in all cases.

ing parameters with Ξ > 0.5 in this regime and, thus, one can hardly say that both
methods agree at all. The matching of quenched and dynamical con�gurations yields
qualitatively the same result. The absolute values are, however, signi�cantly lower
in the dynamical case which could mean that there are more artifacts from a single
method.

The cross-correlator ΞAB is just one method to characterize the similarity of two
topological landscapes. In order to support our results we use an additional measure
of the similarity: the relative point overlap (RPO) [137]. To this end, one cuts the
densities such that the volume fraction1 above the cuto�s are equal (in general, one
needs di�erent values for the cuto� for each method to get the same volume fraction)
and then we identify those points that are common to both methods and have the same
sign of the topological charge. This leads to the following de�nition of the RPO:

sAB =
∑

x∈XA∩XB
qA(x)qB(x)>0

1 /
∑

x∈XA∪XB

1 , (4.3)

where XA/B is the set of lattice points x with topological density above the cuto�
|qA/B(x)|. A value sAB close to one signals a good agreement between qA and qB.

The values of the RPOs of APE and stout smearing (7 iterations each) as well as for
APE smearing and Laplace �ltering (7 iterations vs. 500 Laplace modes) are shown
in Fig. 4.5. For APE and stout smearing we get a large RPO. This also stresses the
similarity of the two methods. The RPO for APE smearing and Laplace �ltering is

1The volume fraction is the number of lattice points relative to the total number of points
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Fig. 4.5: Relative point overlap sAB (see Eq. (4.3)) of APE and stout smearing (7 iter-
ations each) as well as for APE smearing and Laplace �ltering (7 iterations vs.
500 Laplace modes) averaged over 10 con�gurations each (from Ref. [2]).

smaller and comparable to its values found for quenched SU(2) con�gurations [137]
and the tendency of less agreement in the case of dynamical con�gurations can be
con�rmed.
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5
Cluster analysis of the topological

charge density

In order to obtain information about the topological structure of the QCD vacuum,
which can be compared to continuum models, we analyze the cluster structure of the
topological charge density after mild �ltering. To get rid of artifacts of a single �l-
tering method, we use a combined analysis of smearing and Laplace �ltering on both
quenched and dynamical con�gurations. This combined analysis shows that the topo-
logical charge density is more fragmented in the presence of dynamical quarks.

The majority of this chapter has been published in Ref. [2].

5.1. Topological charge density clusters

In principle, there are many di�erent ways to de�ne a cluster on a lattice. We have
chosen the following: Two lattice points belong to the same cluster if they are nearest
neighbors and have the same sign of the topological charge density1. For such clus-
ters Bruckmann et al. had found an interesting power-law dependence in quenched
SU(2) lattice gauge theory [137]. To that end, one cuts the absolute value of the topo-
logical charge density at a variable cuto� qcut and determines the number of clusters
Ncluster(qcut) above this cuto� as a function of the total number of points above qcut,
Npoints(qcut). Fig. 5.1 shows a three-dimensional visualization of this procedure. One
can distinguish three di�erent phases when lowering the cuto�. First, the highest peaks
of the topological charge density are found. In this case every new point either forms a
separate cluster or belongs to a cluster of a very strong peak. This corresponds to the
�rst three snapshots of Fig. 5.1. The number of revealed clusters depends strongly on

1Alternative de�nitions may also include lattice points at distances
√
2a or

√
3a (see, e.g., Ref. [140])
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Chapter 5: Cluster analysis of the topological charge density

Npoints = 2 Nclust. = 2 Npoints = 15 Nclust. = 9 Npoints ≈ 75 Nclust. ≈ 50

power law I power law II percolation

�nal state positive cluster negative cluster

Fig. 5.1: Three-dimensional visualization of the cluster analysis with orange and blue rep-
resenting positive and negative topological charge density.There a three di�erent
phases. For a high cuto� (�rst row) one �nds the peaks, which depend on the
single �eld con�guration. At lower cuto� one has a phase which is governed by
a power law for the cluster number and in the last stage at very low cuto� the
clusters percolate, i.e., all positive and negative clusters merge and form two
connected clusters with opposite charge (in four dimensions).

the considered gauge con�guration. As a consequence, we have large deviations of the
cluster number within an ensemble of gauge con�gurations. For a su�ciently large num-
ber of points above the cuto�, one is very sensitive to the general topological structure
and the number of clusters follows a power law [2, 137]. In this regime one can extract
the exponent with high accuracy. Finally, the clusters start to percolate and form two
connected clusters with opposite sign of the topological charge (there are usually a few
very small isolated clusters, consisting of 1-5 points which are just artifacts without any
physical meaning). This behavior cannot be visualized in a three-dimensional scheme.
In four-dimensional space with periodic boundary one can interpret this behavior as
a sign of self-intersection and the fractal nature of the topological charge density (see
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Fig. 5.2: (a) Number of topological clusters as a function of the number of points above a
variable cuto� for a random gauge �eld, a random density and a typical Lattice
QCD ensemble (The points for the random con�gurations lie on top of one an-
other). While the random con�gurations show no clustering, we �nd deviations
for Lattice QCD ensembles. (b) Number of clusters as a function of the frac-
tion of all points above a variable cuto� for clusters after smearing and Laplace
�ltering as well as for clusters which are common to both methods (averaged
over 30 dynamical con�gurations ). The exponent of the underlying power law
is highly characteristic for the topological structure and directly related to the
size distribution of topological objects (from Ref.[2]).

Ref.[141] for a recent study of the fractal nature).
The exponent of the power law

ξ ≡ d
(

logNclust(qcut)
)

d
(

logNpoints(qcut)
) . (5.1)

is highly characteristic for the topological structure of the QCD vacuum. Di�erent
models lead to di�erent predictions. This allows for a sensitive test.
Some examples for the number of clusters as a function of the number of point above

the cuto� can be found in Fig. 5.2(a). The result for the topological charge density
of an ensemble of random gauge �elds and a density with Gaussian distributed values
has been included. Both yield an exponent very close to one, which corresponds to the
solid line in Fig. 5.2(a). The reason for this behavior is quite obvious: Neighboring
points are not correlated and, hence, every point forms its own cluster. Additionally,
we included the result of a typical Lattice QCD con�guration. Due to correlations
in the QCD vacuum we get an exponent smaller than one. The size of the exponent
depends on the topological structure in the vacuum, but also on the �ltering method
and the �ltering strength and so it is essential to use these �lters in a controlled way
not to destroy the underlying structures.
The great advantage of a cluster analysis is that it allows to reduce ambiguities com-

ing from a single �lter. To this end, we take only those clusters into account which are
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Fig. 5.3: Exponent ξ for the clusters found by smearing and Laplace �ltering. Both plots
show the tendency of a higher exponent for dynamical con�gurations. The ex-
ponents predicted by the dilute instanton gas have been included in both plots.
Errors from the ensemble average have been included, but are partly too small
to be seen (from Ref. [2]).

common to di�erent �lters. If there is an artifact coming from one method, it is unlikely
that this artifact will also be seen by the other one, such that the common structures
are almost free of ambiguities. In order to increase the overlap of two methods, we
perform this analysis after having matched the �ltering parameters as described in the
previous chapter. An example for the cluster analysis of di�erent methods include a
matched analysis can be found in Fig. 5.2(b).

The exponent can be further related to the size distribution d(ρ) ∼ ρβ of topological
objects with arbitrary shape function and dimensionality d. According to Ref. [137]
one �nds

ξ ≡ d
(

logNclust(qcut)
)

d
(

logNpoints(qcut)
) =

1

1 + d/(β + 1)
. (5.2)

This expression enables a very simple comparison of model predictions and lattice
simulations. For a dilute gas of instantons, for instance, one �nds that β = 1

3(11Nc +
Nf ) − 5 [26, 30] and d = 4, as instantons are four-dimensional objects. For the gauge
group SU(3) one gets ξ = 0.64 in the quenched case and ξ = 0.66 for two �avors of
dynamical quarks.

Moreover, it is also possible to make a general statement on the topological objects
without assuming any model: The closer the exponent is to one, the more suppressed
are small objects. The average size of the objects, however, can shrink.

5.2. Cluster analysis for a single �lter

First, we want to discuss the cluster analysis for smeared con�guration. To this end, we
use APE and stout smearing, where we have chosen the smearing parameters according
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to the previous chapter. As we have shown, there is a deep relation between both
methods and we can treat them as a single �ltering method, although they are in
principle two methods. The matching can easily be done, because of the one-to-one
correspondence. We just have to take the same number of smearing steps and use those
clusters/points which are found by both methods.

The exponent as a function of the smearing steps can be found in Fig. 5.3(a). The
exponent decreases with increasing number of smearing steps, because the structures
become smoother and, correspondingly, the correlation of neighboring lattice sites gets
larger. Obviously, the exponents of the dynamical con�gurations lie above the quenched
values at every step. This di�erence, however, vanishes for stronger smearing (∼ 30
steps) and the exponents settle down to almost the same plateau. This is another
indication that too much smearing destroys the impact of dynamical quarks on the
vacuum structure.

In Fig. 5.3(b) the same analysis is done for Laplace �ltering (only). The number of
modes decreases from left to right and, hence, we have an increasing �ltering strength.
Again, stronger �ltering leads to a smaller exponent. At �rst sight the value for 50
modes seems to be odd, as the exponents start to grow again, but this is an artifact
of the incomplete reconstruction of the topological background. For a small number of
modes, we get a very spiky structure. Lowering the cuto� reveals many new clusters
and; as a result, a high exponent.

The di�erence of the exponents of dynamical and quenched con�gurations remains
at every stage of �ltering, but it is bigger than for smearing. Thus, we conclude that
both methods have completely di�erent artifacts and only a combined analysis gives
results, which are almost free of ambiguities.

5.3. Matched cluster analysis

To get rid of the ambiguities of a single method, we perform a matched cluster analysis
of APE smearing and Laplace �ltering, i.e. we consider only those clusters, which are
common to both methods. The result is shown in Fig. 5.4(a). We use the optimal set of
�lter parameters according to the maximal values of Ξ . These parameters correspond
to points on the ridge of Fig. 4.4 and the values of Tab. 4.2, respectively. The best
matching pairs are slightly di�erent for dynamical and quenched con�gurations. In
order to use a single plot, we use the Laplace mode number on the x-axis and give only
the corresponding smearing steps for the quenched case.

The curves have a step-like behavior, as we have to match the same number of
smearing steps to a large number of Laplace modes and the e�ect of using some modes
more is much less than the e�ect of a single smearing step. In order to guide the eye, we
interpolate the points with a smooth spline �t. This would correspond to a �continuous�
smearing parameter.

