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Prof. Dr. M. Grifoni



Contents

1. Introduction 5

2. Theoretical basics 9

2.1. Quantum chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. QCD at non-zero temperature and density . . . . . . . . . . . . . 11

2.1.2. QCD on the lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1. Supersymmetric quantum mechanics . . . . . . . . . . . . . . . . 19

2.3. Monte Carlo integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1. Monte Carlo with importance sampling . . . . . . . . . . . . . . . 21

2.3.2. Hybrid Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4. Random matrix theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1. Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2. Non-Hermitian Gaussian ensembles . . . . . . . . . . . . . . . . . 28

2.4.3. Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4. The next-neighbor spacing distribution . . . . . . . . . . . . . . . 29

2.4.5. Chiral random matrix theory . . . . . . . . . . . . . . . . . . . . 30

3. Analysis of quark spectra on the lattice with two-color QCD 31

3.1. Quark spectra at high temperature . . . . . . . . . . . . . . . . . . . . . 33

3.1.1. Comparison between the staggered and overlap operator . . . . . 35

3.1.2. Connection between eigenmodes and Polyakov loops . . . . . . . . 39

3.1.3. Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.4. Random matrix model for the staggered Dirac operator . . . . . . 43

3.2. Spacing distributions of the overlap operator at non-zero density . . . . . 48

3.2.1. Spectra of real random matrices . . . . . . . . . . . . . . . . . . . 50

3.2.2. Eigenvalue dynamics in perturbation theory . . . . . . . . . . . . 51

3.2.3. Derivation of the surmises . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4. Comparison of the surmises to large RMT spectra . . . . . . . . . 60

3



Contents

3.2.5. Application to two-color QCD at non-zero density . . . . . . . . . 62

4. Supersymmetry on the lattice 71

4.1. The blocking approach to SUSY . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1. The generalized Ginsparg-Wilson relation . . . . . . . . . . . . . . 72

4.1.2. The relation for the anticommutator . . . . . . . . . . . . . . . . 74

4.1.3. Explicit blocking for SUSYQM in the continuum . . . . . . . . . 82

4.2. Construction of a SUSY-improved action . . . . . . . . . . . . . . . . . . 85

4.2.1. Supersymmetric quantum mechanics on the lattice . . . . . . . . 86

4.2.2. Explicit method to construct the improved lattice action . . . . . 88

4.2.3. Lattice discretizations . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.4. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5. Summary and conclusions 97

5.1. Analysis of quark spectra on the lattice with two-color QCD . . . . . . . 97

5.2. Supersymmetry on the lattice . . . . . . . . . . . . . . . . . . . . . . . . 99

A. Appendix 101

A.1. Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2. Remaining calculations for Sec. 4.1.2.1 . . . . . . . . . . . . . . . . . . . 102

A.3. Derivation of the Ward identities . . . . . . . . . . . . . . . . . . . . . . 102

4



1. Introduction

The standard model (SM) of particle physics is one of the most well-tested theories in

physics. It explains high-energy experiments like those performed at the Large Hadron

Collider (LHC) in a framework that unifies all relevant particle interactions occurring

in these experiments. Only recently, there has been first experimental evidence for the

Higgs boson [1, 2], which has been predicted back in 1964 [3]. It is connected to the

Higgs mechanism of the SM, which provides an elegant explanation for the masses of weak

gauge bosons via spontaneous symmetry breaking. The part of the SM that describes the

strong force between the quarks is the theory of quantum chromodynamics (QCD). Due

to asymptotic freedom [4], QCD is accessible by perturbative methods in the high energy

regime. On the other hand, perturbation theory cannot be used to study non-analytical

properties of QCD like the phase diagram. The latter is relevant for the description of

heavy-ion collisions and the understanding of the early universe. A non-perturbative

approach to the theory is thus necessary to gain insight into these subjects.

Despite its success, the SM has some flaws, e.g. the so-called hierarchy problem that

parameters of a fundamental high-energy theory must be unnaturally fine-tuned in order

to produce the known low-energy physics [6]. Furthermore, the cold dark matter which

explains many astronomical observations (see Ref. [7] for a review) is not contained in

the standard model. A possible way to overcome the mentioned issues is supersymmetry

(SUSY), which is an extension of the usual space-time symmetries that relates fermions

with bosons. However, no evidence has yet been found for a supersymmetric extension

of the standard model. Thus, if SUSY exists in reality, it must be broken on the energy

scales of the experiments done so far, either spontaneously or explicitly. As in the case

of QCD, this calls for non-perturbative methods to study supersymmetric theories.

A promising candidate for such an approach is a numerical treatment of the theories,

since the development of supercomputers has made great progress in the last decades. At

present, the fastest supercomputer in the world is the IBM Sequoia, with a performance

of 16.3 · 1015 floating-point operations per second (FLOPS) based on the LINPACK

benchmark [8]. For comparison, the fastest computer in November 1999 was the ASCI

Red with about 2.4 · 1012 FLOPS [9]. The calculations performed on these computers
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have a wide range of applications from weather forecasts to the simulation of molecular

dynamics.

Large amounts of computer time are also required for the numerical investigation of

quantum field theories like QCD, which is done with great success by a branch called

lattice QCD. Here, lattice refers to the discretization of space-time, which is necessary in

order to make the theory feasible for the numerical calculations. Lattice QCD provides

a non-perturbative way to gain theoretical insight e.g. into the structure of hadrons [10]

and the QCD phase diagram [11]. The latter amounts to the study of QCD at non-zero

temperature and/or density, which is the first main part of this work. However, the

mentioned discretization of space-time causes some fundamental changes compared to

the continuum theory. For example, gauge symmetry on the lattice requires the use

of link variables which are elements of the gauge group instead of the continuum fields

that are elements of the gauge algebra. Furthermore, exact chiral symmetry can only

be obtained on the lattice by the cost of non-local actions or fermionic doublers [12].

However, a remnant of the continuum chiral symmetry is comprised by the so-called

overlap operator [13–15], which is considered the ’best’ lattice operator concerning chiral

symmetry.

Similar issues are encountered in the numerical treatment of supersymmetry, which

has also been studied on the lattice, see Refs. [16, 17] for reviews. Similar to the chi-

ral symmetry, exact SUSY on the lattice can only be achieved by either non-local or

quadratic actions [18], the latter being trivial. However, as in the case of chiral sym-

metry mentioned above, a remnant of SUSY may be satisfied by a local action. Our

findings related to the search for such an action are comprised in the second main part

of this work, along with a different approach to construct a lattice action that aims at a

compromise between locality and supersymmetry.

This thesis is organized in the following way. After giving a brief introduction to the

necessary theoretical basics in Sec. 2, the results are divided in two major parts. Firstly,

we analyze quark spectra in two-color lattice QCD at non-zero temperature or non-zero

density, with a focus on eigenvalue correlations, in Sec. 3. For the case of non-zero

temperature considered in Sec. 3.1, we establish a connection between low eigenmodes of

two different lattice Dirac operators and local Polyakov loops. Furthermore, we present

a random matrix model that mimics many features of these operators. In Sec. 3.2,

we consider the spacing distributions of the overlap Dirac operator for various values

of the chemical potential, i.e., at non-zero density. We show that these are very well

approximated by the spacing distributions we derive for small real random matrices
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with a tunable degree of non-hermiticity. The latter also provide good approximations

for the spacing distributions of corresponding large random matrices in the regime of

weak non-hermiticity.

In Sec. 4, which contains the second part of the results, we consider various aspects

of supersymmetry on the lattice. We begin with a status report on our search for a

remnant of SUSY on the lattice with the blocking approach in Sec. 4.1. In Sec. 4.2, we

construct lattice actions of supersymmetric quantum mechanics (SUSYQM), that are

improved with respect to supersymmetry and ultra-local. We show numerically that the

Ward identities, which can be used to quantify the breaking of SUSY, are indeed much

smaller for the improved than for the naive discretizations. Finally, we summarize our

findings and conclude in Sec. 5.
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2. Theoretical basics

This Section provides the theoretical foundations on which the results of this thesis are

based. It includes a short introduction into QCD in the continuum and on the lattice in

Sec. 2.1, SUSY in Sec. 2.2, Monte Carlo (MC) integration in Sec. 2.3 and random matrix

theory (RMT) in Sec. 2.4.

2.1. Quantum chromodynamics

For a detailed introduction to QCD and quantum field theories in general, we refer the

reader to the book of Peskin and Schroeder [19]. The theory of quantum chromodynamics

forms, together with the theory of the electro-weak interaction, the standard model of

particle physics. It describes the interaction between the constituents of hadrons, the

quarks, via non-abelian gauge fields called gluons. The action of QCD is given by

SQCD =

∫
d4x LQCD , (2.1)

with the Lagrangian

LQCD =
∑
f

[
ψ̄f (iD −mf )ψf

]
− 1

4
F a
µνF

aµν , (2.2)

which is composed of fermion fields ψf and ψ̄f (= ψ†fγ0) that represent the quarks with

the flavor index f and mass mf , the field strength tensor

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.3)

and the Dirac operator

D = γµDµ = γµ (∂µ − igAµ) , with Aµ = Aaµt
a . (2.4)
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2.1. Quantum chromodynamics

We denote the Dirac γ matrices by γµ, the gluon fields by Aaµ, and the structure constants

by fabc. The Gell-Mann matrices denoted by ta span the su(3) algebra. a, b, c = 1, . . . , 8

are color indices, whereas µ, ν = 0, . . . , 3 are Lorentz indices and a sum over double

indices is understood. The structure constants are related to the Gell-Mann matrices

via

[ta, tb] = i fabc tc . (2.5)

The fermion fields ψ̄f and ψf are vectors in a 12-dimensional complex vector space which

is a direct product of the 4-dimensional spinor space and the 3-dimensional color space.

The γ-matrices act in the spinor space, while all matrices related to the SU(3) group or

the su(3) algebra act in color space.

In accordance with the theory of special relativity, the action of QCD is symmetric

with respect to Poincaré transformations. Additionally, it is invariant under local gauge

transformations, which are defined by

ψ̄f (x)→ ψ̄f (x)V †(x) , (2.6)

ψf (x)→ V (x)ψf (x) , (2.7)

Aµ(x)→ V (x)Aµ(x)V †(x) + V (x)
i

g

[
∂µV

†(x)
]
, (2.8)

with an arbitrary differentiable field of SU(3) matrices V (x). The covariant derivative

Dµ then transforms like

Dµ → ∂µ − igV (x)Aµ(x)V †(x) + V (x)
[
∂µV

†(x)
]

= V (x)∂µV
†(x)− igV (x)Aµ(x)V †(x) = V (x)DµV

†(x) , (2.9)

so ψ̄f (iD)ψf and ψ̄fψf are invariants under gauge transformations. The field strength

tensor can be expressed in terms of the covariant derivative as

F a
µν t

a =
i

g
[Dµ, Dν ] . (2.10)

Making use of the property tr(tatb) = δab of the Gell-Mann matrices, the last term in

Eq. (2.2) can be thus written as 1
4g2 tr ([Dµ, Dν ] [Dµ, Dν ]), which is clearly also invariant

under gauge transformations.

For a quark flavor with zero mass, the action of QCD is also invariant under a chiral
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2.1. Quantum chromodynamics

transformation of the resp. fermion fields, given by

ψ̄ → ψ̄eiεγ5 , and ψ → eiεγ5ψ , (2.11)

because the massless Dirac operator fulfills

{D, γ5} = 0 . (2.12)

However, this chiral symmetry may be spontaneously broken, as considered below.

2.1.1. QCD at non-zero temperature and density

The study of quantum chromodynamics at non-zero temperature and density is crucial

for the understanding of the physics of the hot early universe and systems with a high

baryon density like neutron stars. A recent review about the phase diagram of QCD

in given in Ref. [5]. The grand canonical partition function of QCD in a heat bath

of temperature T , spatial volume V and chemical potentials µf for the different quark

flavors is given by

Z(T, V, µf ) = tr
[
e−

1
T

(H−
∑
f µfQf )

]
=

∫
DADψ̄Dψ exp

[
−
∫ 1/T

0

dt

∫
V

d3x

(
LQCD +

∑
f

ψ̄fµfγ4ψf

)]
. (2.13)

Here, H is the QCD Hamiltonian, Qf = ψ̄fγ4ψf are the quark number operators for the

different flavors and LQCD is the imaginary-time version of the QCD Lagrangian defined

in Eq. (2.2). Due to the imaginary time, space-time is Euclidean. Thus, the indices µ, ν

run from 1 to 4, the metric is gµν = δµν and the γ matrices fulfill {γµ, γν} = δµν . The non-

zero temperature is simply introduced by a compactification of the time dimension, while

the density is controlled by the quark chemical potentials. To ensure proper Bose/Fermi

statistics, the boundary conditions in time direction have to be periodic for bosons and

anti-periodic for fermions.

The (traced) Polyakov loop is the trace of a closed Wilson loop around the temporal

direction, defined by

L(~x) =
1

3
tr

{
P exp

[
ig

∫ 1/T

0

dtA4(~x, t)

]}
, (2.14)
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2.1. Quantum chromodynamics

where P is the path-ordering operator. We consider the pure gauge theory in the follow-

ing. In this case, the action of QCD is invariant under gauge transformations that are

periodic up to a center element of the gauge group, denoted by z, in the temporal direc-

tion. However, the Polyakov loop becomes L(~x)→ zL(~x) under such a transformation.

Therefore, the expectation value1 〈L〉 of the Polyakov loop is zero, if center symmetry

is not spontaneously broken, which is the case for T = 0. It is furthermore related to

the quark free energy FQ via 〈L〉 = e−(FQ−F0)/T , which means that FQ =∞ for 〈L〉 = 0,

and the theory is confining. For T →∞, the center symmetry is spontaneously broken,

the expectation value of L becomes non-zero and the quark free energy becomes finite.

Thus, there is a confinement-deconfinement transition in the zero-flavor approximation

of QCD as the temperature is increased.

Another phase transition of QCD is related to chiral symmetry. As mentioned above,

the massless Dirac operator is chiral, which means that the chiral condensate 〈ψ̄fψf〉
should be zero for mf = 0. However, this is not the case for T = 0, because chiral

symmetry is spontaneously broken in this regime. Above a certain critical temperature

denoted by Tc, the symmetry is restored, and the chiral condensate becomes zero. This

means that there is again a non-analytical phase transition, which is denoted as chiral

phase transition.

For dynamical QCD at physical quark masses, these are no exact phase transitions

but rather crossovers, however the Polyakov loop and the chiral condensate still serve as

approximate order parameters. In this case, recent lattice simulations have shown that

the critical temperature for the chiral phase crossover is about Tc ≈ 154 MeV [20].

An approximate restoration of chiral symmetry is also expected for sufficiently large

values of the chemical potential at zero temperature and physical quark masses. Fur-

thermore, for asymptotically large values of the potential, a superconducting phase is

assumed from to the analysis of QCD with weak-coupling methods.

2.1.2. QCD on the lattice

We briefly summarize the very basics of lattice QCD in this Section, for a detailed

introduction the reader is referred to Ref. [21]. The fundamental difference between

continuum and lattice QCD is the discretization of space-time. In actual computer

simulations, the lattice extent in all directions has also to be restricted leading to finite

size effects, but this is not our main concern here. Furthermore, a Wick rotation the

imaginary time is performed in order to make the path integrals introduced below in

1This means that the path integral over the gauge fields is taken.
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2.1. Quantum chromodynamics

Sec. 2.1.2.3 feasible by numerical methods. This means that the Metric becomes gµν =

δµν and the theory lives in Euclidean space.

2.1.2.1. The gauge action

We firstly consider the pure gauge theory in a discretized Euclidean four-dimensional

space-time with lattice spacing a and arbitrary extent. In order to maintain local gauge

symmetry in this setting, the continuum gauge fields, which are elements of the su(3)

algebra, have to be replaced by elements of the SU(3) group. These SU(3) elements

are called gauge links and connect neighboring lattice sites. We denote the link at the

lattice site x by Uµ(x), where µ = 1, . . . , 4 is the direction of the link, i.e., it connects

the site x and the site x+ µ̂, with the vector µ̂ of length a pointing along one of the four

coordinate axis. Backward-pointing links are defined by U−µ(x) = U †µ(x− µ̂).

The gauge links transform under local gauge transformations as

Uµ(x)→ g(x)Uµ(x) g†(x+ µ̂) , (2.15)

where the g(x) ∈ SU(3) define the transformation. It can be easily shown that every

product of links along a closed loop is a gauge-invariant quantity. The product around

the smallest possible non-trivial closed loop is the so-called plaquette, which is given by

Uµν(x) = Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂) . (2.16)

The first gauge symmetric action for QCD on the lattice has been introduced by

Wilson [22], and reads

SG[U ] =
β

3

∑
x

∑
µ<ν

Re tr (1− Uµν(x)) , (2.17)

where β = 6/g2 is the so-called inverse coupling. One can show that in the continuum

limit a → 0, the term in the trace becomes proportional to the continuum Lagrange

density of the pure gauge theory. Thus, the Wilson action approaches the gauge part

of the continuum action of QCD, given in Eq. (2.1), in this limit up to a factor of −1

(due to the Euclidean metric as opposed to the Minkowski metric) and a rescaling of the

gauge fields.
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2.1. Quantum chromodynamics

2.1.2.2. Fermions on the lattice

Unlike the gauge links, the fermionic fields ψ̄ and ψ (we consider only one flavor here

for convenience) are placed at the lattice points. Under the gauge transformation, they

transform as

ψ̄(x)→ ψ̄(x)g†(x) , and ψ(x)→ g(x)ψ(x) . (2.18)

Therefore, all terms of the form ψ̄(x)C(U)ψ(y), where C(U) is a path-ordered product

of gauge links along some curve from x to y, are gauge invariant.

Hence, a gauge invariant discretization of the fermionic action is given by

SF [ψ̄, ψ, U ] = a4
∑
x,x′

ψ̄(x)Dxx′ ψ(x′) , (2.19)

with the naive choice for the lattice Dirac operator

Dxx′ =

[∑
µ

γµ
Uµ(x) δx+µ̂,x′ − U †µ(x′) δx−µ̂,x′

2a

]
+m1 δxx′ , (2.20)

where γµ are Euclidean γ matrices. However, this operator suffers from the serious so-

called doubling problem, which can be easily understood by considering the free2 massless

lattice Dirac operator (2.20) in momentum space, which reads

D(p) =
i

a

∑
µ

γµ sin(apµ) . (2.21)

This operator has a total of 16 zero modes, since the sine function is zero for pµ = 0

or pµ = π/a, but only the zero mode at p = (0, 0, 0, 0) is also present in the continuum

theory. Since each of the zero modes corresponds to a pole of the quark propagator,

there exist 15 unphysical poles. A possible way to get rid of those is to use a different

(massless) Dirac operator

DW (p) =
i

a

∑
µ

γµ sin(apµ) +
1

a

∑
µ

[1− cos(apµ)] , (2.22)

where the second summand is an additional term called Wilson mass. The only zero

mode of this operator is the one that is also present in the continuum, while all others

2This means that the gauge links are set to 1.
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2.1. Quantum chromodynamics

are lifted to a non-zero value. In real space and with non-trivial gauge links, the Wilson

mass term reads

−a
2

∑
µ

Uµ(x) δx+µ̂,x′ − 13 2δxx′ + U †µ(x′) δx−µ̂,x′

a2
, (2.23)

which is the discretization of a Laplacian times a/2, so it vanishes in the continuum limit

a→ 0. In principle, the Wilson mass can be conveniently rescaled by any non-zero real

number without spoiling its properties.

A problem of the Wilson mass is that it breaks chiral symmetry explicitly, so the

Dirac operator DW is not chirally symmetric for massless quarks. Another approach

which partially removes the doublers, but keeps a remnant of chiral symmetry, is the

staggered operator [23]. It is obtained from the naive discretization (2.20) by an unitary

transformation of the fermion fields via

ψ̄(x)→ ψ̄(x)γx4
4 γ

x3
3 γ

x2
2 γ

x1
1 , and ψ(x)→ γx1

1 γ
x2
2 γ

x3
3 γ

x4
4 ψ(x) . (2.24)

In this basis, the operator becomes block-diagonal, with four blocks that are exactly

identical and read

DS
xx′ =

1

2a

4∑
µ=1

ηµ(x)
[
δx+µ̂,x′Uµ(x)− δx−µ̂,x′U †µ(x′)

]
, (2.25)

where ηµ(x) = (−1)
∑
ν<µ xν . The staggered operator is defined as one of those blocks.

Thus, the number of doublers is reduced to 4, and one can show that these can be

considered as 4 so-called tastes of fermions which however interact non-trivially [24].

A third possibility to discretize the Dirac operator is the overlap operator [13–15],

which is defined by

Dov =
1

a

(
1 + γ5 sign(γ5D

W )
)
, (2.26)

with the Wilson Dirac operator DW as given in Eq. (2.22). The matrix sign function is

defined by diagonalizing the argument, taking the sign of the eigenvalues, and transform-

ing back into the initial basis. This procedure is well-defined since γ5D
W is Hermitian

(for vanishing chemical potential).

The overlap operator has no undesired doublers and is not exactly chiral in the
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2.1. Quantum chromodynamics

conventional sense, but it fulfills the Ginsparg-Wilson relation [25],

{Dov, γ5} = aDovγ5D
ov . (2.27)

This relation can be seen as the lattice version of chiral symmetry, which tends towards

the continuum relation, {D, γ5} = 0, for a→ 0. It is considered the lattice operator with

the mildest breaking of chiral symmetry, which also has no doublers. The zero modes

of the overlap operator are sensitive to the topological charge of the gauge background,

similar to the continuum Dirac operator [26]. However, the overlap is also the most costly

discretization in terms of computer time, because it is not ultra-local like the operators

discussed before.

2.1.2.3. The path integral on the lattice

The fundamental task of lattice QCD is the approximate calculation of expectation

values, i.e., path integrals over certain operators. For an operator O[ψ̄, ψ, U ], and with

one quark flavor, such an integral reads

〈O[ψ̄, ψ, U ]〉 =
1

N

∫
DψDψ̄DU O[ψ̄, ψ, U ] e−SF [ψ̄,ψ,U ]−SG[U ] , (2.28)

with the partition function

N =

∫
DψDψ̄DU e−SF [ψ̄,ψ,U ]−SG[U ] , (2.29)

and the bosonic and fermionic actions SG and SF (with a convenient choice of the Dirac

operator D) that are given in Eqs. (2.17) and (2.19), respectively. The factor i is missing

in the exponent in comparison to continuum path integrals because of the Wick rotation

to imaginary time mentioned above. The Grassmann valued fermionic fields can be

integrated out analytically, resulting in a determinant

〈O[ψ̄, ψ, U ]〉 =
1

N

∫
DU Õ[U ] det[D] e−SG[U ] , (2.30)

where the operator Õ emerges from the initial operator O in a well-defined way. For a

finite-sized lattice, the integral over the gauge fields can now be calculated numerically

by the use of importance sampling techniques, which are introduced in Sec. 2.3 below.

If the determinant of the Dirac operator is neglected in the probability used for the

importance sampling, this is called the quenched approximation. On the other hand,
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2.1. Quantum chromodynamics

if the determinant is real and positive as in the case of the staggered Dirac operator

defined in Eq. (2.25), one can rewrite Eq. (2.30) as

〈O[ψ̄, ψ, U ]〉 =
1

N

∫
DU Õ[U ] e−SG[U ]+log det[D] , (2.31)

and use an effective action of S[U ] = SG[U ] − log det[D] for the importance sampling.

In this case, the integration is called ’dynamical’. If the Dirac operator is γ5-Hermitian,

i.e.,

D† = γ5Dγ5 , (2.32)

as is the case for all the discretizations considered above, one can show that the determi-

nant is real, but not necessarily positive. However, by introducing a second quark flavor

with the same mass like the first, one obtains a factor of det[D]2 in the expectation value

of O, which is real and positive.

