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Low-temperature photocarrier dynamics in monolayer MoS2
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The band structure of MoS2 strongly depends on the number of layers, and a transition from indirect

to direct-gap semiconductor has been observed recently for a single layer of MoS2. Single-layer MoS2

therefore becomes an efficient emitter of photoluminescence even at room temperature. Here, we

report on scanning Raman and on temperature-dependent, as well as time-resolved photoluminescence

measurements on single-layer MoS2 flakes prepared by exfoliation. We observe the emergence of

two distinct photoluminescence peaks at low temperatures. The photocarrier recombination at

low temperatures occurs on the few-picosecond timescale, but with increasing temperatures, a

biexponential photoluminescence decay with a longer-lived component is observed. VC 2011 American
Institute of Physics. [doi:10.1063/1.3636402]

With the discovery of graphene and the exfoliation tech-

nique for preparing single-layer samples from bulk materials,

layered crystal structures, in which the binding energy

between adjacent planes is much lower than the binding

energy within a plane, have attracted a lot of interest in

recent years.1 While graphene has many fascinating proper-

ties,2 its lack of a band gap hinders the development of tran-

sistors, and the emission of photoluminescence (PL) in the

visible range has only been observed under pulsed excita-

tion.3,4 The dichalcogenide MoS2, which is used commer-

cially, e.g., as a lubricant, has been investigated as an

alternative to graphene nanoribbons for room-temperature

transistor operation,5 and was recently shown to undergo a

transition from indirect to direct-gap semiconductor as its

thickness is reduced to a single layer.6,7 Similar to graphene,

where Raman scattering has been used to determine the layer

thickness8 or the effects of nanolithography on the carrier

concentration,9 Raman spectroscopy of MoS2 is a highly use-

ful tool to identify single layers.10

Here, we report on Raman scattering and on temperature-

dependent, time-resolved photoluminescence measurements

on MoS2 flakes. The MoS2 flakes were prepared using the

transparent tape liftoff method well-established for graphene,

from natural MoS2. A silicon wafer with 300 nm SiO2 layer

and lithographically defined metal markers was used as a sub-

strate. After initial characterization with an optical micro-

scope, the samples were analyzed by Raman spectroscopy at

room temperature. For this, we utilized a microscope setup, in

which a 532 nm cw laser was coupled into a 100� microscope

objective, which also collected the scattered light in backscat-

tering geometry. The scattered light was recorded using a tri-

ple grating spectrometer equipped with a liquid-nitrogen-

cooled charge-coupled device (CCD) sensor. The sample was

mounted on a piezo-stepper table and scanned under the

microscope. The spatial resolution of this setup is about 500

nm. For low-temperature PL measurements, the sample was

mounted in a He-flow cryostat. A microscope setup with a

40� objective, into which a 532 nm cw laser was coupled,

was used to collect the PL. The spatial resolution of this setup

is about 1 lm. The PL was recorded using a single-grating

spectrometer equipped with a CCD sensor. A low-pass filter

with an onset at a wavelength of 600 nm was used in front of

the spectrometer slit to suppress stray light from the laser.

Time-resolved PL (TRPL) measurements were performed

using the same microscope setup. The second harmonic

(wavelength 402 nm) from a picosecond Ti: Sapphire laser

was used to excite the sample, and the PL was collected with

a streak camera system. The time resolution of this setup is

about 5 ps.

First, we discuss the Raman experiments on our sample.

