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Classical class field theory tells us about the structure of the 

Galois groups of the abelian extensions of a global or local field. 

One obvious next step is to take a Galois extension K/k with Galois 

group G (to be thought of as given and known) and then to investigate 

the structure of the Galois groups of abelian extensions of K as 

G-modules. This has been done by several authors, mainly for tame 

extensions or p-extensions of local fields (see [10],[12],[3] and [13] 

for example and further literature) and for some infinite extensions 

of global fields, where the group algebra has some nice structure 

(Iwasawa theory). The aim of these notes is to show that one can get 

some results for arbitrary Galois groups by using the purely algebraic 

concept of class formations introduced by Tate. 

i. Relation modules. 

Given a presentation 

1 + R ÷ F ÷ G~ 1 
m m 

of a finite group G by a (discrete) free group F on m free generators, 
m 

the factor commutator group Rabm = Rm/[Rm'R m] becomes a finitely 

generated Z[G]-module via the conjugation in F . By Lyndon [19] and 
m 

Gruenberg [8]§2 we have 

1.1. PROPOSITION. a) There is an exact sequence of ~[G]-modules 

(I) 0 ÷ R ab + ~[G] m ÷ I(G) + 0 , 
m 

where I(G) is the augmentation ideal, defined by the exact sequence 

(2) 0 + I(G) ÷ Z[G] aug> ~ ÷ 0, aug( ~ aoo) = ~ a . 
o6G o~6G 
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b) 

c) 

% Rmab ~-- ~[G] m-I • ~ as ~[G]-module. 

+ E ÷ For a second presentation 1 ÷ R n n G ÷ 1 one has 

R a b  ~9 Z [ G ]  m T R ab ~9 Z [ G ]  n 
n m 

and therefore 

(3) R ab ~ R ab • Z [G] n-m (n > m) 
n,p m,p p -- ' 

R ab ®~ R ab (~p the ring of for every prime p, if we set m,p = Zp m 

integers in the field ~p of p-adic numbers). 

In particular the G-structure of R ab only depends on m; for R ab 
m,p m 

itself and minimal m this is still an open problem, see [8]. One has 

R ab ~ I(G) ®zI(G) for m = (G:I)-I, and R ab ~[G] m-I ~ Z for cyclic G 
m m 
(~,~,Zp and ~p are always equipped with the trivial G-action). If G 

is a p-group, R ab is just the factor commutator group of R in any m~p m 

÷ F +G ÷ i of G by a free pro-p-group on m free presentation 1 + R m m 

generators. If the order of G is prime to p, one has <p ~Zp[G]m-l~Zp. 

Tate has shown (see [16]) that R ab is a class formation module for 
m 

G, i.e. , 

(4) H i(U, Rab'm ) ~ H i-2 (U,~) 

for all subgroups U of G and all i 6Z (here and in the following we 

take the modified (Tate) cohomology groups), where the isomorphism is 

obtained by taking cupproduct with the restriction of a generating 

element of H2(G, R ab'm ) ~ Z/(G:I)Z. It turns out that R abm has to be 

regarded as a standard object with this property - all other class 

formation modules only differing by "projective kernels": 

1.2. THEOREM. Let G be a finite group, G a p-Sylow subgroup and M a 
p 

finitely generated ~. [G]-module with the property 
P 

(*) 

a) 

(5) 

for some m 6 IN 

H 1 (Gp, M) = 0 

H2(Gp, M) ~ ~p/(Gp: l)Zp 

H 2(G, M) ~ Zp/(G: l)Zp. 

There is an exact sequence 

0 ÷ X ÷ R ab ÷ M + 0 
m,p 

and some projective Zp[G]-module X. 
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b) If M is torsion free (as Zp-mOdule), the sequence (5) splits, so 

M @ X ~ R ab 
m,p 

c) There is an exact sequence 

(6) 0 ÷ M + M' + I (G) ÷ 0 
P 

with a cohomologically trivial Zp[G]-module M' and Ip(G) = Zp ® I(G). 