2.1.2.4. Non-zero temperature and chemical potential

In lattice QCD, a non-zero temperature T is introduced by a compactification of the time

dimension as in the continuum. For a lattice with nt sites in time direction, we obtain

a temperature of T = 1/(ant), which is inversely proportional to the length of the time

dimension. For actual simulations on the computer, all dimensions have to compactified

anyway to have a finite number of lattice points. For simulations at a temperature close

to zero, one thus uses lattices with a large extent in the temporal direction, while high

temperature studies require a short time dimension.

To introduce a non-vanishing quark density in lattice QCD, a quark chemical potential

is required. A way to insert the chemical potential µ is to multiply all hopping terms

in the Dirac operator pointing in the forward temporal direction by eaµ and the ones

pointing backwards by e−aµ. This is explained in detail in Ref. [21].

A non-zero chemical potential causes the so-called sign problem, because it breaks

the γ5-hermiticity of the Dirac operator, so the determinant of the latter may become

complex. This is a serious problem for dynamical Monte Carlo simulations, since a

complex determinant cannot be interpreted as a probability in the importance sampling

any more. We comment on this in more detail in Sec. 3.2.
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2.2. Supersymmetry

Symmetries play an important role in classical as well as in quantum physics. In the

classical case, the Noether theorem [27] states that every invariance of the action of a

given system under a certain symmetry results in a conserved quantity. Such conserved

quantities restrict the dynamics of the system, which often strongly simplifies the solu-

tion of equations of motion. In quantum physics, symmetries lead to ’good’ quantum

numbers, which means that eigenstates of the Hamiltonian can be chosen to be also

eigenstates of the generators of the resp. symmetry. Mostly, this results in degenerate

energy levels of the system.

The latter holds also for supersymmetry, which extends the well-known space-time

and gauge symmetries by connecting fermions and bosons, see Ref. [28] for an introduc-

tion. According to the Coleman-Mandula-Theorem [29], there is no symmetry which

mixes space-time and internal symmetries in a non-trivial way and whose action can be

represented by a Lie group (or an infinite parameter group). For SUSY, the last point

does not apply, which is why it avoids this no-go theorem [30]. The action of SUSY

transformations is rather represented by a Lie supergroup, which is generated by a Lie

superalgebra. Such an algebra (also referred to as Z2-graded algebra) is composed of a

Lie algebra L0, a vector space L1 and a product ◦, such that for all xl ∈ Ll holds

Grading and Completeness: xi ◦ xj ∈ L(i+j) mod 2 (2.33)

Supersymmetry: xi ◦ xj = −(−1)i·j xj ◦ xi (2.34)

Jacobi-identity: xk ◦ (xi ◦ xj)(−1)k·j + xi ◦ (xj ◦ xk)(−1)i·k

+ xj ◦ (xk ◦ xi)(−1)j·i = 0 . (2.35)

The product ◦ can thus be antisymmetric or symmetric, depending on the factors. For

physical applications, the algebra L0 usually is the Poincaré algebra while L1 contains the

supersymmetry generators. These are the very basics of supersymmetry in a nutshell.

Supersymmetry solves some problems of quantum field theories in an elegant way.

For example, supersymmetric theories are easier to renormalize due to the cancellation of

bosonic and fermionic loop integrals. Furthermore, the ground state of a supersymmetric

theory has a finite energy, if SUSY is not spontaneously broken. A recent review about

the research on SUSY is given in Ref. [31].
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2.2.1. Supersymmetric quantum mechanics

Supersymmetric quantum mechanics is a simple toy model which can be viewed as a

one-dimensional quantum field theory with two bosonic, real valued fields χ̃, F̃ and two

fermionic, Grassmann valued fields ψ̃, ˜̄ψ. These depend on one real time coordinate

denoted by t and are combined into a multiplet

Φ̃b(t) = [χ̃(t), F̃ (t), ψ̃(t), ˜̄ψ(t)]b , with b = 1, . . . , 4 , (2.36)

to compactify the notation. In one dimension, the Poincaré group contains only transla-

tions, which are generated by the derivative with respect to t denoted by ∂t. There are

also two linearly independent generators of SUSY transformations

M̃ =


0 0 0 1

0 0 0 −∂t
−∂t −1 0 0

0 0 0 0

 , ˜̄M =


0 0 −1 0

0 0 −∂t 0

0 0 0 0

∂t −1 0 0

 , (2.37)

which are written in matrix representation as acting on the vector Φ̃. It is easy to check

that these operators form a graded algebra with ∂t ∈ L0 and M̃, ˜̄M ∈ L1, where the

product ◦ is defined as either the commutator [·, ·] or the anti-commutator {·, ·}. Then

the following relations hold

[∂t, ∂t] = {M̃, M̃} = { ˜̄M, ˜̄M} = [∂t, M̃ ] = [∂t,
˜̄M ] = 0 , {M̃, ˜̄M} = 2∂t , (2.38)

so Eqs. (2.33)-(2.35) are fulfilled (the Jacobi identity is easily checked).

The Euclidean action of SUSYQM is given by

S̃[Φ̃] =

∫
dt

[
1

2
(∂tχ̃)2 + ˜̄ψ∂tψ̃ −

1

2
F̃ 2 + ˜̄ψ

∂W

∂χ̃
ψ̃ − F̃W (χ̃)

]
, (2.39)

with an arbitrary so-called superpotential W (χ̃). S̃ is invariant under infinitesimal su-

persymmetry transformations

Φ̃→ Φ̃ + δΦ̃ , with δΦ̃ = (εM̃ + ε̄ ˜̄M)Φ̃ . (2.40)

Here, ε and ε̄ are independent Grassmann valued parameters. The respective variations
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2.2. Supersymmetry

of the component fields are

δχ̃ = −ε̄ψ̃ + ε ˜̄ψ , δF̃ = −ε̄∂tψ̃ − ε∂t ˜̄ψ ,

δψ̃ = −ε∂tχ̃− εF̃ , δ ˜̄ψ = ε̄∂tχ̃− ε̄F̃ .
(2.41)

The field F is a non-dynamical field which occurs only up to quadratic order in the

action and can therefore be integrated out analytically. This amounts to replacing F by

−W (χ) and results in the ’on-shell’ action

S̃on =

∫
dt

[
1

2
(∂tχ̃)2 + ˜̄ψ∂tψ̃ + ˜̄ψ

∂W

∂χ̃
ψ̃ +

1

2
W 2(χ̃)

]
. (2.42)

After eliminating F , the SUSY transformations of the component fields are given by

δχ̃ = −ε̄ψ̃ + ε ˜̄ψ , δψ̃ = −ε∂tχ̃+ εW (χ̃) , δ ˜̄ψ = ε̄∂tχ̃+ ε̄W (χ̃) , (2.43)

which can now be non-linear, depending on W (χ̃).

Some properties of SUSYQM are easily obtained by considering the Hamiltonian of

the theory, which is given by

H = −1

2

d2

dχ̃2
+

1

2
W 2(χ̃) +

∂W

∂χ
[f−, f+] , (2.44)

with fermionic ladder operators fulfilling {f−, f+} = 1 and (f−)2 = (f+)2 = 0. The

Hamiltonian commutes with the supercharges

Q± =
1√
2

[
W (χ̃)∓ d

dχ̃

]
f± , (2.45)

and can be written as H = (Q+ + Q−)2, i.e., the square of a Hermitian operator (since

[Q±]† = Q∓). It therefore has non-negative eigenvalues, and one can show that these

are doubly degenerate. The only exception is a possible ground state with zero energy,

which is unique. If such a state exists, the supersymmetry is unbroken, otherwise it is

spontaneously broken.
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2.3. Monte Carlo integration

One of the main numerical tasks occurring in lattice field theory is the calculation of

very high dimensional integrals. Typically, expressions like

〈
O(A1, . . . , AD)

〉
=

1

N

∫ D∏
i=1

dAiO(A1, . . . , AD) e−S(A1,...,AD) , (2.46)

have to be computed, see e.g. Eqs. (2.30) and (2.31), with a number of D integration

variables and

N =

∫ D∏
i=1

dAi e
−S(A1,...,AD) . (2.47)

Here, O and S are arbitrary functions, with the restriction that S is real and bounded

from below as it corresponds to the action of the physical system under consideration. If

the number of integration variables D is very large, these integrals only become feasible

by the use of statistical methods. We describe the basic idea of Monte Carlo integration

with importance sampling and Hybrid Monte Carlo integration as a more sophisticated

method in the following.

2.3.1. Monte Carlo with importance sampling

The method of Monte Carlo integration with importance sampling is based on a random

sampling of the domain of the respective integral. It is well suited for the expression

given in Eq. (2.46) because the term e−S(A1,...,AD) has a probabilistic interpretation. With

the factor 1/N , we can define a probability

P (A1, . . . , AD) =
1

N
e−S(A1,...,AD) , (2.48)

which is properly normalized, i.e.,

∫ D∏
i=1

dAi P (A1, . . . , AD) = 1 . (2.49)
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2.3. Monte Carlo integration

We now rewrite Eq. 2.46 as

〈O(A1, . . . , AD)〉 =

∫ D∏
i=1

dAiO(A1, . . . , AD)P (A1, . . . , AD) , (2.50)

where the right hand side is the expectation value of the function O with respect to the

random variables A1, . . . , AD, which are distributed according to the probability density

P . A statistical estimate of the integral can then be obtained by creating a large number

of realizations of the random numbers and computing the average of O for these real-

izations. However, if the probability density P is very complicated, which will be the

case in our applications, a straightforward draw of the random variables is unlikely to

be possible. Instead, advanced methods like Markov chains have to be used, which are

explained now.

Definition: A time-homogeneous Markov chain is a sequence of random numbers

Xt with the integer t that all share the same sample space X. These have the property

that for all x, x′ ∈ X, the probability PT (Xt = x ∧Xt+1 = x′) depends only on x and x′.

We also call x and x′ possible states of the chain and PT the transition probability

between them. In other words, the probability to go from one state to another does

neither depend on any of the previously drawn random numbers nor on the position (or

time) t in the sequence. The transition probability is then the defining property for a

specific Markov chain, alongside with the sample space of the random variables. For

simplicity, we only consider a finite set X in the following, the elements of which we label

by the integers i and j. The transition probabilities from state xi to state xj can thus

be organized in a matrix defined by

Tij = PT (Xt = xi ∧Xt+1 = xj) , (2.51)

which satisfies
∑

j Tij = 1 due to normalization of the probabilities. We now define the

probability that the system is in the state i by πi. Then the evolution of this probability

function after a time step is simply given by

πj(t+ 1) =
∑
i

πi(t)Tij . (2.52)

In the following, we consider only Markov chains that are irreducible and all of whose

states are positive recurrent. Irreducible means that there is a non-zero probability to
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2.3. Monte Carlo integration

reach every state from every other state in a finite number of steps. A positive recurrent

state is defined by the property of having a finite expected return time, i.e., the average

time it takes for the chain to hit the same state again is finite. If these requirements are

met, the Markov chain has a unique stable (or equilibrium) distribution of the states,

which satisfies

πeq
j =

∑
i

πeq
i Tij , (2.53)

i.e., it is a (left) eigenvector of the matrix T . We furthermore assume now that all states

of the chain are aperiodic3, i.e., returns to each state do not have to occur in a certain

period of time. The Markov chain will then converge to the equilibrium distribution for

t→∞, independent of the starting distribution. Furthermore, if a distribution π fulfills

the so-called detailed balance equation

πjTji = πiTij , (2.54)

for all values of i and j, it also fulfills Eq. (2.53) and is therefore equal to the equilibrium

distribution πeq. This can easily be seen by taking the sum over i in Eq. (2.54).

A possible way to create an ensemble of random variables with an arbitrary distri-

bution π is thus the construction of an algorithm that simulates a Markov chain with

transition probabilities Tij satisfying Eq. (2.54). After a sufficient number of time steps,

the algorithm will then produce random variables with the desired distribution. A simple

example of such an algorithm similar to the Metropolis algorithm [32] is presented in the

following.

The algorithm generates a series of realizations of the real random variablesA1, . . . , AD

with the distribution P defined in Eq. (2.48). In principle, the configuration space of the

random variables is now of infinite size, unlike in our considerations above. However, in

real simulations it is still finite because of the limited memory of the computer, so the

statements we have made are still valid. The update procedure is defined as follows. We

denote the current state of the Markov chain by a with the corresponding realizations

of the random variables a1, . . . , aD. To obtain the next state a′, independent Gaussian

random numbers gk (k = 1, . . . , D) with mean zero and variance v (which has to be

chosen according to the specific distribution P ) are added, i.e.,

ak(t+ 1) = ak(t) + gk . (2.55)

3If all states of a Markov chain are aperiodic and positive recurrent, the chain is also called ergodic.

23



2.3. Monte Carlo integration

The new realization is accepted with the probability

A[a→ a′] = min

{
1,
P [a′]

P [a]

}
, (2.56)

where we defined P [a] = P (a1, . . . , aD) to compactify the notation. If the realization is

not accepted, the old one is kept meaning a′k = ak. The total probability for a transition

from the realization a to a′ is therefore

PT [a→ a′] ∼ A[a→ a′]
D∏
k=1

e
− 1

2

(
a′k−ak
v

)2

. (2.57)

It is easily verified that this transition probability and the distribution P fulfill the

detailed balance equation

P [a]PT [a→ a′] = P [a′]PT [a′ → a] , (2.58)

which in turn means that P is the equilibrium distribution of the Markov chain generated

by the algorithm. After a sufficient number of steps, the realizations of random numbers

are thus subject to the distribution P and the integral in Eq. (2.50) can be calculated

numerically as described above.

2.3.2. Hybrid Monte Carlo

The method to create a new realization of random variables by adding Gaussian numbers

as introduced in Sec. 2.3.1 has a lot of drawbacks. As the choice of the new realization is

independent of the distribution P , a large variance v of the Gaussian numbers will result

in a low acception rate. On the other hand, a small variance grants a larger acception

rate but means that the configuration space of the random variables is covered very

slowly.

The method of Hybrid Monte Carlo (HMC) [33] solves this problem by introduc-

ing a more sophisticated way to select a new realization of random variables. Here, a

Hamiltonian dynamics with a virtual time is used to create new states, making use of

the conservation of virtual energy. The update step works as follows. At first, a virtual

momentum pk is drawn from a Gaussian distribution with mean zero and variance one

for each of the realizations ak. Then the system propagates for a virtual time τ where
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2.3. Monte Carlo integration

the motion is governed by the Hamiltonian

H[a, p] =
1

2

D∑
k=1

p2
k + S[a] , (2.59)

where S is the action from Eq. 2.46, i.e., P ∼ e−S. The equations of motion are thus

dak
dτ

=
∂H

∂pk
= pk , (2.60)

dpk
dτ

= −∂H
∂ak

= − ∂S
∂ak

. (2.61)

After the time τ , the system is in a new state which we denote by a′k and p′k. Due to the

conservation of virtual energy, the Hamiltonian does not change during the propagation,

i.e.,

1

2

D∑
k=1

p2
k + S[a] =

1

2

D∑
k=1

p′k
2 + S[a′] . (2.62)

The probability for this transition to happen is given by the probability to draw the

momenta pk, which is4

PH [a→ a′] ∼ e−
1
2

∑D
k=1 p

2
k . (2.63)

On the other hand, if the system is in state a′, the starting momenta −p′k lead to a

transition to state a after the virtual time τ due to the time-reversal properties of the

Hamilton formalism. The probability for this to happen is

PH [a′ → a] ∼ e−
1
2

∑D
k=1 p

′
k

2

= e−
1
2

∑D
k=1 p

2
k−S(a)+S(a′) , (2.64)

where we have made use of Eq. 2.62. This transition probability fulfills the detailed

balance equation with P [a].

In most practical applications however, the Hamiltonian motion defined in Eqs. (2.60)

and (2.61) cannot be solved analytically. Rather, an algorithm like leapfrog integration

[33] has to be applied to obtain a numerical solution for the Hamilton equations. In this

case, the virtual motion is still reversible, but the energy is not conserved exactly any

more. To take this into account, we accept the realization generated by the Hamiltonian

4There may be multiple possible draws of momenta that propagate to a′ through different paths in
phase space. In this case, one just has to take sum over those paths in the following considerations.
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motion with the probability

A[a→ a′] = min
{

1, eH[a,p]−H[a′,p′]
}
, (2.65)

so the total transition probability from state a to a′ is

PT [a′ → a] = PH [a′ → a]A[a→ a′] , (2.66)

which again satisfies detailed balance with P [a]. The advantage of the HMC algorithm

compared to the Metropolis algorithm discussed above is that it is possible to achieve

very high acceptance rates while the configuration space is covered with large steps. This

can be done by putting much numerical effort into the Hamiltonian motion in order to

minimize the violation of virtual energy. Then, the acceptance probability in Eq. (2.65)

is close to 1.

2.4. Random matrix theory

2.4.1. Generalities

Random matrix theory is a mathematical tool that is very successfully used to describe

certain statistical properties of various complex systems. A good introduction to RMT is

given in the book of Mehta [34], broad overviews can furthermore be found in Refs. [35,

36]. The success of RMT is based on its universality, i.e., many different physical or

mathematical models can be described by a few ensembles from RMT. There are three

classical Gaussian ensembles which are most commonly used, the Gaussian Orthogonal

Ensemble (GOE) consisting of real symmetric matrices, the Gaussian Unitary Ensemble

(GUE) consisting of complex Hermitian matrices and the Gaussian Symplectic Ensemble

(GSE) consisting of real quaternionic Hermitian matrices. The applicability of those to

a given sufficiently complex system described by a Hermitian matrix H is classified by

the anti-unitary symmetries of the system. Such a symmetry implies that H commutes

with an anti-unitary operator V , which can be written as

V = OK , (2.67)

where O is a unitary operator and K is the complex conjugation operator. We consider

only anti-unitary operators which obey V 2 = ±1, i.e., OO∗ = ±1. In the first case V 2 =
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1, one can construct a basis5 in which H is real which makes the GOE its counterpart

from random matrix theory. If there is no anti-unitary symmetry, H is complex and

described by the GUE, whereas for V 2 = −1, H can be made quaternionic real in

a suitable basis and is thus described by the GSE. In the latter case, all eigenvalues

are doubly degenerate and the dimension of the matrix has to be even. The Gaussian

ensembles share the same probability density of the matrix elements, which reads up to

normalization for the N ×N (2N × 2N for GSE) random matrix H

P (H) = e−
1
2

trHH† . (2.68)

Actually, the original definition of the Gaussian ensembles in [34] is slightly more general,

but all interesting quantities that involve eigenvalue correlations are maintained by our

definition. With this choice, all the matrix elements of H are, up to constraints resulting

from hermiticity, independently Gaussian distributed and the probability measure

dµ(H) = P (H)dH (2.69)

is invariant under orthogonal (GOE), unitary (GUE) or symplectic (GSE) transforma-

tions of H. The joint probability density function (jpdf) of the eigenvalues θ1, . . . , θN is

obtained by integrating out the degrees of freedom associated with the eigenbasis of the

random matrix, resulting up to normalization in

P (θ1, . . . , θN) = |∆(θ1, . . . , θN)|β e−
1
2

∑N
i=1 θ

2
i , (2.70)

with the Dyson index β = 1 (GOE), β = 2 (GUE), β = 4 (GSE) and the Vandermonde

determinant

∆(θ1, . . . , θN) =
N∏

i<j=1

(θi − θj) . (2.71)

The Vandermonde determinant is responsible for the repulsion of eigenvalues, because is

suppresses the probability to find eigenvalues which are very close to each other. From

the jpdf of the eigenvalues, all correlations between eigenvalues can be derived [34].

5Note that this basis depends only on O, but not on H. The same is true for the basis in which the
GSE becomes quaternionic real.
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2.4.2. Non-Hermitian Gaussian ensembles

Other Gaussian ensembles can be obtained by dropping the constraint of hermiticity and

thus allowing for complex eigenvalues. These ensembles have first been introduced by

Ginibre [37], and can be classified by their anti-unitary symmetries like the Hermitian

ones, again resulting in real, complex or quaternionic real matrices. The probability

density of the matrix elements is again given by Eq. 2.68, but now all the elements are

independent. However, the jpdf of the eigenvalues differs strongly for these ensembles.

For arbitrary complex N ×N matrices (β = 2), it reads up to normalization [37]

P (z1, . . . , zN) = |∆(z1, . . . , zN)|2 e−
1
2

∑N
l=1 |zl|2 , (2.72)

where z1, . . . , zN are the complex eigenvalues of the random matrix. For real quaternionic

2N × 2N matrices (β = 4), the jpdf of the eigenvalues is up to normalization [37]

P (z1, . . . , zN) =
N∏
k=1

|zk − z∗k|2
N∏

i<j=1

(
|zi − zj|2|zi − z∗j |2

)
e−

1
2

∑N
i=1 |zi|2 , (2.73)

where the eigenvalues come in complex conjugate pairs. For real matrices, the eigenvalues

are either real or come in complex conjugate pairs. In this case, the jpdf of the eigenvalues

is more involved and has to be classified with respect to the number of complex eigenvalue

pairs denoted by ν. It reads up to normalization [38]

P (θ1, . . . , θN−2ν , z1, . . . , zν) = |∆(θ1, . . . , θN−2ν , z1, z
∗
1 , . . . , zν , z

∗
ν)|

×
ν∏
k=1

erfc(
√

2 Imzk)e
− 1

2

∑N−2ν
i=1 θ2

i e−
1
2

∑ν
i=1[(Rezi)

2−(Imzi)
2] , (2.74)

with the real eigenvalues θ1, . . . , θN−2ν and complex eigenvalues z
(∗)
1 , . . . , z

(∗)
ν .

2.4.3. Unfolding

The correlations in the eigenvalue spectrum of a large variety of chaotic systems can be

described by random matrix theory. These correlations are consequently called universal

quantities, as they are the same in many different systems. In contrast, the eigenvalue

density is not such a universal quantity. Therefore, a method called ’unfolding’ [39] has

to be applied to disentangle spectral correlations from the average density and thus local

from global eigenvalue fluctuations. There are a lot of ways to do this, and one of the

simplest is to sort all eigenvalues and replace them by their index in the sorted list [40].
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However, this works only if a large number of matrices with independent spectra from

the same ensemble is available. Otherwise, one can obtain a smoothed spectral density

by application of an appropriate filter and use this density to normalize the local scale

of eigenvalue distances. A method to unfold general complex spectra, i.e. spectra with

two degrees of freedom, is introduced in Ref. [41].

2.4.4. The next-neighbor spacing distribution

The next-neighbor spacing distribution is a universal quantity which is well suited to

describe the short range correlations of a spectrum and is easily accessible numerically.

It is defined as the probability distribution of finding two neighboring eigenvalues at a

certain distance.6 The unfolded spacing distributions of the three Gaussian ensembles in

the limit of infinite matrix size are very well approximated by the spacing distributions

of 2× 2 matrices (4× 4 for the GSE) of the respective ensemble. This fact has first been

pointed out by Wigner [42] for the GOE and is therefore called ‘Wigner’s surmise’. The

spacing distributions of the 2× 2 (4× 4) matrices read

Pβ(s) = cβs
βe−dβs

2

, (2.75)

where β is the Dyson index of the respective ensemble. The constants

cβ = 2
Γ1+β(1 + β

2
)

Γ2+β(1+β
2

)
, and dβ =

Γ2(1 + β
2
)

Γ2(1+β
2

)
, (2.76)

with the gamma function Γ ensure the proper normalization, i.e.,∫ ∞
0

dsPβ(s) =

∫ ∞
0

ds sPβ(s) = 1 . (2.77)

This normalization of spacing distributions is a usual convention which we will use

throughout this work.

While the Gaussian ensembles from RMT describe the spectral correlations of suffi-

ciently chaotic systems, integrable systems typically have uncorrelated eigenvalues. The

unfolded spacing distribution of the latter is a Poissonian distribution given by

P0(s) = e−s , (2.78)

which is why random matrix ensembles with uncorrelated eigenvalues are usually denoted

6Note that for general complex spectra, the notion of next neighbor is not uniquely defined.
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as ’Poissonian’ ensembles.