Fig. 1(a) shows an optical micrograph of the investigated

flake, which shows well-defined steps in the apparent color

of the flake, indicating areas which differ in thickness. The

inset contains an outline of the flake shape. Typical Raman

spectra measured on different regions of the flake are shown

in Fig. 1(b). We observe two characteristic Raman modes of

MoS2: the E1
2g mode, which corresponds to an in-plane

motion of Mo and S atoms, and the A1g mode, which is due

to an out-of-plane vibration of Mo and S. Additionally, the

LO phonon mode of the Si substrate is observed. As reported

previously,10 the frequency and linewidth of the modes

depend on the number of layers of the flake: while the A1g

mode stiffens with increasing layer number due to an

increase of the effective restoring forces acting on the atoms,

the E1
2g mode anomalously softens, making the difference of

the two mode frequencies a clear indicator for the number of

layers. To determine the layer thickness of the different

regions of the flake, we performed scanning Raman measure-

ments with a stepsize of 500 nm. The spectra collected for

each position on the flake were analyzed using an automated

fitting routine which determines the central position and the

spectrally integrated intensity of the two MoS2 Raman

modes and the Si LO phonon mode. The data extracted in

this manner were used to generate the false color plots shown

in Figs. 1(c) and 1(d): in Fig. 1(c), we plot the integrated in-

tensity of the E1
2g mode as a function of position. Superim-

posed on this intensity map is the outline of the flake. We

clearly see that the E1
2g intensity closely maps the outline of

the flake, a maximum of the intensity is observed in a small

region of the flake that separates the near-transparent areaa)Electronic mail: tobias.korn@physik.uni-regensburg.de.

0003-6951/2011/99(10)/102109/3/$30.00 VC 2011 American Institute of Physics99, 102109-1
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from the thicker area of the flake, as seen in the optical

micrograph. Since the E1
2g intensity was reported to have a

maximum at a thickness of 4 layers,10 we may assign that

thickness to this region. To further analyze the regions of the

flake, we determined the difference of the E1
2g and A1g modes

from the Raman scans, as depicted in Fig. 1(d). Here, we see

that only the small region on the top right of the flake shows

a frequency difference of about 18 cm�1, corresponding to a

single layer, while the other areas have larger frequency dif-

ferences between 21 cm�1 and 26 cm�1, corresponding to

thicker layers.

Next, we discuss the PL measurements on the same

flake. For these measurements, the laser was focussed onto

the portion of the flake identified to be a single layer. Scans

of the flake (not shown) confirmed that appreciable PL is

only observed from this region. Fig. 2(a) shows typical PL

spectra of the single layer region measured at 4.5 K. The

spectrum consists of two peaks, which are well-

approximated by Gaussian fit functions, a spectrally broad

peak at lower energy (marked as L in the figure), and a spec-

trally narrow peak at higher energy (marked as H). The

energy difference DE between these peaks is about 90 meV.

The relative intensity of these two peaks does not vary with

spatial position on the single layer region (not shown).

Remarkably, the shape of the PL spectrum also remains

unchanged as the excitation power is varied by more than

two orders of magnitude, as the two spectra in Fig. 2(a) dem-

onstrate. Additionally, the total PL intensity (determined

from the integrated area of the two peaks, normalized by the

PL exposure time) is proportional to the excitation power in

the whole intensity range investigated here (Fig. 2(b)). This

indicates that there is neither a saturation of the absorption

within the single layer at high excitation powers nor an

appreciable threshold for the emergence of PL due to the

presence of defects allowing for nonradiative recombination

at low excitation powers. The fact that the relative intensity

of the two peaks does not change with excitation power indi-

cates that the states corresponding to the two peaks form in-

dependently and that there is no appreciable population

transfer from the high-energy state to the other during the

photocarrier lifetime.

We now turn to temperature-dependent PL measure-

ments. In this measurement series, two excitation powers

were used for each temperature (40 mW and 1 mW). Again,

for a fixed temperature, we observe no change of the shape

of the PL with excitation power (not shown). With rising

temperature, the two observed peaks broaden and shift to

lower energy, as Fig. 2(c) shows. The energy difference DE
between peaks L and H remains constant in the temperature

range in which we clearly observe both peaks. We note that

FIG. 1. (Color online) (a) Optical micrograph of MoS2

flake on Si/SiO2 substrate. The inset shows the shape of

the flake. (b) Normalized Raman spectra measured on

different areas of the flake. (c) Intensity map of the E1
2g

Raman mode measured on the flake. The flake shape is

superimposed on the intensity map. (d) Map of the fre-

quency difference of the E1
2g and A1g Raman modes.

The scan area is identical to (c).

FIG. 2. (Color online) (a) Normalized photoluminescence spectra measured

at 4.5 K on the monolayer part of the flake for different excitation powers.

