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1. Introduction. In many decision problems such as inventory control,

cash management or production smoothing the uncertainty of demand is

a central feature. The standard assumption is that demand in different
periods is independently and identically distributed. But this
assumption is rarely valid in practice, in particular when forecasts

of demands are being made. If planning covers more than one period

then all calculations are influenced by expectations regarding future
data. This in turn requires an anticipation of future movements of the
underlying demand process. Commercial suppliers of software handle this
problem in a three stage approach: lotsize (or cash shipment or
production rate), security reserves and forecast. By this separation

into three parts, the solution obtained is only suboptimal.

The optimal solution requires reformulation of the basic model. This
will be performed on Beckmann's model of production smoothing
(Beckmann (1961)). In general incorporating forecasts into Bellman's
principle of optimality leads to an increase of the state space. If
forecasts are made by exogenous random variables or by an autore-
gressive scheme then, however, the state space can be substantially

reduced, as will be shown in this paper.

2. Beckmann's model of production smoothing. The following problem of

inventory - production control is regarded. Given the actual stock level
we have to control the production rate within the range of minimal unit
control. The production rate will be fixed at the beginning of each

planning period. The planning horizon T will cover more than one period
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(T > 1).
Let
u demand in the present period. u is a random variable with

distribution function ¥(u)

X present production rate (prior to the decision)

y present stock level

d change of production rate (decision variable)

£ cost function of a single period (set -up costs, inventory - and

production costs)

n number of periods up to the planning horizon
Vi expected minimal value of all future costs n periods ahead
B discount factor, O < B < 1

The model is defined recursively in Vo Vn depends on the present state
(x,y) of the system (before the decision). The new production rate
x+d is to minimize with respect to all possible realizations of future
demand. The Dynamic Program may then be formulated in terms of the

two state variables

min { J f(x,y,d,u) a¥ (u) + B.[vn_1(x-kd,y+><+d-u)dw(u)}

vn(x,y) :

n=1,2,...,T (1)

\%
o

vo(x,y)

This defines a stationary decision process. We will now incorporate

a forecasting procedure.

3. Forecast with exogenous variables. In practice a great variety of

forecasting techniques is used. We will consider only those methods
that can be formulated recursively, otherwise an integration into
Bellman's functional equalities is excluded. Sometimes demand is
closely correlated to exogenous influences such as gross national
product, export demand, indicators of the business cycle etc. In
these cases it is useful to treat the exogenous factors as random

disturbances. They generate a conditional distribution of the demand
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variable. We assume that all exogenous influences are aggregated to a

scalar z (scenario). It is used as a forecast. Let

z actual forecast
\ new forecast, concerning the next period
D (w) probability distribution function of w with density ¢(w)

From the view point of the decision maker the forecasts form a series
of identically and independently distributed random variables. The

principle of optimality is

vn(x,y,z) = min { J f(x,y,d,u) a¥(ulz) +
d

+Bijm1m+dm+x+d—mm&MMZMMW& (2)
n=1,2,...,T

vo(x,y,z) = Vo'

4. Reduction of state space in the exogenous case. In the sequel it

will be shown how the functional equations (2) can be formulated in

only two state variables. To obtain a clearer presentation we intro-
duce an index variable t to denote the time periode the variables are
referring to. For example X is now the production rate at the

beginning of period t before decision dt is made.
We state the following assumptions

Al. ¥ = - = . {id.
t(utlzt) Pt(ut zt) Pt(st) where e, is iid

A2. The stock holding costs depend only on the stock level at the
end of the period:

= +x +d, -
£ f(xt,dt,yt X, dt u,) (3)

Both assumptions are not very restrictive for real applications. For

instance A1 is satisfied if the demand process is assumed to be of the
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form u =z + €y et ~ N(O,0) for all t. Thus z, = E(ut).

Assumption A2 is standard in inventory theory.