2.4.5. Chiral random matrix theory

Many spectral properties of the lattice QCD Dirac operator are described by a branch

of random matrix theory called chiral RMT with great success, as reviewed in Ref. [43].

A specific example of such a property is the distribution of the lowest eigenvalue of the

Dirac operator, which has been found to coincide with chiral RMT in lattice simulations

[40, 44]. For a certain finite-volume regime called the ε-regime, one can even establish an

analytical relation between the QCD Dirac spectrum below a certain energy and chiral

RMT [45]. Here, the spontaneous breaking of chiral symmetry, which gives rise to a

chiral condensate, plays a crucial role.
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3. Analysis of quark spectra on the

lattice with two-color QCD

Many important properties of QCD are encoded in the spectrum of the Dirac operator.

For example, the Banks-Casher relation [46] relates the eigenvalue density of the Dirac

operator at zero to the chiral condensate, which in turn is an order parameter for the

chiral phase transition. Furthermore, exact zero modes of the Dirac operator are sensitive

to the topological charge of the underlying gauge fields. A powerful tool to describe

spectral properties of generic complex systems is random matrix theory. As stated in

Sec. 2.4.5, the appropriate random matrix counterparts of the QCD Dirac operator are

the ensembles from chiral RMT. However, at larger energies the correlations of Dirac

eigenvalues can be described by the standard Gaussian RMT ensembles [47, 48], and

chiral symmetry is no longer important. In fact, the unfolded eigenvalue correlations in

the bulk of the spectrum of chiral RMT can be shown to coincide with the correlations

of the respective Gaussian ensembles [49–51].

The conventional Gaussian and chiral ensembles from RMT describe chaotic systems

with a certain anti-unitary symmetry. In actual physical systems however, one may often

find only approximate symmetries or compositions of parts with different symmetries.

A simple ansatz to mimic such systems by RMT is to take the sum of two different

ensembles, i.e., to consider a random matrix

H = H1 + λH2 , (3.1)

where H1 and H2 are taken from different ensembles of RMT and λ denotes the strength

of the coupling between the two. For the Gaussian ensembles, most of the transitions

of this form have already been considered in [34]. While the jpdf of the eigenvalues and

even the correlation functions of these composite ensembles are in many cases feasible

analytically, this does not hold for the spacing distribution. However, the latter is often

very well approximated by the spacing distribution of small (2 × 2 or 4 × 4) composite

random matrices of the form given in Eq. (3.1), which can be calculated analytically.
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This ’generalized Wigner surmise’ has firstly been found in Ref. [52]. In Ref. [53], the

surmise has been shown for all possible transitions between the three Gaussian and the

Poissonian ensemble, when the mixed system is the mentioned form. The latter reference

in essentially a compact version of the diploma thesis of the author.

In the following, we consider the spectral properties of the lattice QCD Dirac operator

with SU(2) gauge links at either non-zero temperature (in Sec. 3.1) or chemical potential

(in Sec. 3.2). In both cases, pure RMT may not be applicable and a composite ansatz

becomes necessary. At high temperature, integrable and chaotic behavior has been

found in different spectral regions of the Dirac operator, as detailed below. A chemical

potential µ, on the other hand, breaks the hermiticity of the Dirac operator, which leads

to a gradual change of its spectral properties as µ is increased. We also consider the

case of an imaginary chemical potential, where the anti-unitary symmetry of the Dirac

operator is broken.
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3.1. Quark spectra at high temperature

3.1. Quark spectra at high temperature

The contents of this Section have been published in Ref. [54].

Lattice simulations of QCD have shown that the smallest eigenvalues of the Dirac

operator near or above the critical temperature of the chiral phase transition are not

described by chiral RMT very well [55, 56]. Instead, a tendency towards Poissonian

behavior of these small eigenvalues has been found close to the critical temperature

[57]. Recent studies have clearly revealed a transition from Poisson to RMT-like spectral

statistics in the low end of the Dirac spectrum well above the critical temperature.

This has been found for both the overlap [58] and the staggered discretization [59] in

quenched two-color QCD. It has furthermore been observed there that the corresponding

eigenmodes are very localized in the Poissonian regime and delocalize as the RMT regime

is entered. Here, the physical size of the localized uncorrelated low lying modes is

independent of the resolution and the physical volume of the lattice. However, the

number of those low modes is proportional to the volume. This strongly suggests that

these phenomena are no lattice artifacts but rather physical. Findings of the same effects

in dynamical three-color lattice simulations [60], i.e., a much more realistic setting, back

this assumption.

The mentioned localization of low eigenmodes is similar to Anderson localization in

disordered media [61], which is linked to a strongly fluctuating underlying potential. We

show that in two-color lattice QCD at high temperature, the local traced Polyakov loop

plays the role of this potential. We firstly observe a correlation between low lying eigen-

modes of the staggered and the overlap Dirac operator on the same gauge configurations.

This hints at a connection of the modes to the gauge background. Note that similarities

between the small eigenvalues of these two operators have previously been found in the

Schwinger model [62] and also in QCD [63]. Returning to the low modes, we find that

indeed those of both operators are correlated to structures in the gauge fields, namely

Polyakov loops. More precisely, these modes are attracted by local Polyakov loops that

are smaller than the average loop. Similar localization effects have already been observed

in [64] for the gauge-covariant Laplace operator, which has been a main inspiration for

our studies. We are unable to connect the localized modes to fundamental topological

objects like magnetic monopoles, but composite objects like molecules of dyons could be

an explanation [54]. While our findings rely on quenched lattice simulations with SU(2)

gauge links, we strongly believe that the observed phenomena persist in more realistic

gauge theories.

The average traced Polyakov loop is an order parameter for the phase transition
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3.1. Quark spectra at high temperature

between the confined and the deconfined sector of QCD, which approaches 1 as the tem-

perature increases1. On the other hand, the local Polyakov loop is a strongly fluctuating

quantity that may also take values close to −1. Such small loops can locally compen-

sate for the anti-periodic boundary condition of the fermions in the temporal direction.

This leads to a small local Matsubara frequency and thus favors small Dirac eigenval-

ues. These considerations are backed by the existence of a non-zero chiral condensate

in configurations where the average Polyakov loop is close to center elements that are

not the identity [65–72]. This means that the eigenvalue density at zero is non-zero and

very small eigenvalues are present, which is also necessary for the breaking of center

symmetry [73].

The Polyakov loops obtained from our high temperature lattice simulations are hardly

correlated and thus a possible cause of the Poissonian tail of the Dirac spectrum. Indeed,

in a certain basis the staggered Dirac operator takes a similar form like a Hamiltonian

in condensed matter physics, i.e. three dimensional next-neighbor hopping terms plus an

on-site potential. The latter is essentially a function of the local traced Polyakov loops,

which on the lattice are defined by

L(~x) =
1

2
tr

nt∏
x4=1

U4(x4, ~x) , (3.2)

where nt denotes the number of lattice points in the time direction. We construct a chiral

random matrix model of the same form like the staggered operator in the mentioned basis,

yet with uncorrelated matrix entries. We show numerically, that this model reproduces

a spectral gap at zero, a Poisson-RMT transition and localized low modes. We consider

these very important features of the Dirac operator at high temperature.

The outline of this Section is as follows. We describe the spectra and low eigenmodes

of both staggered and overlap Dirac operator at high temperature and compare them

in Sec. 3.1.1. In Sec. 3.1.2, we establish a connection between the lowest eigenmodes

of the Dirac operators and local Polyakov loops and interpret this finding in Sec. 3.1.3.

We introduce a random matrix model for the staggered Dirac operator and explore its

properties in Sec. 3.1.4.

1In quenched lattice simulations, the sector of negative average loop has to be discarded by hand,
because it is not suppressed by the fermion determinant as in the dynamical case.
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Figure 3.1.: The spectral density along the imaginary axis for the staggered (at smaller
θ) and the overlap Dirac operator from the lowest 256 eigenvalues.

3.1.1. Comparison between the staggered and overlap operator

We explore quenched SU(2) lattice configurations that have been generated by T. G.

Kovács with the Wilson gauge action on a 243 · 4 lattice (nt = 4) of spacing a with

β = 2.6. This corresponds to a temperature of T = 2.6Tc, i.e., well above the critical

temperature of the chiral phase transition Tc. Furthermore, the average traced Polyakov

loop is 〈L〉 = 0.37 , so the system is in the deconfined phase.

We consider the staggered and the overlap (with parameter s = 0.4 cf. [58]) Dirac

operator at zero quark mass. For both operators, the 256 lowest eigenvalues with pos-

itive imaginary parts2 have been measured on a number of 1136 configurations for the

overlap and 3149 for the staggered. For a set of 1102 configurations, also the 12 resp.

lowest eigenmodes (normalized to 1) of both staggered and overlap operator have been

computed. All of these numerical calculations have also been done by T. G. Kovács.

The eigenvalue densities of both operators as a function of the imaginary part of

the eigenvalues in lattice units, denoted by aθ, are plotted in Fig. 3.1. For the overlap

operator, the eigenvalues were projected onto the imaginary axis by setting their real part

to zero, before the density has been calculated. We observe a gap around aθ = 0, with

the eigenvalue density starting to rise from zero considerably at aθ ≈ 0.15 (staggered)

and aθ ≈ 0.5 (overlap). The overlap operator also possesses exact zero modes, which

have been used in order to determine the topological charge of the configurations.

To show the transition from Poissonian to RMT behavior in the Dirac spectra, we

2The non-zero eigenvalues come in pairs of opposite imaginary part due to chiral symmetry, but we
restrict ourselves to the half with positive imaginary part.
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Figure 3.2.: The histograms show the spacing distributions of the overlap (top) and
staggered (bottom) spectrum in spectral windows indicated by the insets showing the
spectral density (cf. Fig. 3.1). The pure RMT predictions (solid) and the Poissonian
distribution (dashed) are plotted for comparison.

have measured the unfolded3 spacing distribution P (s), which is very sensitive to the

eigenvalue correlations, in different windows in the spectra. For SU(2) gauge links, the

appropriate RMT ensembles are the GOE for the overlap operator (see Sec. 3.2.5.1.2

below, where this is discussed for arbitrary chemical potential) and the GSE for the

staggered operator (see e.g. Refs. [74, 75]). These ensembles differ strongly in the

repulsion strength of nearby eigenvalues, which results in a linear (GOE) and quartic

(GSE) behavior of their spacing distribution P (s) near s = 0. The approximations we

use for these spacing distributions are the surmises explicitly given in Eq. (2.75). For

uncorrelated eigenvalues, which do not repel each other, a Poissonian spacing distribution

is expected, i.e., P (s) = e−s.

It is shown in Fig. 3.2, that the spacing distribution of both the overlap and the

staggered operator is almost Poissonian at the low end of the spectrum. The distribution

undergoes a transition to RMT behavior as the spectral window is shifted towards the

bulk. Note that for the staggered operator, this is a mere reproduction of the findings

in Ref. [59].

In the following, we are mainly interested in the low end of the spectrum. Before

considering the eigenmodes, we remark that for every exact overlap zero eigenvalue we

find an exceptionally small staggered eigenvalue. In the topological sector |Q| = 0, the

average smallest staggered eigenvalue is 0.175, while for |Q| = 1 it is 0.109. This can

3We unfolded by means of a sorted list, as described in Ref. [40]
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Figure 3.3.: The profile, as defined in Eq. (3.3), of the lowest overlap mode (left) and
matched (see text) staggered mode (right) in a certain x-y-plane for a gauge configuration
with |Q| = 0. The remaining spatial and the time coordinate are fixed to values in which
the overlap mode takes on its maximum.

also be read off from Fig. 3.6 (right).

We want to check whether there is a correlation between the low modes of the stag-

gered operator and those of the overlap operator on the same resp. gauge configurations.

To this end, we compare the profiles of these low modes to find out if they are placed at

the same locations. We define the profile of an eigenmode ψ by

|ψ(x)|2 =
∑
b

|ψb(x)|2 , (3.3)

where the index b denotes gauge – and in the case of overlap also spinor – degrees of

freedom.

A first example of similar staggered and overlap low modes is visualized by the two-

dimensional profiles in Fig. 3.3. For an actual quantification of the correlation and

localization of two modes, we introduce the following ’interlocalization’

I = n
∑
x

∣∣ψov
(m)(x)

∣∣2 ∣∣ψst
(l)(x)

∣∣2 , (3.4)

where n is the total number of lattice sites, and |ψov,st
(m) (x)|2 is the profile of the mth

overlap/staggered eigenmode4.

This positive quantity is large when both modes are similar and localized and becomes

their inverse participation ratio (IPR) when the modes coincide exactly. The IPR is a

4This means that the mode belongs to the mth-smallest eigenvalue of the resp. operator.
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Figure 3.4.: The interlocalization Im defined in Eq. (3.4), for matched modes (see
text) as a function of the averaged overlap eigenvalue (in lattice units) 〈aθm〉. The
horizontal error bars show the standard deviation of the eigenvalues, obtained by the
ensemble average, instead of the errors. The maximal possible value for I on our lattice
is 243 · 4 ≈ 5.5 · 104, while delocalized modes yield I ≈ 1, indicated by the dashed gray
line.

prominent measure for localization, defined by

R = n
∑
x

|ψ(x)|4 , (3.5)

for the eigenmode ψ. It takes a maximum value of n for a mode that is localized on a

single lattice point and a minimum value of 1 for a mode that is constant in the whole

volume. A reference value for the interlocalization of uncorrelated modes is set by two

normalized modes with independent random Gaussian amplitudes (of mean zero) at each

site, which is at the order of I ≈ 1.

We match overlap and staggered modes using the interlocalization in the following

way. We take the lowest overlap mode and pair it with the staggered mode which has the

largest value of I with it. Then we do the same with the second lowest overlap mode,

but consider only staggered modes that have not been paired yet. This procedure is

continued until all available overlap modes have been assigned to a staggered mode. In

this way, we obtain an interlocalization for each overlap mode ψov
(m) (with the resp. paired

staggered mode), which we denote by Im. We plot these interlocalizations averaged over

the gauge configurations as a function of the average overlap eigenvalue (in lattice units)

〈aθm〉 of the corresponding mode in Fig. 3.4. We observe that the exact zero modes of

the overlap operator are almost perfectly matched by a corresponding staggered mode.
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Figure 3.5.: Unsmeared (left) and smeared (right) traced Polyakov loops of the same
configuration and in the same x-y-plane as in Fig. 3.3. While nothing seems particular
in this plane for the unsmeared case, the smeared Polyakov loop takes its minimum of
−0.70 (the average smeared Polyakov loop is 0.81 for this configuration) at the maximum
of the fermion modes in Fig. 3.3.

Actually, the value of I ≈ 300 is very close to the IPR of the these overlap zero modes5,

which indicates that these modes are close to identical. Also for the topological sector

|Q| = 0, the lowest overlap modes have a quite large interlocalization with the respective

staggered modes. Going up in the spectrum, the interlocalization quickly drops and after

a few modes reaches the reference value of 1 discussed above.

3.1.2. Connection between eigenmodes and Polyakov loops

A natural explanation for the correlation between the low eigenmodes of the staggered

and the overlap operator shown above is that both operators are sensitive to the gauge

background in a similar way. In the following, we show that there is indeed a connection

between the local Polyakov loops and the low eigenmodes of both operators.

As a first example for this phenomenon, we depict in Fig. 3.5 the traced Polyakov

loops of the same configuration as used in Fig. 3.3, restricted to the same x-y-plane.

As the Polyakov loop is dominated by ultraviolet fluctuations on the scale of the lattice

spacing, it is impossible to observe any coarse structure by the naked eye. We therefore

applied 6 steps of APE smearing [77] with ε = 0.2 to the gauge configuration to smoothen

the Polyakov loops. In this case, a valley of negative loops develops at the location where

the lowest overlap mode has its maximum. We stress that this is the only occasion in

which we consider a smeared quantity, in order to show an exemplary visualization of

5The corresponding staggered modes have a slightly larger IPR of about 400, which is presumably
because the staggered operator is ultra-local in contrast to the overlap operator.
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Figure 3.6.: The ratio of Polyakov loops weighted by low-lying modes Lm given in
Eq. (3.6), to the average Polyakov loop of the resp. configuration for overlap (left)
and staggered modes (right). These are plotted as a function of the resp. averaged
eigenvalues (in lattice units) 〈aθm〉, where the horizontal error bars show the standard
deviation instead of the errors..

our findings. We consider unsmeared gauge configurations for the rest of this work.

To measure the correlation between Polyakov loops and low Dirac eigenmodes, we

define the quantity

Lm =
∑
~x

|ψ(m)(~x)|2L(~x) , (3.6)

which is the local Polyakov loop weighted by the spatial profile of the Dirac mode

|ψ(m)(~x)|2. The spatial profile of a mode is defined like the profile introduced in Eq. (3.3),

with an additional sum over the time variable. Lm is restricted to the range of the

Polyakov loop, i.e. the interval (−1, 1). A plane wave-like mode ψ(m) yields an Lm of the

average Polyakov loop, while a localized mode mainly picks up the loop at the position

of that mode.

We show the ratio of Lm to the average Polyakov loop of the resp. gauge configuration

for the low-lying staggered and overlap modes in Fig. 3.6. These data have been obtained

by taking the average over all the gauge configurations available. As can be seen, the

Polyakov loop that is picked up by the low-lying Dirac modes is considerably smaller

than the average loop. This tendency vanishes for the higher modes.

Another way to show the connection between low Dirac modes and local Polyakov

loops is to consider the ’Polyakov loop distribution as seen by a mode’. To this end, we

weight the probability density of the local Polyakov loops with the spatial profile of the
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Figure 3.7.: The original Polyakov loop distribution (the curve with the larger maxi-
mum) compared to the ’Polyakov loop distribution as seen by the lowest overlap mode’
p1(L), given in Eq. (3.7), in the topological sector with |Q| = 0. We also show the Haar
measure, which is valid in the low temperature phase.

low Dirac eigenmodes by defining

pm(L) =
∑
~x

δ [L− L(~x)] |ψ(m)(~x)|2 . (3.7)

For constant modes, this reduces to the distribution of the local Polyakov loops. Taking

the L-expectation value, we can obtain from pm(L) the quantity Lm, i.e.,

Lm =

∫
dL pm(L)L . (3.8)

This shows how the global quantity Lm is generated by a local deformation of the dis-

tribution of the Polyakov loops.

We show this probability distribution in Fig. 3.7 for the lowest mode of the overlap

operator averaged aver all configurations in the Q = 0 sector. The distribution is clearly

deformed towards L = −1, which confirms again that low Dirac eigenmodes see a smaller

local Polyakov loop.

3.1.3. Interpretation

The effect of the Polyakov loops on the quark spectra can be easily understood in a

gauge background with spatial links set to unity and time-like links U4 that are constant

in space and time. By a certain gauge transformation, all the time-like links except the
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3.1. Quark spectra at high temperature

one on the last time-slice at each spatial site, can also be set to unity. Furthermore,

the gauge transformation can be chosen such that all the links are diagonalized. The

Polyakov loop is then the diagonal version of (U4)nt and reads

exp

[
iϕ

(
1 0

0 −1

)]
, with ϕ ∈ (0, π) , (3.9)

where we introduced the phase of the Polyakov loop ϕ. The latter is related to the

traced loop by L = cosϕ. For ϕ = π, the loop becomes −1 and effectively cancels the

anti-periodic boundary condition of the fermions. Therefore, the Polyakov loop can be

seen as a modification of the boundary condition in the time direction.

A continuum Dirac operator with zero mass in an equivalent gauge background, i.e.,

spatial gauge fields set to zero and a Polyakov loop as above, possesses eigenmodes that

are constant in space and plane waves in time. These are of the form

ψ(x) ∼ eipx0T , with p = π ± ϕ+ 2πz , and z ∈ Z , (3.10)

where T is the temperature and the different signs in the momentum quantum number

p amount to the different color components. The eigenvalues corresponding to these

modes are given by ipT . The lowest positive one is iθcont
M , with

θcont
M = (π − ϕ)T , (3.11)

which we denote as effective Matsubara frequency. Returning to the lattice, where the

number of time-slices is finite, these become

θM =
1

a
sin

(
π − ϕ
nt

)
. (3.12)

For very high temperatures, the Polyakov loop approaches unity, so we have L→ 1 and

ϕ → 0, which yields θM = 1
a

sin (π/nt). Inserting L = 0.37, which is the average traced

loop on our the gauge configurations, we obtain a Matsubara frequency (in units of the

inverse lattice spacing) of

aθM = sin

(
π − arccos 0.37

4

)
= 0.47 . (3.13)

This is in the same order of magnitude as the lower end of the bulk of the spectra we

have measured and consistent with the findings in [78].
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3.1. Quark spectra at high temperature

The main outcome of these considerations is that a Polyakov loop of L ≈ −1 (i.e. φ ≈
π) yields a Matsubara frequency of θM ≈ 0 and therefore a zero mode of the Dirac

operator or at least a very small eigenvalue. Indeed, real gauge configurations comprise

strongly fluctuating spatial and temporal links that spoil the analytical calculations

above. However, the loops close to L ≈ −1 still have the tendency to generate small

Dirac eigenvalues, which could explain why they trap the corresponding modes.

3.1.4. Random matrix model for the staggered Dirac operator

There are many RMT models that can describe a transition between uncorrelated and

correlated eigenvalues. One of the simplest ansätze is to take the sum of a diagonal

matrix with independently distributed entries and add a matrix from one of the Gaus-

sian ensembles times a coupling parameter. This is a specific case of the ansatz given

in Eq. (3.1). As the coupling parameter is increased from zero, one then observes a

transition from a Poissonian to an RMT-like spacing distribution. Furthermore, if the

spectral density of the diagonal matrix is not constant, this transition proceeds faster in

the parts of the spectrum where the density is larger. This has been worked out in [53],

along with formulas that approximate the spacing distributions during the transitions

very well. However, these distributions differ from the ones we encounter in the overlap

and staggered spectrum, because the former typically show a maximum that strongly

overshoots the Poisson curve. In case of the staggered operator, we assume that this is

due to the sparseness of the operator, which connects only nearest neighbors in contrast

to the full matrices of the Gaussian ensembles used in the additive ansatz. The overlap

operator, on the other hand, is not a sparse matrix, but its matrix elements still decay

with the lattice distance [79]. This distinguishes the overlap operator from the matrices

of the Gaussian ensembles, too.

3.1.4.1. Motivation of the model

We construct a random matrix model that is better suited to describe the spectral

properties of the staggered Dirac operator in the following. The model is based on

sparse matrices and partially motivated by our findings about the Polyakov loop, which

we will treat as a random potential. In Fig. 3.8, it is shown that the correlation of the

local Polyakov loops drops very quickly with the lattice distance and that their unfolded

spacing distribution (neglecting the spatial information) is very similar to a Poissonian

distribution. Furthermore, the Polyakov loop distribution extends to negative values

close to −1 (see Fig. 3.7) and thus small local effective Matsubara frequencies. Thus, it
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Figure 3.8.: Left: the auto-correlation of local Polyakov loops defined by A =
(〈L(~x)L(~y)〉 − 〈L(~x)〉〈L(~y)〉) / (〈L2(~x)〉 − 〈L(~x)〉2) as a function of the distance in lattice
units d = |~x− ~y|/a. Right: the unfolded spacing distribution of the local Polyakov loop
trace L compared to the Poisson distribution.

seems likely that the Polyakov loops are responsible for the Poissonian behavior in the

low end of the Dirac spectrum. This becomes even more plausible by considering the

staggered operator, which reads

DS
xx′ =

1

2a

4∑
µ=1

ηµ(x)
[
δx+µ̂,x′Uµ(x)− δx−µ̂,x′U †µ(x′)

]
, (3.14)

with ηµ(x) = (−1)
∑
ν<µ xν and Uµ(x) ∈ SU(2) in the case of two-color QCD. We can

explicitly split this operator into temporal and spatial part,

DS = DTE +DSP . (3.15)

In this decomposition, DTE contains the temporal and DSP the spatial derivatives.

