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Prof. Dr. Harald Garcke
Prof. Dr. Moritz Kerz
Prof. Dr. Klaus Künnemann
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INTRODUCTION 1

Introduction

We will start this thesis with the purest and most fascinating objects in mathematics:
primes. From Euclid’s proof of the infinitude of primes to the Riemann hypothesis,
the most famous open conjecture in number theory, primes have been the origin of
almost all number theoretical problems. Apart from theoretical questions concerning
their distribution among the integers or the infinity of certain special classes of
primes, it has always been a competition to find explicit large primes. This latter
problem was the motivation of Derrick Henry Lehmer to write his remarkable paper
[Le33] of 1933. For a monic irreducible integer polynomial

f(x) = xd + ad−1x
d−1 + · · ·+ a0 =

d∏
i=1

(x− αi)

he studied the factorization of the integers ∆n(f) =
∏d

i=1(αni − 1) with regard to
large prime factors of ∆n(f). Of course, large heavily depends on the computing
power at this time. Lehmer wrote his paper from a theoretical point of view, and his
exemplary prime ∆127(x3− x− 1) = 3233514251032733 was not a new prime record
in 1933. We remark that the largest known prime of today is the Mersenne prime
243112609 − 1 which is a 12978189-digit number. This prime was found in August
2008 by Edson Smith using the Great Internet Mersenne Prime Search (GIMPS)
(see [GIMPS]). But Lehmer is also strongly related to this prime, as the website
uses the Lucas-Lehmer test to decide whether a number of the form 2p− 1, p prime,
is a prime number. This test was developed by Lehmer in Section 5 of his Ph.D.
thesis [Le30].
We see that ∆n(f) is zero for some n if and only if f is a cyclotomic polynomial.
In this case the set {∆n(f)}n∈N only consists of finitely many integers. Hence, one
should exclude these polynomials in the search for large primes in ∆n(f). The reason
why the paper [Le33] became so famous is Lehmer’s observation that ∆n(f) is more
likely to produce large primes if the measure

M(f) =
d∏
i=1

max{|αi|, 1}

of f is small. In 1857, Kronecker proved in [Kr57] that an algebraic integer with
all its conjugates lying on the unit circle must be a root of unity. This implies
that M(f) is equal to 1 if and only if f is a cyclotomic polynomial. Therefore,
Lehmer searched for monic integer polynomials f with small measure M(f) > 1.
The measure M(f) is called Mahler measure, after the paper [Ma62] of Kurt Mahler.
Notice that Mahler introduced this measure in the form

M(f) = exp(

∫ 1

0

log |f(e2iπt)|dt)

where e denotes the Euler-number. It is well known that these expressions for M(f)
are indeed equal (see for example [BG], Proposition 1.6.5).
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Lehmer noticed that the Mahler measure M(f) is especially small if the polynomial
f is reciprocal, i.e. ±f(x) = xdeg(f)f( 1

x
). Reciprocal polynomials are sometimes also

called symmetric. Regarding the problem of finding polynomials with small Mahler
measure, Lehmer pointed out:

We have not made an examination of all 10th degree symmetric polyno-
mials but a rather intensive search has failed to reveal a better polynomial
than

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.

The above polynomial is called Lehmer polynomial and has a Mahler measure of
approximately 1, 176280821. Meanwhile there has been an intensive examination.
For example, all non-cyclotomic polynomials of degree at most 44, with Mahler
measures less than 1, 3 are known (see [MRW08]). But still there has not been
found a non-cyclotomic polynomial of smaller Mahler measure than the Lehmer
polynomial. This is called Lehmer’s problem. The observation of Lehmer that re-
ciprocal polynomials are more likely to have small Mahler measure has been proved
by Breusch in [Br51]. He proved that the Mahler measure of a non-reciprocal poly-
nomial is > 1, 179. Later, but independently, Smyth gave the sharp lower bound
M(x3 − x − 1) = 1, 324717 . . . for the Mahler measure of such polynomials (see
[Sm71]).
Lehmer’s problem is open in general, but for some classes of polynomials (like re-
ciprocal polynomials) it has been proved. See the survey [Sm08] of Smyth for a
summery of partial results regarding Lehmer’s problem.
In modern language we use the height h of an algebraic number to state Lehmer’s
problem. The height is a non-negative real valued function which behaves well
under algebraic actions. This means that h is invariant under galois-action, and we
have h(αd) = dh(α) for all algebraic numbers α and all d ∈ N. The height is one
of the most powerful tools in Diophantine geometry. Using this notation we can
reformulate Lehmer’s problem in the following way, in which it is more common to
speak of the Lehmer conjecture.

Conjecture 1. There exists a positive constant c such that for every α ∈ Q∗ which
is not a root of unity, we have h(α) ≥ c

[Q(α):Q]
.

This conjecture states that the Mahler measure of a non-cyclotomic polynomial
cannot become arbitrary close to 1. For a rational number a

b
, with coprime a and

b, the height is just h(a
b
) = max{log |a|, log |b|}. If we assume that a

b
is not in

{−1, 0, 1}, then h(a
b
) is not smaller than log 2. The best general lower bound for a

non root of unity α ∈ Q∗ of degree d ≥ 2 is due to Voutier ([Vo96]), shrinking the
constant in a theorem of Dobrowolski ([Do79]). He gives the lower bound

h(α) ≥ 1

4d

(
log log d

log d

)3

which improves the constant 1
1200

of Dobrowolski to 1
4
.
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One of the most important properties of height functions is Northcott’s theorem. It
states that every set of points with bounded height and bounded degree is finite.
Northcott’s motivation for his theorem comes from the theory of algebraic dynamical
systems. He proved this theorem in [No50] to show that any endomorphism ϕ of an
algebraic variety X defined over a number field K has only finitely many preperiodic
points of bounded degree. A point P ∈ X(K) is called preperiodic if the set of
iterates

P, ϕ(P ), ϕ(ϕ(P )), . . .

is finite.

As an example, we choose the doubling map [2] on an elliptic curve E defined over
Q. Northcott’s theorem implies that there are only finitely many points of bounded
degree and bounded Néron-Tate height in E(Q). The preperiodic points of the map
[2] are exactly the torsion points in E(Q), and the torsion points are exactly those
points of height zero. In particular, there are only finitely many torsion points P
in E(Q) such that the degree [Q(P ) : Q] is at most D, for an arbitrary positive
constant D.
In the last three decades the arithmetic side of dynamical systems has become its
own part of mathematical research. Call and Silverman introduced a height function
associated to a dynamical system in [CS93]. For a rational function f ∈ Q(x) of

degree at least 2, the associated dynamical height ĥf is uniquely determined by

the properties deg(f)ĥf = ĥf ◦ f and |ĥf − h| ≤ Cf , for a constant Cf . Vaguely
speaking, we can say that this height behaves well under the dynamics of f but
still carries arithmetic information. The theorem of Call and Silverman is true in
the much more general setting of any polarized algebraic dynamical system. They
obtain these height functions in complete analogy to the construction of the Néron-
Tate height on an elliptic curve. So it is not surprising that a dynamical height ĥf
vanishes precisely at the preperiodic points of f .
With these height functions we can state a dynamical version of the Lehmer conjec-
ture.

Conjecture 2. For every rational function f ∈ Q(x) of degree at least 2, there
exists a positive constant cf such that for all α ∈ Q which are not preperiodic under
f , we have h(α) ≥ cf

[Q(α):Q]
.

This conjecture implies Conjecture 1, as we have ĥx2 = h. This can be easily deduced
from the result of Call and Silverman explained above. Apart from special classes of
rational functions f , there is not even a proof for a general lower bound of the type
cf [Q(α) : Q]−n, n ∈ N, in Conjecture 2. One class of these special rational functions
for which such a lower bound is known is given by Lattès maps. For a Lattès map
f there exists a positive constant cf such that we have

ĥf (α) ≥ cf
[Q(α) : Q]3(log[Q(α) : Q])2

for all non-preperiodic α ∈ Q (see [Ma89], Corollary 1, and Lemma 1.23 below).
These maps are associated to endomorphisms of an elliptic curve. If E is an elliptic
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curve defined over the number field K, Ψ an endomorphism of E, and π : E → P1
K

a finite covering, then the associated Lattès map is a rational function f with the
property f ◦ π = π ◦ Ψ. Lattès maps are named after Samuel Lattès, who studied
these maps in [La18]. But Lattès was not the first to introduce this kind of maps.
For an historical overview on Lattès maps, we refer to [Mi06], Sections 6 and 7.
Using Lattès maps, one can show that Conjecture 2 implies also an elliptic version
of the Lehmer conjecture. We will explain this in Section 1 in detail.

As noticed above, there are classes of polynomials for which Lehmer’s problem is
solved. In analogy to this, we can search for classes of algebraic numbers satisfying
the Lehmer conjecture. In a variation of this problem, one can search for lower
bounds on the height of algebraic numbers, which do not depend on the degree
of the algebraic number. We say that a field L ⊂ Q has the Bogomolov property
relative to the height ĥf if ĥf has a positive lower bound on the set of algebraic

numbers α ∈ L with ĥf (α) 6= 0. This is a dynamical variation of a notion introduced
by Bombieri and Zannier in [BZ01]. The name is given in analogy to the famous
Bogomolov conjecture, yielding a lower bound of the Néron-Tate height on a certain
set of algebraic points on an abelian variety (see [BG], Theorem 11.10.17).
By Northcott’s theorem every number field has the Bogomolov property relative to
every height function. Hence, interesting examples have infinite degrees over Q.
Classically, we have f = x2, and as noticed above ĥf = h. Schinzel gave the
first example of an infinite extension of the rationals with the Bogomolov property
relative to h in [Sch73], namely the maximal totally real field extension Qtr of
Q. The next example came up almost 30 years after Schinzel’s result. In 2000
Amoroso and Dvornicich proved that the maximal abelian field extension Qab of
the rational numbers has the Bogomolov property relative to h (see [AD00]). This
result was generalized by Amoroso and Zannier ([AZ00], [AZ09]) to finite extensions
of the maximal abelian field extension of any number field. In 2001, Bombieri and
Zannier proved a p-adic version of Schinzels result in [BZ01]. They proved that for
any rational prime p the maximal totally p-adic field extension has the Bogomolov
property relative to h; i.e. the maximal subfield K of Q such that p splits completely
in every subfield of K of finite degree over Q. Their result is even stronger, which we
will explain in Section 2. Recently, Habegger gave in [Ha11] the example of a new
field having the Bogomolov property relative to h. For an elliptic curve E defined
over Q, let Etor denote the set of torsion points of E. Habbeger proved that there is
a positive constant c such that h(α) is either zero or ≥ c for all α ∈ Q(Etor). This
can be seen as an analogue of the result of Amoroso and Dvornicich, as the field Qab

is generated by the torsion points of Q∗.
As there exists an elliptic version of the Lehmer conjecture, it is not surprising that
there are examples of fields L ⊂ Q such that the Néron-Tate height ĥE of an elliptic
curve E is bounded from below by a positive constant for all points P ∈ E(L) with

ĥE(P ) 6= 0. More generally, one can even assume E to be an abelian variety and ĥE
a canonical height on E associated to an ample and even line bundle. The prescribed
property of L is again called Bogomolov property of L relative to ĥE. In this setting
the field L may depend on the elliptic curve - or the abelian variety - E.
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Again the first example for such a field L was Qtr. This was shown by Zhang
in [Zh98], and this result is true for all abelian varieties E. If E is an abelian
variety defined over the number field K, then Baker and Silverman proved that the
maximal abelian extension of K has the Bogomolov property relative to the Néron-
Tate height ĥE (see [BS04]). If E is totally degenerate at a finite place v of K, then
Knr,v, the maximal algebraic field extension of K which is unramified at v, has the
Bogomolov property relative to ĥE. This result is due to Gubler (see [Gu07]) and
will be discussed detailed in Chapter 3 of this thesis. The next two examples are
only known to be true if E is an elliptic curve. Baker and Petsche proved in [BP05]
that any totally p-adic field extension of Q, where p is an odd rational prime, has the
Bogomolov property relative to ĥE for all elliptic curves E. The result of Habegger is
also true in the elliptic curve case; i.e. the field Q(Etor) has the Bogomolov property

relative to ĥE whenever E is defined over the rational numbers (see [Ha11]).
In the dynamical case there are almost no examples of fields having the Bogomolov
property relative to ĥf , where f is a rational function not of the form xd. If f is
a Lattès map associated to an elliptic curve E, then one can use results of Baker
and Petsche ([BP05]) on the Néron-Tate height of E to deduce that Qtr has the

Bogomolov property relative to ĥf whenever E is defined over Qtr, and that the

maximal totally p-adic field has the Bogomolov property relative to ĥf for all rational
primes p ≥ 3. We can achieve these results, as the lower bounds for the Néron-Tate
height of Baker and Petsche only depend on the j-invariant of the elliptic curve.
For an elliptic curve E defined over a number field K with non-archimedean absolute
value v, and any e ∈ N denote by ME

e (v) the set of points P ∈ E(Q) such that the
ramification index ew|v is bounded by e for all extensions w of v to the field K(P ).
One of the main results in this thesis is the following theorem.

Theorem 1. Let E be an elliptic curve defined over a number field K with split-
multiplicative reduction at a finite place v on K. Then there are effective computable
constants c′, c′T > 0, depending on the degree of K, e, v and the j-invariant of E,

such that the Néron-Tate height ĥE(P ) ≥ c′ for all P ∈ME
e (v) \Etor, and such that

there are less than c′T torsion points in ME
e (v).

This has been proven in a non-effective version by Gubler in [Gu07] for abelian
varieties which are totally degenerate at v. Theorem 1 first appears implicitly in
Baker’s paper [Ba03]. However, our argument will give explicit bounds c′ and c′T
and it carries over to elliptic curves of bad reduction of any type in the case of
e = 1. This leads to an example of a field L such that ĥE(P ) ≥ c > 0 for all
non-torsion points P ∈ E(L), but L does not have the Bogomolov property relative

to the canonical height ĥf of a Lattès map associated to E.
In complete analogy to the definition of ME

e (v) above we define Me(v) as the set of
algebraic numbers α such that the ramification index ew|v is bounded by e for all
w | v in MK(α). Then we will obtain the following dynamical analogue of Theorem
1:

Theorem 2. Let E be an elliptic curve defined over a number field K with split-
multiplicative reduction at a finite place v on K. Further let f be a Lattès map
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associated to E. Then there are effective computable constants c, cP > 0, depending
on the degree of K, e, v and the j-invariant of E, such that ĥf (α) ≥ c for all
α ∈Me(v) \ PrePer(f), and such that there are less than cP preperiodic points of f
in Me(v).

In all examples of Bogomolov properties discussed above (including Theorem 2), the
map f was fixed and the task was to find fields, or more general subsets of Q, with
the Bogomolov property relative to ĥf . Conversely, we can fix a field L and search

for rational functions f such that L has the Bogomolov property relative to ĥf . For
L = Qtr we can classify all these rational functions according to their Julia sets.

Theorem 3. Let f ∈ Q(x) be a rational function of degree at least two. Then the
following statements are equivalent:

i) Qtr has the Bogomolov property relative to ĥf .

ii) There is a σ ∈ Gal(Q/Q) such that the Julia set of σ(f) is not contained in
the real line.

iii) The set PrePer(f) ∩Qtr is finite.

If f is a polynomial, then these statements are equivalent to

iv) PrePer(f) * Qtr.

This result includes the Bogomolov property of Qtr relative to h, as the Julia set of
the map x2 is just the unit circle.

The outline of this thesis is the following. Chapter 1 provides the basic results
on heights and dynamical systems. One of the main results is an equidistribution
theorem of Yuan which will be needed several times in this thesis. In particular, the
proof of Theorem 3 relies heavily on this equidistribution theorem.
Chapter 2 consists of two parts. The first part is a summary of known results of
Bogomolov properties relative to h, and results concerning lower bounds for the
Néron-Tate height of an elliptic curve. In the second part of this chapter some of
these results are transferred to a dynamical setting for Chebyshev polynomials or
Lattès maps.
In Chapter 3 a non-effective version of Theorem 2 is proved, using Yuan’s equidistri-
bution theorem. This result is strengthened in the next chapter, but it was also the
starting point of the author’s research on this topic. At the end we will generalize a
non-effective version of Theorem 1 to abelian varieties which are totally degenerate
at v and we will see that this also implies the non-effective version of Theorem 2.
As mentioned above, Chapter 4 provides proofs of Theorems 1 and 2, and variations
of these results concerning changes of the reduction type of E at v. The proof of
Theorem 1 relies on discrete equidistribution results of the local heights on E. These
results are due to Elkies for archimedean places and to Hindry and Silverman for
non-archimedean places. Among other things, we will show that Theorems 1 and
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2 are not true if we start with an absolute value v at which E has good reduction.
This will follow from the criterion of Néron-Ogg-Shafarevich.
A proof of Theorem 3 is presented in Chapter 5. The main tools for this proof
are Yuan’s equidistribution theorem and a result of Eremenko and van Strien (see
[EvS11]) on rational maps with Julia set lying in a circle on the Riemann sphere.
This latter result states that if the Julia set of a rational function lies in the real
line, then there exists a finite set of real intervals that is backward invariant under
the action of this rational function. The first and the last section of this chapter
provides detailed information on the behavior of h on Qtr and on finite extensions
of this field. In particular, we will show how the Bogomolov property of Qtr with
respect to a polynomial x2 − c depends on the choice of parameter c. Moreover,
we will see that the Bogomolov property relative to the classical height h is not
preserved under finite field extensions.

Acknowledgment: I would like to thank my advisor Walter Gubler for numerous
answers, corrections and suggestions, Sinnou David for sharing his idea to prove
Theorem 1 and Fabrizio Barroero, Sara Checcoli, Christian Christensen, Paul Fili,
Philipp Habegger, Khoa Nguyen, Joseph Silverman, Adam Towsley, Tom Tucker,
Emmanuel Ullmo and Martin Widmer for helpful discussions and remarks.
Moreover, I would like to thank the DFG Graduiertenkolleg GRK 1692 ”Curvature,
Cycles, and Cohomology” for financial support, and the Institute for computational
and experimental research in mathematics (ICERM) in Providence for hospitality
during February and March 2012.
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1 Heights and dynamical systems

In this chapter we will prepare the main results of Chapters 3 and 5. The content
of this chapter is standard, hence we will skip most of the proofs. For details we
refer to the following books. See [Na], [Ne] and [La] for details on algebraic number
theory and valuation theory. For information on the standard logarithmic-, the Weil-
and the Néron-Tate height we refer to [BG]. Appendix A of this book contains all
information on algebraic geometry we need. The standard references for elliptic
curves are [Si09] and [Si94]. For details on the dynamics of rational functions on the
Riemann sphere we refer to [Be] (see also [Mi] for general information on dynamical
systems on the Riemann sphere). Our reference for the arithmetic side of dynamical
systems is [Si07].
For the complete thesis we fix once and for all an algebraic closure Q of Q. More
generally, the algebraic closure of any number field is always this fixed Q.

