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1 Introduction

The 2008/2009 global financial crisis and its severe economic repercussions highlighted once

again the importance of financial stability surveillance. However, monitoring and assessing

national and international financial system soundness in a timely manner is a wide and com-

plex field of work. There is no consensus aggregate indicator which can be used to gauge

financial system’s resilience to stress situations. Instead, vast research in finance has led to a

great variety of non-mutually exclusive financial stability indicators based on different theo-

retical and empirical grounds (see e.g. IMF (2009)).

This paper derives a market based indicator by estimating option implied risk neutral den-

sities (RNDs) from observed option prices. In contrast to balance sheet based indicators,

market based stability measures are inherently forward-looking and available at much higher

frequency (see e.g. Knaup (2011)). Assuming that markets are information efficient, prices

exhibit all available information concerning the future evolution of a firm’s value and, hence,

the analysis of market prices offers a very appealing way to evaluate a firm’s soundness.

While it can be argued to which extent asset markets are information efficient, empirical

studies emphasize that derivative markets offer transactional efficiencies over equity and

debt markets which expresses in a higher degree of information efficiency (see Swidler and

Wilcox (2002); Mayhew (1995)). The reasoning is that the high leverage of derivative prod-

ucts decreases the cost of speculation and portfolio insurance, which in turn can increase the

informational content of those markets. Further, a great advantage of option markets over

e.g. the market of the frequently used Credit Default Swaps (CDS) is that option markets

provide us with several equilibrium prices for just one underlying, such that one obtains a

more comprehensive view of investors’ expectations. Also, option markets are usually more

liquid and prices more widely available than for CDS, as they are exchange traded.

We use the so-called option implied Probability of Default (option iPoD) methodology to

derive time series of option based financial stability measures. The approach was suggested

in Capuano (2008) and numerically robustified as well as evaluated in Vilsmeier (2011). The

framework uses the cross entropy function in order to estimate the option implied RND

and allows for a probability mass point in the RND at a value of zero for the underlying.

This mass point can be interpreted as Probability of Default (PoD). As opposed to CDS-

or bond based PoD estimation approaches, our methodology has the substantial advantage

that it requires no assumptions for the recovery rate. Further, we do not need to assume any

stochastic process for our risk neutral pricing model, which is the basis for approaches like

Distance to Default and for the derivation of option based indicators like Implied Volatility.

1



Using a non-parametric estimation procedure, our approach provides the entire option im-

plied RND from the observed option prices and is highly flexible regarding the functional

form of the implied distribution. We obtain a probability distribution for the future value of

the option’s underlying at time to maturity, which provides us with a comprehensive image

about the investors’ expectations and risk preferences.

There exists a large literature on RND estimations, differing by the statistical methods ap-

plied to extract the RND from the observed option prices (for an extensive overview see

Jackwerth (2004)). So far, though, RND estimates have not been applied to systematically

evaluate a specific firm’s soundness over a longer period of time; instead they were used for

short term applications like evaluations of option pricing models (e.g. Figlewski (2008)) or

testing market expectations around certain events (e.g. Capuano (2008); Melick and Thomas

(1997)). Possible reasons are that RNDs do not provide a unique and easy to interpret stabil-

ity measure and that their estimations are often plagued by limited sets of strikes, noisiness

and maturity dependence. Moreover, one faces high computational efforts, and numerical

instabilities of the statistical approach can make it difficult to obtain consistent RND esti-

mates over long periods of time.

Our empirical implementation of the option iPoD framework overcomes the described prob-

lems. We estimate RND- and, hence, PoD time series for 19 of the largest US banks and

financial institutions. The considered sample spans over eleven years from 2002 to the be-

ginning of 2012 and comprises the late consequences of the early 2000s recession, the first

financial turmoils in mid-2007, the world financial crisis of 2008/2009 as well as the reper-

cussions of the European sovereign debt crisis of 2011/2012. This leaves us with a unique

opportunity to evaluate our indicator’s properties and forecasting abilities in an environment

of huge macroeconomic distress and to compare it with more resilient periods as from 2004

to 2007.

In order to obtain the RND/PoD estimates, we use alternately five-, six-, and seven month

call option contracts. Subsequently, we remove the maturity dependence inherent in the

original time series by applying a non-parametric quantile regression approach to the pooled

PoDs. The time series of the maturity corrected PoDs are evaluated with regard to their

consistency and predictive power and their properties are compared to Credit Default Swap

Spreads (CDS)4. In this context, we derive an indicator for the systemic risk prevailing in the

US financial sector by applying a Principal Component Analysis (PCA) to the firm specific

PoDs. Thereby, we isolate the systematic components from the idiosyncratic risks of each

bank. Further, for a more clear interpretation of the respective levels of CDS and PoDs, we

4In the following we will use the abbreviation CDS for the term Credit Default Swap Spreads.
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check and compare the indicators’ properties in relation to the systemic risk, to the most

resilient bank and to their own history.

Our results give evidence for the predictive/signalling power of the option iPoD methodology

with regard to crises periods and for its ability to identify financially vulnerable institutions

in a timely manner. We find that CDS and the option implied PoDs exhibit very similar

dynamics, but PoDs being superior to CDS in identifying the high risk banks prior to the

Lehman crisis in September 2008.

Our paper contributes to the literature in several ways. We are the very first to empirically

apply the option iPoD framework to derive time series of RNDs/PoDs and, hence, are the

first that give a comprehensive empirical evaluation of that methodology. It is demonstrated

how the option iPoD methodology can be empirically implemented in order to get consistent,

smooth and maturity corrected PoDs. This was achieved by the appropriate choice of liquidi-

ty weights, the use of a suitable maturity cycle of option contracts and a refined option data

filtering technique. With the estimated PoDs we provide highly informative financial risk

indicators for the individual firms in our sample, and in addition we use them to derive an

indicator for the systemic risk of the overall US financial sector. Moreover, we give empirical

evidence for the high informational content of the option iPoD framework, which is shown to

be superior to the informational content of CDS. We stress that this is due to the fact that

for CDS differing and unknown recovery rates over firms and periods of time complicate the

interpretation of the levels of CDS, while iPoDs can be interpreted directly as they are equity

based. Finally, our approach provides a sound basis for multivariate financial risk analyses,

as the framework provides time series for firm specific PoDs jointly with the corresponding

asset distributions.

The remainder of the paper is structured as follows. Section 2 describes the underlying

methodology of our empirical framework. This comprises mainly the entropy based estima-

tion of the RND and the PoD. This is followed by the description of the data used in our

analysis. Section 4 explains the empirical implementation of our approach on how to ob-

tain a stable and smooth time series of PoD- and RND estimates. The estimation results as

well as the comparisons with the CDS are presented in section 5. Finally, section 6 provides

concluding remarks and offers prospects for further research.
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2 Methodology

The statistical framework used in this paper was originally suggested by Capuano (2008). In

Vilsmeier (2011) a more stable objective function for the RND estimation and an alternative

PoD determination procedure were proposed. In this paper, we apply this version.

The idea of the framework is to allow for a probability mass point for a value of zero of the

stock S in the estimation of a stock option implied RND. A RND is a density function f (ST )

that describes the investors’ expectations regarding the value of the underlying at time to

maturity T , implied by the observed option prices for different strikes. In order to obtain a

RND one uses the continuous risk neutral pricing formula for a call option

CKi
0 = e−rT

∞∫
ST =Ki

(ST −Ki) f (ST )dST , i = 1 . . .B. (1)

The formula should be solved with respect to the unknown density f (ST ) for given option

prices CKi
0 at different strikes Ki. Equation (1) states that the today’s observed option prices

must be equal to the discounted expectation of the inner values5 under risk neutral prob-

ability measure (risk neutral pricing), where r denotes the annualized risk free rate and T

the time to maturity of the option (measured in years). The number of observable option

prices for different strikes K is denoted by B whereat the current stock price S0 is included

as an option with strike K1 = 0. One faces an underdetermined estimation problem, as we

do not have an infinite set of strikes (Breeden and Litzenberger (1978)). There are different

statistical approaches to determine a unique density f ∗(ST ) out of the infinite many that

are compatible with the observed prices (see e.g. Jackwerth (2004)). The approach chosen in

this paper is to minimize the so-called cross entropy function

CE[ f (ST ), f 0(ST )] =

∞∫
0

f (ST ) log
f (ST )

f 0(ST )
dST , (2)

under restrictions imposed on the moments of f (ST ) given by the system of equations (1)

and where f 0(ST ) denotes some prior distribution.

