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Abstract. Energy transfer in RbMnF, was studied by time-resolved spectroscopy of 'T,, 
exciton and trap luminescence. Uniaxial stress was used to lift the orientational degeneracy 
of the Jahn-Teller distorted MnF6 octahedra. Stress also reduces the excitonic transfer rates 
considerably. The most drastic reduction of transfer and a non-exponential decay was 
observed with [l l o ]  stress. Evidence for two-dimensional transfer under [l 101 stress is 
given by computer simulation of random-walk processes and by a calculation of nearest- 
neighbour transfer integrals. 

1. Introduction 

Non-radiative energy transfer in organic and inorganic systems has been studied for 
many years. In the simplest case the excited state of the active ion or molecule is an 
orbital singlet and the ensemble of the interacting particles may be described by a two- 
level system. 

In the present work a system with threefold degenerate orbital T,, states of Mn2' 
ions has been studied by time-resolved luminescence spectroscopy. The T,, states of 
Mn2+ ions couple strongly with the lattice modes of local symmetry e .  Therefore the 
quasi-particles which mediate the resonant energy transfer between Mn2+ ions are 
exciton polarons. The local Jahn-Teller effect of the type T x e lifts the threefold 
electronic degeneracy but adds an orientational degeneracy of distorted MnF6 
octahedra. Uniaxial stress can be used to lift this remaining degeneracy. In the system 
under consideration the stress splitting is much larger than the dispersion of the 4Tlg 
excitonic states; this dispersion is smaller than 1 cm-'. It is therefore possible to select 
an orbital singlet or doublet state for energy transfer experiments by application of 
stress. It will be shown that the transfer rates depend strongly on this selection and that 
in the case that the excited state is an orbital singlet the transfer is highly anisotropic and 
is confined to lattice planes. 

In § 2 of this paper we give a brief description of the electronic andvibronic properties 
of the Mn2+ system in RbMnF3. A model for incoherent energy transfer is considered 
in § 3, together with computer simulations of the transfer process. In § 4 we describe the 
experiments, and in § 5 the results at temperatures between 1.4 and 20 K are given. In 
§ 6 we discuss the results using the calculated splitting of the 4Tlg states and compare 
them with theoretical predictions and with computer simulations of the energy transfer. 
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In § 7 a microscopic model for transfer rates is discussed using the known orbital states. 
Section 8 finally gives a summary and conclusions. 

2. Electronic and vibronic structure 

RbMnF3 crystallises in an undistorted cubic perovskite structure at room temperature 
and does not exhibit a structural phase transition when it is cooled down to liquid helium 
temperature (figure 1). The Mn2+ ions form a simple cubic lattice with lattice constant 
a = 4.25 A. Each Mn2+ ion is surrounded by six F- ions at a distance of a/2 and by eight 
Rb' ions at a distance of ( l / d2 )a .  Below 83 K RbMnF3 becomes an antiferromagnet. 
The point symmetry at the Mn2+ ion is Oh. Mn2+ has a 6Alg ground state and a 4T1g, first 
excited state which is the initial state of the luminescence. The phonon-free transition 
energy is 

E(4T1g) - E(6A1,) = 18232cm-I. (2.1) 
This transition is spin- and parity-forbidden, resulting in a relatively long radiative 
lifetime of about 60 ms (Strauss et a1 1976). 

The Hamiltonian of the system can be separated into three parts 

H =  HE + HL + H E , L  (2.2) 
where HE denotes the electronic, HL the lattice part and H E , L  the electron-lattice 
interaction. All parts of the Hamiltonian can be written in terms of local coordinates 
because of the weak coupling between neighbouring manganese sites. 

The electronic part HE may be expressed using local creation and annihilation 
operators c; and c,, 

3 

Here the index i denotes one of the three 4T',, states of a manganese ion at lattice site 
n. The second term describes tunnelling between Mn2+ ions. Off-diagonal tunnelling, 
i.e. between states with different orbital components i, is neglected. The transfer integral 
J'must be identical by symmetry for all components i. Hence the index i will be omitted. 
Transfer is only possible between ions of equal spin (see e.g. Pacheco 1983). Therefore 
transfer in the antiferromagnetic phase occurs on one magnetic face-centred cubic (FCC) 
sublattice with a nearest-neighbour distance of a d 2  = 6.0 A. We restrict the transfer 

0 Mn2' 

0 F-  

0 Rb' 

Figure 1. Lattice cell of RbMnF,. The arrows 
indicate the eigenvector of the vibrational mode 
Qo . 
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integral Jnnt to nearest neighbours only. In the special case of isotropic transfer we have 

for JRI := lRn, - Rn/  = 6 8, 

for all other distances. 

Then, the energy of the electronic system can be described by a band of Frenkel excitons 

E(k)  = E o  + 2 J c o s ( k . R ) .  (2.5) 
The remaining terms of equation (2.2), HLandHE,L, are adequately expressed using local 
normal vibrational coordinates which describe distortions of one (MnF,)4- octahedron 
(Hock et a1 1983, Thomas 1987). We start by discussing the electron-lattice interaction. 

In principle, the threefold orbital degenerate TIS state interacts with local modes of 
a*, e and t2 symmetry. However, the coupling with tz modes is quenched because of the 
strong Jahn-Teller effect (JTE) of the e modes, known as the Ham effect (Chen et a1 
1972). Restricting ourselves to linear terms we can express the contribution of a single 
manganese ion at site n by 

H ~ , L  = AaAaQa;n + Ae&,,Q,;n + AeAe,,Qc;n (2.6) 

where Ap are the matrices 

Qa is the normal coordinate of the fully symmetric breathing mode of the F- and Rb' 
ions around an excited Mn2+ ion. Q, and Q, describe modes of the tetragonal and 
rhombohedral distortion, respectively (figure 1). After optical excitation of the 
6A1, + 4T1, transition, the forces A, and A, act on the F- ions and displace them to new 
equilibrium positions and Qe,o. The distortion energy for the breathing mode 
of frequency w, is 

E a  = ( M / ~ ) ~ ; Q ; , o .  (2.8) 
M is the mass of one F- ion. The symmetry-breaking e modes with frequency we 
determine the Jahn-Teller energy. Using the z component of 4Tlg, for which the 
distortion vanishes, we get a simple expression for the Jahn-Teller energy: 

E, = ( M / ~ ) W ~ , Q & , ~ .  (2.9) 
Table 1 gives the coupling constants A, and A,, the local mode frequencies hw, and 

hoe, the displacement energies E ,  and the normal dispiacements Qp,o. All values have 
been derived from experimental data (Solomon and McClure 1972, 1974, Chen et a1 
1972). 