1.1 Heights

We will give a brief introduction to the theory of valuations on number fields. Mainly,
this section is a collection of notations and we will skip all proofs.

Definition. An absolute value on a field K is a multiplicative function |.| : K → R≥0

such that

i) |a| = 0⇔ a = 0,

ii) (triangle inequality) |a+ b| ≤ |a|+ |b| for all a, b ∈ K.

Let P be the set of positive rational primes. We can write an arbitrary rational
number a as ±

∏
p∈P p

vp(a), with uniquely determined vp(a) ∈ Z. A complete set
of pairwise not equivalent and non-trivial absolute values on Q is given by the set
MQ = {|.|p|p ∈ P ∪ ∞}. Here |a|∞ = max{a,−a} is the standard absolute value
and |a|p = p−vp(a) the p-adic absolute value for all p ∈ P (see [Ne], II Satz 3.7).
Let K be any number field and |.|v an absolute value on K. Then we can restrict
|.|v to an absolute value on Q. For any number field K we define MK to be the
complete set of pairwise not equivalent non-trivial absolute values such that the
restriction of every element in MK to Q lies in MQ. An element in MK that restricts
to |.|∞ is called infinite or archimedean, and an element in MK that restricts to |.|p,
p ∈ P , is called finite or non-archimedean. For a non-archimedean absolute value
|.|v we have a stronger inequality than the triangle inequality above. Namely, we
have |a+ b|v ≤ max{|a|v, |b|v} for all a, b ∈ K.
As the definition of the vp(a) indicates, there is a one to one correspondence between
non-archimedean absolute values on K and non-zero prime ideals in OK , the ring of
integers of K. Every absolute value v induces a valuation v(.) = − log |.|v. If L/K
is a finite field extension, then we write w | v, for w ∈ML and v ∈MK , if and only
if the restriction of w to K is v. Hence, the archimedean v ∈MK are exactly those
with w | ∞.
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For a number field K with absolute value |.|v, we denote the completion of K with
respect to |.|v by Kv. Furthermore we set k◦(v) := {a ∈ Kv||a|v ≤ 1}. This is a
local ring with unique maximal ideal k◦◦(v) = {a ∈ Kv||a|v < 1}. Now, the residue
field of Kv is defined as k(v) := k◦(v)/k◦◦(v).
Let again L/K be a finite extension of the number field K, and w ∈ ML, v ∈ MK ,
with w | v. The local degree of L/K at w is the degree [Lw : Kv]. If K is equal
to Q we simply speak of the local degree of w and denote it by dw. From now on
assume that v - ∞. The residue degree of w over v is fw|v = [k(w) : k(v)]. The
(multiplicative) group |K∗|v = {|a|v|a ∈ K∗} is called value group of K with respect
to v. It is a subgroup of |L∗|w of finite index. This index is denoted by ew|v and
is called ramification index of w over v. The extension L/K is unramified at w if
ew|v = 1, and unramified at v if it is unramified at every w | v.

If v | p, we have v(K∗) = log(p)
ev|p

Z. Sometimes it is more convenient to use the

normalized valuation ordv(.) =
ev|p

log(p)
v(.).

Lemma 1.1. Let F/L/K be extensions of number fields, then we have

i) (product formula)
∏

v∈MK
|a|dvv = 1 for all a ∈ K∗,

ii) [L : K] =
∑

w|v[Lw : Kv] for all v ∈MK,

iii) [Lw : Kv] = ew|vfw|v,

iv) fu|v = fu|wfw|v and eu|v = eu|wew|v for all u ∈ MF , w ∈ ML, v ∈ MK, with
u | w and w | v.

Proof: See [Ne], Chapter II § 6 and Chapter III § 1. �

Now we are prepared to define the standard logarithmic height on the algebraic
numbers.

Definition. Let α be an arbitrary algebraic number in Q and let K be any number
field containing α. Then the standard logarithmic height of α is

h(α) =
1

[K : Q]

∑
v∈MK

dv max{log |α|v, 0} .

Lemma 1.1 ii) implies that this definition is well defined; i.e. independent of the
choice of the number field K. Another very useful way to calculate the height h is
given by Jensen’s formula ([BG], Proposition 1.6.5).

Theorem 1.2. Let α be an arbitrary algebraic number in Q with d = deg(α). If
P (x) =

∑d
i=0 aix

i = ad
∏d

i=1(x−αi) ∈ Z[x] is the minimal polynomial of α, then we
have

h(α) =
1

d

(
log |ad|+

d∑
i=1

max{log |αi|, 0}

)
.
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Proposition 1.3. Let µ be the set of roots of unity. The height h has the following
important properties:

i) h(α) ≥ 0 for all α ∈ Q,

ii) h(αn) = nh(α) for all α ∈ Q∗ and all n ∈ Z,

iii) (Kronecker’s theorem) h(α) = 0⇔ α ∈ {0} ∪ µ,

iv) (Northcott’s theorem) The set {α ∈ Q|h(α) ≤ A, deg(α) ≤ B} is finite for all
constants A,B ∈ R+.

Proof: The first two statements follow immediately from the definition of h. Proofs
of Kronecker’s and Northcott’s theorem can be found in [BG], Theorem 1.5.9 and
Theorem 1.6.8. �

We see, using the previous proposition, that the height of the elements 21/n, n ∈ N,
is positive and tends to zero as n increases. Hence, the best uniform lower bound
for the height of an element in Q∗ \ µ must depend at least on the degree of the
algebraic number.

Conjecture 1.4 (Lehmer conjecture). There exists a positive constant c such that
h(α) ≥ c

deg(α)
for all α ∈ Q∗ \ µ.

As a strong Lehmer Conjecture we can replace the unspecific c by the logarithm of
the Lehmer constant which is the largest real root of the polynomial x10 +x9−x7−
x6 − x5 − x4 − x3 + x+ 1. This logarithm is approximately 0, 162357612 . . . .
Of course, Q is not the only algebraic structure which is equipped with a height
function. In a similar way as above we can define the height on PnQ for all n ∈ N.
For arbitrary α = [α0 : · · · : αn] ∈ PnQ we have

h(α) =
1

[K : Q]

∑
v∈MK

dv max
i
{log |αi|v} , (1.1)

where K is any number field with αi ∈ K for all i ∈ {0, . . . , n}. This definition is
again well defined by Lemma 1.1.
Height functions are also defined on algebraic varieties, as we will see in a moment.
The main property of all these functions is Northcott’s theorem which allows to
count points of bounded height and bounded degree. The next theorem can be used
to define the canonical height, also called Néron-Tate height, on an elliptic curve.

Theorem 1.5. Let E be an elliptic curve defined over the number field K and
let f ∈ K(E) be a non-constant even function; i.e. f = f ◦ [−1]. Then, for all
P ∈ E(K) the limit

ĥE(P ) =
1

deg(f)
lim
n→∞

4−nh(f([2]nP )

exists and is independent of the choice on f . Moreover, the function ĥE is the unique
function such that for all P ∈ E(K) we have
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i) ĥE([m]P ) = m2ĥE(P ) for one (all) m ∈ Z, with |m| ≥ 2,

ii) deg(f)ĥE = h◦f+O(1), for one (all) even function f ∈ K(E), with deg f ≥ 2.

For a proof and additional results we refer to [Si09], Chapter VIII.9. Especially
we find that all statements of Proposition 1.3 can be translated to the Néron-Tate
height in the obvious way. For the analogue of Kronecker’s theorem one has to
replace roots of unity by torsion points. Thus, we can recall the elliptic Lehmer
conjecture.

Conjecture 1.6 (Elliptic Lehmer conjecture). Let E be an elliptic curve defined
over a number field K. There exists a positive constant c such that

ĥE(P ) ≥ c

deg(P )
for all P ∈ E(Q) \ Etor .

Here deg(P ) is the smallest degree of a number field over which P is defined.

Remark 1.7. More generally, let A be an abelian variety defined over a number
field K and let L be an even and ample line bundle on A. Then there exists a
canonical non-negative height function ĥL : A → R. For a construction and basic
results we refer to [BG], Section 9.2. If A is an elliptic curve we choose a Weierstrass
equation A : y2 = x3 + ax + b and denote the projection on the x-coordinate by
π. By the addition law on an elliptic curve (see [BG], Proposition 8.3.8) we have
[−1](x, y) = (x,−y). Hence, π is an even function and L := π∗O(1) is an even and

ample line bundle on A. Notice that we have ĥL = 2ĥA, where ĥA is the Néron-Tate
height from Theorem 1.5. To avoid confusion we remark that some authors refer to
the height ĥL as the Néron-Tate height of an elliptic curve.

1.2 Dynamical systems

Let S be a set and f a self-map of S. The iteration of f yields a dynamical system
on S. We set f (0) = id and f (n) = f ◦ f (n−1) for all n ∈ N. The (forward) orbit of
an element a ∈ S under f is given by the set {f (n)(a)}n∈N0 . Moreover, for all n ∈ N
we set f−n(a) = {b ∈ S|f (n)(b) = a}, and define the backward orbit of a ∈ S as the
set ∪n∈Nf−n(a).
A classical aim in the theory of dynamical systems is to classify the points of S
according to the behavior of their orbits. A point a ∈ S is called periodic point
of period n if a = f (n)(a). Periodic points of period one are called fixed points. If
the orbit of a is a finite set, we say that a is a preperiodic point of f . The set of
all preperiodic points of f in S is denoted by PrePer(f) and the subset of periodic
points by Per(f). Notice that some authors exclude periodic points from the set of
preperiodic points.
From now on we will reduce this setting to the case where S is the Riemann sphere
which we identify with C ∪ {∞}, and f is a rational function. On the Riemann
sphere, we will always use the complex topology which is induced by the chordal
metric ρ.
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Definition. Let f ∈ C(x) be a rational function and f ′ its derivative. The zeros of
f ′ are called critical points of f . If α ∈ Per(f) such that f (n)(α) = α, with n ∈ N
minimal with this property, then the multiplier of f at α is λf (α) := (f (n))′(α).
Furthermore, α is called

superattracting if λf (α) = 0,
attracting if |λf (α)| < 1,

neutral if |λf (α)| = 1,
repelling if |λf (α)| > 1.

A very important classification of points under the dynamics of f is whether f acts
´stable’ or ´chaotically ’ on a small neighborhood of the point.

Definition. Let f be a self map of the Riemann sphere. The Fatou set F (f) of f
is the maximal open subset of the Riemann sphere, satisfying the condition: For all
α ∈ F (f) and all ε > 0 there exists a δ > 0 such that

ρ(α, β) < δ ⇒ ρ(f (n)(α), f (n)(β)) < ε

for all n ∈ N. The Julia set J(f) of f is the complement of F (f).

Most of the rational functions considered in this thesis have very nice Julia sets. For
example the Julia set of the map x2 is just the unit circle, J(x2 − 2) = [−2, 2], and
J(x

4−8x
4x3+4

) is the Riemann sphere. However, in most cases Julia sets are fractals and
highly complicated. In Section 1.3 we will explain the special role of the examples
above.
Some of the most important properties of the Julia set of a rational function are the
following facts which can be found in [Be], Theorem 4.2.1, Theorem 3.2.4, Theorem
5.7.1 and Theorem 6.9.2.

Facts 1.8. Let f ∈ C(x) be a rational function of degree at least two. Then we have

a) J(f) is not empty,

b) J(f) is completely invariant, i.e. f(J(f)) = f−1(J(f)) = J(f),

c) there are no isolated points in J(f),

d) J(f) is the closure of the repelling periodic points of f .

Completely analog to the construction of the Néron-Tate height, Call and Silver-
man introduced a canonical height associated to the dynamical system defined by a
rational function.

Theorem 1.9. Let f ∈ Q(x) be a rational function of degree ≥ 2. Then for all
α ∈ Q the limit

ĥf (α) = lim
n→∞

1

deg(f)n
h(f (n)(α))
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exists. The height function ĥf is called the canonical height related to f , and it is
the unique function fom Q to R such that for all α ∈ Q we have

i) ĥf (f(α)) = deg(f)ĥf (α) and ii) ĥf = h+O(1).

For a proof and additional results we refer to [Si07], Section 3.4. Again, all state-

ments of Proposition 1.3 can be translated to the canonical heights ĥf in the obvious
way. Here, for the analogue of Kronecker’s theorem one has to replace roots of unity
by preperiodic points.

Lemma 1.10. Let f, g ∈ Q(x) be commuting rational functions of degree at least

two. Then we have ĥf = ĥg.

Proof: Take an arbitrary α ∈ Q. Then for all n ∈ N we have

ĥf (g(α)) = deg(f)−nĥf (f
(n)(g(α))) = deg(f)−nĥf (g(f (n)(α))) .

Using the fact that h(g(f (n)(α))) = deg(g)h(f (n)(α)) + O(1) (see [Si07], Theorem
3.11), we see that this is equal to

deg(g)

deg(f)n
(
h(f (n)(α)) +O(1)

)
= deg(g)

(
ĥf (α) + deg(f)−nO(1)

)
.

Now we take the limes n→∞ to obtain ĥf (g(α)) = deg(g)ĥf (α). With this relation

the equality of ĥf and ĥg follows from the theorem above. �

Definition. Let K be a field, and let f ∈ K(x) be a rational function. A rational
function ϕ ∈ K(x) is called a linear conjugate of f if there is a Möbius transformation
g ∈ K(x) such that ϕ = g−1 ◦ f ◦ g. Now let K be a number field. We can extend
every σ ∈ Gal(Q/Q) uniquely to an endomorphism of Q(x), by setting σ(x) = x. A
map σ(f) is called galois conjugate of f .

Lemma 1.11. Take a rational function f ∈ Q(x) of degree ≥ 2. Let g−1 ◦ f ◦ g be
a linear conjugate of f and let σ(f) be a galois conjugate of f . Then we have

i) ĥg−1◦f◦g ◦ g−1 = ĥf ,

ii) ĥσ(f) ◦ σ = ĥf .

Proof: This follows immediately from Theorem 1.9 and the facts deg(g−1 ◦ f ◦ g) =
deg(f) = deg(σ(f)), h ◦ g = h+O(1) and h ◦ σ = h. �

Now we are able to formulate a dynamical version of the Lehmer conjecture.

Conjecture 1.12 (Dynamical Lehmer conjecture). For every rational function f ∈
Q(x) with deg(f) ≥ 2 there exists a positive constant c(f) such that

h(α) ≥ c(f)

deg(α)
for all α ∈ Q \ PrePer(f) .
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We will need the following Theorem due to Freire, Lopes, Mañé (see [FLM83]) and
independently Lyubich.

Theorem 1.13. Let f ∈ C(x) be a rational function of degree ≥ 2. There exists
a unique probability measure µf on C such that µf is f -invariant; i.e. f ∗µf =
deg(f)µf and f∗µf = µf . The support of µf is equal to the Julia set of f .

1.14. We will very briefly introduce some notations from the theory of algebraic
dynamical systems. For detailed information and proofs we refer to the expository
article [Yu12] and the references therein.
Let K be a number field, and let X be a smooth projective variety of dimension n
with a morphism f : X → X, both defined over K. Moreover, let L be an ample line
bundle on X. The triple (X,L, f) is called (polarized) algebraic dynamical system
if we have f ∗L ∼= L⊗q, for q ≥ 2. We need to fix a line bundle L to associate a
canonical height and a canonical measure to the algebraic dynamical system. The
canonical height ĥX,L,f for (X,L, f) is uniquely determined by the properties given
in Theorem 1.9. Namely,

ĥX,L,f (f(P )) = qĥX,L,f (P ) ∀P ∈ X(K) and ĥX,L,f = hL +O(1),

where hL is any Weil height on X (see [CS93]).
For a fixed non-archimedean v ∈ MK we write Cv to denote the completion of Kv.
This is a complete and algebraically closed field (see [BGR], Proposition 3.4.3). We
consider (X,L, f) as an algebraic dynamical system defined over Cv. Due to Zhang
([Zh95]) there is a canonical f -invariant Cv-metric ‖.‖f,v on L; i.e.

f ∗‖.‖f,v = ‖.‖qf,v .

Let c1(L, ‖.‖f,v)∧n be the Chambert-Loir measure on the Berkovich space Xan
v asso-

ciated to X/Cv (see [Ch06] for a construction of this measure). Then, the measure
µf,v := degL(X)−1c1(L, ‖.‖f,v)∧n is the canonical probability measure satisfying

f ∗µf,v = qnµf,v and f∗µf,v = µf,v .

We call µf,v the v-adic canonical measure associated to (X,L, f). For the theory of
Berkovich spaces we refer to [Ber] and [Te10].
For an archimedean place v ∈ MK we set Xan

v := X(C) as a complex manifold.
The construction of the canonical f -invariant measure µf,v on Xan

v can be found
in [Zh06], Chapter 3. We refer to the same reference for a construction of µf,v for
arbitrary v ∈MK using Tate’s limit process.

Let P ∈ X(Q) be arbitrary and let δP be the Dirac measure at P . We denote the
set {σ(P )|σ ∈ Gal(Q/K)} of K-galois conjugates of P by GK(P ), and define the
probability measure

δP := |GK(P )|−1
∑

P ′∈GK(P )

δP ′ .

Now we can formulate Yuan’s equidistribution theorem (see [Yu08], Theorem 3.7).
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Theorem 1.15 (Yuan). Let (X,L, f) be a polarized algebraic dynamical system
defined over the number field K, and let {Pi}i∈N be a sequence of pairwise distinct
points in X(Q) such that

i) ĥf (Pi)→ 0, as i→∞,

ii) every infinite subsequence of {Pi}i∈N is Zariski dense in X.

For any v ∈ MK the measures δi := δPi converge weakly to µf,v. This means that
for every continuous function ϕ : Xan

v → C we have∫
Xan
v

ϕ(x)δi = |GK(Pi)|−1
∑

P ′i∈GK(Pi)

ϕ(Pi)→
∫
Xan
v

ϕ(x)µf,v ,

as i→∞.

Of course, the second requirement on the sequence {Pi}i∈N in the above theorem is
always true if X = P1.

