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Signal proteins are able to adapt their response to a change in the environment, governing in this way
a broad variety of important cellular processes in living systems. While conventional molecular-
dynamics (MD) techniques can be used to explore the early signaling pathway of these protein
systems at atomistic resolution, the high computational costs limit their usefulness for the eluci-
dation of the multiscale transduction dynamics of most signaling processes, occurring on experi-
mental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling
method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its
suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα do-
main from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase
(PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More
specifically, we show that their signaling pathways begin with a residual re-arrangement and subse-
quent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a
coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-
domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the
AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through
effector-protein binding. These applications demonstrate that our approach reliably reproduces the
signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable
computational costs. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697370]

I. INTRODUCTION

Signal-protein complexes act as regulators of the sig-
naling pathways of cells in living systems, responding to a
multitude of environmental stimuli such as light, temperature
change, and/or mechanical stress.1 A family of signal proteins
of major importance in mammalian cells are the Rac-proteins,
which are small GTPases that are involved in cell growth,
cell-membrane adhesion, and cell survival.2 Their activation
is triggered by binding specific effector proteins at character-
istic activation sites in the cell cycle. For example, the GTPase
Rac1 is known to form aggregates with the Ser-Thr-protein
kinase PAK1 at the activation site switchII, whose mutation
is suspected to lead to deregulations inducing several ma-
lign tumors.3 Signal proteins also play an important role in
plants, in which they typically react in response to a change
in illumination and/or temperature. For example, the pho-
totropins are blue-light-sensitive protein complexes regulat-
ing a great diversity of biological processes, e.g., phototropic
plant movement, chloroplast relocation, stomatal opening,
rapid inhibition of stem growth, and gametogenesis, in higher
plants as well as in micro-algae.4–7 They are composed of
two LOV domains, each containing a non-covalently bound
flavin-mononucleotide (FMN) chromophore and a C-terminal
Ser-Thr-kinase. Upon blue-light absorption, a covalent bond
between the FMN chromophore and an adjacent reactive cys-

a)Electronic mail: stephan.baeurle@chemie.uni-regensburg.de.

teine residue of the apo-protein is formed. This subsequently
mediates the activation of the kinase, which induces a signal
in the organism through phototropin auto-phosphorylation.8

While the in vivo functionality of the LOV1 domain within
the protein complex still remains unclear, the photochemi-
cal reactivity of the LOV2 domain has been found to be es-
sential for the activation of the kinase.9 As demonstrated in
a series of experimental investigations,10–13 the LOV2 do-
main releases upon illumination its inhibitory effect on the
kinase by detaching a peripheral α-helix, the so-called Jα-
helix, from the LOV core. The early mechanism of activa-
tion was recently elucidated by us at atomistic resolution us-
ing MD simulation.14 By connecting the AsLOV2-Jα sys-
tem and the previously mentioned Rac1-GTPase, Wu et al.15

have lately created a genetically encoded fusion protein desig-
nated as photoactivable Rac1 (PA-Rac1), which makes use of
the same photoswitching mechanism to modulate the signal-
ing behavior of Rac1. In particular, they demonstrated that in
the dark the AsLOV2 domain of PA-Rac1 inhibits Rac1 sig-
naling by blocking its binding to the effector protein PAK1,
whereas upon illumination this steric inhibition is released
through detachment of the Jα-helix from the LOV core, en-
abling Rac1 activation. By further expressing PA-Rac1 in can-
cer cells of the HeLa-line, they could show that such pro-
tein constructs can be used to control the cell movement and
functionality through light pulses.15 Moreover, we note that
the early mechanism of activation of this photoenzyme was
recently elucidated by us at atomistic resolution using MD
simulation.16
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To describe the structural-dynamics of such protein com-
plexes on an atomistic length scale, several computational
methodologies were developed starting from the late 1970s.17

A prominent example among those is the MD technique,
which describes the time-evolution of many-particle systems
through phase space by numerically integrating Newton’s
equations of motion.18 However, since its range of applica-
bility for small proteins usually spans from nanoseconds up
to sub-microseconds, its usefulness to study signaling pro-
cesses on typical experimental timescales is only limited.19

In order to reach longer timescales with the MD technique,
several approaches have been proposed in the past decades.
One of those is the coarse-graining (CG) approach, in which
the system’s degrees of freedom and, thus, the number of in-
teractions is reduced enabling the use of larger time steps at
lower computational costs. A successful CG method for pro-
tein systems is the united-atom approach, implemented, e.g.,
in the GROMOS96 forcefield.20 It consists in representing all
hydrogens with their respective aliphatic carbons as single ef-
fective atomic units. Approaches undertaking a more severe
coarse-graining, such as the MARTINI method,21, 22 reliably
reproduce protein structures but fail in providing the correct
dynamics of complex protein systems, due to their strong het-
erogeneity at the atomistic level of description. To cope with
the multiple length-scale problem of complex protein sys-
tems, several multiscale-modeling methods have been pro-
posed, which partition a complex system in different space re-
gions with varying degree of chemical resolution defined in an
ad hoc fashion prior to the simulation. They rely on the idea of
coupling theoretical methods with different levels of coarse-
graining, i.e., quantum, atomistic, mesoscopic, or continuum-
scale approaches,23–27 within one simulation method. How-
ever, such techniques generally lack transferability, because
they are specifically adapted to the nature of the physical
problem under consideration and, thus, are not suitable for
reproducing the multiscale relaxation dynamics of complex
protein systems far from equilibrium. To extend the scope
of computer simulation techniques to such non-equilibrium
situations multiple-timestepping approaches, such as the re-
versible reference-system propagator algorithms (RESPAs)28

or the Langevin dynamics integrator technique,29, 30 have been
devised that greatly accelerate simulations of systems based
on a separation of timescales and/or potential ranges. They
generally rely on a decomposition of the dynamical range of
the macromolecule into slow and fast modes, which allows
an efficient propagation of the slower dynamical components
through the use of larger time steps in the numerical in-
tegration procedure. With these approaches, an acceleration
from 10 up to 100 times with regard to the conventional MD
technique could be achieved, extending the scope of appli-
cation of MD-based techniques to the microsecond or even
sometimes to the sub-millisecond time range for peptides and
small proteins.31, 32 Even if the gains in timescale are sub-
stantial, these techniques are still computationally very de-
manding, generally requiring several months of calculation on
large parallel computer clusters32, 33 or supercomputers,31, 34

and therefore, will not be useful for the calculation of the
signaling pathways of complex protein systems in the fore-
seeable future. Other techniques, such as the shadow hybrid

Monte Carlo method35 or the meta-dynamics method,36, 37

enable a faster sampling of the free-energy surface of pep-
tides and medium-sized proteins, using an effective Hamil-
tonian or modified potentials, respectively. These techniques
permit to achieve a significant computational saving with re-
gard to MD-based approaches, however, by construction are
not able to reproduce the real dynamics of complex protein
systems.

