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Abstract. The aim of this study was to examine the in- 
fluence of dietary NaC1 intake on renin gene expression 
in the kidneys and adrenal glands of adult rats. Rats were 
kept on low (0.02%, w/w), normal (0.6%) or high (4%) 
NaC1 diets and plasma renin activity (PRA) and the rela- 
tive abundance of renin messenger ribonucleic acid 
(mRNA) in renal and adrenal tissue were followed for 
20 days. In animals on a normal-salt diet PRA and renal 
renin mRNA levels did not change with time. PRA va- 
lues in animals on the low-salt diet increased transiently 
(about threefold) and then declined again during the 
third week of treatment. Renal renin mRNA levels in 
these animals paralleled the changes of PRA. Con- 
versely, in the animals kept on a high-salt diet PRA val- 
ues decreased transiently and renal renin mRNA de- 
creased continuously to about 50% of control values. 
Arterial blood pressure measured in conscious animals 
was not significantly influenced by the different salt di- 
ets. To establish whether the changes in renin mRNA 
levels are mediated by renal nerve input, animals on the 
different diets were also studied after unilateral renal de- 
nervation. Renal nerve section led to a 50% decrease of 
renin mRNA levels in the denervated kidneys in animals 
kept on the normal-salt diet. In the animals on the low- 
salt diet renin mRNA rose to similar levels in the dener- 
vated to those in the innervated kidney, while in animals 
receiving a high-salt diet renin mRNA was further de- 
creased in the denervated kidneys. The abundance of re- 
nin mRNA in adrenal tissue was low and was estimated 
to be around 1% of that found in the kidneys. Adrenal 
renin mRNA levels also increased in animals kept on a 
low-salt diet and decreased in animals on high-salt diet. 
Taken together, our findings suggest that renin secretion 
and renin gene expression are inversely related to salt 
intake and that the influence of salt diet on these param- 
eters has both transient and constant temporal compo- 
nents. Changes of blood pressure or nerve activity are 
not likely mediators of the effect of salt intake on renin 
expression. Since renal and adrenal renin mRNA levels 
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change in parallel in response to alterations of salt intake 
we hypothesize the existence of a humoral factor that 
links renin expression to the rate of salt intake. 
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Introduction 

While the main physiological parameters regulating the 
release of renin into the circulation have been charac- 
terized, the physiological control of the expression of the 
renin gene is less clear [11]. Although there is no obliga- 
tory linkage between renin synthesis and renin secretion 
at the level of renal juxtaglomerular cells [16] the ques- 
tion is important if those physiological parameters that 
mainly regulate renin secretion also influence the ac- 
tivity of the renin gene. Among these factors the level 
of dietary NaC1 intake is of particular relevance because, 
although it is well established that the secretion of renin 
is inversely related to salt intake [7] in the sense of a 
negative feedback mechanism, the mechanisms linking 
renin secretion and salt intake are not well understood. 

The influence of dietary salt intake, in particular that 
of a low-salt diet, on the expression of the renin gene in 
the kidneys has, so far, almost exclusively been studied 
using drugs that essentially interfere with the physiologi- 
cal NaC1 homeostasis such as loop diuretics [2, 12, 14, 
18], converting enzyme inhibitors [18, 22] or steroids 
[1, 19]. Such pharmacological perturbations of the NaC1 
homeostasis in combination with NaC1 diet may have 
additional effects of relevance for the renin system such 
as influence on the macula densa, activation of the auto- 
nomic nervous system or changes of blood pressure. It 
has been found, for instance, that the sodium delivery to 
the early distal tubule is not changed by a high- or low- 
sodium diet [26] but is markedly decreased if a low-salt 
diet is combined with furosemide [6] and is significantly 
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inc reased  i f  a h igh-sa l t  d ie t  is c o m b i n e d  wi th  deoxycor t -  
i cos te rone  acetate  t rea tment  [25]. Indeed ,  feed ing  differ-  
ent  sal t  diets  for  5 days  wi thout  addi t iona l  pha rm-  
aco log ica l  t rea tment  has  been  repor ted  not  to change  re- 
nal  renin  m R N A  levels  [23], wh i l e  low-  or  h igh-sa l t  
feed ing  in combina t i on  wi th  drugs has  been  demon-  
s trated to increase  [2, 12, 14, 18, 19, 22], or  decrease  [1, 
19] renal  ren in  m R N A  levels  respect ively .  