The cross entropy function is based on the concept of entropy, whose mathematical repre-

sentation is: H[ f (ST )] =−
∫

∞

0 f (ST ) log f (ST )dST . In its information theoretic interpretation

of Shannon (1948), the entropy function can be regarded as a measure of average uncer-

tainty in a random variable. In this sense, if the entropy function is maximized subject to

5An inner value of an option is the payoff of the option given a specific realisation of ST .
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moment constraints on the density, among all densities that are consistent with the moment

conditions (1) one identifies this distribution as optimal that implies the most uncertainty re-

garding a future outcome (Jaynes (1957)). Without constraints the entropy function obtains

its maximum on a bounded domain by choosing the uniform distribution, for an unbounded

positive real valued domain (for a given mean) by the exponential distribution, and for an

unbounded real valued interval (given a mean and a variance) by the the normal distribution.

However, in this framework instead of maximizing the entropy function we minimize the cross

entropy function in order to identify an optimal density under moment conditions. Thereby,

the so-called entropic distance of f (ST ) to some prior density f 0(ST ) is minimized (see e.g.

Cover and Thomas (2006)). Both approaches, though, yield the same optimal solution, if the

prior distribution f 0(ST ) in (2) is chosen to be of maximal entropy on the defined domain.

We use the cross entropy concept since the prior density, f 0(ST ), is necessary for the deter-

mination of the PoD.

If one assumes that a stock price of zero implies default, then a probability mass point for

ST = 0 in the RND could be interpreted as the investors’ expectation regarding a firm’s

default between now and time to maturity T of the option. Given our continuous estimation

framework, such a mass point cannot be estimated as a ‘jump’ in the density at ST = 0.

Instead, we extend the domain of the RND for ST such that all realisations within this

additional interval of values imply a future stock price of zero. In this way the PoD is not es-

timated as a mass point but as the integral over the density assigned to a certain sub-domain

of the RND. The additional interval of values is obtained by shifting the domain for the fu-

ture stock value ST upwards by some constant D, and estimating f (VT ), with VT = ST + D.

For the payoff of the option in T (the inner value) now holds: CT = max(VT −D−K;0), and

any value VT ≤ D will imply an inner value of zero for arbitrary K.6 The integral of f (VT )

over the interval [0;D] will yield our PoD estimate.

A theoretical interpretation to the described PoD estimation procedure is possible, if one

assumes that the so-called structural approach of Merton (1974) applies to a firm’s balance

sheet. In the structural approach a firm’s value of assets is given by the value of its debt plus

the value of its equity. The firm defaults if the value of assets does not cover the value of

debt. Hence, in the PoD mechanism VT can be interpreted as value of assets, ST as the value

of equity and D as the value of debt.7

In Vilsmeier (2011) some important characteristics of the PoD mechanism were found using

6Note that before extending the domain of ST only ST = 0 implied an inner value of zero for arbitrary K.
7Note that the assumptions of the structural approach have no implications for the PoD estimation. Any

event that will lead in the investors’ expectation to ST = 0 will increase the PoD.
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numerical experiments. First, the procedure can perfectly estimate a probability mass point

for ST = 0 if the length of the interval D is chosen correctly. Second, the estimated PoD is

a concavely increasing function in D and flattens out after reaching the optimal D. Third,

for arbitrary reasonable RND forms and PoD levels the optimal D lies within the interval

[0;20]. Fourth, as an exact rule for the determination of the optimal D could not be detected,

averaging the PoDs obtained for RND estimates with Ds ranging from 0 to 20 provides very

accurate estimates. The optimal RND is then identified as the one that provides the PoD

closest to the average PoD (‘averaging approach’). Despite its quite ad hoc nature, this pro-

cedure produces highly accurate estimates in numerical experiments covering a great number

of reasonable RND/PoD specifications. As will be seen in section 5 the procedure produces

also highly plausible results if applied to real option data.8

For the RND estimation we use the following system of equations, which we express in terms

of VT and D:

CE[ f (VT ), f 0(VT )] =

∞∫
0

f (VT ) log
f (VT )

f 0(VT )
dVT (3)

CKi
0 = e−rT

∞∫
VT =D+Ki

(VT −D−Ki) f (VT )dVT , i = 1 . . .B (4)

∞∫
VT =0

f (VT )dVT = 1. (5)

(3) is the cross entropy function for f (VT ) with regard to some prior distribution f 0(VT ).

(4) denotes the continuous risk neutral pricing formula and (5) is an additional moment

condition that ensures that the density integrates up to one.

Combining (3) to (5), the estimation setup can be written using the Lagrange multiplier

8The intuition behind the ad hoc procedure is explained in Vilsmeier (2011). A sketch of the intuition
is as follows. The absolute level of D does not influence the results regarding the estimated RND/PoD but
only the value of Vmin (minimal possible realisation for VT ) relative to D, i.e. the interval length [Vmin,D].
The ’location’ of the interval [Vmin,Vmax] does not influence the results as the inner values of the options
depend on (VT −D), and D will increase by the same amount as VT if we move the interval. The length
of the interval [D,Vmax] does not significantly influence the PoD, as the normalization constant µ(λ ) will
offset the decreasing f 0(VT ) in the PoD estimation due to an increase in Vmax, and ‘irrelevant’ VT will be
assigned a density of virtually zero in the RND estimation. Hence, for the PoD/RND estimation only the
interval [Vmin,D] is of importance, which is addressed in the ad hoc procedure. Moreover, the non-parametric
estimation framework is able to estimate arbitrary levels of PoDs for relatively short interval lengths because
the framework assigns just enough density to values VT larger but very close to D that in the ‘transition’,
VT = D, the density is large enough to assign the PoD to the given interval length [Vmin,D]. This is because,
if e.g. the PoD is high, the framework has to assign density to values of VT that do not contribute to the
price of the option (very small values and ‘negative’ equity values).
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approach:

L =

∞∫
VT =0

f (VT )

[
log

f (VT )

f 0(VT )

]
dVT + λ0

1−
∞∫

VT =0

f (VT )dVT


+

B

∑
i=1

λi

CKi
0 − e−rT

∞∫
VT =D+Ki

(VT −D−Ki) f (VT )dVT

 . (6)

Optimizing (6) with respect to f (VT ) yields (see e.g. Cover and Thomas (2006)):

f ∗(VT ) =
1

µ(λ )
f 0(VT )exp

[
B

∑
i=1

λie−rT 1VT>D+Ki(VT −D−Ki)

]
, (7)

with

µ(λ ) = exp(1−λ0) = exp(−λ
′
0) =

∞∫
VT =0

f 0(VT )exp

[
B

∑
i=1

λie−rT 1VT>D+Ki(VT −D−Ki)

]
dVT . (8)

We see from (7) that the optimal solution will be in the family of exponential distributions.

Hence, the estimation procedure is highly flexible regarding the underlying shape of the RNDs

and is able to approximate almost arbitrary functional forms if we have enough option prices.

Further, the estimated PoD will be equal to
∫ D

0
f 0(VT )
µ(λ ) as the expression in the exponential

function will be equal to 0 for all VT ≤D. That means that the estimated PoD and the shape

of the RND interact, as the Lagrange multipliers also determine the shape of the RND.

If we assume some value for D, we obtain our RND and PoD if we are able to determine

the λi in (7). This could be achieved if one replaces f (VT ) in the Lagrangian by (7), and

optimizes regarding the λi. The resulting system of equations could be solved using e.g. a

multivariate Newton-Raphson algorithm. The search for the roots, though, is numerically

very unstable due to near singularities of the involved Jacobian for large domains of the λi.