We can now express the electron-lattice interaction of n manganese ions, HE,,, in 
second quantisation by 

HE,L = E H$,L = E CI (ApApQp;n)C&Cpn (2.10) 
n p  

wherep = a, 0,  E and A, = A, = A,. 
Finally, the lattice Hamiltonian HL can be expressed by the same local vibrational 
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Table 1. Electron-lattice coupling of the 'TI, state of Mn2- in RbMnF,: coupling constants 
A ,  local mode frequencies w ,  distortion energies E and normal displacements Q, (Solomon 
and McClure 1972, 1974, Chen et a1 1972). 

Mode A (N) fiw (cm-') E (cm-') Q ,  (A) 

a -2.23 X 400 703 Qa," = -0.125 
e + 1.30 X lo-' 287 458 eo.,) = +0.14a 

Qc,o = Oa 

a Values are given for the I component of 4Tl,. 

(2.11) 

The coefficients v$'$ determine the interaction between local vibrations and give rise to 
a dispersive optical phonon branch. We completely neglect this dispersion and drop the 
last term of equation (2.11). 

After having explained the Hamiltonian of our system we shall now discuss the states 
which are relevant for the energy transfer between manganese ions. The electronic 
overlap J will turn out to be of the order of several cm-'. The displacement energies E,  
and E,, on the other hand, are some 100 cm-', which means that the excitation is trapped 
by the local distortions. Transfer can only be accomplished by simultaneous tunnelling 
of electronic excitation and lattice distortion, i.e. by a Jahn-Teller polaron. In analogy 
to the exciton band (equation ( 2 . 5 ) )  the polarons form a band with energies 

E(k)  = Eo + 2 J'  COS(^ * R )  (2.12) 

where J' describes the reduced bandwidth 

J'  = Je-S. (2.13) 

In Q 7 we will show that the reduction factor e-' is about 0.035. An upper limit of J' may 
be estimated from a comparison with other manganese fluorides. For comparison, MnFz 
has a JTE of magnitude similar to RbMnF, but only half of the manganese nearest- 
neighbour distance; Dietz etal(  1970) estimate J' G 0.5 cm-' forMnF2. This corresponds 
to a Mn-Mn transfer time of z 2 h/2J' = s for a purely coherent transfer. We 
regard this time as a lower limit also for RbMnF,. 

The coherence of the transfer will be quickly destroyed compared to the experimental 
timescale. The reason for this is an inhomogeneous broadening of the 4Tlg polaron state 
which is larger than J'. We measured in absorption a linewidth of about 1.2 cm-'. In 
CsMnF3, where two neighbouring Mn2+ ions have a distance ( a  = 5.8 A) nearly equal 
to RbMnF,, the coherence time was observed to be 10-7s (Moncorge and Jacquier 
1983). The experimental timescale, determined by the fastest decay of the 4T1, state, is 
about 30 ys (see § 5 ) .  For the time being we will therefore restrict our considerations 
of energy transfer to completely incoherent processes and discuss possible effects of 
coherence in § 6. 

So far we have discussed qualitatively the polaronic states of the manganese system. 
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We now add some quantitative aspects by using the wavefunctions of the local 
Hamiltonian. Correctly speaking, we omit the transfer terms of the system Hamiltonian 
of equation (2.2), rewrite equation (2.2) as 

n n 
(2.14) 

and consider the eigenfunctions of H". For low temperatures the functions of the first 
excited state are simply Born-Oppenheimer products: 

(2.15) 

The states Ix) belong to displaced harmonic oscillators: 

x"(Q)  = Fa(Qa - Qa,o)F,(Q. + Q ~ , o / ~ ) F & ( Q ~  - ( ~ / ~ > Q o . o )  

= Fa(Qa - Qa,,)F,(Q. + Q ~ , o / ~ ) F , ( Q ~  + ( ~ / ~ > Q o , o )  (2.16) 

x'(Q> = Fa(Qa - Qa,o)Fo(Qe - Qo.o)F&<Q&> 

where F, are one-dimensional oscillator functions in the vibrational ground state and 
ea,, and are the normal displacements as given in table 1. Although lx"), lxy) and 
1%') are not orthonormal their localisation is strong enough that the overlap can be 
neglected, i.e. (x'IxY) = (xjIx") = (~"lx ' )  = 0. It is important to note that +", yj and q2 
are still degenerate. The Ham effect mentioned above leads to the reduction of non- 
diagonal electronic matrix elements of an arbitrary electronic operator 0 (see table 1): 

(2.17) 

Similar to equation (2.15) the ground state I): of a Mn2+ ion may be described by the 
product of an electronic term and avibronic term, but now the 1 ~ : )  belong to undisplaced 
harmonic oscillator functions: 

+: = I6A1,(n>) 1x9 =: lAn) lx:),. (2.18) 

When uniaxial stress cr is applied to the crystal the states are perturbed by a 
homogeneous strain field E .  The strain Hamiltonian may be written in analogy to 
HE,L (see equation (2 .6))  

H e  = C,ALA,E,. (2.19) 

E, are the irreducible components of the strain tensor and A, are the matrices of equation 
(2 .7 ) .  Again the Ham effect suppresses the interaction with shear strain components so 
that we only consider p = a,  0,  E .  For the case of RbMnF3 we can assume that the 
constants Al, of equation (2.19) are equal to the A, of equation (2.6) except for 
geometrical factors (Solomon and McClure 1974): 

A ;  = f i R o A ,  A &  = A ;  =Ad = (2/q/3)R0A, (2.20) 

where Ro is the MnF bond length Ro = 2.125 A. 
Usually external stress is applied along the [0 0 11, [ l  1 01 and [ l  1 11 axes. The strain 
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components E,, E@ and E,  for these directions are 

[00 11: E, = -(SI1 + 2S,,)0/3 E @  = 2(Sll - S,2)0/3 E ,  = 0 

[l 101: E, = -(SI1 + 2S&/3 E @  = -(SI1 - S,2)0/3 E ,  = 0 (2.21) 

[I 1 11: E, = -(S11 f 2S,,)O/3 E @  = 0 E ,  = 0. 