The temporal part is block diagonal, with one block for each spatial lattice site ~x.

These blocks can separately be diagonalized analytically, which yields two-fold degener-

ate eigenvalues ±iγ(k)
~x , with (for even nt)

γ
(k)
~x =

1

a
sin

(
π − ϕ~x − 2πk

nt

)
, where k = 0, . . . ,

nt
2
− 1 . (3.16)

Here, ϕ~x is the phase of the local Polyakov loop, i.e., L(~x) = cosϕ~x. We consider only

the four smallest of these eigenvalues with k = 0 in the following, and project to the

eigenbasis that is spanned by their eigenmodes. At least four eigenvalues are needed
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3.1. Quark spectra at high temperature

to maintain both the exact two-fold degeneracy6 and the plus-minus degeneracy, which

stems from chiral symmetry. In this way, the projected operator is in the same RMT

universality class like the SU(2) staggered operator and fulfills chiral symmetry.

In the restricted eigenbasis, the temporal operator can be cast in the form

D
TE(k=0)
~x~x′ = i δ~x~x′


−γ(0)

~x 0 0 0

0 −γ(0)
~x 0 0

0 0 γ
(0)
~x 0

0 0 0 γ
(0)
~x

 , (3.17)

where the entries are analytical functions of the local Polyakov loops. Therefore, the

discussion above about the correlation of the local Polyakov loops applies also to the

γ
(0)
~x . Indeed, the latter have the same unfolded spacing distribution like the Polyakov

loops, which is Poissonian, as shown in Fig. 3.8 (right). Thus, the temporal part can be

seen as a strongly fluctuating (chiral) on-site potential in three dimensions.

In the restricted basis, the spatial part has entries of the form

D
SP (k=0)

~x,~x+î
=

(
U~x,~x+î V~x,~x+î

V~x,~x+î U~x,~x+î

)
, (3.18)

where the 2-by-2 matrices U and V represent real quaternions that are functions of the

gauge links. î is a unit vector in one of the the spatial directions. Considering the

spatial part of the staggered Dirac operator as a perturbation to the temporal part,

these matrices can be given a concrete meaning: U connects eigenvalue pairs of equal

sign, and therefore yields a GSE-like level repulsion between nearest neighbors. V on

the other hand repels eigenvalues of different signs and so generates the gap around zero

in the spectrum.

3.1.4.2. Construction and numerical test of the model

Based on the considerations above, we propose a random matrix model of the form

M = MTE +MSP , (3.19)

6In RMT language, this is Kramers degeneracy of the GSE.
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Figure 3.9.: Spacing distributions of the RMT spectrum plotted along with the GSE
prediction (full curve) and the Poissonian distribution (dashed curve). The insets show
the eigenvalue density as a function of the imaginary part of the eigenvalues and indicate
the part of the spectrum that is measured, respectively. The data has been obtained by
an ensemble average over 5 000 random matrices.

where MTE has the same diagonal structure like DTE(k=0), i.e.,

MTE
~x~x′ = i δ~x~x′


−ϑ~x 0 0 0

0 −ϑ~x 0 0

0 0 ϑ~x 0

0 0 0 ϑ~x

 , with ϑ~x = T (π − φ~x) . (3.20)

The ϑ~x are the local random equivalents of the effective Matsubara frequency in the

continuum, see Eqs. (3.11) and (3.17). T is the temperature, which equals 1/nt, because

we have set the lattice spacing to 1, which is just an irrelevant rescaling of the whole

operator. The φ~x ∈ (0, π) are random counterparts of the Polyakov loop phases. They are

drawn independently from a distribution which has been obtained from lattice data by

converting the histogram shown in Fig. 3.7 via φ~x = arccosL(~x). This is an asymmetric

distribution with a support in the interval (0, π) and a maximum below π/2.

For the spatial part MSP we still have to introduce a three-dimensional periodic

lattice of some extent ns in order to mimic the next-neighbor interaction of the staggered

operator. To this end, we identify ~x with ~x+nsî, with unit vectors î in each of the spatial

directions. MSP , like DSP (k=0), has non-vanishing entries only at positions that connect

next neighbors. These entries have the form

MSP
~x,~x+î

=

(
u~x,~x+î v~x,~x+î

v~x,~x+î u~x,~x+î

)
, (3.21)

with the 2 × 2 random matrices u and v that are representations of real quaternions,

like U and V in Eq. (3.18). The complex and real components of u and v are Gaussian

distributed with mean zero and variances of σ2
u and σ2

v , respectively, which are parameters
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3.1. Quark spectra at high temperature
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Figure 3.10.: Left: the IPR R of the eigenmodes, defined in Eq. (3.5), for the 25 smallest
eigenvalues of the RMT model, plotted versus the average eigenvalue of that mode 〈θm〉
(the maximum possible value for the IPR is 123 = 1 728). Right: intersection of the
low eigenmodes of the RMT model with the underlying random potential as defined
in Eq. (3.22), normalized by the average potential (to be compared to Fig. 3.6). The
horizontal error bars show the variance of the eigenvalues rather than the numerical error
in both plots. The data has been obtained by an ensemble average over 1 000 random
matrices.

of the model. The approximate ratio of these variances has been obtained from lattice

measurements by matching the ratio of the average determinants7 of U (V ) and u (v)

which is 〈detU〉/〈detV 〉 ≈ 1.62 on our gauge configurations. The overall scale of the

random numbers has been put in by hand to obtain desired properties of the RMT

model, namely a gap at zero and a transition between a Poissonian and a GSE-like

spacing distribution. To this end, we have chosen σ2
u = 0.052 and σ2

v = 0.082.

The eigenvalue density and spacing distribution of this model is shown in Fig. 3.9 for

a lattice of spatial extent ns = 12 and with T = 1/4. We observe a similar transition

as in the spectrum of the staggered Dirac operator. Another feature that this model

shares with the lattice Dirac operators is the decreasing localization of eigenmodes as the

corresponding eigenvalues increase. This is shown in Fig. 3.10 along with the intersection

of the modes with the underlying potential ϑ~x, defined equivalently to Eq. (3.6) by

ϑm =
∑
~x

|Ψ(m)(~x)|2ϑ~x . (3.22)

Here, Ψ(m)(~x) is the spatial profile of the eigenmode belonging to the m-th smallest

7For real quaternions of the form q = c01 + i
∑3
j=1 cjσj , the determinant is just the sum over all

squared parameters, i.e., det q =
∑3
µ=0 c

2
µ (σi are the Pauli matrices).
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3.2. Spacing distributions of the overlap operator at non-zero density

positive eigenmode of the random matrix M . As can be seen, the low modes have the

tendency to be localized at islands of small random potential, like those of the lattice

Dirac operators which are attracted by the small Polyakov loops. Hence, our model

reproduces also this important effect.

To check the dependency of the random matrix model on the distribution of the

Polyakov loop phase, we have studied the model with two further choices of that distri-

bution. The first is the Haar measure sin2 φ (valid at zero temperature), for which we

have found that the model shows a similar behavior as discussed above. However, the

gap in the spectral density is smaller and there are fewer Poissonian modes. The second

distribution is obtained by the replacement L → −L in the Polyakov loop distribution

in Fig. 3.7, which amounts to a change of the center sector. In this case, there are no

Poissonian modes and the gap in the spectrum vanishes, i.e., a non-zero chiral conden-

sate is present. This is consistent with the findings of a chiral condensate in non-physical

center sectors discussed in the beginning of Sec. 3.1.

3.2. Spacing distributions of the overlap operator at

non-zero density

The contents of this Section have been published in Ref. [80].

To obtain a better knowledge of the QCD phase diagram, it is crucial to study the

theory not only at high temperature, but also at non-zero density. This amounts to a

non-zero chemical potential. Non-perturbative techniques are again needed to get insight

into non-analytical properties of the theory like phase transitions. Lattice simulations,

which have been successfully used to understand the high-temperature phase of QCD,

however suffer from the serious so-called sign problem at non-zero chemical potential,

which is reviewed in Ref. [81]. The crux is that the chemical potential renders the fermion

determinant complex. As a complex number cannot be interpreted as a probability, in-

tegration techniques based on importance sampling become very inefficient. This does

not hold for quenched lattice simulations, where the fermion determinant does not enter

the creation of gauge configurations. However, the quenched approximation works par-

ticularly bad at non-zero chemical potential both for lattice QCD [82] and for random

matrix models of QCD [83].

In chiral random matrix ensembles, the chemical potential is mimicked by a real

parameter, which controls the breaking of anti-hermiticity [83, 84]. The microscopic

spectral densities and the lowest eigenvalue distributions of these models have been
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3.2. Spacing distributions of the overlap operator at non-zero density

calculated analytically [86, 87], and found to describe quenched QCD data very well

[87, 88]. For the case of two-color QCD with chemical potential, which we consider in

the following, the corresponding random matrix ensemble is the asymmetric real chiral

ensemble introduced in Ref. [89]. This ensemble has been solved, i.e. the joint probability

density function of the eigenvalues and the correlation functions have been computed

analytically [90, 91].

The matrices of the ensembles discussed above generically have complex spectra.

Thus, their eigenvalues have two degrees of freedom, and a straight-forward ordering of

these eigenvalues does not exist. However, one can still define individual next-neighbors

to obtain a spacing distribution. For the complex Ginibre ensemble, the spacing distribu-

tion of large matrices is not well approximated by a surmise from 2×2 matrices [92, 93],

in contrast to the case of Hermitian Gaussian ensembles (see Sec. 2.4.4). However, in

the case of real matrices with weakly broken hermiticity, the eigenvalues have to stay

on the real axis unless they form a complex conjugate pair with another eigenvalue8,

as detailed in Sec. 3.2.1. If we consider the flow of the spectrum as the degree of the

anti-hermiticity is increased, the real eigenvalues thus have only one degree of freedom,

like the eigenvalues of the Hermitian Gaussian ensembles. This is our motivation to

work out the spacing distributions of small real non-Hermitian random matrices. We

assume that these distributions can yield an approximation for the spacing distribution

of corresponding large random matrices in the spirit of Wigner’s surmise. The random

matrix model we consider is the real elliptic Ginibre ensemble, which has a tunable de-

gree of non-hermiticity. Its jpdf of the eigenvalues has been derived in Ref. [38]. As

discussed in the beginning of Sec. 3, chiral symmetry is irrelevant for the eigenvalue

correlations in the bulk of the Dirac spectrum. Thus, the real elliptic Ginibre ensemble

should reproduce the spacing distribution of the Dirac operator in two-color QCD with

non-vanishing chemical potential away from the gap. This is implied by the anti-unitary

symmetries of that operator (see Sec. 3.2.5.1 below).

Indeed, we find that the surmises derived for the small matrices can approximate

the spectra of large random matrices very well. This holds in the case of weakly broken

hermiticity, and different kinds of spacings have to be distinguished, as detailed below.

These surmises also describe the spacing distributions of the overlap Dirac operator in

two-color QCD at various small values of the chemical potential.

8This is not so for the complex (GUE, β = 2) or symplectic (GSE, β = 4) ensembles: in the former the
eigenvalues are not restricted to form complex conjugate pairs, but can be distributed arbitrarily in
the complex plane; in the latter the unperturbed matrices have two-fold degenerate eigenvalues due
to Kramers’ degeneracy and these split up and become complex conjugate pairs for arbitrary small
anti-Hermitian perturbation.
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3.2. Spacing distributions of the overlap operator at non-zero density

This Section is organized as follows. We firstly introduce an ensemble of real random

matrices with weakly broken anti-hermiticity and comment on the typical spectra of

those matrices in Sec. 3.2.1. In Sec. 3.2.2, we consider by means of perturbation theory

the dynamics of eigenvalues as the anti-Hermitian part is switched on. The surmises,

i.e. the spacing distributions of small real random matrices with broken hermiticity, are

derived in Sec. 3.2.3 for three kinds of spacings. They are applied to corresponding large

random matrices in Sec. 3.2.4 and to the SU(2) overlap operator with chemical potential

in Sec. 3.2.5. We also briefly consider an imaginary chemical potential, in which case a

different surmise applies, in Sec. 3.2.5.2.1.

3.2.1. Spectra of real random matrices

We consider a random matrix model that consists of real random matrices H and has one

real parameter λ which controls the non-hermiticity of the matrices. If this parameter

is zero, the matrices are taken from the GOE and thus Hermitian (and symmetric). In

this case, the entries are Gaussian random numbers with mean zero and variance

〈[H(λ = 0)]2ii〉 = 1 , and 〈[H(λ = 0)]2ij〉 =
1

2
(i 6= j) . (3.23)

For increasing λ, the non-hermiticity of H increases.

Real matrices have either real eigenvalues or pairs of complex conjugate eigenvalues,

which is easily proven by the following consideration. Let ψ be an eigenvector of the real

matrix H with the corresponding eigenvalue θ, i.e., Hψ = θψ. By complex conjugation,

we obtain θ∗ψ∗ = H∗ψ∗ = Hψ∗, so θ∗ is also an eigenvalue of H, with the eigenvector

ψ∗. We denote real eigenvalues as ’on-axis’ and eigenvalues with non-zero imaginary part

as ’off-axis’ in the following. We use this notation also for Dirac operator eigenvalues,

with the only difference that the axis are swapped due to the anti-hermiticity of that

operator at zero chemical potential (then on-axis refers to purely imaginary eigenvalues

and off-axis to those with a non-zero real part).

We show a part of the typical spectrum of H with different magnitudes of the

hermiticity-breaking part λ in Fig. 3.11. We treat off-axis spacings, i.e., the spacing

between a complex conjugate pair, and on-axis spacings separately. Between the latter,

we further distinguish between on-axis spacings with an interspaced complex pair (this

means that the real part of the pair is inside the spacing) and those without. This is

done because we found that the spacing distributions of these different kinds of spac-

ings differ strongly, so it makes no sense to combine them all in one distribution. We
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Figure 3.11.: A part of the spectrum of a typical random matrix H with increasing non-
Hermitian perturbation, where the crosses mark the eigenvalues. The top panel is the
unperturbed case, i.e. a real symmetric matrix from the GOE. Towards the bottom panel
the antisymmetric part increases, which results in some eigenvalues forming complex
conjugate pairs. Different types of level spacings are sketched: (1) spacings between
eigenvalues that are on the real axis and have no interspaced complex conjugate pair,
(2) spacings between on-axis eigenvalues with interspaced complex conjugate pair, (off)
spacings between complex conjugate pairs called off-axis.

emphasize that this classification only makes sense if hermiticity is only mildly broken,

since otherwise the eigenvalues are scattered over the complex plane. Thus, there are

typically many complex pairs between each real spacing. Also, the distance between a

complex conjugate pair cannot be considered a next-neighbor spacing any more, because

they may be very far apart. This is why we consider only the weak non-Hermitian case,

which we roughly define by the scale of the off-axis spacings being similar or smaller

than the scale of the on-axis spacings. A review on random matrices that are weakly

non-Hermitian according to this definition can be found in Ref. [94]. We do not treat

the case of an on-axis spacing with two or more interspaced eigenvalue pairs, because

this occurs only rarely in the weak non-Hermitian regime.

3.2.2. Eigenvalue dynamics in perturbation theory

We want to gain some insight into the dynamics of the eigenvalues of a real symmetric

matrix H0, that is perturbed by another real matrix λM with λ continuously increasing

from 0. The eigenvalues of H0 are denoted by θi and their corresponding eigenvectors by

|ψi〉. We consider either symmetric or antisymmetric M in the beginning, to work out
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3.2. Spacing distributions of the overlap operator at non-zero density

the difference between them. The matrix elements of M in the eigenbasis of H0,

Mij = 〈ψi|M |ψj〉 , (3.24)

are real and symmetric or antisymmetric in i↔ j, too, i.e.,

Mji = ±Mij , for MT = ±M . (3.25)

Ordinary perturbation theory up to second order yields for the eigenvalues

θi → θi + λMii ± λ2
∑
j 6=i

M2
ij

θi − θj
, (3.26)

where the first oder contribution just induces a random walk of the eigenvalues without

correlating them. For antisymmetric M , this term even vanishes exactly since Mii =

−Mii = 0 in this case.

Omitting the random walk, the eigenvalue differences become

(θi − θj)→ (θi − θj)
{

1± 2λ2
M2

ij

(θi − θj)2
+O

[
1

(θi − θj)(θi,j − θk 6=i,j)

]}
. (3.27)

If θi and θj are much closer to each other than to any other eigenvalue, the third term

in the curly brackets can be neglected in relation to the second one. Then, for real

symmetric M (upper sign) the difference grows, which means that the eigenvalues repel

as is well known. However, for real antisymmetric M (lower sign), which we will consider

from now on, the eigenvalues feel an attraction, which is the stronger the closer they are.

We recall that our investigations so far are based on the eigenvalues θi of the unperturbed

matrix, which are real and remain so as long as ordinary perturbation theory is valid.9

However, when two eigenvalues θi and θj are very close, almost degenerate perturba-

tion theory [95] has to be applied. Neglecting the second order contribution of all other

eigenvalues, it yields for the perturbed eigenvalues

(θi, θj)→ evs

[(
θi 0

0 θj

)
+ λ

(
0 Mij

−Mij 0

)]
, (3.28)

where evs denotes the eigenvalues of the matrix and we have made use of the antisym-

9Ordinary perturbation theory only yields real shifts of the eigenvalues to all orders.
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metry of M , see Eq. (3.25). The difference of the perturbed eigenvalues is

S =
√

(θj − θi)2 − 4λ2M2
ij . (3.29)

Above some critical λ, the square root becomes negative and the eigenvalue difference

purely imaginary, which is consistent with the fact that the complex eigenvalues of a real

matrix come in complex conjugate pairs. More precisely, imaginary spacings occur for λ

larger than

λcrit =
|θj − θi|
2|Mij|

, (3.30)

which is specific to each individual eigenvalue pair. For the special case of Mij = 0, this

particular eigenvalue difference remains unperturbed for any λ (in this order of pertur-

bation theory). For perturbations larger then λcrit, we write the eigenvalue difference

as

S = 2i|Mij|
√
λ2 − λ2

crit = 2i|Mij|
√
δλ(2λcrit + δλ) , with δλ = λ− λcrit , (3.31)

which increases with the excess δλ of the coupling over the critical coupling. As the

spacing becomes imaginary, the eigenvalues are repelled in the complex plane by the

perturbation.

The prediction of first order degenerate perturbation theory is that eigenvalue pairs

leave the real axis perpendicular to it, as can be seen by an explicit calculation of θi,j in

Eq. (3.28) for λ > λcrit. We confirmed that this does indeed hold just after the creation

of a complex conjugate pair by numerical simulations both with random matrices and

the overlap operator. However, when the perturbation grows larger, the pairs start to

move freely in the complex plane (but remain complex conjugate to each other).

3.2.3. Derivation of the surmises

The idea of Wigner surmises is to approximate spacing distributions of large random

matrices by those of random matrices with the smallest possible size, typically 2 × 2

matrices. Note that in the perturbative treatment in Sec. 3.2.2 we have focused on a pair

of nearest neighbor eigenvalues of an arbitrarily sized matrix, and ended up discussing a

2× 2 matrix and its spacing. This can be seen as an indication that surmises computed

for non-Hermitian 2×2 random matrices apply to corresponding large random matrices.

We recall that we distinguish between three different types of spacings in the systems
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we finally want to describe (large random matrices and QCD): on-axis spacings without

and with one interspaced complex conjugate eigenvalue pair, and off-axis spacings (see

Fig. 3.11). For the first and third type we will deduce surmises from 2 × 2 matrices,

computing the corresponding spacings. The spacings of the second type will be derived

from the jpdf of the eigenvalues of 4× 4 random matrices.

3.2.3.1. Considerations about real 2× 2 matrices and their spacings

We consider a real traceless 2× 2 matrix, that consists of a symmetric and an antisym-

metric part, of the form

H =

(
−a b

b a

)
+ λ

(
0 c

−c 0

)
, (3.32)

with random numbers a, b and c that are Gaussian distributed with zero mean and

unit variance. Note that the matrix H with λ = 0 is equivalent to a 2 × 2 GOE

matrix, up to a common shift of the eigenvalues which does not alter the spacing. In

the GOE the diagonal entries have twice the variance of the off-diagonal ones, but it can

easily be shown that integrating out the part proportional to the identity makes these

variances equal. We have done so in H to shorten and simplify the computations. The

eigenvalues of H are ±
√
a2 + b2 − c2λ2, which, for a particular draw of random numbers,

turn imaginary beyond a critical coupling

λcrit =

√
a2 + b2

|c|
. (3.33)

For λ < λcrit the spacing is 2
√
a2 + b2 − c2λ2 and hence real, while for λ > λcrit the

spacing is 2i
√
c2λ2 − a2 − b2 and thus purely imaginary.

The probability that the matrix H has an imaginary spacing can be easily computed

by integrating over a, b and c with the constraint that λ is above its critical value. This

yields

p(λ) = (2π)−3/2

∫ ∞
−∞
da db dc e−(a2+b2+c2)/2 θ

(
c2λ2 − a2 − b2

)
= 1− 1√

1 + λ2
. (3.34)

As expected, the limiting cases are p(λ → 0) = 0 and p(λ → ∞) = 1. For λ = 0, there

are no imaginary spacings, while for λ→∞, all spacings are imaginary. Of course, the

plural here refers to the ensemble, as one realization of this random matrix has only one

spacing.
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3.2.3.2. On-axis without interspaced complex eigenvalues

For on-axis spacings without interspaced complex eigenvalues our surmise is the same as

for the unperturbed ensemble, i.e. the GOE surmise,

P 1
on(s) =

π

2
s e−

π
4
s2 , (3.35)

because this is the distribution of real spacings of H independently of the coupling

parameter λ. Note that this is not a completely trivial statement, because H is not

taken from the GOE for λ > 0. Let us demonstrate the derivation of this distribution

explicitly, as a typical example. We start with the non-normalized distribution of the

spacing S,

Q1
on(S) =

∫ ∞
−∞

da db dc e−(a2+b2+c2)/2 δ
(
S − 2

√
a2 + b2 − c2λ2

)
θ
(
a2 + b2 − c2λ2

)
= 2π

∫ ∞
−∞

dc

∫ ∞
0

dr r e−(r2+c2)/2 δ
(
S − 2

√
r2 − c2λ2

)
θ
(
r2 − c2λ2

)
. (3.36)

Performing the integration over r, the δ-function yields

r → r0 =
√
S2/4 + c2λ2 , (3.37)

with the additional factor of∣∣∣∣∣ ddr (S − 2
√
r2 − c2λ2

)∣∣∣∣
r=r0

∣∣∣∣∣
−1

=
S

4
√
S2/4 + c2λ2

=
S

4r0

. (3.38)

Thus, we obtain

Q1
on(S) =

π

2

∫ ∞
−∞

dc S e−
1
2 [ 1

4
S2+c2(1+λ2)] θ

(
S2

4

)
. (3.39)

The integration over c just gives a constant factor, and the θ-function forces the spacing

S to be real as assumed. With the normalization defined in Eq. (2.77), indicated by

S → s, we obtain P 1
on as given in Eq. (3.35).

3.2.3.3. On-axis with interspaced complex eigenvalues

When two on-axis eigenvalues have an interspaced complex eigenvalue pair, we expect

the latter to have a noticeable influence on the spacing between the on-axis eigenvalues.

55



3.2. Spacing distributions of the overlap operator at non-zero density

S

b

a

θ1 θ2

z

z∗

Figure 3.12.: Schematic spectrum of the matrix H used to derive the surmise P 2
on.