An alternative to the dynamical methods introduced pre-
viously are rate-based approaches, which mimic the time
evolution of the system’s trajectory through performing un-
correlated jumps from one state to another by circumvent-
ing activation barriers with a certain probability. One effective
implementation of this conception is the kinetic Monte-Carlo
(KMC) method, relying on the Bortz-Kalos-Lebowitz (BKL)
algorithm.38 This technique permits to generate a dynamical
pathway, in which the most likely events are selected with
higher probability from a list of events, whose rates have been
previously determined from a simplified potential model. Sev-
eral authors have applied this or related KMC techniques in
the past few years to increase the accessible timescales in sim-
ulation studies of important protein folding39–41 and unfold-
ing problems.42, 43 For example, Makarov and co-workers42, 43

introduced a KMC-based algorithm to simulate the force-
induced unfolding process of the muscle protein titin, using
double-well potentials to describe the breakage and formation
of H-bonds between different secondary-structure elements.
In their algorithm the list of events is updated dynamically as
the simulation proceeds, including all possible events associ-
ated with H-bond breakage or H-bond formation processes
available at a particular instant of time during the simula-
tion. From the list of events, the rates are selected using a
modified BKL algorithm and the procedure is pursued un-
til the protein is entirely unfolded. The rates are calculated
through an Eyring-type formula, where the energy barriers
are dependent on the pulling force acting on the H-bonds.
With this approach, Makarov et al. were able to reproduce
results from time-dependent pulling experiments with titin
immunoglobulin domains, obtained by using single-molecule
atomic force microscopy.44 A major drawback of the KMC
implementations discussed previously is that the rates are de-
termined from simplified potential models, which do not re-
flect the full interaction spectrum of complex protein sys-
tems. In the present paper we introduce a novel algorithm,
based on the combination of a BKL-type KMC- and a MD-
algorithm. Our technique permits to calculate rates on the fly
from an existing standard atomistic force field, optimized for
protein simulations, and allows to extend the overall simula-
tion time of conventional forcefield-based computer simula-
tion techniques to typical timescales encountered in biological
experiments.

Our paper is organized in the following way. In
Sec. II, we present the methodology as well as the sim-
ulation parameters, followed by a description of the sys-
tem preparation. Then, in Sec. III we discuss the simulation
results on the AsLOV2-Jα- and PA-Rac1-systems, in com-
parison to the available experimental and simulation data.
Finally, we end our paper with a summary and a brief
outlook.
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II. METHODS

To develop our simulation algorithm, we consider that
the protein complex under consideration behaves as an
infrequent-event system, in which the dynamics is character-
ized by occasional transitions from one state to another with
long periods of relative inactivity between the transitions.45

In this picture each state corresponds to a single energy basin
and the long time between the transitions arises because the
system must surmount an energy barrier to get from one state
to another. The relaxation phase between the transitions en-
sures that the excess energy of the system can fully dissipate,
allowing its thermal relaxation, and that the configuration be-
comes statistically uncorrelated to the previous one. It usually
takes a few picoseconds or a few tens of picoseconds, i.e., sev-
eral vibrational periods of a complex protein system, and can
easily be carried out using a MD-type algorithm. The rates
of all possible events out of each state i are calculated on the
fly after each relaxation phase from a biomolecular forcefield
and a list is created with them. The events are chosen accord-
ing to the BKL algorithm,38 which selects the events with a
certain probability and rate corresponding to the most proba-
ble pathway. In our approach we assume that the multiscale
transduction dynamics of complex protein systems is domi-
nated by rate-determining steps, which according to Makarov
and co-workers39, 40, 42 are mainly associated with the break-
age and formation of H-bonds in the protein system. We note
that the stress concentration in these H-bonds is able to af-
fect the energy barriers significantly, generally rendering the
transitions more likely. Moreover, in our algorithm we assume
that these events follow an Eyring-type mechanism, in which
local fluctuations induce transitions of local events driving
the subsequent global conformational change.46 If all the pre-
vious requirements are fulfilled, the state-to-state dynamics
of our protein system performs a Markov walk through state
space, which means that the transition probabilities for ex-
iting state i are independent of the history prior to entering
state i. In this context it is also worth emphasizing that, if
the rates are calculated exactly for each of the energy states
visited, the state-to-state trajectory will be similar to the one
calculated from a pure MD simulation at significantly lower
computational costs.45 A detailed description of our new al-
gorithm and the resulting computational savings will be given
in Secs. II A and II B.

A. KMC-MD algorithm

To treat the different length- and time-scales of the com-
plex protein system, we assume that the protein can be split
into a network of dynamically heterogeneous entities,47 each
having their individual internal relaxation processes charac-
terized by specific relaxation times. Moreover, we consider
that, by going over to the high temperature limit, the pro-
tein unfolds and undergoes a transition from inhomogeneous
to homogeneous kinetics by passing through the folding-
unfolding transition temperature. This is caused by the fact
that in this regime the landscape of the potential energy sur-
face flattens and the relaxation behavior of all entities be-
comes dynamically homogeneous.48 In the case of our LOV-

based protein complexes, we take into account that in the
first stage the dynamics in the vicinity of the FMN chro-
mophore, triggering the initial signal, is essentially domi-
nated by the dynamics of single residues, which relax on
very fast timescales in the range from picoseconds up to sub-
nanoseconds. These residues have been identified in several
experimental works49, 50 as being involved in the signaling
pathway. The algorithm, describing this scale, will be desig-
nated in the following as the residue-based KMC (RB-KMC)
procedure. In the second stage we consider the dynamical
processes between different protein domains, each relaxing
on timescales in the range from nanoseconds up to seconds.
These can typically be secondary structure elements or large
protein entities, which can easily be identified through a fluc-
tuation analysis made from a short MD run prior to the KMC
simulation. We call the KMC algorithm, treating this phase,
the inter-domain KMC (ID-KMC) procedure. Both KMC al-
gorithms generate a dynamical trajectory through state space
by sampling the path of highest probability, guaranteed by the
application of the BKL technique for the rate selection. To en-
sure that the trajectory satisfies the requirements of a Markov
chain, the KMC walk from state to state is complemented by
a MD-relaxation phase in each state, allowing the sampling of
the new energy basin and the thermal relaxation of the system
within a few picoseconds. We call the overall algorithm the
KMC-MD approach, whose implementation and parameters
will be discussed in more detail in Secs. II A and II B.