The symmetric strain E,  causes a shift of the exciton band and the tetragonal strain E@ 

causes a splitting. We have determined the energy shift to be 

dE/da,  = -95 cm-' GPa-l (2.22) 

independent of the stress direction. The splitting with [0 0 11 stress as shown in figure 2 
is 

(2.23) 

Here the lower level is the twofold orbital degenerate (v', I$)') state, the upper level 
is the orbital singlet state q,". With [l 1 01 stress half of the splitting is achieved in accor- 
dance with equation (2.21), and the v2 state is the lowest. Application of [l 111 
stress gives only a shift but no splitting as expected for a T X e Jahn-Teller system. 

So far we have neglected spin-orbit coupling and the antiferromagnetic exchange 
field. We will discuss these effects in § 6. 

It is necessary to emphasise that in the initial state of luminescence each orbital state 
is connected with a stable axial distortion along one of the three [0 0 11 axes. The 

stress splitting is usually larger than the thermal energy kBT if the experiments are done 
at liquid helium temperature (see figure 2). Therefore by applying uniaxial stress a 
certain orbital state is selected as well as the corresponding distortion. In § 4 we describe 
energy transfer experiments under uniaxial stress. It is expected that the transfer rate 
depends on the orbital state selected. When, for example, [1 101 stress is applied, the 
transfer occurs exclusively via the state. Under [0 0 11 stress, however, transfer is 
accomplished by the degenerate states q" and yP which are not orthonormal. Since the 
lifetime is long, we expect that there are transitions between these states. 

dE/da,  = 285 cm-' GPa-'. 

Figure2. Splittingpattern of the manganese4T,,state in RbMnF, by uniaxial stress. Exchange 
field and spin-orbit coupling are neglected. [0 0 11 stress (left) and [l 1 01 stress (right) cause 
a shift (broken lines) and a splitting. 
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3. Energy transfer 

3.1. Rate equations 

The experiments described below are concerned with energy transfer of 4T,, exciton 
polarons. We show in § 5 that the measured lifetime is mainly determined by transfer to 
traps. Two kinds of traps, called G and R traps, are observable (figure 3). The depths 
of the traps measured relative to the intrinsic 4Tlg exciton level are 27 cm-' for a G trap 
and 123 cm-' for an R trap. These energies remain constant even if uniaxial stress is 
applied. We did not observe energy transfer between these traps. The trap luminescence 
decays with a rate constant of A = 16 s-'; we consider this as the radiative decay rate of 
the traps. Although the detailed structure of these traps in RbMnF, is not well known 
we use the model developed for MnF2 where trap emission from doped crystals has been 
analysed (Greene et al1968). It was concluded that divalent impurities, such as Ca, Mg 
or Zn, occupy manganese sites. Those are always present in concentrations of some 
ppm. The 4Tlg energy of nearest- and next-nearest-neighbour Mn2+ ions is slightly 
reduced by the impurities' strain field. Hence these Mn2+ ions act as efficient shallow 
traps of 4Tlg excitons. The radiative decay rate of the intrinsic exciton will be the same 
as or even smaller than the rate A = 16 s-l of the traps. Transfer rates, however, are 
orders of magnitude larger (see § 5 ) .  We therefore may consider A as the radiative decay 
rate of the intrinsic exciton (E) as well. 

Energy l c m - '  ) 

18 200 18 100 

? 

E G  

5480 5500 5520 

A til 

Figure 3. Emission spectra of RbMnF, near the 
Mn2+ 4T,, exciton E (zero-phonon, zero-magnon 
transition). T = 1.4 K, no stress applied, exci- 
tation by a 10 ns laser pulse at L = 5530 A, gate 
time 25 p. G, R: emission from local traps. 

A phenomenological description of the excitonic energy transfer to the G and R traps 
is obtained by using rate equations with averaged energy transfer rates kG and k,: 

d nE/d t = -(A f kG f kR)nE 

d nG/d t = - AnG -k kGnE (3.1) 
dn,/dt = -AnR + kRnE. 
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Assuming s(t) pulse excitation the solutions for the occupation numbers of the intrinsic 
exciton states nE and for the trap states n G  and n R  are 
nE(t) = nE(t = 0) exp(-pt) 

nc(t) = [ n G ( t  = 0) + nE(t = O)k,/K] eXp(-At) - nE(t = O)kG/KeXp(-pt) ( 3 4  
n ~ ( t )  = [nR( t  = 0) + nE(t = O)k,/K] exp(-At) - nE(f = o ) k ~ / K  eXp(-pt) 

with K : = kG + kR and p : = A + K. The emission intensities are simply given by 

IE,R,G(~) = ~ E , R , G ( ~ ) A .  (3.3) 

3.2. The random-walk model 

The simple model given above describes a strictly exponential decay of the exciton with 
a rate p = A + K which is in general not observed. Instead one has to use a more general 
form for the decay process 

Z(t )  exp( - A t )  Q(t). (3.4) 
It was the purpose of a series of sophisticated calculations to determine the transfer 

function Q(t)  (see e.g. Huber 1987). In the present study we use a simple random- 
walk model which describes a nearest-neighbour hopping transfer. Effects of coherent 
transfer are neglected. Equation (3.4) takes the form 

I(tn> exP(-AntdQn (3.5) 

tn = nrH and Q n  = Q ( t n )  (3.6) 

where the continuous time coordinate t is  replaced by 

with n the number of steps and rH the nearest-neighbour transfer time. We consider an 
excitation which migrates in one of the two FCC spin sublattices. The intrinsic manganese 
ions are assumed to be statistically substituted by traps. If a trap site is reached by the 
excitation the transfer is stopped. Then Q n  is the probability that the excitation has not 
reached a trap after n steps, i.e. the survival probability. 

