
O n the ^-adic cohomology of varieties over number fields 
and its Galo is cohomology 
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If X is a smooth, projective variety over a number field fc, then the 
absolute Galois group Gk = Gal(fc/fc) acts on the etale cohomology groups 
Hl(X, Qi/1e{n)), where X = X Xfc Jc for an algebraic closure Jc of k. In 
this paper I study some properties of these Gk-modules; in particular, I am 
interested in the corank of the Galois cohomology groups 

Hv(Gk, Hi(XtQtfltin))). 

It turns out that this question reduces to the situation where Gk is re
placed by its decomposition groups Gp. or its maximal 5-ramified quotient 
Gs for some suitable (finite) set S of places of fe. In the last case, there are 
only very few results, while in the local case the situation is somewhat bet
ter, especially for the places p of good reduction, but the general question 
is unsolved here, too. The aim of this article is to collect the known results 
and to discuss several conjectures — some well-known and some new — 
which would imply that the groups in question behave rather nicely 

The basic conjecture, Conjecture 1, is that H2(Gs, Hl(X, Q^/Z^(n))) is 
finite for i; + 1 < n or i -f 1 > 2n. Since the Euler-Poincare characteristic 
of Gs is well-known, this amounts to predicting a very simple number for 
the corank of H1 {Gs, H{{X, Q*/Z*(n))) in this range. 

In §2 I show how this conjecture for i + 1 < n is motivated by Conjec
ture 2, which concerns Chern class maps from algebraic K-theory to £-adic 
cohomology and can be seen as a certain £-adic analogue of a part of Beilin-
son's conjectures. In fact, by results of Thomason one can draw a direct 
connection to Beilinson's conjectures. 

Another motivation for Conjecture 1 is that its function field analogue can 
be proved by using Deligne's proof of the Weil conjectures, see §4. Behind 
many results and conjectures of this paper stands the observation that the 
Weil conjectures and the theory of weights can also be used heavily in the 
number field case, and the hope that there might be an even closer analogy 
with the function field case than visible today As an example for the first 



statement, a vanishing theorem of Serre implies that the localization ma]) 
of continuous cohomology 

H1(Gk^M) - l[H\Gp,M) 
p 

is injective for a torsion-free Z^-module Af, which is a pure GVmodule of 
weight 7^ 0. 

This reduces the determination of corank H2(Gk, H*(X,Qe/Ze(n))) to a 
purely local question, and leads to Conjecture 3 (sharpened form), saying 
that 

i T ( X , Q £ ( m ) ) G > 

vanishes except possibly for 0 < m < |, see §5. For p \ I and good reduc
tion, this is known, again by the Weil conjectures. For p \ £ and bad reduc
tion this would follow from a well-known conjecture about the monodromy 
nitration, and for p | £ and good reduction it follows from the so-called crys
talline conjecture, which has partially been proved by Fontaine-Messing and 
Faltings. I explain why a naive form of the monodromy filtration cannot 
exist for p \ £ (this was observed by Mazur, Tate, and Teitelbaum several 
years ago), and I discuss what the correct analogue should be, proposing 
some kind of crystalline conjecture for the case of bad reduction. 

Ifone tries to investigate whether H2(Gs-> Hl(X, Q^/Z^(n))) at least is 
finite for almost all n £ Z, one is immediately led to the question of whether 
a certain Iwasawa module Z is a A-torsion module, see §3. This would 
follow from Iwasawa's conjecture on the vanishing of the //-invariant, but 
is unproved yet. I show that the A-rank of Z has to be added to Soule1S 
expression for the corank of Hl(X, Q^/Z^(n)) (see [Sou4, Theorem 1]), 
whose determination is closely related to our subject. In fact, this paper 
can be seen as a successor of [Sou4], trying to investigate more closely the 
mentioned coranks and to predict precisely the range where one expects a 
simple expression for them. 

In §6 I briefly discuss the "unstable range" n < i -f 1 < 2n, and in §7 I 
treat the case of abelian varieties, where one can at least prove the local 
conjectures. 

This paper was initiated by the investigation of ^-adic Chern classes 
in [J3] and was influenced much by the work and ideas of Beilinson and De-
ligne, and by the study of Soule's paper [Sou4]. I would like to thank 
W. Raskind, J . M . Fontaine, Wr. Messing, and especially K. Wingberg, 



P. Schneider and K. Kato for valuable discussions. Finally I thank the 
D F G and the Mathematical Sciences Research Institute, Berkeley, for fi
nancial support and hospitality during part of this work. 

1. T h e basic conjecture. 

The following notations will be valid for the whole paper: 
k is a number field with algebraic closure k, 
Gk = Gal(k/k) is the absolute Galois group of fc, 
Gp C Gk or Gv C Gk is a decomposition group for the prime p or the 

place v of k (well defined up to conjugacy), 
X is a smooth, projective variety of pure dimension d over fc, 
£ is a prime, 
5 is a finite set of places of /c, containing all places above oo and I, and 

all primes where X has bad reduction, 
Gs = Gsl(ksfk) is the Galois group over k of the maximal 5-ramified 

(= unramified outside of 5) extension ks of k. 

C O N J E C T U R E 1. Let X = X xk k. Then 

. _ a) i -f 1 < n, or 
b) i + 1 > 2n. 

R E M A R K 1: Here iT (X ,Q^(n) ) = Hi(X,Ze(n)) <g>z, is etale cohomol
ogy, and it follows from the smooth and proper base change theorem that 
the action of Gk on HZ(X, Zi(n)) = lim^_ HZ(X, Z/£r(n)) is unramified out
side 5, i.e., factors through Gs- The sheaves Z/£r(n) are defined as usual 
by Z/£r(n) — fi£r®n, where fi£r is the sheaf of ^ r - t h roots of unity [ M i l , 
p. 163]. The corresponding Galois modules are denoted by the same sym
bols, and there is a canonical isomorphism of Gjt-modules Hl(X, Z(_(n)) = 
HZ(A', Zf)(n), where the Tate twist M(n) of a Z^-Gfc-module is defined by 
M(n) = M ®Zt Z£(n), with Ze(n) = I i m v Z/£r(n). The Gs-cohomology is 
taken via continuous cochains, and since Hl(X, Zi(n)) is finitely generated 
as a Z^-module, we have 

( G s , Hi{X, Q£(n))) = Hv{Gs, H\X, Z£(n))) ® Q,, 

compare [ J l , 5.15.c]. Throughout the paper we consider profinite groups G 
and topological G-modules M\ the cohomology will always be the continu
ous one. If M is discrete (e.g., for Hl(X ,Q£/Ze(n)) = Iim f f #*(X, Z/£r(n)) ^ 



Hl(X,Qi/Ze)(n)), this is the usual cohomology, described in [Sel]. Note 
that we write Q^/Z^n) for (Qt/Zi)(n). We shall use the following basic-
facts which follow from [Ta3, §2]: if M = I i m v Af r for a projective system 
(Mr) of finite Z^-G-modules, then 

(1) Hl(G,M) = I i m f l r l ( C M r ) . 
T 

This may be false for Hu, v > 1, but if G satisfies the property 

(Ft) Hu (Ct A) is finite for every finite Z r G-module A, 

then we have HU(G,M) = Iimr Hu(CiMr) for all v. Moreover, if G 
satisfies (Ff) and M is a finitely generated Z^-module, then Hu(CM) is 
finitely generated over Zt and the canonical map 

(2) H"(G, Af) <g> QeZIe - J P ( G , M <g) Qefli) 

is an isogeny, i.e., has finite kernel and cokernel. Similarly, if N is a 
cofinitely generated Z^-torsion G-module (i.e., the Pontrjagin dual A r* is 
a finitely generated Z^-module), then Hv'(G, N) is cofinitely generated and 
the canonical map 

(3) Hu(G, TeN) -> TiHu (G, N) 

is an isogeny, where T(A = I i m v A^ is the Tate module of an abelian group 
A. Again this may be false without (Fe). 

We fix some more notation: If A is an abelian group and r is a natural 
number, let A/r — AjrA and Ar = {a G A \ ra = O}. If a group G 
acts on A, let AG and AQ be the fixed and cofixed module (module of 
coinvariants), respectively. For an primary torsion group A, let dim A be 
the corank of its maximal ^-divisible subgroup £ — Div A; that is, dim .4 = 
dimp,(£ — Div .4)^, where F^r is the field with tr elements. 

L E M M A 1. The following statements are equivalent: 

a) Hi{Gs,Hi(X,qt(n))) = 0. 
b) H2{GS, Hl(X, lt(n))) is finite. 
c) H2(Gs,H'(X,Qe/le(n)) is finite. 
d) (if I ^ 2, or ifk is totally imaginary) H2(GS, H'(X. QefJ-e(n)) = 0. 

where Hi(X,Qefle(Ti)) = I - DivH'(X, Qe/le(n)). 



P R O O F : It follows from class field theory that Gs satisfies (Ft) (cf. [Mi2 , 
I 4.15]). Hence the groups in b) and c) are of finite and cofinite type, 
respectively, and the maps 

H"•(Gs, H'(X, Ze(n))) <g> Qe/Ze - H"(GS, H{(X ,qe/Ze(n)) 

induced by the isogeny H{(X,Ze(n)) <g> Qe/Zc -* Hl(X, Qe/Ze(n)) and (2) 
are again isogenies. This shows the relation 

d i m Q ( H(Gs,H'(X,qe(n))) = rank z , H(GS, H'(X, 2e(n))) 

= dimH(Gs,H'(X,Qe/Z((n)), 

and the equivalence of a), b) and c). Under the assumption in d), Gs has 
^-cohomological dimension cdt(Gs) < 2 [Br, 2.11]. Hence for an ^-divisible 
Gs-module N the cohomology sequence associated to 0 —• Nt —> N —* 
N-^O shows that H2(Gs, N) is ^-divisible. Since an ^-divisible group 
of finite exponent is zero, the equivalence of c) and d) follows from the 
finiteness of Hl(X, Qt/Ze(n))f Hl(X, Qt/Z£(n)). 

In the following, we shall assume £ ^ 2 or k totally imaginary, for sim
plicity. We leave it to the reader to check that everything remains true for 
£ = 2 up to finite groups (in §3: up to A-torsion modules) of exponent two, 
which does not matter for our purposes. 

E x a m p l e 1 For X = Spec/b, we have a non-trivial cohomology group 
only for i = 0, i" f°(SpecZ £ (n)) = Z^(n), and we may take S = St = {v \ 
£ - Co}. The conjecture then claims 

a) 1 < n, or 
H2(Gs,Qt/Zt(n)) = Ofor 

b) 1 > n, 

i.e., for n ^ 1. This has been conjectured by Schneider [Schl , p. 192]. 
Case a) has been proved by Soule [Soul] via higher Chern classes on al
gebraic if-theory; see the discussion in §2. Also for general X the case b) 
seems to be much more mysterious; here it contains the Leopoldt con
jecture (the case n = 0, see [Schl , §7]). Concerning n — 1, one has 
QtfZt(I) = /i^co, the group of all £-power roots of unity, and 

H2(Gs,Qe/Ze(l)) ~ Brs(k){£} S QeZZfs''1 

where S' = S\{v | oo}, see [Schl , 4.2], so this group is non-trivial in 
general. 



E x a m p l e 2 If E is an elliptic curve over k, then H0(E^Zi) = Zi ancl 
H2(E^Zi) = Zt( — 1) are covered by the above. For the remaining case 
i = 1, we may use the Kummer sequence 0 —> up —• G m —» G m —• 0 and 
the isomorphisms E(Jc) ^ P i c 0 ( E ) C Pic(E) ^ ^ 1 ( E 5 G m ) to identify 

Hl(E,Z/t(\)) = H1 (E^i*) = Pic(E)i* = E(Jc)i.. 

Hence the conjecture here claims (r = n — 1) 

i.e., for r ^ 0,1 (Here E ĉo = U rE(S)^r is the coefficient system of £-power 
torsion points of E.) If k is imaginary quadratic and Ejk has complex 
multiplication by k, this has been proved by K . Wingberg [Wi2] for primes £ 
which are regular for E . We shall see in §7 why r = 0,1 definitely has to 
be excluded (remark 7). 