As in Fig. 5.3 the values of the exponent in dilute instanton gases have been included.
Generally, our measured values of the exponent are not far o� the instanton gas values
(which was not the case in SU(2) [137]).
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Fig. 5.4: Exponent ξ for the clusters found for a matched �ltering of APE smearing and
Laplace �ltering. The measured exponents have a step-like behavior, because
the number of smearing steps is an integer quantity and we have to match several
numbers of Laplace modes to the same number of smearing steps. The smooth
lines are interpolations corresponding to a �continuous� smearing parameter. The
number of smearing steps (in parentheses) refers to the matching of quenched
con�gurations and is slightly di�erent for the dynamical case (cf. Tab. 4.2).(b)
Total number of distinct clusters for a constant fraction f = 0.0755 of points
lying above the cuto� with smooth interpolation (from Ref. [2]). Errors from
the ensemble average are partly too small to be seen.

The main result of this analysis is that the cluster exponent is larger in the dynamical
case. This can bee found in the analysis of a single �lter as well as for a combined
analysis of completely di�erent �ltering methods. According to the considerations
from above, this implies a larger exponent β of the size distribution of the building
blocks of the topological charge density. Hence, very small topological objects become
suppressed when quarks are taken into account.

The power law itself contains only information on the size distribution of the objects
and additional methods to quantify the topological structures have to be considered.
One such quantity is the absolute number of clusters above a certain cuto�. To this
end, one cuts the topological charge density such that the number of points above the
cuto� is constant (We use 7.55 % of the total number of points) and counts the number
of distinct clusters. This gives information on how the topological charge is distributed.
In the dynamical case we �nd almost twice as many clusters at any level of �ltering
(see Fig. 5.4(b)). Hence, we observe a more fragmented topological structure in the
presence of dynamical quarks.

Our �ndings can be compared to the results obtained by the Adelaide group [142].
They have observed an �increasing density of nontrivial �eld con�gurations� and a
suppression of small instantons. Using a completely di�erent approach, we come to
the same conclusion. The advantages of our analysis are that our dynamical fermions
have better chiral properties than the staggered ones. Moreover, we do not have to
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5.3. Matched cluster analysis

postulate any shape function for the topological objects and, consequently, our method
works for all topological building blocks and with our matched analysis we can obtain
results which are almost free from ambiguities due to the �ltering process.
This analysis was carried out at a single lattice spacing and with fermions possessing

an approximate chiral symmetry. The question remains how chiral symmetry e�ects the
topological structure and how the structures behave when we approach the continuum
limit. This is our main focus in the following two chapters.

63





6
Dynamical overlap fermions

Simulations with chirally symmetric fermions are still one of the great challenges of
Lattice QCD. The importance of chiral symmetry and its connection to topology has
been discussed in the previous chapters. In the following we will give a short overview of
the algorithmic details of our simulations with dynamical overlap fermions and discuss
the topological properties of these con�gurations. We want to emphasize that there is
a crucial di�erence with respect to other recent simulations with exact chiral symmetry
[143]. These dynamical overlap simulations were carried out at �xed topology. We
pursue a completely di�erent strategy. The aim of our simulations is to reach the best
possible tunneling rate between di�erent topological sectors.
Parts of this chapter have been published in Ref. [1] and Ref. [4].

6.1. Details on the simulations

We have introduced in Sec. 2.4.3 the overlap Dirac operator which reads in a slightly
di�erent parametrization than before (and a = 1):

Dov = (1 + µ) + (1− µ)γ5 sign(Dker), (6.1)

where sign is the usual matrix sign-function and Dker a suitable kernel operator like
the Wilson Dirac operator and µ is a mass parameter.
The main algorithmic challenge of dynamical overlap simulations is the di�culty

in changing the topological charge during the Monte Carlo history (cf. Sec. 3.3.1).
The tunneling from one topological sector to another during the Monte Carlo history
requires a discontinuous change in the action at all lattice spacings, which is in principle
the same problem as in the continuum.
Changing topology becomes harder for most lattice discretizations as they approach

the continuum limit. For overlap fermions, however, this challenge is present at any
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Chapter 6: Dynamical overlap fermions

lattice spacing. Therefore, new algorithms are needed in order to achieve the best
possible tunneling rate between topological charge sectors.

Our con�gurations have been generated by using the transmission/re�ection algo-
rithm �rst proposed in Ref. [144] and re�ned in several subsequent papers [145, 146,
147, 148, 149, 150], together with the eigenvector di�erentiation algorithm proposed in
Ref. [151], which is required to accurately di�erentiate near-degenerate pairs of eigen-
vectors whose eigenvalues lie close to a discontinuity.

The probability of changing the topological sector for this transmission/re�ection
algorithm depends on the discontinuity ∆S of the action. Unfortunately, a direct
evaluation of ∆S is not possible and one usually uses pseudo-fermions to estimate the
change in the action (see Sec. 2.6.2). Such an estimation is, however, not optimal
and yields values which are much bigger than the actual change [145]. This problem
gets even worse if we decrease the fermion mass as the estimated change of the action
(∆Spseudo−ferm. ∼ µ−2).

In order to improve the pseudo-fermion approach we factorize the determinant

detDov = det D̃ov det(Dov/D̃ov), (6.2)

where D̃ov is the modi�ed Dirac operator

D̃ov = (1 + µ) + (1− µ)γ5 sign(Dker − Λ0). (6.3)

Λ0 is a real-valued parameter which is chosen according to a suitable probability distri-
bution at the start of each HMC trajectory. The expression det D̃ is continuous during
the topological index change as there is no eigenvalue crossing zero for this operator.
It can be estimated using pseudo-fermions1, while the second term det(Dov/D̃ov) can
be calculated without pseudo-fermions

detD = det D̃ det(D/D̃) =

∫
[D φ][D φ†]e−φ†(1/D̃)φ+tr log(D/D̃) (6.4)

The factorization leads to an exact estimate for the action discontinuity:

∆S = ∆ log det(Dov/D̃ov) = ∆ log detDov = ∆Sexact. (6.5)

Therefore, we get the lowest possible discontinuity at a transition between di�erent
topological sectors and, in accordance, the optimal tunneling probability.

For the pseudo-fermion estimation of the determinant we need a positive de�nite
operator D. The Dirac operator is not positive de�nite and, thus, one usually uses
D →

√
D†D instead, at the cost of an expensive rational approximation for (

√
D†D)−1.

Using the Ginsparg-Wilson relation and γ5-hermiticity one �nds for overlap fermions
with a mass parameter µ:

detDov[µ] = detA[µ]µQ
ferm
top , (6.6)

1We assume D̃ov to be a positive de�nite operator.
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6.2. Autocorrelation

Ensemble trajectories a[ fm] mπ[MeV]

A >1000 0.127(2) 510
B >400 0.120(3) 560
C >600 0.126(2) 600

Tab. 6.1: Details on the dynamical overlap ensembles used in this thesis.

where A[µ] is the positive de�nite matrix

A[µ] =
√

2 + 2µ2 +
1− µ2

2
√

2 + 2µ2
(1 + γ5) sign(Dker)(1 + γ5), (6.7)

and Qferm = index(D) is the di�erence between the number of left- and right-handed
zero modes of the corresponding Dirac operator. This de�nition makes it possible to
run single-�avor simulations without the need of an expensive rational approximation.

The con�gurations used in this thesis result from three simulations of 123×24 lattices
using a tadpole improved Lüscher-Weisz gauge action and a Wilson Dirac kernel with
one step of improved stout smearing [124]. Though we can simulate individual quarks
we choose two degenerate light quark masses. The strange quark mass in our 2+1
�avor simulation is tuned according to the QCDSF prescription [152].2 The pion masses,
which are restricted by the small lattice volume, were measured to be approximately
510MeV, 560MeV and 600MeV, at lattice spacings of around 0.12 fm. Over 1000 tra-
jectories were generated for the lightest pion mass and over 600 trajectories for the
heavier pion masses. The details on the ensembles can be found in Tab. 6.1.

6.2. Autocorrelation

The autocorrelation of physical observables is one of the main issues of a Markov chain
process. The topological charge is expected to have the largest autocorrelation time
of all observables and this is why it is one of the central quantities to estimate the
statistical signi�cance of the measured data. As the autocorrelation increases strongly
with decreasing fermion mass, we concentrate on the ensemble A which has the lightest
fermion mass (cf. Tab. 6.1).

For this ensemble, there were on average 1.05 attempted topological index changes per
trajectory, of which 37.5% resulted in a change of the topological index. This (naively)
corresponds to one topological index change for every 2.8 trajectories of length τ = 0.5.
(This excludes trajectories where the topological charge changed twice or where the
trajectory was rejected.) The Monte Carlo acceptance rate was around 85%. Values
for the other 123 × 24 runs were similar.

This tunneling rate is, to the best of our knowledge, the highest ever achieved in
this parameter region. However, the integrated autocorrelation time for the squared
topological charge for the lightest mass ensemble was around 40 trajectories (of length

2Roughly speaking, we keep the sum of the three simulated quarks at their physical value.

67



Chapter 6: Dynamical overlap fermions

-8

-6

-4

-2

 0

 2

 4

 0  100  200  300  400

Q
to

p

Monte Carlo time τ

 0

 50

 100

 150

 200

 250

 300

-8 -6 -4 -2  0  2  4  6  8

F
re

q
u
e
n
c
y

Qtop

(a) (b)

Fig. 6.1: (a) History of the index during the Monte Carlo evolution for ensemble A. (b)
Distribution of the topological charge. Both plots show signs of inherent auto-
correlation of the topological charge.

τ = 0.5), compared to around 8 for the plaquette. This problem in global topological
autocorrelation can be seen in Fig. 6.1. Although topological index changes occur com-
monly, the mean of the charge distribution is clearly negative. Accordingly, there are
still problematic long term correlations for the topological charge.

The topological charge is a global quantity and it might be blind to local autocor-
relations. Moreover, the de�nition of the integrated autocorrelation is ambiguous for
short Monte Carlo histories [153, 37] and, thus, we introduce an additional measure of
autocorrelation.

We use the cross-correlator of two charge densities Ξ which was de�ned in Eq. (4.1)
and calculate it as a function of the trajectory number between subsequent con�gu-
rations. The result for the ensemble A can be found in Fig. 6.2. The correlator falls
o� exponentially with increasing number of trajectories between two con�gurations.
There are visible correlations for up to 80 trajectories and this correlation increases
with increasing number of smearing steps. The dependence on smearing is just another
indication of the relevance of topological modes in Monte Carlo simulations.

The correlations are visualized in Fig. 6.3 using isosurface plots of the topological
charge densities for the same time slice after 20 steps of smearing. These plots show
how the topological structures evolve as a function of the Monte Carlo time (con�g-
uration number). The good news is that we observe a weak autocorrelation of the
structure for a large fraction of lattice points if there are more than 40 trajectories
between the con�gurations. Nevertheless, there is one example of an object with a
huge autocorrelation. A negative charged object appears in the bottom right corner of
con�guration 210 and persists for more than 100 trajectories. This structure seems to
be very robust against (small) perturbations due to the pseudo-momentum �eld at the
beginning of a molecular dynamics trajectory. We conclude from this observation that
there are localized structures in the vacuum which dominate the autocorrelation of an
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a Monte Carlo history. Ξ measures the local similarity of two topological charge
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ensemble average.

ensemble.