1. Residue-based KMC

This phase of the KMC algorithm treats the re-
organization of the amino acids in the vicinity of the FMN
chromophore, taking place in the timerange from picosec-
onds up to sub-nanoseconds. From several experimental and
theoretical investigations,8, 14, 51–54 it is well known that the
three amino acids Gln513, Asn492, and Asn482 are essen-
tial in triggering the signaling pathway of the AsLOV2-Jα-
as well as the PA-Rac1-system. We assume that these amino
acids can carry out the following rate-dependent transforma-
tion processes, i.e., (1) side chain rotation, (2) H-bond forma-
tion, and (3) H-bond breakage, which are included in the list
of events of the RB-KMC algorithm. Our approach relies on
the BKL algorithm and is composed of the following steps:

1. MD phase;
2. H-bond analysis;
3. Scan of potential energy difference ��†/protein along pro-

cess path for each rate-determining event, which might
take place in the simulation phase;

4. Calculation of rate of each event according to

r = ν†e

(
−�G†

RT

)
≈ r̄T −→∞e

(
−��†/protein

RT

)
, (1)

where ν† and R represent the pre-exponential factor and
universal gas constant, respectively, whereas r̄T −→∞ des-
ignates the rate in the infinite temperature limit T −→
∞;
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5. Select event i from list of events by generating a uniform
random number ξ ∈ (0, 1] and by solving

Ri−1/RN < ξ ≤ Ri/RN , (2)

where Ri = ∑i
j=1 rj denotes a cumulative function with

i = 1, . . . , N and N the total number of events;
6. Execute selected event i and update time through t = t

+ �t by generating a uniform random number ξ ∈ (0, 1]
and calculating

�t = − ln ξ

RN

; (3)

7. Return to step (1).

In order to demonstrate that the approximation in Eq. (1)
can be used to obtain a reliable estimate of the Gibbs energy
of activation �G† in our algorithm, we assume that under
isothermal conditions it adopts the following form:

�G† = �H † − T �S†, (4)

where �H† and �S† denote the enthalpy and entropy of acti-
vation of the process, respectively. This permits to reformulate
the rate expression in Eq. (1) as 55

r = r̄(T )e
(
− �H†

RT

)
(5)

with

r̄(T ) = ν†e

(
�S†
R

)
. (6)

In Eq. (5), the temperature dependence of the pre-exponential
term is generally negligible in comparison to the much
stronger temperature dependence of the exponential term.56

Using this assumption, we can re-write the rate as follows:

r ≈ r̄T −→∞e

(
− �H†

RT

)
(7)

with the enthalpy of activation given by57

�H † = �U † + p�V † + �pV †. (8)

Here, we note that �p and �V† represent, respectively, the
changes of the external pressure and volume of activation,
whereas �U† is the change of the internal energy of activa-
tion defined as

�U † = �K† + ��†, (9)

where �K† and ��† designate the changes in the kinetic and
potential energy of activation, respectively. The change in the
potential energy ��†, associated with each KMC event, can
further be decomposed in the following contributions:

��† = ��†/protein + ��†/solvent + ��†/interf ace, (10)

where ��†/protein, ��†/solvent, and ��†/interface designate the
changes in the potential of the protein, solvent, and protein-
solvent interface of activation, respectively. To obtain a re-
liable approximation of �H†, we executed each event un-
der solvent-free conditions at zero temperature. Then, we re-
inserted the solvent and equilibrated it in a short canonical
MD phase by freezing the degrees of freedom of the protein
and adjusting the temperature related average kinetic energy

of the solvent to its external value. This implementation en-
sured that for each executed event �K† ≈ 0, �p ≈ 0, and �V†

≈ 0, leading to

�H † ≈ ��†. (11)

Moreover, by considering that in protein-solvent systems the
potential energy contributions related to the bonded and non-
bonded interactions of the protein during the event execution
dominate in magnitude with regard to the potential energy
changes of the solvent and protein-solvent-interface, we can
finally approximate the enthalpy of activation as

�H † ≈ ��†/protein. (12)

By computing the signaling behavior of the AsLOV2-Jα- and
PA-Rac1-systems together with their mutants and comparing
the results to experiments, we will show in the following that
this implementation permits to reliably approximate �H† as
the finite difference between the absolute maximum, i.e., the
so-called transition state, and the absolute minimum prior to
the transition state of the one-dimensional potential energy
profile. To evaluate the profiles of all possible events during
a KMC cycle, we accomplished the scan stepwise within a
scanning range dscan and completed each step by subsequent
minimization using the Broyden-Fletcher-Goldfarb-Shannon
algorithm,58 while constraining the donor-acceptor distance
of the amino acids under consideration. The hopping range
for the execution of each event was determined in an adaptive
way as the absolute minimum in the potential energy after the
transition state and, subsequently, the selected event was exe-
cuted. Then, the algorithmic cycle was re-started with a MD
phase within the NPT ensemble by imposing periodic bound-
ary conditions.

2. Inter-domain KMC

The second KMC phase considers rate-dependent pro-
cesses between different protein domains, occurring on
timescales in the range from nanoseconds up to several sec-
onds. These domains can either be secondary structure ele-
ments or larger protein entities, which can be identified as
dynamically homogeneous regions of the protein by means
of a fluctuational analysis prior to the KMC-MD simula-
tion. The ID-KMC phase is accomplished by carrying out the
same algorithmic steps as in the RB-KMC algorithm, intro-
duced in Sec. II A 1. In the case of the AsLOV2-Jα system
we consider the LOV2 core and the Jα-helix as the dynami-
cally homogeneous entities, supplemented in the case of the
PA-Rac1 system with the LOV2-GTPase-interfacial region.
Furthermore, we assume that the corresponding inter-domain
relaxation is dominated by the rate-dependent processes of
H-bond breakage. This latter simplification takes into account
that the H-bond formation and side chain rotation processes
are much faster compared to the H-bond breakage processes
and, therefore, the former processes can be neglected on the
larger timescales, addressed in the ID-KMC phase. This al-
lowed us to reduce the number of KMC cycles and, thus, the
costs of the overall calculation significantly.
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B. Simulation details and system preparation