From A2 we conclude that

f(xt,yt,dt,ut) = f(xt,yt-c,dt,ut-c) f.a. ¢ €R (4)

We will now map the two - dimensional subspace U x Z onto a one -
dimensional space R by

re =rlygezy) =y -z (5)

r may be regarded as a "net inventory level" that is stock diminished
by expected demand. Then the Dynamic Program (2) becomes

Ve (Rerveeze) = mdin{Jf(xt’yt'dt’ut) W o dzy) +

* B ” Vg Bpppr Yt ue ) ¥, (u 12,00 () } =

(Aa.1)
= T;n { J f(xt,yt,dt,zt—+st)dPt(et) +
t (6)
* B” Vg Bppq ¥ 28t W A (6 ) B0 (W) }=
" i {|
= min f(x Y, -z ,d ,e )dP (e) +
t %% B
dt QW_J
T
* B” Ve B Y2 e KW B (B )0 W) }
——
e
Tt
Thus
Vt(xt,rt) ndnn{J f(xt,rt,dt,et)dPt(et) +
t (7

+ B ” Virt B T P e )0 (W) }
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with the transition laws

Xy = X ¥ dt (8)

- _ - 9
T r, + X4 € w (9)

and the boundary condition

_ . . ]
Vo Vt (finite horizon) (10)

In case of infinite horizon it will be more suitable to return to
the notation with index n. So

v =V (infinite horizon) (11)

We summarize the results obtained so far in

187

Lemma 1: Given an optimization problem defined by the Dynamic Programm

(2) . Using the map rt(yt,z ) =y, - z, the Dynamic Programm

t t

can be reformulated (7) in only two state variables without
loss of generality. Thus a reduction of the original state
space X x i x Z to the state space ¥ x R, R real subspace, is

achieved.

As it is pointed out in Bartmann (1983) the applied reduction tech-
nique (5) preserves the structure of the optimal policy. In this way
structural properties of the optimal policy in the two - state
Dynamic Program of the model without forecasting can easily be trans-
ferred to the model with forecasting.

S. Forecasting as an autoregressive scheme. The reduction technique

developed so far can also be applied to models where the demand proc-
ess 1s assumed to be of the type of a first order autoregressive
scheme. Let for ease E(ut) = 0. Then

u, = au + € (12)

where € is iid with probability distribution function Pt(et) and
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lal < 1, @ € R. Using the actual observation u, for forecasting yields

. 2

a variance var(ut+1|ut) = og.
2 _ 1 2 2 .
T T 2% Yo if o<lal<

With the assumption |al < 1 the demand process becomes stationary.
This justifies an infinite horizon model. In the forecasting formula

derived from (12)
1, = au (13)

the most recent observation ut_1 is a sufficient statistic. We will

denote it as u, (demand one periode ago). Then the Dynamic Program

takes the form

fl

min {.[f(x,y,d,u)dW(u|u1) +

Vn(XIYIu-]) 3

(14)

+ ijn_1(x+d,y+x+d-u,au1)dw(ulu1)}

n=1,2,...

1]
<

vo(x,y,u1) o

6. Reduction of state space in the autoregressive case, when the

optimal policy is myopic. Under a special demand and cost structure
the optimal decision rule is myopic (cf. Edgeworth (1883), Lenz (1974),
Johnson/Thompson (1975), Schneider (1979)). It therefore can be

derived by minimizing the one period costs v

-
We will show that the application of the above reduction technique
will lead to a reduction of the state space X x Y x I by one full
dimension here too. From (12) we get

w(u|u1) = P(u-u1) = P(g) (15)

and
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v1(x,y,u1) = mén {J[f(x,y,d,u)d‘l’(ulu”} =
_ o 1
= mgn 1] f(x,y,d,au1-+e)dP(e)J (16)
(A.2)
= min { ff(x,y —au1,d,€)dP(a)}
d —_—
r
thus
v1(x,r) = min { Jf(x,r,d,e)dP(e)} (17)
d
with the net stock level
r=y-au . (18)

When we construct a computer code an additional consideration is

required. The space X x § x U is then discrete and has a finite range

in each component

- +
X < x < x
- +
y =y =y ; (19)
- +
u1 < u1 < u1 .

X=x"+x +1;
Y=y++y_+1,
+ _ (20)
U=u1+u1+1,
+ -
R=r +r +1
From (18) we conclude R > Y. The reduction will only pay if
R<Y-U. (21)

Disregarding rounding errors

R=Y + lalU . (22)

189
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Therefore

R>yY-.U for Y, U =2 2 .

The saving is the greater the weaker the autocorrelation. But this

2
effect is partly compensated by an increasing S when la] decreases.

7. Reduction of the state space when the optimal policy is not myopic.

In this case we can achieve a reduction of the state space too but not
at the same magnitude as before.