Our new de�nition for the autocorrelation can also be a useful tool for lattice simula-
tions at �xed topology. In this case we cannot use the integrated autocorrelation of the
topological charge. Thus, we propose to use the local autocorrelation of the topological
charge density, as de�ned above. This de�nition is straightforward to implement and
yields much bigger values for the autocorrelation time than, e.g, the plaquette or large
Wilson loops [3].

6.3. Index theorem

Dynamical overlap simulations have exact zero modes and an exact index. In previous
studies of the index theorem on the lattice either would-be zero modes or overlap
valence quarks have been used [154, 133, 155, 156]. The latter case seems to be free
of ambiguities, but one has the freedom to choose the kernel operator which can result
in a di�erent index. Even di�erent mass parameters for the same kernel operator can
yield di�erent results, as shown in Refs. [86, 85], where the e�ect of the mass parameter
in the Wilson kernel has been studied. Only su�ciently smooth gauge con�gurations
will have a consistent index (see Ref. [39] for a review).

Dynamical overlap con�gurations are free of this ambiguity. Only in that case one
has an absolutely clean de�nition of the index as the mass parameter is �xed by the
simulation. One can make use of this property in many di�erent ways, like for the
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con�guration 170 con�guration 190 con�guration 210

con�guration 230 con�guration 250 con�guration 270

con�guration 290 con�guration 310 con�guration 330

Fig. 6.3: The same time slice of the topological charge density after 20 APE smearing
steps each for a sequence of con�gurations from ensemble A. The con�gurations
show some local structures which have a very long autocorrelation within the
Monte Carlo history. One example of such a structure is the negatively charged
(blue) object in the bottom right which is created around con�guration 210 and
persists for many updates.

study of the index theorem for di�erent smearing methods. To this end, we de�ne the
absolute deviation of the gluonic de�nition from the index as [3]

∆Q = Qferm −Qtop. (6.8)

Fig. 6.4 shows this quantity as a function of the smearing steps for APE, stout
and improved stout smearing with the previously de�ned smearing parameters. Lines
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Fig. 6.4: Derivation of the improved gluonic de�nition of the topological charge from
the exact index after di�erent smearing methods. The lines should guide the
eye, not to lose track of the single con�guration. APE and stout smearing lead
to very similar results, as expected from the results of the previous chapters.
Improved stout smearing shows a very good agreement with the index theorem
for the majority of con�guration. There are, however, some outliers, which do
not stabilize at an integer charge for up to 50 steps.

have been used in order to guide the eye and to keep track of the topological charge
history of a single con�guration and the same set of con�gurations has been used in
all plots. An ideal �ltering method would have ∆Q = 0 for all �ltering strengths, but
this is not expected for our methods. Lattice artifacts spoil the results and topological
objects can even be lost, which leads to large deviations from zero. The two obvious
criteria for the quality of a �lter are the absolute value of the deviation from zero
for the single con�guration and the number of con�gurations which miss the correct
topological charge.

One �nds in that improved stout smearing leads to the best agreement of both topo-
logical charge de�nitions, as it is designed to stabilize instanton-like solutions in the
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long run. The number of con�gurations with an incorrect assignment of the topological
charge does not show a signi�cant di�erence between the methods, but more inde-
pendent con�gurations are needed for a detailed analysis. Remarkably, one has more
outliers which do not settle down to an integer charge within 50 smearing steps for the
improved stout smearing. These con�guration seem to be exceptional in some sense
and it would be interesting to study these con�gurations in more detail.
Another possible application of our con�gurations would be to calibrate di�erent

�ltering methods and their parameters in order to get the optimal agreement of the �eld
theoretic and the fermionic de�nition of the topological charge. This could improve,
for instance, the accuracy of the measurement of the topological susceptibility.

6.4. Status of the con�gurations

The available lattice spacings, lattice volumes and pion masses of our dynamical overlap
con�gurations are still far from the values of conventional lattice simulations (for a
review see, e.g., Ref. [157]), but these fermion actions spoil one of the fundamental
symmetries of QCD and it is not known how harmful this is.
The tunneling rate between di�erent topological sectors has improved a lot in the last

few years and, as displayed in Fig. 6.3, the topological structure changes also locally.
There are, however, structures with long autocorrelations and, therefore, one needs a
large time separation in the Monte Carlo history to obtain independent con�gurations.
Taking everything into account, we can conclude that only a few really independent

con�gurations are available to extract physics results. We have chosen a separation of
60 con�gurations as a compromise between getting a su�cient number of con�gurations
and having small enough autocorrelation. Thus, we can only measure observables which
do not need large statistics, we can qualitatively compare properties of single con�g-
urations and we can try to get information on phenomena, where even low-precision
results could help, like for the axial vector coupling for negative parity nucleon states,
where a discrepancy between Wilson fermions and chirally improved fermions has been
found for the �rst excited states [158].
Fortunately, topology o�ers such observables, which have a high degree of self-

averaging over a single con�guration or a small ensemble (see next chapter). As a
consequence, the available dynamical overlap simulations can serve as a benchmark for
other simulations as long as the obtained data are interpreted with care.
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Topology of dynamical lattice

con�gurations

In this chapter we investigate how the topological charge density in Lattice QCD sim-
ulations is a�ected by the violation of chiral symmetry for di�erent fermion actions.
Topology is intimately connected to chiral symmetry, both through the U(1) anomaly,
giving mass to the η′, and through the index theorem, linking fermionic zero modes to
the topological charge. This is the reason why we believe that the topological charge
density, although it is a purely gluonic quantity, is well-suited to test the e�ects due to
violation of chiral symmetry for di�erent fermion actions.
In this analysis we use the �eld theoretic de�nition of the lattice topological charge

Eq. (3.6) and compare topological structures obtained after a few sweeps of improved
stout smearing (cf. Sec. 3.4.4). This is applied to lattice con�gurations generated with
a number of di�erent actions including the dynamical overlap con�gurations from the
previous chapter.
In a �st step we qualitatively compare visualizations of the topological pro�les after

mild smearing and then we compare the size of the positive core in the topological
charge correlator and the amplitude of the contact term to reach more quantitative
results.
The majority of this chapter can be found in our publications Ref. [1] and Ref. [4].

7.1. Lattice con�gurations

We use dynamical Nf = 2 and Nf = 2 + 1 �avor con�gurations from di�erent fermion
formulations. They are available through the International Lattice Data Grid (ILDG)
[159] in a wide range of lattice spacings, lattice volumes and pion masses (more infor-
mation on the ILDG can be found in the Appendix A.5.2).
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fermion (gauge) action Nf a[ fm] V[a4] mπ[MeV] Nconf Ref.

twisted mass (Sym) 2 0.10− 0.063 24348 − 32364 ≈ 500 20 [160]

twisted mass (Sym) 2 0.10− 0.051 20348 − 32364 ≈ 280 20 [160]

np imp. clover (plaq.) 2 0.11− 0.07 24348 ≈ 500 20 [161]

np imp. clover (plaq.) 2 0.10− 0.07 32364 ≈ 250 20 [161]

asqtad staggered (LW) 2+1 0.15− 0.09 16348 − 28396 ≈ 500 5 [162]

chirally improved (LW) 2 0.15 16332 ≈ 500 20 [138]

top. �xed overlap (Iw) 2 0.12 16332 ≈ 500 20 [143]

dynamical overlap (LW) 2+1 0.13− 0.12 12324 ≈ 500 15 [165]

Tab. 7.1: Con�gurations used in this chapter (abbreviations: Sym = Symanzik , plaq. =
plaquette, LW = Lüscher-Weisz, Iw = Iwasaki).

The fermion actions in these simulations may be classi�ed with respect to their chiral
symmetry. Variants of Wilson fermions like twisted mass [160] and nonperturbative
clover [161] break chiral symmetry explicitly (by a lattice artifact). Staggered fermion
actions like asqtad [162] possess a remnant chiral symmetry. We also use chirally
improved fermions1, which are an approximate solution to the Ginsparg-Wilson relation
[138], and as exact solutions we take overlap fermions with an extra topology �xing
term [143] and the dynamical overlap fermions from the previous chapter. Additionally,
we have generated quenched ensembles with the plaquette gauge action and the Iwasaki
gauge action (cf. Chap. 2). The lattice spacings have been chosen to match those of
the dynamical ensembles. To this end we have used the parameters according to the
parametrization given in Ref. [163] and Ref. [164].

The details on the con�gurations can be found in Tab. 7.1. The pion masses for the
con�gurations used vary between 250 and 500MeV, which does not seem to be a major
problem as little mass dependence is found. The lattice spacings range from 0.15 fm
down to 0.051 fm for the �nest lattices. For the asqtad staggered, the twisted mass and
the nonperturbative clover fermions we had enough data to perform the limit a → 0,
while keeping the pion mass approximately constant. For the latter two we even had
di�erent sets at di�erent pion masses.

7.2. Visualization

Before doing a quantitative comparison of the topological structures in di�erent fermion
simulations, we compare the structure in a more qualitative way. To this end, we plot
three-dimensional slices of the topological charge density. A direct comparison of the
pro�les is only possible if the lattice spacings are similar because the densities strongly
scale with a, namely as a−4. Accordingly, we have a factor of almost two orders of
magnitude between results for the coarsest and the �nest lattice only from the lattice

1The chirally improved con�gurations are not available through the ILDG. They have been used in
Chap. 4 and Chap. 5. Details can be found in Tab. 4.1.
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7.2. Visualization

dynamical overlap top. �xed overlap quenched Iwasaki

asqtad np. clover quenched plaquette

Fig. 7.1: Slices of the topological charge for dynamical overlap (mπ = 600MeV), asqtad
staggered, dynamical overlap with topology �xing term (mπ ≈ 500MeV each)
and nonperturbative improved clover (quite heavy mπ ≈ 1GeV) fermions, all
with the same lattice spacing a = 0.12 fm. The quenched counterparts of the
latter two simulation algorithms are also depicted (Iwasaki↔ top. �xed overlap
and plaquette ↔ clover). The physical volume is (1.44 fm)3 in all cases. The
color scale is equal in all plots: Blue represents negative topological charge and
red positive charge (cf. Ref. [1]).

spacing.

In Fig. 7.1 we show the topological structure of one sample con�guration for di�erent
fermion actions after 5 steps of improved stout smearing. They all have the same
lattice spacing of a = 0.12 fm and the same physical volume V = (1.44 fm)3. The pion
mass was around 500MeV except for the nonperturbative clover action, where it was
around 1GeV. The latter con�gurations have not been used in any of the quantitative
analyses, because we expect big �nite size e�ects for such heavy pion masses and small
spatial volumes. In order to match the spatial volumes, we had to cut out a box of the
corresponding size. Hence, we do not observe structures which extend over the periodic
boundaries.