Proof. The proof of a) is nearly as in [13]I: Let 

0 ÷M+ E+G÷I 

be the group extension corresponding to a generating element of 

H2(G,M), and choose a homomorphism ~: F + E with dense image (m 
m 

suitable). This induces a surjection ~: R ab ÷ M, let X = ker ~. 
m,p 

From the long exact sequence of cohomology under G~ w we get H2(Gp,X) = 0 

= H3(Gp,X), so X is cohomologically trivial, i.e., projective, as X 

is torsion free. 

b) is clear (compare [13] 1.5), and M' is defined by the exact 

commutative diagram 

0 ---> X ---> 

Ii 
0 --~ X --~ 

I (G) = I (G) 
P P 

T 
~p[G] m --> g' 

T T 
R ab ---> M 
m,p 

--~ 0 

--> 0 , 

where the middle column is given by l.l.a). 

2. Cohomolo~ically trivia! Zp!G]-modules. 

We fix the following notations. For a finitely generated Z [G]- 
P 

module M, Tor(M) will denote the ~p-torsion submodule of M, 

M* = Hom(M,@ /Z ) is the Pontrjagin dual of M (with the operation 
-P 1 p 

(of) (m) = f(o- m)), and dG(M) is the minimal number of ~p[G]- 

generators for M. Tensor products now are taken over Zp, if not 

denoted otherwise. For a pro-finite group A (abelian or not) A(p) is 

the maximal pro-p-quotient. 

A Zp[G]-module P is projective iff it is torsion free and cohomo- 

logically trivial, and then determined by the structure of ~pOP as 

~p[G]-module by a theorem of Swan [23] 6.4. This generalizes to 
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2.1. THEOREM ([12] 1.2.). 

generated ~ [G]-modules 
P 

equivalent: 

For cohomologically trivial, finitely 

M and M' the following statements are 

i) M ~ M'. 

ii) Tor(M) ~ Tor(M') and ~p@ M ~ ~pO M'. 

Furthermore we have the following construction, which follows 

from [12] 1.8-1.10. 

2.2. LEMMA. Let N be a finite ~ [C~]-module. 
P 

a) There is a presentation (exact sequence) 

~p[G] ~ f--~ ~p[G] m -->N* --~ 0 

if and only if there is an exact sequence 

f+ 0 ÷ =p[G] m --> =piG] Z + M + 0 

for the cohomologically trivial ~ [G]-module M with Tor(M) ~ N and 
£-m P 

~p @ M ~ ~p [G] 

b) In the above statement, f+ can be chosen to be the transpose of f 

in the following sense: If f is given b w the matrix (~i4)3 with 

~ij 6 ~p[G], f+ is then given by the matrix (~.i), where + is the 

anti-involution of Zp[G] given by 

( [ a o) + = [ a ~-i 
~6G o6G o 

3. Applications to number fields. 

Let K/k be a finite Galois extension of local or global number 

fields with Galois group G (function fields can be treated similarly). 

Fix a prime p and let K be 

i) the maximal p-extension of K, if k is local, 

ii) the maximal p-extension of K unramified outside S, if k is global; 

here S is a finite set of non-archimedean primes of K closed under 

the action of G and containing all primes above p and all primes 

ramified in K/k. 

For every field k c _ L c _ K we set G L = GaI(K/L), and we want to 

consider the finitely generated Zp[G]-module ab G K • 

Notations: for any field L, ~L is the group of roots of unity in L, 

and ~n = {~ 6 U~I~n = i} for an algebraic closure ~ of L. 
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i) For local fields the only interesting case is where p equals the 

residue characteristic. The following theorem generalizes the results 

for p-groups due to Borevi6, K. Wingberg and the author (see [2],[3], 

[13] and [25]): 

3.1. THEOREM. Let k be of degree n over Qp. 

a) G is generated by n+2 elements, and there is an exact sequence 

ab ÷ ab + 0 
(7) 0 + Zp[G] + Rn+2, p G K . 