Remark 1.16. Let K be a number field and f ∈ K(x) a rational function of
degree at least 2. The canonical height associated to the algebraic dynamical system
(P1

K ,O(1), f) is the function ĥf from Theorem 1.9. The map f extends uniquely to
a continuous function on P1(Cv), v ∈ MK . For a non-archimedean v ∈ MK we can
define a v-adic chordal metric ρv on P1

K(Cv), and define the v-adic Julia set Jv(f)
and v-adic Fatou set Fv(f) of f in complete analogy to the Definition of the Julia
set of a rational function (we refer to [Si07], Chapter 5, for details). However, the
space P1(Cv) has very unpleasant topological properties and it is more convenient
to work in the associated Berkovich space (P1)anv . Following [BR] we define:

Definition. We use the notation from above. The Berkovich Julia set JBv (f) of f
is the support of the canonical measure µf,v.

We see that JBv (f), in contrast to Jv(f), is always non-empty. Moreover, the in-
tersection JBv (f) ∩ P1(Cv) is exactly the v-adic Julia set Jv(f). Of course, we work
with the unique continuous extension of f to (P1)anv . All this can be found in [BR],
Chapter 10.

1.3 Dynamics associated with groups

In the last section we gave three examples of maps with a special Julia set. Namely,
x2, x2 − 2 and x4−8x

4x3+4
. The dynamics of each of these maps is defined by a group

operation. For the rest of this section let K be any field of characteristic 0.
Let d ≥ 2 be an integer. The map xd : K → K is defined by the d-th time
multiplication in K. Hence, it is an endomorphism of the multiplicative group K∗.
We call the map xd the d-th power map. Iterating xd is extremely easy, as the n-th
iterate is just xd

n
. Moreover, it is not hard to check that the Julia set of a d-th

power map, d ≥ 2, is the unit circle.
The second class of rational functions in K(x) again comes from the multiplication
on K.
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Definition. Set ϕ(x) = x+x−1. The d-th Chebyshev polynomial is the unique map
such that the diagram

K∗
x 7→xd //

ϕ
��

K∗

ϕ
��

K
Td // K

(1.2)

commutes.

1.17. The Chebyshev polynomials are named after the Russian mathematician
Чебышёв. We choose the transliteration Chebyshev which is common but far from
unique.
For all z ∈ K the representation z = x+x−1 is unique. Hence, such a map Td exists
and is unique. In fact, Td is a monic integer polynomial of degree d. Chebyshev
polynomials are given by the recursive formula T1(x) = x, T2(x) = x2 − 2 and
Td(x) = xTd−1(x) − Td−2(x), for d ≥ 3. See [Si07], Proposition 6.6, for proofs of
these properties. The iteration of the d-th power map gives also rise to a simple
iteration of Td. We have T

(n)
d (x) = Tdn(x). Using the fact that ϕ maps the unit

circle onto the interval [−2, 2] one can prove that the Julia set of every Td(x), d ≥ 2,
is [−2, 2] (see also Remark 5.7).

The last class of rational functions we introduce in this chapter are Lattès maps.
The construction of Lattès maps is quite similar to the construction of Chebyshev
polynomials, although the algebraic structure is given by the addition on an elliptic
curve.

Definition. Let E be an elliptic curve defined over K with given self-morphism
Ψ 6= [0] of degree greater than one, and let Γ be a non-trivial subgroup of Aut(E).
A rational function f is called Lattès map associated to E if the diagram

E
Ψ //

π
��

E

π
��

P1
K

f // P1
K

(1.3)

commutes. Here, π factors as π : E → E/Γ
∼−→ P1

K . Notice that the quotient curve
E/Γ is indeed isomorphic to P1

K . If it is necessary to be more precise, we call such a
Lattès map associated to E, π and Ψ.

We talk of a Lattès map over a field K, if it is associated to an elliptic curve defined
over K. Write E : y2 = x3 +Ax+B, then, up to change of coordinates on P1, there
are the following possibilities for π (see [Si07], Proposition 6.37):

π(x, y) =


x , in any case
x2 , if jE = 1728
x3 , if jE = 0
y , if jE = 0

(1.4)
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This means that any π in the diagram (1.3) is of the form g ◦ π′, with π′ as above
and g ∈ K(x) of degree one.

Remark 1.18. a) Let E be an elliptic curve defined over K with homomorphism
Ψ : E → E of degree ≥ 2, and let Γ be any non-trivial subgroup of Aut(E). Then
there always exists a Lattès map f associated to E, Ψ and π, for any π that factors
as π : E → E/Γ

∼−→ P1
K .

b) One can define Lattès maps by a commutative diagram (1.3), where π is allowed
to be any finite covering (as we have done in the introduction). Then π might
have arbitrary large degree. However, both definitions yield exactly the same class
of rational functions. See [Mi06], Theorem 3.1, for the complex case and use the
Lefschetz principle for the case of an arbitrary field of characteristic zero.

1.19. With the notation from (1.3) we have π(Etors) = PrePer(f) (see [Si07], Propo-
sition 6.44, or Lemma 1.23 below). As all critical points of f are preperiodic (see
[Si07], Proposition 6.45, for a much stronger result) [Be], Theorem 4.3.1, implies
that the Julia set of a Lattès map is the Riemann sphere. A nice article on these
maps defined over C, including historical information, is [Mi06].

Example 1.20. Take the elliptic curve E : y2 = x3 +1 defined over Q. The addition
law for elliptic curves (see [BG], Proposition 8.3.8) yields

[2](x, y) =

(
x4 − 8x

4x3 + 4
,
x6 + 20x3 − 8

8y3

)
,

for all (x, y) ∈ E with y 6= 0, and [2](x, y) = O if y = 0. The Lattès map f associated
to E, π(x, y) = x and [2] is determined by f(π(x, y)) = π([2](x, y)). Hence, we have
f(x) = x4−8x

4x3+4
.

Proposition 1.21. Let f be any Lattès map over Q, with deg(f) ≥ 2. There is a

Lattès map g ∈ Q(x) such that ĥf = ĥg, and g ◦ π = π ◦ [m], for an integer m ≥ 2.

Proof: Any morphism Ψ : E → E of degree ≥ 2 is of the form Ψ = τT ◦ Φ, where
τT is the translation by T ∈ E(Q) and Φ is an isogeny. As we assume that there
exists a Lattès map associated to E and Ψ, we know that T is a torsion point (see
[Si07], Corollary 6.58). Let m− 1 be the order of T . Then, for every P ∈ E(Q) we
have

[m] ◦Ψ(P ) = [m]Φ(P ) + [m]T = Φ([m]P ) + T = Ψ ◦ [m](P ) .

According to Remark 1.18 a) there exists a Lattès map g associated to E, π and
[m]. As Ψ and [m] commute, the associated Lattès maps f and g commute also. By

Lemma 1.10 we get ĥf = ĥg. �

It is trivial to see that ĥxd is just the standard logarithmic height h, for every d ≥ 2.
Now let E and f be as in (1.3). Looking at the diagrams (1.2) and (1.3), it is not

surprising that the heights h and ĥTd , respectively ĥE and ĥf , are strongly related.
The next two lemmas make these relations explicit.
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Lemma 1.22. Let Td(x) ∈ Z[x], d ≥ 2, be a Chebyshev polynomial. For all z ∈ Q∗

we have ĥTd(z + z−1) = 2h(z).

Proof: As in (1.2) we define ϕ(x) = x+x−1. We have to check that 1
2
ĥTd ◦ϕ fulfills

the two conditions given in Theorem 1.9 for the canonical height ĥxd = h. Using
the commutativity of (1.2) we get

1

2
ĥTd(ϕ(zd)) =

1

2
ĥTd(Td(ϕ(z))) = d

1

2
ĥTd(ϕ(z)) .

As ϕ has degree two, we also have 1
2
ĥTd ◦ ϕ = 1

2
h ◦ ϕ+O(1) = h+O(1). �

Lemma 1.23. Let K be a subfield of Q, E an elliptic curve defined over K and f
a Lattès map associated to E with diagram (1.3). Then we have

ĥf ◦ π = deg(π)ĥE .

Proof: If π = g◦π′ with g ∈ K(x), deg(g) = 1, and π′ as in (1.4), then the equation

g−1 ◦ f ◦ g ◦ π′ = g−1 ◦ f ◦ π = g−1 ◦ π ◦Ψ = π′ ◦Ψ (1.5)

shows that g−1 ◦ f ◦ g is a Lattès map associated to E and π′. Using Lemma 1.11 i)

we get ĥf ◦ π = ĥg−1◦f◦g ◦ π′. Hence we may assume that π is given as in (1.4). By
Lemma 1.21 we can also assume that Ψ = [m] in (1.3), for an integer m ≥ 2. Then

we know that deg(f) = deg([m]) = m2. We will prove that deg(π)−1ĥf ◦ π has the

defining properties of ĥE given in Theorem 1.5. For any P ∈ E(Q) we have

deg(π)−1ĥf (π([m]P )) = deg(π)−1ĥf (f(π(P )) = m2 deg(π)−1ĥf (π(P )) .

Thus property i) holds. In all cases for π the function π2 is even. As above we use
Theorem 1.9 and (1.3) to see

2ĥf (π(P )) = 2(h(π(P )) +O(1)) = h(π2(P )) +O(1) ,

which proves property ii) in Theorem 1.5 for the map π2. �

1.4 Helpful calculations

We will use this section to state three technical lemmas. These results will be used
in Section 3.

Lemma 1.24. Let p and q be different rational primes. For all n ∈ N the prime q
is unramified in Kn := Q(p1/pn).

Proof: The discriminant d of the Q-basis {1, p1/pn , p2/pn , . . . , pp
n−1/pn} of Kn is by

definition the discriminant of the polynomial f(x) = xp
n − p, which we denote

by disc(f). We have disc(f) = ±Res(xp
n − p, pnxp

n−1), where Res denotes the
resultant. For this fact and a definition of Res we refer to [Co], Section 3.3.2.
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Res(xp
n − p, pnxpn−1) is (after permutation of the columns) just the determinant of

a triangular matrix which has only powers of p on the diagonal. We conclude that
d is a power of p.
The conductor of Z[p1/pn ] is the ideal F := {α ∈ OKn|αOKn ⊆ Z[p1/pn ]}. As d ∈ F
and d = pk, for some k ∈ N, we see that qOKn and F are coprime. Hence [Ne],
I. Satz 8.3, tells us that q ramifies in Kn if and only if f(x) = xp

n − p mod q has
multiple roots. As q 6= p, this is not the case. �

Lemma 1.25. Let K be a field with discrete valuation v and let L/K be a finite and
K ′/K any field extension. We choose any field which contains L and K ′ and build
the compositum LK ′ in this field. For all places w′ | v on K ′L define v′ = w′|K′ and
w = w′|L. If the residue field k(v) is perfect, then we have ew′|v′ ≤ ew|v.

Proof: Denote by M the maximal unramified extension of Kv inside Lw. Then
M/Kv is unramified and Lw/M is totally ramified (see [La], II Proposition 10).
Hence we have ew|v = [(KL)w : M ]. See for example [Ne], II Satz 7.2, for the fact
that K ′v′M/K ′v′ is also unramified. Thus we know ew′|v′ ≤ [(K ′L)w′ : K ′v′M ]. Using
the equation (K ′L)w′ = LwK

′
v′ we get

ew|v = [(KL)w : M ] ≥ [(K ′L)w′ : K ′v′M ] ≥ ew′|v′

as desired. �

The real Lambert-W function W : [− 1
e
,∞)→ R is given as the multivalued inverse

map of F (x) = xex, where e is the Euler constant. We have W (− 1
e
) = −1, but

elements in (− 1
e
, 0) have two pre-images under F . Thus W has two branches in

the interval [− 1
e
, 0). The upper branch W0(x) tends to 0 for x ↗ 0 and the lower

branch W−1(x) tends to −∞ for x ↗ 0. We do not need deep information on the
Lambert-W function and take it mainly as a useful notation. For more information
on this function we refer to [CGHJK].
Similarly to [BP05], Lemma 15, we will use the following lemma.

Lemma 1.26. Let a, b > 0 be positive constants with b ≥ a and let r : R+ → R be
given by r(x) = ax− b− log x. Then − 1

a
W−1(−ae−b) is the greatest root of r(x) and

r(x) is positive for all x > − 1
a
W−1(−ae−b). Moreover we have the inequalities

5

8
< −1

a
W−1(−ae−b) < 8

5a
(log

1

a
+ b) .

Proof: The function r(x) obviously tends to plus infinity, so we have to find the
roots of r(x) in order to prove the Lemma. We have

ax− b− log x = 0
⇔ e−axx = e−b

⇔ −axe−ax = −ae−b
⇔ x ∈

{
− 1
a
W0(−ae−b),− 1

a
W−1(−ae−b)

}
Our assumption on b provides that W0(−ae−b) and W−1(−ae−b) are defined. As
we have − 1

a
W0(−ae−b) ≤ − 1

a
W−1(−ae−b) we know that r(x) ≥ 0, for all x ≥
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− 1
a
W−1(−ae−b). This proves the first part of the Lemma. Now let y be in the

interval [− 1
e
, 0). By definition we have y = W−1(y)eW−1(y). Multiplying this equation

by −1 and taking the logarithm yields

log(−y) = log(−W−1(y))+W−1(y) = W−1(y)

(
1− log(−W−1(y))

−W−1(y)

)
≤ e− 1

e
W−1(y).

As −W−1(y) ≥ 1 this leads to the inequality

W−1(y) ≤ log(−y) ≤ e− 1

e
W−1(y) . (1.6)

As we assume b ≥ a, we know that −ae−b is in the interval [− 1
e
, 0). We apply (1.6)

to y = −ae−b and multiply the inequalities by − 1
a

to achieve

e

(e− 1)a
(log

1

a
+ b) ≥ −1

a
W−1(−ae−b) ≥ 1− log a

a
≥ e− 1

e
.

For the second inequality we again use the assumption b ≥ a. The estimation
e

e−1
< 8

5
concludes the proof. �
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2 The Bogomolov property

The main task in this thesis is to study lower bounds for the heights we discussed in
the last chapter. Northcott’s theorem implies that the height of an algebraic number
of low degree cannot become an arbitrary small positive number. An interesting
question is which other properties of an algebraic number yield a lower bound of its
height. We adopt the notation of Bombieri and Zannier in [BZ01] for the following
definition.

Definition. Let L be a subfield of Q and f ∈ Q(x) with deg(f) ≥ 2. We say L has

the Bogomolov property relative to ĥf if and only if there exists a constant c > 0

such that ĥf (α) ≥ c for all α ∈ L \ PrePer(f).
If E is an elliptic curve defined over Q, we have a similar definition. We say L has
the Bogomolov property relative to ĥE if and only if there exists a constant c > 0
such that ĥE(P ) ≥ c for all P ∈ E(L) \ Etor.

By Proposition 1.3 this means that the height on L is either zero or bounded from
below by a positive constant. Classically f is a d-th power map. In this case ĥf = h
and PrePer(f) = {0}∪µ, the set of roots of unity. According to Northcott’s theorem
it is trivial to see that every number field has the Bogomolov property relative to
every canonical height. There are some results regarding the case of power maps
and elliptic curves. Notice that the Bogomolov property in general is not preserved
under finite field extensions. A counterexample in the power map case can be found
in [ADZ11] or in 5.16 below. Example 4.10 also provides a counterexample for the
case of Néron-Tate heights on elliptic curves. These counterexamples are already
obtained after a field extension of degree two.

2.1 Known results

We will summarize the known results of fields with the Bogomolov property. Let
Qtr be the maximal totally real subfield of Q. Furthermore, let K be a number field
with non-archimedean v ∈MK . Denote by Kab the maximal abelian field extension
of K, and by Knr,v the maximal algebraic extension of K which is unramified at v.

Definition. Let p be a rational prime and e, f ∈ N. We call a subfield L of Q totally
p-adic of type (e, f) if for every α ∈ L and all w ∈MQ(α) with w | p, the ramification
indices ew|p are bounded by e and the residue degrees fw|p are bounded by f.

Example 2.1. Let K be a number field and K(d) be the compositum of all fields F
with [F : K] ≤ d. For a non-archimedean absolute value v | p on K there are only
finitely many field extensions of Kv of degree d. See for example [Na], Corollary
2 of Theorem 5.27. So, [K(α)w : Kv] is uniformly bounded for all α ∈ K(d) and
w | v, w ∈ MK(α). Especially ew|p and fw|p are uniformly bounded for all α ∈ K(d).
If we denote these bounds by e and f, then K(d) is a totally p-adic field of type
(e, f). Recently Checcoli and Widmer proved that also the field (· · · (K(d))(d) · · · )(d)

obtained after a finite iteration of this process is totally p-adic of type (e′, f′) for
some e′, f′ ∈ N (see [CW11]).
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Now we can summarize the known positive results for fields with the Bogomolov
property relative to h in Table 1. The lower bounds for h on Qtr and Qab (see
[AD00] and [IMPW]) are effective. For detailed results on the height h on totally
real numbers see Section 5.1.

Field Reference

Qtr Schinzel [Sch73]
finite extensions of Kab Amoroso, Zannier [AZ00]

totally p-adic fields of any type Bombieri, Zannier [BZ01]
Q(Etor), E/Q elliptic curve Habegger [Ha11]

Table 1: Fields with the Bogomolov property relative to h

The result of Bombieri and Zannier is semi-effective, as it provides a lower bound
for the limes inferior in the set {h(α)|α in any totally p-adic field of type (e, f)}.
With little more effort the bound can be made effective, as we will show next.

Proposition 2.2. Let p be a prime, and let L be any totally p-adic field of type
(e, f). There exists a positive constant cp,e,f only depending on p, e and f such that
h(α) ≥ cp,e,f for all α ∈ L∗ \µ. Moreover there are only finitely many roots of unity
in L. If the extension L/Q is galois, we have h(α) > 2

M(log(3M))3
for all α ∈ L∗ \ µ,

where M := (2e(pf + 1))2.

Proof: Let L/Q be galois and let α ∈ L be of degree d = [Q(α) : Q] ≥ pf. [BZ01],
Theorem 3, implies the lower bound

h(α) ≥ − log d

2d− 2
+

d

e(2d− 2)

(
1

pf + 1
− 1

d

)
log p . (2.1)

In the formulation of Bombieri and Zannier there appears a so called normalized
variance. We have just used the fact that this variance is always non-negative. In
particular, (2.1) implies

h(α) ≥ − log d

2d− 2
+

1

2e

(
1

pf + 1
− 1

d

)
log p . (2.2)

We claim that this is greater than 1
18e(pf+1)

whenever d ≥ M := (2e(pf + 1))2. As

the right hand side of (2.2) is a monotonically increasing function in terms of d it
suffices to verify the claim for d = M . Hence, we plug M in (2.2), and get

h(α) > − log(2e(pf + 1))

(2e(pf + 1))2 − 1
+

log p

2e

(
1

pf + 1
− 1

(2e(pf + 1))2

)
=
−2e(2e(pf + 1))2 log(2e(pf + 1)) + (4e2(pf + 1)− 1)((2e(pf + 1))2 − 1) log p

((2e(pf + 1))2 − 1)(2e(2e(pf + 1))2)
.