To obtain a surmise for the distribution of these spacings, we consider a 4× 4 matrix

H = H0 + λA , (3.40)

with H0 taken from the GOE and an antisymmetric matrix A with probability density

w(A) ∼ e−
1
2

tr(AAT ) , (3.41)

i.e., Gaussian distributed entries having the same variance as the off-diagonal entries of

H0. This is the smallest possible matrix that can yield a surmise for this case as there

are four eigenvalues which are relevant for the distribution of the spacing. The jpdf

of the eigenvalues of H depends on the number of real and complex eigenvalues. For

two real eigenvalues θ1 and θ2 and one complex conjugate pair z and z∗, it reads up to

normalization [91]

P (θ1, θ2, z, z
∗) ∝ e−θ

2
1−θ2

2−z2−(z∗)2

erfc

(√
1 + λ2

√
2λ
|z − z∗|

)
2i∆(θ1, θ2, z, z

∗) , (3.42)

with the Vandermonde determinant

∆(θ1, θ2, z, z
∗) = (z∗ − z)(z∗ − θ2)(z∗ − θ1)(z − θ2)(z − θ1)(θ2 − θ1) , (3.43)

where it is assumed that θ2 > θ1 and Im z > 0. To obtain the distribution of the spacing

S between θ1 and θ2, we set θ2 = θ1+S and introduce new variables a = Re z−θ1 ∈ (0, S)

and b = Im z ∈ (0,∞), cf. Fig. 3.12. The range of a is chosen such that the real part of

z (resp. z∗) is between θ1 and θ2. This results in
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3.2. Spacing distributions of the overlap operator at non-zero density

P (θ1, θ1 + S, θ1 + a+ ib, θ1 + a− ib) (3.44)

∝ S b
[
(a− S)2 + b2

] (
a2 + b2

)
e−θ

2
1−(θ1+S)2−2(a+θ1)2+2b2 erfc

(√
2
√

1 + λ2

λ
b

)
.

We integrate out θ1, a and b, and perform an irrelevant rescaling S → 2S (this simplifies

the computations and we have to normalize in the end anyway) to obtain the non-

normalized spacing distribution∫ ∞
0

db

∫ 2S

0

da

∫ ∞
−∞

dθ1 P (θ1, θ1 + 2S, θ1 + a+ ib, θ1 + a− ib)

∝ Se−3S2
{√

π eS
2

erf(S)
[
λ2
√

1 + λ2
(
3λ2 + 8S2

)
+ 4

(√
1 + λ2 − 1

) (
4S4 − 8S2 + 3

)]
+8S

[(√
1 + λ2 − 1

) (
2S2 − 1

)
− λ2
√

1 + λ2
]}

= Q2
on(S;λ) . (3.45)

With the normalization given in Eq. (2.77), indicated by the substitution S → s, the

spacing distribution reads

P 2
on(s;λ) = CDQ2

on(Ds;λ) , (3.46)

with

C =

 ∞∫
0

dS Q2
on(S;λ)

−1

=
12
√

3√
π

[
λ2
√

1+λ2
(
9λ2 + 8

)
+ 8

(√
1+λ2 − 1

)]−1

, (3.47)

and

D = C

∞∫
0

dS S Q2
on(S;λ) =

C

72

[
26
(√

1 + λ2 − 1
)
− 27
√

2 arccot(
√

2) (3.48)

+
√

1 + λ2
(

18λ4 + 20λ2 + 27
√

2
(
1 + λ2

)2
arccot(

√
2)
)]

.

The spacings distribution P 2
on is plotted for various parameters λ in the left panel of

Fig. 3.13.

We now consider the distribution for the limits λ→ 0 and λ→∞. In the first case,

we obtain

lim
λ→0

P 2
on(s;λ) =

ξ2

8π
s e−3ξ2s2

[
4ξ3s3 − 6ξs+

√
π eξ

2s2(4ξ4s4 − 4ξ2s2 + 3) erf(ξs)
]
, (3.49)
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Figure 3.13.: Left: Wigner surmise P 2
on(s;λ), Eq. (3.46), for on-axis eigenvalues with

an interspaced complex conjugate eigenvalue pair for λ = 0, 0.3, 0.5, 1,∞ (decreasing
maxima). Right: Wigner surmise Poff(s;λ), Eq. (3.55), for off-axis spacings and coupling
parameters λ = 0, 2, 10,∞ (decreasing maxima). Plotted for comparison is the Wigner
surmise for the GOE (dashed), which is the surmise for the on-axis spacings with no
interspaced complex pair, Eq. (3.35).

with

ξ = lim
λ→0

D =
22 + 45

√
2 arccot

√
2

16
√

3π
≈ 1.2453 . (3.50)

The opposite limit λ→∞ yields

lim
λ→∞

P 2
on(s;λ) = 4

√
3 η2s e−2(ηs)2

erf(ηs) , (3.51)

where

η = lim
λ→∞

D =
2 + 3

√
2 arccot

√
2

2
√

3π
≈ 0.7510 . (3.52)

For infinitesimally small spacings s and arbitrary non-zero λ (including the limit

λ → ∞), the spacing distribution P 2
on is proportional to s2. However, taking the limit

λ → 0, the first term in the Taylor expansion at s = 0 is proportional to s6. One

can understand the small-s behavior from the Vandermonde determinant in the joint

probability density alone, i.e. by focusing on the eigenvalue repulsion and neglecting the

exponential and erfc factors (which only contribute significantly at larger spacings). The
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3.2. Spacing distributions of the overlap operator at non-zero density

relevant integral is∫ S

0

da(z∗ − θ2)(z∗ − θ1)(z − θ2)(z − θ1)(θ2 − θ1)
∣∣∣
z=θ1+a+ib, θ2−θ1=S

= S

∫ S

0

da
[
(a− S)2 + b2

]
(a2 + b2) = b4S2 +

2

3
b2S4 +

1

30
S6 . (3.53)

This is indeed proportional to S2 for small S, unless the b-dependent terms we have

neglected become proportional to δ(b), which happens for λ→ 0. Then, the distribution

is proportional to S6 for small S. These considerations are unaltered by the rescaling

S → s.

3.2.3.4. Off-axis

For the behavior of the imaginary off-axis spacings, we assume that the complex conju-

gate eigenvalue pair forming the respective spacing is mainly relevant. Such a pair can

already occur in a non-Hermitian real 2 × 2 matrix. We therefore consider the 2 × 2

matrix H given in Eq. (3.32) as a sufficient set-up to obtain a surmise for the off-axis

spacings. This time, we are interested in the distribution of the imaginary spacings of

this matrix. In analogy to Sec. 3.2.3.2 we define the non-normalized distribution Qoff(S)

similar to Eq. (3.36), but with different arguments of the delta and step function,

Qoff(S) =

∞∫
−∞

da db dc e−(a2+b2+c2)/2 δ
(
S − 2

√
c2λ2 − a2 − b2

)
θ
(
c2λ2 − a2 − b2

)
. (3.54)

For the normalized spacing distribution [see Eq. (2.77)] we obtain by a short calculation

similar to the one in Sec. 3.2.3.2,

Poff(s;λ) = C D2 s eD
2s2 erfc

(
Ds
√

1 + λ2/λ
)
, (3.55)

with the constants

C =
2√

1 + λ2 − 1
, and D = C

λ
√

1 + λ2 − arsinh(λ)

2
√
π

. (3.56)

For small s, this distribution is linear in s, just like the one of the GOE.

In the limiting case of λ→ 0, the distribution is

lim
λ→0

Poff(s;λ) =
64

9π
s erfc

(
4s

3
√
π

)
. (3.57)
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3.2. Spacing distributions of the overlap operator at non-zero density

Note that in this limit the perturbation is formally switched off. However, for an infinite

number of realizations of the random matrixH, off-axis eigenvalues will exist for arbitrary

small perturbations. This is because the probability to encounter an imaginary spacing,

given in Eq. (3.34), is greater than zero for arbitrary non-zero λ. Eq. (3.57) describes

the (normalized) distribution of these spacings in the λ → 0 limit (whereas Eq. (3.49)

reflects the influence of these eigenvalues on the neighboring on-axis spacings in this

limit). Even though the difference between Eq. (3.57) and the GOE spacing distribution

is rather small, the two are clearly distinguishable in Fig. 3.13 (right).

For λ→∞ the distribution Poff is simply half a Gaussian,

lim
λ→∞

Poff(s;λ) =
2

π
exp

(
−s

2

π

)
, (3.58)

which is the spacing distribution of the antisymmetric part of H alone. Note that this

limit is not uniform at s = 0, since lims→0 limλ→∞ Poff(s;λ) = 2/π, whereas Poff(0;λ) = 0

for finite λ. Spacings for various values of the coupling parameter λ are plotted in the

right panel of Fig. 3.13 and this discontinuity is clearly visible. A similar effect has been

observed for mixed symmetry classes of (small and large) random matrices in Ref. [53].

There, even a Gibbs-like overshoot of the curves near s = 0 has been observed, which is

absent here.

For consistency, we have checked that the surmises P 1
on and Poff could equally well be

obtained from the jpdf of the eigenvalues of the 2× 2 matrix H, given in Ref. [91] (with

either two real or a pair of complex conjugate eigenvalues).

In the following, we compare those surmises to the spacing distributions of appro-

priate large random matrices and the QCD Dirac operator with non-vanishing chemical

potential.

3.2.4. Comparison of the surmises to large RMT spectra

To check the validity of the surmises calculated in Sec. 3.2.3, we apply them to the

spectra of large dimensional N ×N random matrices of the form

H = H0 +
Λ√

2N/π
A , (3.59)
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Figure 3.14.: Spacing distributions of 400×400 random matrices defined in Eq. (3.59),
with various values of the coupling parameter Λ. Top: on-axis spacings of type 1,
surmise given by the GOE, Eq. (3.35). Middle: on-axis spacings of type 2, surmise given
by Eq. (3.46). Bottom: off-axis spacings, surmise given by Eq. (3.55); the dashed curve
is the GOE spacing for comparison. For each value of Λ, 2 · 105 random matrices have
been diagonalized.

where H0 is real symmetric and taken from the GOE with, whereas A is real antisym-

metric with probability density

w(A) ∼ e−
1
2

tr(AAT ) . (3.60)

This means that all elements of A are independently Gaussian distributed with the same

variance like the off-diagonal entries of H0 (as in the case of the small matrices used for

the surmises). The coupling parameter Λ comes with a factor of 1/
√

2N/π in order to

make it comparable to the one used in the surmises, λ. Furthermore, as far as the spac-

ing distribution is concerned, this normalization makes Λ a universal, N -independent

coupling parameter, see [53] for a detailed discussion. As also argued there, a constant

spectral density of the large random matrices is necessary to apply the surmises for the

spacing distributions obtained from small matrices of mixed universality classes. Oth-
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3.2. Spacing distributions of the overlap operator at non-zero density

erwise, different coupling strengths, i.e. surmises with different λ, are mixed. Therefore,

we have only evaluated eigenvalues with real part in the interval (−
√
N/4,

√
N/4), i.e.,

around the center of the real spectrum of H. The spectral density in this interval is

almost, but not exactly, constant. We have thus measured the on-axis spacings in units

of the local mean spacing (obtained by an ensemble average), which is equivalent to

unfolding the spectrum. For the off-axis spacings, no unfolding has been done.

The numerically obtained spacing distributions of H are shown in Fig. 3.14 for various

values of the coupling parameter Λ. As can be seen, the surmises for the on-axis spacings

of both types (top and middle) describe the data very well for coupling parameters up

to Λ = 2. The coupling parameters λ of the surmise for the on-axis spacings of type 2

have been obtained by a fit of P 2
on to the numerically obtained spacing distribution with

minimized square deviation. As expected, the coupling λ increases with Λ.

For the off-axis spacings, we are able to predict the 2×2 coupling parameter λ through

the frequency p of imaginary spacings by the following procedure. We numerically mea-

sure p for the large matrices in the spectral region we consider and obtain the coupling

parameter by inverting Eq. (3.34), which yields λ =
√

1/(1− p)2 − 1. This means that

we match the frequency of imaginary spacings for the small and large random matrices.

The surmises for the off-axis spacings with λ obtained this way describe the numerical

data very well for Λ = 0.2 and 0.5, differ slightly for Λ = 1 and are far off for Λ = 2.

Although the coupling parameter could also be determined by a fit of the surmise to

the data as for the on-axis spacings of type 2 above, we observed that this does not

yield an improved estimate. Note that the maxima of the surmises are always left of the

maximum of the GOE, cf. Fig. 3.13 (right), in contrast to the maximum of the numerical

data for Λ = 2. A reason for the break-down of the off-axis surmise at large couplings,

while the on-axis surmises still work almost perfectly, could be the additional degree of

freedom of the eigenvalues when they move in the complex plane.

3.2.5. Application to two-color QCD at non-zero density

3.2.5.1. Anti-unitary symmetries and hermiticity of the Dirac operator in

two-color QCD

We show that the continuum and the overlap Dirac operator with SU(2) gauge links both

obey an anti-unitary symmetry squaring to unity. Therefore, the RMT counterpart of

the Dirac operator at zero chemical potential µ is the GOE, while a non-zero µ requires

the use of non-Hermitian random matrices like the ones considered above.
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3.2. Spacing distributions of the overlap operator at non-zero density

3.2.5.1.1. Continuum

We firstly consider the Euclidean continuum Dirac operator of two-color QCD, which at

non-zero chemical potential µ is given by

D = γνDν +m+ µγ4 , (3.61)

with the covariant derivative Dν = ∂ν + iAaντa, where a sum over a from 1 to 3 and over

ν from 1 to 4 is understood. τa are the Pauli matrices, and for the Euclidean γ matrices

γν , we use the Weyl representation

γa =

(
0 iτa

−iτa 0

)
, and γ4 =

(
0 12

12 0

)
. (3.62)

At zero mass and chemical potential, this Dirac operator is anti-Hermitian and there-

fore has purely imaginary eigenvalues. The mass term has no effect on the eigenvalue

correlations since it just shifts each eigenvalue by the same amount, which is why we

consider the massless case in the following. The chemical potential, on the other hand,

affects the spectrum in a more complicated way.

To obtain the anti-unitary symmetry of the SU(2) Dirac operator, we use the fact

that the SU(2) group is pseudo-real, i.e.,

(iτa)
∗ = τ †2(iτa)τ2 . (3.63)

Furthermore, we use the charge conjugation properties of gamma matrices,

(iγν)
∗ = C†(iγν)C , with C = γ2γ4 . (3.64)

By multiplying the Dirac operator with the imaginary unit, which does not change

the correlations of its eigenvalues, we obtain

iD = iγν ⊗
(
∂ν12 + Aaνiτa

)
+ iµγ4 ⊗ 12 , (3.65)

where the spin and gauge parts have been separated explicitly. From Eq. (3.63) and

Eq. (3.64) it follows that iD obeys

[iD,OK] = 0 , with O = C ⊗ τ2 satisfying (OK)2 = OO∗ = 1 , (3.66)

where K is the complex conjugation operator. As a consequence, iD can be made real
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3.2. Spacing distributions of the overlap operator at non-zero density

by a unitary transformation that depends only on O. We therefore write

iD ∼= Ds +Da , (3.67)

where ∼= implies that the two sides of the equation are connected by a unitary transfor-

mation, and we have split the operator into its real symmetric part Ds and real anti-

symmetric part Da. The Hermitian part of iD is iD(µ = 0), while the anti-Hermitian

part is iµγ4. As the hermiticity is not changed by a basis transformation, we identify

Ds
∼= iD(µ = 0) and Da

∼= iµγ4.

Thus up to a multiplication by i, the Dirac operator at µ = 0 is real in a certain

basis. For non-zero µ, it acquires an antisymmetric part, but remains real in that basis.

Concerning the hermiticity, this is exactly the same setting as in the random matrix

ensembles considered above, with the chemical potential µ taking the role of the coupling

parameters λ and Λ.

Note that in the massless case, the Dirac operator also satisfies chiral symmetry, i.e.,

{D, γ5} = 0, which means that its non-zero eigenvalues come in pairs ±θ. For the spacing

distribution in the bulk, which we consider below, the chiral symmetry is however known

to be irrelevant [47–51], as mentioned above.

3.2.5.1.2. Lattice

There are several ways to construct Dirac operators on a discrete space-time as discussed

in Sec. 2.1.2.2. Some of those may have different anti-unitary symmetries than the

continuum Dirac operator, as is the case for the staggered operator [74, 75]. Here,

we consider the overlap operator defined in Eq. (2.26), which shares the anti-unitary

symmetries of the continuum Dirac operator as we show in the following. At non-zero

chemical potential, the overlap operator is defined by [88]

Dov(µ) = 1 + γ5 sign(γ5D
W (µ)) , (3.68)

where we have set the lattice spacing to unity (i.e., a = 1) and sign is the matrix sign

function satisfying (signA)2 = 1, which is explicitly defined below. The Wilson Dirac

operator at non-zero chemical potential is given by [96]

DW (µ) = 1− κ
3∑
i=1

(
T+
i + T−i

)
− κ

(
eµ T+

4 + e−µ T−4
)
, (3.69)
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with κ = 1/(8 + 2mw) and the hopping terms

(T±ν )xx′ = (1± γν)U±ν(x) δx±ν̂,x′ . (3.70)

mw ∈ (−2, 0) is the Wilson mass, and the gauge links U±ν are elements of the SU(2)

group. The exponential factors e±µ implement the quark chemical potential on the

lattice. The argument of the sign function in Eq. (3.68) is Hermitian for µ = 0 and

non-Hermitian for µ 6= 0.

The sign function is defined for a general n× n matrix A by

sign(A) = G diag[sign(θ1), . . . , sign(θn)]G−1 , (3.71)

where we assume that A is diagonalizable, i.e., A = G diag[θ1, . . . , θn]G−1, with some

invertible matrix G. Therefore, for every invertible matrix B holds

sign
(
BAB−1

)
= sign

(
BG diag[θ1, . . . , θn](BG)−1

)
=
(
BG diag[sign(θ1), . . . , sign(θn)]G−1B−1

)
= B sign(A)B−1 . (3.72)

If A is not diagonalizable, a spectral definition of sign(A) can still be derived using the

Jordan decomposition [97]. As the eigenvalues of the argument of the sign function in

Eq. (3.68) may become complex for non-zero chemical potential, we still need to extend

the sign function to arbitrary complex numbers. To this end, we define [98]

sign(z) = sign (Re z) , (3.73)

which is a choice that yields the correct physical result for the overlap Dirac operator in

Eq. (3.68) (see Ref. [98]).

The operator we actually evaluate on the lattice is related to the overlap operator by

a stereographic projection of its eigenvalues, defined by [99]

Dp =
2Dov

2−Dov
= 2

1 + γ5 sign(γ5D
W )

1− γ5 sign(γ5DW )
. (3.74)

For zero chemical potential, Dov has eigenvalues on a circle, θ = 1 + exp(iϕ), in the

complex plane, whereas Dp is anti-Hermitian and thus has purely imaginary eigenvalues.

Furthermore, while the overlap operator fulfills the Ginsparg-Wilson relation [25] (note
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that a = 1),

{Dov, γ5} = Dovγ5D
ov , (3.75)

the projected operator is exactly chiral, i.e., {Dp, γ5} = 0 (but also non-local). Its

non-zero eigenvalues therefore come in pairs ±iθ.
Considering the anti-unitary symmetries of the projected operator Dp, we first note

that the gauge links obey

U∗±ν(x) = τ †2 U±ν(x) τ2 , (3.76)

as they are elements of SU(2) and therefore can be written as linear combinations of 12

and iτa. One can also show that

(γ5D
W )∗ = O†(DWγ5)O (note the ordering), (3.77)

with O as defined in Eq. (3.66) for the continuum. Using the facts that O commutes

with γ5 and that γ5 is real and its own inverse, we obtain

γ∗5 sign∗(γ5D
W ) = O†γ5 sign(DWγ5)O = O† sign(γ5D

W )γ5O , (3.78)

where we have also made use of Eq. (3.72). Furthermore, sign is its own inverse, which

yields

(Dp)∗ = 2O†
1 + sign(γ5D

W )γ5

1− sign(γ5DW )γ5

O = 2O†
γ5 sign(γ5D

W ) + 1

γ5 sign(γ5DW )− 1
O = −O†DpO . (3.79)

Again multiplying with the imaginary unit, we obtain [iDp, OK] = 0, so the Hermi-

tian operator iDp shares the anti-unitary symmetry from the continuum, compare to

Eq. (3.66). We therefore expect its spacing distribution at vanishing µ to be similar to

the one of the GOE. Again, a non-zero chemical potential destroys the hermiticity of iDp,

but keeps the anti-unitary symmetry, exactly as for the continuum Dirac operator. Note

however, that µ enters the hermiticity breaking part of the operator iDp non-linearly,

unlike λ and Λ in the random matrix models.

Due to chiral and anti-unitary symmetry, for every eigenvalue θ of iDp, −θ, θ∗ and

−θ∗ are also eigenvalues. Apart from the zero eigenvalues, there are thus three classes of

eigenvalues: plus-minus pairs on the real or the imaginary axis and quartets of the form

(θ,−θ, θ∗,−θ∗). As µ is increased from zero, a quartet is typically formed when two pairs

of real eigenvalues of iDp come together and allow for its creation. Considering only the
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µ 0.05 0.10 0.20 0.30
# configurations 60 000 30 000 20 000 20 000

Table 3.1.: Values of the chemical potential and corresponding number of quenched
configurations used to determine the spectral properties of the overlap operator.

pair with positive real part and forgetting about chiral symmetry, the same happens in

the spectra of the large random matrices as the degree of non-hermiticity is increased

(see Sec. 3.2.1).

3.2.5.2. Numerical results

All the numerical computations have been done by N. Meyer on a lattice of extent 84 with

Wilson gauge action, see Ref. [80] for more details. A number of 60 000 quenched gauge

configurations has been created at β = 2.2. On subsets of these, a number of about 30 of

the smallest eigenvalues of the overlap operator, given in Eq. (3.68), has been calculated

for various values of the chemical potential and with a Wilson mass of mw = −1.4. The

number of configurations we used for the different values of the chemical potential µ are

shown in Table 3.1.

We measure the spacing distributions of the projected overlap operator Dp, defined

in Eq. (3.74), for various values of the chemical potential µ. As before, we distinguish

between off-axis spacings and on-axis spacings with and without an interspaced complex

pair. We only consider spacings between eigenvalues with an imaginary part in the

spectral window (0.5, 0.6). This ensures that these eigenvalues are in the bulk of the

spectrum, and the eigenvalue density is roughly constant. This is necessary to apply the

surmises, as argued in Sec. 3.2.4. As for the large random matrices considered in that

Section, unfolding has only been done for the on-axis spacings.

The results are shown in Fig. 3.15. The numerical data are very well matched by the

surmises derived from small matrices, as in the case of the large random matrices. Again,

the coupling parameter λ is obtained by a fit for the on-axis spacings of type 2 and from

the frequency p of real10 spacings for the off-axis spacings. For the latter spacings, we

observe that the discrepancy between the data and the surmise at large µ has the same

tendency as in the case of the large random matrices, cf. Fig. 3.14 (bottom, right). This

indicates that the spacing distributions of the large random matrices are able to describe

the QCD results reasonably well, even at larger coupling. There is however no method

10Note that the off-axis spacings are imaginary in the case of the large random matrices, because the
real and imaginary axis are swapped there.
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Figure 3.15.: Spacing distributions of the overlap operator with various real values
of the chemical potential µ. Top: on-axis spacings of type 1, surmise given by GOE,
Eq. (3.35). Middle: on-axis spacings of type 2, surmise given by Eq. (3.46). Bottom:
off-axis spacings, surmise given by Eq. (3.55); the dashed curve is the GOE spacing
distribution for comparison.

known to us to match the chemical potential µ and the coupling parameter Λ, which is

why we show no direct comparison between QCD and large random matrices.

3.2.5.2.1. Imaginary chemical potential

Contrarily to a real chemical potential, an imaginary µ does not change the anti-

hermiticity of either the continuum Dirac operator or of the projected overlap opera-

tor Dp. Instead, the anti-unitary symmetry of those operators is broken in this case.