For comparison we have included samples of the topological pro�les for the quenched
ensembles in that �gure. The plaquette and the Iwasaki gauge action have been used
for the gauge action in the dynamical simulations with nonperturbative clover and the
topology �xed overlap fermions, respectively. In accordance, they can be taken as the
quenched counterparts to these dynamical simulations.
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Fig. 7.2: The number of clusters per lattice volume as a function of the volume fraction
above the cut-o�, for the actions used in Fig. 7.1. Fitting a power law yields an
exponent of ∼0.85.

While we can only show a small fraction of the total four-dimensional volume, we see
some of the main properties analyzed in detail below. Dynamical lattice simulations
tend to give larger �uctuations of the topological charge density than quenched ones,
as already pointed out in, e.g., Refs. [2, 142] (see also Chap. 5). This can be explained
if we take into account that the gauge coupling g changes in dynamical simulations. In
order to simulate at the same lattice spacing, we need a larger coupling constant and,
hence, β ∼ 1/g2 decreases. As β enters the probability distribution of the gauge �elds
(P [U ] ∝ e−βS[U ]), larger �uctuations are permitted.

This e�ect can only be observed if we compare quenched and dynamical counterparts
at the same lattice spacing. The dynamical overlap fermions lie between two quenched
results. Hence, the statement that dynamical con�gurations exhibit larger �uctuations
[142] is only correct if the gauge action for the dynamical simulation is the same as for
the quenched one (see also Chap. 5).

7.2.1. Topological clusters

A cluster analysis of the topological charge density is a powerful tool to characterize
the pro�le of the structure (cf. Refs. [2, 137] and Chap. 5). A cluster is de�ned as a
set of neighboring lattice points with the same sign of the topological charge density.

In Fig. 7.2 we show this power law for the actions used in the previous section. We
�nd that the power laws agree very well and that the exponents are all compatible with

76



7.3. Two point correlation function of the topological charge density

a = 0.1 fm a = 0.079 fm a = 0.063 fm

Fig. 7.3: Three-dimensional slice of the topological charge density for twisted mass
fermions at �xed physical volume V = (1.9 fm)3 after 5 steps of improved stout
smearing. We see an increasing laminar structure for �ner lattices (cf. Ref. [1]).

each other. Therefore, the topological pro�les are similar and the apparent di�erence
in the three-dimensional visualizations in Fig. 7.1 originates from a di�erence in the
absolute values of the densities.

7.3. Two point correlation function of the topological

charge density

It is important to note that a qualitative comparison with visualizations is very lim-
ited. On the one hand, we are always restricted to lower dimensional cuts of the four
dimensional volume, which do not capture all features of the structures. One should
not over-interpret such results. On the other hand, we usually do not have con�gura-
tions with the same lattice spacing and, aforementioned, the topological charge density
scales with a−4.

To stress the importance of the lattice constant a we show in Fig. 7.3 the topological
charge density for di�erent lattice spacings but �xed physical volume for twisted mass
fermions. Two main e�ects in the continuum limit are clearly visible. First, the struc-
ture becomes more and more �ne-grained and, second, the magnitude of the density in
physical units increases.

We quantify the topological structures by the two-point correlation function of the
topological charge density. To this end, we compute the �all-to-all� correlator of the
density 〈q(x)q(y)〉 after 5 steps of improved stout smearing. The number of smearing
steps and the �ltering method is, in principle, ambiguous. Nevertheless, there are some
good reasons for this choice. First, we need a �minimal� amount of smoothing to be
able to apply the 3-loop improved �eld strength tensor in the �eld theoretic de�nition of
the topological charge. Second, we do not want too much smearing, not to destroy the
structure or to produce unwanted artifacts and, last but not least, we want to recall that
the resulting density is very similar to the fermionic topological charge density [125].
Accordingly, we should �nd the same qualitative behavior for the two-point function
as in Ref. [166]. The big advantage of the �eld theoretic de�nition is, that we can in
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Fig. 7.4: Two-point function of the topological charge density after 5 improved stout
smearing steps for an ensemble of dynamical overlap con�gurations (from
Ref. [1]).

principle calculate the topological charge density for a lattice of arbitrary size. The
fermionic de�nition is limited to very small lattices and, hence, not suited for studying
the continuum limit at su�ciently large physical volumes.

We show an example of the correlator as a function of the distance r = |x − y|
between two lattice sites for the dynamical overlap ensemble in Fig. 7.4. At short
distances the correlator develops a positive core of radius rc, for large distances the
correlator is compatible with zero and in between it is slightly negative [166]. This
behavior is characteristic for all fermion actions and quenched ensembles [125].

7.3.1. Size of positive core

The radius of the positive core rc is given by the (�rst) zero of the correlator. To this
end, we interpolate the correlator between adjacent data points with a linear function.
Although, there are many potential sources of errors, the position of this zero seems to
be rather robust and has an excellent signal-to-noise ratio. We have also tried other than
linear interpolations, e.g. spline �ts, but they do not change the result signi�cantly.

We measured the core size for the ensembles of Tab. 4.1 and plotted rc in units of the
lattice spacing versus the lattice spacing . Fig. 7.5 is the main result of this study from
which we will primarily draw our conclusions on the relevance of chiral symmetry for
topological properties (The errors result from an average over each ensemble). For the
asqtad, nonperturbative clover and twisted mass action we had enough data to perform
the limit a→ 0, while keeping the pion mass approximately constant.

In order to extrapolate to vanishing lattice spacing, we want to motivate the func-
tional form of our �t. On the one hand, we expect errors which are independent of the
action. These may result from the �ltering method or the �ltering strength. On the
other hand there will be errors related to the action. As all actions are O(a)-improved
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Fig. 7.5: Core size of the two-point function of the topological charge density. The errors
� which are partly to small to be visible � result from the interpolation between
the points of the correlator. We included �ts and error bands for twisted mass,
staggered and clover action. There are three di�erent points from the overlap
ensembles at di�erent pion masses: (a) 600MeV, (b) 560MeV and (c) 510MeV.
Note that the twisted mass results for mπ = 280MeV and 500MeV nearly fall
on top of one another (from Ref. [1]).

fermion action mπ[MeV] C B[ fm−2]

twisted mass ≈ 500 2.16(2) 25(3)

twisted mass ≈ 280 2.163(2) 23.2(8)

np imp. clover ≈ 500 2.148(6) 3.2(6)

np imp. clover ≈ 250 2.146(-) 1.6(-)

asqtad staggered ≈ 500 2.14(1) 12(1)

quenched Iwasaki - 2.13(5) 35(7)

quenched plaquette - 2.07(4) 31(4)

Tab. 7.2: Parameters of the single �ts. Only two lattice spacings were available for the
light nonperturbative clover ensembles and, hence, no �t error can be given
(from Ref. [1]).

the latter should only set in at O(a2). This is why a function of the form

rc/a = C +B · a2 (7.1)

is �tted to the data.
We �nd indeed that the coe�cients C are for all actions compatible with approx-

imately C = 2.15 and that the B's di�er, see Tab. 7.2. We did not �t higher-order
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√
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terms in the universal part, because our data points were not su�cient to do so and
because we are only interested in the di�erences between the actions. We expected that
actions with better chiral properties should give results which are markedly closer to
the dynamical overlap ones than actions with strong violation of chiral symmetry.

We also included two quenched results for comparison. The extrapolations yield a
consistent value for the constant C with a slightly larger error than for the dynamical
con�gurations. The quenched results are in accordance with the results of Horváth et

al. [166] who used the full fermionic de�nition of the topological charge density (not
truncated in Dirac modes) and found a core size rc ≈ 2a for the Iwasaki gauge action.
Fig. 7.5 also includes the results for dynamical overlap fermions with and without
topology �xing term at similar lattice spacings. There are three di�erent points from
the dynamical overlap con�gurations with di�erent pion masses and lattice spacings.
Due to the mass di�erence we cannot �t this data.

Let us further discuss the universality of this scaling behavior. First of all, if we
compare the curves for twisted mass and clover fermions at mπ ≈ 500MeV and mπ ≈
250MeV, we �nd a relatively weak dependence on the mass. The ensembles with the
lighter pion mass have smaller B factors, but within the errors the same constant term
C. One reason for the smaller errors is that the negative dip increases with decreasing
pion mass and, thus, we get a better signal for the core size. For a more detailed study
of the mass dependence, we would need a set of con�gurations with smaller pion mass,
which were not available from the ILDG at the time of this study.

Furthermore, we have found that the constant C depends on smearing. In Fig. 7.6 the
data and �ts for the twisted mass and the clover action at a pion mass ofmπ = 500MeV
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Fig. 7.7: Maxima of the two-point function of the topological charge density. The linear
behavior in this double logarithmic plot indicates a divergence of the maximum
for a→ 0. The dynamical overlap results are labeled according to the pion mass
mπ as: (a) 600MeV, (b) 560MeV and (c) 510MeV. Note that the twisted mass
results for mπ = 280MeV and 500MeV fall on top of one another (from Ref. [1]).

after 0, 1, 3, 5, 7 and 10 smearing steps is shown. As one might expect, we �nd that
the core size in lattice units grows with the number of smearing steps. The constant C
is roughly proportional to the square root of the smearing steps

√
nsteps (for nsteps > 2)

and, hence, to the e�ective smearing radius [119, 139]. For more than 10 smearing
steps no core size according to the above de�nition is found, as the negative part of the
correlator vanishes.

The non-universal term Ba2 measures how rc/a from di�erent actions converges
towards C. The spread at current lattice spacings a ≤ 0.15 fm is of the order of 10%.
The overlap data lie in the middle of that range and even the quenched results are not
far o�. Our conclusion is that the di�erent actions with di�erent treatment of chiral
symmetry do not di�er much with respect to this important topological observable.
Consequently, all of them can be used to study topological quantities. To the extent
that topological properties are relevant for hadron properties, this observation also ties
in with the fact that quite often the di�erences between quenched and dynamical results
for these are not huge (typically of the order 10-30%).

7.3.2. Contact term

The two-point function has to develop a positive contact term in the continuum limit
(see Sec. 3.3.3). Therefore, the mean-square value of the topological charge density
〈q(0)2〉 has to be divergent. Fig. 7.7 shows a double logarithmic plot of 〈q(0)2〉 in
physical units versus the lattice spacing. The linear behavior indicates a power-like
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divergence for a→ 0 for all actions:

〈q(0)2〉 ∝ a−c (7.2)

for some positive number c.
This exponent is similar for the di�erent actions and its value is around −6. Only

the nonperturbative clover action deviates from this value with an exponent around
−7.
As the contact term is highly divergent in the continuum limit, we do not expect

the �tted values to agree and, thus, we do not present them here. There are also big
di�erences in the absolute value of this maximum if one compares con�gurations at the
same lattice spacing. These di�erences do not seem to have a systematic behavior and
we have not found a good explanation for these di�erences.
The contact term of the dynamical ensembles is bigger than for their quenched coun-

terparts, but it is also important to note that the contact term for dynamical overlap
con�gurations at a = 0.12 fm lies between that for the two quenched simulations (pla-
quette and Iwasaki). This con�rms the qualitative result of Fig. 7.1. Thus, we can
conclude that dynamical fermions generate indeed larger �uctuations in the vacuum at
�nite lattice spacing, as argued in Ref. [3] and Ref. [142], if we compare dynamical con-
�gurations to their quenched counterparts. However, the di�erences between di�erent
actions can be as large as those between quenched and dynamical simulations.