Under uniaxial stress the transfer is expected to become anisotropic. The properties 
of anisotropic energy transfer can be described well by the random-walk model. For this 
purpose we consider the local transfer rate for one step, starting with a 4Tlg excitation 
which is located at the centre of a cube (figure 4) .  If the excitation is in the q" state we 
can distinguish the following processes by symmetry: 

(i) transfer to the four nearest neighbours in the xy plane with a rate Txy,  and 
(ii) transfer to the eight nearest neighbours in the xz and y z  planes with a rate T,. 

Although the lattice symmetry is cubic, the local rates Txy and T, for the orbital 
singlet q2 can differ substantially. An analogous consideration holds if we start with a 
yjx or qP state. However, when two or even three orbital components are degenerate 
the excitation will not stay in its initial substate. In our model we assume that during 
each transfer step a scattering from the actual substate into one of the same energy can 
occur. For the stress-free case this leads to an isotropic transfer on a three-dimensional 
FCC lattice with Txy = T,. 

It should be possible to observe a characteristic change of the transfer function Q(t)  
when stress is applied and the anisotropy Txy/Tz becomes large enough. The magnitude 
of this anisotropy is not known apriori. In principle we have to distinguish between two 
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‘T 7’ ( b l  

L x  

Figure 4. FCC structure built up by manganese ions of one magnetic sublattice (central ion 
and 12 neighbours), Ions marked by 0 and 0, respectively, are equivalent considering the 
4T;, substate. (a) Simple quadratic lattice formed by equivalent manganese ions of one xy 
plane. ( b )  BCC structure consisting of the central ion and its eight equivalent neighbours. 

situations for the non-degenerate state t),: Txy > T,  or Txy < T,. Ultimately, either T, 
or Txy may be zero. 

In the first situation, we have a large anisotropy: [l 1 01 stress selects the qY state for 
the transfer. Assuming a vanishing T, the transfer for [ l  101 stress will be confined to 
planes perpendicular to the z axis; these planes form simple quadratic lattices. For 
[0 0 11 stress we expect transfer on a three-dimensional BCC lattice because the selected 
substates vx and vy are degenerate. 

In the second situation, we consider the limit TXy = 0 for the yj, state. For [l 101 
stress we obtain transfer on a three-dimensional BCC lattice, and for [0 0 11 stress a walk 
on a three-dimensional FCC lattice. The difference in Q, for a walk on a FCC or on a BCC 
lattice is actually very small (see e.g. Blumen and Zumofen 1981). This is in contrast to 
our experimental results which show a drastic difference between the decay under [0 0 11 
stress and [ l  1 01 stress (see § 5) .  We therefore do not consider the second situation any 
further and assume Txy 2 T,. 

The dependence of Q, on the trap concentrationp for a two- and three-dimensional 
lattice is plotted in figure 5 ,  as broken curves (Blumen and Zumofen 1981, Zumofen and 
Blumen 1982). In three dimensions Q, decays nearly exponentially and, with fixed ratio 
zH/p, is practically independent ofp.  However, for a two-dimensional lattice, Q, shows 
a non-exponential behaviour at least for short times. Moreover, CD, depends strongly on 
the trap concentrationp. We must emphasise that in our transfer experiments we do not 
really have a two-dimensional system; instead we observe a two-dimensional walk in 
single planes of a three-dimensional lattice. In order to compare the data of Blumen and 
Zumofen with our experiments we assume that the trap concentration in each plane 
varies according to a binomial distribution. Then we find that the decay of CD, remains 
non-exponential even at very long times (full curves in figure 5). 

In order to estimate the magnitude of transfer anisotropy, calculations of Qn between 
the limiting cases of purely two- and purely three-dimensional transfer are necessary. 
This was achieved by computer simulations. We constructed a model FCC lattice with 
403 points which corresponds to one sublattice of manganese sites with equal spin 
orientation. For each random-walk process the lattice was randomly occupied with 
p = 1% traps; one lattice point was randomly chosen as starting point. At each step of 
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Figure 5.  Survival rate Q n  of the random walk 
described in 5 3.2-the ratio of hopping time T,+ 
and trap concentration p for all curves is kept 
constant ( t H / p  = w 4 s ) :  (....) 3D BCC lattice 
(Blumen and Zumofen 1981); Q,! is independent 
ofp. (----) 2D square lattice (Zumofen and Blu- 
men 1982); Qn depends onp: A , p  = 1 ppm (tFi = 
10-'"s);B,p = 100ppm(t ,  = 1 0 - x s ) ; C , p  = 1% 
(ZH = 10-6s). (-) Same as broken curves 

0 1 2 but the trap concentration in one plane of the 
T i m e  (ms) crystalvaries according to a binomial distribution. 

the process the excitation jumps to one of the neighbouring lattice points until, after i 
steps, a trap is reached. The whole process was repeated 10' times. Then the survival 
rate a,, was computed using 

n 

an = 104 - 2 +04 
i = 1  

(3.7) 

where Ni is the number of excitations which reach a trap after i transfer steps. By varying 
the ratio Txy/Tz of the local transfer rates, the transfer for any given anisotropy can be 
simulated. For example, we can reproduce the results of Blumen and Zumofen for a 
three-dimensional walk. For T, = 0 (two-dimensional transfer) our results differ from 
theirs (broken curve for 1% in figure 5). However, our simulated an coincides with the 
full curve in figure 5 where the distribution of the trap concentration is included. The 
results of our simulations for 1 < T,,/T, < are shown in figure 12. 