Therefore, these operators are in the same universality class like the GUE in the pres-

ence of a non-vanishing imaginary chemical potential. We thus expect a transition from

GOE to GUE behavior of the spacing distribution as the imaginary chemical potential

is increased from zero. A surmise for the spacing distribution of a mixed 2× 2 random

matrix of the form HGOE +λHGUE, has been worked out in Refs. [52, 53] and is has been

shown that it applies to large random matrices of that form very well. This distribution
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3.2. Spacing distributions of the overlap operator at non-zero density
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Figure 3.16.: Spacing distributions of the overlap operator with various imaginary
values of the chemical potential µ, approximated by the surmise given in Eq. (3.80). For
each µ, 5 000 configurations have been analyzed in the spectral window with imaginary
parts of the eigenvalues between 0.65 and 0.8.

reads

PGOE→GUE(s) = Cs e−D
2s2 erf

(
Ds

λ

)
, (3.80)

where

C = 2
√

1 + λ2D2 , and D =

√
1 + λ2

√
π

(
λ

1 + λ2
+ arccotλ

)
. (3.81)

In Fig. 3.16, this surmise is compared to the spacing distribution of the projected

overlap operator Dp for various imaginary values of the chemical potential. Again,

unfolding has been done by measuring the spacings in units of the local mean spacing.

The coupling parameter λ has been obtained by a fit of the surmise to the data with

minimized square deviation. It can be seen that the surmise is in very good accordance

with the numerical data also in this case.
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4. Supersymmetry on the lattice

Supersymmetry is assumed to play an important role in the search for a unified theory

which describes all known fundamental physical interactions. As a variety of important

properties of supersymmetric theories (e.g. spontaneous breaking of SUSY) are not ac-

cessible via perturbation theory, other approaches are required. Promising candidates

are numerical methods like the computation of path integrals on space time lattices

which have been applied to QCD with great success. There is, however, a fundamental

problem that supersymmetric theories on discrete space-time suffer from, which is the

failure of the Leibniz rule on the lattice [100, 101]. The naive ansatz for a lattice action

usually is not invariant under infinitesimal translations, which it has to be in order to

fulfill SUSY. Nevertheless, it is possible to formulate lattice theories which are not fully

supersymmetric but restore SUSY in the continuum limit. One way to ensure this is

the orbifolding procedure [102] that allows to keep a subgroup of the original continuum

symmetry on the lattice. For the theory of SUSYQM, which is one of the simplest super-

symmetric models, even a lattice action that violates all continuum supersymmetries can

yield sensible results. In this model, degenerate boson and fermion masses are obtained

by merely including the Wilson mass of the fermions also in the bosonic derivative oper-

ator at non-zero lattice spacing and with interaction [103]. The quadratic terms in the

action are then exactly supersymmetric and the only explicit breaking comes from the

interaction term which connects bosons and fermions. This action also yields a contin-

uum limit for the masses which is compatible with the correct values. Further improved

actions for SUSYQM are discussed in Refs. [104, 110], where a lattice action preserving

one exact supersymmetry, introduced in Ref. [103], is also studied numerically.

A different method to conserve full SUSY on the lattice by means of non-commuting

fermionic and bosonic variables has been introduced in Refs. [105, 106]. However, it has

been shown that this ansatz suffers from inconsistencies because the SUSY variation of

field products is not uniquely defined in this case [107].

A rigorous no-go theorem for SUSY on the lattice has recently been established [18].

It has been shown there that a fully supersymmetric action, which incorporates boson-

fermion interaction, necessarily has to be non-local. An approach to circumvent this
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no-go theorem could be the use of a modified symmetry relation. We shortly review

this ansatz in Sec. 4.1, and consider its consequences and a fundamental problem. In

Sec. 4.2, we return to the naive supersymmetry, and show that it is possible to make a

compromise between locality and SUSY. We demonstrate this numerically for the theory

of SUSYQM.

4.1. The blocking approach to SUSY

A possible approach to overcome the problems of supersymmetric lattice theories that

is based on a generalization of the Ginsparg-Wilson relation [25] has been introduced

in Ref. [108]. The motivation for this ansatz, which we briefly review in Sec. 4.1.1,

is the formal construction of a ’perfect’ lattice action by a blocking procedure. The

study of the properties of this action under symmetry transformations yields the so-

called ’generalized Ginsparg-Wilson relation’. We derive a necessary condition for the

solution of that relation and consider its consequences in Sec. 4.1.2. Our findings about

actions that are explicitly obtained from the blocking of SUSYQM in the continuum are

summarized in Sec. 4.1.3.

4.1.1. The generalized Ginsparg-Wilson relation

The starting point is a general N -dimensional continuum theory with the action Sco[ϕ],

where ϕ is a multiplet containing all kinds of continuum fields. Furthermore, a perfect

(see below) lattice action S[φ] with the lattice field multiplet φ is defined via

e−S[φ] = SDet
1
2α

∫
Dϕe−

1
2

(φ−φf )biα
bc
ij (φ−φf )cj−Sco[ϕ] , (4.1)

where SDet denotes the superdeterminant, b, c label the field species and i, j ∈ n1 ×
n2 × . . .× nN label the lattice sites. A sum over doubly occurring indices is understood

here and in the following. We assume that the lattice has the same spacing of a in each

direction. We denote α as blocking kernel and define the smeared continuum field by

(φf )
b
i =

∫
dDx f bc(x− ai)ϕc(x) = f bcixϕ

c
x , (4.2)

where f is a smearing function whose space-dependent part has a peak at 0, which may

also mix different field species. In the last step of Eq. (4.2), we have introduced a compact

notation for f and written the space-time variable as an index. Analogously to the lattice
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4.1. The blocking approach to SUSY

indices, doubly occurring space-time indices are integrated over. By construction, the

lattice theory based on the action S has the same partition function and yields the same

correlation functions like the continuum theory1 with the action Sco. This is why S

is denoted as perfect action. In the language of renormalization group theory, S is an

effective Wilsonian action.

Usually, S cannot be given explicitly, because this would require the calculation of

the path integral over the continuum fields and is therefore equivalent to solving the

continuum theory. If this is possible, there is no need to consider the theory on the

lattice in the first place, as it is completely accessible analytically. However, one can

show that the lattice action S inherits the symmetries of the continuum action in a

certain sense. Precisely, S has to fulfill a generalized Ginsparg-Wilson relation given

Sco is invariant under an infinitesimal linear symmetry transformation of the continuum

fields ϕbx → ϕbx + G̃bc
xyϕ

c
y. Here, G̃ is the infinitesimal generator of the transformation.

This relation reads [108]

Gbc
ijφ

c
j

∂S

∂φbi
= (Gα−1)bcij

(
∂S

∂φcj

∂S

∂φbi
− ∂2S

∂φcj∂φ
b
i

)
+ STrG− STrG̃ , (4.3)

where STr denotes the supertrace and G is the lattice version of the generator G̃. For ac-

tions that contain polynomials in the fields of order three or larger, this relation becomes

a very complicated non-linear differential equation which mixes different powers of fields.

The derivation of Eq. (4.3) also requires that the transformation of the continuum fields

can be represented as a linear transformation on the blocked lattice fields, i.e.,

f bciy G̃
cd
yxϕ

d
x = Gbc

ij (φf )
c
j , (4.4)

resulting in the additional constraint

f bciy G̃
cd
yx = Gbc

ijf
cd
jx . (4.5)

If a right-inverse of f exists (denoted by f−1), this constraint defines the lattice symmetry

generator via

Gbc
ij = f bdiy G̃

de
yx (f−1)ecxj . (4.6)

1Note that the correlation functions of the continuum theory have to be taken with respect to the
smeared fields φf in order for this statement to hold.
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However, this definition does not ensure that Eq. (4.5) is fulfilled, because f−1 is no left

inverse of f (there exists no left inverse of f since it maps from the continuum to the

lattice).

The generalized Ginsparg-Wilson relation (4.3) is a deformation of the naive symme-

try relation

Gbc
ijφ

c
j

∂S

∂φbi
= 0 , (4.7)

which signals that the action S is invariant under the transformation generated by G.

The generalized relation adds a non-trivial right hand side, which is why it is also called

modified symmetry relation. It is known that there is no local lattice action with terms

of higher order than quadratic that satisfies Eq. (4.7), if the generator G is a lattice

derivative [18]. In this case, Eq. (4.7) means that the action has to be translationally

invariant with respect to continuous shifts (generated by G). This is different from

the discrete translational invariance under shifts of one lattice spacing that is usually

demanded for lattice actions. We will refer to these types of translational invariance as

continuous and discrete, respectively. In order to be fully supersymmetric in the naive

sense, an action has to fulfill continuous translational invariance, since successive SUSY

transformations can generate a translation. This is essentially how the above mentioned

no-go theorem for local supersymmetric lattice actions is derived.

One may hope that the nonzero right-hand side of the generalized relation Eq. (4.3)

in contrast to Eq. (4.7) allows for lattice actions that are both supersymmetric and local.

The right-hand side can here be seen as a controlled breaking of SUSY on the lattice,

which should vanish in the continuum limit. For the chiral symmetry, this is indeed

the case, i.e., the right hand side of the Ginsparg-Wilson relation, given in Eq. (2.27),

vanishes for a→ 0.

Solutions of Eq. (4.3) have been found for SUSYQM with a quadratic action [108].

However, it has not yet been possible to find solutions which incorporate an interaction

term and thus higher orders polynomials in the fields (except for the zero mode sector

with constant fields discussed in Sec. 4.1.3).

4.1.2. The relation for the anticommutator

In this Section, we consider a relation involving the anticommutator of two SUSY gener-

ators, given the lattice action under consideration fulfills Eq. (4.3) with respect to those

generators. After an explicit derivation of this relation in Sec. 4.1.2.1, we consider its
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consequences in Sec. 4.1.2.2.

4.1.2.1. Derivation of the relation

We assume that the action S fulfills relation (4.3) for G = εM as well as G = ε̄M̄ .

We use G as a placeholder for these two choices in the following. Here, M and M̄

are traceless generators of SUSY transformations on the lattice, whereas ε and ε̄ are

independent infinitesimal Grassmann numbers. Note that the latter anticommute with

each other and with fermionic fields. We furthermore assume that the blocking matrix

α only connects bosons with bosons and fermions with fermions, which carries over to

its inverse α−1.

Under an infinitesimal transformation of the fields φ→ φ+Gφ, the action becomes

S[(1 +G)φ] = S[φ] + δSG[φ] , (4.8)

with

δSG[φ] = (Gφ)im∂
b
iS =

[
(Gα−1)S

]bc
ij
Dcbji , (4.9)

where

Dcbji =
[
(∂cjS)(∂biS)− (∂cj∂

b
iS)
]
. (4.10)

We introduced the notation ∂bi = ∂/∂φbi and the ’supersymmetrized’ version of a matrix

A, given by

AS =
1

2
(A+ AD) . (4.11)

where the ’supertranspose’ is defined by

(AD)bcij = Acbij (−1)|b||c| . (4.12)

The absolute value of an index is defined by |b| = 0 if the field φb is bosonic and |b| = 1 if

φb is fermionic. Note that the original relation (4.3) contains Gα−1 rather than (Gα−1)S,

but this is equivalent due to D = DS.

We now introduce the composite transformation

T = T2T1T
−1
2 T−1

1 = (1 + εM)
(
1 + ε̄M̄

)
(1− εM)

(
1− ε̄M̄

)
, (4.13)
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which consists of four successive infinitesimal transformations. The action therefore

transforms as

S[T φ] = S[φ] + δS−ε̄M̄ [φ] + δS−εM [
(
1− ε̄M̄

)
φ] + δSε̄M̄ [(1− εM)

(
1− ε̄M̄

)
φ]

+ δSεM [
(
1 + ε̄M̄

)
(1− εM)

(
1− ε̄M̄

)
φ] , (4.14)

where we successively used Eq. (4.8). After a short calculation using ε2 = ε̄2 = 0 and

the expansion

δSε̄M̄ [(1 + εM)φ] = δSε̄M̄ [φ] + (εMφ)bi∂
b
i δSε̄M̄ [φ]

= ε̄ δSM̄ [φ] + (ε̄εMφ)bi∂
b
i δSM̄ [φ] , (4.15)

which holds equivalently for εM replaced by ε̄M̄ , we obtain

S[T φ] = S[φ]− ε̄ε (∆SMM̄ [φ] + ∆SM̄M [φ]) , (4.16)

with

∆SMM̄ [φ] = (Mφ)bi∂
b
i δSM̄ [φ] , and ∆SM̄M [φ] = (M̄φ)bi∂

b
i δSM [φ] . (4.17)

We suppress the dependencies on φ in the following. Using Eq. (4.9), we obtain

∆SMM̄ =
[
(M̄α−1)S

]cd
jk

(Mφ)bi
[
(∂bi ∂

d
kS)(∂cjS) + (−1)|b||d|(∂dkS)(∂bi ∂

c
jS)− (∂bi ∂

d
k∂

c
jS)
]
.

(4.18)

With δSM = (Mφ)bi∂
b
iS, this can be written as

∆SMM̄ =
[
(M̄α−1)S

]cd
jk

[
(−1)|d|(∂dkδSM)(∂cjS) + (−1)|d|+|c|(∂dkS)(∂cjδSM)

− (−1)|d|+|c|(∂dk∂
c
jδSM)− (−1)|d|(M bd

ik ∂
b
iS)(∂cjS)− (−1)|d|+|c|(∂dkS)(M bc

ij ∂
b
iS)

+ (−1)|d|+|c|(M bc
ij ∂

d
k∂

b
iS) + (−1)|d|+|c|+|d||c|+|b||c|(M bd

ik ∂
b
i ∂

c
jS)
]
. (4.19)

It is shown in App. A.2, that the three summands containing δSM vanish when the sum

∆SM̄M + ∆SMM̄ is taken. Neglecting these, we obtain

∆SMM̄ = −
[
(M̄α−1)S 	MT −M(M̄α−1)S

]bc
ij
Dcbji , (4.20)

where the fact that M and M̄ only connect bosons with fermions and vice versa has
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been used to simplify the sign factors. We have also introduced a new kind of matrix

multiplication, defined by

(A	B)bcij = Abdik (−1)|d|Bdc
kj . (4.21)

By the reformulation

(M̄α−1)S 	MT −M(M̄α−1)S =
1

2

(
M̄α−1 	MT −Mα−1 	 M̄T

)
−
(
MM̄α−1

)S
,

(4.22)

where we used the property (α−1)D = α−1 (which α−1 fulfills by construction), we obtain

∆SMM̄ + ∆SM̄M =
[
({M, M̄}α−1)S

]bc
ij
Dcbji . (4.23)

On the other hand, the transformation T can be simplified due to the nilpotence of the

Grassmann numbers,

T = (1 + εM)
(
1 + ε̄M̄

)
(1− εM)

(
1− ε̄M̄

)
= 1− ε̄ε{M, M̄} , (4.24)

what yields

S[T φ] = S[(1− ε̄ε
{
M, M̄

}
)φ] = S[φ]− ε̄ε

({
M, M̄

}
)φ
)b
i
∂biS . (4.25)

Combining Eqs. (4.16), (4.23) and (4.25), we obtain the final result

({
M, M̄

}
φ
)b
i
∂biS =

[
({M, M̄}α−1)S

]bc
ij
Dcbji , (4.26)

which is exactly Eq. (4.9) with G replaced by {M, M̄}. It is thus proven that the

generalized Ginsparg-Wilson relation holds also for the anticommutator of two SUSY

generators, if it holds for both the generators themselves. Eq. (4.26) is thus a necessary

condition for a solution of the generalized Ginsparg-Wilson relation. This no great

surprise, since the SUSY algebra is closed, so {M̃, ˜̄M} is a generator of a symmetry of

Sco. Furthermore, the action S inherits all symmetries of the continuum action Sco in the

sense of relation (4.3), if S is obtained from Sco by a blocking procedure. However, our

proof does not make direct use of the fact that S is derived from some continuum action

via blocking. It only requires that the generalized Ginsparg-Wilson relation is fulfilled,

which is a weaker condition. A consequence of this is that the additional constraint given
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in Eq. (4.5) does not play a role2.

4.1.2.2. Consequences of the relation for the anticommutator

In this Section, we address a fundamental problem that occurs in the solution of relation

(4.3) which is associated with the relation for the anticommutator derived in Sec. 4.1.2.

As an example, we consider specific SUSY generators M and M̄ , which fulfill

{
M, M̄

}bc
ij
∼ δbc∇ij , (4.27)

with some lattice derivative operator ∇. This holds in a similar fashion for all supersym-

metric theories, since the Poincaré algebra is a subset of the SUSY algebra (see Sec. 2.2).

One of those theories is SUSYQM on the lattice (introduced in more detail in Sec. 4.2.1

below), to which Eq. (4.27) applies in this form.

Assuming the action S fulfills Eq. (4.9) with respect to those SUSY generators,

Eq. (4.26) also holds and reads

(∇φ)bi ∂
b
iS =

[
(∇α−1)S

]bc
ij
Dcbji . (4.28)

This is a modified relation for continuous lattice translational symmetry, which reduces

to the naive relation if the right hand side is zero. This actually happens with the usual

assumptions that the derivative ∇ is antisymmetric, circulant3 and assuming that the

spatial part of α−1 is also circulant. In this case, we obtain

(∇α−1)S =
1

2
∇α−1 +

1

2

(
∇α−1

)D
=

1

2
∇α−1 +

1

2
(α−1)D∇T =

1

2
∇α−1 − 1

2
∇α−1 = 0 ,

(4.29)

where we used the fact that circulant matrices commute and (α−1)D = α−1. Thus, we

are left with the naive symmetry relation, which has only non-local solutions. In order

to make use of the modified relation, we therefore have to relax the assumptions we

have made. This leaves us with the following choices (or combinations thereof) for the

blocking matrix and the derivative operator4 that is obtained by the anticommutator of

the SUSY generators:

1. ∇ is not chosen circulant.

2Note however, that if M and M̄ both fulfill the additional constraint, the latter holds also for {M, M̄}
and its continuum counterpart.

3A circulant N×N matrix A fulfills Aij = A(i+1) mod N,(j+1) mod N for all values of i and j ∈ (0, N−1).
4Note that this derivative does not necessarily occur in the action of the theory.
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2. α−1 is not chosen circulant.

3. ∇ is allowed to have a symmetric part.

At first glance, all of these are quite unnatural. The first and the second mean that the

derivative in the symmetry generators respectively the blocking is not lattice translational

invariant. The third option implies that even a quadratic action with discrete transla-

tional symmetry would not generally fulfill the naive symmetry relation (∇φ)bi ∂
b
iS = 0

(in contrast to the case of an antisymmetric ∇). Nevertheless, such a quadratic action

might fulfill the modified relation (4.28).

To gain insight into the consequences of the three choices, we firstly drop all of the as-

sumptions. Furthermore, we restrict ourselves to a one-dimensional lattice theory which

contains only a scalar field χ and is not supersymmetric. Therefore, the indices denoting

the field species are dropped in the following. We denote the extent of the lattice by n

and the spacing by a. We consider this the simplest setting in which translational invari-

ance can be studied and assume that possible solutions of Eq. (4.28) for this theory can

be generalized to supersymmetric theories. Moving to momentum space, that equation

becomes

∇pqχ−q∂pS = γpq [(∂qS)(∂pS)− (∂q∂pS)] , (4.30)

where p and q denote lattice momenta, ∂p = ∂/∂p and a sum over doubly occurring

momenta is understood here and in the following. We have also introduced

γpq = (∇α−1)Spq =
1

2

(
∇p,−rα

−1
rq + α−1

p,−r∇qr

)
. (4.31)

Here, ∇ and α−1 are transformed to momentum space like tensors of rank two without

discrete translational symmetry5, while the field χ is transformed like a tensor of rank

one. These transformations are described in App. A.1.

We assume that the action can be written as

S[χ] =
∞∑
D=1

T (D)
p1,...,pD

χp1 · . . . · χpD , (4.32)

where the tensor T (D) specifies the product of D-th order in the field. These tensors can

be chosen symmetric in all indices without loss of generality.

5This is because we have dropped the constraint that these matrices are circulant.

79



4.1. The blocking approach to SUSY

Then, Eq. (4.30) is equivalent to the following set of constraints for the tensors T (D)

T (D+2)
q,r,p1,...,pD

γqr =
1

(D + 2)(D + 1)
SYMM
p1,...,pD

{
DT (D)

q,p2,...,pD
∇q,−p1 (4.33)

− γqr
D+1∑
m=1

[
mT (m)

q,p1,...,pm−1
(D + 2−m)T (D+2−m)

r,pm,...,pD

]}
,

which has to hold for every value of p1, . . . , pD, while the other double indices are

summed. SYMM denotes a symmetrization over all possible permutations of the mo-

menta p1, . . . , pD.

Starting from Eq. (4.33), we consider specific combinations of constraints for ∇ and

α−1 in the following and analyze the consequences for the action S. We also consider

polynomial solutions for the action.

4.1.2.2.1. ∇ not antisymmetric, both ∇ and α−1 circulant

It has been shown in Ref. [108], that the constraint (4.5) essentially means that the lattice

derivative in the SUSY generators has to be of the SLAC type, i.e., ∇pq = δ(p + q) ip.

We ignore this constraint here and allow for derivatives of the form

∇pq = δ(p+ q)[∇S(p) +∇A(p)] , (4.34)

with a symmetric and antisymmetric part fulfilling ∇S(p) = ∇S(−p) and ∇A(p) =

−∇A(−p), respectively. Furthermore, α−1 is circulant and thus of the form α−1
pq =

δ(p+ q)α−1(p), which results in

γpq = δ(p+ q)∇S(p)α−1(p) . (4.35)

For a quadratic and discretely translationally invariant action, i.e., T
(2)
pq = δ(p+q)T (2)(p),

we obtain from Eq. (4.33)

T (2)(p)∇S(p) = 2
[
T (2)(p)

]2∇S(p)α−1(p) , (4.36)

which has to hold for all values of p (unless ∇S(p) = 0). This is solved by

T (2)(p) =
1

2
α(p) . (4.37)
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The action of the theory is therefore given by the blocking matrix. This is a problem,

since in the continuum limit, the blocking matrix should be sent to infinity in order for

the generalized relation to approach the naive relation. This is not possible here, because

the action has to flow towards the (finite) continuum action for decreasing lattice spacing.

We assume that since not even the case of a quadratic action yields a sensible solution,

this very likely also holds for actions which incorporate terms of higher order in the field.

Note that this does not rule out a Wilson mass, which is only included in the derivative

operator in the action, but not in the generator of the translation. These need not be

identical.

4.1.2.2.2. ∇ antisymmetric and circulant, α−1 not circulant

In this case, the derivative is of the form ∇pq = δ(p + q)∇(p) with ∇(p) = −∇(−p).
Thus, Eq. (4.30) reads

∇(p)χp∂pS = γpq [(∂qS)(∂pS)− (∂q∂pS)] , where γpq =
1

2
[∇(p) +∇(q)]α−1

pq . (4.38)

Assuming a discretely translationally invariant action, the sum of momenta of fields in

each term of S is zero (up to a projection to the first Brillouin zone, see App. A.1).

Therefore, the sum of the momenta on the left hand side of Eq. (4.38) is also zero, since

the derivative ∂p removes a field of momentum p, which is restored by the multiplication

of χp. On the right hand side, the sum of momenta can only be zero, if the momentum

removed by ∂p is the inverse of the one removed by ∂q, i.e. p = −q. However, the right

hand side is zero in that case, since γp,−p = 0. Thus, both sides have to be zero separately,

which means that we again have to solve the naive symmetry relation.

The conclusion for this case is that the generalized Ginsparg-Wilson relation is as

hard to solve as the naive symmetry relation, unless we do not demand a discretely

translationally invariant action.