In  v i ew of  these  ambiguous  f indings  it is o f  in teres t  
to c lar i fy  the p r imary  inf luence  o f  NaC1 in take  on renin  
gene  express ion  b y  s tudy ing  the effects  o f  h igh-  and 
low-sa l t  diet ,  wi thou t  addi t iona l  pha rmaco log i ca l  ma-  
noeuvres ,  over  a longe r  per iod.  In  par t icular ,  we  were  
in teres ted  in t ime -dependen t  inf luences  o f  salt  in take  on 
renin  secre t ion  and on renin  gene express ion  in k idneys  
and in adrenal  glands.  These  organs  have  been  recog-  
n ized  as re levan t  si tes o f  renin  express ion  [8, 10, 21]. 
Moreover ,  in v i ew of  ev idence  that  suggests  that  rena l  
nerves  cou ld  med ia te  the effects  o f  sal t  in take  on renin  
secre t ion  [20, 26] we  e x a m i n e d  the role  o f  renal  nerves  
in med ia t ing  the inf luence  o f  salt  in take  on renin  gene 
express ion .  

The  f indings  ob ta ined  sugges t  that  changes  o f  salt  
in take  l ead  to inverse  changes  o f  bo th  renin  secre t ion  
rates and o f  renal  and adrenal  ren in  messenge r  r ibo-  
nucle ic  ac id  levels .  In tac t  rena l  innerva t ion  does  not  ap- 
pea r  to be  essent ia l  for  the inf luence  o f  salt  in take  on 
the express ion  o f  the renin  gene  in the kidney.  

Materials and methods 

Animals. Male Sprague-Dawley rats (body weights 208 + 8 g, 
mean + SD, obtained from Charles River Wiga, Sulzfeld, Germa- 
ny) were fed either a low-salt diet (Na 0.14 mg/g, C1 0.18 rag/g), 
normal-salt diet (Na 2.5 rag/g, C1 3.6 rag/g), or high-salt diet (Na 
18 rag/g, C1 28 rag/g) for 20 days. The different salt diets (C1000, 
C1036, C1051, Altromin, Lage, Germany) and distilled water were 
available ad lib. After 5, 10, 15 and 20 days feeding, five rats from 
each dietary group were analysed for plasma renin activity (PRA) 
and renin mRNA levels. To this end 300 gl blood was sampled for 
determination of PRA within the first minute after sacrifice by 
cervical dislocation. The adrenal glands and both kidneys were 
rapidly removed, snap-frozen in liquid nitrogen and stored at 
- 7 0 ~  prior to extraction of total RNA. 

Renal denervation. A further group of rats (five on each diet) were 
subjected to left renal denervation after 5 days. Animals were 
anaesthetized with methohexital (75 mg/kg i.p.) and denervated 
according to the method of Bello-Reuss et al. [3]. The abdominal 
wall was opened along the midline and the left renal artery and 
vein were exposed by carefully retracting the adipose tissue and 
the peritoneum. Mechanical denervation was carried out using an 
operation microscope by sectioning any visible nerve fibre pen- 
etrating the renal hilus and by stripping the adventitia from the 
renal artery. To destroy any remaining nerve fibres the artery was 
painted with a solution of 10% phenol in ethanol. After 5 rain 
exposure to this solution the artery was washed with isotonic sa- 
fine, the wound closed and the animals ailowed to recover. In 
sham-operated animals, the left artery and vein were exposed as 
described above, but mechanical denervation and treatment with 
the phenol solution were omitted. This treatment has recently been 
shown to cause effective renal denervation [9]. The different salt 
diets were continued for a further 5 days until sacrifice of the 
animals. 

Measurement of  blood pressure. In the animals kept on the differ- 
ent salt diets for 10 days a catheter was inserted into the left carotid 
artery under brief anaesthesia (methohexital, 75 mg/kg) 6 h prior 
to sacrifice of the animals. Mean arterial blood pressure was moni- 
tored in the conscious animals by a Statham transducer connected 
to the arterial catheter for the 15 rain prior to sacrifice. 