Lemma 2: Given an optimization problem defined by the Dynamic
Program (14) with arbitrary planning horizon. The state
space lattice X x ¥ x U can be reduced if

3
y
—U—>i"—§, lal < 1 . (23)

1-a

Proof: Let r

1]

- au, and r = - au
Y 1 7 neu Yneu

(x,y, = i J[f Yia, av +
v (x,y u1) m;n U (x,y,d,u) (ulu1)
r

( - 1 _
+ BJ vn_1(x-+d,y-+x‘+d u,au1)dw(ulu1) =

J
(16)

= min rf(x,r,d,e)dP(e) +
inq)

+ BJrv _1(x+d,x+d+y-au -€g,0u +s)dP(e)} =

n 1 1
———
- —— (24)
Yheu
= min {{f(x,r,d,e)dP(s) +
d
+B[v (x+d x+d+r—e—a2u -qe)dP(e)1=
] "n-1 ' 1 , I
I a
r
neu

= v _(x,r a2u )
“n ’ I 1 .
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Now u, appears only diminished by the factor a2 < 1. Instead of u, it

2 )
is sufficient to keep in mind only a u, - This reduces the range U to
azU. We reformulate the Dynamic Program in the state variables x, r

and a2u1

v_(x,r azu
n ’ ’

) = min {ff(x,r,d,a)dP(s) =

L 3

(25)

u,az(au1-+€))dP(€)
[ —")

+ BJ v (x+4,r
n-1 ne

2
a u

Here the state space X x R x (azu) has X+ R« a2- U lattice points

(rounding errors excluded). As R = Y + |a|+-U we complete the proof

3
Y
X +R -azU < Xe¥Y: U <= o > _iEl_E q.e.d.

1 - a

If the set up costs are high compared with the proportional stock-
holding costs then Y > U. Then from (23) we immediately conclude that
a reduction of the state space is achieved as soon as |a| falls

below 0.75.

For numerical reasons (unavoidable truncation errors at the boundary
of the state space) the range Y should be at least twice the range U.
Thus in practice the reduction method is favourable as soon as

lal < 0.84.

Lemma 3: In the Dynamic Programm (14) a reduction of the state space
X x I x I to X x R is possible if the occuring single term

2
a u

] will be approximated by azu, u = E(u).

Proof: Now we have to consider the long run expectation u of demand
explicitely. Instead of (12) we get

=1 T Bt el (26)

an r is defined as
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r=y-a(u1—u)-u (27)

With this we can formulate the Dynamic Programm (24). If the term

a2u1 at the right hand side of (24) is replaced by azu than it is no

longer necessary to keep it in mind. Thus

vn(x,r) = min {Jf(x,r,d,e)dP(e) +
d (28)
2 1
+ B Vn_1(x-+d,x-+d-+r~—a u-—(1+a)e)dP(e)j
g.e.d.
. . . 2 2 .
It should be noticed that the approximation a"u ~ a u, is only

1
performed once. All terms appearing linearly in u are not approximated.

They are incorporated into the variable r precisely.

Last we will demonstrate the power of the presented reduction tech-

nique.

Table: number of states dependent on a (with fixed U = Y/2 and

Y = 100)
number of states
a original DP reduced DP | reduced and
2 approximated DP
g x U R x (a™1) R
0.2 5 000 220 110
0.4 5 000 960 120
0.6 5 000 2 340 130
0.8 5 000 4 480 140

8. Summary. In this paper we considered the production - inventory
model of the AHM type. We extended it to the case where future
movements of demand are being forecasted. For two concrete situations

- forecasting by means of exogenous variables

- forecasting as an autoregressive scheme
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the Dynamic Program incorporating forecasting has been formulated.
Since forecasts are functions of observations in the present and past
an additional state variable is required to store the sufficient
statistics. This immediately leads to severe numerical complications.
The main topic of the paper is to show how to overcome Bellman's
"curse of dimensionality" by means of a special reduction technique.
When forecasts are made with exogenous random variables the state
space can be reduced by one full dimension without loss of any
information. The same result is derived in case of forecasting by an
autoregressive scheme if the optimal policy is myopic. If not then

a reduction is also possible but with a smaller saving (estimates are
given). Using a partial approximation the reduction is enchanced to
save one full dimension here too. As a byproduct the reduction tech-
nique reveals to be useful for some results concerning the structure
of the optimal policies when forecasts are being incorporated. But

this will be investigated elsewhere.
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