1. Simulation details

We performed five independent simulations for each state
of the AsLOV2-Jα- and PA-Rac1-system to check the repro-
ducibility of the simulations. The length of the MD phase
between KMC steps of the KMC-MD simulations was de-
termined through measurement of the statistical inefficiency
of the MD-simulation algorithm in the case of the AsLOV2-
Jα- as well as PA-Rac1-system. This latter parameter repre-
sents the length of the MD trajectory, which is needed to get
statistical independent configurations required by the KMC
procedure. To compute this quantity, we used the method of
Fincham et al.59 and evaluated a length of the MD phase of
5 ps. Another important parameter, which needs to be de-
termined prior to the calculation, is the maximum scanning
range dscan for the processes of H-bond formation and H-bond
breakage as well as the maximum angle of rotation αscan for
the side chain rotation processes. To this end, we performed
independent MD simulations on the AsLOV2-Jα system and
evaluated for both H-bonding processes an optimal value of
0.35 nm from the average translational fluctuations, whereas
for the process of side chain rotation we estimated a value
of 20◦. As illustrated in the Fig. 1SA of the supplementary

material,60 we determined the process path of each possible
H-bond breakage and H-bond formation event i, which could
take place in the protein during KMC-MD run, through the
following equation:

xend/donor

i = xstart/donor

i + dscan

(
xstart/donor

i − xacceptor

i

)
∣∣xstart/donor

i − xacceptor

i

∣∣ ,

(13)

where xstart/donor

i and xend/donor

i denote the starting and final
coordinates of the donor, whereas xacceptor

i is the coordinate
of the acceptor kept at a fixed position in space during the
execution of the event. In Fig. 1SB, we show corresponding
representative potential energy profiles for a H-bond breakage
process in case of the dark and light states of the AsLOV2-Jα-
system. Moreover, the process path of the side chain rotation
in three-dimensional space was defined through the follow-
ing operation of rotation by an angle α about an axis in the
direction of the unit vector n = (n1, n2, n3)T:

Rn(α)x = n(n · x) + cos α(n × x) × n + sin α(n × x),

(14)

where the rotation matrix is given by

Rn(α) =

⎛
⎜⎝

cos α + n2
1 (1 − cos α) n1n2 (1 − cos α) − n3 sin α n1n3 (1 − cos α) + n2 sin α

n2n1 (1 − cos α) + n3 sin α cos α + n2
2 (1 − cos α) n2n3 (1 − cos α) − n1 sin α

n3n1 (1 − cos α) − n2 sin α n3n2 (1 − cos α) + n1 sin α cos α + n2
3 (1 − cos α)

⎞
⎟⎠ . (15)

More specifically, in our algorithm we chose in case of the
amino acids Gln513, Asn492, and Asn482 in vicinity to the
FMN the axis of rotation in the direction of the CA-CB axis
(see Fig. 1SC) and performed a stepwise rotation up to the
maximum angle of rotation αscan. We note that each execu-
tion of an event along a process path was complemented by
a subsequent MD-relaxation phase, which reduces the de-
pendence of our algorithm on the process path realization.
As we will demonstrate in the following, this implementa-
tion was found to provide reliable results for the AsLOV2-
Jα- and PA-Rac1-systems under consideration and to be the
most effective procedure with regard to computational ex-
pense. Moreover, we accomplished H-bond analysis, using
standard geometrical criteria obtained from Refs. 61 to 63,
i.e., a maximum donor-acceptor distance of 0.35 nm and a
maximum hydrogen-donor-acceptor angle of 30◦. For the de-
termination of �

†/protein during the KMC phase, we used a
shift function with a cutoff of 1.4 nm for calculating the van-
der-Waals (vdW) and electrostatic-potential energies. To de-
termine the pre-exponential factor r̄T −→∞ in Eq. (1), we con-
sidered that, as described in Sec. II A, the protein unfolds and
undergoes a transition from inhomogeneous to homogeneous
kinetics by passing through the folding-unfolding transition

temperature with increasing temperature, which causes that
in the infinite temperature limit all events possess identical
rates designated by r̄T −→∞. We point out that the latter as-
sumption has been confirmed by several theoretical and ex-
perimental works, which will be discussed in the following.
For example, Leite et al.48 have studied fluctuations of protein
folding kinetics using a lattice-based dynamic Monte Carlo
algorithm by examining the ratios of the moments of the first-
passage time. They found that at high temperatures, due to
the large thermal fluctuations of the dynamical entities, local
details are smeared out and the different kinetic paths sense
roughly similar barriers, resulting in single-exponential kinet-
ics. Moreover, Zhang et al.64 observed by performing neutron
scattering spectroscopy experiments and MD simulations on
the hen egg white protein lysozyme that in the high temper-
ature regime the lifetime of the H-bonds between the protein
and the hydration water decreases substantially, which causes
an increased mobility of the protein in the water environment
and leads to its subsequent unfolding. Ultimately, in the high
temperature limit the protein loses the remaining dynamical
heterogeneity related to its interaction with the hydration wa-
ter and adopts a homogeneous kinetic behavior, which is re-
flected by an Arrhenius-type temperature dependence of the
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inverse diffusion constant.64 Finally, we emphasize that the
assumption of homogeneous kinetics in the high-temperature
limit has also been successfully employed by Makarov and
co-workers,39, 40, 42 to reproduce pulling experiments on the
muscle protein titin,44 using a KMC method based on a mod-
ified BKL algorithm. Despite the ineffective infrequent-event
sampling of the pure MD technique compared to the KMC-
MD technique, we consider that the high local stress concen-
tration in the binding pocket resulting from the formation of
the cysteinyl-FMN adduct allows to reduce the activation bar-
riers for the events, involving the residues near to the FMN
chromophore in the AsLOV2 core. This ensures that the sig-
naling pathway of both simulation methods can be assumed
to be similar in the early stages. As a consequence, we can es-
timate the pre-exponential factor r̄T −→∞ by identifying sim-
ilar characteristic events from the inter-atomic distances of
the amino acids adjacent to the FMN chromophore, calcu-
lated with the KMC-MD and MD techniques, and adjusting
the KMC-MD- onto the MD-time. To demonstrate this, we
consider in Figs. 2SA and 2SB the inter-atomic distances be-
tween Gln513-OE1 and Asn492-ND2 of the PA-Rac1 sys-
tem, obtained with the MD as well as KMC-MD techniques,
respectively. We compare these results with the correspond-
ing ones for the distance between Gln513-NE2 and Asn492-
OD1, visualized in Figs. 2SC and 2SD. From the graphs,
we deduce that at the simulation stage, marked with a black
arrow, a permanent coupling through H-bond formation be-
tween Asn492 and Gln513 does occur, which triggers the N-
terminal disruption of the Jα-helix of the PA-Rac1 system.
The latter finding is confirmed by comparing the secondary
structure analysis of the Jα-helix of the PA-Rac1 system, ob-
tained with both simulation techniques and shown in Figs.
2SE and 2SF. By considering that the early signaling path-
ways of both simulation techniques are similar, we conclude
that these events must be identical and that, therefore, the
fifth KMC step must correspond to a real time of about 20
ns. Using this procedure, we obtained in case of the PA-Rac1
system a value for the pre-exponential factor of 3.94 × 107

s−1. In case of the AsLOV2-Jα system, we used the same pre-
exponential factor as for the PA-Rac1 system by taking into
account that both signaling pathways are triggered through
cysteinyl-FMN-adduct formation in the AsLOV2 core and,
thus, they should be similar in the early stages. To carry out
the MD-simulation phase at a molecular level, we used the
GROMACS molecular dynamics simulation package Version
3.3.1 in conjunction with the GROMOS96-43a1 forcefield65