In the following calculations we use several times the fact that 2e(pf+1) is at least 6.
Moreover, we use the rough estimates log(2e(pf + 1)) < 1

3
(2e(pf + 1)) and log p > 1

2



2 THE BOGOMOLOV PROPERTY 23

to obtain

h(α) >
−16

3
e4(pf + 1)3 + 8e4(pf + 1)3 − 2e2(pf + 1)− 2e2(pf + 1)2

((2e(pf + 1))2 − 1)(2e(2e(pf + 1))2)

>
−16

3
e4(pf + 1)3 + 8e4(pf + 1)3 − 2

9
e4(pf + 1)3 − 2

3
e4(pf + 1)3

2e(2e(pf + 1))4

=
1

18e(pf + 1)
,

proving the claim. Until now we have not assumed that α is no root of unity.
Therefore, the above estimate shows that there are only finitely many roots of unity
in L. From now on let α ∈ L∗ be no root of unity, and of degree d ≤ M . If d = 1
we have h(α) ≥ log 2. For d ≥ 2 we apply a general lower bound for the height of α
due to Voutier (see [Vo96], Corollary 2). Namely, h(α) > 2

d2(log(3d))3
≥ 2

M2(log(3M))3
.

With this we can conclude

h(α) > min{log 2,
2

M2(log(3M))3
,

1

18e(pf + 1)
} =

2

M2(log(3M))3
, (2.3)

for all α ∈ L∗ \µ. If the extension L/Q is not galois, then we claim that the normal

closure of L is a totally p-adic field of type (e′, f′), with e′, f′ ∈ N only depending on
p, e and f. Then we can apply the bound (2.3) with e and f replaced by e′ and f′.
We fix an algebraic closure of Qp and define the compositum of all field extensions

of Qp of degree at most ef in this algebraic closure by Q(ef)
p . As noticed in Example

2.1 there are only finitely many field extensions of Qp of degree not greater than ef .

Hence, the degree [Q(ef)
p : Qp] is finite and it depends only on p, e, and f. Let α be

an arbitrary element in L. For any conjugate α′ of α, and any v | p, v ∈MQ(α′), we

have [Q(α′)v : Qp] ≤ ef . In particular, all conjugates of α lie in Q(ef)
p , proving the

claim and the proposition. �

The known results for Bogomolov properties of elliptic curves relative to Néron-Tate
heights are summarized in Table 2. Of course, a given field can have the Bogomolov
property relative to ĥE and not relative to ĥE′ , for elliptic curves E and E ′. The
lower bounds for ĥE are effective in the cases Qtr and Qtr(i), for E defined over Qtr,
and in the case of a totally p-adic field of any type (see [BP05]). The result of Baker
concerning finite extensions of Knr,v is a partial result in [Ba03], Section 5 (Case 1),
and is actually valid for all fields with bounded ramification index over v.
Notice that the results of Zhang, Baker (see [Gu07] and 3.10) and Baker & Silverman
(see [BS04]) are true for heights on abelian varieties. The generalization of a Tate
curve in case of finite extensions of Knr,v is an abelian variety which is totally
degenerate at v.

2.2 Applications to dynamical heights

Let Td again be a Chebyshev polynomial, E an elliptic curve and f a Lattès map
associated to E. From Lemmas 1.22 and 1.23 it follows directly that the Lehmer
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Field Restrictions Reference

finite extensions of Qtr none Zhang [Zh98]
Kab E/K Baker, Silverman [Ba03],[Si04]

totally p-adic of any type p ≥ 3 Baker, Petsche [BP05]
finite extensions of Knr,v E/Kv a Tate curve Baker [Ba03]

Q(Etor) E/Q Habegger [Ha11]

Table 2: Fields with the Bogomolov property relative to ĥE

conjecture 1.4 is equivalent to the dynamical Lehmer conjecture 1.12 for ĥTd , and

that the elliptic Lehmer conjecture 1.6 for ĥE is equivalent to the dynamical Lehmer
conjecture 1.12 for ĥf .

It is also easy to see that the Bogomolov property relative to ĥTd implies the Bogo-
molov property relative to h. However, the converse of this statement is false. In
Section 5.3 we will see, that Qtr does not have the Bogomolov property relative to
ĥTd .

Theorem 2.3. Let K be a number field, p a rational prime and e, f ∈ N. Then the
following fields have the Bogomolov property relative to ĥTd

i) Kab and

ii) totally p-adic fields of type (e, f).

Moreover, Td has only finitely many preperiodic points in a totally p-adic field of
type (e, f).

Proof: First, we notice that the preperiodic points of Td are exactly the images of
roots of unity under the map ϕ(z) = z + z−1. Use Lemma 1.22 and Kronecker’s
theorem to see this. Hence, a pre-image of an element in Q \ PrePer(Td) under the
map ϕ is no root of unity.

i) Let α be an arbitrary element in Kab \PrePer(Td). Take a pre-image β of α under
the map ϕ. Then we have [Kab(β) : Kab] ≤ 2. By Lemma 1.22 and [AZ00], Theorem
1.1, we get

ĥTd(α) = 2h(β) ≥ c(K)

(
log 4

log log 10

)−13

,

for a constant c(K) > 0 only depending on the ground field K.

ii) Let L be a totally p-adic field of type (e, f), and let α ∈ L\PrePer(Td) be arbitrary
and β a pre-image of α under the map ϕ. Then L(β) has degree at most two over L,
and the multiplicativity of the ramification index and the residue degree yields that
L(β) is a totally p-adic field of type (2e, 2f). Proposition 2.2 yields a lower bound
for h(β) depending only on e, f and p. Hence, Lemma 1.22 tells us that the positive

lower bound for ĥTd(α) also just depends on e, f and p. Proposition 2.2 also provides
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finiteness of roots of unity in the union of totally p-adic fields of type (2e, 2f). This
yields the finiteness of preperiodic points of Td in L. �

Let E again be an elliptic curve defined over a number field and f a Lattès map
associated to E. The Bogomolov property relative to ĥf implies the Bogomolov

property relative to ĥE. But again the converse is not true in general (see Example
4.10). Nevertheless, we can give a condition in which case the converse is true.

2.4. Let E : y2 = x3 + Ax + B be an elliptic curve defined over a field K of
characteristic 6= 2, 3 and let γ ∈ K∗. The elliptic curve

Eγ : y2 = x3 + γ2Ax+ γ3B

defined over K(γ) is the twist of E by γ. Notice that this is a Weierstrass equation
of the curve given by y2 = γ(x3 + Ax + B). If A, respectively B, is equal to zero,
then Eγ is defined over K(γ3), respectively K(γ2). E and Eγ are isomorphic over
K and an isomorphism is given by

gγ : E→̃Eγ ; (x, y) 7→ (γx, γ
√
γy) .

As gγ is an isomorphism, it commutes with multiplication by m ∈ Z. This gives a
simple relation between the canonical heights on E and Eγ. For any P ∈ E we have

ĥE(P ) =
1

2
lim
n→∞

1

4n
h(x([2]nP )) =

1

2
lim
n→∞

1

4n
h(γx([2]ngγ(P ))) = ĥEγ (gγ(P )) . (2.4)

Proposition 2.5. Consider a field Q ⊆ K ⊆ Q. Let E be an elliptic curve defined
over K and f a Lattès map related to the diagram (1.3). If there is a positive constant
c > 0 such that for every elliptic curve E ′ defined over K, which is K-isomorphic
to E, ĥE′(P ) ≥ c is true for all P ∈ E ′(K) \ E ′tor, then we have

ĥf (α) ≥ deg(π)c for all α ∈ K \ PrePer(f) .

In particular this relation is true if c only depends on the j-invariant of E.

Proof: We write again E : y2 = x3 + Ax + B. As in the proof of Lemma 1.23 we
use (1.3) and Lemma 1.11 i) to reduce to the case where π is of the form given in
(1.4). Take an arbitrary α ∈ K \ PrePer(f) and a point P ∈ E(K) with π(P ) = α.
As α is non-preperiodic we know that P is not a torsion point. Below we will prove
that there exists a γ ∈ K such that gγ(P ) ∈ Eγ(K). Then we can use Lemma 1.23,
(2.4) and our assumption to conclude

ĥf (α) = deg(π)ĥE(P ) = deg(π)ĥEγ (gγ(P )) ≥ deg(π)c .

In order to prove the existence of such a γ we have to consider four different cases
depending on the representation of π.
First, let π be the projection on the x-coordinate. Define β := α3 + Aα + B. If
β is a square in K, then P is in E(K) and there is nothing more to prove. Let
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β be no square in K and fix a square root
√
β in the algebraic closure such that

P = (α,
√
β). Then gβ(P ) = (αβ, β2) ∈ Eβ(K).

In the second case we take π(x, y) = x2. Notice that this can only occur if jE = 1728,
so we can assume E : y2 = x3 + Ax. This follows directly from the formula for jE,
see [Si09], page 45. For fixed roots we have P = (

√
α, 4
√
α
√
α + A). If α is in K2,

we get g√α(α+A)(P ) ∈ E√α(α+A)(K) similar to the first case. If α is no square in

K, then we first twist E by
√
α and see that g√α(P ) = (α, α

√
α + A) ∈ E√α(K).

As in the first case g√α(P ) is either in E√α(K) or can be seen as an element of
(E√α)α+A(K). Both yields the desired result. The elliptic curves (E√α)α+A and

E√α are both defined over K, since B = 0 and
√
α ∈ K1/2 (see 2.4).

The cases π1(x, y) = x3 and π2(x, y) = y are only possible if jE = 0, so we have
E : y2 = x3 + B (see again [Si09], page 45). As seen in 2.4 we can twist E by an
element in K1/3 and get an elliptic curve which is still defined over K. For fixed
roots P1 = ( 3

√
α,
√
α +B) and P2 = ( 3

√
α2 −B,α) are pre-images of α under π1,

respectively π2. If a twist is necessary, then for π1 twist E by γ1 := 3
√
α
−1

and for π2

twist E by γ2 := 3
√
α2 −B−1

. Each case yields x(gγi(P )) = 1 ∈ K, y(gγi(P )) ∈ K1/2

and Eγi is defined over K. Thus we can proceed as in the first case. �

Corollary 2.6. Let Qtr be the maximal algebraic totally real field extension of Q
and let f be a Lattès map associated to an elliptic curve E over Qtr, with j-invariant
jE. Then we have

ĥf (α) ≥ 1

108(h(jE) + 10)5
for all α ∈ Qtr \ PrePer(f) .

Proof: See [BP05], Theorem 17, for the result concerning ĥE. The corollary then
follows immediately from Proposition 2.5. �

Corollary 2.7. Now let K be a number field, p an odd prime and E an elliptic
curve defined over K having no additive reduction at all places of K lying above
p. If L/K is a totally p-adic field of type (e, f), for e, f ∈ N, and f a Lattès map
associated to E with diagram (1.3), then we have:

i) ĥf (α) ≥ 25
256

( log p
6eM

)3(log(6eM) + log p
3e

+ 1
6
h(jE) + 32

5
)−2 for all α ∈ L \PrePer(f)

ii) |PrePer(f) ∩ L| ≤ 24eM
5 log p

(log(6eM) + log p
3e

+ 1
6
h(jE) + 32

5
) + 2,

where M = max{p6f + 1 + 2p3f, 72eν} , with ν the maximum of 0 and − ordw(jE)
for all places w ∈MK lying above p.

Proof: The results concerning ĥE can be found in [BP05], Theorem 21. In gen-
eral, the reduction type of an elliptic curve over a place v is not preserved under
K-isomorphisms. So we cannot apply Proposition 2.5 to prove i). By the multi-
plicativity of the ramification index and the residue degree (Lemma 1.1 iv)), every
extension of L of degree n is a p-adic field of type (ne, nf). Let α ∈ L be arbitrary
and P ∈ E(K) with π(P ) = α. Then P is defined over a p-adic field of type (6e, 6f),
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since the degree of π is at most 6. Moreover, P is a torsion point if and only if α is
preperiodic (see 1.19).
If α is not preperiodic, then Lemma 1.23 applied for [BP05], Theorem 21, yields
statement i).
If α is preperiodic, then P is a torsion point. Applying [BP05], Theorem 21, we find
that there are at most

c :=
48eM

5 log p
(log(6eM) +

log p

3e
+

1

6
h(jE) +

32

5
)

choices for P . Denote the set of critical values of π by CritVal(π). By the Riemann-
Hurwitz formula we get |CritVal(π)| ≤ 2 deg(π). Apart from the critical values,
every α ∈ L has exactly deg(π) pre-images under π. This implies

|PrePer(f) ∩ L| = |π(Etor) ∩ L| ≤
c− |CritVal(π)|

deg(π)
+ |CritVal(π)|

≤ c

deg(π)
+ 2 deg π − 2 .

Clearly, we have c ≥ 24. With this and the fact 2 ≤ deg(π) ≤ 6 we conclude that the
maximum of the right hand side is attained by deg π = 2, which proves statement
ii). �

We have already noticed that the set of preperiodic points of a Chebyshev polynomial
Td is given by {ζ+ ζ−1|ζ ∈ µ}. In particular, Q(PrePer(Td)) is an abelian extension
of Q. The preperiodic points of the map xd are exactly the roots of unity. Hence,
the theorem of Amoroso and Dvornicich in [AD00] and Theorem 2.3 imply that

the field Q(PrePer(f)) has the Bogomolov property relative to ĥf , whenever f is a
power map or a Chebyshev polynomial.

Question 2.8. For which rational functions f ∈ Q(x), with deg(f) ≥ 2, does the

field Q(PrePer(f)) have the Bogomolov property relative to ĥf?

According to the results of Habegger (see Tables 1 and 2) it seems to be very likely
that a Lattès map over Q yields a positive answer to Question 2.8.
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3 Heights and ramification / Non-effective results

3.1 Introduction

We use the notations from Chapter 1. The starting point of our research is the
following theorem.

Theorem 3.1 (Gubler). Let K be a number field and let A be an abelian variety
defined over K which is totally degenerate at a finite place v ∈ MK. Further, let L
be an ample even line bundle and K ′ be a finite extension of Knr,v. Then there is an
ε > 0 such that ĥL(P ) ≥ ε for all non-torsion points P ∈ A(K ′). Moreover, there
are only finitely many torsion points in A(K ′).

Proof: See [Gu07], Corollary 6.7. �

An abelian variety A of dimension n is called totally degenerate at v if the analytifi-
cation in the sense of Berkovich Aanv is isomorphic to (Gnm)anv /M, where M is a lattice
in Gn

m(Cv). In case that A is an elliptic curve this is precisely the definition of a
Tate curve defined over Cv; i.e. Aanv

∼= (Gm)anv /qZ, |q|v < 1. Note that an elliptic curve
is a Tate curve over Cv if and only if E has potential multiplicative reduction at v.
For a proof and details on this topic we refer to [Si94], Chapter V §5, and [Si09],
Section VII.5.
Let K be a number field and let v ∈ MK be finite. Moreover, let E be an elliptic
curve with potential multiplicative reduction at v and f a Lattès map associated
to E. The j-invariant of E is no algebraic integer (see [Si09], Proposition VII.5.5),
hence (1.4) tells us that deg(π) = 2. The same argument yields that E does not
have complex multiplication (see [Si94], Theorem II.6.1). The goal of this section is
to prove that Knr,v, the maximal algebraic extension of K which is unramified at v,
has the Bogomolov property relative to ĥf . The bound c > 0 in Theorem 3.1 follows
from an equidistribution theorem and is non-effective. We have no information how
c changes under K-isomorphisms and hence we cannot use Proposition 2.5.
In Section 3.2 we will show that the Bogomolov property for Knr,v relative to ĥf
does not follow directly from Theorem 3.1. In Section 3.3 we use the dynamical
equidistribution Theorem 1.15 to give a direct non-effective proof of the desired
result. In the last section we generalize Theorem 3.1 such that the Bogomolov
property of Knr,v relative to ĥf will be an easy corollary.

3.2 A naive approach

We fix a number field K and a non-archimedean v ∈MK . Let E be an elliptic curve
with potential multiplicative reduction at v and let f be a Lattès map with diagram
(1.3).

With Lemma 1.23 the Bogomolov property for Knr,v relative to ĥf would be a direct
consequence of Theorem 3.1 if [Knr,v(π−1(Knr,v)) : Knr,v] is finite. We will give an
example to show that this is generally not the case.
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Lemma 3.2. Let α be an algebraic integer with prime ideal decomposition αOQ(α) =
P e1

1 · · ·P er
r . If ei, i ∈ {1, . . . , r}, is odd, then Pi ramifies in Q(

√
α). Especially, the

rational prime p ramifies in Q(
√
α) if p | N(α) and p2 - N(α), where N denotes the

norm of an algebraic number.

Proof: Since we have αOQ(
√
α) = (

√
αOQ(

√
α))

2, we see that every exponent of a
prime ideal in

αOQ(
√
α) = (P1OQ(

√
α))

e1 · · · (PrOQ(
√
α))

er

is even. This shows that Pi ramifies in Q(
√
α) whenever ei is odd. �

Lemma 3.3. Let p and q be rational primes congruent to 1 modulo 36. Then
3OQ(

√
p) = P1P2 and 3OQ(

√
q) = Q1Q2, for distinct prime ideals P1 and P2 (resp. Q1

and Q2) in OQ(
√
p) (resp. OQ(

√
q)). Further we have

i) 3 splits completely in Q(
√
p,
√
q)

ii) P1OQ(
√
p,
√
q) and Q1OQ(

√
p,
√
q) have exactly one common prime factor.

Proof: It is well known that 3 splits completely in Q(
√
l) for every l ≡ 1 mod 3

(see [Ne] I, Satz 8.5). Using valuation theory it is easy to see that 3 also splits
completely in the compositum Q(

√
p)Q(

√
q) = Q(

√
p,
√
q). A proof of this fact

which uses only ideal theoretical methods can be found in [Sch], Theorem 3.2.4.
It remains to prove statement ii). Using the first statement we know that every
ideal in {P1, P2, Q1, Q2} decomposes in a product of exactly two distinct prime
ideals over Q(

√
p,
√
q). Let us assume we have P1OQ(

√
p,
√
q) = Q1OQ(

√
p,
√
q) = P1P2.

Intersection of both sides with OQ(
√
p) yields

P1 = (Q1OQ(
√
p,
√
q)) ∩ OQ(

√
p) .