b) If K is regular (i.e., ~p ~ K), 

elements, and there is an isomorphism 

ab ~ Rab 
(8) GK n+l,p 

G is generated by n+l 

Proof. We only show a), because b) is similar, using the splitting 

of (7). As the reciprocity map induces an isomorphism between G ab 
-abKhas and the projective limit over the groups KX/K xpn for all n, ~K 

the property (*), and using the p-adic logarithm we get an isomorphism 

ab ~ ~p[G]n @ @p (9) ~p ® G K 

Let R be defined by the exact commutative diagram 

I (G) = I (G) 
P P 

1 T 
0 p[ ] M' ÷ 0 + Zp[G] + Z G n+2 ÷ 

a b  
0 ~ Zp [G] ~ R ÷ G K ÷ 0 

where the right column is given by 1.2.c) and the middle row exists by 

2.2., because M' is cohomologically trivial, Tor(M') ~ ~K(p) is 

cyclic and ~p ~ M' ~ ~p[G] n+l by (9). If we can show that G is 

generated by n+2 elements we are done, because then R ~ ab by , Rn+2, p 
applying Schanuel's lemma to the middle column and l.l.a). 

For this we may assume that the ramification group of G is 

abelian, by Burnside's theorem on p-groups. If L is the fixed field 

of the ramification group, G is then a quotient of the middle group in 

the extension 

(I0) 1 ÷~ ÷ Gk/[GL,G L] ÷ G ÷ i, 



114 

where G = Gal(L/k) is generated by 2 elements. Applying the above to 

L instead of K we get a surjection 

~2,p (~) ab ~: R + G L , 

which induces an isomorphism in cohomology. As H2(G,G~ b) is 

generated by the element x ! belonging to (i0) (proposition of Weil- 
2 -- ab 

Safarevic) and H (G,Rn+ 2) by x 0 belonging to 

(ll) ab G 1 
1 + Rn+ 2 ÷ Fn+2/[Rn+2,Rn+ 2] ÷ ÷ 

(Tate, see [16]13.), after possibly multiplying ~ by a unit in Zp, 

we may assume that the image of_ x 0 in H 2(G,Rn+2,P)- ab is mapped to x 1 

under the map induced by 3- This means ([l]p. 179) there exists a 

lifting 

• : Fn+2/[Rn+2/Rn+ 2] ÷ Gk/[GL,G L] 

that induces ~ and therefore has dense image. So Gk/[GL,G L] is 

(topologically) generated by n+2 elements. 

3.2. COROLLARY. The absolute Galois group of a ~adic number field 

k is generated by n+2 elements, n = [k:~p], and this number is 

minimal. 

if K = k(~p) and G k was generated by n+l elements, G~ b Indeed, 

would be generated by [K:k]+l elements as Z -module (using (7) and 
P 

the rank of R ab ) which is not true. 3.2 was shown in [15]1.4.d) 
n+l ' 

for pp c k. 

ii) In the case of a global number field we assume that k is totally 

imaginary for p = 2 and fix the following notations. 

r I and r 2 are the numbers of the real and complex places of k, 
! 

respectively, and r I ~ r I is the cardinality of the set S~ of the 

real places of k which ramify in K/k. S is the set of primes above 
p 

p in k, and for any set T of primes in k and any extension L/k we let 

T(L) be the set of primes in L lying above primes in T. Finally, L 

denotes the completion of L with respect to the prime ~ of L, and 

d(H) is the minimal number of generators for a finitely generated 

profinite group H. 

If S~ = ~ and hence r L = 0 (e.g., for K/k a p-extension), all 

statements are remarkably simplified, and we have a complete analogy 

with the local case. 
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3.3. THEORF~. Let k be a finite extension of ~. If Leopoldt's 

ab 
conjecture with respect to p is true for K ([6] p. 274), G K has 

the property (*), and the following holds. 

a) If d(G k) _< d, there is an exact sequence 

(12) 0 + X ÷ R ab ab ÷ 0 d,p + GK 

with a projective Z [G]-module X, whose structure is defined by the 

isomorphism 

(13) X ~)Z [G] r~ ~ Y @ Z [G~ -r1-1 , 
p S '  p 

is the free Zp-module with basis S~(K) and the natural where YS~ 

(left) action of G. 

ab , ' v b) One has dG(Tor(G K ) ) < d(Gk)-r2-l-rl+dG(_S . ) and conversely 

< max(d(G)'dG(T°r(sab)*)+K +~+ .... d(G k) r 2 ± rl-r I) if v , has r E free 
-- t - So ° 

~.p [G] -s umman d s . 