Hence, in Vilsmeier (2011), following the suggestions in Alhassid et al. (1978) and Agmon

et al. (1979), an objective function for the λi was derived that yields efficient and numerically

stable optimizations. The derivation is based on the finding that a function can be defined

such that for any trial set of parameters λ Tr it provides a theoretical lower bound to the

value of the cross entropy of the optimal density. This function has its minimum for the

optimal set of λ s.

If one assumes some finite maximum and minimum value, Vmax and Vmin, for the value of
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assets (per share) in the RND domain9 and a uniform prior, one can solve the integrals

involved in the objective function analytically and obtains:

F = log
(

1
Vmax−Vmin

)
+ log

{
exp

(
−

B

∑
i=1

wiλiC
Ki
0

)
(D−Vmin)

−
B−1

∑
i=1

exp
(

∑
i
j=1 w jλ j(e−rT (Ki−K j)−CK j

0 )−∑
B
k=i+1 wkλkC

Kk
0

)
e−rT (∑

i
j=1 w jλ j)

−
exp
(

∑
i
j=1 w jλ j(e−rT (Ki+1−K j)−CK j

0 )−∑
B
k=i+1 wkλkC

Kk
0

)
e−rT (∑

i
j=1 w jλ j)



−

exp
(

∑
B
j=1 w jλ j(e−rT (KB−K j)−CK j

0

)
− exp

(
∑

B
j=1 w jλ j(e−rT (Vmax−D−K j)−CK j

0

)
e−rT (∑

B
j=1 w jλ j)

 ,

(9)

where wi denotes weights that are pre-multiplied to the Lagrange multiplier. The weights

will ensure that more liquid option contracts (measured in our approach in terms of open

interest) have to be met more closely by the estimated RND. The assignment of the liquidity

weights is very important in order to obtain timely consistent and smooth PoD estimates.

This issue will be addressed in section 4. The minimization of (9) is numerically highly stable

and can be computed in a fast manner, which is prerequisite for our applications as we had

to estimate in total about one million RNDs based on options that provide up to 40 strikes

a day.

3 Data

Our option and stock data sample comprises 19 US banks and financial institutions and

ranges from February 6, 2002 to February 24, 2012. Hence, the late consequences of the

early 2000s recession, the first financial turmoils in mid-2007, the world financial crisis of

2008/2009 as well as the repercussions of the European sovereign debt crisis of 2011/2012 are

included in our data set. Regarding the level and variance in the degree of financial distress,

this data sample provides us with a unique opportunity to evaluate our indicator’s properties

9The value of Vmax should be large (e.g. ten times the current stock price) but can be arbitrarily chosen
as it does not significantly influence the estimates. Vmin denotes the minimal possible realisation for VT and
is set equal to zero in our applications.

8



over a highly diversified period of time. As Coffinet et al. (2010) point out, prior to the world

financial crisis empirical literature assessing properties of market indicators had to rely on

rather soft definitions of default.

Among the 19 covered financial institutions there are 14 banks, namely: Goldman Sachs (GS),

Wells Fargo (WFC), Citigroup (C), Bank of America (BAC), JPMorgan Chase (JPM), Mor-

gan Stanley (MS), PNC Bank (PNC), State Street (STT), Bank of New York Mellon (BK),

Lehman Brothers (LEH), Bear Stearns (BSC), Wachovia (WB), Merill Lynch (MER) and

Washington Mutual (WM).10 This data set comprises the past and/or present largest US

banks. For instance, on November 4, 2011 the Financial Stability Board (FSB) published a

list of global systemically important financial institutions, which included the following US

banks: GS, WFC, C, BAC, JPM, MS, STT and BK (see FSB (2011)). Thus, our sample can

be viewed as an appropriate proxy for the US financial sector. Moreover, banks not covered

by the FSB listing had a major impact on the US financial sector before the outbreak of

the global financial crisis. LEH, for instance, filed for Chapter 11 bankruptcy protection on

September 15, 2008; BSC was sold to JPM on March 16, 2008; MER was purchased by BAC

on September 14, 2008; WB was sold to WFC on December 31, 2008 and WM filed for

Chapter 11 bankruptcy protection on September 26, 2008 and was shortly after taken over

mainly by JPM.11 LEH, BSC and MER were among the world’s leading investment banks

and prior to the financial crisis WM was one of the largest US banks.

In addition to the mentioned 14 banks, our sample includes 5 non-banking financial entities

with great relevance for the overall US financial sector. The American International Group

(AIG) is among the biggest insurance corporations in the world but had to be rescued by

the Federal Reserve Bank and the United States Treasury in September 2008 and May 2009.

Until its acquisition by BAC on July 1, 2008, Countrywide (CFC) was one of the largest

US mortgage banks. Before the financial crisis, the financial services company MBIA (MBI)

was the world’s largest monoline insurer and highly involved in the market of asset-backed-

and mortgage-backed securities. Blackstone (BX) is an asset management and financial ser-

vices company and currently the largest fund of hedge funds in the world. Finally, Blackrock

(BLK) is an investment management corporation and the world’s largest asset manager.

As can be seen from the brief discussion above, our data set covers not only a varied time

period but also includes a quite heterogeneous sample of financial institutions. Some have

performed quite well during the recent financial crisis, some others depended on governmen-

10We are well aware of the fact that a distinctive classification of the the financial entities is subjected to
certain inaccuracies due to the complexity of the underlying business portfolios.

11For the sake of completeness, also Citigroup had to be rescued by the US government on November
2008 but did not go bankrupt in the aftermath, though.
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tal financial aid during the turmoils and still others went bankrupt. This leaves us with a

substantial informational input for our empirical analysis.

The equity option and stock data of the above mentioned financial institutions were ob-

tained from the New York Stock Exchange (NYSE) via the data provider Stricknet. This

encompasses on a daily basis the end of day stock- and option price, the trading volume, the

strike price, the bid- and ask option price, the open interest (number of outstanding option

contracts) as well as the year, month and, for the current option symbol methodology, day

of expiration. At first, in order to estimate the option iPoDs we need to extract the relevant

information from our vast data set. This is a quite challenging task, due to the option market

inherent complexities and due to changes in the option symbolic system in February 2010.

The old option symbol format consisted of a three- to five-character symbol. The first up to

three letters denote the root symbol, which is the stock symbol of the respective company

if stock- and option trading is located at the same exchange. If not, it can depart. The sub-

sequent letter represents the expiration month of the option12 and indicates if it is a call

(letters A for January to L for December) or put (M to X). The last letter (generally A to

T) indicates the strike price. Since there are plenty potential strike prices but only a limited

number of letters, each letter stood for more than one strike price. Consequently, large stock

price variations may lead to duplications of the option symbols. Therefore, dummy- or ex-

tension root symbols were introduced in order to accommodate the limitations of the original

symbol. In consequence, one and the same option can have different option symbols whose

detection is not straightforward. The identification of option symbols is further complicated

by stock splits, odd strike prices and the proliferation of, for instance, LEAPs-, Quarterly-,

Weekly-, and FLEX options13. For an exemplary overview of such a dataset given the old op-

tion symbology see Table 1. Due to the mentioned shortcomings, a more intuitive and flexible

option coding system was established. The new symbology consists of a one to six character

root symbol, followed by two characters each representing the expiration year, month and

day, one character denoting the put (P) or call (C) option, five characters for the strike price

and three for possible strike price fractions (e.g. in case of stock splits). This option sym-

bolic method avoids any duplications and can accommodate newer types of options. For an

exemplary overview of our extracted dataset given the current option symbolic methodology

see Table 2. Most of our data, though, are based on the old option symbology. As a risk

12Note that specific expirations days have to be obtained from option expiration calenders. Equity options’
expiration date is usually every third Saturday in a month.