Determination of preprorenin mRNA. Total RNA was extracted 
from half kidneys and both adrenal glands according to the proto- 
col of Chirgwin et al. [5]. Tissue was homogenized in 18 ml guani- 
dine thiocyanate (4M) containing 0.5% N-dodecyl sarcosinate, 
10 mM ethylenediaminetetraacetic acid (EDTA), 25 mM sodium 
citrate and 700 mM 2-mercaptoethanol with a Polytron homogen- 
izer and RNA was subsequently purified on a caesium chloride 
gradient by laying the extract onto a cushion of 5.7 M CsC1 and 
100 mM EDTA and centrifuging for 20 h at 33 000 rpm. After 
centrifugation RNA pellets were resuspended in 300 gl 10 mM 
TRIS pH 7.5, 1 mM EDTA containing 0.1% sodium dodecyl sul- 
phate (SDS), precipitated with 3 M sodium acetate (0A vol) and 
ethanol (3 vol) and stored at -70~  prior to analysis. Renin 
mRNA was measured by RNase protection as described for er- 
ythropoietin mRNA [24]. A preprorenin complementary RNA 
(cRNA) probe containing 296 base pairs of exons I and II, gener- 
ated from a pSP64 vector carrying a PstI-KpnI restriction fragment 
of a rat preprorenin complementary deoxyribonucleic acid (cDNA) 
[4] was generated b y  transcription with SP6 RNA polymerase 
(Amersham International, Amersham, UK). Transcripts were con- 
tinuously labelled with guanosine [a-3zp]triphosphate (410 Cil 
retool; Amersham International) and purified on a Sephadex G50 
spun column. For hybridization, total RNA was dissolved in a 
buffer containing 80% formamide, 40 mM 1,4-piperazine dieth- 
anesulphonic acid (PIPES), 400 mM NaC1, 1 mM EDTA (pH 8). 
Generally, 20 ~tg total RNA from kidneys and 80 gg total RNA 
from adrenal glands were hybridized in a volume of 50 ~tl at 60~ 
for 12 h with 5 • 105 cpm radiolabelled renin probe. Digestion with 
RNase A and T1 was carried out at 20~ for 30 min and termin- 
ated by incubation with proteinase K (0.1 rag/m1) and SDS (0.4%) 
at 37~ for 30 rain. Protected renin mRNA fragments were puri- 
fied by phenol/chloroform extraction, ethanol precipitation and 
subsequent electrophoresis on a denaturing 10% polyacrylamide 
gel. After autoradiography of the dried gel at - 70~  for 1 - 2  
days, bands representing protected renin mRNA fragments from 
kidneys were excised from the gel and the radioactivity counted 
in a liquid scintillation counter (1500 Tri-Carb, Packard, Downers 
Grove, Ill., USA). The amount of radioactivity obtained from each 
sample of total kidney RNA was expressed relative to an external 
standard consisting of a 20-gg aliquot of pooled RNA extracted 
from kidneys of six untreated control animals that was coanalysed 
on each gel (see Figs. 6, 7, 9). In protection assays for renin 
mRNA of adrenal glands 0.5 gg or 2.5 gg standard pool was co- 
analysed and, because of the low abundance of renin mRNA in 
adrenals (see Results), the duration of autoradiographic exposure 
was extended to 2 - 3  weeks. Figure 1 (upper panel) shows an 
RNase protection assay for renin mRNA performed with different 
amounts of the standard pool demonstrating linearity of the assay. 

Determination of actin mRNA. To exclude the possibility of non- 
specific influence of salt diet on gene expression in general the 
abundance of rat cytoplasmatic fl-actin mRNA in total RNA iso- 
lated from the kidneys was determined by RNase protection assay 
exactly as described for preprorenin. An actin cRNA probe con- 
taining the 76-nucleotide first exon and around 200 base pairs of 
an adjoining intron was generated by transcription with SP6 poly- 
merase from a pAM19 vector carrying a AvaI/HindIII restriction 
fragment of actin cDNA [24]. For one assay 2.5 gg RNA was 
hybridized under the conditions described for the determination of 
renin mRNA. Figure 1 (lower panel) shows an actin RNase protec- 
tion assay performed with different amounts of the RNA standard. 