The two prominent peaks are marked as L and H. In the bottom spectrum,

the two Gaussian fit functions to the spectrum are shown. (b) Integrated pho-

toluminescence intensity as a function of excitation power. (c) Normalized

PL spectra measured on the monolayer part of the flake for different temper-

atures. (d) H peak energy as a function of temperature (solid dots). The solid

line indicates a fit using the Varshni equation.
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the integrated intensity of peak L decreases with tempera-

ture, and above 120 K, it is only observable as a low-energy

shoulder of peak H. To quantify the spectral shift of peak H

with energy, depicted in Fig. 2(d), we use the Varshni11

equation, EgðTÞ ¼ Egð0Þ � ðaT2=ðT þ bÞÞ, which describes

the band gap reduction with temperature for many semicon-

ductors. We observe that the energy shift of peak H matches

this equation, with Eg(0)¼ 1.874 eV, a¼ 5.9 � 10�4 eV/K,

and b¼ 430 K. We may tentatively identify peaks H and L

as the free exciton peak (H) and a bound exciton peak (L),

whose energy is reduced by additional binding to defects, ei-

ther due to impurities at the sample surface or at the MoS2-

SiO2 interface. The large width of peak L is an indication

that there are binding sites with different energies available

for excitons. The quenching of the bound exciton peak with

temperature is, most likely, not due to thermal activation, as

the binding energy exceeds the thermal energy even at room

temperature, but due to an increased probability for nonra-

diative recombination with temperature. Finally, we discuss

the time-resolved PL measurements. Fig. 3(a) shows a series

of TRPL traces which were generated by spectrally averag-

ing the TRPL data in a 20 nm wide region around the peak

of the PL. In the temperature range from 4.5 K to 150 K, the

PL decays in about 5 ps. This fast PL decay at low tempera-

tures indicates that there is no full energy relaxation of the

optically generated electron-hole pairs into the lowest-

energy state (the bound exciton L) during the photocarrier

lifetime, as already inferred from the power dependence of

the PL. At temperatures above 150 K, we observe that the

PL develops a longer-lived component. In order to extract its

time dependence, we fit a biexponential decay function to

the data. In Fig. 3(b), we plot the temperature dependence of

the decay time of the long-lived component, sr. We observe

an increase of this decay time from about 50 ps at 180 K,

where the slower decay becomes discernible, to more than

100 ps for 270 K. At room temperature, the decay time

decreases again to about 70 ps. The amplitude of the long-

lived PL component increases monotonously with tempera-

ture, as Fig. 3(c) shows. We may attribute the appearance of

this long-lived PL to exciton-phonon scattering, which scat-

ters the exciton out of the light cone, i.e., the region in the

exciton dispersion where a photon may be emitted while

energy and momentum conservation laws are fulfilled.12 Af-

ter such a scattering, the excitons have to reduce their

momenta again via subsequent scattering events before they

may recombine radiatively.

In conclusion, we have used scanning Raman spectros-

copy to identify single-layer MoS2 flakes. We have studied

the photoluminescence of single-layer MoS2 with high tem-

poral resolution as a function of temperature. We observe the

appearance of a low-energy PL peak at low sample tempera-

tures, which we attribute to a bound exciton state. Time-

resolved PL shows that the PL decays on the ps timescale at

low temperatures, but develops a long-lived component at

higher temperatures, most likely due to exciton-phonon scat-

tering. These observations make MoS2 an interesting mate-

rial for possible optoelectronic applications, e.g., as a

building block, for fast photoconductive switches.

The authors gratefully acknowledge financial support by

the DFG via SFB689, SPP 1285, and GrK 1570, as well as

technical support by J. Eroms and S. Bange. The MoS2 was

supplied by L. Marasz.

1K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S.

V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451

(2005).
2A. K. Geim, Science 324, 1530 (2009).
3C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105,

127404 (2010).
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FIG. 3. (Color online) (a) Normalized TRPL traces measured on the mono-

layer part of the flake for different temperatures. (b) Slow component of

photocarrier recombination, sr, as a function of temperature. (c) Amplitude

of the slow component of the TRPL traces as a function of temperature.
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