4. Experimental details 

The two samples of RbMnF, studied here were cut along a [0 0 11 and a [l 1 01 plane and 
were prepared from the same Bridgman-grown single crystal to guarantee equal impurity 
concentrations. The samples measured 1.3 x 1.3 x 1.6" and were cooled in a 
combined bath/gas-flow cryostat. The temperature was measured and controlled by a 
calibrated carbon-glass resistor. Below 4.2 K the accuracy of the temperature was better 
than 0.05 K. 

The uniaxial stress was applied to the sample in the cryostat by a lever system which 
was activated by an external force. The system was constructed so that any torsion at the 
sample was avoided. The stress was measured by a strain gauge at the lever system and 
additionally controlled by the exciton splitting. 

The luminescence was excited by radiation of a dye laser (Lambda Physik, type 
FL2002) operated with Coumarin 153. The dye laser was pumped by an excimer laser 
(Lambda Physik, type EMG 102). The dye laser pulses had a duration of 10 ns, an energy 
of 10 mJ and a repetition rate of 3 Hz. The slow repetition rate allowed for a nearly 
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complete decay of long-lived luminescence states and prevented heating of the crystal. 
The laser beam was expanded to a diameter of 2 mm to avoid non-linear effects during 
excitation. 

The luminescence was recorded with a 1 m grating monochromator (Spex 1704). The 
detection system consisted of a cooled photomultiplier (Hamamatsu R1463) which was 
electrically gated inactive during the laser pulse. The signals were fed into a photon 
counting system and the amplified pulses were stored time-selected in a multi-channel 
analyser. 

In order to prepare a proper initial state, resonant excitation into the 4Tlg exciton 
should be used. Because of the small transition probability of the zero-phonon transition 
Tlg + 6A1, the luminescence yield is much higher when excited via phonon-sideband 
absorption. We therefore used this non-resonant excitation at A = 553 nm after we had 
verified that neither the luminescence shape nor the dynamics were affected. 

5. Results 

5.1. Low-temperature measurements: T < 4 K 

The exciton luminescence decays exponentially if no external stress is applied. The decay 
rate p is the sum of the radiative rate A and the overall transfer rate K (equation (3.2)). 
We measured p = 20840 sC1 at 1.4 K. As shown in figure 6 the decay is slower when 
[0 0 11 stress is applied but is still exponential. However, if [1 1 01 stress is applied the 
slowing down is not only much more pronounced but the decay also becomes non- 
exponential. For the radiative rate A ,  which is determined by the decay of traps (see 
Q 3,1), we obtain A = 16 s-l with and without stress. We therefore interpret the change 
of the excitonic emission dynamics under stress as a change of the transfer rate K .  

A corresponding effect is observed in the rise of the trap luminescence. The traps 
are filled after excitation of the intrinsic exciton levels, which is observed as a rise of the 
trap luminescence. This is shown for the R traps in figure 7. Although a qualitative 
explanation of the three curves in analogy to figure 6 is easy, the quantitative evaluation 
has to take into account the stress splitting of the R levels which is 48 cm-l GPa-l for 
[l 101 stress. Furthermore luminescence of the G traps is influenced by saturation 
effects. We therefore restrict the following considerations to the dynamics of the intrinsic 
exciton luminescence. 

0 

-1 

- 
0 

4 
\ 
4 s -2 

-3 

T i m e  ( m s l  

Figure 6.  Emission dynamics of the 
intrinsic 4T1g exciton of RbMnF, 
without and with applied stress of 
0.165 GPa. T = 1 .4  K, excitation 
with a 10 ns laser pulse via phonon- 
sideband absorption (A = 553 nm). 
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Figure 7. Time-resolved emission from trap R;  
experimental conditions are the same as in 
figure 6. 

If the decay is exponential the decay rate p gives the transfer rate. Here we neglect 
il which is always small compared with K .  For non-exponential decay we can calculate 
an average decay time 

(t) = loz tl(t) dt / /=  Z(t) dt. (5.1) 
0 

Again neglecting the radiative decay we obtain the transfer rate K from 

K = (t)-'. (5.2) 
We have analysed K as a function of the stress D. In figure 8 ([0 0 11 stress) and figure 9 
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([l  101 stress) we show the results for two temperatures, 1.4 and 3.2 K. The stress 
dependences K(o)  for the two stress directions are complicated and are affected dif- 
ferently by temperature. Moreover, the decay of the exciton luminescence is exponential 
for temperatures above 2.2 K even for [ l  1 01 stress. At low stress values, Kis practically 
constant. There is an intermediate range where K decreases. At high stress values K is 
again nearly constant or shows a weak decrease with stress. In § 6 we will show that in the 
weak stress region the excitonic states are mixed states due to the spin-orbit interaction 
whereas at high stress they are purely orbital states q!P, q 9 Y  and 9". Only under the latter 
conditions may we assume that the transfer occurs between (I$', T+P') states for [0 0 11 
stress and between qz states for [l l o ]  stress. 

5.2. The temperature range 4 K S T S 8.5 K 

In this range the G traps, which have a depth of 27 cm-', are emptied into the exciton 
band by thermal activation. The decay of the G trap emission can be described by a 
temperature-dependent decay rate 

A( T )  = A( T = 0) + B exp( - hE/kB T )  (5 .3)  
where A(T = 0) = 16 cm-', AE = 37 t 3 cm-' and B = 10' s-'. No stress dependence 
of AE or B is observed. 

5.3. The temperature range 8.5 K S T s 12 K 

A rapid decrease of the intrinsic exciton lifetime with increasing temperature is observed. 
The dependence can be fitted assuming an activation process 

p ( T )  = p ( T =  8.5 K) + B exp( -AE/kB T )  (5.4) 
with AE = 40 5 cm-' and B = 3 x lo7 s-l, independent of stress. The risetime of the 
R trap emission is also reduced. Its temperature dependence can be described with 
identical parameters. On the other hand its intensity and its decay time do not vary 
with temperature for 8.5 K 6 T s 12 K. Therefore the observations indicate a higher 
activation level which makes rapid transfer possible. It is unlikely that this level belongs 
to the intrinsic 4T level scheme since the activation energy is independent of the 
stress splitting of this state. Similar activation processes have been observed in KMnF, 
(Riederer 1975) and MnF2 (Wilson et a1 1979) but have not been satisfactorily explained. 