c) If G ab K is torsion free, the sequence (12) is splitting, and there 

is an isomorphism 

ab ~ Z [G] d-r2-1 ~ Z s, @ R ab (14) GK p ~ d,p ' 

where ZS~ 

(15) 

is defined by the property 

YS~ ~ ZS~ ~ Zp [G]r{ 

ab 
d) If G K is torsion free and ~p c K, G is generated by 

r2+l+r{-r ~ elements (and so is G k by c)). So for S~ = ~ we then 

get an isomorphism 

ab ~ Rab 
(16) G K r2+l,p 

3.4. Remarks. a) By the existence of r2+l linear independent Zp- 

extensions over k one has alg~ays d ~ r2+l in (13). X is well defined 

by the Krull-Schmidt theorem for Zp[G]-modules, in particular 

(17) X ~ YS" ~ Zp [G]d-r2-l-r{ 

! 

for d - r 2 - 1 - r I > 0 and 
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X ~ Z [G] d-r2-1 
P 

for e' = ~. 

b) Choosing one decomposition group Gp c G for every prime 

the module YS~ can be described as 

p 6 S', 

(18) YS' = • Ind~ (Zp), 
p6S~ p 

where Ind~ means induction from G to G. As well 
p P 

(19) ZS. p6@S. Ind Gp (~p(-l)), 

where Zp(-I) is the module ~p, on which the non-trivial element of 

Gp acts by multiplication with -i. For p ~ 2 one has Zp[G ] = 

Zp~p(-l), which shows (15) (recall that S~ = ~ for p = 2 by 

assumption). 

Proof of 3.3. As S contains S and k is totally imaginary for 
P 

p = 2, we have Cdp(G k) < 2 (see [4] 2.11), and 

(20) H 2(GK, ~p/Zp) = 0 , 

if and only if the Leopoldt conjecture is true for K and p (using the 

same arguments as in [9]4.4). In this case, Cdp(G k) ! 2 implies 

(21) Hi(GL,~p/~p) = 0 for all k ~ L ~ K 

not only for i > 3 but also for i = 2, using (20) and the surjectivity 

of the corestriction, see [22]I 3.3. Using the spectral sequence 

(22) Hi(G(K/L), HJ(GK,~p/Zp)) ------> Hi+J(GL,~p/Zp) 

ab has the property (*) one shows as in [16], App., or [9] 2.3, that G K 

and H 2 ab (G,G K ) is generated by the element belonging to 

ab Gk/[GK,G K] ÷ G ÷ 0 0 ÷ G K ÷ 

Proceeding as in the proof of 1.2.a), we get an exact sequence 

(23) 0 + X + R ab ÷ ab + d,p GK 0 
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with projective X, if Gk/[GK,GK] is generated by d elements. 

On the other hand, class field theory gives us an exact sequence 

UK p ab ClK(P) ÷ 0, (24) UF®ZZ p + H (p) ÷ G K ÷ 
• p6S(K) 

where U K (resp. UKp) denotes the group of units in K (resp. Kp) and 

C~ is the class group of K. 

If the Leopoldt conjecture is true for K and p, the first map in 

_ G K • 
(24) is injective and we may compute ~p ® ab By Dirichlet's 

theorem ~ @ ~®U K is isomorphic to the ~-vector space with all 

archimedean places of K as a basis and the natural permutation action 

of G on this basis. Therefore 

(25) (~p (~ (~p®Z UK ~ "~'p®Ys' @ (~p [G]r2+rl-r[ 

On the other hand, by the local theory one gets 

(26) ~p ® ( H UKp(P)) ~ ~p[G] n = ~ [G] r1+2r2 
p6S(K) P ' 

with n = [k:~] = [ [kp: ~p]. By (24) we calculate 
p6S 

P 
(27) ~p®G~ b ~ ~p®Ys~ ~ ~p [G]r2+rl-r~ ~ ~p [G]r1+2rz~ ~p' 

while (23) and l.l.b) imply 

(28) ~p®G~ b @ ~p®X ~ ~p®Rd, pab ~ ~p[G]d-i @ ~p. 

Combining (27) and (28) we get 

~p ® (X @ Zp[G] r[) ~ ~p ® (Ys~ ~ -[G]d-r2-1) , 

P 

which implies (13) by Swan's theorem. 