It will be useful to reformulate Conjecture 1 in terms of H1 (Gs, —), by 
using Tate's calculation of the Euler-Poincare characteristic of Gs- For this, 
note that X can be regarded as a variety over Q via X —> Spec k —• Spec Q, 
and then X X Q C is a well-defined complex projective variety (non-connected 
for k ^ Q ) . In particular, X X Q C is defined over R and hence has a 
canonical involution E 0 0 (the "infinite Frobenius", see [D3, 0.2.5]) on its 
Betti cohomology Hl(X X Q C,Z) . For a ring A C C and n G Z, define 
A(n) = A • (2?ri)n C C, and let a = E 0 0 act on Hl(X x Q C, A(n)) = 
Hl(X X Q C,Z) ® Z A(n) via E 0 0 0 c, where c is the complex conjugation. 
Let Hl(X X Q C, ^!(n))^ be the eigenspace for the eigenvalue dbl of a, re
spectively. 

L E M M A 2. Ifx(Gs^V) = El=o(~lY dimQt H"(GS, V) for a Q,-vector 

H2(G S^EiCe(T)) = Ofor 
a) 

b) 0 > r, 

1 < r, or 

space V with continuous action of Gs, then 

X(GS, V) = d i m Q , V - ^ t
 d i m Q * V ° v • 

v\oo v\oo 
v real 

As a consequence, 

x(Gs,H'(X,Qe(n))) = -dimRH'(X x Q C , R ( n ) ) - =: == X.\»; 



in particular, these numbers are independent of £ and S (satisfying our 
assumptions) and depend only on n mod 2. 

PROOF: This is proved as Proposition 2 in [Sou4], cf. also [Schl , 4.6]. 
Since it is important for the sequel, we sketch the argument. Let A be a G s -
equivariant lattice in V (i.e., a Z f-Submodule with A ®z< Q^ — V), and let 
A = V/A. Then d i m Q , Hv(Gs^V) = dim Hu(Gs^A) = dimF( Hv(Gs^A)i 

£ 

— dimp^ Hu(Gs,A)/£, so the cohomology sequence for 0 —* Ai —• A —» 
A —> 0 shows 

x(Gs, V) = x(Gs, At) - d i m F , H2(GS, A)/t, 

where X(Gs,At) = £ t = o ( - l ) " d i m F , H^Gs, At) = - £ u | o o d i m F < A1 + 
Zv\oo d i m F < H°(GV, At) by Tate [Tal]. Since H2(GS, A)/e ^ ®vlxH2(Gv, A), 

v real 
one easily deduces as in [Sou4] 

-X(Gs,V) = J2&mA- dim A G " , 
v\oO vIOO 

t/ real 

i.e., the first formula. Since H\X x Q Q, Q f ) =* Indg^ Hl(X, Q f ) , where 
I n d G ^ denotes induction from Gk to G Q , this formula implies 

- X ( G s , f T ( X , Q , ( n ) ) ) 
= d i m Q , Hi(X X Q Q,Q f (n)) - d i m Q , H1 (X x Q Q, Q f ( n ) ) G ~ , 

where G 0 0 C G Q is a decomposition group at oo. The choice of G00 cor
responds to the choice of an embedding r : Q <—• C , and via the canonical 
comparison isomorphism 

mt(X X Q Q, Q,) ^ # J t ( X X Q C , Q f ) ^ H\X X Q C , Z) (g) Q f 

Z 

the action OfjP 0 0 corresponds to the action of the non-trivial element in G 0 0 . 
Finally, the Tate twist (dbl) on both sides changes the action of G 0 0 and a 
by a sign (i.e., by the non-trivial characters G 0 0 —> { ± 1 } , (a) —> { ± 1 } , 
respectively), which shows 

d i m Q , H\X X Q Q, Q f ( n ) ) G ~ = d i m R Hi(X x Q C , R (n) ) + . 

COROLLARY 1. a) dimqt Hl(Gs, Hl(X, Q f(n))) > - X i > ( ^ ) , witii equai-
ity i f and oniy i f # ' ( X , Q f (n)) G * =O = # 2 ( G S , J?«(X, Q f (n))). 

b) X ( G 5 , ^ ( X , Q f ( n ) ) ) + X ( G s , ^ ' ( X , Q f ( z + 1 ~ n))) = - [ * : Q] • 
d i m Q / i P ( X , Q f ) . 

The fixed module Hl(X, Q f (n)) G f c is related to Tate's conjecture for i = 
2n, but it always vanishes for i 2n: 



L E M M A 3. Ifi ^ 2n, then Hl(X, Qt(n))Gk = O = Hl(X, Qe(n))Gk and 
H\X, Qi(n))G> = O = H\X, Q f (n) ) G p for every p $ S. 

P R O O F : Let A' be a smooth and proper model of X over Os, the ring of 
5-integers in fc, and let Xp = X Xos be its fiber at p € SpecOs = 
Spec(9\S, «(p) denoting the residue field of p. By the smooth and proper 
base change theorem (see [ M i l , VI 4.2]), there is a canonical isomorphism 
(note that p \ £) 

H\XMn)) ^ H\x;Mn)\ 

where Xp = Xp xK(p) K(p) f ° r a n algebraic closure tz(p) of K-(p). This is 
an isomorphism of Gp-modules via Gp - » Gal(/c(p)//c(p)), and by Deligne's 
proof of the Weil conjectures, H1(XpjQe) is pure of weight i; that is, the 
eigenvalues of the geometric Frobenius Frp 6 Gal(/c(p)/«(p)) are algebraic 
integers whose archimedan absolute values are equal to (Np) *, where Np is 
the cardinality of /c(p) [D4, 3.3.9]. Hence Hl(Xp, Q f)(n) is of weight i - 2n 
(Fr p acts on Q f ( I ) via multiplication by (Np)-1). There can only be a 
non-zero fixed or cofixed module, if the eigenvalue 1 appears, that is, if the 
weight is zero. 

2. Connect ions w i t h algebraic j\-theory. 

Beilinson's conjectures [Bel] concern the diagram 

0 

1 
J y 1 ( X 5 C ) + 

# " - i ( X , R ( n ) ) + + Fn 

I 

(4) K2n-v(X/l)™ c K2nSv(X)^ H"V(X X Q R, R(n)) 

I 
O = Hv(X, R(n)Y H E n 

for i /^2n 

I 
O 

Here Hfc denotes the Deligne cohomology, which sits in a short sequence 
as indicated, H*(X,—) stands for the Betti cohomology H*(X X Q C , — ) , 



F' is the Hodge filtration on H*(X,C), and Km(X)^ is the subspace of 
Km(X) ® Q on which the Adams operators ipk operate via multiplication 
by kn. The "regulator map" r is defined by Chern characters on Quillen's 
higher i\-groups Km(X) with values in the Deligne cohomology, and factor-
izes as indicated for v ^ 2n, since then Fn D Fn = Hn'n is zero. Beilinson 
thinks that the definition 

Km(XfZ)M = lm(Km(X)M -» Km(Xfn)), 

X a flat, proper model for X over Z, does not depend on the choice of X and 
then conjectures, among other things, the following, where we set i = v — 1 
for convenience. 

C O N J E C T U R E (Beilinson). For i < 2n — 2 the regulator map 

T : K2n-i-i(X/Z)M ® R - i T ( A ^ C ) V ( # ' ( * , R ( n ) ) + + F n ) 

is an isomorphism, and the dimension of these vector spaces is the order of 
zero of the L-function L(V,s) for V = {H1 (X, Qe)} at s = m := i + 1 — n. 

R E M A R K 2: The L-function of the strictly compatible system of £-adic 
representations V is defined by the Euler product 

L(v, s) = n «) = II d e t ( 1 -FTJNP)-. \ vr.y 

Here Ip is an inertia group at the prime p, F r p is a geometric Frobenius 
at p, and it is conjectured that 

det(l - F r p T | V1') = det(l - F r p T | Hi(X, Qe)Ip), P t 

lies in Z[T], is independent of ^ (with p f /?), and that L(V,s) is convergent 
for Re(s) > | + 1. By Deligne's proof of the Weil conjectures [D4], all 
this is known if one omits the factors where X has bad reduction. For the 
consideration of in — i + 1 — n < |, one has to assume meromorphic contin
uation of L(V> s). The conjectured analytic behavior of L(V,s) (see [D3]) 
is roughly described by the following picture. 
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The equality 

(6) ord L(ViS) = dimRHl(X,C)+/(Hl(X,R(n))+ + Fn),m < i 
s—m Z 

follows from the shape of the T-factors and the conjectured functional equa
tion, see [ B e l , 3.3] or [J2, 4.14.a]. 

R E M A R K 3: The domain m < 0 (<& i + 1 < n) can be considered as the 
"stable range" for various reasons: 

a) One has FnHi(XiC) = 0 for the Hodge filtration. 
b) One expects equality K2n-i-i(X/2)^ = K2n-i-i+(X){n) by con

jectures on the if-theory of schemes over finite fields (cf. [ B e l , 
2.4.2]). 

c) The local Euler factors are expected to be holomorphic here (see also 
the discussion in §4). 

V i a a) and b), Beilinson's conjecture predicts 

(7) K2n-i-i(X)M <g> R ^ H*(X, C)+/Hl(X, R ( n ) + for m < 0. 

Since Hx(XiC) = Ht(XiR) ® R C is an induced module for (a), we have 
dimp Hl(X, C ) + = dimR HX(X, R). Hence the dimension of the right-hand 
side of (7) is — Xi,n(X). On the other hand, c) would give 

(8) ord L( V, s) = ord LS(V, s) for m < 0, 
s=m s=m 

where Ls(ViS) = Up^s detCl " Fr p (A^p ) ' 3 | Hi(XiQi))'1 is the partial 
L-function. 

We now consider an ^-adic analogue of the above. Let i J * o n t ( X , Zi(n)) 
be the continuous etale cohomology of X (see [DF] and [Jl]). Then there 
is a Hochschild-Serre spectral sequence 

(9) E™ = H>(Gk,H<(X,lt(n))) =* H^\(X,lt(n)), 

see [ J l , 3.4]. There are also Chern characters on Kt(X) with values 
i n #co„t(*> QK*)) = H*onl(X,Zt(*)) QZt Qe (see [Sou3]), and, letting 
H?oal(X,Qe(n))o = Kev(Hc"ont(X,Qe(n)) H"(X,Qe(n))), (9) defines a 



diagram 

O 

TT 

tfc"ont(X,Q,(n))0 

K2n-U(X)M 
T 

H» (XiQi(Ti))0* = O for v ^ 2n 

which should be considered as the £-adic analogue of (4). Since Cdi(Gk) < 2, 
7r is surjective. One can also show that res is surjective and that Ker 7r = 
H2(Gk, Hv~2{X^qfi(Ti))), but this will not be needed in what follows. 

C O N J E C T U R E 2. The regulator map 

is an isomorphism for i + I < n ( <=> m := i + I — n < 0). 

The analogy with Beilinson's conjecture becomes quite clear by the for
mulae 

where MHu is the category of real Hodge structures over R (i.e., with 
"infinite Frobenius FOQ" )I see [J2, 4.13]. In fact, the philosophy behind 
both conjectures is that the motivic cohomology Hx^ = K2n-i-i(X)(n^ 
describes extensions of the trivial motive by the motive H1(X)(Ti)i and that 
the regulator maps r are obtained by passing to the associated realizations, 
see [Be2, 5,10], [D5], and [J2, §4]. In contrast to the Hodge realization, 
we have a group H2 (Gki H^ ~2(X ,Qe(Ti))) = Ext2

ck(Q£i H^~2(X,Q£(n))) 
for the £-&dic realizations, but comparison with Beilinson's conjecture and 
the general philosophy that there are "no non-trivial motivic 2-extensions 
over Q" up to torsion (see [D5]) suggests neglecting this group for the 
regulator map. 

r : K2 n — i — l (X)M 0 Q , _ > H1(Gk,H'(X, Qe(n))) 

Hl(Gk, Hi(XMn))) = Y1^g k(qe, Hi (XMn))), 
H\X,C)+/(H'(X,R(n))+ + Fn) = Ext1

uiia (R, H'(X, R(n))), 



A l l this is discussed in more detail in [J3], together with the function j 
field analogue of Conjecture 2, which would follow from several well-known I 
conjectures on K-theory and £-adic cohomology of varieties over finite fields. \ 
In these notes we restrict ourselves to the connection with Conjecture 1. 
We use the following fact, which has also been observed by P . Schneider 
and W. Raskind. 