' 5  

5.4. Temperatures above 12 K 

Above 12 K thermal depletion of the R traps is observed which is also described by 
equation (5.3) using AE = 150 ? 15 cm-l and B = 3 X 10" se'. Again the thermal acti- 
vation is stress-independent. AE exceeds the trap depth (123 cm-') by 27 ? 15 cm-'. 
This may be due to the fact that R traps are directly emptied into the higher level 40 cm-' 
above the intrinsic exciton level (see above). 

6. Discussion 

6.1. Transfer rates and level structure 

We have seen in § 5 that the measured decay rate of the intrinsic exciton luminescence 
is at least two orders of magnitude larger than the radiative decay rate. This was explained 
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by energy transfer to traps. Two kinds of traps, the G and R traps, can be directly 
observed by their luminescence. When uniaxial stress is applied a slowing down of the 
exciton luminescence decay and of the rise of trap luminescence is observed. This may 
have two reasons: 

(i) the transfer rate from a Mn2+ ion to a neighbouring trap is reduced, or 
(ii) the transfer rate between intrinsic Mn2+ ions is reduced. 
There are two observations which are not consistent with the first possibility. First, 

the trap depth is found to be independent of stress. Secondly, the parameter B in 
equation (5 .3 ) ,  which may give an estimate of the local transfer rate from a neighbouring 
Mn2+ ion to a G trap, is B = 10' s-', independent of stress. This is three orders of 
magnitude higher than a typicalexciton transfer rate K = lo4 SKI. K-'therefore describes 
the average diffusion time of an excitation to a trap, and a reduction of K must be caused 
by weaker transfer between intrinsic manganese ions. We have therefore excluded the 
first possibility and shall use the second process as a basis for the following interpretation. 

Next we want to discuss the correlation between the transfer rate and the level 
structure of the 4T1, state. Three orbital components combined with spin 9 lead to an 
overall degeneracy of 12 which is lifted by the antiferromagnetic exchange field, by spin- 
orbit coupling and by external stress. We have diagonalised the complete 12 X 12 matrix 
of the 4T1, substates given by Solomon (1972) and determined energies and eigenvectors 
as a function of stress. We obtained the following results (figure 10). 

-120 F 
w 

-140 
0 0 1  0 2  

Figure 10. Fine structure of Mn" 4T,, in RbMnF,. 
Results from diagonalisation of the complete per- 
turbation matrix. Left side, [0 0 11 stress; right 
side, [I 101 stress. Remember that at g =  

0.05 GPa the spins are oriented parallel to the 
stress field. Lower curves: energy of the lowest 
three sublevels relative to the unperturbated 
state. Upper curves: percentage of the z orbital 
within the lowest substate P ( z ) ,  

The exchange field splits the 4T1, state into four spin components separated by 
83 cm-'. While in the stress-free case the spins are parallel to a [1 1 11 direction, they 
align parallel to the stress axis when stress of more than 0.05 GPa is applied (Eastman 
1967). Spin-orbit coupling and stress do not mix the four spin components but only cause 
a splitting of each component into three sublevels. In order to interpret the experiments 
it is sufficient to consider only the lowest spin component since-in absorption-only 
these three sublevels of 4T1, are observed. The correlation between spin-orbit coupling 
and stress leads to a splitting pattern as shown in figure 10 (lower part). For 0 = 0 we see 
that the three sublevels are within 8 cm-'. With increasing stress the pattern becomes 
similar to that of figure 2. We have carried out absorption experiments and could verify 
the computed splitting patterns very well. 

Luminescence in RbMnF3 at liquid helium temperature can only be seen from the 
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lowest excited substate. Therefore we assume that an excited upper sublevel relaxes into 
the lowest before transfer occurs. A description of energy transfer using the model of 
9 3 is only possible if we meet the condition of pure orbital eigen-states. In the upper 
curves of figure 10 the calculated probability of the system to be in the q!P state is plotted 
versus stress. Without stress the system is in states determined by the spin-orbit coupling, 
and the probability of finding the system in one of the orbital states qL is f .  For high 
[l 1 01 stress the lowest level is the singlet state v*. A [0 0 11 stress of more than 0.05 GPa 
leaves a doublet structure with components separated by about 10 cm-l and consisting 
only of yx and ?,!P. Our calculations show that both these levels consist of qX and q Y  with 
equal probability. 

From a comparison of figures 8, 9 and 10 we conclude that the reduction of the 
transfer rate with stress is clearly related to demixing of spin-orbit states. The exper- 
imental results from figure 8 ([0 0 11 stress) show that a strong decrease of the transfer 
rate is observed until the stress has reached about 0.08 GPa. Then the transfer rate stays 
practically constant. Here the lowest sublevel consists of the orbital doublet (qx ,  yy). 
The increase of the transfer rate with increasing temperature between 1.4 and 3.2 K is 
independent of stress and therefore cannot be explained by thermally induced transfer 
to higher sublevels. 

The demixing is much weaker under [l 101 stress. The transfer rate reaches a 
constant low value at a stress of about 0.18 GPa, in agreement with the slow development 
of apure orbital z state (figure 10). Raising the temperature will allow thermal activation 
into the (?)Ix, ?)Y) levels. The mixing of the substates by temperature and demixing by 
[ l  101 stress are competing processes as is evident from figure 9. In the following 
discussions we will assume that a sufficiently high uniaxial stress is applied. This will 
leave us with a pure orbital doublet state (q", q!P) for [0 0 11 stress and a pure orbital 
singlet state q2 for [l 1 01 stress experiments. 