13LEAP stands for Long-Term Equity Anticipation Securities which are options with expiration dates
longer than one year. Quarterly options expire at the end of quarters and Weekly options expire after eight
days. FLEX options means Flexible Exchange Options which can be modified by investors needs.
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Option Symbol Last Volume Strike Bid Ask Open Interest Expiration Year

JPMRX 5.05 0 44.00 5.15 5.25 4149 2010

JPMRY 6.45 0 46.00 6.45 6.55 1210 2010

JPMRZ 7.00 0 47.00 7.15 7.25 1469 2010

JSAAA 25.55 0 17.50 24.15 24.25 1449 2010

JSAAB 34.45 0 10.00 31.65 31.75 92 2010

Table 1: Extract from the Option Dataset for JPM with old Option Symbology

Option Symbol Last Volume Strike Bid Ask Open Interest Expiration Year

JPM 110107C00042000 1.67 705 42.00 1.64 1.66 1125 2011

JPM 110107C00043000 0.89 2153 43.00 0.85 0.87 1279 2011

JPM 110107C00044000 0.34 4157 44.00 0.33 0.35 130 2011

JPM 110107C00045000 0.09 351 45.00 0.10 0.11 0 2011

JPM 110107C00046000 0.03 31 46.00 0.03 0.04 0 2011

JPM 110107C00047000 0.02 10 47.00 0.01 0.02 0 2011

Table 2: Extract from the Option Dataset for JPM with new Option Symbology

free interest rate we used the 3-month Treasury Bill secondary market rate obtained from

the FRED data base. The CDS spread data were obtained from Markit Group and range

from February 6, 2002 to January 18, 2012. The sample covers the same institutions as the

stock and option data, except for BK, BX and BLK. Due to enhanced data availability, we

extracted 5-year CDS under the credit event of modified restructuring.

The subsequent section will explain how we empirically implemented our estimation approach

and how we dealt with problems discussed in this section and the introduction.

4 Empirical Implementation

There are some important issues that have to be taken into account in order to be able to

estimate smooth and timely consistent RND time series.

The first issue concerns the so-called maturity dependence of RND estimates. RNDs provide

information about the expectation of investors regarding the value of the underlying at the
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expiry date of the option contracts. Hence, if one estimates RNDs for subsequent days and

uses option contracts with the same expiry date for each of these days, one faces the problem

that RNDs closer to the expiry date will exhibit ceteris paribus less uncertainty regarding the

future value of the underlying. This characteristic is called maturity dependence of RNDs.

The problem arises because traded option contracts exist only for a few expiry dates within

a year, such that one cannot extract time series of RNDs with constant time to maturity.

To solve this problem we introduce in section 5.1 a regression based procedure to remove

the maturity effects from the moments and PoDs of the estimated RNDs. For our procedure

to work, though, we need to keep the maturity effect between the estimated RNDs as small

as possible, i.e. the used option contracts for different days should exhibit similar time to

maturity. Very similar time to maturity would be obtained if one constantly uses option con-

tracts that expire in the subsequent month (as such a contract always exists). Thereby, the

maximum difference in time to maturity related to two RNDs would be 31 days. However,

this approach has the serious drawback that the estimated RNDs and hence PoDs only dis-

play information about the investors’ expectations regarding a very short time period. The

derived PoDs would indicate the probability of a firm’s default within the next few weeks

only, and the obtained results would be very erratic as only very imminent risks significantly

change the investors expectation. Consequently, one would wish for a risk evaluation for a

longer time period. Option contracts with longer time to maturity (e.g. 6 month) are not

newly initiated at each month, though. Instead, different firms have different cycles within

they initiate contracts with longer time to maturity than one month.

Taking into account the trade-off between maturity dependence and long term risk evalua-

tion, we identified and applied three different ’maturity cycles’ for our examined companies

and allocated institutions with the same maturity scheme into one group. Hence, in our

estimation implementation we considered three sub-samples of financial institutions instead

of treating all 19 institutions equally with regard to their maturity intervals. The first group

consists of GS, WFC, MS, BLK, BK, LEH, BSC, WB, MER, CFC and WM with, start-

ing in January, a cycle of six-, five- and seven month maturity (i.e. seven month contracts

are initiated in March, June, September and December), alternating throughout the years.

The second group uses a five-, seven- and six month maturity scheme and covers C, JPM

and BX. Finally, the third group comprises BAC, AIG, MBI, PNC and STT and follows a

seven-, six- and five month time to maturity cycle. The explained five,- six- and seven month

time to maturity schemes leave us with a maximum of roughly 90 days of difference in time

to maturity between the applied option contracts. Thereby, over the entire considered time

period of 2583 days for which we estimated the RNDs, we obtain repeatedly RNDs with

12



the same time to maturity. This is the prerequisite for our maturity dependence adjustment

procedure, which consists of regressing the pooled (over time and firms) moments and PoDs

of the RNDs on their respective time to maturity.

A further important issue that we detected in the estimation of our RND time series is the

use of adequate liquidity weights in the optimization procedure as shown in our objective

function (9). These weights ensure that more liquid option contracts, which presumably ex-

hibit more information about the future value of the underlying (prices with less noise), are

met more closely by our estimated RNDs than illiquid contracts. The weights are calculated

by dividing open interest (contracts traded in the past and not exercised or evened up yet)

for a specific strike by the sum of open interest over all available strikes for a firm’s stock

option. We found that the use of liquidity weights based on open interest leads to much

smoother and more consistent time series than the use of trading volume, as often suggested

in the literature. The reason is that crucial market information are discarded if the sample is

weighted by trading volume. As the currently observed price arises as a result of current and

past trading, a contemporaneous trading volume of zero does not necessarily imply such a

contract is illiquid and has no information about the investors’ expectations. Quite the con-

trary, if there is no trading today but there was high trading in the past (measured in open

interest), this means the contract is liquid but the investors’ expectations did not change

with respect to the previous day(s).

A third issue deals with the old option symbology used previous to February 2010. Under

the current option symbol methodology the expiration date of the option is directly inherent

in the symbol (as well as the information whether it is a call- or put option) and, hence, the

extraction of the correct option contracts from the whole firm specific domain is straight-

forward. However, the old option symbology causes some difficulties due to problems like

dummy- or extension root symbols as outlined in section 3. First, we need to identify the

option contracts with the appropriate maturity. Knowing that the second last letter (A to L

for call options) of the option symbol denotes the expiration month of the option, together

with information about the expiration year (provided by the NYSE in the dataset), we can

filter out the options with the adequate time to maturity. Second, we need to deal with the

issue of dummy symbols. Therefore, we check how many different option symbols are left in

our already filtered dataset and sort the strike prices belonging to each symbol in ascending

order. If there is just one option symbol left, we are done. Otherwise, we check if different

option symbol groups have different strike ranges. If the corresponding strike ranges do not

overlap, we combine these contracts as they contain differing information. If strike ranges

overlap, we chose that option symbol corresponding with the most strike prices. Otherwise
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we would discard a large set of information in cases where the available strike ranges exceed

the number of available letters which denote the respective strike price of an option.

Finally, we have to set some model parameters before we can carry out the RND estimations.

The framework described in section 2 is designed such that we can set global parameters

which are used for the RND estimations for all institutions and all periods. This is very

important in order to be able to estimate such a large number of RNDs. As pointed out in

Vilsmeier (2011) the level of D, i.e. our debt value, does not influence our estimation results

but only the length of the interval [Vmin;D]. This implies that no matter how large we set

D, if Vmin is always D minus some constant (e.g. 10), the obtained results are exactly the

same. Knowing this, we set our Vmin = 0 and D takes integer values 0 to 20 in the averaging

approach. For instance, in the first run D = 1, in the second D = 2 and so on, up to our

Dmax = 20. For Vmax, we choose some arbitrarily large value that will be large enough for the

asset value domain of all banks and for all time periods. In our implementation, we used

Vmax = 850, which implies that the asset value per share of a firm cannot exceed this value.