Summarizing this study, we have investigated the topological charge density for state-
of-the-art lattice actions with dynamical fermions and found that di�erent fermion
actions do generate di�erent topological landscapes. This has been visualized in Fig. 7.1
and quanti�ed through the topological charge correlator.
The change in the topological observables is not very large. The radius of the pos-

itive core of the topological correlator rc approaches zero with the same slope C for
all actions. In next-to-leading order rc di�ers, but the spread is below 10% and even
quenched simulations do not produce markedly di�erent results. In particular, simula-
tions with exact overlap fermions give results which are quite similar to those obtained
with topology-�xed overlap fermions. The di�erences between quenched and dynami-
cal simulations are not larger than those between di�erent dynamical fermion actions.
Also, the topological charge density seems to be little a�ected by changes in pion mass.
In contrast, the e�ects for 〈q(0)2〉 are large but unsystematic.
These results are very sensitive to the lattice spacing a, implying that one should

be very careful not to jump to conclusions when comparing topological properties of
di�erent con�gurations.
If we use our dynamical overlap results as benchmark for the quality of the other

actions with respect to chirality, we have to conclude that all of them are reasonable
successful and none of them seems to be clearly superior. The di�erences between re-
sults for dynamical overlap fermions and topology-�xed overlap fermions are especially
small, as one might have expected.
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8
QCD vacuum in external magnetic

�elds: zero and �nite temperature

The e�ect of electromagnetic �elds on hadronic matter is usually neglected in the
context of Lattice QCD. The accessible �elds are much smaller than the typical hadronic
scales and only high-precision measurements can resolve their contribution to, e.g.,
hadron mass splittings.

There are, however, various physical systems where the electromagnetic �elds are so
strong that they generate physical e�ects. Prominent examples are cosmological models
of the electroweak phase transition [167], magnetars [168] and non-central heavy ion
collisions [169]. All these cases demand nonperturbative methods and, hence, they are
best studied in Lattice QCD.

There is a fast increasing number of lattice studies related to the chiral magnetic
e�ect [170, 171, 172], dressed Polyakov loops [173] or the QCD phase transition in an
external magnetic �eld [174, 175, 176]. It has turned out in recent years that the �nite
temperature regime of Lattice QCD in external Abelian magnetic �elds is very sensitive
to the quark masses and the simulation parameters. The transition temperature, for
example, increases for increasing external �eld if one uses heavy quarks, coarse lattices
or unimproved fermion actions [174]. However, our group found a decreasing transition
temperature for simulations with physical quark masses in the continuum limit [176].

In order to shed more light on these e�ects, we focus in this chapter on the impact
of an external magnetic �eld on the QCD vacuum structure, in particular, the e�ect on
the distribution of the gluonic �elds and the topological charge density. To this end, we
analyze results of a large-scale simulation at the physical quark mass for a wide range
of temperatures, lattice spacings and lattice volumes.

As gluons do not carry electric charge, any e�ect of the magnetic �eld has to be
mediated by quarks resulting in highly nonlinear e�ects. We �nd that the magnetic
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�eld induces a highly signi�cant anisotropy of the chromoelectric and chromomagnetic
components of the gauge action which persists even above the phase transition. The
change of gluonic part of the interaction measure in the external �eld, by contrast, is
very sensitive to the transition and shows a behavior that is closely related to that of
the quark condensates. Last but not least, the impact of the external �eld on topolog-
ical structures is considered using the two-point correlation function of the topological
density. It turns out that the e�ect of the magnetic �eld on these structures is only
small.

In order to explain these results, we employ a one-loop Euler-Heisenberg action that
accounts for both QED and QCD. The results of this calculation is in accordance with
our numerical �ndings. It implies the correct tendency of the electric and magnetic
components of the gluon �eld strength tensor. Furthermore, we �nd no contribution to
the topological charge density on this one-loop level if there is no additional external
electric �eld.

8.1. Excursus: �nite temperature

Before we discuss how the external �eld is implemented, we want to introduce the
notion of temperature. For this one has to go back to the continuum path integral
(cf. Sec. 1.2), where an integration over an in�nite time extent was assumed. At �nite
temperature T , this is replaced by an integration over a compact time direction with a
time extent β = 1

kBT
(this should not be confused with the gauge coupling)

∫ ∞

−∞
dx4

∫
d3x→

∫ β

0
dx4

∫
d3x, (8.1)

and the fermion �elds in the path integral have to be anti-periodic in the time direction.

The discretization is done as usual (see Chap. 2). The main di�erence to the zero
temperature case is the way one takes the continuum limit. For a temperature

T =
1

β
=

1

a ·Nt
(8.2)

one has to to keep a ·Nt �xed when sending a→ 0.

It is important to note that every lattice con�guration has a certain temperature due
to the limited temporal extent. In order to reduce temperature e�ects when analyzing
single lattice spacings, one uses lattices with much larger temporal than spatial extent.
These con�gurations will be referred as �zero temperature� con�gurations. For a com-
prehensive introduction to �nite temperature Lattice QCD, we refer to Refs. [37, 177].

8.2. External magnetic �eld

Without loss of generality, we consider a constant external �eld in z-direction b = bz =
bêz. The corresponding four-vector potential is not unique and one has to choose a
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speci�c form. We use for simplicity

aµ(x) = (a, a4) = (0, b x, 0, 0). (8.3)

In a �nite box with periodic boundary conditions the magnetic �ux perpendicular to
the magnetic �eld is quantized [178, 179] according to

qbA = 2πNb, (8.4)

where q is the charge of the particle and A is the total area orthogonal to the �eld. This
area is given on the lattice by A = NxNy · a2, so we can write the possible magnetic
�eld strengths as:

qb =
2πNb

NxNy · a2
(8.5)

One can implement the above vector potential in a Lattice QCD simulation by mul-
tiplying all SU(3)-valued gauge links Uµ(n) at lattice site n = (nx, ny, nz, nt) by a
complex-phase uµ(n) ∈ U(1):

uµ(n) =





eia
2qbnx if µ = y,

e−ia
2qbNxny if µ = x and nx = Nx − 1,

1 else.

(8.6)

The �rst and the last line of this expression are straightforward to derive. The mid-
dle one corresponds to a twisted boundary condition, which is needed to restore the
periodicity of the gauge �elds. With this de�nition, every plaquette in the x-y plane
is multiplied by eia

2qb. From this one can see that Nb = NxNy, i.e. a2qb = 2π, is
equivalent to no �eld. Hence, the magnetic �eld is bounded and due to the periodicity
of the lattice one has 0 ≤ Nb ≤ NxNy/4.

8.3. Details on the con�gurations

We used a large-scale simulation from Bali et al. [176, 180]. The con�gurations have
been generated with a tree-level improved Symanzik gauge action and a stout smeared
staggered fermion action [181]. The magnetic �eld has been implemented, as described
in the previous section, by multiplying the smeared links with the complex phase from
Eq. (8.6). The simulations cover a wide range of lattice spacings, volumes and tem-
peratures. The quark masses in this Nf = 2 + 1 simulations are set to their physical
values along the line of constant physics (LCP) which has been �xed by �xing the val-
ues fK/mπ and fK/mK at their experimental values.1. The lattice spacing has been
determined from fK . This procedure is described in more detail in Ref. [182].

1This is achieved by tuning the bare mass parameters amq
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8.4. Induced anisotropy of the gluonic �eld strength

An external magnetic �eld alters the fermion determinant in the partition function
and, accordingly, changes the weight of the gluonic �eld con�gurations. Symmetry
considerations suggest that the magnetic �eld breaks the spatial symmetry (similar to
�nite temperature, which breaks the space-time symmetry in Euclidean space). There-
fore, we expect an anisotropy of gluonic observables parallel and perpendicular to the
magnetic �eld.
To check this, we measure the �eld strength tensor corresponding to our tree-level

improved Symanzik action. The �eld strength tensor F aµν contains information on the
chromomagnetic and chromoelectric components of the gauge �elds, which are de�ned
in analogy to that of electromagnetism

F0i(x) = F a0i(x)ta = Eai (x)ta and Fij(x) = F aij(x)ta = εijkB
a
k(x)ta. (8.7)

The QCD �eld strength tensor and its components are not gauge-invariant but the
trace of the squared components is:

tr{E2
i } = 1

2(Eai )2 and tr{B2
i } = 1

2(Ba
i )2. (8.8)

These observables can be interpreted as the chromoelectric and chromomagnetic con-
tributions to the gluonic action

SG =
1

2g2

∫
d4x tr{E2(x) + B2(x)}, (8.9)

where E = (Ex, Ey, Ez) and B = (Bx, By, Bz), respectively.
Due to space-time symmetry, one �nds for zero temperature and zero external �eld

that the expectation values of all individual components are equal. Finite temperature
and external �elds break this symmetry and induce an anisotropy of these components
(temperature and magnetic �eld will induce di�erent anisotropies).2

As a measure of the anisotropy, we use the di�erences of the components parallel
to the external �eld (E2

‖ = E2
z and B2

‖ = B2
z ) and the average of the perpendicular

components (E2
⊥ = 1

2(E2
x + E2

x) and B2
⊥ = 1

2(E2
x + E2

x)) and subtract their values at
zero external �eld (subscript 0)

∆E =
(
〈E2
⊥〉 − 〈E2

⊥〉0
)
−
(
〈E2
‖〉 − 〈E2

‖〉0
)

(8.10)

and
∆B =

(
〈B2
⊥〉 − 〈B2

⊥〉0
)
−
(
〈B2
‖〉 − 〈B2

‖〉0
)
. (8.11)

The subtraction of the zero magnetic �eld result has two advantages. First, it removes
the �nite temperature contribution from the observable and, therefore, contains only
the contribution due to the external �eld. Second, it cancels additive renormalization
factors.
2First results of two-color QCD with unrooted staggered quarks [175] showed such an anisotropy for
the plaquette, which corresponds to the simplest discretization of the �eld strength tensor.
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Fig. 8.1: (a) Anisotropies of the chromomagnetic and chromoelectric components of the
action ∆E and ∆B (see Eq. (8.10) and Eq. (8.11)) as a function of the external
magnetic �eld |qb| for di�erent lattice spacings at T = 0. The electric component
parallel to the external �eld gets suppressed, while the magnetic component is
enhanced. (b) The gluonic part of the interaction measure −∆IG(bext) increases
in an external �eld at T = 0. Both quantities have a good scaling behavior, but
a precise extrapolation towards the continuum limit is not possible due to an
increasing error for decreasing lattice spacing (see text).