We want to show that the right hand side of this equation is equal to 3OQ(
√
p). As

p and q are congruent to 1 modulo 4, we know that{
1,

1 +
√
p

2
,
1 +
√
q

2
,
(1 +

√
p)(1 +

√
q)

4

}
is a Z-basis of OQ(

√
p,
√
q) (see [Zi06], Satz 2.9). We can write an arbitrary element

in (Q1OQ(
√
p,
√
q)) ∩ OQ(

√
p) in the form(

a+ b(
1 +
√
q

2
)

)(
c+ d(

1 +
√
p

2
) + e(

1 +
√
q

2
) + f(

(1 +
√
p)(1 +

√
q)

4
)

)
=α1 + α2

√
p+ α3

√
q + α4

√
pq ,

with a, b, c, d, e, f ∈ Z and

α1 = (a+
b

2
)(c+

d

2
+
e

2
+
f

4
) + (

b

2
(
e

2
+
f

4
)q)

α2 = (a+
b

2
)(
d

2
+
f

4
) + q

bf

8

α3 = (a+
b

2
)(
e

2
+
f

4
) +

b

2
(c+

d

2
+
e

2
+
f

4
)

α4 = (a+
b

2
)
f

4
+
b

2
(
d

2
+
f

4
) .
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We have the following properties:

I) 3 | N(a+ b(
1+
√
q

2
)) = a2 + ab+ (1− q) b2

4

II) α3 = ae
2

+ af
4

+ be
2

+ bf
4

+ bc
2

+ bd
4

= 0

III) α4 = af
4

+ bf
4

+ bd
4

= 0

Using II) and III) we can write our chosen element as

ac+
ad

2
+ (q − 1)

be

4
+ (q − 1)

bf

8︸ ︷︷ ︸
:=α5

+ (
ad

2
+ (q − 1)

bf

8
)︸ ︷︷ ︸

:=α6

√
p.

In order to prove that this element lies in 3OQ(
√
p), it suffices to show that 3 divides

2α5 and 2α6. It is clear that 3 divides q − 1, hence we are done if 3 also divides a.
So let 3 - a. Then, by I), we have a ≡ −b mod 3. Putting this into II) leads us to
2α5 ≡ 2ac+ ad ≡ −2bc− bd ≡ 0 mod 3. As 3 - a, III) tells us bd ≡ 0 mod 3. Thus
we have 2α6 ≡ ad ≡ −bd ≡ 0 mod 3.
Now we have P1 = (Q1OQ(

√
p,
√
q)) ∩OQ(

√
p) = 3OQ(

√
p), which clearly is not possible.

This shows that P1 and Q1 cannot have the same prime ideal decomposition in
OQ(

√
p,
√
q). If we assume that they have no common prime ideal factor, then P1 =

Q2 in OQ(
√
p,
√
q), which again leads to a contradiction. Hence, P1OQ(

√
p,
√
q) and

Q1OQ(
√
p,
√
q) have exactly one common prime ideal factor. �

Example 3.4. Take the Tate curve E : y2 = x3 + 1
4
x2 + 6 defined over Q3 and let

π : E → Q3 be the projection on the x-coordinate. We claim that the degree of
Qnr,3(π−1(Qnr,3)) over Qnr,3 is infinite. Notice that

Qnr,3(π−1(Qnr,3)) = Qnr,3(
√

4x3 + x2 + 24|x ∈ Qnr,3) .

Lemma 3.3 tells us that
√
p ∈ Qnr,3 for all primes p ≡ 1 mod 36. Let p be such a

prime. Then N(4
√
p3 + p + 24) = −16p3 + p2 + 48p + 242 is divisible by 3 but not

by 9. Lemma 3.2 tells us that
√

4
√
p3 + p+ 24 is not in Qnr,3. Let q ≡ 1 mod 36,

q 6= p, be another such prime and set α := (4
√
p3 + p+ 24)(4

√
q3 + q+ 24). We have

Q(α) = Q(
√
p,
√
q) and 3 splits completely in Q(α) and every subfield (see Lemma

3.3). Denote by P1, . . . ,P4 the prime ideals in OQ(α) above 3, and let P,Q | 3 be the
prime ideals in OQ(

√
p) (resp. OQ(

√
q)) with 4

√
p3 +p+24 ∈ P and 4

√
q3 +q+24 ∈ Q.

According to Lemma 3.3 we have, without loss of generality, POQ(α) = P1P2 and
QOQ(α) = P2P3. Hence, we have

αOQ(α) = P1P2
2P3I , with I - 3.

Applying Lemma 3.2, P1 and P3 ramify in OQ(
√
α). We can conclude that 3 ramifies

in OQ(
√
α). This is equivalent to the fact

√
α /∈ Qnr,3.

Now we will use a theorem from Kummer theory, for a proof of the following result
we refer to [Ro], Theorem 15.3.1.
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Theorem 3.5. Let F be a field with char(F ) 6= 2 and denote by (F ∗)2 the subgroup
of F ∗ consisting of all squares in F ∗. For any group H with (F ∗)2 ⊆ H ⊆ F ∗ we
define H1/2 := {a ∈ F |a2 ∈ H}. Then we have

[F (H
1/2) : F ] =

∣∣H/(F ∗)2
∣∣ .

Set H = 〈K∗2, {4√p3 + p+ 24|p ≡ 1 mod 36 prim}〉. In order to estimate |H/K∗2|
we notice that for all a, b ∈ H we have

a ≡ b mod K∗2 ⇔ ab−1 ≡ 1 mod K∗2

⇔
√
ab−1 ∈ K ⇔

√
ab ∈ K

But we have shown above that two different elements 4
√
p3+p+24 ∈ H cannot fulfill

this equivalence. From Dirichlet’s prime theorem we know that there are infinitely
many primes congruent 1 modulo 36. Hence, [K(H1/2) : K] = |H/K∗2| = ∞, and
using Theorem 3.5

[Qnr,3(π−1(Qnr,3)) : Qnr,3] = [Qnr,3(
√

4x3 + x2 + 24|x ∈ Qnr,3) : Qnr,3] =∞ .

This example shows that the Bogomolov property for Knr,v relative to ĥf does not
follow directly from Theorem 3.1.

3.3 A direct proof for Lattès maps

For this section we fix the following situation. Let K be a number field and v ∈MK

be non-archimedean with v | p. Further, let E : y2 +xy = x3 +Ax+B be an elliptic
curve defined over K such that E regarded as a curve defined over Cv is a Tate
curve, and let f be a Lattès map associated to E given by a commutative diagram
(1.3). As we have seen in Section 3.1, we can assume that π is the projection on the
x-coordinate. With Proposition 1.21 we can also assume that Ψ = [m], m ∈ Z with
|m| ≥ 2. The valuation v extends uniquely to Kv, from there it extends uniquely
to Kv and finally to Cv. We denote this valuation on Cv again by v. We prove in
this section the following theorem. In Chapter 4 we will obtain an effective version
of this theorem.

Theorem 3.6. The field Knr,v has the Bogomolov property relative to ĥf . In other
words: There is a constant C > 0 such that for all α ∈ Knr,v \ PrePer(f) we have

ĥf (α) > C. Moreover, the set PrePer(f) ∩Knr,v is finite.

The GAGA-functor on Berkovich spaces (see [Ber], Section 3.4) transfers (1.3) into
a commutative diagram

Ean
v

[m]an //

πan

��

Ean
v

πan

��
(P1)anv

fan // (P1)anv
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where Ean
v and (P1)anv are the Berkovich spaces associated to E and P1. GAGA

stands for Géométrie Algébrique et Géométrie Analytique, as it is a non-archimedean
version of the famous paper of Serre with this title. The valuation function on (P1)anv
is defined as

val : (P1)anv → R ∪ {±∞} ; y 7→ − log |X|y.

Here X is the variable in the ring of polynomials Cv[X]. We have E ∼= (Gm)anv /qZ,
q ∈ Cv with |q|v < 1. So there is a canonical valuation function val on Ean

v given by

val : (Gm)anv /qZ → R/v(q)Z ; y 7→ − log |X|y.

Obviously we have val(Ean
v ) = R/v(q)Z.

We have to compare the algebraic dynamical systems (E,L, [m]) and (P1,O(1), f),
where L := π∗O(1) on E is ample and even (see Remark 1.7). As deg(f) = m2,
we have O(1)m

2 ∼= f ∗O(1). The theorem of the cube tells us [m]∗L ∼= Lm
2
. Notice

that, by the commutativity of (1.3), we have [m]∗L = [m]∗π∗O(1) = π∗f ∗O(1). The
canonical metrics ‖.‖f and ‖.‖[m] on O(1), respectively L, have the properties

(fan)∗‖.‖f = ‖.‖m2

f and ([m]an)∗‖.‖[m] = ‖.‖m2

[m].

For details we refer to [Zh95], Section 2, and [Gu10], Section 3. Just using the
definitions of the different maps we get

([m]an)∗(πan)∗‖.‖f = ((πan)∗‖.‖f )m
2

.

This implies the equation

(πan)∗‖.‖f = ‖.‖[m]. (3.1)

We recall from 1.14 that we have the v-adic canonical measures µ[m],v = c1(L, ‖.‖[m])
and µf,v = c1(O(1), ‖.‖f ) associated to (E,L, [m]), respectively (P1,O(1), f). Using
the projection formula (for example [Gu07a], Corollary 3.9 b)) and (3.1) we deduce

(πan)∗µ[m],v = deg(π)µf,v.

This leads us to supp((πan)∗µ[m],v) = supp(µf,v). As µ[m],v is a positive measure we
get

πan(supp(µ[m],v)) = supp((πan)∗µ[m],v) = supp(µf,v). (3.2)

Remark 3.7. Every disk (a, r) around a ∈ Cv with radius r ∈ R, |q|v ≤ r ≤ 1,
gives us a multiplicative seminorm on the Tate algebra Cv{X, qX−1} (this is the
completion of Cv[X, qX

−1] with respect to the gauß-norm induced by v), and hence
a point of Ean

v . Explicitly, |.|(a,r) is given by

|
∑
n∈Z

anX
n|(a,r) = |

∑
n∈Z

bn(X − a)n|(a,r) = max
n∈Z
|bn|vrn.
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The subdomain of Ean
v consisting of all points (0, r), with |q|v < r < 1, is called the

skeleton of E. We denote the skeleton of E by S(E). It is easy to see that val maps
S(E) homeomorphic onto R/v(q)Z. For the general theory of skeletons we refer to
[Ber], Section 6.5, and for more information on our special case we refer to [Gu10],
Example 7.2.

Proposition 3.8. With the same notations as above, we have supp(µ[m],v) = S(E).

Proof: See [Gu10], Corollary 7.3. �

To prove Theorem 3.6, we assume that ĥf has no positive lower bound on Knr,v \
PrePer(f) or that there are infinitely many preperiodic points of f in Knr,v. In both
cases we obtain a sequence {αn}n∈N of pairwise distinct elements in Knr,v such that

lim
n→∞

ĥf (αn) −→ 0 , as n→∞.

We will show that this contradicts (3.2) and Proposition 3.8.

Lemma 3.9. If there is a sequence {αn}n∈N as above, then

supp(µf,v) ⊆ val−1

(
log p

ev|p
Z ∪ {±∞}

)
,

where ev|p is the ramification index of v over p.

Proof: Take y ∈ (P1)anv with val(y) /∈ log p
ev|p

Z∪{±∞}. Choose an open neighborhood

I of val(y) such that I does not contain an element of log p
ev|p

Z. The value group of v

on Knr,v is log p
ev|p

Z and val is continuous. So the open neighborhood Uy := val−1(I)

of y does not contain a rational point of (P1)anv (Knr,v). With Theorem 1.15 we get

µf,v(Uy) = lim
n→∞

[K(αn) : K]−1
∑

α′∈GK(αn)

δα′(Uy) = 0.

So y is no point of supp(µf,v), proving the lemma. �

With Proposition 3.8 and (3.2) we conclude

πan(S(E)) ⊆ val−1

(
log p

ev|p
Z ∪ {±∞}

)
. (3.3)

As πan and val are continuous, log p
ev|p

Z ∪ {±∞} is discrete and S(E) is not, this is

very likely to be impossible. But to prove this we need a better understanding of
the map πan.
In rigid geometry, Tate has described the isomorphism between Gm/qZ and E(Cv).
The x and y coordinate in E(Cv) of an element ζ ∈ Gm/qZ are explicitly given by

x(ζ) =
∞∑

n=−∞

qnζ

(1− qnζ)2
− 2

∞∑
n=1

nqn

(1− qn)
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y(ζ) =
∞∑

n=−∞

q2nζ2

(1− qnζ)3
+
∞∑
n=1

nqn

(1− qn)
.

For a proof and further information on this isomorphism we refer to [Si94], V.3 and
V.4. Thus, πan is defined on rational points of (Gm)anv /qZ by

πan(ζ) =
∞∑

n=−∞

qnζ

(1− qnζ)2
− 2

∞∑
n=1

nqn

(1− qn)
.

As a morphism of strict Cv-affinoid spaces, πan is induced by a homomorphism
(πan)] : Cv[X]→ Cv{X, qX−1} of the related Cv-affinoid algebras (see [Ber], Chap-
ter 2 and [Bo77]). With Tate’s isomorphism we know

(πan)](X) =
∞∑

n=−∞

qnX

(1− qnX)2
− 2

∞∑
n=1

nqn

(1− qn)
.

Thus, for any f(X) ∈ Cv[X] and any y ∈ Ean
v we have

|f(X)|πan(y) =

∣∣∣∣∣f
(

∞∑
n=−∞

qnX

(1− qnX)2
− 2

∞∑
n=1

nqn

(1− qn)

)∣∣∣∣∣
y

.

In order to compute val(πan(0, r)) = − log |X|πan(0,r) for an element (0, r) ∈ S(E)
we have to compute |(πan)](X)|(0,r). We have |qnX|(0,r) = |qn|vr < 1 for all n ≥ 0
and hence ∣∣∣∣ qnX

(1− qnX)2

∣∣∣∣
(0,r)

= |qnX|(0,r)

for all n ≥ 0. Obviously we also have

r = |X|(0,r) = |q0X|(0,r) > |q1X|(0,r) > · · ·

leading to ∣∣∣∣∣
∞∑
n=0

qnX

(1− qnX)2

∣∣∣∣∣
(0,r)

= r. (3.4)

For all negative integers n we have |qnX|(0,r) > 1, and hence∣∣∣∣ qnX

(1− qnX)2

∣∣∣∣
(0,r)

=

∣∣∣∣ 1

qnX

∣∣∣∣
(0,r)

for all n < 0. With the trivial inequalities∣∣∣∣ 1

q−1X

∣∣∣∣
(0,r)

>

∣∣∣∣ 1

q−2X

∣∣∣∣
(0,r)

> · · ·
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we conclude ∣∣∣∣∣
∞∑
n=1

q−nX

(1− q−nX)2

∣∣∣∣∣
(0,r)

=

∣∣∣∣ 1

q−1X

∣∣∣∣
(0,r)

= |q|vr−1. (3.5)

The equation ∣∣∣∣∣2
∞∑
n=1

nqn

(1− qn)

∣∣∣∣∣
(0,r)

=

∣∣∣∣∣2
∞∑
n=1

nqn

(1− qn)

∣∣∣∣∣
v

= |2q|v (3.6)

similarly follows with elementary properties of non-archimedean absolute values.
Since (0, r) is an element of the skeleton, we know |q|v < r < 1. So (3.4), (3.5) and
(3.6) are leading us to

|X|πan(0,r) =

∣∣∣∣∣
∞∑

n=−∞

qnX

(1− qnX)2
− 2

∞∑
n=1

nqn

(1− qn)

∣∣∣∣∣
(0,r)

≤ max{r, |q|vr−1}. (3.7)

If we choose (0, r) ∈ S(E) with 1 < r2 < |q|v and log r /∈ log p
ev|p

Z, then the value in

(3.7) is equal to r. So there is an element with

val(πan((0, r))) = − log |X|πan(0,r) = − log r /∈ log p

ev|p
Z.

This contradicts (3.3) and proves Theorem 3.6. �

3.4 A generalization of the starting point

The proof of Theorem 3.1 actually shows that a stronger formulation than the one
Gubler gave in his paper is also valid. We will reformulate this theorem such that
Theorem 3.6 will be an easy corollary. The generalization is the following. Let K
be a number field and let A be an abelian variety defined over K which is totally
degenerate at a finite place v ∈MK with v | p. For e ∈ N we define

MA
e (v) := {P ∈ A(Q)|ew|v ≤ e for all w ∈MK(P ), w | v} .

The proof of the following theorem is essentially the same as the proof given in
[Gu07]. Nevertheless, we will recall the complete proof here.

Theorem 3.10. Let L be an ample even line bundle on A. For all e ∈ N there exists
an ε > 0 such that ĥL(P ) ≥ ε for all non-torsion points P ∈MA

e (v). Moreover, for
every e ∈ N the number of torsion points in MA

e (v) is finite.

Proof: Assume for the sake of contradiction that the theorem is wrong, and let
A be an abelian variety which is a counterexample of minimal dimension n. By
assumption there exists an integer e and a sequence {Pi}∈N of pairwise distinct

points in MA
e (v) such that ĥL(Pi)→ 0 as i→∞.
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Analogue to Section 3.3 we have a continuous valuation function val : Aanv → Rn/v(M).
There is a finite extension F/Kv such that A(F ′) = (F ′∗)n/M for every algebraic
extension F ′ of F . Denote by d the degree of F over Kv and set F ′ = F (Pi) for
some i ∈ N. Let w′ | v be an arbitrary valuation on F ′ and set w = w′|Kv(Pi). Then,
by the definition of MA

e (v), we have ew′|p = ew′|wew|vev|p ≤ deev|p. We can conclude

that ew′|p divides e′ := (deev|p)!. In particular, val(Pi) lies in the discrete subset
log p
e′ Z/v(M) of R/v(M) for all i ∈ N. The set MA

e (v) is Gal(Q/K)-invariant. Hence,
the sequence {val(GK(Pi))}i∈N cannot be equidistributed in Rn/v(M). We can apply
[Gu07], Corollary 6.6, which follows from the Bogomolov conjecture and the tropical
equidistribution theorem, to conclude that there is an infinite subsequence {Pi}i∈I
contained in t + B, where t is a torsion point in A(Q), and B is a proper abelian
subvariety of A. Define Qi := Pi − t for all i ∈ I. If d′ is the degree of K(t) over
K, then we can conclude as above that for all i ∈ I we have ew|v ≤ d′e, for all
w ∈ MK(Qi), w | v. Hence, the sequence {Qi}i∈I consists of pairwise distinct points
in MB

d′e(v). Let m be the order of t, then we have

ĥL(Qi) = m−2ĥL([m]Qi) = m−2ĥL([m]Pi) = ĥL(Pi)→ 0 ,

as i→∞. This contradicts the minimality of A, which proves the theorem. �

Remark 3.11. Theorem 3.6 follows easily from Theorem 3.10. Let E be an elliptic
curve for which Theorem 3.10 applies, and let f be an associated Lattès map with
diagram (1.3). We have noticed in Section 3.1 that π has degree two. Hence, every
pre-image of an element in Knr,v under π lies in ME

2 (v). As we have PrePer(f) =
π(Etor) (see 1.19), Theorem 3.10 immediately implies that there are only finitely
many preperiodic points of f in Knr,v. For all α ∈ Knr,v \ PrePer(f) we choose

a P ∈ ME
2 (v) \ Etor with α = π(P ). By Lemma 1.23 we can conclude ĥf (α) =

2ĥE(P ) ≥ 2ε, for the positive constant ε from Theorem 3.10.
For simplicity we have restricted the argumentation to the field Knr,v. More gener-
ally, our argumentation is valid for all sets of points in Q with bounded ramification
over v. We refer to the next chapter for more details.
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4 Heights and ramification / Effective results

4.1 Introduction

In this chapter we will prove a generalized effective version of Theorem 3.6. For
the complete chapter we fix the following notations. Let K be a number field with
non-archimedean absolute value v | p, and let E be an elliptic curve defined over K
with j-invariant j. By d we denote the degree [K : Q], and by dv the local degree
[Kv : Qp]. Let further f be a Lattès map associated to E. As in Section 3.4 we
define

Me(v) := {α ∈ Q|ew|v ≤ e for all w ∈MK(α), w | v} and

ME
e (v) := {P ∈ E(Q)|ew|v ≤ e for all w ∈MK(P ), w | v},

for a fixed e ∈ N.
In his proof of Theorem 1.4 in [Ba03], Baker proved that for all e ∈ N there is a

positive constant c, only depending on E, K, v and e, such that ĥE(P ) ≥ c for
all non-torsion points P ∈ ME

e (v). This bound c is non-effective, but as stated in
[Ba03], Remark 5.1, it could be made effective by the methods he used. The result
of Baker is not stated explicitly, it can be found in [Ba03], Section 5, Case 1. Based
on an idea of Sinnou David we will use in Section 4.2 a different proof than Baker
to obtain the following completely explicit theorem.