5 Results

This section will show that the empirical implementation of our estimation approach yields

consistent and plausible PoD estimates and we will compare their performance to established

indicators like CDS. Subsection 5.1 will stress that during institution specific high distress

times the levels of our PoD estimates are more reasonable in size than those of CDS. In that

context, the issue of recovery rates will be discussed and the superior informational content

of our iPoDs emphasized. Subsection 5.2 presents our derived systemic risk indicator which

measures the degree of distress of the overall financial sector. Finally, subsection 5.3 interprets

our financial stability indicator in relative terms and substantiates the finding that our iPods

are often better than CDS in identifying high risk institutions prior to incisive events.

Even though we focus on the PoD time series, it is important to note that the evaluation

of the PoDs implicitly evaluates also the entire RND. This is the case because the PoD is a

function of all RND shape parameters λi. Hence, no consistent and plausible PoDs can be

obtained if not a consistent and plausible RND is estimated.

5.1 Time Series of option iPoDs

Applying the option iPoD methodology as described in the previous sections provides us with

a RND estimate for each firm at each trading day in our sample period. Figure 1 displays an
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example of such a RND, obtained for Goldman Sachs at July 10, 2008. The special feature

of this RND estimate is the probability mass point for a future value of assets (per share),

VT , in the amount of the debt value D of the firm. The mass point indicates the probability

that the stock value of the firm will be zero at time to maturity of the options and hence

corresponds to our PoD estimate. We subsequently want to evaluate the time series of these
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Figure 1: Estimated Risk Neutral Density for the future value of assets (per share) for Gold-
man Sachs on basis of option prices available at July 10, 2008

PoD estimates obtained for the different financial institutions. Before we can do so, however,

we have to remove the maturity dependence from the daily PoD estimates, as outlined in

the preceding section.

The basic idea is quite simple. We start by pooling our PoDs over periods of time and

firms, and assign to each PoD estimate the time to maturity of the options that was used

to estimate the RND. Then we regress the PoDs on the respective time to maturity. As all

times to maturity run repeatedly from 130 days to 220 days, we have for each of the time

to maturities several PoD estimates such that the regression based approach should yield

rough approximations of the true maturity effects. In order to admit for non-linear matu-

rity effects as well as for different effects for different quantiles of the PoD distribution we
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apply a non-parametric quantile regression approach. More precisely, we use the method-

ology of additive quantile regressions (Hastie and Tibshirani (1986); Hastie and Tibshirani

(1990)) in which the usual predictor of the quantile regression is augmented with additive

non-parametric terms, and smoothing restrictions are imposed onto the fitted function. As

smoothing restriction we apply the method of total variation regularization as suggested in

Koenker et al. (1994).14 Further, we restrict our fitted function to have a positive slope,

as we expect that a higher time to maturity leads on average to a higher PoD. Figure 11

(Appendix) exemplarily depicts for each time to maturity the 40%- and 90%-PoD quantiles,

as well as the respective fitted functions for each quantile. In order to carry out the maturity

correction, we obtain the fitted PoDs for each time to maturity and different quantiles (in 5%
steps), and calculate the difference between the fitted values of the highest time to maturity

and the respective lower time to maturities for each quantile. The obtained differences are

our correction factors for the estimated PoDs. The size of the correction factor applied to a

specific PoD depends on how large the assigned time to maturity is and to which quantile

the respective PoD belongs. After the correction all PoDs have a theoretical time to maturity

of 220 days that is the maximum possible time to maturity that we have in our sample.15

Figure 12 (Appendix) shows the effects of our maturity correction procedure on the original

PoD time series of Lehman Brothers. We can state that the maturity correction changes

nothing regarding the dynamics of the time series. PoDs are only systematically higher,

which is what we expect if time to maturity increases.

Henceforward, our aim is to check if the estimated PoD time series are plausible and consis-

tent regarding dynamic and level, and if the obtained indicators are able to give some early

warning signals in advance of crisis events.

In Figure 2 we see an example for an estimated time series of maturity corrected PoDs,

namely for Citigroup. The time series runs from February 2002 to February 2012 and dis-

plays some typical dynamics that one can find in the PoD time series of all institutes in

our sample (see Figure 13 (Appendix) for a complete overview of all PoDs). PoD levels are

elevated in the aftermath of the 2001 recession, followed by a very calm period with low

PoDs until mid-2007. Starting with July 2007, PoDs increase continuously until mid-2009 in

the course of the US subprime crisis. The bankruptcies of Bear Stearns (BSC) and Lehman

Brothers (LEH) are highlighted in Figure 2 and one can discover sharp inclines at the days

of these events but also highly elevated risk indication in advance of these events. In mid-

14The methodology is available in the statistical software R using the ‘quanteg’ package.
15The correction process could also be applied to different moments of the RNDs in order to obtain

maturity corrected densities.
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Figure 2: Time Series of maturity corrected PoDs in basis points for Citigroup from February
6, 2002 to February 24, 2012

2009, PoDs return to pre-LEH period levels and in end-2010/beginning-2011 even to levels

of the pre-BSC period. In August 2011 PoDs begin to increase again to pre-LEH levels as a

consequence of the European sovereign debt crisis.

Firm specific events for Citigroup are highlighted in Figure 2 with C I, C II and C III. C I

indicates the date when Citigroup was rescued by the US government, C II indicates the date

when large restructuring of the firm was decided at a general meeting, and C III the date

when Citigroup was downgraded by several rating agencies. For C I and C III we see that

the PoDs already signalled very high risks in advance of these events, with levels of around

1800 basis points (BP) for C I and 800 BP for C III. With regard to C II, the decisions

seemed to be expected (as PoDs decreased some days before) and once they were actually

made led to a sharp decline in investors’ risk perception. Added together, we see that the

PoD time series is able to signal risks concerning the entire financial sector (systemic risk)

as well as firm specific (idiosyncratic) risks in a timely manner.

To check our indicator’s predictive power in comparison to other existing indicators, we next

compare our PoD time series to 5-year CDS. CDS are a very commonly used measure to
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derive (risk neutral) probabilities of default for firms and countries, such that we cannot only

compare dynamics but also to some extent the levels of the two indicators.

In Figure 3, 5-year CDS for Citigroup are plotted against our PoD time series using two dif-

ferent scales. It is obvious that both indicators exhibit a very similar dynamic, i.e. the points

of time at which the time series move up or down are virtually the same. The impression that

both indicators, CDS and PoDs, exhibit highly similar dynamics is found for all of the time

series of the different institutions (see also Figure 4). In Table 3 (Appendix) the Pearson and
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Figure 3: Time series of maturity corrected PoDs versus time series of 5-year CDS for Citi-
group, using two different scales

Spearman correlations between CDS and PoDs for the different financial institutions can be

found. Correlations with CDS are calculated for maturity corrected and non-corrected PoDs,

respectively. After the correction Pearson correlations are on average about 3% higher than

before the correction, and are mostly around 70%. Spearman rank correlations are mostly

above 80% and remain in general unaffected by the correction. The size of the correlations

is extremely high, taking into account that CDS levels imply a default evaluation over one

year while our PoDs describe the possibility of default over six month on average. Compar-

ing Spearman and Pearson correlations indicates that there is some non-linear relationship

between PoDs and CDS which is not accounted for in the Pearson measure. The maturity
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correction seems to linearise the relationship between the two measures to some degree as

Pearson correlations increase while Spearman correlations remain unchanged. The effect of

the correction is highly reasonable, as we would expect both indicators to exhibit perfect lin-

ear correlation (equal size) if there were not the issues of recovery rates (see below), differing

risk evaluation horizons and maturity dependence. These issues induce non-linearity to the

relationship, which can be accounted for by the Spearman measure but not by the Pearson

coefficient. Hence, removing the maturity dependence should increase Pearson correlations

and remain Spearman correlations unaffected. We conclude that the correlation analysis does

not only tell that PoDs and CDS exhibit quite similar dynamics, but also supports the ef-

fectiveness of our maturity correction.