Plasma renin activity. PRA was determined using a commercially 
available radioimmunoassay kit for angiotensin I (Sorin, Dfissel- 
dorf, Germany). 
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Fig. 1. Upper panel: autoradiograph of a ribonuclease (RNase) 
protection assay for renin mRNA using different amounts of renal 
RNA standard. The radioactivity of the excised bands was 
790 cpm, 410 cpm, 220 cpm and 105 cpm for 40 ~tg, 20 gg, 10 gg 
and 5 ~tg total RNA respectively. Lower panel: autoradiograph 
of an RNase protection assay for fl-actin mRNA using different 
amounts of total renal RNA standard. The radioactivity of the ex- 
cised bands was 7000 cpm, 3700 cpm, 1900 cpm and 1000 cpm 
for 5 gg, 2.5 pg, t.25 ~tg and 0.625 ~tg total RNA respectively 
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Fig. 2. Averaged dally body weight gains of rats kept on low-, 
normal- or high-salt diet for 5, 10, 15 and 20 days. The values were 
calculated by dividing the individual body weight gains during the 
experimental periods by the number of days of experiment. Data 
are means + SEM from 20 animals in each dietary group. 
* P < 0.05 

Statistics. Analysis of variance and students's paired and unpaired 
t-tests were used for intra- and interindividual comparisons. 
P < 0.05 was considered significant. 

Results 

The influence of the sodium diets on weight gain of the 
rats is shown in Fig. 2. Rats on the low-salt diet gained 
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Fig. 3. Mean arterial pressure in conscious rats kept on low-, nor- 
mat- or high-salt diet for 10 days. Data are means _+ SEM (n = 5 
for each group) 
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Fig. 4. Plasma renin activities in rats on low- (I'), normal- (�9 or 
high-salt (11) diet. Data are means _+ SEM (n = 5 each day and 
diet). * P < 0.05 compared to normal-salt diet. A/, angiotensin I 

significantly less weight than those on the normal diet, 
whereas the high-salt diet had no influence on body 
weight gain. The different sodium chloride diets had no 
significant effects on the blood pressure measured in 
conscious rats on day 10 (Fig. 3). 

Differences in the salt content of diets led to signifi- 
cant changes in PRA after 5 days on the diets (Fig. 4), 
On the low-salt diet PRA increased transiently and 
reached a maximum after 10 days, when PRA values 
were 3-fold higher than those in animals kept on the 
normal-salt diet. High-salt feeding, on the other hand, 
led to a transient decrease of PRA values to approxi- 
mately 50% of the control values during the first 10 days 
of feeding (Fig. 4). PRA values in the high-salt group 
were not different from those in the normal group after 
15 days whilst those in the low-salt group, although de- 
clining, were still significantly elevated at 20 days. 

The influence of salt diet on renin mRNA levels was 
determined using a sensitive RNase protection assay 
with total RNA prepared from kidneys and adrenal 
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Fig. 5. Renal renin rnRNA levels expressed in relation to an exter- 
nal standard (20-gg aliquot of total RNA from control animals) in 
rats on low- (V), normal- (O) or high-salt (11) diet. RNA was 
extracted from the left kidneys. Data are means -+ SEM (n = 5 
each day and diet). * P < 0.05 compared to normal salt diet 

Fig. 6. Autoradiographs of RNase protection assays for fl-actin 
mRNA with total RNA isolated from the left kidneys of individual 
rats kept on low- (n = 5) or high-salt (n = 5) diet for 10 days; 
2.5 ktg total RNA was analysed in each assay. St., 2.5 [xg RNA 
standard taken from an RNA pool isolated from the kidneys of six 
normal rats 

glands. Renal renin mRNA levels in rats kept on the 
low-sodium diet had increased after 5 days, reaching 
max imum values that were about 100% higher than 
those of controls after the first week, and then declining 
(Fig. 5). The high-salt diet, on the other hand, led to a 
permanent decrease in renal renin m R N A  levels that had 
reached about 50% of  the respective controls after the 
first week of  feeding (Fig. 5). For comparison and to 
exclude non-specific influences on gene expression, the 
abundance of rat cytoplasmic fl-actin m R N A  levels in 
the RNA preparations assayed for renin m R N A  was ana- 
lysed. No difference in the abundance of renal actin 
m R N A  was found in animals kept on low- or high-salt 
diet for 10 days (Fig. 6) when compared with animals 
on normal salt diet. 