4.1.2.2.3. ∇ antisymmetric and not circulant, α−1 circulant

Here we have α−1
pq = δ(p + q)α−1(p) with α−1(p) = α−1(−p) (since α−1 is symmetric)

and thus

γpq =
1

2
[α−1(q)− α−1(p)]∇pq . (4.39)

Considering a discretely translationally invariant action, both sides of Eq. (4.30) contain

field products whose momenta do not add up to zero. Therefore, we cannot rule out

such an action as in the previous case.
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4.1.2.2.4. Polynomial solutions

If a polynomial action is desired, there exists a maximum power of fields in the action

denoted by Ω, so T (D>Ω) = 0. Given Ω > 2, Eq. (4.33) is zero for D > 2Ω− 2, whereas

for D = 2Ω− 2 it reads

0 = SYMM
p1,...,p2Ω−2

{
γqr T

(Ω)
q,p1,...,pΩ−1

T (Ω)
r,pΩ,...,p2Ω−2

}
, (4.40)

where we have dropped the prefactors. A similar constraint has been discussed in

Ref. [108] and it remains unclear if there exists a nontrivial solution.

4.1.3. Explicit blocking for SUSYQM in the continuum

In principle, a possible way of solving the generalized Ginsparg-Wilson relation is to

construct an action by performing the blocking procedure defined in Eq. (4.1) explicitly.

We show that this is possible for SUSYQM in the continuum (introduced in Sec. 2.2.1),

where we use a slightly modified blocking that maps a continuum theory to an equivalent

continuum theory rather than a lattice theory. In this blocking ansatz, the smeared fields

are simply the fields of the original theory, i.e., the smearing function is f ijxy = δij δ(x−y),

and both the original and the blocked fields live in the continuum.

For the theory of SUSYQM, the blocking can indeed be carried out analytically for

the fermions and the auxiliary field. The original action is S̃[Φ̃], as given in Eq. (2.39),

with the field multiplet Φ̃b = {χ̃, F̃ , ψ̃, ˜̄ψ}b. We denote the blocked action by S[Φ], with

the respective blocked field multiplet Φb = {χ, F, ψ, ψ̄}b. This action is defined via

e−S[Φ] = SDet1/2α

∫
DΦ̃ e−S̃[Φ̃]− 1

2
[Φb(t1)−Φ̃b(t1)]αbc(t1,t2)[Φc(t2)−Φ̃c(t2)] , (4.41)

where sums over double indices and integrals over t1 and t2 are understood and we have

chosen the blocking matrix of the form

αbc(t1, t2) = δ(t1 − t2)


b2 0 0 0

0 b0 0 0

0 0 0 −b1

0 0 b1 0


bc

. (4.42)

We can only perform the blocking in the auxiliary and fermionic field sector analytically,
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4.1. The blocking approach to SUSY

so the parameter b2 is sent to infinity, which results in

lim
b2→∞

e−
1
2

[χ(t)−χ̃(t)]b2[χ(t)−χ̃(t)] ∼ δ[χ(t)− χ̃(t)] . (4.43)

Thus, the field χ̃ is not modified by the blocking procedure and the path integral over

Dχ̃ yields χ̃ = χ. The remaining path integrals in Eq. (4.41) are Gaussian and can be

performed analytically, which results in

S =

∫
dt

{
1

2
(∂tχ)2 − b0

2(b0 − 1)
F 2 − b0

b0 − 1
FW − 1

2(b0 − 1)
W 2 (4.44)

+ψ̄

[
b1 − b2

1

(
∂t +

∂W

∂χ
+ b1

)−1
]
ψ

}
− log det

[
∂t +

∂W

∂χ
+ b1

]
,

where W is the same superpotential as in the definition of S̃, but with χ̃ replaced by χ.

This blocked action has some interesting properties. In the limit (b0, b1) → ∞, it

becomes the original action S̃. The auxiliary field is integrated out for b0 → 0, and the

fermions are integrated out for b1 → 0. For b0 → 0 and b1 → ∞, we obtain the the on-

shell action given in Eq. (2.42). Furthermore, S fulfills the generalized Ginsparg-Wilson

relation (4.3) modified for a continuum theory,

[GΦ]b (t1)
∂S

∂Φb(t1)
=
[
Gα−1

]bc
(t1, t2)

[
∂S

∂Φc(t2)

∂S

∂Φb(t1)
− ∂2S

∂Φc(t2)∂Φb(t1)

]
, (4.45)

for either G = εM̃ or G = ε̄ ˜̄M .

Upon integrating out the auxiliary field F and the fermions, the blocked action S

becomes (up to a constant)

Seff =

∫
dt

[
1

2
(∂tχ)2 +

1

2
W 2

]
− log det

[
∂t +

∂W

∂χ

]
, (4.46)

which is exactly the same result that is obtained by integrating out the fermions and the

auxiliary field from the original action S̃. This shows explicitly that the actions S and S̃

are equivalent, even if S contains different terms, depends on additional parameters b0

and b1, and is not naively supersymmetric. However, this result is not a surprise since

the blocking procedure is defined such that it yields an equivalent theory. In lattice

simulations, the fermionic fields and the auxiliary field have to be integrated out anyway.

For a hypothetic lattice action that is directly obtained from a blocking procedure as

considered above, one thus end with at the original action once actual computations
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are performed. It therefore seems that the blocking in the fermionic and auxiliary field

sector is of no great use concerning lattice simulations.

Nevertheless, we want to gain some intuition about the blocked action S. To this

end, we consider constant fields, i.e. the zero mode sector of the theory. There is no

distinction between continuum and lattice anymore in this case, since the dependence

of the fields on time variable becomes trivial and the theory is effectively reduced to 0

dimensions. With constant fields, we have ∂t = 0 and the action on a volume of V is

(up to a constant)

S

V
= − 1

b0 − 1

[
b0

2
F 2 + b0FW+

1

2
W 2

]
+ψ̄

(
b1−

b2
1

∂W
∂χ

+ b1

)
ψ − log

(
∂W

∂χ
+b1

)
. (4.47)

In the zero mode sector, an action of SUSYQM that satisfies the generalized Ginsparg-

Wilson relation has also been found in [108] by directly solving the related differential

equations. The fermionic term of that action is λψ̄χψ, given in Eq. (118) of the latter

reference. To match this term with the fermionic term in S, we demand

∂W

∂χ
+ b1 =

b2
1

b1 − λχ
, (4.48)

which is solved by the superpotential

W = −b
2
1

λ
log

(
1− λχ

b1

)
− b1χ . (4.49)

Plugged into the action (4.47) with V = 1, this yields

S =− 1

b0 − 1

{
b0

2
F 2 − b0F

[
b2

1

λ
log

(
1− λχ

b1

)
+ b1χ

]
+

1

2

[
b2

1

λ
log

(
1− λχ

b1

)
+ b1χ

]2
}

− log

(
b2

1

b1 − λχ

)
+ λψ̄χψ , (4.50)

which is very similar (but not identical) to the interacting solution of relation (4.3) in

the zero mode sector given in Eqs. (115, 116) of [108],

Sref =− 1

2
F 2 + b1

1 + b0

b0

χF − b2
1

1 + b0

2b2
0

χ2 − b4
1

1 + b0

2b2
0λ

2

[
log

(
1− λχ

b1

)]2

+

(
1 + b2

1

1 + b0

b0λ
F − b3

1

1 + b0

b2
0λ

χ

)
log

(
1− λχ

b1

)
+ λψ̄χψ , (4.51)
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where we have set N = a = 1, and a0,1 = 1/b0,1. Up to a constant, this action can be

obtained from blocking by an F̃ -dependent choice of the superpotential

W (χ̃, F̃ ) = −b
2
1

λ
log

(
1− λχ̃

b1

)
− b1χ̃−

1

2(1 + b0)
F̃ , (4.52)

in the original action S̃. Previously, W has only been a function of the bosonic field,

which has been used in the derivation of the blocked action in Eq. (4.44). However,

the integral over F̃ is still Gaussian with this new choice of W , so the blocking can be

performed analytically resulting in the desired action Sref . Note that an F̃ -dependent

W only yields a supersymmetric action S̃ for constant fields, because the variation of F̃

with respect to SUSY vanishes in this case, cf. Eq. (2.41).

We have hence found that the solution of relation (4.3) in the constant field sector

given in Ref. [108] can also be obtained by directly performing the blocking procedure. It

therefore remains unclear whether there exist also solutions of that modified symmetry

relation that cannot be obtained from blocking. This may well be possible, since that

relation holds if the action under consideration is constructed by a blocking procedure,

but the reverse is not necessarily true to our current knowledge.

4.2. Construction of a SUSY-improved action

The contents of this Section will be contained in an upcoming publication of the author

and F. Bruckmann.

A fully supersymmetric lattice version of SUSYQM with a non-local action has been

presented and numerically studied in Ref. [18]. It has been found there that the Ward

identities related to all the supercharges of that theory are indeed zero, which signals

a completely unbroken supersymmetry. However, the method used there to make the

theory supersymmetric requires a non-local action, which causes serious problems when

carried over to more realistic theories. Firstly, such an action renders the computations

very costly, especially in theories that live in more than one dimension. Secondly, there

may be fundamental problems with a non-local action in the continuum limit, as in

the case of QED [109]. Furthermore, the mentioned method to construct the fully

supersymmetric action is not generalizable to gauge theories in a straight-forward way.

We therefore follow another route, which is focused on finding a compromise between

locality and SUSY, again in the framework of SUSYQM. To this end, we allow the

interaction term to combine fields in a finite range and optimize the magnitude of these
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combinations to minimize the breaking of continuous translational invariance. Due to

the connection of SUSY and Poincaré symmetry, we assume that this also leads to an

improvement of supersymmetry, which we confirm numerically. Contrary to most of

the other approaches discussed above, our goal is to improve SUSY at non-zero lattice

spacing rather then focusing on the continuum limit.

We organize this Section as follows. In Sec. 4.2.1, we introduce the lattice version

of supersymmetric quantum mechanics. We show a way to construct a lattice model of

SUSYQM which is not fully supersymmetric but improved in comparison to the naive

discretization and still ultra-local, in Sec. 4.2.2. Concrete lattice models are introduced

in Sec. 4.2.3, which are classified by the two different lattice derivatives we consider. Our

numerical results are discussed in Sec. 4.2.4. We compute boson and fermion masses,

which are degenerate for all the models. We also show that the improved models have

smaller Ward identities, which indicates a smaller breaking of SUSY.

4.2.1. Supersymmetric quantum mechanics on the lattice

A lattice version of SUSYQM, which has been introduced in the continuum in Sec. 2.2.1,

is obtained by discretizing the time variable t. We denote the number of lattice sites

by n and the lattice spacing by a and introduce a periodic boundary condition both for

fermions and bosons. All the fields acquire an index that denotes the lattice site and

doubly occurring indices are implicitly summed from 0 to n− 1. The lattice counterpart

of the continuum action of SUSYQM, given in Eq. (2.39), reads

S = a

[
−1

2
χi(∇2)ijχj + ψ̄i∇ijψj −

1

2
FiFi + ψ̄i

∂Wi

∂χj
ψj − FiWi

]
, (4.53)

where the tilde has been removed from the fields to indicate that these are defined on

the lattice. We choose a superpotential of

Wi = m̃ijχj + g Tijkl χjχkχl . (4.54)

Here, ∇ is a lattice derivative, i.e., a difference operator, m̃ is a general mass term and

the tensor T specifies the boson-fermion interaction term. g is the coupling parame-

ter that defines the strength of that interaction. Each of these will be specified later

as we construct concrete lattice models. This choice of W ensures that SUSY is not

spontaneously broken in the corresponding continuum theory.
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After integrating out the auxiliary field F , we obtain the on-shell lattice action

Son = a

[
−1

2
χi(∇)2

ijχj + ψ̄i (∇ij + m̃ij)ψj + 3g Tijkl ψ̄iχjχkψl +
1

2
WiWi

]
. (4.55)

The discretized SUSY generators M and M̄ are obtained from their continuum counter-

parts defined in Eq. (2.37) via replacing the derivative ∂t by the lattice derivative ∇. In

the on-shell formulation, they yield the variation of the fields

M : δψ̄i = 0 , δψi = −ε∇ijχj + εWi , δχi = εψ̄i , (4.56)

M̄ : δ̄ψ̄i = ε̄∇ijχj + ε̄Wi , δ̄ψi = 0 , δ̄χi = −ε̄ψi . (4.57)

The variation of the action in Eq. (4.55) with respect to these generators is

M : ε δS[χ, ψ̄] = ε gψ̄i (3Tijklχjχk∇lmχm −∇ijTjklmχkχlχm) , (4.58)

M̄ : ε̄ δ̄S[χ, ψ] = ε̄ gψi (3Tijklχjχk∇lmχm −∇ijTjklmχkχlχm) . (4.59)

Contrary to the continuum theory, these variations do not vanish, as difference operators

∇ do not obey a Leibniz rule in general.

4.2.1.1. Ward identities

For SUSYQM, these exist two Ward identities associated with the SUSY generators M

and M̄ . These are derived in App. A.3, and read

M :
〈
ψ̄kψl + (−∇ljχj +Wl)χk

〉
=
〈
δS[χ, ψ̄]ψlχk

〉
, (4.60)

M̄ :
〈
ψ̄lψk + (∇ljχj +Wl)χk

〉
=
〈
δ̄S[χ, ψ] ψ̄lχk

〉
, (4.61)

where we have removed the Grassmann parameters ε and ε̄ compared to Eqs. (A.15) and

(A.16). If the variations δS and δ̄S of the action vanish, all the expectation values in

Eqs. (4.60) and (4.61) are zero as well. Therefore, these expectation values are a measure

for the breaking of supersymmetry.

There exists a connection between the two Ward identities, which can be shown as

follows. We define

Wkl =
〈
ψ̄kψl + (−∇ljχj +Wl)χk

〉
, (4.62)

W̄kl =
〈
ψ̄lψk + (∇ljχj +Wl)χk

〉
, (4.63)
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which are the expectation values on the left hand sides of Eqs. (4.60) and (4.61), re-

spectively. The lattice action S is invariant under a time-reversal of the χ-field, i.e. a

replacement χi → χ−i (where χ−i = χ−i mod n), after the fermions have been integrated

out. Using this property and discrete lattice translational invariance, it is easily checked

that Wkl = W̄lk. Because of the Ward identities, this symmetry under the exchange

of the indices k and l holds also for the expectation values containing δS and δ̄S in

Eqs. (4.60) and (4.61).

4.2.2. Explicit method to construct the improved lattice action

Due to the connection of supersymmetry and Poincaré symmetry, a fully supersymmet-

ric action has to be invariant under arbitrary shifts of the fields generated by the lattice

derivative ∇. This is an additional requirement which is not equivalent to the invariance

of the action under shifts of one lattice spacing, the latter of which all actions we consider

in Sec. 4.2 fulfill. A consequence of this is that quadratic terms in the action are au-

tomatically invariant under arbitrary shifts if the lattice derivative ∇ is antisymmetric,

which is usually the case. For the momentum space versions of the lattice derivative6 ∇
and interaction tensor T , as defined in App. A.1, the invariance under arbitrary shifts is

equivalent to

[
∇(p) +∇(q) +∇(r) +∇(−p− q − r)

]
T (p, q, r) = 0 (4.64)

for all possible values of the momenta p, q, and r. It is known that this equation cannot

be fulfilled by a local interaction term [18]. However, one can minimize the magnitude

of the left hand side with a T that is allowed to spread over a few lattice sites. This can

be seen as a compromise between locality and supersymmetry. As an example we choose

an ultra-local interaction tensor, which allows a hopping to the nearest neighbor, by the

ansatz

Tijkl = c1 δijkl + c2 SYMMT {δijk,l+1} , with c1 + c2 = 1 , (4.65)

where δijkl = δijδikδil and SYMMT{} means a symmetrization in all indices and un-

der time reversal. The approach we follow towards a small breaking of SUSY is the

minimization of the quantity

B(T,∇) =

π
a∑

p,q,r=−π
a

∣∣∣[∇(p) +∇(q) +∇(r) +∇(−p− q − r)
]
T (p, q, r)

∣∣∣2 (4.66)

6The lattice derivative is here considered as a tensor of rank 2.
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with respect to c1 and c2 (for this example), where the sum is over all possible values of

the momenta on the lattice (see App. A.1). For the lattice derivatives we consider, this

minimization is independent of the lattice spacing, but depends weakly on the number

of lattice points.

In the following, we consider a general interaction tensor T of the form

Tijkl =
N∑
α=1

cα T
α
ijkl , with cN = 1−

N−1∑
α=1

cα , (4.67)

consisting of a number ofN elementary parts Tα. In this context, we define an elementary

tensor as a tensor that is the symmetrized version of just one δ function, i.e., Tαijkl =

SYMMT{δi,j+sα1 ,k+sα2 ,l+s
α
3
} with integers sα1 , s

α
2 , and sα3 . The choice of cN in Eq. (4.67)

ensures that the sum over all cα is 1, so that T approaches a δ function in the continuum

limit. The measure for the breaking of SUSY defined in Eq. (4.66) is then

B(T,∇) =

π
a∑

p,q,r=−π
a

D(p, q, r)

[
N∑
α=1

cα T
α(p, q, r)

]2

, (4.68)

where we have introduced

D(p, q, r) =
∣∣∇(p) +∇(q) +∇(r) +∇(−p− q − r)

∣∣2 . (4.69)

To transform the constituents Tα of the interaction term to momentum space, we firstly

have to do the symmetrizations explicitly. As an example, we consider

T 2
ijkl = SYMMT {δijk,l+1} =

1

8

(
δijk,l+1 + δij,k+1,l + δi,j+1,kl + δi+1,jkl

+ δijk,l−1 + δij,k−1,l + δi,j−1,kl + δi−1,jkl

)
. (4.70)

In momentum space, this contribution reads according to Eq. (A.4)

T 2(p, q, r) =
1

4n

[
cos(ap) + cos(aq) + cos(ar) + cos(ap+ aq + ar)

]
. (4.71)

The procedure is straight-forwardly generalized to other elementary contributions of the

interaction term.

To find the minimum of B, we demand its first derivatives with respect to the cβ to
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vanish, where β = 1, . . . , N−1 and cN is constrained according to Eq. (4.67). We obtain

dB(T,∇)

dcβ
=

π
a∑

p,q,r=−π
a

D(p, q, r)T (p, q, r)
[
T β(p, q, r)− TN(p, q, r)

]
= 0 . (4.72)

From now on, the dependencies on the momenta p, q and r are implicitly understood

and suppressed in the notation. Writing T as

T =
N−1∑
α=1

cα
(
Tα − TN

)
+ TN , (4.73)

we obtain

dB(T,∇)

dcβ
=

N−1∑
α=1

Aβαcα + bβ = 0 , (4.74)

with the matrix

Aβα =

π
a∑

p,q,r=−π
a

D
(
Tα − TN

) (
T β − TN

)
(4.75)

and

bβ =

π
a∑

p,q,r=−π
a

DTN
(
T β − TN

)
. (4.76)

Solving Eq. (4.74) for cβ yields

cβ = −
N−1∑
α=1

(A−1)βαbα . (4.77)

For both improved models considered in Sec. 4.2.3 below, we have evaluated the Aβα

and bβ in the limit n → ∞. Therefore, the sum over the momenta becomes an integral

that we have calculated numerically. This has to be considered the infinite volume limit,

because the minimization is independent of the lattice spacing a for the lattice derivatives

we have used. The final calculation of the cβ is then an elementary algebraic task.

As an estimate for the achieved improvement of the interaction tensor, we introduce
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T 1 T 2 T 3 T 4 T 5 T 6 T 7

Figure 4.1.: Elementary contributions to the interaction tensor (not symmetrized with
respect to time-reversal) up to a range of two lattice sites, defined in Eq. (4.82). Circles
that are on top of each other are located at the same lattice site.

the quantity

Q(∇) =
B(T,∇)

B(T naive,∇)
, (4.78)

where T naive
ijkl = δijkl is the most local interaction tensor. Values of Q for the improved

models are provided in the respective Sections.

4.2.3. Lattice discretizations

We consider four different discretizations based on the action given in Eq. (4.55). These

contain different kinds of lattice derivatives and interaction terms which are described

in detail in the following.

4.2.3.1. Naive and improved actions with the SLAC derivative

The derivative used in the first models is the SLAC derivative, which is defined in

momentum space by

∇SLAC(p) = ip . (4.79)

This choice makes a Wilson mass obsolete as the SLAC operator has no doublers, which

however comes at the cost of being non-local. Therefore, the mass matrix becomes

trivial,

m̃ij = mδij , (4.80)

with the bare mass m. At first, we introduce the ’naive SLAC model’, whose interaction

tensor is given by

T naive
ijkl = δijkl . (4.81)

Secondly we construct an improved model with an interaction tensor that contains prod-

ucts of fields which are up to two lattice sites apart. Demanding symmetry and time-
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reversal invariance, this tensor contains the contributions

T 1
ijkl = δijkl , T 2

ijkl = SYMMT {δijk,l+1} ,
T 3
ijkl = SYMMT {δij,k+1,l+1} , T 4

ijkl = SYMMT {δi,j+1,k+1,l+2} ,
T 5
ijkl = SYMMT {δij,k+1,l+2} , T 6

ijkl = SYMMT {δijk,l+2} ,
T 7
ijkl = SYMMT {δij,k+2,l+2} ,

(4.82)

where again SYMMT{} induces a symmetrization of all indices and under time reversal.

The shape of these contributions is schematically depicted in Fig. 4.1. The interaction

tensor thus reads

Tijkl =
7∑

α=1

cα T
α
ijkl , with

7∑
α=1

cα = 1 . (4.83)

The coefficients cα have been determined as described in Sec. 4.2.2, resulting in

c1 = 0.0754 ; c2 = 0.3389 ; c3 = 0.2057 ; c4 = 0.1687 ;

c5 = 0.1597 ; c6 = 0.0421 ; c7 = 0.0095 . (4.84)

We refer to this choice of the interaction tensor as the ’improved SLAC model’. This

model yields an improvement of Q(∇SLAC) ≈ 2.3 · 10−6 as defined in Eq. (4.78).

4.2.3.2. Naive and improved actions with a Wilson mass

In these models, we insert a symmetric difference operator into the action, which is

defined by

(∇symm)ij =
1

2a
(δi+1,j − δi−1,j) . (4.85)

A Wilson mass has to be included to remove the doublers, so the mass matrix is

m̃ij = mδij −
ra

2
(δi+1,j − 2δij + δi−1,j) , (4.86)

where we have chosen r = 1 for the Wilson mass parameter. For the ’naive Wilson model’,

we have inserted the naive interaction term as defined in Eq. (4.81). The contributions

to the improved interaction term are again the ones from Eq. (4.82). This time, the

constants that are obtained by a minimization of B(T,∇symm) are

c1 = 0.0414 ; c2 = 0.2349 ; c3 = 0.1668 ; c4 = 0.2265 ;

c5 = 0.2014 ; c6 = 0.1133 ; c7 = 0.0157 ; (4.87)
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Figure 4.2.: Masses for the SLAC models (left) and Wilson models (right) for m = 10
and g = 100. The linear fits have been obtained by minimized square deviation. The
horizontal dashed line is the exact continuum mass (= 16.865).

We call the model that results from this choice the ’improved Wilson model’. Here, we

obtained a improvement of Q(∇symm) ≈ 5.2 · 10−4 as defined in Eq. (4.78).

4.2.4. Numerical results

In this Section, we give the numerical results for the masses and Ward identities we have

measured with the actions defined in Sec. 4.2.3. For each model, we have chosen a bare

mass of m = 10 and a volume of na = 1, which ensures that the Compton wavelength of

the lowest mode fits easily into the volume. All the configurations for the χ-field have

been obtained by a Hybrid Monte Carlo algorithm (see Sec. 2.3.2). The effective action

we have used for this algorithm is obtained by integrating out the fermions from the

on-shell action defined in Eq. (4.55), with the result

Seff = a

[
−1

2
χi(∇)2

ijχj +
1

2
WiWi

]
− log detM , (4.88)

where the fermion matrix is given by

Mij = ∇ij + m̃ij + 3g Tijklχkχl . (4.89)

For further details on the creation of the configurations, the reader is referred to Ref. [110],

where the same Hybrid Monte Carlo algorithm has been used.
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4.2. Construction of a SUSY-improved action

model mcontinuum
boson mcontinuum

fermion

naive SLAC 16.784 (94) 16.870 (5)
improved SLAC 16.813 (50) 16.793 (4)

naive Wilson 16.815 (50) 16.778 (5)
improved Wilson 16.650 (43) 16.645 (4)

exact 16.865 16.865

Table 4.1.: Continuum mass extrapolations for the various actions.