L E M M A 4. If i ^ 2n — 2, then the inflation map 

H1(Gs, H\X, ®e(n))) - H1(Gk,H'(X, Qe(n))) 

is an isomorphism and, consequently, H1 {Gk, H1 (X, Q,e(n))) is finite-dim
ensional. 

P R O O F : More generally, let M be a finitely generated, torsion-free Ti-
module with continuous action of Gs- Then there is an exact sequence 

0 - H1(GstM) 1A f H1(GkiM) -> H\Gks,M)Gs 

(by [ J l , §2], or by (1) and the well-known case of finite coefficients). By 
assumption, Gks

 a c ^ s trivially on M . For every p ^ S choose a decomposi
tion group Gp C Gk for p and let Iv C Gp be the inertia group. Then Gjt s 

is the smallest closed normal subgroup of Gk containing the Ip, p ^ 5, and 
hence the restriction 

H^GksiMf* = H o m c o n t f G s ( G ^ 1 M ) - * [ ] H o m c o n t , G p ( / p
a b , M ) 

is injective. Since p \ £ for p ^ S, there are isomorphisms 

H o m c o n t , G p ( / * b , M ) S H o m c o n l i G f ( Z f ( I ) 1 M ) = M ( - 1 ) G » 

by local class field theory. Hence the inflation is an isomorphism, if M ( — l ) 6 p 

= O for p g 5. For M = Hl{X,lt{n))/ torsion, this is the case for 
i ^ 2( n — 1) by Lemma 3. 

C O R O L L A R Y 2. If Beilinson's conjecture is true, then Conjecture 1 a) is 
equivalent to the equality of dimensions in Conjecture 2. 

P R O O F : A S explained in Remark 3, Beilinson's conjecture implies 

(H) dimQl<2n-i-i(Xyn> = -Xi,n(X) f o r 1 + 1 < 



Hence the claim is clear from Corollary 1 a) and Lemma 3. 

E x a m p l e 3 Consider X = Spec Ar: It follows from results of Borel 
and Soule that K2n(Ok) is finite for n > O and that the ^-adic Chern 
class 

chn : K2n-i(Ok) <g> Zt - Hlt(Spec(Ok[$]),lt(n)) 

has finite kernel and cokernel for n > 1, where Ok is the ring of integers in k 
(see [Soul] and [Sou2]). Now Hlt(Spec(Ok[\]),Ze(n)) = H1(GsMn)) 
for S = Se (cf. (16) below), and Kr(Ok) <g> Q -> A'r(fc) <g> Q for r > 2, 
as follows from the localization sequence and the finiteness of Km(F) for 
a finite field F and m ^ 0. Finally, c 1 ) T l vanishes on K2n-i(Ok)^ for 
v Ti by standard properties of Chern classes. Putting all this together, 
one obtains the equality K2n-i(k)®Q = i \ 2 n - i ( f c ) ^ for all n > 1 and the 
bijectivity of 

r:K2n-i(k)W®<ie? H'(Gk,Qt(n)), n > 1, 

using Lemma 4. Hence Conjecture 2 is true for X = Speck. Since, by 
Borel, Beilinson's conjectures are also true for X = Spec k. we may deduce 
Conjecture 1 a) from this. The argument in [Soul] is different: there it is 
proved that the Chern classes 

C2,n •• K2n^2(Ok)® T-I - HKSpec O k[\},le(n)) 

have finite cokernels for n > 1. 
E x a m p l e 4 Let k be an imaginary quadratic field and let X = E be an 
elliptic curve with complex multiplication by k. Assume that £ splits in fc, 
£ = pp*, and that E has good reduction at £. In [Sou5] Soule considers a 
map 

r' : l i m / < 2 n _ 2 ( £ , Z / r ) -> i f 1 • ( G t , H 1 ( E , l t ( n ) ) ) , n > 1. 

Here Kin-2(E, Z/£r) denotes A-theory with coefficients, sitting in an exact 
sequence 

0 -> K2n.2(E)/£r -> K2n.2(E,Z/£r) -> A 2 n _ 3 ( £ > -> 0, 

and the composition of r ' with K2n-2(E) —> Iim^ r K2n-2(E,Z/£r) coin
cides with the ̂ -adic Chern character up to some factorials after tensoring 



with Q*. Soule finds that for a regular prime £ the composition of r' with 
the restriction 

ap : H\GkiH\EMn))) -> Hl(GPi H\£, Z*(n))), n > 1 

to a decomposition group Gp at p has a finite cokernel. On the other hand, 
it follows from the results of K . Wingberg mentioned in Example 2 that ap 

has a finite kernel for regular £. Hence r' has a finite cokernel, in support 
of Conjecture 2. 

In concordance with a conjecture of Quillen, Thomason [Th] has shown 
that for fj, > N := |(d + 2)(d + 3)(d + 4) - 15 the map 

K ,{XiI Kit(XiIfr) 

is a naturally split surjection, where K^i is the etale (or topological) K-
theory. This implies that the Chern class 

c„ , n : H m i f 2 » - , ( ^ Z / f ) - I i m H ^ X i Z/£r(n)) 

has cokernel of finite exponent for 2n > v + n. On the other hand, the 
spectral sequence (9) induces a surjective map 

l i m ^ t ( X , Z / r ( n ) ) 0 ^H\Gk,Hv-\X,le{n))\ 
r 

where H&(X, l/ir(n))0 = Ker (# " (X , l/tr(n)) H"{X, Z/£ r(n))). In 
fact, we have seen that (9) gives a surjective map 

^ o n t ( X , Z,(n)) 0 ^ H\Gh,H»-\X, Z<(n))), 

and this map factors through I i m v TJ^ t(X, Z /£ r (n ) ) 0 , since Hl(Gki 

Hv-l(X, Ze(n))) = I i m v H1 (Gki Hu-^X, Z/£r(n))) is ^-complete, see [ J l , 
4.4 and 5.16]. Altogether we obtain a surjective map 

Qe®K2n-^l(XiZfr) H1 (Gki H*(X,Qe(Ti))) 
it V 

for 2n > z + 1 + N (Note that Hv(X, Q(n))Gk = O for v ^ 2n). By the 
exact sequences 

O -> / v ( A " ) A - l i m ^ ( X , Z / r ) -> T J i ^ 1 ( X ) - 0, 



where K^{X)A = I i m v Kfl(X)Zir is the ^-completion OiKtl(X), this would 
imply the surjectivity of the regulator map 

(12) T : JT 2 n - , - - ! (X)W <g>Q, - H^G^H^X^n))) 

for 2n > z + 1 + iV, if TiK2n^2(X) = 0, i.e., if 7 T 2 n _ , _ 2 ( X ) has no £ 
divisible torsion subgroup. Here we have used two facts: for an abelian 
group A, a finitely generated Z^-module B and a homomorphism / : A —> 
i?, the induced map A<g>i Qli —* B ®z< is surjective if and only if the in
duced map A®zt Qe —> B®it Qe is surjective (applied to A = K2n-i-i(X) 
and B = tf^G*, Hi (X, Ii(Ti))/Hl(X, Z* (n ) ) t 0 r) ) , and the Chern char
acter c / i ; + i , n : J ^ n - i - i C X " ) ® Q -> H1 (Gk, Hi(X, Qi(Ti))) vanishes on 
K2n-i_i(X)^ for r ̂  n. V i a the localization sequence 

. . . - A^(A') -> Kfl(X) -> 0 A ^ 1 (A'p) - V i ( ^ ) - .. •, 

where A* is a smooth model of X over the ring of 5-integers Os and XP = 
X XQ5 «(p) is the fiber at p, the vanishing of TiKil(X) for all would 
follow from Bass's conjecture that Kfl(Y) is finitely generated for a regular 
scheme Y of finite type over Z. 

In any case, if (12) is surjective, Beilinson's conjecture would also imply 
its injectivity. In fact, we would get —Xi,n(X) = diiriQ K2n-i-i(X)^ > 
dimQ, H1 (Gk, H1 (X ,Qi(Ti))) and hence equality of dimensions by Corol
lary 1 a). 

3. Connect ions w i t h Iwasawa theory . 

Let M = H1(X^iIli) and define 

ditn = dim H\GS, M(n)), n = d imH 1 (Gk, M(n)), 

rhn = dimH2(Gs,M(n)), r j - n = d i m H 2 ( G k , M ( n ) ) . 

L E M M A 5. For i ^ 2n — 2 these numbers are finite and independent of S, 
and one has diiU = d'in, rifn > r!

in. 

P R O O F : For any -^-torsion G^-module N and any set of places T D S, one 
has an exact sequence 

(13) 0 - H1(GSTN) 1A f H\GT,N) -> © N(-1)G> 
per\s 

-*H2(GS,N)'HH\GT,N)^ 0 N(-l)Gt-+0, 
P€T\S 



compare [Sou4, p. 117]. If N is of cofinite type and if we assume 

(14) N(-l)G> and N(~1)G? are finite for p G T\S 

(when N = H{(X, Q*/Z*(n)) this is the case for i ^ 2(n - 1) by the Weil 
conjectures), then we immediately get 

dim HU(GS>N) = dim i J " ( G T , i V ) , v > 0, if T is finite. 

If T is the set of all places, then GT = G* , and we still get 

C l i m H 1 ( G 5 j J V ) = SimH1(GkyN), 
dimH2(Gs,N) > dimH2(Gk,N), 

in view of the fact that H2(Gs^N) is cofinitely generated. 

L E M M A 6. Let fs : Xs —> SpecOs be a smooth and proper model of X 
over O Sy the ring of S-integers ink. If v ^ 2n — 1, 2n, 2n + I 7 then 

&\mHu(Xs,Qt/~lt(n)) = du-i,n + r „ _ 2 , n 

dim Hv {X, Qe/Un)) = < _ 1 > B + r'„_ 2 i„ 

P R O O F : The first equality follows from the Leray spectral sequence 

(15) E™ = Hp(Spec Os, RqfSm Qt/Z£(n)) Hp+q(Xs, Qt/Zt(n)). 

Namely, by base change one has an isomorphism of sheaves 

R9fs.Qe/Ie(n) * j.R1 f.Qt/le(n) 

for the morphisms / : X —* Spec A: and j : Spec & <-» Specks , where 
Rqf*Qi/Z£(n) can be identified with the G*-module Hq(X, Qe/Ze(n)). Since 

(16) H*(SpecOsJ*N) = HP(GS,N) 

for an ^-torsion Gs-module N (regarded as a sheaf on Speck on the left-
hand side), cf. [Mi2 , II.2.9], we can rewrite (15) as 

(17) E™ = H"(Gs,H"(X,qe/le(n)) =• H^(Xs,qe/2e(n)). 



This implies the desired equality, since all groups occurring in (17) are 
cofinitely generated and Hq(X, Q,e/Ze(n))Gk is finite for q ^ 2n. For the 
latter reason, we have by Lemma 2 

(18) - x ; , n = dhn - r l > n for i ^ 2n, 

which shows the second equality. 
For the third equality, we use the Hochschild-Serre spectral sequence 

(19) Ep
2'" = H'(Gk,H«(X,Qe/Ze(n)) H^(X,Q,/Z,(n)). 

Since these groups in general are not cofinitely generated, we have to be 
a little bit careful with adding up dimensions in an exact sequence. Set 
H"{X, qt/le{n))0 = Ker(H"(X, Q«/Z,(n))) rA5 H"{X, Q,/Z,(n))). Then (19) 
gives an exact sequence 

H»-\X, Q</Z,(n)) G* -> H2(Gk, HV~\X, Qt/lt(n)) 

-» Hv(X,Qt/lt(n))o -» H\Gk,Hv-\X,qt/lt(n)) - 0, 

since cde(Gk) < 2. Now the second group in (20) is the direct sum of 
its maximal ^-divisible subgroup and a group of finite exponent (since 
H2(Gk, N) is ^-divisible for an ^-divisible module iV), and the first group 
is finite for v — 1 ^ 2n. From this we easily deduce 

d i m f T 2 ( G f c , i I * - 2 ( X , ^ 

= dimHu(X,qe/I£(n))0 for v ± 2n + 1 
= dim Hu(X, Qe/2e(n)) if in addition i / ^ 2n, 

and the last claimed equality again follows with (18). • 

Let Jc£c = k(fj,£oo) be the ^-cyclotomic extension of k. Then G3l(kec/k) = 
A x T with r ^ Ie and # A | (£ - 1). Let Hs = Gal(fcs/fc/ c) and define 

y := y;- : = H\HS,M)\ Y := y;- := Hl(HS,M)\ 

Z := := H\HS,M)\ Z := Z i := Hl(Hs,M)\ 

where M = I- D i v ( M ) is the maximal divisible subgroup of M . These are 
compact A-modules, where A = [[T]] is the completed group ring. Let x : 

Gal(£:^c/fc) —» Z * be the ^-cyclotomic character (defined by <J(() = (x^ for 
C G fie°o and (j E Gal(** c /*)) and let en = ( # A ) " 1 £ R 6 A x " n (^ )^ € Z*[A] 
be the idempotent projecting to the part where A acts via xn (n £ Z) . Of 
course, en only depends on n mod #A. 