To show the first part of b), we apply the functor 

M ~-~ M + = Hom(M,Zp) to (12) and get the exact sequence 

_ab.+ (Rab .+ X + ab , 0 + '~u K ) ÷ d,p~ + ÷ Tor(G K ) ÷ 0, 

1 because of the canonical isomorphism Extzp (M,~.p) ~ Tor(M)*. As 
dG(M~p[G]) = dG(M)+I for a finitely generated Zp[G]-module, see 

[8] 5.8, we get 
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ab ,) 
d G(TOr(G K ) ! d G (x+) = d G(YS~ + ) + d - r 2 1 - r 1 

by (13) and the isomorphism Zp[G] + ~ Zp[G] , which also implies 

dG(P +) = dG(P) fo r  p r o j e c t i v e  P. 

For the second part of b) one proceeds as in the proof of 3.1. 
ab , 

(where we had dG(TOr(G K ) ) = 1 and d(G) ! n+2), by considering 

ab ~ ~ ~ • Z [G]rl and c) is clear. GK ~ YS; for YS~ YS~ p ' 

ab For d) we use the fact that H2(GK,Z/pZ) = 0 for torsion free G K 
(which follows from (20) and the cohomology sequence for 

P 
0 + Z/p= ÷ ~p/=p ÷ ~p/Zp + 0). If K contains a primitive p-th root 

of unity, this is only possible, if K has only one prime ~0 above p, 

see [4] 3.3. In particular, G is equal to the decomposition group for 

P0' and we may use the same arguments as in the local case (considering 
ab 

again G K • YS~). 

3.5. COROLLARY. If K/k is a p-extension (and Leopoldt's conjecture 

is true for K and p), let d = dim Hl(Gk)and r = dim H2(Gk ) be the 

numbers of generators and relations of the pro-p-group Gk, respectively. 

r = d-r2-1 = ds(Tor(G~b) *)~ = p-rank of Tor(G~b),- and there Then is 

an exact sequence 

(29) 0 ÷ Zp [G]r + Rabd,p ÷ GKab ÷ 0 

Proof. The equality l-d+r = X(Gk ) = -r 2 was shown by Tate [24], 

H2(G_,~ /Z ) = 0 implies H2(Gk )* ~ {x 6 G~blpx = 0}, see [5] 5 6. 
K ~p p " ' 

and HZ(GK,~p/~ p) = 0 implies (~Kb) s ~ G~ b, see[9] 2.3. Finally, 

for M a finite ~ [G]-module and G a p-group, one has dG(M*) = p-rank 

of M*/Ip(G)M* ~ (M~) *. 

3.6. Examples and remarks, a) The numbers d and r in 3.5. have been 

studied extensively by Koch in [17] . If s, resp. s', denotes the 

cardinality of S, resp. the subset S' = {p6 S]~p c k }, one has 

s' < r < s' + c + r I + r 2 - 1 for ~p ~ k, 
(3o) - - P 

- ~p r = s + Cp 1 for c k, 

where Cp is the p-rank of the S-class group of k (quotient of C1 k 

by the classes of the primes in S), and in both cases r = s'-i for 

large S. 

b) If K is a p-extension of k = ~ (p ~ 2) and Leopoldt's conjecture 
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is true for K and p (e.g., K abelian), there is an exact sequence 

s' ab ÷ 0, 
(31) 0 + Zp[G] ÷ Rs,+l,p ÷ G K 

with s' as in a) (use (30)I 

c) If k = ~(/~) is imaginary quadratic and p > 5 does not divide 

the class number of k, then for S = Sp the group G k = Gk,Sp is free 

on two generators by (30). So for any p-extension K of k which is 

unramified outside p the Leopoldt conjecture is true for K and p (by 

(20)) and there is an isomorphism 

ab ~ Rab 
GK - 2,p 

The same is true for p = 3 if the localizations above ~3 do not 

contain ~3" 

4. The special case of Z -extensions. 
P 

Let K/k, G = GaI(K/k),S,K,G L = Gal(K/L) and the other notations 

be as in the beginning of §3. If k is a global field, assume that 

Leopoldt's conjecture is true for K and p, and that k is totally 

imaginary for p = 2. 