Theorem 4.1. If E has split-multiplicative reduction at v | p, then there are effective
computable constants c′(j, d, e, v), c′T (j, d, e, v) > 0 only depending on j, d, e and v,

with ĥE(P ) ≥ c′(j, d, e, v) for all P ∈ME
e (v) \Etor and such that there are less than

c′T (j, d, e, v) torsion points in ME
e (v). More precisely, we have

i) ĥE(P ) ≥
log p
2d

c−3 log 2

(8c3−2c)(e! ordv(j−1))2
> 0 for all P ∈ME

e (v) \ Etor

ii) |Etor ∩ME
e (v)| < 1

3
(e!c ordv(j

−1))
3

+ 1
2

(e!c ordv(j
−1))

2
,

where c :=
⌈

10d
log p

(
log( 6d

log p
) + 1

6
h(j) + 32

5

)⌉
.

From this result the (effective version) of the Bogomolov property of Knr,v relative to

ĥf will be an easy corollary as we have seen in Section 3.4. Precisely, the statement
reads as follows.

Theorem 4.2. If E has split-multiplicative reduction at v, then there are effective
computable constants c(j, d, e, v), cP (j, d, e, v) > 0 only depending on j, d, e and v,

with ĥf (α) ≥ c(j, d, e, v) for all α ∈ Me(v) \ PrePer(f) and such that there are less
than cP (j, d, e, v) preperiodic points in Me(v). With the notation of Theorem 4.1,
we have

i) ĥf (α) ≥
log p
2d

c−3 log 2

2(8c3−2c)(e! ordv(j−1))2
> 0 for all α ∈Me(v) \ PrePer(f)

ii) |PrePer(f) ∩Me(v)| < 4
3

(e!c ordv(j
−1))

3
+ (e!c ordv(j

−1))
2

+ 2.
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In the last section of this chapter we study our results in the case of an elliptic curve
that has any reduction type at v. In contrast to Baker’s proof, we can adopt the proof
from Section 4.2 to show that the field Knr,v has the Bogomolov property relative
to ĥE for all E with bad reduction (of any type) at v. This result gives rise to an

example which shows that the Bogomolov property relative to ĥE is not equivalent
to the Bogomolov property relative to ĥf , where f is a Lattès map associated to E.

4.2 Proof of the main results

Proof of Theorem 4.1: Let P be a point in ME
e (v), w | v a valuation on K(P ) and

kP (w) the residue field of K(P )w. We choose a minimal Weierstrass equation for E

over K(P )w. Denote by Ẽ the reduction of E modulo w and by Ẽns the set of all

non-singular points in Ẽ. We set E0(K(P )w) := {P ∈ E(K(P )w)|P̃ ∈ Ẽ(kP (w))ns}.
E0(K(P )w) is a subgroup of E(K(P )w) of index ordw(j−1) = ew|v ordv(j

−1) (see
[Si94], Corolarry IV.9.2). So we have ew|v ordv(j

−1)P ∈ E0(K(P )w). From the
choice of P it is clear that Q := e! ordv(j

−1)P ∈ E0(K(P )w) for all w | v.
We take the local heights (also called Néron functions) λw on E(K(P )w) \ O nor-
malized such that we have the equation

ĥE(P ) =
1

[K(P ) : Q]

∑
w∈MK(P )

dwλw(P ) ∀P ∈ E(K) \O .

We refer to [Si94], Chapter VI, for the details. For all elements P ′ in E0(K(P )w)
and all w | v, w ∈MK(P ), we have

λw(P ′) =
1

2
max{w(x(P ′)−1), 0}+

1

12
w(∆) (4.1)

≥ 1

12
w(j−1) =

1

12
v(j−1) (4.2)

([Si94], Theorem VI.4.1). We recall that a valuation w is defined as w(.) = − log |.|w.
Notice that E has split-multiplicative reduction over K(P ) at every w | v. This
allows us to use the equation w(∆) = w(j−1) (see [Si09], Proposition VII.5.1) to
obtain (4.2).
We define the set Λs = {iQ|i ∈ N, i ≤ s} for all s ∈ N such that Λs consists of

exactly s points. Now we will estimate ĥE(P ), respectively ĥE(Q), using bounds for
the local heights. For any given absolute value w we set w+ to be the maximum of
w and 0.
If w is archimedean, then we can use a theorem of Elkies improved by Baker and
Petsche (see [BP05], Appendix A, and [Hr87]), namely∑

R,R′∈Λs
R 6=R′

λw(R−R′) ≥ −s
2

log s− 16

5
s− 1

12
w+(j−1)s. (4.3)

For a non-archimedean w ∈ MK(P ), with w(j−1) ≤ 0, E has potential good reduc-
tion at w (see for example [Si09], Proposition VII.5.5). Let K ′ | K(P ) be a finite
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extension such that E has good reduction over K ′ at a place w′ | w. Then equation
(4.1) shows that λw′ is non-negative on E(K ′w′) \ O. As λw′ and λw coincide on
E(K(P )w) \O, λw is a non-negative function.
For non-archimedean w ∈ MK(P ) with w(j−1) > 0, [HS90], Proposition 1.2, gives
the inequality

∑
R,R′∈Λs
R 6=R′

λw(R−R′) ≥ 1

12

(
s

ordw(j−1)

)2

w(j−1)− s

12
w(j−1).

Thus for an arbitrary non-archimedean valuation w we will use the estimation∑
R,R′∈Λs
R 6=R′

λw(R−R′) ≥ − s

12
w+(j−1). (4.4)

In the following calculations we will use Lemma 1.1 ii) several times. With (4.2),
(4.3), (4.4) we get:∑

R,R′∈Λs
R 6=R′

ĥE(R−R′) =
∑

R,R′∈Λs
R 6=R′

1

[K(P ) : Q]

∑
w∈MK(P )

dwλw(R−R′)

≥ 1

[K(P ) : Q]

∑
w|∞

dw(−1

2
s log s−16

5
s)− 1

[K(P ) : Q]

∑
w|∞

dww
+(j−1)

1

12
s (with (4.3))

− 1

[K(P ) : Q]

∑
w-∞,w-v

dw
s

12
w+(j−1) (with (4.4))

+
∑

R,R′∈Λs
R 6=R′

1

[K(P ) : Q]

∑
w|v

dw
1

12
v(j−1) (with (4.2))

= −1

2
s log s− 16

5
s− 1

[K(P ) : Q]

∑
w-v

(
dww

+(j−1)
) s

12
+

s2 − s
[K(P ) : Q]

∑
w|v

dw
1

12
v(j−1)

We know that for all w | v we have v(j−1) = w(j−1) = w+(j−1). Thus we can use
the definition of the standard logarithmic height h to obtain∑

R,R′∈Λs
R 6=R′

ĥE(R−R′) ≥ dvv(j−1)
12d

s2 −
(

1
12
h(j) + 16

5

)
s− 1

2
s log s

≥ log p
12d

s2 −
(

1
12
h(j) + 16

5

)
s− 1

2
s log s. (4.5)

If P is a torsion point, then the left hand side is equal to zero. Clearly, h(j) is

greater than or equal to dvv(j−1)
d
≥ log p

d
, so we can apply Lemma 1.26 to deduce that
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the right hand side is greater than zero if s ≥ 48d
5 log p

(
log( 6d

log p
) + 1

6
h(j) + 32

5

)
. As s

is a natural number, we get a contradiction to our choice of P as a torsion point
for s = c. This shows that there cannot exist a torsion point P ∈ ME

e (v) such that
the order of e! ordv(j

−1)P is greater than or equal to c. Hence, there cannot exist
a torsion point P ∈ ME

e (v) of order greater than or equal to c ordv(j
−1)(e!). Using

|E[k]| = k2 and the well known formula
∑n

k=1 k
2 = 1

6
n(n+ 1)(2n+ 1), for all n ∈ N,

we get that there are less than

1

6
c ordv(j

−1)(e!)(c ordv(j
−1)(e!) + 1)(2c ordv(j

−1)(e!) + 1)

torsion points in ME
e (v). Part ii) of Theorem 4.1 follows from the fact that O lies

in E[k] for all k ∈ N.

From now on we assume that P is no torsion point. Then Λs is defined for all s ∈ N
and so (4.5) is valid for all s ∈ N. We can combine the formula for the sum of the
first n squares from above with the elementary formula

∑n
k=1 k

3 = 1
4
n2(n + 1)2 to

achieve
∑n

k=1 k
2(n+ 1− k) = 1

12
(n+ 1)4− 1

12
(n+ 1)2. Now, the definition of Λs and

the property ĥE(kQ) = k2ĥE(Q) for all k ∈ Z lead us to

∑
R,R′∈Λs
R 6=R′

ĥE(R−R′) =

(
2
s−1∑
i=1

i2(s− i)

)
ĥE(Q) =

(
1

6
s4 − 1

6
s2

)
ĥE(Q) . (4.6)

If we further use (4.5) and the definition of Q, we find that the height ĥE(P ) is
bounded from below by

C ′(j, d, e, v) := max
s∈N

log p
2d
s−

(
1
2
h(j) + 96

5

)
− 3 log s

(s3 − s)(e! ordv(j−1))2
.

The value C ′(j, d, e, v) is obviously positive. In what follows we will calculate a
lower bound for C ′(j, d, e, v). Let H(j) be the multiplicative height of j and let
cW := − 6d

log p
W−1

(
− log p

6d
H(j)−1/6e−32/5

)
be the greatest root of the real function

r(x) =
log p

2d
x−

(
1

2
h(j) +

96

5

)
− 3 log x

(see Lemma 1.26). Then we know that this function is strictly positive for all
x > cW . Especially we have r(2x) ≥ log p

2d
x− 3 log 2 > 0 for all x ≥ cW , with equality

if and only if x = cW . Again by Lemma 1.26 we have 1 < 2cW < 2c. With these
inequalities we finally deduce

C ′(j, d, e, v) ≥ r(2c)

(8c3 − 2c)(e! ordv(j−1))2
≥

log p
2d

c− 3 log 2

(8c3 − 2c)(e! ordv(j−1))2
> 0,

which concludes the proof. �
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Proof of Theorem 4.2: We will combine Lemma 1.23 and the proof of Theorem
4.1. E is assumed to have split-multiplicative reduction at v, and hence π has
degree two (see Section 3.1). Let α be an algebraic number in Me(v) and take a
point P ∈ E(K) with π(P ) = α. Then for all w | v in MK(P ) we have either
ew|v ≤ e or ew|v = 2e′ with e′ ≤ e. Now we can start exactly the above proof with
Q := e!2 ordv(j

−1)P instead of e! ordv(j
−1)P .

If α is preperiodic, then P is a torsion point of order less than e!2c ordv(j
−1). So

there are less than 8
3
c (e! ordv(j

−1))
3

+ 2 (e!c ordv(j
−1))

2
choices for P . As every α,

that is no critical value of π, has exactly two pre-images under π, and there are
exactly 4 critical values of π (see [Si07], Lemma 6.38), we get analogue to the proof
of Corollary 2.7

|PrePer(f) ∩Me(v)| < 4

3

(
e!c ordv(j

−1)
)3

+
(
e!c ordv(j

−1)
)

+ 2.

If α is no preperiodic point, then P is not a torsion point and we have

ĥf (α) = 2ĥE(P ) ≥
log p
2d

c− 3 log 2

2(8c3 − 2c)(e! ordv(j−1))2
> 0 .

This concludes the proof. �

4.3 Corollaries and additional results

Now we want to study the behavior of the canonical height ĥE on the set ME
e (v) if

E has not split-multiplicative reduction at v. If E has multiplicative or potential
multiplicative reduction at v, then it has split-multiplicative reduction after a finite
field extension. So, Theorem 4.1 will be true in this case after a small adjustment of
the constants. In the case of good reduction of E at v the criterion of Néron-Ogg-
Shafarevich will show that there are infinitely many torsion points and points of
arbitrarily small positive height in ME

e (v) for all e ∈ N. If E has additive potential
good reduction at v, then we will prove that Theorem 4.1 is true for e = 1, i.e. for
the field Knr,v.

Corollary 4.3. Let E be an elliptic curve with potential multiplicative reduction at
v | p. Then we have

i) ĥE(P ) ≥
log(p)
2dk
−3 log 2

(8c3k−2ck)(e! ordv(j−1))2
> 0 for all P ∈ME

e (v) \ Etor

ii) |Etor ∩ME
e (v)| < 1

3
(e!ck ordv(j

−1))
3

+ 1
2

(e!ck ordv(j
−1))

2
.

Here ck :=
⌈

10dk
log p

(
log( 6dk

log p
) + 1

6
h(j) + 32

5

)⌉
, and k ≤ 48 is the smallest degree of

a field extension K ′/K such that E over K ′ has split-multiplicative reduction at a
v′ | v, v′ ∈MK′.
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Proof: By assumption there is a field extension K ′/K such that E over K ′ has
split-multiplicative reduction at a place v′ | v of K ′. Assume furthermore that the
degree of K ′/K is minimal with this property and denote this degree by k. If E
is given in Legendre normal form and p 6= 2, then E admits split-multiplicative
reduction at a place v′ | v on an extension field K ′/K of degree at most 4 (see
[Si09], proof of Proposition VII 5.4 c)). The fact that E is isomorphic to an elliptic
curve in Legendre normal form over a field extension of degree at most 12 shows
that k ≤ 48 whenever p 6= 2. If p = 2 we can write E in Deuring normal form.
The following facts regarding this normal form can be found in the proofs of [Si09],
Proposition A 1.3 and Corollary A 1.4. We obtain such a Deuring normal form of
E after a field extension of degree at most 12. Now E admits split-multiplicative
reduction at a place v′ | v at least after a quadratic extension. This shows that
k ≤ 48 in any case. Of course we have k = 2 in case of multiplicative reduction at
v.
Let P be a point in ME

e (v) and w′ | v′ an extension of v′ to K ′(P ). Denote the
restriction of w′ to K(P ) by w. Then by assumption and Lemma 1.25 we have
e ≥ ew|v ≥ ew′|v′ . Thus we can apply Theorem 4.1 with d replaced by dk. �

We have proven a lower bound for the canonical heights ĥE and ĥf , where f is a
Lattès map associated to E, on sets. Our main interest concerns lower bounds on
fields. For a field L lying inside Me(v) for some e ∈ N, Theorem 4.1 and Theorem 4.2
give us lower bounds for the canonical heights on E(L)\Etor and L\PrePer(f). But
we can achieve much nicer bounds if we additionally assume that L/K is normal.
In this case the term e! in our bound can be replaced by e. Formally:

Corollary 4.4. Let E be an elliptic curve defined over K with split-multiplicative
reduction at v | p and let c be as in Theorem 4.1. Let further L/K be a galois
extension with L ⊂Me(v), for a fixed e ∈ N. Then we have

i) ĥE(P ) ≥
log p
2d

c−3 log 2

(8c3−2c)(e ordv(j−1))2
> 0 for all P ∈ E(L) \ Etor

ii) |Etor ∩ L| < (c ordv(j
−1)e)2

Proof: In the proof of Theorem 4.1, e! was an upper bound for the lowest common
multiple of all ew|v, w ∈ MK(P ), which does not depend on P . Now let K ′(P )
be the normal closure of K(P ). From our assumption we know that K ′(P ) is
contained in L ⊂ Me. Thus we have ew′|v ≤ e for all w′ ∈ MK′(P ) lying above v.
Exactly as in the proof of Theorem 4.1, we conclude that for all these w′ we have
ew′|v ordv(j

−1)P ∈ E0(K ′(P )w′). But as K ′(P )/K is galois, we know that all these
ew′|v =: ev are equal. Hence we set Q := ev ordv(j

−1)P , where ev ≤ e. Exactly as
in the proof of Theorem 4.1 we achieve that there is no torsion point in E(L) of
order greater than c ordv(j

−1)e. Let P be a torsion point in E(L) of maximal order
k ≤ c ordv(j

−1)e. We claim that all torsion points in E(L) lie in E[k]. Assume this
is not the case, then there exists a torsion point P ′ ∈ E(L) of order not dividing k.
The order of the point P + P ′ ∈ E(L) is exactly the smallest common multiple of
the orders of P and P ′, and hence it is greater than k. This is a contradiction to
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the maximality of k, proving the claim. We can conclude that there are less than
k2 ≤ (c ordv(j

−1)e)2 torsion points in E(L).
Statement i) follows exactly as in the proof of Theorem 4.1. �

Remark 4.5. Obviously, Corollary 4.4 similarly holds for places v where E has
potential split-multiplicative reduction. Moreover, Corollaries 4.3 and 4.4 have dy-
namical analogues. Let f be a Lattès map associated to the elliptic curve E. In the
setting of Corollary 4.3 we can apply the proof of Theorem 4.2 to achieve

ĥf (α) ≥
log(p)
2dk
− 3 log 2

2(8c3
k − 2ck)(e! ordv(j−1))2

> 0 for all α ∈Me(v) \ PrePer(f) , and

|PrePer(f) ∩Me(v)| < 4

3
(e!ck ordv(j

−1))3 + (e!ck ordv(j
−1))2 + 2 .