L E M M A 7. a) For each n G Z, Yen and Zen are noetherian A-modules, and 
their ranks are independent of S. 

b) rank A Yen - rank A Z e n = -x,>(-X"). 
c) Zen is a free A-module for all n G Z. 

P R O O F : a) Let H1
s = Gal(ZcsAoo)7 where AJ 0 0 / fc is the unique Z^-extension 

contained in kec/k. Then we have canonical isomorphisms 

(21) Hr(H's,M(n))^ Hr(Hs,M(n))A ^(Hr(Hs,M)e-n)(n), r > 0, 

since £ f # A , so the dual of this module is noetherian if and only if 
Hr(Hs,M)*en is. Now the Hochschild-Serre spectral sequence for 1 —• 
H1

s —• G s —• T —> 1 gives exact sequences 

(22) O -+ H\T,M{n)H's) -> Hl(Gs,M(n)) -> Hl(H's,M(n)f -> 0, 
(23) 0 Hl(T,Hl(H's(M(n))) -+ H2(Gs,M(n)) -+ H2 (H's, M (n)f -> 0 

and an isomorphism 

(24) H\T,H\H's,M(n))) S tf3(G5,M(n)) = 0, 

since cd*r = 1, cd/Gs < 2 and cd^fT^ < 2. Since Hr(Gs,M(n)) is 
cofinitely generated for all r and n, the same is true for Hr(H's, M(n))r. 
Hence (Hr(H1

s, M(n))*)r is finitely generated over Zt. This implies that 
Hr(H's,M(n))* is finitely generated over A. For the second claim let T be 
a finite set of places containing 5. By applying (13) to each intermediate 
layer k C Jcr C A J 0 0 and passing to the limit over r , we get an exact sequence 

(25) 0 -» H\H's,M(n)) -> Hl(H'T,M(n)) -> © M ( n - 1) 

- H2(H's,M(n)) - H2(H'T,M(n)) - 0, 

since I i m ^ M ( n — 1)GaUfc 0 0/Jt r) = ^ (^ e taken via norms). The set 
T\S(k00) of places in Ai 0 0 above T\5 is finite, since all primes p decom
pose into only finitely many primes in the cyclotomic extension. Therefore 
( 0 M(n — 1))* is a A-torsion module (in fact, finitely generated 

P6T\S(fcoo) 

over Z^), and the claim follows, in view of (21). 
For b), we use the fact that 

(26) rankA W = rankz, Wp — rank/ , Wr 



for a noetherian A-module W (see, e.g., [ W i l (1.4)]). Hence by (22) 
and (23) we get 

rank A F e n - r a n k A Z e n = rank A Hl(H's, A f (n ) )* - rank A H2(H'S, M(n))* 

= dimH1(Gs>M(n))-dimH2(Gs,M(n))-dimH1(r, M(n)Hs) = - X l > , 

since dim H1 (T, M(n)Hs) = dim M(n)Gs by the exact sequence 

0 > TVr > N 7 - 1 > TV • TVr > 0 

M(n)Gs H1(TiN) 

for TV = M(n)Hs and 7 a topological generator of T. 
For c), we use the criterion (see [ W i l (1.2)]) 

(27) W free Wr = 0 and Wr is torsion-free 

for the A-module W = H2(H'S, M(n))*. Namely, H2(H's,M(n))T S 
i T ^ r ^ ^ i J ^ M ^ ) ) ) = 0 by (24), and H2(H'S, M(n))r is ^-divisible as 
quotient of the ^-divisible group H2 (G s ̂  M (n)). • 

Iwasawa's conjecture " / i = 0" for all number fields K with k C K C ks 
would imply cde(Hs) = 1 (see [Sch3, 3.8]) and in particular the vanishing 
of Z = H2(Hs,M)*. In any case, we have 

L E M M A 8. Let Gs,r = Gal(ks/kr), where kr = k(fi£r) n A J 0 0 . Then the 
following statement are equivalent for n G Z: 

a) Zen is a A-torsion module. 
b) H2(Hs,M)e-n = 0. 
c) d i m # 2 ( G 5 > r , M ( n ) ) is bounded for r > 1. 
c') Foralln' G Z with Ti1 = Ti mod # A , dim H2(Gs,r, M(n')) is bounded 

for r > 1. 
d) H2(Gs,M(n)) is finite for one n ' G Z with Ttt = Ti mod #A . 
d') H2(Gs,M(n')) is finite for almost all n' G Z with n ' = n mod #A . 

P R O O F : Since rank A Z e n = rank A Z e n , and Z e n = H2(H1
s,M(Ti)Y(Ti) is 

A-free, the equivalence of a) and b) is clear. The equivalence with c) and d) 
follows from Lemma 1 and the exact sequences 

(28) 0 -> H1•(IV,Hi(H's,M(n'))) - » # 2 ( G s > r , M ( n ' ) ) 
^ t f 2 ( ^ , M ( n ' ) ) r ' - 0 , 



T r = Gdil(Jc00Zkr). Indeed, d im(A*) r r = [kr : k], and for a noetherian 
A-module W the numbers 

dim H1 (Tr, W*(v)) 

are bounded for r > 0, v E Z, and zero for almost all twists v E Z, 
cf. [Sou4, Lemma 2]. Note that Hr(H1

s, M(n'))(v) = Hr(H's,M(ri + i/)) 
for i / = 0 mod # A . The equivalence with c') and d') is now clear, since a) 
and b) only depend on n mod #A. • 

In general, we obtain from (23) 

r,- j n = dimH2(Gs,M(n)) = rank A Z ;e n + rank/, (Yien(—n))T 

V ) 

= rankA Z1- e n for almost all n E Z, 

and, via Lemma 6 and Corollary 4 below, 
(30) dimHv(X, Q//Z,(n)) = - x „ - i , n + rank A Z „ _ i e n 

for almost all n E Z. 

These are the correct versions of Proposition 3 and Theorem 1 ii) in [Sou4], 
as long as we do not know the vanishing of Z. The gap in loc. cit. 1.5 is 
that one cannot conclude cdpH = 1 from cdpHp = 1 without any extra 
argument, but the reasoning there still gives the following interesting result: 

LEMMA 9. Let K be a Unite extension of k over which M(rTi)e becomes a 
trivial Galois module, let K00 = K^k00 be the cyclotomic Z ̂ extension of K, 
and let Ai be the maximal abelian £-extension of K00 which is unramified 
outside L If the fi-invariant of the noetherian Z^[[Gal(ivoo/K)]}-module 
Gal(MZK00) is zero, then H2(Hs,M)e-n = 0. 

P R O O F : It follows from the assumption on the ^-invariant that H1
s(K)(E), 

the maximal pro-^-factor group of Ht
s(K) = Ga^ksZK00), is pro-^-free 

(see [ W i l , 5.4 and 5.6]). Now by definition GK lies in the kernel of the 
composite of the two homomorphisms 

Gk -A Aut(M(n)) Aut(M(Ti)e) 

given by the action of Gk on M(n) and the restriction to M(n)e. Since 
Ker 7r is a pro-^-group, GK and consequently H1

s(K) act on M(n) via their 
pro-^-quotients. Hence we can consider the inflation 

H2(H's(K)(i),M(n)) H2(H's(K),M(n)), 



and this map is an isomorphism (see [Neu, Cor. 1]). Furthermore the 
corestriction 

H*(H'S(K), M(n)) c A r H2(H'S, M(n)) 

is surjective, since cdi(H's) < 2 (see [Sel , I 3.3]). It follows that 
cde(H's(K)(e)) < 1 implies H2(H's,M(n)) = 0, hence the result, by (21). 

• 
The conjectured vanishing of Z , which would follow both from Iwasawa's 

ufi = 0" conjecture or from Conjecture 1, may be more easily accessible than 
either of these. For example, in the case X = Spec k one can in fact prove 
H2(Hs^QifIf) = 0 (which is also called the weak Leopoldt conjecture) 
without proving anything about cdeHs or Conjecture 1, see [Schl , 4.7]. 

4. G l o b a l results . 

Conjecture 1 is in part motivated by the following result. 

T H E O R E M 1. The analogue of Conjecture 1 is true in the function field 
case. 

This follows from the following, more general, fact. 

T H E O R E M 2. Let U be a smooth curve over a finite held Fq and let F be 
a smooth (= twisted-const ant) Qe-sheaf on U (£ ^ p = char Fq) which is 
mixed [D4, 1.2.2]. Then H2(U^F) - 0 i f 

a) F v ( 2 ) is entire [D4, 3.3.2], or 
b) the weights in F are > 0. 

(Here Fv is the dual of F7 and Fy(n) is its n-fold Tate twist.) 

C O R O L L A R Y 3. Let F be smooth of weight i (see [D4, 1.2.2]: for each 
closed point x E U the eigenvalues a of the geometric Frobenius F r x on the 
stalk Fx are algebraic numbers with absolute value \a\ = (Nx)1I2 for every 
complex embedding). Assume that F is positive (or effective), by which 
we mean the following: F is entire (i.e., the a are algebraic integers), and 
Fv(-i) is entire. Then H2(U,F(n)) = 0 if 

a) i + 1 < n, or 
b) i + 1 > 2n. 



PROOF OF COROLLARY 3: If Fw(-i) is entire, then F(n)y(2) = Fy(-i)(i+ 
2 — n) is entire for i-\-2 — n < 0, since Qe(v) is entire for v < 0. If the weight 
of F is i, then the weight of F(n) is i — 2n, which is > 0 for i + 1 > 2n. 

COROLLARY 3 THEOREM 1: Let X be a smooth, proper variety over 
the function field k = Fg(U) oiU and assume that X has a smooth, proper 
model / : X —• U (i.e., good reduction over U). By smooth and proper base 
change, F = Rlf*Qe is a twisted-constant sheaf on Uy and for each x E U 
there is an isomorphism Fi = Ht(XxyQi)y where Xx = X Xy Spec/c(x) is 
the fiber of / at x and Xx = Xx x K ( z ) K(X) for a separable closure K(X) of 
the residue field K(X) of x. If U is affine, and 77 = Spec k is the generic point 
of Uy then there are canonical isomorphisms 

Hr(U,F(n)) S f f ( T l ( ^ ^ ) , F ( n ) , ) - H r(^(U, 77), Q,(n))), 

for all r > 0, where 77 is the geometric point over 7; given by Spec L see [Mi2 , 
II 2.9]. In this situation, U is the analogue of Spec(9s; note that by defini
tion Gs = 7Ti(Spec Os, fj) in the number field situation. 

To apply Corollary 3, we have to show that F is positive. But by Deligne's 
proof of the Weil conjectures, Ht(XxyQi) is entire of weight i for x (E U 
closed, and by Poincare duality and hard Lefschetz [D4, 4.1.1] 

H\XS, Q<) v ( - i ) S H2d-\XX, Q , ) ( d - 0 = H\Xt, Q,) 

is again entire (d = d i m X ) . 

PROOF OF THEOREM 2: If the weights in F are > r , then the weights in 
Fv are < — r. By Deligne's fundamental result [D4, 3.3.4], the weights w' 
occurring in Hl(UyFy(I))y the cohomology with compact support of U = 
U Xpq Fy satisfy w' < -r +1 - 2 = -r - 1 (note that Q*(l) has weight -2), 
and if Fv(2) is entire, we have w' — 2 > 0, see [D4, 3.3.3]. By Poincare 
duality, we have 

H1(UyF) ^ H^U,Fy(l))y. 