4.1. THEOREM. Let Gp be a p-Sylow group of G and Kp be the fixed 

field of G . If G is cyclic, the following assertions are equivalen~ 
P P 

i) G ab ~ M'@R with M' cohomologically trivial and R torsion free. 

ii) The extension K/Kp is embeddable in a Zp-eXtension. 

Proof. In a decomposition i), the ~ [G]-module R has the property 
P 

(*), so as G -module R ~ Z @ P with P projective, as follows from 

P P ab ~ Z induces an isomorphism in 1.2.b) and (3). The projection G K P 

the cohomology under Gp, so there is a commutative diagram 

(32) 

ab 

÷ G ÷ 1 1 ÷ p ÷ P P 

which shows ii). 

On the other hand, if there is a diagram (32), we can solve the 

embedding problem 
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(33) 
R ab ~///i k 

1 ÷ ÷ E + ~ ÷ 
m,p 

(i.e., the dotted arrow making the diagram commutative exists), where 

E corresponds to an element o ~ H2(G,R ab ) which under the restriction 
_m,p 

map goes to that element of H (G ,RaP ), which corresponds to the p 1~t,p 
lower sequence in (32) via some Gp-iSomorphism Rabm,p ~ =p~p[Gp ]m-I 

(G generated by m elements). Indeed, the solvability may be checked 

on G by a theorem of Hoechsmann, and there it is solvable by 
P 

assumption. (In fact one has to look at the induced problems with 

kernel _ab - r Rab for all r to have finite modules and then use the 
~m,p/p m,p 

fact that G k is finitely generated). 

ab Rab which induces an isomorphism in We get a map G K ÷ m,p' 

cohomology (because it does in dimensions i = 1,2,3). Adding a 

suitable map = [G] r + R ab , we get a surjective map 
p m,p 

ab 8 Zp[G]r.__~Rab 
GK m,p ' 

whose kernel Q must be cohomologieally trivial. Therefore the 

corresponding exact sequence splits, as R ab is torsion free, so 
m,p 

Rabm,p ~ Q ~ GKab ~ Zp[G]r , 

which shows i) by the Krull-Schmidt theorem. 

4.2. Remark. If G has d generators, d > l, consider the statements 
P 

ii)' K/Kp can be embedded in a Fd-extension, Fd the free pro-p-group 

on d generators. 

iii) The embedding problem 

G K 

Fd/[Rd,R d]^ + G ÷ (34) 1 ÷ R d ÷ P 1 

is solvable. 

Then i) <~--> iii) ~ ii)', and iii) > ii)' for local fields by 

a result of Lur'e [18], compare [14] for the case of p-groups. 

By 1.2.b) and 2.1. the modules M' and R in i) are determined by 
ab Tor(M') = Tor(G K ), ~p®M' and ~pSR. But ~p®G~ b ~ _ is known, and M' and 

R are uniquely defined up to projectives, so for (p-Sylow groups 
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• f ab embeddable in) Z -extenszons the ~ [G]-structure o_ G_ ±s completely 
P ab P ~ 

determined by Tor(G K ). We illustrate this first by completely 

determining the structure in the local case. 

ab is For this we also allow K/k to be infinite, in which case G k 

a module over the completed group ring ~p[iG]] = l~m Zp[G/U], where 

U runs over all open normal subgroups of G. The relation module for 

G may then be described by R ab = R ab (G) = l~m R ab (G/U) startina 
m,p m,p m,p " - 

from a homomorphism F m ÷ G with dense image, which induces exact 

sequences 1 ÷ R (U) ÷ F ÷ G/U ÷ 1 for all U. Another description 
~ m 

is R ab (G) = ®~ Zp, where 1 ÷ R ÷ F + G ÷ 1 is a presentation 
m,p m m 

by a free profinite group Fm on m generators. 