In the setting of Corollary 4.4 we can similarly combine the proofs of Theorem 4.2
and Corollary 4.4 to get

ĥf (α) ≥
log p
2d

c− 3 log 2

2(8c3 − 2c)(e ordv(j−1))2
> 0 for all α ∈ L \ PrePer(f) , and

|PrePer(f) ∩ L| < 4

3
(ec ordv(j

−1))3 + (ec ordv(j
−1))2 + 2 .

In the case where E has additive reduction at v and e = 1 we can also use our
computation from Theorem 4.1. The following proposition is actually a remark of
Joseph Silverman in an email to the author.

Proposition 4.6. Let v | p be a finite place of K where E has additive reduction.
With c as in Theorem 4.1, we have

i) ĥE(P ) ≥
log p
2d

(c+2)−3 log 2

(8(c+2)3−2(c+2))144
> 0 for all P ∈ME

1 (v) \ Etor

ii) |Etor ∩ME
1 (v)| < (12c + 24)2.

Proof: The proof is almost the same as in the case of split-multiplicative reduction.
Let P be in ME

1 (v) and w | v a place of K(P ). By assumption v is unramified in
the extension K(P )/K. Hence, E has still additive reduction at w over K(P ). Fix
a minimal Weierstrass equation of E over K(P )w, and denote the discriminant of E
by ∆. Then E0(K(P )w) is a subgroup of E(K(P )w) of order at most 4 (see [Si94],
Corollary IV 9.2). Thus we have Q := 12P ∈ E0(K(P )w) for all w | v on K(P ).
The explicit formula (4.1) for the local height λw on E0(K(P )w) gives us

λw(Q) ≥ 1

12
w(∆) ≥ 1

12ev|p
log p > 0 for all w | v on K(P ) .

This follows from the fact that w(∆) = 0 if and only if E has good reduction at w
([Si09], Proposition VII.5.1), which is not the case as we have noticed above. Define
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the set Λs := {iQ|i ∈ N, i ≤ s} for all s ∈ N such that Λs consists of exactly s
points. Word-for-word as before we get the lower bound∑

R,R′∈Λs
R 6=R′

ĥE(R−R′) ≥ log p

12d
s2 −

(
1

12
h(j) +

log p

12d
+

16

5

)
s− 1

2
s log s .

Using Lemma 1.26 and the definition of c we find that the right hand side is greater
0 for s greater than c + 8

5
< c + 2. Thus there cannot exist a torsion point of order

greater than 12c + 24. Notice that ME
1 (v) = E(Knr,v), and therefore ME

1 is an
abelian group. As in the proof of Corolarry 4.4, we conclude that all torsion points
in ME

1 lie in the set E[k], for a k ≤ 12c + 24. This implies part ii). If P is not a
torsion point we conclude

ĥE(P ) ≥
log p
2d

(c + 2)− 3 log 2

(8(c + 2)3 − 2(c + 2))144
> 0 .

This again follows exactly as in the proof of Theorem 4.1. �

Remark 4.7. Remark 4.5 obviously implies the desired dynamical analogue of The-
orem 3.1. Let E be an elliptic curve defined over the number field K with potential
multiplicative reduction at v, and let f be an associated Lattès map. Then every
finite extension of Knr,v has the Bogomolov property relative to ĥf . The next lemma
shows that there are also infinite extensions of Knr,v having the Bogomolov prop-
erty relative to ĥf , for example the compositum of Knr,v and K(d). One can use the
results in Section 3.2 to see that this is indeed an infinite extension of Knr,v.

Lemma 4.8. Let L/K and M/K be field extensions such that L ⊂ Me(v) and
M ⊂Me′(v) for a non-archimedean valuation v on K. Then LM ⊂Mee′(v).

Proof: Without loss of generality we assume that L and M are extension fields
of K. Let F ⊂ M be any subfield with [F : K] ≤ ∞. Moreover we choose any
w′ ∈ MLM , with w′ | v, and define w = w′|L and v′ = w′|F . With Lemma 1.25 we
conclude ew′|v′ ≤ ew|v ≤ e. This leads us to ew′|v = ew′|v′ev′|v ≤ ee′. The fact that
for every α ∈ LM there exists such a finite extension F/K with α ∈ LF concludes
the proof. �

Proposition 4.9. If E has good reduction at v | p and f is an associated Lattès
map, then neither of the statements in Theorem 4.1 and 4.2 is true.

Proof: Lets start with Theorem 4.1. By the criterion of Néron-Ogg-Shafarevich all
points of order m with p - m are unramified over v (see [Si09], Theorem VII 7.1).
In particular, there are infinitely many torsion points of E in Knr,v and hence in
ME

e (v) for all e ∈ N.
Take an arbitrary point P0 ∈ E(Knr,v) \ Etor and an integer m ≥ 2 coprime to p.
Choose a sequence {Pn}n∈N of points in E(K), satisfying [m]Pn = Pn−1. By [Si09],
Proposition VIII 1.5 b), all Pn are elements in E(Knr,v) \ Etor and we have

ĥE(Pn) =
1

m2
ĥE(Pn−1) =

1

m2n
ĥE(P0)→ 0 ,
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as n→∞. Thus there are points of arbitrarily small height in ME
e (v) for all e ∈ N.

Contradictions for the statements in Theorem 4.2 follow quickly. For all P in
E(Knr,v) the value π(P ) is also an element of Knr,v. The degree of π is finite, hence
the equation PrePer(f) = π(Etor) (see 1.19) shows that Knr,v contains infinitely
many preperiodic points of f . We apply Lemma 1.23 to the sequence {Pn}n∈N from

above to see that ĥf can get arbitrarily small on Knr,v \ PrePer(f). �

Example 4.10. As usual let K be a number field, E : y2 = x3 +Ax+B an elliptic
curve defined over K, and let f be a Lattès map associated to E and π(x, y) = x.
The following example shows two things. Firstly, the Bogomolov property relative
to ĥE is in general not preserved under finite field extensions. Secondly, a field can
have the Bogomolov property relative to ĥE but not relative to ĥf .
We will use the theory of twists that we have introduced in 2.4. Assume that E has
additive reduction at a finite v ∈MK , and that there is an element γ ∈ K such that
the twist Eγ has good reduction at v ∈MK . (One might choose K = Q, v = p ≥ 3,
E : y2 = x3 + p2x and γ = p−1). Let gγ−1 : Eγ → E be the isomorphism from
2.4. Notice that

√
γ cannot be an element in Knr,v, since the reduction type of E

at v changes if we extend K to K(
√
γ). As Eγ has good reduction at v, Proposition

4.9 yields a sequence {Pi}i∈N in Eγ(K
nr,v) such that ĥEγ (Pi) → 0, as i → ∞. The

elements gγ−1(Pi) all lie in E(Knr,v(
√
γ)), and from the definition of gγ−1 we know

that αi := π(gγ−1(Pi)) is in Knr,v. Using Lemma 1.23 and (2.4) we get

ĥf ( αi︸︷︷︸
∈Knr,v

) = 2ĥE( gγ−1(Pi)︸ ︷︷ ︸
∈Knr,v(

√
γ)

) = 2ĥEγ (Pi)→ 0 ,

as i → ∞. But Knr,v has the Bogomolov property relative to ĥE, as E has bad
reduction at v (see Proposition 4.6).

Remark 4.11. We claim that Knr,v does not have the Bogomolov property relative
to h. Let q be the prime number with v | q, and let p be any other prime. The field
Qnr,q is a subfield of Knr,v. By Lemma 1.24, the elements p1/pn lie in Qnr,q, for all
n ∈ N. As seen before, the height h of the elements p1/pn tends to zero. Thus, Knr,v

does not have the Bogomolov property relative to h.
For some number fields K there is an infinite extension L/K which is everywhere
unramified. For example those number fields with infinite class field tower (see [Ne],
VI, §6 and §7, and the references therein). It is an interesting (and open) question
whether or not such a field L ⊂ Q has the Bogomolov property relative to h. This
is a question of Ellenberg, brought to the author in a conversation with Martin
Widmer.
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5 Heights and totally real numbers

5.1 Introduction

Let us first recall the basic definitions of totally real algebraic numbers. An algebraic
number is called totally real if all its conjugates are real. Similarly, a number field
K is called totally real if all its embeddings into Q are real. In the same way, a
number field K is called totally imaginary if no embedding of K is real. A complex
multiplication field, short CM-field, is a totally imaginary quadratic extension of a
totally real field. Sometimes the union of totally real fields and CM-fields is denoted
by J-fields.
In this chapter we will study dynamical heights on the compositum of all totally
real number fields which we denote by Qtr. In [Sch73] Schinzel proved the following.

Theorem 5.1 (Schinzel). The standard logarithmic height h on Qtr \ {−1, 0, 1} is

bounded from below by 1
2

log(1+
√

5
2

).

This bound is sharp, as it is attained by 1+
√

5
2

. Actually, Schinzel proved that this
bound is valid for all algebraic numbers α 6= 0 lying in a CM-field, with |α| 6= 1. The
latter condition is necessary for the existence of a lower bound. This was proven in
[AN07] by Amoroso and Nuccio. In Section 5.5 we will give a very short proof of
this result.
A one-page proof of Theorem 5.1 was later given by Höhn and Skoruppa (see [HS93]).
Garza, Ishak and Pinner ([GIP10]) generalized Schinzels result by showing that it
suffices to have ´enough’ real conjugates in order to have a lower bound for the
height h. Formally they proved:

Theorem 5.2. Let α1, . . . , αt ∈ Q∗ be algebraic numbers such that α := α1 + · · ·+
αt 6= α−1

1 + · · ·+α−1
t . Denote the degree of α by d, the number of real conjugates of

α with r and set R := r
d
. If r is at least one we have

t∑
i=1

h(αi) ≥
R

2
log

(
21−1/R +

√
41−1/R + 4

2

)
.

Table 3 summarizes briefly partial results of this theorem. With the notation from
above we see that the point (α1, . . . , αt) lies on the curve x1 + · · · + xt = α in
Gn
m(Q∗). From a deep theorem of Zhang (see [Zh92], Theorem 6.2) it follows that

there exists a positive lower bound for
∑t

i=1 h(αi) which depends on α.
Smyth studied in [Sm80] the set M = {h(α)|α an integer in Qtr} and proved that
1
2

log(1+
√

5
2

) is an isolated point inM. Furthermore, he could prove that every point
of the interval [λ,∞) is a limit point of elements in M. Here λ is given as follows.
Define the sequence α0 = 1 and αn+1 − α−1

n+1 = αn. It is not hard to check that all
αn are totally real and that h(αn) is independent of choices. We have

λ = lim
n→∞

h(αn) = 0.2732 . . . .
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t α Reference

1 totally real Schinzel [Sch73]
2 1 Zagier [Za93]

arbitrary natural number Beukers, Zagier [BZ97]
arbitrary totally real Samuels [Sa06]

1 at least one real conjugate Garza [Ga07] (see also [Ho11])

Table 3: Partial results of Theorem 5.2

Moreover, Flammang ([Fl96], extending works of Smyth [Sm81]) gave the six small-
est values inM. They are h(α1), h(α2), h(α3), h(ζ7 + ζ−1

7 ), h(ζ60 + ζ−1
60 ) and h(α4),

and these six values are the only elements in M∩ [0, 0.2713]. Here ζn denotes a
primitive n-th root of unity.

We want to study Schinzel’s theorem from a dynamical sight. The height h is equal
to the dynamical height ĥx2 . Hence, with loss of the explicit bound, we can state
Theorem 5.1 as:

Qtr has the Bogomolov property relative to ĥf , where f(x) = x2.

In this formulation it is natural to ask for which other rational functions f ∈ Q(x)
the above statement is true. In Section 5.2 we will show that this statement is true
whenever at least one galois conjugate of f has a Julia set not contained in the real
line. This result follows directly from the dynamical equidistribution Theorem 1.15,
and hence it is non-effective. We will also give a class of quadratic polynomials fc
such that Qtr does not have the Bogomolov property relative to ĥfc . In Section

5.3 we will prove the converse; i.e. Qtr has the Bogomolov property relative to ĥf
if and only if at least one galois conjugate of f has non-real Julia set. Roughly
speaking, this emphasizes the strength of the equidistribution theorem, as we have
a lower bound for the canonical height on Qtr if and only if we can apply the
equidistribution theorem. A possible connection to Salem numbers is mentioned
in the short Section 5.4. The last section of this chapter is independent from the
previous results. There we study the surprising behavior of h on finite extensions of
Qtr.

5.2 A first example

To prepare the first Theorem in this section we recall some notations from the end
of Section 1.2. For an algebraic number α and any number field K, we set GK(α) :=
{σ(α)|σ ∈ Gal(Q/K)}. For every v ∈ MK we denote by Cv the completion of Kv.
For all v ∈ MK we fix once and for all an embedding of Q into Cv. Let (X,L, f)
be an algebraic dynamical system defined over K. Then there exists a canonical f -
invariant probability measure µf,v on the Berkovich space Xan

v . If f(x) ∈ K(x) is a
rational function of degree at least two, then µf,v is the canonical measure associated
to (P1,O(1), f). In case where v is archimedean this is exactly the canonical measure
from Therem 1.13. The Berkovich Julia set JBv (f) is defined as the support of the
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canonical measure µf,v. This includes the archimedean case, where the Berkovich
Julia set coincides with the usual Julia set J(f).

We want to study canonical heights ĥf on the field Qtr. This was our main motiva-
tion for the next theorem and a first version only covered Corollary 5.4. Paul Fili
pointed out that the same proof applies in a more general setting (see his preprint
[FM12] with Zachary Miner).

Theorem 5.3. Let f ∈ Q(x) be a rational function of degree ≥ 2, and let K be a
number field with valuation v ∈ MK such that the Berkovich Julia set JBv (f) is not
contained in the closure of (P1)anv (K). If L/K is a galois extension lying in Kv, then

L has the Bogomolov property relative to ĥf . Furthermore, there are only finitely
many preperiodic points of f in L.

Proof: Let F be a number field such that f ∈ F (x) and K ⊆ F . Assume there

is a sequence {αi}i∈N in L of pairwise distinct elements satisfying ĥf (αi) → 0 for
i → ∞. Denote by δi the equidistributed probability measures on the set GF (αi).
The support of δi lies in Kv for all i ∈ N, as L/K was assumed to be galois. Notice
that the choice of F implies GF (αi) ⊆ GK(αi), for all i ∈ N.
By assumption, there exists an α ∈ JBv (f) = supp(µf,v) which is not contained
in the closure of Kv in (P1)anv . As (P1)anv is a Hausdorff space, there is an open
neighborhood U of α such that U ∩ Kv = ∅. By Theorem 1.15, the measures δi
converge weakly to µf,v and hence

0 = lim
i→∞

δi(U) = µf,v(U) 6= 0 .

This is a contradiction, and hence there cannot exist such a sequence {αi}i∈N. �

The case K = Q, L = Qtr and v =∞ yields the following result.

Corollary 5.4. Let f ∈ Q(x) be a rational function of degree ≥ 2 such that the
Julia set J(f) of f is not contained in the real line. Then Qtr has the Bogomolov

property relative to ĥf . Furthermore, there are only finitely many preperiodic points
of f in Qtr.

Some examples of rational functions with real Julia set are Chebyshev polynomials
(see 1.17), polynomials of the form x2 − c with real c ≥ 2 (see Remark 5.7), and
linear conjugates of Blaschke products by a Möbius transformation that maps the
unit circle onto the real line. Recall that a Blaschke product is a map in C(x) of
the form

B(x) = a
t∏
i=1

x− ai
1− aix

, |a| = 1 , and |ai| < 1 ∀i = 1, . . . , t .

It is not hard to check that |B(z)| = 1 if and only if |z| = 1. Hence, the unit circle is
a closed completely invariant set. It follows that the Julia set of a Blaschke product
lies on the unit circle (see [Be], Theorem 4.4.2). Let g be any Möbius transformation
which maps the unit circle onto the real line. Then the map g ◦ B ◦ g−1 has Julia
set g(J(B)) ⊆ R (see [Be], Theorem 3.1.4).
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Remark 5.5. Apart from a non-effective version of Schinzels result, Corollary 5.4
also includes a special case of a theorem of Zhang ([Zh98], Corollary 2). As we have
noticed in 1.19, the Julia set of a Lattès map f over a number field K is the Riemann
sphere. Hence, Corollary 5.4 applies for Lattès maps. Let E be the elliptic curve
associated to f . Lemma 1.23 tells us that there also exists a positive constant c such
that ĥE(P ) ≥ c for all non-torsion points P ∈ E(Qtr) and there are only finitely
many torsion points in E(Qtr). Notice that there is an effective constant c in the
case where K is totally real (see [BP05], Theorem 17).

The next proposition provides a class of polynomials f such that Qtr does not have
the Bogomolov property relative to ĥf .

Proposition 5.6. For every c ∈ Q we set fc(x) := x2− c. If c is a rational number

with c ≥ 2, then Qtr does not have the Bogomolov property relative to ĥfc.

Proof: Take an ε ∈ (−c, c) ∩ Q such that ε is no preperiodic point of fc. This

is possible by Northcott’s theorem and the fact that ĥfc vanishes precisely at the
preperiodic points of fc (see Theorem 1.9). We will prove that for each n ∈ N the
set f−nc (ε) is contained in Qtr. Then for all n we take an arbitrary γn in f−nc (ε)

and obtain a sequence {γn}n∈N in Qtr, with ĥfc(γn) = 1
2n
ĥfc(ε). This tends to zero,

which proves the claim.

Since c is in Q, we have σ(f
(n)
c (γ)) = f

(n)
c (σ(γ)) for all σ ∈ Gal(Q/Q) and all

algebraic numbers γ. Thus we know that the set f−nc (ε) is galois invariant, as also
ε was chosen to lie in Q. Hence it suffices to show that f−nc (ε) is contained in the
real line in order to prove the proposition.
We will prove this by induction over n. For n = 1 we have f−1

c (ε) = ±
√
ε+ c

which is real by the choice of ε. Moreover we have | ±
√
ε+ c| < c, since c ≥ 2 and

|ε| < c. Now assume that for a given n ∈ N we have f−nc (ε) ⊂ R and |γ| < c for all

γ ∈ f−nc (ε). Every β ∈ f−(n+1)
c (ε) is an element of f−1

c (γ) for a γ ∈ f−nc (ε). So, it is
of the form β = ±

√
γ + c. We conclude exactly as in the case n = 1 that we have

β ∈ R and |β| < c. �

Remark 5.7. Indeed we claim that the above argumentation proves that J(fc) is
contained in the real line for all real c ≥ 2. We see that such a fc has the repelling

fixed points ±
√
c+ 1

4
+ 1

2
. By Fact 1.8 d), −

√
c+ 1

4
+ 1

2
is an element of J(fc)

contained in the interval (−c, c). With the same proof as above we conclude that
the backward orbit of this repelling fixed point lies in R. As the backward orbit
of every element in J(fc) is dense in J(fc) (see [Be], Theorem 4.2.7 ii)), we get
J(fc) ⊆ R.
If c is in Q∩R, c ≥ 2, the same proof shows that Q(c)tr := {α ∈ Q|σ(α) ∈ R , ∀σ ∈
Gal(Q/Q(c))} does not have the Bogomolov property relative to ĥfc .