Hence for the weights w occurring in this mixed G jF q-Inodule, where Gpq = 
G a l ( F 9 / F g ) , we have w > r + 1, and w < —2 under assumption a). Sim
ilarly, H2(UyF) £ H°c(UyFy(l))y has weights > r + 2, and < - 2 under 
assumption a). We apply this to the exact sequence 

(31) O-+ H1(UyF) -> H2(UyF) ^ H2(UyF)0** -•O 
% * ' G F , * « ' 

w < - 2 , case a) ~2> c a s e a ) 

w > 1, case b) 2> c a s e b ) 



obtained from the Hochschild-Serre spectral sequence for F g / F g . We con
clude that H2 (U, F) = O in both cases, since a mixed Gfq-module can have 
a non-zero fixed or cofixed module only if the weight zero occurs. 

R E M A R K 4: The bounds in Theorem 2 seem to be sharp, and I expect 
the same of the bounds in Conjecture 1, except for an improvement by 
hard Lefschetz: H1(XjQi) ^ H2d-l(X, Q£(d - z)), which would imply 
H2(GS, Hl(X, Qi(Ti))) = O for n > d + 1. 

Q u e s t i o n 1 Is the analogue of Theorem 2 true in the number field case 
(U being replaced by Spec Os for a finite set S of primes containing all 
primes above £)? 

By the same arguments as above, a positive answer to this question would 
imply Conjecture 1. So far, one does not know any number field analogue of 
Deligne's theorem that Hu (U ,F) is mixed of weights < v + r , if F is mixed 
of weights < r , or, what is more or less the same, the analogous result 
for Hu(YyG), where Y is the smooth compactification of U. According 
to the general philosophy of Iwasawa theory, the analogue of Hu(YyG) 
should be a certain Iwasawa module over &oo — for example, the Galois 
group Gol(Lfk00) of the maximal abelian unramified ^-extension L of ^ 0 0 

for v = 1 and G = Q^(I). But no integrality results exist in this setting 
and perhaps cannot be expected in a "naive" way, cf. [Wa2]. Is it possible 
that, nevertheless, there exists some theory of weights for these Iwasawa 
modules? 

We return to number fields and to the notations at the beginning of §1. It 
turns out that the numbers r- n = dim H2(Gky Hl(X, QiZli(Ti))) are much 
more accessible than the numbers r ; j n = dim H2(Gs, Hl(X, QiJZi(Ti))). 

T H E O R E M 3. Let P be a set of primes of k of density 1. 

a) The localization map (induced by the restrictions to the decomposi
tion groups Gp) 

a j ' n : H1 (Gk^Hi(XyZI(U))) - J J H1 (Gp,H\X,Z£(n))) 
P G P 

has a Rnite kernel for i ^ 2n. 
b) Let Hi(X1Itin)) = H\X, lt(n))/Hi^X, lt(n))to„, where Alors is 

the torsion subgroup of an abelian group A. Then 

a\'n : H\Gk,Hi(XjIein))) - J ] Hl(Gv,H\X,lt(n))) 
pep 



is injective for i ^ 2n. 
c) The localization map 

*4>n : H2(GkyH\XyQe/le(n))) - 0 H2 (GVyH*(Xy Qe/Ze(n))) 
all p 

has a finite kernel and cokernel for i ^ 2(n — 1). 
d) Let Hl(XyQe/Ze(n)) =£- Div i f l ( X , Q^/Z^(n)). Then 

: i f 2 ( G f c , ^ ( X , Q , / Z , ( n ) ) ) - 0 H2(GP, f T ( X , Q,/Z*(n))) 
PGS 

is an isomorphism for i ^ 2(n — 1). 

P R O O F : This follows directly from results of Serre: For a profmite group 
G and a topological G-module M let 

where C runs over all (pro-) cyclic subgroups of G (and the cohomology is 
the continuous one, as always). If Q — Im(G —• Aut (M) ) , then 

[Se2, Prop. 6]. We now consider M = Hi(XyIe(Ti))y i ^ 2ny and G = Gk. 
Then, by the Weil conjectures proved by Deligne, for a Frobenius F r p E Q 
at p £ S its eigenvalues on M are of weight i — 2n ^ O and thus satisfy the 
condition in Lemma 2 of [Se3]. Hence the Lie algebra g of Q satisfies the 
hypothesis of Theorem 1 in [Se3], and we get 

by results of Lazard, which show that Hr(QyM) is a finitely generated Te-
module for all r and that there is an injection Hr(Qy M ) ® <—>• Hr(g, M® 
Q/), cf. [Se3, Cor. to Lemma 3]. Moreover, since we have 

Hl (Q,M)H Hl(GtM), 

Hr(Q,M®%) = 0 for all r > 0. 

Hence 
Hr(G, M) is finite for all r > 0 

Hl(g,H'(X,2e(n))) = 0 (i ? 2n), 



see [Se2, Theorem 1]. This implies b), since the kernel of the map in b) is 
contained in Hl(G,Hl(X,Z£(n))) ([Se2, Prop. 7 and 8] — the proof also 
works for a set of primes of density 1, cf. [Se4, II Notes]. 

For a) we may assume without restriction that S D P = 0. Then 
tf'(A\Z£(n))GP = 0 for all p E P (i ^ 2n). Thus the claim easily fol
lows via the exact sequence 

0 - H\X, Zt(n))lOTS -> H'(X, ZAn)) -» H'(X, 2e(n)) -» 0, 

and the fact that the localization map for the finite module Hl(X, Z^ (n ) ) t 0 rs 
has a finite kernel by the theorem of Tate and Poitou [ T a l , 3.1]. 

When P is the set of all primes, the cited global duality theorem also 
gives an exact sequence 

(32) 0 -> ( K e r a 2 d - ^ + 1 " n ) * - H2(Gk, H\X,Qi/Zi(n))) 

0 ^ 2 ( G P , ^ ( X , Q V Z ^ ) ) ) ^ ^ ( ^ Q ^ / ^ - 1 ) ) G , ^ 0 , 
all p 

by passing to the limit over the corresponding exact sequences for 
H1 (X, Z/£r(n)). Here we have used the fact that 

(33) Kom(H\X, Q,/Z ,(n)), Q*/Z*(l)) S HU~\X, 2e(d + 1 - n)) 

by Poincare duality, and that 

(34) #°(Gjt,Hom(A, QifZi(I)))* 9* H o m G , ( A ( - l ) , QiJli)* S A(-l)Gk 

for the Morsion G f c-module A = Hi{X,QiIZi(Ti)). Now K e r a ? d ~ M + 1 - n 

is finite for z ^ 2(n — 1) by a), and Hl(X, Qi/Zi(n — 1))G* *s finite for 
i zfz 2(n — 1) by the Weil conjectures, which shows c). 

If we replace Hl(X ,Qe/Zi(n)) by Hi(X,QifZi(Ti)) in (32), then 
K e r a 2 d ~ i , d + 1 " n is replaced by K e r a ^ " M + 1 ~ n , since (33) induces an iso
morphism 

(35) H o m ( i T ( X , QifZi(Ti)), QifZi(I)) * H2d~l(X, Ze(d + 1 - n)). 

Furthermore, the last group in (32) is replaced by Hl(X,QifZi(n — 1))G*» 
which is zero for i ^ 2(n — 1), as a finite and ^-divisible group. Finally, by 
Tate's local duality theorem [ T a l , 2.1] and (34) we get 

(36) H^Gp^^X, QifZi(Ti))) * Q</Z,(n - l))Gp 



for all primes p. For p £ S this is zero for i ^ 2(n — 1) by the Weil 
conjectures and the same arguments as above (good reduction, p \ £). 
Thus d) follows from b). 

COROLLARY 4. H2(Gk,Hl(XyQi/Zt(n))) = 0 (equivalently, r[ n = 0) for 
almost all n E Z. 

PROOF: This follows from Theorem 3 d) and (36), since obviously 
Ht(Xy Qt/Zt(n— 1))G p 0 only for finitely many n (at most diniQ, H1(XyQa) 
many for fixed p). 

For the Tate module TtA of an abelian variety Ay the injectivity of the lo
calization map H1(GkiTtA) —• Ylp H1(GpyTtA) has been shown by Wake, 
by a different method (see [Wak] and also [Mi2 , I p. 109 ff.]). Conjec-
turally, Ker a\,n and K e r a ^ n a r e finite for all n G Z. Namely, Grothendieck 
and Serre have conjectured that the action of Gk on Ht(XyQi) is semi-
simple, and one has 

L E M M A 10. If the action of Gk on Ht(XyQt) is semi-simple, then the 
localization maps a\,n and Oi1^n have finite kernels for all n G Z. 

PROOF: We have only to consider , since then the case of ct2 follows by 
the global duality theorem. Let M — Hl(Xy Tt(n)) and 

M6 = ( J M G K , 
K/k 

where K runs over all finite extensions oik. By the assumed semi-simplicity, 
the exact sequence 

0 -> M6 M MfM6 0 
r 

has a rational retraction, i.e., a map r as indicated with r o i = tv for 
some v > 0, and one has (M/M6)6 = 0. By the existence of r, it suffices 
to show that a i has a finite kernel for M6 and for MfM6 (the kernels 
are always finitely generated over Tt). By passing to a finite extension 
of k and using the Hochschild-Serre spectral sequence, one easily reduces 
to the case where Gk acts trivially on M6. But ct\ is even injective for the 
module Zty since Gk is generated by the Gp for p G P. On the other hand, 
let Q = lm(Gk Aut(MfMs)) and let Q be the Lie algebra of Q. Then 



((M/M6) <g> Qe)5 = ((M/M6) ® Q^)5 (see [ L , V 2.4.10], and this space is 
zero as remarked above. Since g is semi-simple by assumption this implies 
Hr(g, (M/M6) ® Q/) = 0 for all r > 0, see [ChE, Theorem 24.1], and we 
may proceed as in the proof of Theorem 3 a). 

5. T h e l oca l case. 

We now investigate the local groups H2(GP, Hl(X, Qe/Ze(n))). 

L E M M A 11. a) Let m = i + 1 — n; then 

dim H2(Gp, Hi(X, Qt/Ze(n))) = d i m Q , H2(Gp, H\X, Q£(n))) 

= d i m Q , H1 (X, Qe(n - 1))G, = d i m Q , H\X, Qe(m))G>. 

b) Ifp f £, then dimQiH*(X,Qe(m))G> < - ords=m LP(H{(X, Qe), s), 
with equality if F r p acts semi-simply on H1 (X, Qi)I?. 

PROOF: a) The group G p satisfies the property (Fe) and hence all conclu
sions of Remark 1. This shows the first equality. The second one follows 
from (36), and the third one from the isomorphisms 

(37) i T ( X , Q , ( n - l ) ) v ^ H2d-\X,Qe(d+l-n)) S jr (X ,Q<(t + l - n ) ) 

obtained from Poincare duality and hard Lefschetz. 
b) follows from the relation 

- ord L(Hi(X^e)1S) = ord det ( l - Fr p(TVp)"* | Hi(XiQi)1') 
5=m s—m 

= ord det (1 - Fr p (TVp)" 3 | Hi(X1Qe)1^m)) 

(note that F r p acts on Qe(m) via multiplication by (TVp) - 7 7 1). Hence this 
number is the multiplicity of the eigenvalue 1 for F r p on Ht(X,Qe(Tn))1*, 
while Hl(X, Qe(m))G* = (H{(Xy Q / (m) )^ ) < F r p ) is the space of eigenvectors 
for this eigenvalue. • 

By Lemma 5 and Theorem 3, or directly by the exact sequence of Tate's 
duality theorem (compare (32)) 

H2(Gs,H\X,Qe/Ze(n)))^ © H2(Gp,H\XyQe/Ze(n))) 
pes 

^Hi(X1QeZZE(U-I))cs ^ O 

and the known case of H2(GP, H%(X, Qt/Ze(n))) for p ^ S we see that 
Conjecture 1 implies the local 



C O N J E C T U R E 3. H2(Gp,Hk{X,Qe(n))) = 0 i f 
a) i + 1 < TC, or 
b) i + 1 > 2n. 