An entirely different picture is obtained if we look at the levels of the PoDs and the CDS,

which differ considerably. This is a feature that is true for all of our PoD and CDS time

series, and is highlighted in an even more striking way in Figure 4, in which the PoD and

CDS time series for Lehman Brothers are plotted at the same scale. At the time of LEH’s

bankruptcy, PoD values rose to 2500 BP whereas CDS values rose only to 700 BP. This

feature is also shown in Figure 3 where at the time of the rescue of Citigroup by the US

government on November 23, 2008 (C I) we observe a level of around 4600 BP for the PoDs

versus around 250 BP for the CDS. Assuming we interpret the levels of both measures as

probabilities of default, the option implied PoDs are almost 18 times as high as CDS implied

PoDs in the Citigroup case and more than 3.5 times as high in the case of Lehman Brothers.

However, this interpretation is not entirely correct since CDS cannot be directly interpreted

as probabilities of default. In order to calculate CDS implied PoDs it is necessary to assume

some recovery rate (neglecting liquidity and counterparty risk) for the case of a firm’s de-

fault. This is because CDS are derivatives on debt based securities. In contrast, our option

implied PoDs can be interpreted directly as probabilities of default as we use equity based

market instruments. Hence, when comparing the levels of the two indicators one has to be

aware that if the investors’ assumed recovery rate is unequal to zero, a CDS spread implies

a probability of default of a multiple of its amount. This fact may lead to severe problems

in the assessment of the resilience of some firm, since an equal CDS level for two firms can

imply two totally different probabilities of default. Things are further complicated if recovery

rates are not constant over time. In contrast, our PoD estimates have the great advantage

that larger values of the indicator always imply higher risk, no matter if comparisons are

made over time, firms or both.

Taking into account the interpretation problem of the CDS levels, we subsequently make

the simplifying assumption that recovery rates are constant over firms and time in order to
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Figure 4: Time Series of maturity corrected PoDs versus time series of 5-year CDS for Lehman
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be able to compare the indicated risk levels of CDS and PoDs. To compare CDS and PoD

levels it is first of all important to know what can be regarded as a high/low value for the

respective indicator. From Table 4 (Appendix) one can see that before the crisis (chosen

start date for crisis: July 2007) the average PoDs range from 2 BP for WFC to 29 BP for MS

and average CDS from 14 BP for BAC to 60 BP for MBI.16 PoDs are on average lower than

CDS spreads, which is due to the shorter implied default evaluation period. The average

values after July 2007 range for PoDs from 61 BP for GS to 1135 BP for MBI and for CDS

from 89 BP for PNC to 1162 BP for MBI. Knowing this, we can now assess that the PoDs’

observed maximum values for LEH of 2500 BP and for C of even 5800 BP are extraordinarily

high. In contrary, the maximal values of CDS for LEH of 700 BP and for C of 600 BP are

only about half as high as the average CDS value for MBI after the crisis. Given LEH and C

faced maximum financial distress at time of the respective maximum values, we obtain a first

indication that CDS level are less reasonable in size as option iPoDs. The possible reason for

the implausibility of the CDS levels might be that different recovery rates are assumed for

the different firms.

16Only taking into account those banks for which CDS and PoDs are available.
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Yet, the indicators’ average values alone do not provide us with a very clear picture on how

risky a specific firm is at a specific point in time. For this we need relative information. More

precisely, information on how large the level of a specific bank’s indicator is (i) relative to

the indicator level of other banks, (ii) relative to the level of a financially sound bank, and

(iii) relative to the bank’s indicator level in the past. In the following, we will focus on the

calculation and evaluation of these three ’relative’ risk indicators.

In the next section, we derive a new, systematic measure of financial risk, which we interpret

as a proxy for the systemic risk in the overall US financial sector and which we will use for

the first of our three relative risk indicators.

5.2 Systematic/Systemic Risk

Before we proceed with the discussion of the relative risk indicators, it is essential to clarify

what we exactly mean by the term systematic risk and how it is derived. As a result, we gain

a second type of indicator which, in contrast to our firm specific PoDs, signals the degree of

distress of the overall financial sector. This systematic risk indicator can serve as a comple-

mentary analysis tool for supervisory authorities. In addition, the new measure will allow us

to separate the common dynamic of all firms’ indicators from the individual indicator time

series. By doing so we can take into account the fact that all banks display historically high

indicator levels during crises periods and we can later identify those banks that are especially

risky, given the degree of distress in the entire banking sector.

Given the strong similarities in the dynamics of our PoD series (see Figure 13 in the Ap-

pendix), there is strong evidence for some latent factor that predominantly drives the pattern

of our dataset. We interpret this unobservable joint factor as systemic or financial sector risk.

In order to derive a measure for that financial sector risk component, we aim to segregate the

systematic risk of our PoD data from the banks’ individual idiosyncratic risks. Therefore, we

apply a principal component analysis (PCA) and regard the first principal component (PC)

as a proxy for the overall financial sector risk. In other words, the first PC represents that

joint factor which mainly causes the correlation between the variables and likewise explains

the largest part of the variation in the dataset and is therefore regarded as the driving force

behind the common pattern underlying our data.

Technically speaking, the first PC can be regarded as a linear combination of the optimally

weighted PoD data. Hence, our financial sector risk indicator is a weighted mean of our

banks’ PoDs. The term optimally refers to the fact that there exists no other set of weights

that leads to a PC which accounts for a larger amount of variance in the data. Thereby, we
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weigh these banks in the sample the most which exhibit the highest percentage of the total

variation and, hence, exert the strongest influence on the overall financial sector risk.

Due to data restrictions we could not use the complete set of banks to calculate our PCs.

For the PC of the PoDs we used GS, WFC, C, BAC, JPM, AIG, MS, MBI, PNC and STT.

No data are available for LEH, BSC, WB, MER, CFC and WM after their takeover or de-

fault and also BLK, BX and BK contain too many missing values. For the CDS we took

GS, WFC, C, BAC, AIG, MS and MBI for the same reasons just explained. Consequently,

given the data restrictions we decided to use the maximum number of companies available

for the respective PC calculation. We found that all eigenvector elements are positive and

that the first PC of our PoD data explains 79.21% of the total variation and the first PC of

the CDS explains 83.66% of the overall variance in the dataset. Given that high explanatory

power, we consider the first PC as an appropriate proxy for the systemic risk inherent in the

financial sector.

The PCs of our PoD and CDS series are depicted in Figure 5.17 It is striking that both

graphs exhibit highly similar dynamics but differ significantly in their level values - as al-

ready found for the individual bank PoDs and CDS. This shows again that our estimation

framework yields very plausible results. Regarding its predictive power, our systemic risk in-

dicator clearly indicates the late consequences of the early 2000s recession, the Bear Stearns

takeover by JPM on March 16, 2008 (denoted BSC in the graph), the Lehman Brothers

bankruptcy on September 15, 2008 (denoted LEH in the graph) as well as the worsening

conditions in the wake of the European sovereign debt crisis (labeled ESDC in the graph).

Our approach is very well capable to significantly predict incisive events in US economic

history on a sector wide scale and, moreover, indicates magnified distress levels even prior

to certain incidents.

Figure 15 (Appendix) shows that the above mentioned properties do not hinge on the exact

choice of banks used for the PC determination. In Figure 15, we used the same specification

of banks for the PC determination of the PoDs as used for the PC calculation of the CDS.18

One can clearly see that the main findings remain unchanged.

17Beforehand, we tested our PoD and CDS series for unit roots (results available upon request). We found
that except for the ’crisis banks’ which went bankcrupt or were taken over during 2008 (LEH, BSC, WB,
MER, CFC and WM), the series are significantly stationary. The crisis banks’ indicators, though, rose to
very high levels shortly before failure and then abruptly ended, hence, pointing towards unit root behaviour.
Nonetheless, theoretically it is hard to justify that the CDS and PoD series are non-stationary. If the series
were not mean-reverting, very high values lasting over a lengthy periode of time would sooner or later trigger
default of the respective company.