4.3. THEOREM. Let k be of degree n over ~p and K/k be a Galois 

extension such that K/Kp is a Zp-eXtension or embeddable in a 

Xp-eXtension, where Kp is the fixed field of a p-Sylow group of ~. 

a) G has two generators. 

b) If K/Kp is cyclotomic and of finite degree, 

(35) GKab ~ ~K(p) • = [G~ n P S  ~p. 

c) If K/Kp is cyclotomic and of infinite degree, 

(36) GK ab ~ Zp(1) 6 • Zp~G ~n , 

where Zp(1)6is the Tate module of ~K(p) (Zp(1) 

~p c_ K, = 0 for ~p ~ K). 

d) If K/Kp is not cyclotomic, 

ab ~ Z ~G ~ ~ ~[' ~ R ab @ Zp~G~ n-I (37) GK p 2,p ' 

6 
= lim ~pr for 

with M' given by the exact sequence 

2 
(38) 0 ÷ Zp~G~ ÷ ~p~G~ ÷ M' ÷ 0 

1 ÷ (x-g, l+(q-l)l), 

where: x generates the p-Sylow group, q is the order of ~K(p), 

g 6Zp with ~x = ~g for all ~ 6 ~K(p), and ~ is the idempotent of 

Zp~Go~ which belongs to the action on ~K(p); here G O is a maximal 

p'-subgroup (i.e., with order prime to p). 

Proof. Let L 0 (resp. L I) be the fixed field of the inertia (resp. 

ramification) group and ~: Gal(Ll/k) +(~p/pSZp~ , 0 ! s _< ~, be the 
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character of the operation on Gal(K/LI). Then Gal(Ll/k) has two 

generators o,T, where T generates GaI(LI/L 0) and ~ can be chosen such 

that e(a) generates the image of e. If T r generates Ker ~ D <T> , G 

is generated by xT r and ~ (where ~ and T are suitable liftings in G), 

because the order of T is prime to p and xY r = Trx. 

If L p is the maximal p-extension of k in L o, the order of 
pO 

GaI(LI/Lo) is prime to p, and G O can be chosen as the image of a 

section of GaI(K/L~)--~ GaI(LI/L~). 

By taking limits, c) follows from b), and in b) we may assume G 

to be finite (by a compactness argument we may take compatible 

isomorphisms (35), for which the transition maps on ~ are just 
P 

multiplication with the group index). Now ~K(p) is cohomologically 

trivial for cyclotomic K/Kp, and ~p is a module with the property 

(*) for G, because the p-Sylow group maps isomorphically onto the 

ab ~ ~K(p ) @ Z @ P with projective P maximal p-quotient. Therefore G K p , 

which must be free by Swan's theorem. 

For d) we may again restrict to finite groups and then only have 

to check that M' is the cohomologically trivial module with 

ab and ~ ~M' = ~p[G]. By 2.2. we only need Tor(t~') = ~K(p) = Tor G K 

to show that 

is exact. 

Zp[G] 2 + Zp[G] + ~K(p) * + 0 

-i 
(i,0) ~ x -g, 

, 1 ~ generating element, 
(0,i) ~ l+(q-l)l + 

This is easy, using the fact that x and G o generate G. 

4.4. Remarks. a) If go = (Go:l) is finite and ~: Go+(Z/pZ) x c Z × 
-- p 

is the character describing the operation on ~K(p), one has 

1 = n -I ~B(p)-ip where the sum runs over all p6 G . For infinite 
o ' o 

G one takes the limit of these elements for finite quotients. 
o 

b) The case G = 1 has been studied by Iwasawa in [ii] and the split 
o 

case (i.e., G is the product of Zp and Go) by Dummit in [7]. They also 
ab n 

get b) and c) but instead of d) an exact sequence 0 ÷G ÷7. [G~ ÷UT.(p)÷0 
K P ab 

which cannot exist in the non-split case, because then ~p ®G K is 

not free. 

c) For n > 2 one may cancel one =p~G~ in (37) and so get an explicit 
R a b  formula for G Kab. I f  t h e  g r o u p  G i s  g i v e n ,  i t  i s  e a s y  t o  d e t e r m i n e  "2 ,p  

and a free summand of M' • R ab for n = I. For example, in the split 
2,p 

case Rab2,p =~ ~p[G~ • Zp for [K:%] < ~ and ~,abp ~ Zp[G~ for [K:%] = ~. 
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For global fields 4.1. immediately implies 

4.5. PROPOSITION. If the p-Sylow subextension of K/k is embeddable 

in a Z -extension and K is a totally real number field, 
P 

ab ~ Tor(G~b) S Zp, (39) G K = 

and Tor(G~ b) is cohomologically trivial. 