to describe the interactions. This widely used forcefield has
been tested against NMR-spectroscopic data in case of the
lysozyme protein in water by Soares et al.66 and has been
found to reproduce its solution structure and conformational
behavior very well. In a recent work, Todorova et al.67 per-
formed extensive MD simulations on the 51-amino-acid pro-
tein insulin and subjected the GROMOS96-43A1 forcefield to
a systematic comparison against other popular biomolecular
forcefields, including the CHARMM27-, AMBER03-, OPLS-
, and GROMOS96-53A6-forcefields. They analyzed in de-
tail the effect of each forcefield on the conformational evolu-
tion and structural properties of the protein and compared the
results with the available experimental data. They observed

that each forcefield favors different structural trends. More-
over, they found that the united-atom forcefield GROMOS96-
43A1, together with the CHARMM27-forcefield, delivered
the best description of the experimentally observed dynamic
behavior of the chain B of insulin. In our simulations we
used in addition full particle-mesh-Ewald electrostatics with
a Coulomb cutoff of 1.4 nm and computed the vdW interac-
tions, using a shift function with a cutoff of 1.4 nm. In case
of the AsLOV2-Jα system we centered the protein into a cu-
bic box of 6.47 nm and filled it with SPC-water as well as
4 sodium ions to electrically neutralize the system, whereas
in case of the PA-Rac1 system we proceeded in the same
way using a boxlength of 9.7 nm and 7 sodium ions. To
generate an isothermal-isobaric ensemble with a temperature
of 300 K and a pressure of 1 atm, we used a Nosé-Hoover
thermostat and Parrinello-Rahman barostat.68 To mimic non-
equilibrium conditions, we decoupled the FMN chromophore
and the protein from their individual thermostats, whereas the
solvent and ions remained coupled to their respective ther-
mostat throughout the whole simulation run. This technique
is known as the non-invasive thermostating technique, which
allows the protein to sample configurations far from equi-
librium and to follow its natural dynamics under solvent-
mediated thermostating control.53 For the numerical integra-
tion of the equations of motion, we used the leapfrog integra-
tor with a time step of 1 fs. To describe the interactions of
the cysteinyl-FMN adduct entity, we used the parameters of
Neiss and Saalfrank,69 which were determined from B3LYP-
6-31G*-calculation results and through comparison with sim-
ilar groups in the forcefield to reach consistency. The relia-
bility of the parametrization of the cysteinyl-FMN entity was
tested and confirmed by these authors on the LOV2 domain
from Adiantum capillus-veneris without the Jα-helix69 and by
us on the AsLOV2-Jα system14 as well as the LOV1 domain
of Chlamydomonas reinhardtii.52, 53

2. System preparation

As starting structures for the dark-state simulations, we
used the dark-state crystal structure of the PA-Rac1- (PDB-
code: 2WKP) (Ref. 15) and AsLOV2-Jα system (PDB-code:
2V0U),10 visualized in Figs. 1(a)–1(d). To create the initial
structures of our adduct-state simulations, we employed the
dark-state structures and generated the cysteinyl-FMN (CFN)
adduct by forming a covalent bond between Cys450-S and
FMN-C4a. We point out that the covalent linkage between the
reactive cysteine and FMN is required to transmit the stress
from the reaction center to the protein and trigger the protein
signal, as we will demonstrate in the following through com-
parison between dark- and light-state simulations and as we
have shown in previous simulation studies with various LOV
domains.14, 16, 52, 54

III. RESULTS AND DISCUSSION

To demonstrate the reliability and potential of our
KMC-MD approach, we start by considering the structural-
dynamical changes of the AsLOV2-Jα system in the dark and
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FIG. 1. Crystal structures of AsLOV2-Jα and PA-Rac1 system (PDB-
codes: 2V0U, 2WKP), determined through x-ray diffraction measurements
by Halavaty and Moffatand Wu et al., respectively. These are used as in-
put structures for KMC-MD- as well as MD-simulations. (a) Side-view of
AsLOV2-Jα system with FMN chromophore. (b) Front-view of AsLOV2-Jα
system with different secondary-structure elements. (c) PA-Rac1 with acti-
vation site switchII on Rac1 enzyme connected with LOV2 core through Jα-
helix. (d) Amino-acid environment of FMN chromophore in AsLOV2 core
[Gln513 (Iβ), Asn492 (Hβ), Asn482 (Gβ)].

light state on the nanosecond timescale. In Fig. 2, we display
the results for the amino-acid configuration around the
FMN chromophore and its consequences on the peripheral
Jα-helix, obtained with our KMC-MD method, and compare
them to the results, obtained from a 20 ns MD-simulation
run with the same system. To begin, we show in Fig. 2(a)
the distances between Gln513-NE2 and Asn492-OD1 for the
dark and light states in the RB-KMC-MD phase. In case of
the light-state curve, we see a clear drop in the distance at the
26th KMC step indicating H-bond formation, whereas the
dark-state curve remains at a constant distance of 0.55 nm
up to the end of this phase. To further illustrate the coupling
between Gln513 and Asn492 in the KMC simulation, we
show a representative configuration after 40 RB-KMC steps
in Fig. 2(b). We observe a clear H-bonding between Gln513-
NE2 and Asn492-OD1, which is a result of the rotation of the
side chain of Gln513. This finding is confirmed by our recent
theoretical investigation in Ref. 14 and various experimental
works,8, 13, 70, 71 which provided evidence for the important
role of Gln513 and its coupling with Asn492 in triggering the
signaling pathway of the AsLOV2-Jα domain. In particular,
Nash et al. prove through mutational analysis that the Gln513
switch is directly implicated in the subsequent detachment
of the Jα-helix from the LOV core,70 which is supported by
our recent MD simulations on the AsLOV2-Jα system.14 By
contrast, we see in the corresponding MD-simulation results
of the light state of the AsLOV2-Jα system in Fig. 2(c) that