18The first PC of the PoD for a bank sample equal to the one used for the PC calculation of the CDS
explains 72.28% of the total variation in the data, which is still a very high percentage.
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Figure 5: Systemic risk of PoD and CDS series measured in basis points over the complete
sample

In order to have a closer look at the dynamics of our financial sector risk indicator, Figure

6 focuses solely on the crisis period. We highlighted important events during the financial

crisis in order to verify the predictive power of our financial sector risk indicator. BSC I

marks the Bear Stearns hedge fund troubles of mid-2007, which were the first forerunners

of the financial crisis. CFC I represents the announcement of the Countrywide takeover by

BAC on January 11, 2008, BSC II denotes the Bear Stearns takeover by JPM on March

16, 2008 and CFC II stands for the Countrywide acquisition by BAC on June 25, 2008. All

four events were accompanied by a significant increase in the systemic risk component of

our PoDs. More importantly, worsened financial conditions were signalled in advance to the

specified events. For instance, long before the CFC II event actually took place, the surge

in the systemic risk indicator already pointed to impending financial upheaval. The biggest

surge in the indicator took place in the course of the Lehman Brothers bankruptcy (LEH

event), the BAC announcement of the Merrill Lynch purchase on September 14, 2008 (MER

event) and the bailout of AIG by the Federal Reserve Bank of New York on September

16, 2008 (AIG event). Shortly after the bankruptcy of Washington Mutual on September
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Figure 6: Systemic risk of PoD and CDS series measured in basis points from January 2007
to April 2009

26, 2008 (WM event) as well as the announcement of the acquisition of Wachovia by WFC

on September 29, 2008 (WB event) market conditions further worsened as indicated by a

substantial increase in the systemic risk measure. Again, our financial sector risk indicator

rose sharply already prior to these incisive events.

Given the strong predictive power of our financial sector risk indicator, we are interested in

building an indicator which puts more emphasis on the relative intensity of distress in the

financial sector. Therefore, to classify the levels of the systemic risk component, we built

’crisis bands’ based on four pre-specified events. We took the 50 days average of our PoD

and CDS systemic risk components around the early 2000s recession (weakest crisis level),

prior to the BSC takeover by JPM (second weakest crisis level) and prior (second strongest

crisis level) as well as posterior (strongest crisis level) to the LEH bankruptcy. The four crisis

bands are depicted in Figure 16 (Appendix). Based on these crisis thresholds we construct

an ordinal scale which indicates on a five step interval the intensity of risk in the US financial

sector over time - yielding a scaled magnitude of systemic risk which helps to set current

crisis levels in relation to previous ones. That ordinal crisis scale is shown in Figure 7.
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Figure 7: Ordinal crisis indicators for the systemic risk of PoD and CDS series

Again, the dynamics between the PoD and CDS ordinal crisis indicators are highly similar.

At first, the indicator signals no crisis at all but soon jumps upon a step one crisis level,

associated with the early 2000s recession. This is followed by a relatively long non-crisis

period (crisis level zero) before the indicator starts to rise again, triggered by the BSC hedge

fund troubles. This initial surge sets in earlier for the PoDs compared to the CDS scale.

The ordinal indicator reaches its maximum at the point of the LEH bankruptcy and remains

at crisis level four during times of severest financial distress. Due to governmental stability

measures, conditions improved and crisis levels decline but never reach pre-crisis levels again.

The last surge in the ordinal scale indicates the European sovereign debt crisis.

5.3 Relative Risk Analysis

Relative to Systemic Risk

As we could verify that our proxy for the systemic risk component of the US financial sector

provides very conclusive results, we apply this financial sector indicator to our relative risk

analysis. Figure 8 depicts exemplarily the PoD and CDS series of LEH and WM relative to

the systemic risk. We consider a period of six months prior to the Lehman event in order to
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evaluate the predictive power of our financial stability indicator in advance of severe events.

Therefore, we subtract the financial sector risk component from the original PoD and CDS

series of the respective companies and gain a ’relative risk spread’ measured in basis points.19

This spread indicates whether a company’s distress level is considered to be higher or lower

compared to the prevailing overall financial sector risk. The upper graph of Figure 8 exhibits

PoD and CDS Series Relative to Systemic Risk: LEH
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Figure 8: PoD and CDS series relative to systemic risk six month prior to the Lehman event;
measured in basis points

the relative risk spread for the PoD and CDS series of LEH. As illustrated by the zero line,

the relative PoD time series moves constantly around zero but exceeds that value in July

2008, two and a half months before the actual collapse of LEH. Hence, way in advance of

the bankruptcy, our indicator is able to signal in relative terms an increased default risk.

One trading day before failure, the risk spread even rose to around 29.5%, implying a default

probability which is 29.5 percentage points higher than that of the average overall financial

sector. In contrast, the CDS spread remains negative over the complete sample, which im-

plies LEH’s distress level to be below the systemic one. This clearly underestimates LEH’s

inherent default risk especially with regard to the looming insolvency.

The lower graph of Figure 8 depicts the relative PoD and CDS time series for WM. Here,

19For the sake of consistency, for the systemic risk calculation we used in this case the same bank sample
for the PoDs as for the CDS. However, results remain unchanged if we used the PoD sample of section 5.2.
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both curves signal a relative risk level above the systemic one in the latter part of the sample,

which is plausible since WM collapsed on September 26, 2008. However, the PoD spreads are

positive over the complete sample, whereas the CDS curve does not cross the zero line before

the end of July 2008. This result speaks again in favor of the predictive power of our option

implied financial stability measure. In addition, the absolute values of the PoD spreads are

decisively higher than the CDS ones, which is more consistent with the strained financial

condition of WM at that time.

Table 5 (Appendix) provides an overview of the relative riskiness of the remaining financial

institutions in our sample. We aggregated the information by taking the average of the PoD

and CDS spreads for each institution over an interval of one to ten days, ten to twenty days,

twenty to forty days and thirty to sixty days prior to the Lehman event. The results sub-

stantiate the findings from above that our PoDs are superior to the CDS in identifying the

most financially troubled institutions already prior to the Lehman Brothers breakdown (see

highlighted LEH, WB, MER, WM and AIG). In a consistent manner, the PoD spreads of the

most resilient banks like GS, WFC and JPM exhibit negative spreads since these institutions

weathered the financial turmoils quite well.

Relative to the most resilient bank

It is important to consider that the derived systemic risk component used in the analysis

above can be mainly driven by one or a few high risk institutions. As a result, a bank’s risk

level below the systemic risk does not inevitably imply that this bank is riskless. Therefore,

we extend our analysis and set our PoDs and the CDS in relation to the most resilient bank.

As most stable bank we chose JPM for two reasons: First, PoD and CDS levels are the lowest

on average over the complete sample and second JPM has the fewest missing values for both

indicators.20 Figure 9 displays PoD and CDS series for LEH and AIG relative to JPM for

a period of six months prior to the Lehman event. In both graphs the PoD and CDS series

have a highly similar dynamic structure and spread values are almost exclusively positive.

Hence, the relative PoDs as well as the relative CDS point to an increased risk level prior

to the Lehman event. Moreover, in the case of LEH even the Bear Stearns crisis of March

2008 is characterized by amplified spread levels. The absolute magnitude of the spread levels,

though, differ to a large extent, implying that the PoDs signal a higher degree of distress.

This is highly reasonable given the grave financial conditions of both institutions.

In essence, these results are confirmed by Table 6 (Appendix). Again, we aggregated our PoD

20We tested several reasonable specification for the most resilient bank and found that the main results
do not hinge on the exact choice of JPM as most stable institution.
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PoD and CDS Series Relative to Most Resilient Bank: LEH
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Figure 9: PoD and CDS series relative to the most resilient bank (in both cases JPM) six
month prior to the Lehman event; measured in basis points

and CDS spread data for the relevant financial institutions prior to the Lehman event in the

same way as done in Table 5. As one would expect, beside very few values, all spreads are

positive. More interestingly, for banks like WM, MER, WB and LEH which did not survive

the financial crisis, the PoD spread values are consistently higher than the CDS spreads. The

capability of our PoDs to act as a financial early warning system prior to disruptive events

is thereby further demonstrated. Also institutions like AIG or C, which may have survived

the financial turmoils but underwent severe difficulties, are assigned higher spread values for

the PoDs than for the CDS.