Now let k be an arbitrary finite extension of ~ and K = U K be 
n n 

the cyclotomic F-extension, K n = k(~ n+l ) and F = Gal(K/k). Let 
P 

F n = GaI(K/K n) and assume that Leopoldt's conjecture with respect to p 

is true for all K (e.g. k abelian). We want to relate the Zp[[F~- 

module X 1 Ga b n = ~K (usually considered for S = Sp, i.e., X 1 = Gal(M/k), 

where M is the maximal abelian p-extension of K unramified outside p) 

and X 3 = GaI(L'/K), where L' is the maximal abelian p-extension of K, 

which is unramified and in which every prime splits completely. 

By Tate's duality theorem we get an exact sequence 

(40) 0 + ~K (p) ÷ H ~K (P) ~ T°r(GK b) + RI(Kn) ÷ 0 
n p6S(K n) n,~ n 

where RI(K n) is the kernel of the map 

(41) HI(GK '~K (p) ÷ ~ HI( ' ~K (P)) 
n p6S(K n) GKn,p n,p 

induced by the restriction maps (compare [2112.5.ii), H2(GK,~p/Zp) = 0 

implies H2(GK,~p) ~ Tor(G~b) *, ~ is then given by the reciprocity map). 

By taking limits we get an exact sequence 

ab 
(42) 0 +~K(p) ÷ p6Se (K) ZKp (p) ÷ l~n T°r(GKn ) ÷ Hau(X3'~K(P)) ÷ 0, 

and, by dualizing and setting X 4 = (lim Tor(G~b)) * 
n 

taken via the transfer maps), the exact sequence 

(the limit being 

(43) 0 + X3(-I) + X 4 ÷ n Z (i) ÷ Zp(1) ÷ 0, 
p6S (K) P 

where M(n) denotes the n-th Tate twist of a Zp[F~-module M (as in [6]). 

Let A = Gal(Ko/k) , d = (A::I), and e i be the idempotent in ~p[A] 

belonging to the i-th power of the cyclotomic character, 0 < i < d-l. 
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We then may split XI(X3,...) into the direct sum of the eiX 1 (eiX3,---) 

and consider these as modules under A = Zp~Fo~- 

Suppose now that el_iX 3 is known (and so also (el_iX3) (-i) = 

e i(X3(-l))) and suppose further that we can calculate e_iX 4 from 

(43) (e.g., if S(K) contains just one prime). Then we can get eiX 1 as 

follows: Choose a minimal presentation 

£i i~s ) mi 
(44) A A ÷ e_iX 4 ÷ 0, 

and take the transpose as in 2.2. to get an exact sequence 

m i (~s~) ~. 
(45) 0 ÷ A A i ÷ M. ÷ 0, 

1 

(M i defined by exactness). Then there is an isomorphism 

d~ 

(46) eiX 1 ~ M i ~ A i , 

where 

I r I + r 2 for d even and i odd, 

(47) di = mi - £i + r 2 else. 

Indeed, we have (e_iX4) F = (e i lim Tor(G~b)Fm) * = (eiTor(G~b))* for 
m n n m 

the module of coinvariants under F , using the fact that the transfer 
m 

ab ~ Tor(GK ab ) Fn if H2(GK ,~p/~p) =0. i n d u c e s  an i s o m o r p h i s m  Tor(GKn ) n + l  n+ l  

So by 2 . 2 .  (Mi) F i s  o o h o m o l o g i c a l l y  t r i v i a l  w i t h  t o r s i o n  module  
m 

isomorphic to eiTor(GKab). The same is true for (eiXl) F , as follows 
m m 

from the spectral sequence 

(48) H i(Fm,Hj (GK,~p/Z p)) ~ H i+j (GKm,~p/Zp) - 

Therefore by 2.1. these modules only differ by projective Zp[Fo/Fn]- 

modules, whose structure is easily calculated knowing the structure 

of e.~ ®G~ b. Passing to the limit we obtain (46). 
i p ~m 
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