We are also interested the total change of the gluonic part of the interaction measure
with the external Abelian magnetic �eld bext:

−∆IG(bext) = −a∂β
∂a

(
S(bext)− S(0)

)
. (8.12)

This quantity is the gluonic contribution to the trace anomaly. We determined the lat-
tice beta function −a∂β∂a nonperturbatively and measured the total Symanzik-improved
gauge action. In order to reduce the error from the subtraction of the zero external
�eld contribution, we had to �t the values for the smallest external �elds to a constant,
a linear function and a cubic function and took the result with the best χ2-value. The
di�erences between these �tting functions is, however, negligible and do not change the
�nal result.

8.4.1. T = 0

At zero temperature we use four di�erent lattice spacings and external magnetic �elds
up to |qb| = 1GeV2. The result can be found in Fig. 8.1. We �nd an anisotropy of
the parallel and perpendicular components which increases with the magnetic �eld as
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expected from the above considerations. Moreover, an opposite e�ect for (chromo)mag-
netic and (chromo)electric components can be observed: While the magnetic component
in the parallel direction gets enhanced, the electric component is suppressed for an
increasing external �eld.

The anisotropy shows a good scaling behavior for di�erent lattice spacings and we
could not observe any �nite volume e�ects (not shown). Nevertheless, it is not yet
possible to reliably extrapolate to the continuum limit, as �ner lattice spacings have
larger errors. The reason for this behavior is the fact that we have to measure the
di�erence of the action at zero and nonzero external �eld, which both grow as the
lattice spacing decreases (∝ 1/a4). As a consequence, it is not possible to constrain
a �t su�ciently and more con�gurations, resulting in smaller statistical errors, are
needed.

We further show the change of the gluonic part of the interaction measure in Fig. 8.1
and �nd that −∆IG increases with the external �eld. Again, we observe a good scaling
of the results and an increasing error for smaller lattice spacings.

8.4.2. T 6= 0

Finite temperature results in an additional breaking of the symmetry between the mag-
netic and electric components of the �eld strength tensor. We �nd that the magnetic
components are almost unchanged if one increases the temperature while the electric
components strongly decrease when the phase transition is crossed. This is in accor-
dance with the behavior of the gauge-invariant �eld strength correlator [183], for which
such a behavior has been found �rst.

Our de�nition of the anisotropy does not account for this e�ect. It measures the
di�erence of the parallel and perpendicular components induced by the magnetic �eld.

In Fig. 8.2 three di�erent temperatures (114MeV, 135MeV and 163MeV) for three
lattice volumes each are presented. The anisotropy does not change across the phase
transition, which for the chiral susceptibility occurs at around 150MeV. Only the errors
increase due to the �ner lattice spacing (see above).

The interaction measure −∆IG, however, shows a completely di�erent picture. While
it increases below the phase transition, it decreases above the transition and in the
transition region we observe a rather non-monotonous behavior. This is very similar to
the behavior of the quark condensates as observed in Refs. [176, 184].

8.5. Topological charge density in an external magnetic

�eld

We have seen that the interaction measure is strongly a�ected by the external �eld.
This raises the question if there is also an e�ect on the topological charge density q(x).

The topological charge density, unlike the action density, is not strictly positive and
the expectation value 〈q(x)〉 vanishes in the continuum limit and so it does for all its
components. The anisotropy, as de�ned in the previous sections, is not applicable in this
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Fig. 8.2: Anisotropies ∆E (red) and ∆B (blue) and change of the gluonic part of the
interaction measure −∆IG as a function of the external �eld |qb| at three tem-
peratures around the critical temperature. While the anisotropies do not change
across the phase transition, one observes a drastic change for the gluonic part of
the interaction measure. Its behavior is similar to that of the quark condensates
as found in Ref. [184].

89



Chapter 8: QCD vacuum in external magnetic �elds: zero and �nite temperature

-3
⋅1

0
-5

0
3
⋅1

0
-5

6
⋅1

0
-5

 2  3  4  5  6

<
q

(0
)q

(x
)>

 [
G

e
V

8
]

|x| [a]

<q(0)q(x)>full

<q(0)q(x)>perp

<q(0)q(x)>par

-3
⋅1

0
-5

0
3
⋅1

0
-5

6
⋅1

0
-5

 2  3  4  5  6

<
q

(0
)q

(x
)>

 [
G

e
V

8
]

|x| [a]

<q(0)q(x)>full

<q(0)q(x)>perp

<q(0)q(x)>par

(a) |qb| = 1.1GeV2 (b) |qb| = 0GeV2

Fig. 8.3: The topological charge density correlator for the ensemble with the �nest lattice
spacing (a = 0.099 fm) at zero temperature and an external �eld of ∼ 1.1GeV2

and without external �eld. Splitting the correlator in contributions parallel and
perpendicular to the external �eld shows no anisotropy and yields consistent
results with the full correlator.

case and this is why we consider the two-point correlation function of the topological
charge density 〈q(0)q(x)〉. This correlator carries information on the spatial form of
the density.
In order to de�ne a measure of anisotropy, we split the de�nition of the two-point

function into a part where the vector x lies in the x-y plane (�perpendicular�)

〈q(0)q(x)〉perp where x ∈ x-y plane (8.13)

and a part in the z-t plane (�parallel�)

〈q(0)q(x)〉par where x ∈ z-t plane (8.14)

If there were any anisotropy in the distribution of the topological charge density, it
would result in a di�erence between these correlators.
Before we measure the the topological charge density, Eq. (3.1) and the �all-to-all�

correlation function, we apply 5 steps of improved stout smearing with the standard
parameters (cf. previous chapters). In Fig. 8.3 the result for one ensemble with our
�nest lattice spacing (a = 0.099 fm) and an external �eld of around 1.1GeV2 is shown.
The parallel correlator shows no deviation from the perpendicular one and both are
compatible with the full two-point function (This observation has been made for all
our con�gurations, but we show only the result for a single ensemble for reason of
clarity.). In conclusion, there is no measurable deformation of the vacuum structure in
the presence of an external �eld.
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8.6. Euler-Heisenberg Lagrangian

In order to gain a quantitative understanding of the observed phenomena, we will
employ a generalization of the QED Euler-Heisenberg action. QED and QCD degrees
of freedom are distinguished by using capital letters for the QCD �elds and small letters
for the Abelian QED �elds.

We start out with the Euclidean partition function in an external Abelian �eld

Zext =

∫
[DAµ][D ψ̄][Dψ] exp

{
−
∫
d4x

[
1
4GµνGµν + ψ̄( /D

ext
µ +m)ψ

]}
, (8.15)

where Gµν is the generalized �eld strength tensor consisting of the non-Abelian �eld
strength tensor Fµν and the Abelian one fµν (see below) and D

ext
µ = ∂µ + gAµ +qaµ is

the Dirac operator in the external U(1) gauge �eld aµ.

Integrating out the fermionic degrees of freedom yields an expression containing a
functional determinant (cf. Eq. (2.64)) and hence the e�ective action

Seff =

∫
d4x

[
1
4GµνGµν + ln det( /D

ext
+m)

]
. (8.16)

The functional determinant can be expanded in powers of (G/m2)n (Gaµν/m
2 � 1 for

all a, µ and ν) and according to Ref. [185], one gets the following renormalized e�ective
action in an external �eld

Seff =
1

32π2

∫
d4x tr

{
2

3
g2G2

µν ln
(M2

R

m2

)
+

2

45
g3GµνGνγGγµ

1

m2

+
g4

18

[
(GµνGµν)2 − 7

10
{Gµα, Gαν}2+ −

29

70
[Gµα, Gαν ]2− +

8

35
[Gµν , Gαβ]2−

] 1

m4

}
.

(8.17)

The logarithm in this expression is the usual logarithm leading to charge renormaliza-
tion and plays no role in our further discussion. We are only interested in those terms
which are of fourth order in the �elds, as those terms include the leading contribution
to an e�ective coupling between Abelian and non-Abelian �elds (photons and gluons).

Eq. (8.17) is very useful in this context, as one can easily use this expression for any
gauge group. For pure QED, in particular, it agrees with the famous one-loop Euler-
Heisenberg result [186]. In order to show this equivalence, we replace Gµν with the
electromagnetic �eld strength tensor fµν and substitute g = q, where q is the charge
of the particle. Furthermore, we omit the trace and all commutator terms, as we deal
with an Abelian �eld strength tensor. The remaining fourth-order terms in Eq. (8.17)
can be expressed in the electric and magnetic �elds e and b. A little algebra shows

(fµνfµν)2 = 4(e2 + b2)2, (8.18)

{fµα, fαν}2+ = 8(e2 + b2)2 − 16(eb)2 . (8.19)
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Therefore, one gets for the fourth-order e�ective action

S
(4)
eff =

q4

576π2m4

∫
d4x
[

(fµνfµν)2 − 7
10{fµα, fαν}2+}

]

=
q4

576π2m4

∫
d4x

[
4(e2 + b2)2 − 7

10(8(e2 + b2)2 − 16(e ·b)2)
]

= − q4

360π2m4

∫
d4x

[
(e2 + b2)2 − 7(e ·b)2

]
= S1−loop

EH . (8.20)

This is exactly the Euclidean 1-loop Euler-Heisenberg action for QED.
As a next step we want to derive a similar expression for the case of an interfering

QED-QCD e�ective action. This is also included in Eq. (8.17) if we replace

gGµν → gFµν + qfµν . (8.21)

The substitution introduces at �rst sight terms ∝ f and ∝ f3, which are forbidden as
they would violate U(1) gauge-invariance. These terms would not appear if one did
the derivation of Eq. (8.17) from scratch by evaluating the corresponding functional
determinant as shown in Ref. [185]. For this reason we introduce selection rules and
consider only the contributions ∝ f2F 2, ∝ f4 and ∝ F 4. The latter two are the
individual fourth-order Euler-Heisenberg terms for QED and QCD, respectively.
The expressions of fourth order in Gµν can be derived by simple index manipulations

and by keeping in mind that [f, F ] = 0 and trC{ff [F, F ]} = ff trC{[F, F ]} = 0:

tr(GµνGµν)2 = tr{(FµνFµν)2 + (fµνfµν)2 + 4(fµνFµν)2 + 2fµνfµνFαβFαβ} (8.22)

tr{Gµα, Gαν}2+ = 4 tr{(FµαFαν)2 + (fµαfαν)2 + 4(fµαFαν)2

+ 2(fµαfαν)(FµαFαν)} − 2 tr{FµαFαν [Fµβ, Fβν ]−} (8.23)

tr[Gµα, Gαν ]2− = 2 tr{GµαGαν [Gµα, Gαν ]−} = 2 tr{FµαFαν [Fµβ, Fβν ]−} (8.24)

tr[Gµν , Gαβ]2− = 2 tr{GµνGαβ[Gµν , Gαβ]−} = 2 tr{FµνFαβ[Fµν , Fαβ]−}. (8.25)

We are only interested in the interference terms, which contain both f and F . This
leads to the one loop-e�ective action

S
(4)
QECD =

q2g2

576π2m4

∫
d4x tr

{
4(fµνFµν)2 + 2(fµνfµν)(FαβFαβ)

− 7 · 4
10

[
4(fµαFαν)2 + 2(fµαfαν)(FµβFβν)

]
}
. (8.26)

Of course, this can be rewritten in terms of the �elds E,B, e and b using identities
analogous to Eq. (8.18) and Eq. (8.19) yielding

S
(4)
QECD = − q2g2

180π2m4

∫
d4x tr

{
(e2 + b2)(E2 + B2) + 2(eE + bB)2

− 7
2(eB + bE)2 − 7(eb)(EB)

}
. (8.27)
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This is the mixing part of the 1-loop Euler-Heisenberg action of QED and QCD ex-
pressed in terms of (chromo)electric and (chromo)magnetic �elds.
In our simulation we speci�ed the external �eld according to e = 0 and b = b · êz.