Relative to the own history

For a complementary risk analysis one also needs to evaluate a bank’s performance in relation

to its own history. Especially, in calmer periods prior to financial turmoil spreads relative to

the most resilient bank and to the financial sector risk might be rather small. This is due

to the fact that investors’ risk perceptions do not diverge much in financially stable periods.

If for instance the two previously discussed relative risk indicators did not signal elevated

degrees of distress that would not inevitably imply that a bank’s financial condition has
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not worsened yet. Hence, a firm’s PoD relative to its own history can be regarded as a first

warning sign, whereas the indicators relative to the most stable bank and the systemic risk

follow with a lag.

Therefore, in Figure 10 we consider a period of six months prior to the Bear Stearns event

of March 14, 2008 (first takeover arrangements by JPM induced by the Federal Reserve

Bank of New York), reflecting a rather tranquil financial environment. It is about to see if

our relative PoD series is able to identify the increasing risk emerging at the horizon. The

PoD and CDS spreads are determined by taking the difference between the original series

and its mean over a moving window of the last three years. As initial interval for our mean

calculation we chose January 2004 to January 2007. Figure 10 depicts the PoD and CDS

spreads for Bear Sterns and Lehman Brothers relative to their own history. In both graphs,
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Figure 10: PoD and CDS series relative to the own history six months prior to the Bear
Stearns event; measured in basis points

the PoD and CDS spreads exhibit highly similar dynamics and are also quite similar with

regard to the magnitude of their spread values. This is not very surprising since - as already

mentioned in section 5.1 - CDS and PoD levels are relatively close in financially solid periods.

More strikingly, the PoD as well as the CDS spreads for Bear Stearns and Lehman Brothers

clearly indicate the Bear Stearns hedge fund crisis of mid 2007, which was the first signifier
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of the looming financial crisis. In the following, the spread series remain on their elevated

levels and surge shortly before the Bear Stearns event.

Table 7 (Appendix) aggregates the results for the remaining financial institutions of the

sample. This time, however, we chose different intervals for our mean calculation in order to

evaluate if and how the relative risk measures signal the different distress levels over time.

We took the mean over an interval of: 1 to 10 days (to capture the period close to the event),

30 to 136 days (September 2007 to February 2008 as the period between the hedge fund

crisis and the final event), 137 to 180 days (July 2007 to September 2007 as the period of

the hedge fund crisis itself) and 181 to 225 days (May 2007 to July 2007 to represent the

financially resilient period) prior to the Bear Stearns event.

Almost exclusively all institutions’ relative risk indicators rise over time. Starting from very

low and partly even negative values, all series increase to noticeable higher amounts in the

wake of the hedge fund crisis. The averaged spread values further rise which points to wors-

ening financial conditions prior to the Bear Stearns event. This is especially the case for WM

and CFC whereas spreads of more stable banks like GS and JPM increase only moderately.

BSC’s and LEH’s spread values also rose rather slightly which suggests that their collapse

came quite surprisingly relative to their own history. This involved not only investors from

equity- but also from debt markets. Shortly before the final event, almost all companies’

spreads increased sharply given that the moving window average already accounts for past

risen values. Hence, results presented in Table 7 are fully in line with economic events which

occurred at that time.

This section showed that also on a relative scale, our option implied financial stability indi-

cator provides plausible and consistent results, and gives proof of its high predictive power.

As consequence, these properties also speak in favor of our RND estimation procedure in

general.

6 Conclusion

In this paper we applied the so-called option iPoD methodology to a dataset of option prices

for 19 of the largest US financial institutions, ranging from February 2002 to February 2012.

We showed how to empirically implement the framework in order to obtain consistent and

smooth time series of option implied Probability of Defaults (PoDs). This was achieved by

the appropriate choice of liquidity weights, the use of a suitable maturity cycle of option

contracts and a refined option data filtering technique. The option implied PoDs are esti-
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mated as probability mass point for a future stock price of zero in a non-parametric risk

neutral density (RND) estimation framework. To obtain the time series of RND/PoD esti-

mates, alternately five-, six-, and seven month call option contracts were used. Subsequently,

maturity dependence in the time series was removed by applying a non-parametric quantile

regression approach to the pooled PoDs.

The time series of PoDs for the different financial institutions were comprehensively evaluated

regarding their plausibility and consistency in size and regarding their signalling/predictive

power in advance and during crises periods. To do so, we contrasted our indicators to his-

torical events and to time series of 5-year Credit Default Swap Spreads (CDS). We found

that the PoD estimates are very well capable to signal the occurrence of adverse shocks to

the financial sector as a whole as well as to specific financial institutions - in most cases

even way in advance of the actual events. Correlation analyses between 5-year CDS and the

option implied PoDs showed that both indicators exhibit highly similar dynamics and gave

strong indication for the effectiveness of our maturity dependence correction methodology.

Comparing the levels of CDS and PoDs, we found clearly differing values, PoDs being very

much larger in advance and during times of distress than CDS. However, in order to derive

CDS implied probability of defaults, recovery rates for the different firms and points of time

have to be assumed which in turn severely complicates the direct interpretation of the levels

of CDS as a risk measure. Hence, we stress the valuable advantage of the iPoD framework,

which provides crises indicators that can be interpreted in a direct way as (risk neutral)

probabilities of default and, hence, allows for a simple comparison of risk levels over firms

and points of time.

For a more clear interpretation of the respective levels of CDS and PoDs, we further calcu-

lated three different ’relative’ risk indicators. We analysed the spreads of the CDS/PoDs for

the different banks relative to the prevailing systematic risk in the financial sector, relative

to the risk of the most resilient bank in the sample, and relative to the respective bank’s

risk in the past (its own history). In this context, we calculated a proxy for the prevailing

systematic risk in the financial sector. Therefor, we applied a Principal Component Analy-

sis to the time series of PoDs/CDS. We identified that principal component with the most

explanatory power regarding the variation in the sample of the original time series as the

latent factor that drives the risk of all of the firms to some extent. The proxy provides a

self contained financial stability measure, that can be used to gauge the stability of the US

financial sector as a whole. In the analyses of the dynamics of the systematic risk component

we could confirm its high signalling and predictive power.

The evaluation of the relative risk indicators showed that the iPoD approach was able to
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identify the high risk banks in advance of the Lehman Brother’s bankruptcy. In this context,

we could emphasize the clearly superior signalling/predictive power of the iPoDs compared

to CDS. During this period, the most informative signals were given by the spreads relative

to systematic risk, followed by those relative to the most resilient bank. The spreads relative

to its own history, in turn, clearly signalled the first turmoils in the course of the US sub-

prime crisis in mid-2007. This is true for the CDS and PoD derived relative indicators.

Finally, given the results from our comprehensive empirical analyses we stress that the op-

tion iPoD framework provides highly informative risk indicators, which in many cases are

superior to CDS with regard to its signalling/predictive power. Importantly, the amount

of information provided by the methodology is also superior to almost any commonly used

financial risk framework, since one does not only obtain PoDs, but at the same time the

corresponding (compatible) asset value distributions for the different firms over time. By

evaluating the plausibility/consistency of PoDs in the paper, we implicitly also evaluated

the plausibility/consistency of the respective asset distributions (RNDs), as the PoDs are

a function in the RND shape parameters. This makes the framework highly attractive for

multivariate risk analyses, in which joint PoDs and asset distributions of several banks are

derived. In the most straightforward way, such a approach could be implemented using the

entropy based Consistent Implied Multivariate Density Optimization (CIMDO) methodology

suggested by Segoviano (2006).
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Figure 11: 40%- and 90%-Quantile of the PoDs for different time to maturities and the re-
spective fitted functions
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