(Equivalent formulation by Lemma 11: H%(Xy Q^(m))L r p ^ 0 at most for 
0 < m < ^f i . ) 

The investigation of this divides into two cases. 
Case p \ £: The case of good reduction has been treated above. Simi
larly, one has 

L E M M A 12. IfX has potentially good reduction at p, then H2(Gp,Hl(X1 

Q//Z,(n))) = O f o r i ^ 2 ( n - l ) . 

P R O O F : Since cde(Gp) < 2, the corestriction is surjective on H2. so we 
may pass to some finite extension, where X has good reduction and where 
the result follows from the Weil conjecture. 

In general, we may pass to some open subgroup Gt
p of Gp such that the 

action of its ramification group on V = Hl(X, ) becomes trivial and the 
action of its inertia group It

p becomes unipotent (see [ S G A 7 1]). Let M # 

be the associated monodromy filtration, cf. [D4, 1.6.1]. This is a finite, 
ascending, Gp-equivariant filtration on V such that I1

p acts trivially on 
G r ^ V = MrVfMr^1V for all r el. There is the well-known 

M O N O D R O M Y C O N J E C T U R E (see [Dl] and [RZ, Introduction]). One has 

0 = M-^1V C M-iV C . . . C Mt-XV C MiV = V, 

and Gr^ f V is pure of weight i+r (with respect to the action of the Frobenius 
in G1

pIIp; this does not depend on the choice of G1
p and can be reformulated 

purely in terms of Gp, cf /D4 , 1.7]). 

The function field analogue was proved by Deligne [D4, 1.8.4]. For num
ber fields the conjecture is known for abelian varieties; for further results 
and discussions see [RZ]. 

By definition of M9 one has 

(38) V1* C M0V, 

hence the Monodromy Conjecture would imply that this G p/I p-representation 
is mixed with weights between 0 and i. In particular, this would imply the 
following, well-known conjecture (cf. [D3, p. 319]): 



C O N J E C T U R E (on the bad factors of the L-function). Lp(Hl(X, Qt), s) has 
poles at most for 0 < Re(s) < \. 

This conjecture has been proved in many cases; by Lemma 11 b) it implies 
Conjecture 3 for p \ £ (in fact, we only need the case s = m £ Z). 

Case p I £ = p: Let C p be the completion of the algebraic closure of 
Qp. Faltings [Fal] has proved the Hodge-Tate decomposition 

(39) Hi(XMig)Cp* 0 Ht(X1Wx) ®Cp(-r), 
Q P r+t=i k 

depending on an embedding k <—• Cp inducing p. This is an isomorphism 
of topological G p-modules, and Tate has proved 

Q (hp (completion of k at p), v — 0, 
C p ( l / ) P = \ 0 , v * 0 

see [Ta2, Theorem 2]. 

C O R O L L A R Y 5 (compare [Sou4, Theorem 2 hi]). For p | p one has 

( . _ \ G p a) m < 0 ( <=> i + 1 < n), or 
^ ( X , Q , ( m ) ) ( g ) C J =Ofor " J 

\ QP J b') m> i (<=> n < 1). 

In particular, the same vanishing holds for Hl(X, Qp(m))G? C (Hi(X, 
QP(m)) <8> Cp)G>, and, by Lemma 11, H2(GP,H{(X,Q£/Ie(n))) vanishes 
for the indicated values of n = i + 1 — m. 

To obtain a better bound than b'), we consider the finer, crystalline 
theory. First assume that X has good reduction at p. Let A'(p) be a 
smooth and proper model of X over O P , the ring of integers in kp, and let 
Xp = X(p) XQP /c(p) be the special fiber, where K(P) is the residue field 
of O P . Let kp be the maximal unramified extension of Qp in kp and let O P 

be its ring of integers (note that O P — W(K(P)) is the ring of Witt vectors 
for K(P))- Then one has the 

C R Y S T A L L I N E C O N J E C T U R E (Fontaine [Fo2, A.11]). There are canonical 
Gp -isomorphisms 

H\X, Qp(m)) = {ve Hi1-MfO0
p) <g> Bcvis \ <j>v = pmv} n Fm 



for all i > 0 and m E Z. 

Here # c r i s denotes the crystalline cohomology, and BCTIS = BCI\s(kp) is a 
certain ring containing kp equipped with three compatible structures: 

- an action of G p 

- a decreasing filtration F* on jE?Cris <8>fc<> kp 

- a Frobenius endomorphism (j) inducing the absolute Frobenius a on 
V 

The Frobenius <j> on H1
cris <g> BCTIS is the tensor product of <j> on BCRIS and 

the crystalline Frobenius </> on Hcris; this m a ^ e s sense, since both are a-
linear. The filtration F0 in the Crystalline Conjecture is naturally defined 
on (Hllis <g> Bctis) kp = (H1

cris ®ao kp) ®kp (BCTIS ®fco AJ p ) , as the tensor 
product of the filtration F9 on Bctis ®ko kp and the Hodge filtration, via 

p 

the canonical isomorphism with the de Rham cohomology 

Hc
iMfO0

p) ®kp = H*DR(X xk kP/kP), 

see [BO]. 
Let (j)p = <f>[K(ps>:Fp} be the Frobenius with respect to «(p). Then (f>p acts 

fcp-linearly on Hcris(Xp/Op) ®0o kp, and it is known that the eigenvalues 
of 4>p on this space are the same as the eigenvalues of the (geometric) 
Frobenius F r p on H\t(Xp, Q )̂ for i ^ where Xp = Xp X K ^ «(p) for an 
algebraic closure «(p) of /c(p), see [ K M ] . On the other hand, one has 

K J I 0, i / > 0. 

In particular, the Crystalline Conjecture would imply 

(40) H'(X,Qp(m))G> C{v£ H'clis(Xp/O0
p)® k°p | = (Np)"'v) . 

Combining this with the (proved!) Weil conjectures, we would obtain 

# X X , Q p ( m ) ) G p = 0 for z ^ 2m, 

as in the £-adic case of good reduction. 
If kp = fcj, the Crystalline Conjecture has been proved by Fontaine 

and Messing (for p > d i m X , see [FM]) and Faltings (in general, [Fa2]). 
Hence we have 



COROLLARY 6. If p is unramified in k/Q and X has good reduction at 
p I p9 then f f l ( X , Q p ( m ) ) G > = 0 for i ^ 2m. 

For arbitrary X there does not yet exist a "crystalline conjecture". I think 
that some analogue of the Monodromy Conjecture should hold. There is 
an obvious guess: that there is an Gp-equivariant filtration 

0 = M _ t _ a Vp C M-iVp C . . . C Ml^1Vp C MlVp = Vp of Vp = H1 (X, Qp) 

such that Gr^ f VJ, is potentially crystalline [Fo2, 5.6], and over a finite ex
tension of kp the polynomial of the "crystalline" Frobenius on the associated 
filtered module [Fo2, 5.1] is the same as the polynomial of the Frobenius 
on Gr^Vi for the corresponding ^-adic representations VJj = H1(X1Qfi) 
for £ ^ p. However, this guess is false, as can be seen in the following 
counterexample, due to Mazur, Tate and Teitelbaum. 

Let UJA(Z) = (r}(z)ri(5z)y = q-Aq2 + 2qz-5q5 -..., q = e2niz
y where rj(z) 

is the Dedekind ^-function. This is a new form of weight 4 of c cHaupttyp" on 
To(5) and the associated compatible system V = {Vi} of two-dimensional 
^-adic representations of G Q [D2] has the following properties [ M T T , I §12, 
I I §15]: 

i) the image of G 5 in Gl(V5) = G^(Qs) is open, 
ii) for £ ^ 5, V r / 8 is one-dimensional, and the Frobenius F r 5 acts on it 

by multiplication by —5. 
For ii) we have combined the facts that a 5 = —5 in the ^-series u>4 = 
S n > i anQn and that the L-function of V equals the L-function of u>4 at 
all places (see [C]; indeed, the assertion needed for ii) was already proved 
by Langlands in his Antwerp article and, independently, by Deligne in his 
letter to Piatetski-Shapiro). 

Consequently, Vi has a non-trivial monodromy filtration for the decom
position group G 5 for all £ =fi 5, while V 5 has no non-trivial G 5-filtration at 
all; the same holds over any finite extension of Q. (The ^-adic Monodromy 
Conjecture is true here, by the way; since det VJj = Q*(—3), F r 5 must act 
by multiplication with -25 on the one-dimensional space Vij& for £ ^ 5.) To 
see the connection with the subject of this paper, note that {Vi} is a direct 
factor of {H3(X,Qi)} for a certain three-dimensional, smooth projective 
variety X over Q [D2]. 

This example is useful for further observations. One can also show: 
iii) V is unramified outside 5 (i.e., each Vi is unramified outside 5 and £\ 

this follows from the construction in [D2]), 



iv) the image of G Q ( ^ 5 ) in Gl(V5) is a pro-5-group [Ma2]. 

We deduce from this: 

L E M M A 13. Let k be a finite extension of Q, and let Ai C Ve, for each I, be 
a Gk-invariant lattice (i.e., Ae = T2 as a le-module, with Ae ®zt Qe = Ve). 

a) Ve(v)G» = Qe, if u = 1, £ ^ 5, p | 5, and the degree f(p \ 
5) of p over 5 is even; V£(v)Gp = 0, otherwise. In particular, 
H2(Gk, VtfAi(U)) = 0 for u ± 3, and H2(Gk, V5/A5(3)) = 0. 

b) ffQ(/K3) C k, then dimH2(Gk,Vi/Ai(3)) > 0 for £ ^ 5. 
c) Let k = Q(fi3). IfSD S5, then H2(Gs,V5(v)) = 0 for all u £ 1. If 

£ ± 5 and S D S5USe, then dimQl H2(GS, Ve(3)) > 1. In particular, 
d i m Q s H1 (Gk, V5(3)) = 2, but d i m Q , H1 (Gk, Vi(S)) >2for£^5. 

PROOF: a) The case p \ 5, p \ £ is clear by good reduction and the Weil 
conjectures. For p \ 5 and p | £ the Gp-representation Vi is crystalline, 
since this is the case for k = Q by Fontaine-Messing-Faltings, and the 
associated admissible filtered module is the base extension of that for k = Q 
(cf. [ F o l , 7.3.2]). Hence we may argue using the Weil conjectures as in 
Corollary 6. For p | 5 we have V5(u)G> = 0 for all u G Z, since the 
image of G p in Aut (A 5 ) = Gh(T5) is open by i). For p | 5 ^ £ we have 
Vi(V)0V = {v £ v / p I F r p v = (Np)u • v ) ; by ii) this is non-zero if and only 
if v = 1 and F r p is an even power of F r 5 . The other assertions of a) now 
follow from the analogues of Lemma 11a) and Theorem 3 d) for Vi; recall 
that Vi is a direct factor of H3(X^i), moreover, (37) can be replaced by 
the isomorphism V? = V£(3) (note that (R1 f*Qt)V = ^ V * Q K 1 ) i n Id^ 
3.7] by Poincare duality). 

b) follows similarly from the local results in a), since f(p | 5) = 2 for the 
prime p | 5 in Q(^s)-

For the first assertion of c) note that the action of Gs 5 (Q(^is)) factors 
through its maximal pro-5-quotient G by iii) , and that this quotient is pro-
5-free by [Br, 3.3], since there is only one prime above 5 in Q(A iI 5) and 
the class number of Q(^is) is 1 [ W a l , Tables]. We obtain the vanishing of 
# 2 (Gs 5 (Q(^i5)) , V5/A5(u)), since the inflation 

H2(G, V5, A5(u)) H 2 (G 5 5 (Q ( ^ i 5 ) ) , V5/A5(u)) 

is an isomorphism (cf. [Neu, Cor. 1]). By the surjectivity of the corestric-
tion on H2, valid since cd5(Gs5(Q(/*3)) < 2, we get the same vanishing for 



G s 5 over Q(/i3), hence for Gs with S D S5, cf. (13). The other results 
are clear from a), b) and the analogues for Vt of Lemmas 1 to 5; we have 
x ( G s , Vt) = — [k : Q] by Lemma 2, since the Hodge structure V R belonging 
to V in H3(X(C)5R) is of type {(0, 3), (3,0)} [D3, §7]. • 

From this example we learn that for a compatible system V = {Vt} of £-
adic representations the dimension of its Galois cohomology can get smaller 
for the primes £ where V has bad reduction. In particular, the numbers 
di,n? r ; , n and r[ n in §3 may depend on £. I would expect that they are the 
same for all £ where X has good reduction. For r\ n this would follow from 
the Monodromy Conjecture and the Crystalline Conjecture, via Theorem 3. 
For r 2 ) T l (and hence c?j>n), compare §6. 