Furthermore, one can split the chromoelectromagnetic �elds in components that are
parallel or perpendicular to the external �eld:

bE = bE‖, bB = bB‖, B2 = B2
‖ +B2

⊥ and E2 = E2
‖ + E2

⊥. (8.28)

Substituting these expressions in Eq. (8.27), we get for a single quark �avor

S
(4)
QECD = − q2g2

180π2m4
b2
∫
d4x tr

{
E2
⊥ +B2

⊥ + 3B2
‖ −

5

2
E2
‖

}
, (8.29)

and �nally for the complete e�ective action

SeffQECD =
g2

32π2

∫
d4x tr

{4

3
(E2
⊥ +B2

⊥ + E2
‖ +B2

‖) ln
(
M2
R

m2

)

− 45

2

q2b2

m4
(E2
⊥ +B2

⊥ + 3B2
‖ −

5

2
E2
‖)
}
. (8.30)

From the form of the action one can immediately draw some conclusions for the chro-
moelectric and chromomagnetic components. If the external �eld b is increased, then
E2
⊥ and B2

⊥ are decreased in the e�ective action and, consequently, their expectation
values increase. Di�erent coe�cients for B2

‖ and E
2
‖ lead to an anisotropy of the par-

allel components. The parallel chromomagnetic �eld is enhanced, while the parallel
chromoelectric �eld is suppressed. This yields the correct tendency of ∆E and ∆B as
measured in the lattice simulations, although these analytic results were derived under
the assumption that G� m2, which is certainly not the case for very strong magnetic
�elds.
Furthermore, the topological charge density q(x) ∝ tr EB couples only to eb. Other

combinations are not allowed by CP-invariance.3 A modi�cation of the topological
charge density with just an external magnetic �eld b and no external electric �eld,
e = 0 is not possible at this order in G/m2. This is compatible with our numerical
�ndings.

3trEB and eb are both CP-odd.
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9
Conclusion

This thesis is devoted to the topological structure of gauge �elds as seen in Lattice
QCD con�gurations. In our work we went beyond the quenched approximation and
investigated the impact of dynamical fermions on the QCD vacuum. We studied how
the topological structures depend on the lattice discretization including fermions with
an exact chiral symmetry. We further analyzed the e�ect of an external (Abelian)
magnetic �eld and �nite temperature. The main results of this thesis are summarized
as follows.

In order to control the ambiguities of the �ltering methods used to extract topolog-
ical excitations from lattice con�gurations, we performed a comparative study of the
local topological structure resulting from APE smearing, stout smearing and Laplace
�ltering. An almost one-to-one correspondence of the topological charge densities for
the two smearing methods has been found. As a consequence, they su�er from the same
artifacts and an independent method like Laplace �ltering is needed as a crosscheck.
In accordance with the quenched SU(2) results [137], a high correlation between the
results from smearing and Laplace �ltering has been found. This allows for a matching
of their �ltering parameters to obtain results with reduced ambiguities.

This matching of parameters was applied to the analysis of topological clusters re-
vealed by various methods. We have analyzed the power-law behavior of topological
charge clusters seen by the individual methods and common to both methods with
parameters matched accordingly. This analysis shows clearly a larger exponent in the
presence of dynamical quarks compared to its quenched counterpart, i.e., con�gura-
tions with the same gauge action and the same lattice spacing. In order to interpret
this observation, one can relate the cluster exponent to the exponent of the size distri-
bution of topological objects in corresponding models d(ρ) ∼ ρβ . Our �ndings give a
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larger coe�cient β in the dynamical case, hence, very small topological objects become
suppressed. Moreover, the total number of clusters for a constant total cluster volume
is substantially higher for dynamical con�gurations. Thus, the topological structure
of the vacuum is much more fragmented in the presence of fermions if one compares
dynamical con�gurations with their quenched counterpart.

Next, we showed results for the topological structures in dynamical overlap con-
�gurations, which possess an exact chiral symmetry in contrast to other lattice dis-
cretizations. As such simulations are notoriously expensive and tend to have huge
autocorrelations, we analyzed how the topological structures evolve in a Monte Carlo
history. We concluded that enough independent con�gurations are available to obtain
�rst physics results. The lattice size and spacing di�er from that of state-of-the-art
lattice simulations with cheaper actions, but one can use results for similar parameters
as a benchmark for other actions.

We have investigated the topological charge density for various lattice actions with
dynamical fermions, including these new dynamical overlap simulations. This quantity
was chosen because of the intimate connection between topology and chiral symmetry.
Di�erent fermion actions do generate di�erent topological landscapes which can be seen
in visualizations of the topological densities and which has been quanti�ed through the
topological charge correlator. The change in the topological observables turns out to
be not very large. The radius of the positive core of the topological correlator rc ap-
proaches zero with the same slope C for all actions. In next-to-leading order rc di�ers,
but the spread is below 10% and even quenched simulations do not produce markedly
di�erent results. In particular, simulations with exact overlap fermions give results
which are quite similar to those obtained with topology-�xed overlap fermions, which
can be simulated at competitive lattice spacings and volumes. The di�erences between
quenched and dynamical simulations are not larger than those between di�erent dy-
namical fermion actions. Also, the topological charge density seems to be little a�ected
by changes in pion mass. In contrast, the e�ects for 〈q(0)2〉 are large but unsystem-
atic. These results are very sensitive to the lattice spacing a, implying that one should
be very careful not to jump to conclusions when comparing topological properties of
di�erent con�gurations.

If we use our dynamical overlap results as benchmark for the quality of the other
actions with respect to chirality we can conclude that all of them are reasonable success-
ful and none of them seems to be clearly superior. The di�erences between results for
dynamical overlap fermions and topology-�xed overlap fermions are especially small,
as one might have expected.

Finally, we analyzed the response of gluonic observables of the QCD vacuum to
an external (Abelian) magnetic �eld. As gluons do not carry electric charge, they
are only a�ected through their coupling to quarks. We used lattice con�gurations with
dynamical quarks at the physical quark mass and a wide range of lattice spacings, lattice
volumes and external �eld strengths. We have found that the external �eld induces an
anisotropy of the chromoelelectric and chromomagnetic �elds which persists even above
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the phase transition. Furthermore, the gluonic contribution to the trace anomaly has
been found to depend on the external �eld. A completely di�erent behavior below and
above the phase transition has been observed. At low temperature the action increases
with an increasing external �eld, but at high temperature it decreases. In the phase
transition region it is non-monotonic. This behavior is very similar to that of the quark
condensates and re�ects the strong relation between the gluonic degrees of freedom and
the fermionic condensates.
The topological charge density does not show an e�ect if we increase the external

�eld. This was quanti�ed by the topological charge density correlation function which
can be split in components parallel and perpendicular to the external �eld.
In order to get a qualitative explanation of these observations we employed a one-

loop Euler-Heisenberg action for QED and QCD together. This analysis shows that
there is, on the one hand, no coupling of the external �eld to terms which contribute
to the topological charge density and, on the other hand, that there is a asymmetric
coupling to the electric and magnetic components of the gluon �eld strength tensor
whose tendency is in accord with our numerical simulations.

In conclusion, we touched three di�erent aspects of the topological structure in the
QCD vacuum

• Technical aspect: We explored methods to extract the topological content of Lat-
tice QCD con�gurations and showed ways to control the ambiguities of the �lter-
ing process.

• Practical aspect: We showed that the violation of chiral symmetry is not as harm-
ful on observables related to topology as one might expect.

• Phenomenological aspect: We made a cluster analysis of the topological charge
density, which can be used to test models of the QCD vacuum and and we pro-
vided input for the phenomenology of the QCD vacuum in the presence of an
external magnetic �eld.
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A
Appendix

A.1. Euclidean geometry

Lattice QCD is formulated in Euclidean space. To this end, an analytic continuation
from the physical Minkowski space, called Wick rotation,has to be performed. In doing
so, one replaces the time coordinate

x0 → ix0 ≡ x4. (A.1)

Therefore, the metric is replaced by

gµν → δµν = diag(1, 1, 1, 1) (A.2)

and, accordingly, one does not have to distinguish between co- and contravariant indices.
The scalar product of two four vectors is simply

a · b = aµb
µ = aµbµ =

4∑

µ=1

aµbµ. (A.3)

The most important consequence of this Wick rotation is that the exponent in the path
integral is replace by

iSM → −SE . (A.4)

Hence, it is possible to interpret the exponential factor in the path integral as a prob-
ability distribution and one can apply importance sampling.
Euclidean correlation functions are completely di�erent from those in Minkowski

space and a continuation from Minkowski to Euclidean space (or vice versa) is in general
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not possible. Under certain circumstances1 one can obtain results which are valid in
both spaces. This is, for instance, the case for the hadron mass spectrum.