4.2.4.1. Masses

According to previous works, the naive SLAC model [110] as well as the naive Wilson

model [103] defined in Sec. 4.2.3 should have degenerate boson and fermion masses. In

order to check this and to see if it holds also for the improved models, we have calculated

these masses for all the models we have defined. To this end, the propagators 〈ψ̄0ψk〉 for

the fermion and 〈χ0χk〉 for the boson have been computed. The fermionic bilinears in

the expectation values are replaced by a matrix element of the inverse fermionic matrix

M when ψ̄ and ψ are integrated out. For the lattice sizes we consider, this matrix can

be obtained by standard numerical methods. The masses have been obtained by linear

fits to the respective propagator in a logarithmic representation as described in [110].

Unlike there, we use a simple Gaussian filter7 to smoothen the fermionic propagator for

the SLAC models, because more complicated filters have given only negligibly different

results.

We have chosen a coupling constant of g = 100, which is in the regime of strong

coupling, to be able to compare our results with previous works which have used the

same value of g. For each lattice size and model an ensemble of 106 configurations has

been created, which is sufficient to obtain small errors for the propagators. As shown in

Fig. 4.2, fermion and boson masses are fairly equal inside the error bars for all models

and lattice spacings. For the naive SLAC model, the masses are compatible to the ones

obtained in [110], where the same model has been considered. This holds also for the

masses of the naive Wilson model, which were computed in [103]. The values of the

respective continuum extrapolations, which have been determined by a linear fit with

minimized square deviation, are given in Tab. 4.1.

The (degenerate) exact continuum mass can easily be obtained by a numerical treat-

ment of the Hamiltonian of SUSYQM given in Eq. (2.44) [110]. We observe that both

naive models are closer to this continuum mass for all values of the lattice spacing. The

reason for this is presumably the larger extension of the interaction term in the improved

7Defined by the replacement of the propagator 〈ψ̄0ψk〉 → c
∑
l e
−(k−l)2/2〈ψ̄0ψl〉, with c = 1/

∑
k e
−k2/2.
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Figure 4.3.: Functions I associated with the Ward identities, defined in Eq. (4.90) and
Eq. (4.91) for both SLAC models (left) and the improved SLAC model alone (right) for
n = 21, m = 10 and g = 800. Note the different scales of the axes.

models, as the extension is zero in the continuum. This seems to be the prize one has to

pay for the improved supersymmetry. However, the masses of the improved models also

clearly flow towards the correct continuum mass, even if the linear extrapolations may

not exactly hit that value.

4.2.4.2. Ward identities

For all models, we have computed two quantities associated with the two Ward identities

(WIs) discussed in Sec. 4.2.1.1,

WI 1: I1(k) =
〈
ψ̄kψ0 + (−∇0jχj +W0)χk

〉
=
〈
δS[χ, ψ̄]ψ0χk

〉
, (4.90)

WI 2: I2(k) =
〈
ψ̄0ψk + (∇0jχj +W0)χk

〉
=
〈
δ̄S[χ, ψ] ψ̄0χk

〉
. (4.91)

Here, we have set the index l in Eqs. (4.60) and (4.61) to zero without loss of generality,

because these expectation values are only functions of the difference l − k because of

lattice translational invariance. Due to the Ward identities, each of the the functions

I1 and I2 is equally well defined by the expectation values of two different observables,

see Eqs. (4.90) and (4.91). Both of these observables can be measured on the lattice.

In the plots addressed below, we show only the expectation values related to δS and

δ̄S, because these suffer from far smaller numerical errors. However, we have checked

that the respective other expectation value belonging to the same Ward identity is equal

within the error bars. Due to the connection between the Ward identities explained in
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Figure 4.4.: Functions I associated with the Ward identities, defined in Eq. (4.90) and
Eq. (4.91) for both Wilson models (left) and the improved Wilson model alone (right)
for n = 21, m = 10 and g = 800. Note the different scales of the axes.

Sec. 4.2.1.1, the functions I1 and I2 are related via I1(k) = I2(−k mod n). We have

chosen a very strong coupling of g = 800 and a small lattice size of n = 21 for all the

models to have a strongly broken SUSY in the naive models.

As shown in Fig. 4.3, the scale of the Ward identities in the improved SLAC model

is smaller by four orders of magnitude compared to the naive model. The number of

configurations is 107 for the naive SLAC model and 108 for the improved SLAC model.

In the latter case, better statistics are required to get reliable results due to the small

value of the Ward identities.

The same Ward identities have been computed for the Wilson models. They are

shown in Fig. 4.4, where again 107 field configurations have been evaluated for the naive

model and 108 for the improved model. There clearly is an improvement, which however

is much less than in the SLAC model. One reason for this could be the different values of

Q that have been achieved, because these differ by two orders of magnitude. Presumably,

the SLAC derivative is also more suited to allow for a supersymmetric interaction term in

the first place. This assumption is backed by the fact that the only possible construction

of an exactly supersymmetric lattice action with interaction requires the use of the SLAC

derivative [18].
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5. Summary and conclusions

5.1. Analysis of quark spectra on the lattice with

two-color QCD

We have studied quenched SU(2) lattice QCD in the deconfined phase at high temper-

ature. For the same setting, previous works have shown that the low eigenmodes of the

overlap and the staggered Dirac operator are localized and the corresponding eigenvalues

are uncorrelated. These effects vanish for larger eigenvalues, i.e., those are correlated

according to RMT predictions and their eigenmodes delocalize.

We have shown that there is a correlation between the localized low eigenmodes of the

two mentioned Dirac operators in the sense that these eigenmodes are placed in the same

volumes in space-time (for the same gauge configurations). Furthermore, we have found

that the low eigenmodes of the Dirac operators are attracted by small local Polyakov

loops. This means that both the staggered and the overlap operator are sensitive to

the same physical structure in the gauge background. A possible explanation for this

finding is that the small Polyakov loops create small local Matsubara frequencies. Those

can compensate for the anti-periodic fermionic boundary conditions and thus trap low

eigenmodes.

These observations have motivated a new kind of random matrix model for the stag-

gered Dirac operator. This model is based on a decomposition of that operator into a

part containing temporal and a part containing spatial derivatives. In the eigenbasis of

the temporal component, the staggered operator takes a form similar to a condensed

matter Hamiltonian in three dimensions, with an on-site potential and next-neighbor

interactions. Here, the potential emerges from the local traced Polyakov loops. As we

have found, these are only weakly correlated, and can therefore provide the Poissonian

ingredient at the low end of the spectrum.

Hence, we have constructed a random matrix model with a (chiral) on-site potential

consisting of uncorrelated entries. The distribution of the latter has been chosen so as

to match the distribution of local Polyakov loops obtained from lattice data. Addition-
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ally, uncorrelated Gaussian random numbers have been introduced to mimic the three

dimensional next-neighbor interactions. As we have numerically verified, this model re-

produces the important properties of the Dirac spectra mentioned above, i.e., there is a

gap, localized low modes and a transition from Poissonian to RMT spectral statistics.

For future investigations, it would be interesting to solve the random matrix model an-

alytically and to compare further predictions of the model to lattice data. Furthermore,

the random matrix model could be adapted to the more realistic case of three-color QCD

with dynamical quarks. In this setting, some of the phenomena discussed above (local-

ization of low modes and a transition from Poisson to RMT statistics) have recently been

found in the spectrum of the Dirac operator [60].

We have also studied lattice QCD at non-zero quark density, where we have firstly

made some general considerations about spectra of real weakly non-Hermitian matrices.

We have shown that the eigenvalues of real symmetric matrices attract each other under

weak antisymmetric perturbations. The eigenvalues stay real until two of them meet and

form a complex conjugate pair that moves out into the complex plane. We have identified

three different kinds of level spacings, those between the conjugate pairs which we call

off axis, and spacings on the real axis with or without an interspaced complex pair. For

each of those kinds, we have derived a surmise for the spacing distribution from small

real Gaussian random matrices with a tunable degree of non-hermiticity. The surmise

for the on-axis spacings without interspaced pair is identical to the GOE surmise. For

the other kinds of spacings, we obtain formulas that depend on the magnitude of the

antisymmetric part via a real parameter.

These surmises approximate the spacing distributions of large Gaussian random ma-

trices in the regime of weak anti-hermiticity very well. For the spacings in the bulk of

the overlap Dirac operator of quenched two-color QCD with small chemical potential,

they provide equally good approximations. This is expected due to the anti-unitary

symmetry and hermiticity properties of the overlap operator. For on-axis spacings with

an interspaced pair the surmise parameter has been obtained by a fit to the numeri-

cally obtained spacing distributions. For the off-axis spacings, this parameter has been

predicted by matching the frequency of those spacings between surmise and data.

We have also measured spacing distributions for two-color QCD with imaginary chem-

ical potential and verified that they follow a mixed-symmetry surmise.

In contrast to the joint probability density of the eigenvalues, the spacing distributions

of the large random matrices we have considered have not been worked out analytically.

However, the analytic surmises provide sufficient approximations for those matrices as
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well as two-color QCD in the regime of weak non-hermiticity, as we have shown.

A conclusion for the QCD part of this work is that random matrix theory has once

again proven its power to describe eigenvalue correlations in quark spectra. For QCD

at high temperature, the ensembles from chiral RMT do not work in the low end of the

spectrum. However, we have shown that a random matrix model of a similar structure

like a condensed matter Hamiltonian reproduces many features of the low-lying quark

spectrum for quenched two-color QCD. As mentioned above, it would be promising to

modify this random matrix model in order to describe three-color QCD.

In the case of a non-zero chemical potential, our findings certainly cannot be carried

over to three-color QCD (unless the staggered operator with adjoint gauge links is con-

sidered). This is because the anti-unitary symmetries of the Dirac operator are different

for SU(3) gauge links. However, we assume that the surmises we have derived for the

spacing distributions apply also to the case of dynamical two-color QCD. Further ap-

plications are likely to be found in completely different physical systems with the same

anti-unitary symmetries and in the regime of weak non-hermiticity, as encountered e.g.

in quantum scattering [94].

5.2. Supersymmetry on the lattice

We have studied the blocking approach to lattice SUSY. At first, we have considered the

generalized Ginsparg-Wilson relation, which can be seen as a modified symmetry relation

for a lattice theory. We have derived a necessary condition for a supersymmetric action

on the lattice to fulfill this relation. Furthermore, we have shown that this condition

is as hard to solve as the naive symmetry relation, when the lattice derivative and the

blocking matrix fulfill certain common constraints. We have explicitly dropped those

constraints and discussed the consequences.

For SUSYQM in the continuum, we have considered a blocking in the fermionic and

auxiliary field sector, which can be carried out analytically. The resulting blocked action

depends on two additional parameters and interpolates between the on-shell and the

off-shell action, but it is completely equivalent to the original action. This can be seen

explicitly by integrating out the fermions and the auxiliary field, in which case both

actions coincide. For numerical simulations, where these integrations have to be carried

out analytically anyway, we thus obtain no new equivalent actions with this kind of

blocking. In the zero mode sector, i.e. with constant fields, we have furthermore discussed

the connection between the blocked action and a known solution of the generalized
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Ginsparg-Wilson relation.

We conclude our considerations about the blocking approach to lattice supersymme-

try with the following remarks. While we have not been able to solve the generalized

Ginsparg-Wilson relation for the case of SUSY, we have at least enlightened some of the

related problems. We have shown that some common assumptions have to be dropped

in order to allow for a sensible solution of the mentioned relation. It remains an open

question whether an action that is suited for numerical computations can be found as a

solution of that relation.

We have also constructed lattice actions of supersymmetric quantum mechanics which

are improved with respect to SUSY and compared them to naive discretizations. One

type of model contains the SLAC derivative in the kinetic terms of the action, while the

other incorporates the naive symmetric difference operator and consequently a Wilson

mass term. We have made a compromise between supersymmetry and locality by al-

lowing the interaction term of the improved actions to connect fields in a finite range

of two lattice spacings or less. Via numerical lattice simulations we have determined

boson and fermion masses which have turned out to be degenerate for each model. The

masses of the naive models are closer to the exact continuum mass than the masses of the

improved models for all values of the lattice spacing. However, all models show a clear

tendency towards the correct value in the continuum limit. To quantify the breaking

of supersymmetry, we have also measured Ward identities, which are much smaller for

the improved models than for the naive ones. We therefore conclude that the improved

actions indeed have better properties with respect to SUSY, which comes at the cost of

a slower convergence of the masses in the continuum limit.

The method we have developed to construct improved lattice actions could also be

applied to higher dimensional Wess-Zumino type models. This would not render nu-

merical simulations overly expensive, because the interaction terms we have used are

ultra-local. Our method can also be generalized to interaction terms which are polyno-

mials of higher rank or have a higher range in a straight-forward way. Therefore, this

method could be an ingredient for the construction of supersymmetric lattice actions of

more realistic models than SUSYQM, possibly in combination with other improvement

techniques.
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A. Appendix

A.1. Fourier transforms

We define the Fourier transform of a lattice tensor Tj1,...,jM of rank M by

Tp1,...,pM = n−
M
2

n−1∑
j1,...,jM=0

Tj1,...,jM eia
∑M
k=1 pkjk , (A.1)

where is the n number of sites and a the spacing of the resp. lattice. The momenta can

take values of

p =
2π

na
z , with

z ∈ Z = −n−1
2
, . . . , n−1

2
for n odd,

z ∈ Z = −n
2
, . . . , n

2
− 1 for n even.

(A.2)

In this work, we often consider tensors which are discretely translational invariant,

i.e. invariant under an increase of all their indices by one, in which case we obtain

Tp1,...,pM = δP

(
M∑
i=1

pi

)
T (p1, . . . , pM−1) , (A.3)

with the reduced form of T , given by

T (p1, . . . , pM−1) = n−
M
2

+1

n−1∑
j1,...,jM−1=0

Tj1,...,jM−1,0 e
ia
∑M−1
k=1 pkjk . (A.4)

We have also introduced a periodic δ function, defined by

δP (q) = δ [BZ(q)] , with BZ(q) = −π
a

+
(
q +

π

a

)
mod

2π

a
. (A.5)

BZ denotes the projection to the first Brillouin zone.

We use the bracket notation for the arguments of reduced tensors as in Eq. (A.4),

and the index notation for non-reduced tensors as in Eq. (A.1).

101



A.2. Remaining calculations for Sec. 4.1.2.1

A.2. Remaining calculations for Sec. 4.1.2.1

We claimed that the terms contributing to ∆SMM̄ given in Eq. (4.19) containing δSM

vanish, if ∆SM̄M , i.e., the same terms with M and M̄ exchanged, are added. The former

terms read

[
(M̄α−1)S

]bc
ij

[
(−1)|c|(∂cjδSM)(∂biS) + (−1)|b|+|c|(∂cjS)(∂bi δSM)− (−1)|b|+|c|(∂cj∂

b
i δSM)

]
= −

[
(M̄α−1)S

]bc
ij

[
(∂biS)(∂cjδSM) + (∂cjS)(∂bi δSM)− (∂cj∂

b
i δSM)

]
, (A.6)

where we have used that |b|+ |c| = 1 (otherwise,
[
(M̄α−1)S

]bc
ij

is zero). We insert

(∂bi δSM) =
[
(M̄α−1)S

]de
kl

[
(∂bi ∂

e
l S)(∂dkS) + (∂bi ∂

d
kS)(∂el S)− (∂bi ∂

e
l ∂

d
kS)
]
, (A.7)

and obtain

[
(M̄α−1)S

]bc
ij

[
(Mα−1)S

]de
kl

{
(∂biS)(∂cj∂

e
l S)(∂dkS) + (∂cjS)(∂bi ∂

d
kS)(∂el S)

+ (∂biS)(∂cj∂
d
kS)(∂el S) + (∂cjS)(∂bi ∂

e
l S)(∂dkS)

− (∂biS)(∂cj∂
e
l ∂

d
kS)− (∂cj∂

b
i ∂

e
l S)(∂dkS)

− (∂cjS)(∂bi ∂
e
l ∂

d
kS)− (∂cj∂

b
i ∂

d
kS)(∂el S)

− (−1)|c|(∂bi ∂
e
l S)(∂dk∂

c
jS)− (−1)|c|(∂bi ∂

d
kS)(∂el ∂

c
jS)

+ (∂cj∂
b
i ∂

e
l ∂

d
kS)
}
. (A.8)

All terms in the curly brackets in each separate line are antisymmetric under the simul-

taneous exchange of the index pairs (b, i)↔ (d, k) and (c, j)↔ (e, l), what is equivalent

to the exchange of M ↔ M̄ . Therefore, they vanish in the sum ∆SMM̄ + ∆SM̄M .

A.3. Derivation of the Ward identities

To obtain Ward identities, we consider the generating functional of SUSYQM on the

lattice, defined by

Z[J ] =
1

N

∫
DΦ e−S[Φ]+Jbi Φbi , (A.9)

with the action S defined in Eq. (4.53), the field multiplet Φb
i = {χi, Fi, ψi, ψ̄i}b and the

currents J . The index i labels the lattice sites, while the index b labels the field species.

Doubly occurring indices are implicitly summed over. N is the partition function defined
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by

N =

∫
DΦ e−S[Φ] . (A.10)

An infinitesimal transformation of the fields

Φb
i → Φb

i + (δΦ)bi = Φb
i +Gbc

ijΦ
c
j , (A.11)

with the infinitesimal generator G, yields to leading order

Z[J ]→ 1

N

∫
DΦ SDet [1 +G] e−S[Φ]−δGS[Φ]+Jbi (Φbi+G

bc
ijΦcj)

≈ Z[J ](1 + STr[G]) +
1

N

∫
DΦ

(
J biG

bc
ijΦ

c
j − δGS[Φ]

)
e−S[Φ]+JfmΦfm , (A.12)

where δGS is the variation of the action with respect to the transformation. This has to

be equal to Z[J ], because the transformation is equivalent to a mere change of variables

in the path integral. For a traceless G, we can therefore conclude

1

N

∫
DΦ

(
J biG

bc
ijΦ

c
j − δGS[Φ]

)
e−S[Φ]+JfmΦfm = 0 . (A.13)

Ward identities are obtained by deriving this expression with respect to currents and

setting these to zero, e.g.

∂

∂Jdk

∂

∂Jel

[
1

N

∫
DΦ

(
J biG

bc
ijΦ

c
j − δGS[Φ]

)
e−S[Φ]+JfmΦfm

]
J=0

=
1

N

∫
DΦ

(
− δGS[Φ]Φd

kΦ
e
l +Gdb

kiΦ
b
iΦ

e
l + Φd

kG
eb
li Φ

b
i

)
e−S[Φ]

=
1

N

∫
DΦ

(
− δGS[Φ]Φd

kΦ
e
l + (δΦ)dkΦ

e
l + Φd

k(δΦ)el
)
e−S[Φ] = 0 . (A.14)

The infinitesimal generator is either G = εM or G = ε̄M̄ , whose action is defined in

Eqs. (4.56) and (4.57). We specify Φd
k = χk and Φe

l = ψl or ψ̄l, to obtain the Ward

identities (in the on-shell formulation)

M : ε
〈
ψ̄kψl + (−∇ljχj +Wl)χk

〉
= ε

〈
δS[χ, ψ̄]ψlχk

〉
, (A.15)

M̄ : ε̄
〈
ψ̄lψk + (∇ljχj +Wl)χk

〉
= ε̄

〈
δ̄S[χ, ψ] ψ̄lχk

〉
, (A.16)
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where δS and δ̄S are given in Eq. (4.58) and Eq. (4.59), respectively, and the average is

defined by the path integral, i.e.,

〈
O[χ, ψ̄, ψ]

〉
=

1

N

∫
DχDψDψ̄ O[χ, ψ, ψ̄] e−S

on[χ,ψ,ψ̄] . (A.17)
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[102] D. B. Kaplan, E. Katz, and M. Ünsal, JHEP 0305, 037 (2003), hep-lat/0206019v3 .

[103] S. Catterall and E. Gregory, Phys. Lett. B487, 349 (2000), hep-lat/0006013v2 .

[104] J. Giedt, E. Poppitz, R. Koniuk, and T. Yavin, JHEP 0412, 033 (2004), hep-
lat/0410041v2 .

[105] A. D’Adda, I. Kanamori, N. Kawamoto, and K. Nagata, Nucl. Phys. B707, 100 (2005),
hep-lat/0406029v2 .

[106] A. D’Adda, I. Kanamori, N. Kawamoto, and K. Nagata, Nucl. Phys. Proc. Suppl. 140,
754 (2005), hep-lat/0409092v1 .

[107] F. Bruckmann and M. de Kok, Phys. Rev. D73, 074511 (2006), hep-lat/0603003v2 .

[108] G. Bergner, F. Bruckmann, and J. M. Pawlowski, Phys. Rev. D79, 115007 (2009),
0807.1110v2 .

[109] L. H. Karsten and J. Smit, Phys. Lett. B85, 100 (1979).

[110] G. Bergner, T. Kaestner, S. Uhlmann, and A. Wipf, Ann. Phys. 323, 946 (2008),
0705.2212v2 .

109

http://dx.doi.org/10.1088/1751-8113/42/1/012001
http://dx.doi.org/10.1088/1751-8113/42/1/012001
http://arxiv.org/abs/0810.1458v2
http://dx.doi.org/10.1088/1751-8113/43/8/085211
http://dx.doi.org/10.1088/1751-8113/43/8/085211
http://arxiv.org/abs/0911.1276
http://dx.doi.org/10.1088/1751-8113/43/37/375207
http://dx.doi.org/10.1088/1751-8113/43/37/375207
http://arxiv.org/abs/1005.2983
http://dx.doi.org/10.1103/PhysRevLett.61.1899
http://dx.doi.org/10.1103/PhysRevE.80.065201
http://arxiv.org/abs/0907.4195
http://dx.doi.org/10.1088/0305-4470/36/12/326
http://dx.doi.org/10.1016/0370-2693(83)91290-X
http://dx.doi.org/10.1103/PhysRevD.76.114511
http://arxiv.org/abs/0709.4630
http://dx.doi.org/10.1103/PhysRevD.57.5417
http://arxiv.org/abs/hep-lat/9710089
http://dx.doi.org/10.1007/BF02730448
http://dx.doi.org/10.1088/1126-6708/2008/05/057
http://arxiv.org/abs/0803.3121v3
http://dx.doi.org/10.1088/1126-6708/2003/05/037
http://arxiv.org/abs/hep-lat/0206019v3
http://dx.doi.org/10.1016/S0370-2693(00)00835-2
http://arxiv.org/abs/hep-lat/0006013v2
http://dx.doi.org/ 10.1088/1126-6708/2004/12/033
http://arxiv.org/abs/hep-lat/0410041v2
http://arxiv.org/abs/hep-lat/0410041v2
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.046
http://arxiv.org/abs/hep-lat/0406029v2
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.249
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.249
http://arxiv.org/abs/hep-lat/0409092v1
http://dx.doi.org/10.1103/PhysRevD.73.074511
http://arxiv.org/abs/hep-lat/0603003v2
http://dx.doi.org/10.1103/PhysRevD.79.115007
http://arxiv.org/abs/0807.1110v2
http://dx.doi.org/10.1016/0370-2693(79)90786-X
http://dx.doi.org/ 10.1016/j.aop.2007.06.010
http://arxiv.org/abs/0705.2212v2




Acknowledgements

First and foremost, I would like to thank Falk Bruckmann who has been my supervisor

during my work on this thesis. He has always taken the time to answer my questions and

to discuss ideas I had come up with. Practically all the work I have done for my thesis

was in close cooperation with Falk. He also gave me the opportunity to visit various

conferences with interesting topics at very nice places.
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