I think that there should exist a p-adic analogue of the monodromy filtra
tion on the "crystalline side", in the following sense. Consider the following 
category MF£'N: objects are weakly admissible filtered modules D over kp 

(see [Fo2, 5.1]) together with a nilpotent homomorphism of fcjj-modules 
N : D —• D satisfying <j>~lN<f> = pN (no compatibility with the filtration 
J P * ) . 1 This implies that <f> respects the monodromy filtration M # associ
ated to N. Morphisms between these objects are morphisms of filtered 
modules which respect N. There should exist a category R e p c r i s N(fcp) of 
Qp-representations of Gp = Gel(Jcpfkp)i containing the crystalline ones, 
and an equivalence of tensor categories between MF^N and Rep c r i S j N(fcp). 
Under this equivalence of categories, the crystalline representations should 
correspond to those objects in MF^N for which N = Q (note that this sub
category can be identified with MF^I the category of weakly admissible 
filtered modules over kp). H1(XiQp) should be in Rep C R I S N(^p) poten
tially, i.e., over a finite extension of kp. If H1(XiQp) is in R e p c r i s N (kp)i 

and D is the associated object in MF^N, the characteristic polynomial of 
<pp on G r ^ f D should be the same as the characteristic polynomial of F r p 

on G r f Vt for V1 = i T ( X , Q/), I + p. 

1 A d d e d i n p r o o f : In a letter to the author (November 1987), J . - M . Fontaine observed 
a wrong normalization of <f> in the first version of this paper and pointed out that the 
modules in M F ^ N should just be weakly N-admissible: in the notation of [Fo l ] this 
means postulating tfj(D') < t^{D') only for submodules D1 C D respected by N. B y 
developing a formalism quite similar to the one for his Crystal l ine Conjecture, Fontaine 
then gives a definition for R e p c r i s N ( f c p ) and the functor to M F ^ N . T h i s leads to a 
precise formulation of the p-adic M o n o d r o m y Conjecture, and Fontaine proves it for 
abelian varieties. 



This would imply 

(41) H^X.Q^m))^ =rlomGp(Qpi Hi(X1Q^m))) 

=• EomMFf,N{k°p,D(m)) =~ {v G D \ <f>v = PmV1Nv = 0} O F M . 

We see that the dimension of this space can be smaller than the dimension 
of 

(42) {v e D I <f>v = PmV1Nv = 0}, 

which should equal the dimension of 

(43) {v £ H1(X1Qi) I Fipv = (Np)mV1Nv = 0} 

*JT(X ,Q*(m)) G ' ^P-

This would explain the phenomena discussed in Lemma 13. 
The compatibility of N with F* decides whether the mondromy filtra

tion "lifts to characteristic zero", i.e., to Vp (compare the relation between 
filtrations and lifting problems for p-divisible groups [Gr]). Consider the 
example of the two-dimensional GQ 5-representation V 5 associated to UJ4. 

For the associated object D of MF^ one expects a filtration 

0 = M-2D g M-iD = ImN = KerN = M0D g M1D = D 

such that <j> acts via -5 on Gr^ f
1 D and via -25 on G r f f D. If TV is compatible 

with Fm
1 then KerTV and CokerTV are weakly admissible; this implies D = 

F 0 = F 1 ^ F 2 ^ F 3 = 0. The associated 5-adic representation would be 
a non-trivial extension of Q5(—2)(x) by Q5(—l)(x)> where (x) denotes the 
twist by the character belonging to the unramified extension of degree 2 
of Q 5 . However, the Hodge filtration on D should satisfy 

D = F0^ F1 = F2 = F3 ^F4 = 0 

(recall that V R is of type {(0,3), (3,0)}). Then Newton polygon and Hodge 
polygon (see [Fo l , 4.3]) look like: 
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It follows from [Fol , 4.3.3] that D is weakly admissible if and only if 
<j> does not respect F1D. It is then also admissible, since the length is 
4 < p = 5 [ F L , Theorem 8.4]. Moreover, we see from (44) that there are no 
proper weakly admissible submodules, therefore the associated crystalline 
GQ 5 -representation Vs is irreducible as V 5 is. Nevertheless, V 5 should not 
be isomorphic to V 5 , since it corresponds to the module D with N = O.2 

REMARK 5: The discussion above suggests that one should — for all p 
and e — also expect H2(GPi H{(X, Q/(n))) = 0 for i + 1 = 2n (that is, 
Ht(X) Q f (m) ) G p = 0 for m = 1 ^ 1 ) , thus sharpening Conjecture 3. Also, 
everything could be formulated for varieties over hp, not mentioning a global 
field, and the conjectures should still be true. 

6. T h e case n < 1: + 1 < 2n. 

Let V be an ^-adic representation of G s , then the kernels of the localiza
tion maps 

Q l l 5 ( V ) : H1(GsiV) —> QH1(GpiV) 

a 2 ) S ( F v ( l ) ) : # 2 ( G S , V v ( I ) ) —> 0 H2(GP, V v ( I ) ) 
pes 

are Q^-dual tc each other by Tate's duality theorem (here "V v is the Q^-dual 
of V). 
Question 2 Let V be pure of weight w. Is Q l j 5 ( V ) injective for w ^ — 1 
(or, equivalently, is Q 2 , s ( ^ ) injective for w ^ — 1)? 
REMARK 6: Both G 5 and the Gp satisfy the condition (Fi) of Remark 1. 
Hence, if A C V is a G 5-equivariant lattice, then we have diniQ, Ker Q r j 5 ( V ) 

2 A d d e d i n p r o o f : In view of the previous footnote, it is possible that V5 corresponds 
to the module D = Q s e i (B Q s e 2 with 4>e\ = — 5e i , <£e2 = —25e2, A r e i = 0, N e 2 = e i , 

= D , F 1 D = £> = Q 5 e 2 , and F4D = 0, which is weakly JV-admissible but not 
weakly admissible. 



= d i m K e r a r > s ( V / A ) = rankz, K e r a r > s ( A ) , so we may equivalently ask for 
the finiteness of the last two kernels. Also, we may replace A or Vj A by 
isogenous modules. In the commutative diagram 

H2(GS,V/A) > ® ( G P ) V / A ) 
pes 

H2(GkyVfA) > QH2(GpyVfA)y 

all p 

the bottom map is infective for V pure of weight w ^ —2 by the argu
ments of Theorem 3. Hence for w — 2 we have dim Kera2 , s (V/A) = 
dimKev(H2(Gs,V/A) '1H H2(GkyVfA)) and may reformulate Question 2 
in terms of the above inflation map. It is more complicated to describe 
what this implies for the if 2 - inflation for V or A. 

T H E O R E M 4. The function field analogue of Question 2 has a positive an
swer for w ^ 0 , - 1 , —2. More precisely, let U be a smooth, afhne curve over 
a finite field F g and let V be a ^-representation of TTi(UyTj) of weight iv 
(here fj is a geometric point over the generic point r\ = Spec k ofU). Let Y 
be the smooth, projective compactihcation ofU, and for each x G Y\U let 
Gx C Gk = 7r(rjyfj) be a decomposition group at x. Then the localization 
map 

a, '.H1(Itl(UyTj)yV)^ © H1(GxyV) 
xev\u 

is injective for w ^ — 1, except possibly when w = 0 and VGK ^ 0, and 

a2: H2(Tv1(UyV)yV) - © H2(GxyV) 
xeY\u 

is injective for w ^ —1, except possibly when w = —2 and V( — l)ck 0. 
If iu = — 1, then ai and a 2 are the zero maps. 

P R O O F : Let F be the smooth Q^-sheaf on U corresponding to Vy and let 
j : U <-+ Y be the inclusion. Then the localization maps ar can be identified 
with the maps ar in the relative cohomology sequence 

(46) • Hr(YyJlF) h Hr(UyF) ^ 

© Hp1(YJlF)-* Hr+1 (YJ1F)^..., 
xeY\u 



compare [ M i 2 , 4.13.c]. It remains to consider the maps 

Pr • Hr
c(U,F) = Hr(Y,j,F) -> Hr(U,F). 

Now /3r factors through Hr(YiJ^F)i and the Hochschild-Serre spectral se
quence gives an exact sequence 

O - Hr-l(YJ.F)r - Hr(Y,j*F) - HT(Yi3*F)T - 0, 

T = G a l ( F ? / F 9 ) and Y = Y Xpq Fq. Moreover, Deligne has shown that 
Hr (Y\j*F) is pure of weight r + Wi see [D4, 3.2.3]. This implies the 
vanishing of Hr(YiJi^F) for r + w ^ 0 and r — 1 + w ^ 0. 

For r = 1 and w = 0 we get the isomorphism H1(YJ^F) = H0(YiJ^F)r) 
the latter group has the same dimension as 

H°(Yyj*F)r = H0(UiF) = VGk. 

For r = 2 and iu = - 2 we have H2(YiJ^F) ^ tf2(y,i*F)r ^ 
J f 0 ( I r

5 J ^ i 7 1 v ( I ) ) F v , see Zoc c«t; this has the same dimension as 

H0(YJtFV(I))T = H°(U,F"(l)) = Hom 0 t (V l Q^l)) . 

Finally, for w = — 1 and a: G Si we obtain 

H0(GxiV) = ( y ' * )Gal (F 9 /K (x ) ) = 0 

(Ix C G f
1 the inertia group), since the stalk Fx = Vlx has weights < 

— 1 [D4, 1.8.1]. By local duality, we also have 

H2(Gk,V)^H\Gk,V(l)y = 0. 

This implies Hl(GXi V) = 0, since 

3 
0 = X(GX,N) := ] T ( - l ) " d i m Q ( H"(GX,N) 

for every Q^-representation N of Gx (this follows, e.g., from [Ta l , 2.2] as 
in Lemma 2). 

REMARK 7: If V is a semi-simple n\(Ui fj)-represent at ion, we get the injec-
tivity of OLT also for w = 0 and w = -2: If V ^ Qr

i 0 V1 with V^k = 0, we 



have K e r a i ( V i ) = O by the theorem, and Kerai(Q^) = 0, since the class 
group of k is finite. The case of a2 follows by duality. 

The weight of H1 (X, Q*(rc)) is i — 2n; hence we ask for the injectivity of 
OttJa

s := ar>s(Hl(X, Qt(n))) for i ^ 2n — 1. Conjecture 1 implies that al
2

,n
s 

is injective for a) i + 1 < n or b) i + 1 > 2n, hence that a\yn
s is injective 

for a) n < 0 or b) i + 1 < 2n, by using (37). Case b) would imply that we 
could consider the regulator maps 

r : K2n^{X)^ 0 Q < _ i f i ( G s , H 1 ( X 1 Q ^ n ) ) ) , 2n - i - 1 > 0, 

locally. Conversely, a positive answer for Question 2 would imply that 
rt- n = r[ n for z ^ 2n — 1, i ^ 2n — 2, hence that r ^ n could be computed in 
purely local terms except for these values of i and n. If i = 2n — 2, then r - n 

can be infinite and r j > n may depend on 5, cf. Example 1. If i = 2n — 1, then 
r l > n is of "global nature", and a2 is expected to be zero, cf. Remark 5 and 
Remark 8. Similar statements hold for the numbers G^ n , by the formula 

Xi1U = dimQ, Hl(X, Qi)Gh - d i > n + r i > n , 

in which Hl(X, Qt(n))Gk vanishes for i ^ 2n and is related to Tate's con
jecture for z = 2n. 