6.2. Energy transfer as a random-walk process 

As we have discussed in 0 2 the dominating transfer mechanism is incoherent. We 
therefore discuss now incoherent energy transfer between manganese ions. This requires 
that after each transfer step the phase coherence between Mn2+ ions is destroyed. It is 
at present not possible to decide whether this assumption is completely fulfilled. We will 
further restrict the transfer to nearest-neighbour Mn2+ ions placed on one magnetic FCC 
sublattice. Then we can apply the random-walk model described in 0 3.2. The walk is 
characterised by a hopping time zH. 

As the exact trap concentration p is not known we tested p = 1 ppm, 100 ppm and 
an unrealistically high concentration of 1%. In figure 11 (full curves) the results of the 
random-walk model for two-dimensional transfer are plotted as in figure 5 (full curves). 
In order to plot the computed decay curves versus time, a specific transfer time zH must 
be chosen. We have determined zH by fitting the experimental decay curves observed 
under sufficiently high [110] stress. We used the curves taken at U = 0.213 GPa and 
T = 1.4 K, where the orbital substates of 4T,, are completely demixed. The experimental 
points are also plotted in figure 11. With the hopping time tH found in this way and a 
fixed trap concentration p we computed a luminescence decay for the three-dimensional 
transfer via doublet states qx and q Y  (broken curves in figure 11). A comparison with 
experimental decay curves obtained with u[O 0 11 2 0.08 GPa (when the demixing of 
spin-orbitals by [0 0 11 stress is complete) show that both decay processes are well 
reproducedover one-and-a-half orders of magnitude of intensity. Table 2 summarises the 
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Figure 11. Comparison of the results of the random-walk model with experiments under 
[1 101 stress: (points) experimental exciton decay at high stress (U  = 0.21 GPa) and low 
temperature (1.4 K); (-) best fit of the ?D random walk (see figure 5 ,  full curves) to the 
experiments. Trap concentration arbitrarily chosen: (a) p = 1 ppm, ( b )  p = 100 ppm, (c) 
p = 1 % .  Hopping time tH derived from the fit (a) 6.4 X lO-"s. ( b )  8.6 X 1O-'s, (c) 
1.35 X s. (----) Survival rate CP, for 3D random walk using the samep and tH. 

relevant data and parameters obtained from the random-walk model and luminescence 
experiments. For a realistic trap concentration ofp = 100 ppm the transfer rate becomes 
t - l  = 8339 s-'. This agrees well with the experimental value K = 8500 s-l obtained at 
a[l 101 = 0.08 GPa. 

However, a careful analysis shows that after long times the observed luminescence 
decays slower than calculated. Using the unrealistic high trap concentration o fp  = 1% 
a better agreement can be obtained. There may be two reasons for this behaviour: 

(i) Random fields in the crystal form regions of exciton confinement and may inhibit 
the random walk of the excitation. 

Table 2. Transfer rates K under [00 I] stress. (a) Some experimental transfer rates K 
measured under [0 0 11 stress; remember that for u[O 0 11 3 0.08 GPa transfer occurs in the 
yfx and ~ ! J Y  substate. (b )  Transfer rates K for [0 0 11 stress predicted by the three-dimensional 
random-walk model for some values of trap concentrationp; the hopping time tH was taken 
from a best fit of a two-dimensional random walk to [I 101 stress experiments (see figure 
11). 

1.4 0.08 
1.4 0.20 
3.2 0.08 
3.2 0.20 

8500 
4600 

14000 
10100 

10-6 0.64 X IO-'' 11189 
10-5 0.75 x 10-9 9615 
10-4 0.86 X lo-* 8339 
10-3 1.07 x 10-7 7029 
10-2 1.35 x 5435 



Energy transfer between Jahn-Teller systems in RbMnF3 87 1 

Figure 12. Computer simulations of energy 
transfer as a function of local transfer anisotropy 
T,,/T,. Model FCC lattice with 403 points, trap 
concentration p = 1%. The transfer rate K was 
derived directly from the exponential 
(T,,/TT G 100)oraccordingtoequations(5.1) and 
(5.2). The broken horizontal line is the limiting 
value of the transfer rate for T,  = 0. 
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(ii) A coherent transfer could be possible for a time tC > tH. Then zc rather than zH 
is the ruling time for incoherent transfer. When the average decay time (t) is fixed a 
longer zc corresponds to higher trap concentrations. 

Which of the two reasons hold for the transfer process cannot be decided from our data. 
So far we have only considered pure two- and three-dimensional transfer. Our 

computer simulations have yielded transfer rates and decay behaviour at arbitrary 
anisotropy. For the general case of non-exponential decay we can calculate an average 
lifetime (t) and a transfer rate K = (t)-l from the simulation according to equation (5.1). 
The result is plotted in figure 12 as a function of the anisotropy Txy/Tz. It is interesting 
to note that there is an approximately logarithmic decrease of K with Tx,/Tz. Avariation 
of Txy/T, between 1 and 10 changes the transfer rate K only by 15%. A drastic change 
of the transfer properties is only seen when Txy/T, increases by more than two orders of 
magnitude. Then the transfer rate is reduced by nearly a factor of 3 and, furthermore, 
non-exponential decay is observed. This was also seen in the luminescence decay experi- 
ments when sufficiently high [ l  101 stress was applied. We therefore conclude that the 
computer simulations support our model of two-dimensional energy transfer induced 
by [l 101 stress. 

7. A microscopic model for the transfer 

In this section we give an estimate for the transfer matrix element I;,, (see equations 
(2.4), (2.5) and (2.12)) for the singlet v2 state between nearest-neighbour Mn2+ ions 
with parallel spin moments. In the context of transfer anisotropy we want to clarify how 
JLn, differs for non-equivalent neighbours n' (see figure 4). We use the product of 
electronic and vibronic wavefunctions for the ground state and for the excited state (see 
equations (2.15) and (2.18)) at the lattice point R,: 

with the electronic states A = 6A1, and 2 = 4Tf,. The equilibrium positions of the local 
vibrational modes described by x correspond to the relaxed environment when the 
central Mn2+ ion at R, is in the electronic lA) or 12) state, respectively. The transfer 
matrix element is then given by 

The operator J describing the Coulomb interaction between 3d5 electrons at different 
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manganese sites is 
5 10 

Here j = 1, . . . , 5  enumerates the electrons at R, and k = 6, . . . , 10 those at R,,. J acts 
only on the electronic part of the wavefunction. The transfer matrix element can be 
separated into an electronic part J,,. and a vibronic part 

Jnrt, = (2, Art, IJIAn zw ). 