no coupling occurs between Gln513-NE2 and Asn492-OD1.
This is due to the limited MD time of 20 ns, in which the
Gln513 switch and H-bond formation does not take place.
In Fig. 2(d), we display a representative configuration of the
chromophore environment after 20 ns of MD simulation,
which shows that the amino acids Gln513 and Asn492
remain disconnected. We explain the discrepancy between
the KMC-MD- and MD-simulation results by the difference
in timescales accessed by both simulation approaches, which
amounts to 130 ns at the end of the RB-KMC-MD phase. We
point out that, due to the higher computational expense per
time step, the MD-simulation approach significantly depends
on the quality of the starting structure, as can be deduced
by comparing the current MD-simulation results based on
a crystal starting structure with the ones from our previous
MD-simulation work, where we used a refined NMR-solution
structure.14, 72 Next, we display in Fig. 2(e) the consequence
of the H-bond coupling between Gln513 and Asn492 onto the
tertiary structure of the AsLOV2-Jα system. By comparing
the structures of the dark- and light-states from the last KMC
step of the RB-KMC-MD phase, we see that the N-terminal
region of the Jα-helix in the light state (bright red) is disrupted
and bent, whereas in the dark state (dark red) it is similarly
arranged as in case of the starting structure. The disruption of
the Jα-helix is caused by the coupling between the Iβ- and
Hβ-strands, mediated through the H-bond formation between
the residues Gln513 and Asn492, as shown in Figs. 2(a) and
2(b). By contrast, we note that the tertiary structure of the
light state after 20 ns of MD simulation in Fig. 2(f) resembles
the starting crystal or average dark state structures. From this
fact, we deduce that a suitable coupling between Asn492
and Gln513 is a crucial step for the N-terminal disruption
of the Jα-helix, because no coupling occurred in case of
the MD simulation approach, as demonstrated in Figs. 2(c)
and 2(d). This is confirmed by Nash et al.,70 who performed
CD- and HSQC-NMR-spectroscopy measurements on the
Gln513Asn-AsLOV2 mutant. Through their experiments they
demonstrated, that this mutant does not exhibit light-state
signaling behavior, which might be explained by the smaller
side chain of Asn513 in comparison to Gln513. To study this
aspect, we performed two independent KMC-MD simula-
tions with the Gln513Asn-AsLOV2 mutant and found that
already after a few simulation steps H-bond coupling occurs
between Asn513 and Asn492. However, we observed that this
coupling does not lead to a disruption of the Jα-helix from
the LOV2 core due to the shorter side chain of Asn513, as
shown in Fig. 3, which is in agreement with the experiments
of Nash et al. Next, we continue with the analysis of the
results from the subsequent ID-KMC-MD phase, which
follows the RB-KMC-MD phase. In Fig. 4(a), we show the
final structures from two independent KMC-simulation runs
of the dark state, in which total simulation times of 149 μs
and 624 s have been reached, respectively. Both structures
have been overlaid using the smallest root-mean-square de-
viation between the atoms. From this figure, we deduce that
the Jα-helix remains attached to the LOV core until the end of
the ID-KMC-MD phase. In contrast to that, we see in Fig. 4(b)
that the Jα-helix in the structures of the two light-state sim-
ulations is disrupted, which correspond to final simulation
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FIG. 2. Inter-atomic distances and representative structures of the AsLOV2-Jα system, obtained by using KMC-MD- and non-invasive MD-methods. (a) Inter-
atomic distance between Gln513-NE2 and Asn492-OD1 from KMC-MD simulation in the RB-KMC phase of the light state (red curve) and dark state (black
curve) as a function of KMC steps. (b) Amino-acid configuration around FMN chromophore of the light state from KMC-MD simulation after 40 RB-KMC
steps. (c) Inter-atomic distance Gln513-NE2 and Asn492-OD1 of the light state from MD simulation as a function of MD time. (d) Amino-acid configuration
around FMN chromophore of the light state after 20 ns of MD simulation. (e) Overlaid structures of dark state (dark red) and light state (bright red) of
AsLOV2-Jα system after 40 RB-KMC steps. (f) Final structure after 20 ns of MD simulation.

times of 330 μs and 127 s, respectively. From these obser-
vations, we conclude that in the light state the signal prop-
agates from the amino acids near to the FMN chromophore
to the peripheral AsLOV2-Jα-interface region leading to the
detachment of the Jα-helix from the LOV core, whereas in
the inactive dark state the Jα-helix remains attached to the
LOV core. This behavior is confirmed by several experi-

mental works, using x-ray-, 2D-HSQC-NMR-, and FTIR-
techniques.8, 10–12, 73 For example, Harper et al. demonstrated
through 2D-HSQC-NMR experiments that CFN-adduct for-
mation induces the disruption of the Jα-helix from the LOV2
core.11 Nakasone et al. performed time-resolved transient-
grating- and transient-lens-experiments to determine diffusive
changes of the LOV2-Jα system from Arabidopsis upon light
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FIG. 3. (a) Final amino-acid configuration in vicinity of the FMN chro-
mophore, (b) final overall structure as well as (c) secondary-structure analysis
of the Jα-helix as a function of KMC steps and real time from Gln513Asn-
AsLOV2 mutant in the light state, obtained with KMC-MD method.

excitation.19 In their paper, they speculated that complete un-
folding of the Jα-helix takes place after cleavage from the
LOV2 core. To investigate the detachment and subsequent
unfolding process of the Jα-helix in more detail, we visu-
alize in Figs. 4(c) and 4(d) the secondary structure analysis
of the Jα-helix from the AsLOV2-Jα system in the dark and
light state over the entire simulation run, obtained with the
KMC-MD method using the crystal structure of Halavaty and
Moffat,10 as starting structure. We compare these results with
the ones obtained with the MD simulation technique, using
the refined NMR-solution structure of Harper et al.11 in Figs.
4(e) and 4(f) as well as with the crystal structure of Halavaty
and Moffat10 in Fig. 4(h). While in the dark state the Jα-helix
remains folded with both simulation strategies, we see that
the length of the folded sequence of the Jα-helix decreases in
case of the light-state KMC-MD simulation as well as the MD
simulation with the NMR-solution structure, whereas in case
of the MD simulation with the crystal starting structure this
behavior is not observed. By further comparing these results
with the secondary structure analysis from the MD simulation
run of the isolated Jα-helix in Fig. 4(g), we infer that after the
coupling of the Hβ- and Iβ-strands the Jα-helix partially un-
folds in the N-terminal region and after its complete cleavage
from the LOV core the unfolding continues to a minor extent
at the C-terminus. We explain the partial unfolding of the Jα-
helix by the fact that no force is exerted by the C-terminal
region of the LOV core, which could completely unfold the
Jα-helix after full cleavage. This causes that the Jα-helix of
the AsLOV2-Jα system in the disrupted signaling state be-
haves similarly as the isolated Jα-helix in solution. This find-
ing is confirmed by the FTIR measurements of Alexandre
et al.,71 who demonstrated that the Jα-helix unfolds only par-
tially upon illumination. We point out that the partial unfold-