I conclude this chapter with some speculation on the regulator maps 
for n < i + 1 < 2n. I think that they are still injective, at least if 
one restricts to K2n-i-i(X/l)M ® Q^, and that the image of the last 
group in Hl(Gs>>Hl(X, Q*(n))) can be described by local conditions. (For 
i H-1 = 2n, the above regulator maps are defined on Ko(X)0

n^ <g> Q^, where 
Ko(X){

0
n) = Ker(K0(X)M H2n(X, Qe(n))Gk), and we consider this 

whole space, since 
K0(Xfl)M = K0(X)^). The nature of these local 

conditions is suggested by work of R. Greenberg (on the Selmer group of a 
compatible system of ^-adic representations), S. Bloch (on Tamagawa num
bers of motives), and P. Schneider (on a p-adic, local version of Beilinson's 
conjectures, aiming at relations between p-adic regulators and p-adic L-
functions). The subspace in question should be defined via the localization 
map 

tf^Gs, Q/(n))) - 0 H\GP, H'(X,q((n))), 
pes 



as the pre-image of a space © p e s A p , where for good reduction at £ the 
spaces Ap C H1 (Gp, Hl(X ,Qe(n))) are defined as follows 

Ap = 0 for p \i 

Ap = HhR(X x kp/kp)/(<t> - pn)FnWDR(X x kp/kp) for p | L 

The embedding of the last group in H1 (Gp ,—) is obtained via the con
necting morphism of the Gp-cohomology sequence associated to the exact 
sequence 

(47) 0 -> H\X,Qp(n)) - F n ( # j ^ ( X x fcp/fep) ® £ c r i s ) 

^ x fcp/fcp)® J B c r i 8 -+ 0 

derived from the Crystalline Conjecture (and proved for kp = kp and p > 
dim X by Fontaine and Messing). The idea to consider these spaces for 
p I p is due to K . Kato. 

7. The case iI = 1: abelian varieties. 

The Kummer sequences 0 —• /i^r — • G m - > G m —»0 induce an isomor
phism 

H1(X1Ztil)) a T f H 1 ( X 5 G m ) = T M , 

where A = Pic_x/fc the Picard variety of X/k. (Conversely, if we start 
with an abelian variety A1 then we get such an isomorphism for X = A ' , the 
dual abelian variety). By [SGA 7 I , exp. IX, §6 f.], the local conjectures are 
true in this case for every prime p: There is a filtration of G p-Submodules 

(48) 0 C Te(A)et C Te(A)ei C Ti(A) 

(et = essentially toric, ef = essentially finite), coinciding with the mon
odromy filtration after tensoring with for p \ £ (for the last property 
see [SGA 7 1, exp. I, §6]), and a semi-abelian variety A^0 over kp (the con
nected Raynaud scheme) with the following properties: There is an exact 
sequence of group schemes 

0 - > T - > A * ° - > £ - > 0 



such that T is a torus, B is an abelian variety with potentially good reduc
tion, and one has canonical Gp-isomorphisms 

(49) Te(T) S Te(A)el, 

(50) Tt(Atia) S Te(A)eS, 

(all primes £). Moreover, there is an ismorphism 

(51) Te(A)/Te(Af * Hom(T £ (A ' ) e \ Z , ( l ) ) , 

where A1 is the dual abelian variety. Hence for p f A Te(A)e\ Te(A)ei/ 
Te(A)et ^ Ti(B) and Te(A)/Te(A)e{ are pure of weight -2, -1 and 0, re
spectively. For p I £ = p, it follows from the work of Fontaine [Fo 1, 
3.3.5], [Fo2, 6.2] that T p (T ) , Tp(JB) and Hom(T p (T' ) , Z p(I)) are poten
tially crystalline (here T1 is the maximal subtorus of (A ' ) b 0 ) , and that 
over a suitable extension of kp the characteristic polynomial of the crys
talline Frobenius on the associated admissible filtered modules is the same 
as the Frobenius polynomial on the ^-adic counterparts, £ ^ p. By us
ing the isogeny Tp(A)/Tp(A)ei -+ T p ( A ) e t ( - l ) coming from [ S G A 7 1, 
exp. IX , §9], it is even possible to define a p-adic monodromy operator 
N = Np : Vp(A) —• Vp(A)( — 1) such that the associated monodromy fil
tration coincides with (48) after tensoring with Q p . Thus, in this case the 
"naive" form of the p-adic monodromy is present, but this shall not be 
needed in the following. 

T H E O R E M 5. Let Ve(A) = Te(A) ®Zl Qe-

a) H1(X) Qe(r + 1 ) ) g P S Ve(A)(r)G' = 0 for r ^ - 1 . 
b) H1(XyQi)0' = Ve(A)(-l)G> S X^(T)kp ®T Q , , 

where X^(T)kp = Homjtp ( G m , T ) is the group of cocharacters over kv of T 
(and T is the torus associated to A over kp as above). If A has semi-stable 
reduction at p, then rank X * (T) *p = dim T 9

0 , where T9 is the maximal 
torus of A0

3, the connected component of the special fibre As of the Neron 
model A of A (over Ok or Ov), and T 0 C Ts is the maximal split torus. 

P R O O F : For p \ £ one has Te(A)(r)G> C Te(A)(T)1' C Tt{A)ei(r) (coinci
dence of (48) with the monodromy filtration). Now Te(B)(r)Gp = O for all 
r € Z and Te(T)(r)G' = O for r ^ —1 by questions of weights, hence we 
get a) and 

Te(A)(-l)G> = Te(A)e{(-l)G> = Te(T)(-l)G> 

= EomG9(TeGmiTeT) = H o m , p ( G m , T ) ® Ie 

i 



by the theory of tori. 
For p I £ = p, we use the Hodge-Tate decomposition 

H\X, Q p ) <g) C p 2 H\X, Ox) ® C p © # ° ( X , f i ^ ) ® C p ( - 1 ) 
Q p ifc k 

as in Corollary 5 to deduce Hl(X,Qp)(r -f l ) G p = O for r ^ 0 , - 1 . For 
r = 0 we have T p ( A ) G p = Tp(A(kp)) = 0, since the p-torsion in A(fcp) 
is finite. For r = - 1 we first observe that ( T p ( A ) / T p ( A ) e f ( - l ) ) G > = 0, 
since Gp acts on Tp(A)/Tp(A)ei via a finite quotient by (51). Furthermore, 
Tp(B)( — l ) G p = 0 by results of Tate: let Lfkp be a finite extension such 
that B has good reduction over L1 that is, extends to an abelian scheme B 
over OL- Let B(p) be the associated p-divisible group over Oi.. Then we 
have 

T p ( S ) ( - l ) G t = H o m G i ( T p G m j T p S ) 

= H o m 0 i ( G m ( p ) , B ( p ) ) [Ta2, Theorem 3] 

= H o m 0 i (B(p)D,qp/lp) = Q. 

Here B(p)D = Hom(#(p),G m ) is the Cartier dual of B(p), which is con
nected, since it is the p-divisible group of the dual abelian scheme B1'. We 
conclude as above 

T P (A)( -1) G > = T P (T)( -1) G > = H o m j f e p ( G m i T ) ® Z p . 
z 

If A has semi-stable reduction, then X*(T) = X t e (T 8 ) (isomorphism of 
Gp-modules via Gp -» Gal(/c(p)//c(p)) =: T) by construction of T, and 
r a n k X * ( T 5 ) r = dimT s

0 by definition. 
C O R O L L A R Y 7. a) H2(Gk,H1(X,qi/li(r + 1))) = # 2 ( G f c , A £ oo ( r ) ) = 0 = 
H2(Gp, Aeoo (r)) for r ^ 1. 

Let SQ be the finite set of places, where A does not have potentially 
good reduction. Then 

H2(Gk,A£oo(l)) = © H2(Gp,AiOo(I)) 
pes0 

= e A K M G p = © * * r a v 

where Tp is formed as above, but for the dual abelian variety A' (i.e., Tp is 
the maximal torus of the Raynaud group scheme (A1 X K kp)^°). 

P R O O F : This is clear from Theorem 4, Theorem 3 and the local duality 

(52) H2(GP, Ato(I)) =• (TeA\-lf'Y 



coming from the perfect Weil pairings Aer(k) x A £ r (k) —> f.ier. 

REMARK 8: From the above, we see that H2(Gkl A^(1)) may well be 
non-zero. Hence the same is true for the group H2(Gs, Atoo (1)) mapping 
onto it (cf. Lemma 5). Next we explain why H2 (Gs ^ A too) can be non-zero 

V 

(compare Example 2): The Kummer sequences 0 —• Ae» —• A —> A —> 0 
induce an exact sequence 

0 A(k) ®Ze-> H1(GklTiA) - TeH1(IeyA) -+ 0, 

where we have used the fact that A(k) is a finitely generated group by the 
theorem of Mordell-Weil. We obtain 

d i m Q / H1(Gs^VeA) = dimQt H1(GklVeA) > rank/ A(k). 

On the other hand, we compute by Lemma 2 

X ( G 5 , VeA) = Xi AX) = -[k : Q ] • dim A , 

since the R-Hodge structure HX(X XQR1 R) is of type {(0,1), (1, 0)} and thus 
an induced module for F00. Hence dimQ, H2(Gs, VeA) > rankz A(k) — [k : 
Q]- dim A 1 and this number can be strictly positive (there are elliptic curves 
over Q with Mordell-Weil rank > 1). 

This also shows that a2^s(Ve(A)) can have a non-zero kernel, since its 
target is zero by Corollary 5 a); compare the exception in Question 2 (Ve(A) 
has weight -1). 

As explained, these counterexamples concern the case (i,n) = (1,1), but 
they may also apply to the case i = 2n — 1, since H2n~1(X1 Te(n)) may 
contain the Tate module of an abelian variety, namely the "abelian part" 
of the n-th intermediate Jacobian, compare [Bi]. 

REMARK 9: Consider the exact sequence 

...-> © Ae~(r-l)G> H2(Gs,Ae~(r))'^ H2(GklAe~(r)) -> 0 

(cf. (13)). Surprisingly, the finite groups Aeoo (r — l ) G p (p ^ S) can add up 
to an infinitely divisible group via 8 for r = 0 (can one describe this "adding 
up" in a precise way?). Conjecture 1 claims that this cannot happen for 
r ^ 0,1, and Question 2 asks whether this can happen for r = 1 (compare 
Remark 6). 



In the end, we remark that the Iwasawa theoretic question about Z\ = 
H2(Hs, H1(XyQifIe)Y (cf. §3) is related to Mazur's conjecture [Mai, 
p. 184]. In fact, let A be an abelian variety over ky let £ be a prime of 
good reduction for A y and let U00Jk be the cyclotomic Z^-extension, H1

s = 
Ga\(ksIk00) etc. as in §3. Then Mazur's conjecture, as generalized to super-
singular primes by Schneider [Sch3, p. 348], says that H2

ppf(000y A(£)) = 
0, where O00 is the ring of integers in Zc00, A is the Neron model of A y 

and A(£) is the associated ^-divisible group, regarded as a sheaf for the 
/pp/-topology. 

L E M M A 14. Assume that the conjecture of Mazur-Schneider is true for A 

and £, and let S be a set of places of k containing all places above £• oo, and 
all primes where A has bad reduction. Then H2(H1

sy Ae<x>) = 0 (i.e., by (21) 

and Lemma 8, H2(Gs, Ae™ (r)) = 0 for almost all r = 0 mod [k(fie) : k]). 

PROOF: Let Osoo be the ring of 5-integers in It suffices to show the 
surjectivity of the restriction 

(53) H2
fppf(O00yAW) -> H}ppf(Os,oo, Atf)), 

since there are canonical isomorphisms 

H2
fpp/(Osl0O, A(C) s HMOst00, A(C)) = H\H'S, A , ~ ) . 

Indeed, the first one holds, since A(£) is etale over (9s,oo, and the second 
one follows by the same arguments as (16). For the surjectivity of (53), it 
suffices to show 

(54) H3
fppf^(O00yAW) = O for $ € Spec Ooo\ Spec Os,<x>, 

and for this we may pass to the Henselization O00^ of O00 at . 
If 3̂ I £y then the claim follows from [Sch2, Lemma 5], while for { £ 

we may again pass to etale cohomology and use the exact sequence 

• • - - H"-1 (Jkoot^Ai-) - Hgttp(O00tv9AW) - Hli(O00^AW) 

where Jc00i<p is the field of fractions of O00^y and Hli(O00^yAW) = 
HvXK(V),A(I) X 0 O O ^(V)) for the residue field of <P [ M i l , III 3.11]. 
But cde(hz(V)) = O since /c(̂ 3) contains all ^-power roots of unity, and 
cde(k00)V) < 1 for the same reason. 
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