In view of evidence suggesting that renal nerves are 
involved in the effect of  salt intake on renin secretion 
[20, 26] rats were unilaterally denervated and fed the 
low-, normal- or high-salt diet for 10 days and the abun- 
dance of  renin m R N A  was determined separately for the 
denervated and the innervated kidneys of  each animal; 
individual examples are shown in Fig. 7. Figure 8 shows 
that in animals on the normal-salt  diet unilateral dener- 
vation depressed renin m R N A  levels in the denervated 
kidneys (115 __ 20% intact kidney compared to 58 
+ 5% denervated kidney). Renin m R N A  levels in the 

Fig.7. Autoradiograph of RNase protection assays for renin 
mRNA with total RNA isolated from the individual kidneys of 
unilaterally denervated rats kept on low- (n = 3) and high-salt 
(n = 3) diet. L, left (denervated); R, fight (intact) kidney; 20 gg 
total RNA was analysed in each assay. St., 20 gg RNA standard 
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Fig. 8. Upper panel: plasma renin activities in unilaterally (left 
side) denervated rats kept on low-, normal- or high-salt diet for t0 
days. Data are means + SEM (n = 5 each group). AI, angiotensin 
I. Lower panel: renal renin mRNA levels expressed as percentage 
of the standard RNA in unilaterally (left side) denervated rats kept 
on low-, normal- or high-salt diet for 10 days. L, left (denervated); 
R, fight (intact) kidney. Data are means _+ SEM (n = 5 each 
group). * P < 0.05 

contralateral kidneys were not significantly different 
from those in sham-operated rats (data not shown). In 
rats on the low-salt diet renin m R N A  increased similarly 
in the both denervated (200 +_ 5%) and innervated 
(228 _+ 20%) kidneys, abolishing "side differences" in 
renin gene expression (Figs. 7, 8). In rats on the high- 
salt diet, on the other hand, renin m R N A  levels were 
decreased both in the denervated (42 _+ 3%) and in the 
innervated (70 _+ 2%) kidneys; the difference between 
the denervated and intact kidneys remained significant. 
The pattern of  the response of  renal renin m R N A  to 
changes in salt intake was thus not basically different in 
the denervated compared with the intact kidney. PRA 
in the unilaterally denervated animals showed the same 
pattern as in non-operated animals (day 10, Fig. 4) and 
sham-operated animals (data not shown). 

To establish whether the influence of salt intake on 
renin gene expression is restricted to the kidneys or is a 
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Fig. 9. Upper panel: renin RNase protection assays of 80 gg total 
RNA isolated from the adrenal glands of rats kept on low- or high- 
salt diet for 10 days. St., standard (0.5 gg total renal RNA). Adre- 
nal RNA was pooled from four rats from each experimental group, 
combining 20 gg each of adrenal RNA isolated from both adrenals 
of one animal. Lower panel: renin RNase protection assays as 
described above with total adrenal RNA isolated from rats kept on 
low-, normal- (n) or high-salt diet for 15 days 

more general phenomenon, we analysed renin mRNA 
levels in the adrenal glands. In pilot experiments the 
abundance of adrenal renin mRNA was found to be low 
compared with that in the kidneys. We therefore pooled 
20 gg each of total adrenal RNA from four animals from 
each of the three experimental groups for assay of renin 
mRNA. As shown in Fig. 9 (lower panel), 80 ~tg total 
RNA from adrenal glands produced a much weaker hy- 
bridization signal than did 2.5 gg renal RNA; both 
samples were prepared from animals on a normal-salt 
diet. From this comparison we estimate that the abun- 
dance of renin mRNA in the adrenal glands is about 1% 
of that in normal rat kidneys. Nonetheless, an obvious 
difference in adrenal renin mRNA levels between ani- 
mals on low- or high-salt diet was visible after 10 
(Fig. 9, upper panel) and 15 (Fig. 9, lower panel) days 
of feeding. Similar to the changes in renal renin mRNA, 
adrenal renin mRNA increased in animals on the low- 
salt diet and decreased in rats on the high-salt diet. Adre- 
nal actin mRNA levels did not differ with diet (not 
shown). 

Discussion 

The aim of this study was to examine the influence of 
dietary salt intake on the secretion of renin and the ex- 
pression of the renin gene in adult rats. Our findings 
suggest that changes of dietary salt intake lead to pro- 
portional and inverse changes of both renin secretion 
rates and kidney mRNA levels (Figs. 4, 5). In contrast 
to a previous study [23], renal renin mRNA changed 
within 5 days after the salt intake was changed (Fig. 5). 
The magnitude of changes of plasma renin activity ob- 
served in this study agree with a previous investigation 
[26] but both these and the changes of renin mRNA were 
markedly less pronounced than in previous studies in 

which animals were additionally treated with furose- 
mide, captopril or deoxycorticosterone acetate [2, 12, 14, 
19, 22]. In these investigations 3- to 8-fold increases of 
renin mRNA levels and 3- to 46-fold increases in PRA 
have been reported. In this study we found that salt re- 
striction alone led to a transient and proportional 2-fold 
increase of PRA and or renal mRNA levels (Figs. 3, 4). 
The discrepancies between the present study and those 
studies cited above may reasonably be ascribed to the 
additional pharmacological interventions in those stud- 
ies. 