FIG. 4. Final structures of the AsLOV2-Jα system in the dark state (a) and
light state (b) after the ID-KMC phase at the end of KMC-MD simulation.
Secondary-structure analysis of the Jα-helix of the AsLOV2-Jα system in
the dark state (c) and light state (d) as a function of KMC steps and real
time, obtained by using KMC-MD method. Secondary-structure analysis of
the Jα-helix of the AsLOV2-Jα system in the dark state (e) and light state
(f) as a function of MD steps, obtained by using MD method in conjunc-
tion with the NMR-solution structure of Harper et al.12 as initial structure.
Secondary-structure analysis of the Jα-helix of the AsLOV2-Jα system in
the free state (g) and light state (h) as a function of MD steps, obtained by
using MD method in conjunction with the x-ray crystal structure of Halavaty
and Moffat10 as initial structure.

ing at the C-terminal end of the Jα-helix might be a con-
sequence of the high mobility of the Jα-helix at this free
chain end, caused by the missing kinase enzyme. This is con-
firmed by the fact that this behavior is not observed in the PA-
Rac1 system discussed in the following, where such kinetic
effects are excluded. The importance of the force at the C-
terminus for the complete unfolding of the Jα-helix is demon-
strated by the mutational experiments of Harper et al.,12 who
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FIG. 5. (a) Side-view of the final tertiary structure, (b) alternative side-view
of the final tertiary structure with snapshot of Glu539-Lys413 salt bridge, and
(c) secondary-structure analysis of the Jα-helix as a function of KMC steps
and real time from Ile539Glu-AsLOV2 mutant in the dark state, obtained
with KMC-MD method.

performed the point mutation Ile539Glu at the C-terminus of
the Jα-helix. To study the consequence of this mutation on the
secondary structure of the Jα-helix, we consider next in Fig. 5
the results of the KMC-MD simulation of the Ile539Glu-
AsLOV2-Jα mutant in the dark-state form. From the sec-
ondary structure analysis of the sequential range of the Jα-
helix, we deduce that at the 46th KMC step the Jα-helix loses

its secondary structure, which is due to the formation of a salt
bridge between Glu539-OE2 and the N-terminal Lys413-NZ
(see snapshot in Fig. 5(b)). This is in agreement with the ob-
servations of Harper et al.,12 who found that complete unfold-
ing of the mutated Jα-helix takes place even in the dark-state
form. We conclude from these observations that, addition-
ally to the detachment process of the Jα-helix, our KMC-MD
method reproduces the experimental findings about its subse-
quent unfolding in a reliable way. To study and understand
in more detail the different disruption times, we compare in
Fig. 6 the tertiary structures and APBS-electrostatic surfaces
of the AsLOV2-Jα-interfacial region and the Jα-helix from
the crystal structure of Halavaty and Moffat10 as well as the
NMR-solution structure of Harper et al.11 We conclude from
the tertiary structures of the AsLOV2-Jα surfaces that the Jα-
helix in case of the crystal structure of Halavaty and Moffat10

is longer and has a different orientation on the β-sheet of the
AsLOV2 core than in case of the solution structure of Harper
et al.11 Moreover, we deduce from the APBS surfaces that the
AsLOV2-Jα-interfacial region and the Jα-helix in the former
case are less polar and, therefore, more hydrophobic, which
leads to a reduced attractivity for water to enter the AsLOV2-
Jα interface and to a lower tendency to dissociate both en-
tities. This causes that the AsLOV2-Jα configuration from
the crystal is thermodynamically more stable and, thus, has
a higher disruption time than the one from solution. Finally,
from Fig. 4(d) we can estimate the time for the dissociation of
the Jα-helix from the AsLOV2 core and its subsequent par-
tial unfolding to take place in the range from 130 ns up to

FIG. 6. (a) Front-view and APBS surface of the AsLOV2 core with the Jα-helix from the x-ray crystal structure of Halavaty and Moffat.10 (b) Front-view and
APBS surface of the AsLOV2 core with the Jα-helix from NMR-solution structure of Harper et al.12
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FIG. 7. Inter-atomic distances and representative structures of the PA-Rac1 system, obtained with KMC-MD- and non-invasive MD-methods. (a) Inter-atomic
distance between Gln513-OE1 and Asn492-ND2 from KMC-MD simulation in the RB-KMC phase as a function of KMC steps. (b) Inter-atomic distance
between Gln513-OE1 and Asn492-ND2 from MD simulation as a function of MD time. (c) Inter-atomic distance between Gln513-NE2 and FMN-C4=O from
KMC-MD simulation in the RB-KMC phase. (d) Inter-atomic distance between Gln513-NE2 and FMN-C4=O from MD simulation as a function of MD time
[red curve: light state; black curve: dark state]. Final representative amino-acid configurations near to the FMN chromophore, obtained from (e) KMC-MD
simulation of the dark state, (f) KMC-MD simulation of the light state as well as (g) MD simulation of the light state [cyan: C-atom; red: O-atom; blue: N-atom;
white: H-atom; orange: P-atom; yellow: S-atom]. Overlaid final structures of dark state (h) and light state (i) of PA-Rac1 system after 30 ns of MD- (dark colors)
and 40 KMC-MD-steps (bright colors).

330 μs. This can be correlated with the experimental time
range of 300 μs–1 ms for these events, determined by Naka-
sone et al.19 for the LOV2 domain of phototropin1 from Ara-
bidopsis using transient-grating methods. Thus, we conclude
from the previous investigation that the KMC-MD method re-
produces the multiscale relaxation behavior of the AsLOV2-

Jα system after CFN-adduct formation reliably and permits
to extend the computationally accessible simulation times to
experimental timescales.

In the next part, we study the usefulness of the KMC-
MD method to describe the multiscale relaxation dynamics
of complex photoenzymes. As an example, we consider the
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signaling behavior of the photoactivable Rac1 PA-Rac1
system, where the Rac1 enzyme has been fused with
the AsLOV2-Jα photoswitch. We start by analyzing the
structural-dynamical changes in the RB-KMC phase of the
amino acids in vicinity of the FMN chromophore, suspected
to be involved in the primary steps of the signaling pathway of
PA-Rac1 in previous MD simulations on the same system.16