A.2. Gamma matrices

The Euclidean gamma matrices are a set of matrices that obey the anticommutation
relation

{γµ, γν} = γµγν + γνγµ = 2δµν . (A.5)

Depending on the physical problem, one can choose di�erent representations of these
matrices. We use the so-called chiral representation

γ1 =

(
0 −iσx
iσx 0

)
γ2 =

(
0 −iσy
iσy 0

)
γ3 =

(
0 −iσz
iσz 0

)
γ4 =

(
0 1

1 0

)
(A.6)

These four matrices de�ne a �fth matrix

γ5 = γ1γ2γ3γ4 =

(
1 0
0 −1

)
. (A.7)

which anticommutes with each of the four gamma matrices. This matrix plays a central
role for chiral symmetry in Chap. 1.
The anticommutation relation and respectively the γ-matrices de�ne a special math-

ematical structure � a so-called Cli�ord algebra (sometimes Dirac algebra), which
consists in four dimensions of 16 matricies

Γk ∈
{
1, γµ, γ5, γµγ5, σµν =

i

2
[γµ, γν ]

}
(A.8)

which are linearly independent in the sense, that

tr{Γk,Γj} = 4δij . (A.9)

For for a short introduction, see e.g Ref. [15].
Furthermore, we want to introduce the Feynman slash notation for a contraction of

a four vector with the gamma matrices:

/a ≡ γµaµ. (A.10)

A.3. Grassmann algebra

In order to obey Fermi statistics one has to introduce a new type of variables for the
fermion �elds. These are the so called Grassmann numbers. Their main property is
that two Grassmann numbers θi anticommute:

θiθj = −θjθi (A.11)

1There are no poles of the correlation function in the �rst and the third sector of the complex plane
of the time coordinate.
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and hence

(θi)
2 = 0. (A.12)

Furthermore, Grassmann numbers commute with regular numbers a ∈ C:

θia = aθi (A.13)

and any Taylor expansion of a function of Grassmann numbers

f({θi}) = c+ ciθi + cijθiθj + · · ·+ cijkθiθjθk + . . . (A.14)

(with complex and completely antisymmetric coe�cients c, cij = −cji) does not contain
terms that are quadratic (or higher order) in any of the variables θi.
One can further specify the integration measure:

dN θ = dθNdθN−1 . . . dθ1 , (A.15)

dθidθj = −dθjdθi , (A.16)

dθiθj = −θjdθi. (A.17)

The integral over a Grassmann number is normalized
∫

dθ θ = 1, (A.18)

while the integral over a usual c-number vanishes
∫

dθ a = 0. (A.19)

These rules are all ingredients to derive the master formulas for path integrals. Their
derivation can be found in any introduction on Grassmann numbers and we just give
the result. Let ηj = (θj + iφj)/

√
2 be complex Grassmann numbers and Mmn be a

N ×N matrix, then:

∫
[dη∗][dη] exp


−

N∑

i,j

η∗iMijηj


 = detM (A.20)

and
∫

[dη∗][dη] ηmη
∗
n exp

[
−η†Mη

]
= M−1

mn detM. (A.21)

To make contact to the fermion �elds and Lattice QCD we have to take i as a multi
index that contains space-time position, color and �avor. Hence, we have to make the
following identi�cation:

ηm → Ψx,α,i and η∗n → Ψ̄y,β,j (A.22)

and for the matrix Mmn

Mmn → Dα,β
x,y,i,j . (A.23)
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A.4. Fujikawa Method

A very elegant way of deriving the chiral anomaly is the Fujikawa method [20, 21, 19].
This method is conceptually quite elaborate, but there are some very important lessons
to learn about the relation of chiral symmetry, fermions and the gauge �elds. The gist
of this method is that the chiral anomaly arises from the non-invariance of the fermion
measure. If we consider the Euclidean path integral

Z[ψ̄, ψ,A] =

∫
DψDψDA e−(SG[A]+SF [ψ̄,ψ]), (A.24)

we immediately see that the integrand is invariant under chiral transformation ψ →
eiθ(x)γ5ψ ψ̄ → ψ̄eiθ(x)γ5 . Accordingly, one gets for an in�nitesimal transformation

SF [ψ̄, ψ] =

∫
d4xψ̄( /D)ψ →

∫
d4xψ̄( /D)ψ + θ(x)∂µ

(
ψ̄γµγ5ψ̄︸ ︷︷ ︸
≡Jµ5

)
. (A.25)

The invariance of the action leads to the classical conservation law ∂µJ
µ
5 = 0, but in the

path integral formalism one also has to transform the measure. This requires, however,
some extra work. We �rst need a careful de�nition of the measure. To this end we
expand the �elds ψ and ψ̄

ψ =
∑

i

φia
i and ψ̄ =

∑

i

φ†ib
i, (A.26)

where {φi} is a complete set of c-number eigenfunctions of the Dirac operator

/Dφi = λiφi (A.27)

and ai, bi are Grassmann-valued coe�cients. An in�nitesimal chiral transformation of
ψ

ψ′ =
∑

n

a′nφn =
∑

n

an

(
1 + iθ(x)γ5

)
φn (A.28)

yields the transformation of the coe�cients

a′m =
∑

n

(
δm,n + iθ(x)φ†m(x)γ5φn(x)

)
an . (A.29)

The Jacobian of this transformation is then

J = det

(
δa

δa′

)
= det

(
1+i

∫
d4xθ(x)

∑

n

φ†n(x)γ5φn(x)

)[
= det

(
δb

δb′

)]
, (A.30)

which reduces with the aid of the well known matrix identity det(1+A) = exp{Tr log(1+
A)} and the expansion of the logarithm to

J = exp
{
i

∫
d4xθ(x)

∑

n

φ†n(x)γ5φn(x)
}
. (A.31)
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The fermion measure transforms as follows

D ψ̄′Dψ′ =
∏

m

da′mdb
′
m = J −2

∏

m

damdbm (A.32)

= exp
{
− 2i

∫
d4xθ(x)

∑

n

φ†n(x)γ5φn(x)
}
D ψ̄Dψ. (A.33)

The negative exponent of the Jacobian is a consequence of the Grassmann algebra.
Before we evaluate the integral expression, we consider a global chiral transformation
(θ(x) = const). The remaining integral is entirely determined by the zero modes of the
Dirac operator. Non-zero eigenvalues come in pairs {λn,−λn} with the eigenfunctions
{φn, γ5φn}. Hermiticity of D then implies, that φn and γ5φN are orthogonal and∫
d4xφ†nγ5φ = 0.

For zero modes we �nd γ5φn = ±φn, where the sign corresponds to the chirality of
the eigenfunction and, hence,

∫
d4x

∑

n

φ†n(x)γ5φn(x) = nR − nL ≡ −index(D), (A.34)

where nL and nR denote the number of left- and right-handed zero modes, respectively.

For a local chiral transformation we have to do some additional work. The exponent
of the Jacobian is ill-de�ned and has to be regularized. Fujikawa [20, 21, 19, 16] has
chosen a covariant damping of high-frequency modes by the factor e−(λ2

n/M
2).

∑

n

φ†n(x)γ5φn(x) = lim
M→∞

∑

n

φ†n(x)γ5e
−(λ2

n/M
2)φn(x). (A.35)

This operator is well de�ned and allows to change the basis vectors {φn(x)} to plane-
waves {eikx}:

lim
M→∞

∑

n

φ†n(x)γ5e
−(λ2

n/M
2)φn(x) (A.36)

= lim
M→∞

tr

{∫
d4k

(2π)4
e−ikxγ5e

−( /D
2
/M2)eikx

}
(A.37)

= lim
M→∞

tr

{∫
d4k

(2π)4
e−ikxγ5 exp

{(
−DµDµ −

1

4
[γµ, γν ]Fµν

)
/M2

}
eikx

}
. (A.38)

In the last line we used that /D
2

= DµDµ + 1
4 [γµ, γν ]Fµν . With e−ikxf(Dµ)eikx =

f(Dµ + ikµ) one gets

(A.38) = lim
M→∞

tr

{∫
d4k

(2π)4
γ5 exp

{−1

M2

(
(
Dµ + ikµ

)2
+

1

4
[γµ, γν ]Fµν

)}}

ik→M · k′
= lim

M→∞
tr

{
M4 ·

∫
d4k′

(2π)4
γ5 exp

{
− k′µk′µ −

2k′D

M
− DµDµ + 1

4 [γµ, γν ]Fµν

M2

}}

103



Chapter A: Appendix

=
1

2!

(
1

4

)2

tr {γ5[γµ, γν ][γρ, γσ]FµνFρσ)}
∫

d4k

(2π)4
e−k

µkµ

︸ ︷︷ ︸
=1/16π2

.

The last expression results from an expansion of the exponent in powers of [γµ, γν ]Fµν .
Additionally, we drop all contributions in the expansion which are not ∝ 1/M4. Terms
proportional to 1/Mα for α > 4 disappear for M →∞ and the other terms cancel due
to γ-matrix identities. The �nal regularized expression reads2

∑

n

φ†n(x)γ5φn(x) = − 1

32π2
εµνρσ tr{FµνFρσ} = − 1

16π2
tr{FµνF̃µν} (A.39)

This immediately leads to the well known anomaly of the axial current:

∂µJ
µ
5 = − 1

8π2
tr{FµνF̃µν}. (A.40)

A.5. Computer programs

The following section is devoted to some of the programs and computer resources which
have been used in this thesis. We gratefully acknowledge all contributors and hope that
they continue improving their programs.

A.5.1. Chroma

The main results of this thesis were obtained using the Chroma Software System for

Lattice Field Theory (short: Chroma) [187] which is designed as a portable, �exible
and highly e�cient Lattice QCD toolbox written in C++ with a high degree of object-
orientation. Chroma is widely used in the Lattice QCD community and many di�erent
institution contribute to this project.
The software can be used in various ways. One can either take it as a black box

and use prede�ned code or one can write own code modifying chroma. Both options
have been used in this thesis. The quenched lattice con�gurations from Chap. 7 have
been generated using built-in Chroma routines. For all other measurements, we used
self-written code or customized existing code.

A.5.2. International Lattice Data Grid � ILDG

The numerical e�ort for Lattice QCD simulations has grown a lot in the last years, as
we are aiming to larger volumes, smaller lattice spacings and lighter pion masses. We
have already entered the era of peta-scale supercomputing and, tied to this, the costs
for simulations have grown.
For this reason, the International Lattice Data Grid (ILDG) [188, 189, 190, 191] was

founded. The ILDG is an international organization which o�ers tools and standards for

2Using γ5γ
µγνγργσ = −4εµνρσ
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Fig. A.1: Example of the graphical user interface for a VisIt session. There are plenty of
ways to visualize data, like volume and isosurface plots.

interchanging Lattice QCD data and providing access to the ensembles of local Grids.
The members of the ILDG are the Australian CSSM, the European LDG, UKQCD
from the United Kingdom, the American USQCD and the Japanese JLDG. They o�er
hundreds of state-of-the art lattice con�gurations from di�erent actions, volumes and
lattice spacings.

A.5.3. VisIt

VisIt [192] is a free, open source visualization tool, developed by the Department of
Energy (DOE) Advanced Simulation and Computing Initiative (ASCI). It was designed
to handle, visualize and analyze tera-scale data, but it can also be used with small-scale
data from ordinary desktop computers.
The large functionality makes Visit a powerful tool. There are many capabilities to

visualize data like isosurface, volume and vector �eld plots. Furthermore, two- and
three-dimensional data are handled equally well and even animations of time series
can be produced. There are also over twenty input formats and around ten output
formats including jpg, png and mpeg. Visit also ships with many data analysis tools
like threshold operations or histograms and due to an intuitive graphical user interface
(see Fig. A.1) one can easily explore the data and apply the analysis tools on-the-�y.
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This is the reason why we used VisIt to visualize the topological charge densities,
for qualitative measurements and animations of �ltering methods. For further reading,
examples and frequently asked questions we recommend [193].
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