The transience of the responses of PRA and renal 
mRNA levels to low salt intake could indicate that under 
such circumstances additional sodium saving mecha- 
nisms become operative and lead to a relief of the renin 
system. More difficult to explain is the dissociation be- 
tween renin secretion and renal renin gene expression, 
which occurred after 2 weeks of feeding the high-salt 
diet. While PRA had returned to control values at that 
time, renin mRNA levels remained suppressed. The lat- 
ter finding is in agreement with previous studies in 
which renal renin mRNA levels were found to be sup- 
pressed 2 and 4 weeks after high-salt feeding [1, 19]. 
Our results thus suggest that there is a change in the 
normal relation between renin secretion rates and renin 
mRNA levels when high salt intake is continued for pro- 
longed periods. Taken together, our findings indicate that 
variations of salt intake can induce at least a 4-fold 
change of renin gene expression in the kidney of rats. 

The mechanisms adapting renin gene expression to 
salt intake are, as yet, unknown. Possible mediating 
mechanisms include changes in blood pressure, macula 
densa function, renal nerve activity or humoral factors. 
In accord with a previous study [26] there were no con- 
sistent changes of blood pressure in the rats on the differ- 
ent salt diets. Thus a contribution of arterial pressure to 
the influence of salt intake on renin gene expression ap- 
pears to be unlikely. Two arguments suggest that the 
same is true for the macula densa. First. altered salt in- 
take alone does not influence the sodium chloride deliv- 
ery to the early distal tubule [26]. The latter is con- 
sidered to be the relevant parameter for the macula densa 
mechanism [17]. Secondly, it has been demonstrated re- 
cently that salt restriction leads to an increase of renin 
mRNA levels in hydronephrotic kidneys (in which all 
tubular structures are destroyed) [2]. Renal nerves have 
also been suggested as the mediators of the influence of 
salt intake on renin secretion [20, 26]. Successful renal 
denervation in this series of experiments may be sug- 
gested by the observation that, in animals on normal 
diet, denervation caused renin mRNA levels to fall to 
50% of the contralateral value, a finding in harmony 
with recent observations made by others [271 and our- 
selves (Holmer et al., unpublished observations) indicat- 
ing that the renal nerves indeed play a role in the basal 
expression of the renin gene. Our findings, however, 
suggest that renal nerves do not mediate the salt-intake- 
dependent changes in renin mRNA levels (Fig. 8). 

A humoral factor mediating the influence of salt in- 
take on renal renin gene expression may thus be inferred. 
Indeed, the suggestion that the effect of salt intake on 
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renin secretion is somehow related to the release o f  va- 
sopressin [15] was made  12 years ago. The inference o f  
a humoral  factor  linking renal renin gene expression to 
salt intake is strongly supported by the observat ion that 
not  only renal, but  also adrenal renin gene expression is 
similarly sensitive to salt intake (Fig. 9). Our  obser- 
vations in normal  rats agree with, and thus confirm, the 
recent  report  on an influence o f  salt intake on adrenal 
renin gene expression in Dahl  salt-sensitive and Dahl  
salt-resistant rats [13]. Several studies have recently 
demonstrated that the adrenal glands are a relevant site 
o f  renin gene expression [8, 10, 21]. Moreover ,  it has 
been estimated that the abundance o f  renin m R N A  in 
adrenal glands o f  normal  rats is approximately 10% of  
that found in the kidneys [8]. Our  findings suggest  an 
even lower  abundance o f  renin m R N A  in the adrenal 
glands (approximately 1% of  that in the kidneys). 
Whether  this discrepancy is due to the different rat 
strains used, to a different prestimulation o f  adrenal re- 
nin gene expression or to the different methods  used for 
renin m R N A  quantification is not  yet  clear. 

In  summary,  our findings suggest  that the level o f  
salt intake determines the product ion or the release o f  a 
humoral  factor  that effectively controls renin gene ex- 
pression, its mode  of  action, its nature and its site o f  
origin remain to be clarified in future studies. 
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