The proof of our main theorem in this chapter is similar to the one above, but uses
some abstract results on Julia sets that lie in a circle on the Riemann sphere. One
of these results is the following Lemma.
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Lemma 5.8. Let f ∈ C(x) be a rational map of degree ≥ 2. If the Julia set J(f) of
f is contained in the real line, then f has a representative with only real coefficients.

Proof: Choose the representative of f with monic enumerator. Then we can write
f(x) = A(x)+iB(x)

C(x)+iD(x)
with real valued polynomials A, B, C andD such that A(x)+iB(x)

and C(x)+iD(x) have no common zeros. As A(x)+iB(x) was assumed to be monic,
we know that A is not equal to zero and deg(B) < deg(A). For r ∈ R we see that
f(r) is real if and only if A(r)D(r)− B(r)C(r) = 0. Applying the Facts 1.8 to our
assumption J(f) ⊂ R we know that f maps infinitely many real elements to real
elements. Hence we have the equation A(x)D(x) = B(x)C(x). We want to show
that this can only occur if D(x) = B(x) = 0, this means only if f ∈ R(x).
Assume that B(x) 6= 0. Then also D(x) 6= 0 and we have 0 ≤ deg(B) < deg(A).
Thus A(x) cannot be a divisor of B(x). This shows that a greatest common divisor
R1(x) of A(x) and C(x) is not constant. Write A(x) = R1(x)R2(x) and C(x) =
R1(x)R3(x). By the maximality of R1(x) we see that R2(x) is a divisor of B(x),
and R3(x) is a divisor of D(x). The equation A(x)D(x) = B(x)C(x) gives us a
polynomial R4(x) such that B(x) = R2(x)R4(x) and D(x) = R3(x)R4(x). This
leads to the equations

A(x) + iB(x) = R1(x)R2(x) + iR2(x)R4(x) = R2(x) (R1(x) + iR4(x))

C(x) + iD(x) = R1(x)R3(x) + iR3(x)R4(x) = R3(x) (R1(x) + iR4(x)) .

R1(x) is not constant and so both polynomials have a common zero, which was
excluded by assumption. Hence B(x) = D(x) = 0 and f ∈ R(x). �

5.3 Proof of the main result

Now we are prepared to proof our main theorem.

Theorem 5.9. As usual let f ∈ Q(x) be a rational function of degree at least two.
Then the following statements are equivalent:

i) Qtr has the Bogomolov property relative to ĥf .

ii) There is a σ ∈ Gal(Q/Q) such that the Julia set J(σ(f)) is not contained in
R.

iii) The set PrePer(f) ∩Qtr is finite.

Proof: Notice again that J(f) cannot be empty, see Fact 1.8 a). With Corollary 5.4,
we will conclude easily that ii) yields i) and iii). Assume there is a σ ∈ Gal(Q/Q)
such that J(σ(f)) is not contained in the real line. If i) or iii) are wrong, then

there is a sequence of pairwise distinct elements {αn}n∈N in Qtr with ĥf (αn)→ 0 as
n → ∞. Then, by Lemma 1.11 ii), {σ(αn)}n∈N is an infinite sequence in Qtr with

canonical height ĥσ(f)(σ(αn)) tending to zero. This is not possible due to Corollary
5.4.
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The implication iii) ⇒ ii) is not hard either. Assume J(σ(f)) is contained in the
real line for all σ ∈ Gal(Q/Q). Using Facts 1.8, we see that J(f) contains the infinite
set of repelling periodic points of f . For all maps σ(f), σ ∈ Gal(Q/Q), there are
only finitely many non-repelling periodic points (see [Be], §9.6). Hence there are
infinitely many points α ∈ Q such that σ(α) is a repelling periodic point of σ(f),
for all σ ∈ Gal(Q/Q). It follows from our assumption that all these α are totally
real. In particular we get |PrePer(f) ∩Qtr| =∞.

Finally, we prove that i) implies ii). Assume again that J(σ(f)) is contained in
the real line for all σ ∈ Gal(Q/Q). Then Lemma 5.8 tells us that f ∈ K(x) for a
totally real number field K. Let σ1, . . . , σd be a complete set of embeddings of K
into Q. For each σi(f) there exists a finite set of intervals such that all backward
orbits of these intervals again lie in this finite set of intervals. This interesting result
can be found in [EvS11], Theorem 2 and in the discussion afterwards. Thus, for all
σi we can choose a real interval (ai, bi) such that for all c ∈ (ai, bi) the backward
orbit of c is contained in the real line. For all σi take a ci ∈ (ai, bi) ∩Q and choose
a global ε > 0 such that (ci − ε, ci + ε) ⊂ (ai, bi) for all 1 ≤ i ≤ d. All the σi
give rise to non-equivalent absolute values on K. By the approximation theorem
of Artin and Whaples (see [La], Chapter II, §1), there exists a c ∈ K such that
|σi(c−ci)| = |σi(c)−ci| < ε. This implies that σi(c) lies in the interval (ai, bi) for all
σi. Here we have used that c is totally real. There are infinitely many points c with
this property in K, but as a number field K contains only finitely many preperiodic
points of f . This again follows from Northcott’s theorem and Theorem 1.9. Thus
we can assume that c is not a preperiodic point of f .
For every γ with f (n)(γ) = c we have σ(f)(n)(σ(γ)) = σ(c), n ∈ N. From the choice
of our intervals it follows that all conjugates of γ are in the real line, and hence we
can conclude f−n(c) ⊂ Qtr. For all n ∈ N we choose a γn in f−n(c). This leads to a
sequence {γn} in Qtr such that

ĥf (γn) =
1

deg(f)n
ĥf (c)→ 0 .

Since c is not preperiodic, the γn form an infinite sequence of non-preperiodic points.
This shows that Qtr cannot have the Bogomolov property relative to ĥf . �

In the case where f ∈ Q[x] is a polynomial we can give one more equivalence.

Theorem 5.10. Let f ∈ Q[x] be a polynomial. Then the following statements are
equivalent:

i) Qtr does not have the Bogomolov property relative to ĥf .

ii) J(σ(f)) ⊂ R for all σ ∈ Gal(Q/Q).

iii) PrePer(f) ⊂ Qtr.

iv) ĥf (α) > 0 for all α ∈ Q \Qtr.
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Proof: i) and ii) are equivalent by Theorem 5.9 and the equivalence of iii) and
iv) follows immediately from Northcott’s theorem and Theorem 1.9. As we have a
polynomial, the Julia set of f is the boundary of the compact set

{y ∈ C||f (n)(y)|9∞, as n→∞} .

See [Mi], Lemma 9.4. This set is called the filled Julia set of f . Every preperiodic
point of f (except ∞)is contained in the filled Julia set of f . For a polynomial it
follows from the definitions of the Julia set and the filled Julia set that ∞ is in
neither of both sets. Since both sets are closed, they are bounded. Now assume that
ii) is true. Then the Julia set of every σ(f) is a closed subset of a closed interval
I. The only bounded subset of the Riemann sphere with such a boundary is the
set itself. This means that all these J(σ(f)) coincide with their filled Julia set and
hence they contain PrePer(σ(f)) = σ(PrePer(f)). This shows that PrePer(f) is
contained in Qtr, proving iii).
Now we assume iii). Then PrePer(σ(f)) = σ(PrePer(f)) lies in the real line for
every σ ∈ Gal(Q/Q). Hence, the closure of the repelling periodic points of σ(f) lies
in the real line. By Fact 1.8 d), the closure of the repelling periodic points is the
Julia set. This proves ii) and concludes the proof. �

5.4 Some remarks

Let’s go back to the quadratic polynomials fc = x2 − c ∈ Q[x]. We have seen in
Proposition 5.6 that the canonical heights hfc can get arbitrarily small on Qtr for
every rational c ≥ 2. This behavior may change completely for non-rational c. In
order to state this explicitly, we will prove a well known classification result.

Lemma 5.11. The Julia set of fc(x) = x2− c ∈ C[x] is contained in the real line if
and only if c ∈ R and c ≥ 2.

Proof: We have seen in Remark 5.7 that J(fc) is contained in the real line whenever
c is real and c ≥ 2. Moreover, the proof of Lemma 5.8 shows that J(fc) is not
contained in the real line for all non-real c. Hence, from now on we assume that c
is real.
It remains to show that J(fc) * R for all c < 2. Recall from the proof of Theorem
5.10 that all preperiodic points of fc are real if J(fc) is contained in the real line.

One fixed point of fc is xc :=
√
c+ 1

4
+ 1

2
. This is not real for all c < −1

4
, and hence

we can conclude J(fc) * R for all c < −1
4
.

If c ∈ [−1
4
, 0], then the pre-image of xc which is different from xc is given by −xc

which is a negative real number. Hence, at least one element in f−2
c (xc) is non-real.

As pre-images of fixed points are preperiodic, we find J(fc) * R for all c ≤ 0.
In the last case, where c lies in the interval (0, 2), we see that the pre-image −xc of
xc is smaller than −c. Again we conclude that f−2

c (xc), and hence J(fc), cannot lie
in the real line. �

Let q > 4 be an element in Q \ Q2. Then the Julia set of f√q is real. However, we

claim that Qtr does not have the Bogomolov property relative to ĥf√q . This is due
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to the facts that f−√q is a galois conjugate of f√q, and that J(f−√q) is not contained
in the real line (see Lemma 5.11). Now Theorem 5.9 proves the claim.

Definition. A Salem number is a real algebraic integer α > 1 such that all con-
jugates of α have absolute value ≤ 1 and at least one conjugate has absolute value
equal to 1.

As one conjugate of the Salem number α has absolute value 1, the inverse of a
conjugate is again a conjugate of α. This implies, using the definition of a Salem
number, that α−1 is the only real conjugate of α and all other conjugates lie on the
unit circle. Hence α+α−1 is a totally real number. Since Vijayaraghavan introduced
these numbers in [Vi41] there is the following conjecture.

Conjecture 5.12. There is a constant C > 1 such that α > C for all Salem numbers
α.

Using Jensen’s formula (Theorem 1.2) we have deg(α)h(α) = log(α) for all Salem
numbers α. Hence, the Lehmer conjecture 1.4 implies Conjecture 5.12. On the other
hand, the three smallest known values of deg(α)h(α), α ∈ Q, are taken by Salem
numbers (we refer to the website [Mo] for tables of small Salem numbers and small
values of the measure deg(.)h(.)).
Denote by Td the d-th Chebyshev polynomial. We know from 1.17 that the Julia
set of each Td is the real interval [−2, 2]. Thus, Theorem 5.9 provides that the

Bogomolov property for Qtr does not hold relative to ĥTd , d ≥ 2. The next best
bound one can ask for is a bound of Lehmer strength. This means, one can ask
whether there exists a positive constant c such that deg(α)ĥTd(α) ≥ c for all α
in Qtr \ PrePer(Td). This would be quite a strong result, because it would imply
Conjecture 5.12. This follows from Lemma 1.22 and the fact that α+α−1 is totally
real for all Salem numbers α. On the other hand, the existence of such a bound c
seems to be very likely, as Qtr has the Bogomolov property relative to all ĥf2−ε for
every algebraic ε > 0 (see Lemma 5.11).

Although we cannot prove a higher dimensional analogue of Theorem 5.9, we will
state a possible generalization as a question.

Question 5.13. Let (X,L, f) be a polarized algebraic dynamical system defined over
a totally real number field K. Which of the following statements are equivalent?

i) There exists a positive constant c such that ĥX,L,f on X(Qtr) is either zero or
bounded from below by a positive constant.

ii) There is a σ ∈ Gal(Q/Q) such that the Julia set J(σ(f)) is not contained in
X(R).

iii) The set PrePer(f) ∩X(Qtr) is not Zariski dense in X.
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5.5 Finite extensions of Qtr

We will study the surprising behavior of h in finite extensions of Qtr. In 2007
Amoroso and Nuccio proved that there are elements with arbitrarily small height
in the union of all CM-fields. As in [ADZ11] we will give a very short direct proof
of this theorem. The proof of this theorem is independent of the results from the
previous sections of this paper.

Theorem 5.14. There are algebraic numbers {αn}n∈N such that Q(αn) is a CM-
field, none of these elements is a root of unity and h(αn) tends to zero.

Like in [AN07] we will use the following characterization of CM-fields.

Lemma 5.15. A number field K is a CM-field if and only if there exists an element
α with K = Q(α) and |σ(α)| = 1 for all σ ∈ Gal(Q/Q).

See [AN07], Proposition 2.3, or [BL78], Theorem 1.

Proof of Theorem 5.14: Take an algebraic number α that is no root of unity
and such that |σ(α)| = 1 for all σ ∈ Gal(Q/Q) (for example, set α =

√
−15+1

4
).

For all n ∈ N0 we fix a 2n-th root of α and denote it by α1/2n . For all σ we have
1 = |σ(α)| = |σ(α1/2n)|2n . By Lemma 5.15, Q(α1/2n) is a CM-field and we have
0 6= h(α1/2n) = 1

2n
h(α)→ 0, as n→∞. �

The next immediate corollary is a simple example of the fact that the Bogomolov
property is not preserved under finite field extensions. See also [ADZ11] for the
same result.

Corollary 5.16. Qtr(i) does not have the Bogomolov property relative to h.

Proof: This follows from Theorem 5.14 and the fact that Qtr(i) is the compositum
of all CM-fields. To prove the fact we have to show that every CM-field is contained
in Qtr(i). Let therefore Q(α) be a CM-field. By Lemma 5.15 we can assume that
|σ(α)| = 1 for all σ ∈ Gal(Q/Q). Hence α + α−1 and i(α − α−1) are totally real.
Now we see α = 1

2
(α + α−1 + α− α−1) ∈ Qtr(i) . �

Remark 5.17. A field K ⊆ Q is said to have the Northcott property if and only
if the set {α ∈ K|h(α) ≤ c} is finite for every constant c. We refer to [BZ01],

[DZ08] and [Wi11] for information on this property. As we have ĥf = h + O(1) for

every dynamical height ĥf , it does not make any difference to define the Northcott
property relative to a dynamical height. Notice, that the Northcott property is
preserved under finite extensions. The field Qtr is far from having the Northcott
property, as we have noticed in Section 5.1 that there is a constant λ such that
{h(α) ≥ λ|α ∈ Qtr} is dense in the interval [λ,∞).

Schinzel’s original theorem from [Sch73] is much stronger than the formulation of
Theorem 5.1. For example, he proved that the height of every non-zero element in

Qtr(i) that does not lie on the unit circle is a least 1
2

log
(√

5+1
2

)
. Moreover, [Sch73],

Corollary 1, states the following.
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Theorem 5.18 (Schinzel). Let α 6= 0 be an algebraic number with D = [Qtr(α) :
Qtr] and such that the minimal polynomial P of α over Qtr is not reciprocal; i.e.
P (α−1) 6= 0. Then we have

h(α) >
1

2D
log

(√
17 + 1

4

)
.

In particular this inequality is true for all elements in an extension field of Qtr of
finite and odd degree D.

Proof: Let K be the field generated by the coefficients of P and then use [Sch73],
Corollary 1, and Jensen’s formula (Theorem 1.2). Notice that an irreducible recip-
rocal polynomial different from x± 1, must have even degree. �

A natural question arising from Corollary 5.16 is: Does a finite extension K of
Qtr has the Bogomolov property relative to h if i /∈ K? This question remains
unanswered in general, but we can use Theorem 5.2 for a positive answer if K is not
totally imaginary.

Proposition 5.19. Let K = Qtr(α) such that α has at least one real conjugate.
Denote the number of real conjugates of α by rα and set Rα = rα

deg(α)
. Then we have

h(β) ≥ Rα

2
log

(
21−1/Rα +

√
41−1/Rα + 4

2

)
,

for all β ∈ K∗ \ {±1}.

Proof: Let β be an arbitrary element inK∗\{±1}, and let L be a totally real number
field with β ∈ L(α). We have [L(α) : Q] = deg(α)[L(α) : Q(α)]. Furthermore, an
embedding of L(α) is real if and only if it is an extension of a real embedding of
Q(α). Hence, the number of real embeddings of L(α) is rα[L(α) : Q(α)]. Since β
is an element of L(α), we also have [L(α) : Q] = deg(β)[L(α) : Q(β)], and a real
embedding of L(α) must be an extension of a real embedding of Q(β). This means
that the number of real embeddings of L(α) is at most rβ[L(α) : Q(β)], with rβ
defined as above. Together this yields

Rβ =
rβ[L(α) : Q(β)]

[L(α) : Q]
≥ rα[L(α) : Q(α)]

[L(α) : Q]
= Rα .

Now we can use Theorem 5.2, with t = 1, to achieve

h(β) ≥ Rα

2
log

(
21−1/Rα +

√
41−1/Rα + 4

2

)

which is the claimed result. �
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Remark 5.20. We use the setting of Proposition 5.19. If β is another generator
of the field extension K/Qtr, then a similar argumentation as in the above proof
shows Rα = Rβ. Hence, the lower bound for the height on K∗ \ {±1} is actually
independent of the choice of the generator of K/Qtr.

Remark 5.21. There is also a proof of Corollary 5.16 using dynamical methods
and Theorem 5.9. The Möbius transformation g(x) = x+i

x−i maps the real line onto
the unit circle. Take the map g−1 ◦ x2 ◦ g. By [Be], Theorem 3.1.4, we have J(g−1 ◦
x2 ◦ g) = g−1(J(x2)) = R. The same is true for the only galois conjugate x−i

x+i
of g.

Furthermore, we have ĥg−1◦x2◦g = h ◦ g by Lemma 1.11. Now Theorem 5.9 tells us
that there are pairwise distinct totally real algebraic numbers {αn}n∈N such that

0 6= ĥg−1◦x2◦g(αn) = h(g(αn))→ 0 .

As g(αn) is in Qtr(i) for all n ∈ N, we get the corollary.

Lukas Christopher Pottmeyer Regensburg, February 2012
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