We neglect a direct overlap of the vibrational wavefunctions at two different lattice 
sites. This seems to be reasonable considering the distances RMn-F = 2.15 A and 
RMn t-Mn = 6.0 8, and a decay of local distortionsproportional to R-3. Then thevibronic 
part exhibits no anisotropy because we have 

(x",xii~lXRx;4 = (XiIXR) * (xtlh;,) (7.5) 

(XilXP;) = (XP;,/Xi,). (7.6) 

and we can make use of the translational symmetry 

Inserting harmonic oscillator functions, the vibronic part of the matrix element is given 
by 

I ( X ; ~ X ; ) ~ ~  = e-' = 0.035 (7.7) 

with the Huang-Rhys factor S calculated with the data from table 1 

Here we see how the polaronic motion reduces the transfer matrix element. The 
electronic part of the matrix element In,,, has the form 

J,,,,, = 1 Z,* ( r l ,  . . . , r 5 ) A ~ ~ ( r 6 , .  . . , r l o )  

The multi-electron wavefunctions can be expressed as products of one-electron states 
which are base vectors of the irreducible representation of the cubic point group Oh 
(Solomon and McClure 1974). The ground state is simply given by 

(7.10) IA) = lt3e2) = - l g + q + c + @ + ~ + ) .  

The 4T1, state is approximately 

I4Tlg) = Jt4e1). 

Therefore the z state can be written as 

lz) = lt4e1, Z )  = - lg+q+c+c-@+).  

(7.11) 

(7.12) 
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A two-ion state like lAnZnt) can be derived from a common ground state IAA,,) by one- 
electron creation (c’) and annihilation ( c )  operators 

In order to calculate the matrix element of J we write the operator J as 
20 

J = $ (ij\JlkZ)cfc:c,c, 
i jkl=l  

(7.14) 

where i , j ,  k ,  1 enumerate all possible one-electron states at R, and R,,. If the overlap of 
single electron orbitals at different sites is neglected the matrix elements ofJconsist only 
of two-electron Coulomb and exchange integrals of the form 

JnnI =: C -  E 

x { P -  (r2 - R )  [ P -  (r2 - RI]*> (7.15) 

with R = R, - Rn’. E and are real functions given by 

E = i[(x2 - y2)/r2]f(r) f = (xy/r2>f(r>. (7.16) 

We use a Slater function to approximate the radial dependence of E and g (Griffith 1971) 

f ( r )  r2 e-+o (7.17) 

with a. = 0.28 A. Using equations (7.16) and (7.17) the radial dependence of the 
exchange term becomes exp(-2R/a0). This is a rapidly decreasing function of R.  At 
R = 6 A this term has practically vanished. 

We have calculated the relative values of the Coulomb term of equation (7.15) for 
non-equivalent neighbours R,,, . This term describes the interaction between two clouds 
of electronic charges at a distance of 6 A, each consisting of one electron in the E state 
and one in the P state. The two clouds have a very small overlap. Therefore they may be 
approximated by spheres of radius 2.75 A and we can perform a numerical integration of 
the Coulomb term. Then we obtain the following result: the Coulomb term, connecting 
nearest neighbours in the xy plane, is larger by a factor of 17.6 than the term connecting 
nearest neighbours with different z coordinates. The transfer rates contain the square 
of the Coulomb matrix elements, and therefore we find 

T,,/T, -- 310. (7.18) 

This result supports very well the suggestion of anisotropic transfer and shows that the 
transfer in the singlet state is practically two-dimensional. 

8. Summary and conclusions 

The effect of vibronic coupling on the energy transfer of 4T,g excitons in RbMnF3 was 
investigated. The electronic Mn2+ state couples with local a and e modes of the MnF, 
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octahedra. The T X e Jahn-Teller effect leads to a static distortion which can be 
oriented by uniaxial stress. 

The exciton luminescence was investigated by time-resolved spectroscopy. Its 
dynamics were determined by energy transfer to shallow traps. The traps were used as 
probes for the exciton transfer. The transfer rate was found to be reduced when uniaxial 
stress was applied. The most drastic effect was observed with [1 1 01 stress which, below 
T = 2.5 K, induced a very slow non-exponential decay. 

The general effect of uniaxial stress is a demixing of 4T1, orbitals. We have calculated 
this demixing by diagonalising the 12 X 12perturbation matrix of ‘TI, taking into account 
spin-orbit coupling, exchange field and stress. The analysis shows that sufficiently strong 
[1 1 01 stress selects a pure 4Tf, state as the initial state for the luminescence. 

Completely incoherent transfer was considered using a random-walk model. 
Computer simulations were performed to study the transfer for arbitrary anisotropy. 
Only if the transfer is completely confined to lattice planes can the experiments with 
[I 1 01 stress be reasonably well reproduced. These results lead us to the conclusion that 
transfer under sufficiently strong [ 1 1 01 stress is completely two-dimensional, whereas 
under [0 0 11 stress (when 4Tf, and 4T& are the initial states) the transfer is isotropic. 

In order to perform a microscopic analysis of the transfer rates we have calculated 
the transfer integrals for the 4Tf, state which are determined by Coulomb integrals using 
Slater functions. In fact we obtained an in-plane transfer rate which is 300 times larger 
than the off-plane rate. This strongly supports the proposed model of energy transfer. 

The study of transport mechanisms in systems with strong electron-lattice coupling 
becomes increasingly interesting. We have shown in this paper that for the cubic 
perovskite RbMnF3 the excitonic energy transfer is modified by the following polaronic 
effects: enhancement of localisation, reduction of coherence, and possibility of demixing 
of the electronic substates by uniaxial stress. 
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