In Fig. 7(a), we plot the distances between Gln513-OE1 and
Asn492-ND2 from the dark- and light-states, obtained with
the KMC-MD method, as a function of KMC steps and real
time. We see that after the 5th KMC step the light-state curve
undergoes a severe drop from 0.6 nm to H-bond distance at
around 0.3 nm, whereas the dark-state curve performs a sta-
ble fluctuation around the former value throughout the whole
RB-KMC phase. Similar time behavior is observed for the
quantity after an initial relaxation phase in MD simulations
with the PA-Rac1 system, as shown in Fig. 7(b), as well as in
KMC-MD simulations with the isolated AsLOV2-Jα system
in Fig. 2(a). Next, we compare in Figs. 7(c) and 7(d) the dis-
tances between Gln513-NE2 and the carbonyl-oxygen FMN-
C4=O of the dark- and light-states, obtained with the KMC-
MD- and MD-methods, respectively. We notice that, while in
case of the dark state the curves remain stable at H-bond
distance, the light-state curves fluctuate at increased distance
with large magnitude. To further illustrate the changes in the
amino-acid environment of the FMN chromophore, we show
in Figs. 7(e) and 7(f) the respective representative snapshots
from the final configurations of PA-Rac1 in its dark-state
and light-state form after the RB-KMC phase in compari-
son to the final configuration of PA-Rac1 in the light-state
from MD simulation in Fig. 7(g). From these graphs, we de-
duce that after CFN-adduct formation the Gln513, located
on the Iβ-strand, detaches from the carbonyl-oxygen FMN-
C4=O and forms a H-bond with the adjacent Asn492 on the
Hβ-strand, which results in the coupling between the Iβ- and
Hβ-strands. We point out that this process has been found
by us to be crucial in triggering the signaling pathways of the
AsLOV2-Jα- and Vivid-LOV-photoswitches, as demonstrated
previously and in the MD-simulation studies of Refs. 14 and
54. We conclude from our investigation that it is also well re-
produced by our RB-KMC-simulation algorithm, introduced
in Sec. II A 1. To assess the consequences of the triggering
process near the FMN chromophore on the tertiary structure
of the PA-Rac1 system, we further visualize in Figs. 7(h) and
7(i) the final configurations of the LOV2-Jα domain from PA-
Rac1 in its dark-state and light-state form, respectively, ob-
tained after the ID-KMC phase and MD simulation. We de-
duce from these graphs that the coupling between the Iβ- and
Hβ-strands causes a N-terminal disruption of the Jα-helix in
the light state of the PA-Rac1 system, which is not observed
in the dark state. Next, we analyze the impact of this disrup-
tion on the functional activity of the Rac1 enzyme. To this
end, we display in Figs. 8(a) and 8(b) the final structures
from the ID-KMC phase of PA-Rac1 in the dark- and light-
states, respectively. From Fig. 8(b), we deduce that in the
light state the Aβ-Bβ-loop detaches from the activation site
switchII on the GTPase, which is triggered by the N-terminal
disruption of the Jα-helix. This causes that the steric inhibi-
tion from the LOV2 core is relieved and the activation site of

FIG. 8. Final structures of PA-Rac1 system in the dark state (a) and light state
(b) from KMC-MD simulation after 40 KMC-MD steps. APBS surfaces of
PA-Rac1 system in the dark state (c) and light state (d). (e) Center-of-mass
distance between Aβ-Bβ loop and switchII from KMC-MD simulation of
the light state (red curve) and dark state (black curve) as a function of KMC
steps.

Rac1 becomes accessible to interactions with its effector do-
mains, such as PAK1.74–76 By contrast, we infer from Fig. 8(a)
that in case of the dark state the switchII region is blocked by
the Aβ-Bβ-loop, which causes that the Rac1 enzyme is inac-
tive under dark-state conditions. To elucidate the reasons for
this behavior, we consider in Figs. 8(c) and 8(d) the APBS-
electrostatic surfaces from the final dark-state- and light-state
structures of PA-Rac1, respectively. In case of the dark state
we see that the switchII region as well as the Aβ-Bβ loop
possess a high negative electrostatic surface charge, which
causes that both structural elements repel each other and are
subjected to a high tension. This tension is released upon il-
lumination through the N-terminal disruption of the Jα-helix
from the LOV2 core, as can be concluded from the reduced
charge concentrations at the same sites observed in Fig. 8(d).
Ultimately, this leads to the detachment of the Aβ-Bβ loop
from the switchII region, which is confirmed by the increase
in the distance of the respective centers of mass of the light
state visualized in Fig. 8(e). From the same figure, we de-
duce that in the final stage of the KMC-MD simulation the
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difference in the distance between these two structural ele-
ments in the dark- and light-state amounts to 0.4 nm, which
remains stable over several microseconds. We emphasize that
these observations are in agreement with the x-ray measure-
ments of Wu et al.,15 who demonstrated that the Aβ-Bβ loop
from the AsLOV2 domain in PA-Rac1 acts as a steric inhibitor
enabling the light-sensitive regulation of the functional activ-
ity of the Rac1 enzyme.

To conclude, we evaluate the computational expense re-
quired by the KMC-MD method in comparison to the MD-
simulation technique, to access similar timescales. To this
end, let us consider the light state of the PA-Rac1 system,
for which we reached a total simulation time of 300 μs using
the KMC-MD method. In this calculation a total number of
40 KMC steps were accomplished, requiring a total number
of 200 000 MD-relaxation steps. Now, if we would use the
conventional MD-simulation technique with a time step of 1
fs, we would need a total number of 3 × 1011 MD steps, to
reach the same time of 300 μs as obtained with the KMC-
MD approach. By considering that the costs to execute the
KMC events are on the order of a MD-relaxation phase, we
conclude that the KMC-MD-simulation method reduces the
computational expense by a factor of 7.5 × 105 for the PA-
Rac1 system in the light state.

IV. CONCLUSIONS

In summary of this work we introduced a novel
multiscale-modeling method, based on a combination of the
kinetic Monte Carlo- and molecular-dynamics-technique, and
demonstrated its usefulness for the simulation of the mul-
tiscale signaling behavior of the AsLOV2-Jα photoswitch
as well as the AsLOV2-Jα-regulated photoactivable Rac1-
GTPase. After photoexcitation with blue light, these systems
typically exhibit a complex signaling pathway by carrying out
multiscale stress relaxation dynamics. This implicates local
structural changes at the residue level near to a light-sensitive
reaction center on a nanosecond timescale, inducing exten-
sive structural rearrangements between peripheral protein do-
mains on timescales ranging from several microseconds up
to seconds. More specifically, with our new approach we find
that the early stages of the signaling pathway are character-
ized by the coupling between the Iβ- and Hβ-strands through
H-bond formation between Gln513 and Asn492. This event
leads to a N-terminal unfolding of the Jα-helix and its sub-
sequent disruption from the LOV core. In case of the pho-
toactivable Rac1 system, we show that this latter disruption
process results in the release of a functional α-helix located at
the switchII region of the Rac1 enzyme, which is known to be
the primary docking site for Rac1 with its effector domains,
such as PAK1. Through comparing these findings with the
available experimental results, we conclude that our method
is a powerful new multiscale-modeling tool for simulating
the signaling behavior of large protein complexes from ul-
trafast up to typical timescales encountered in biological ex-
periments. Further gains in efficiency can be expected by us-
ing multiple-timestepping approaches, such as RESPAs, to
accelerate the calculation of the MD-relaxation phase. Fi-
nally, we emphasize that its underlying algorithm is trans-

ferable to a large number of alternative protein-solvent sys-
tems and will open new avenues for investigating the light-
induced regulation of enzymatic reactivity77 as well as gene
function.78
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